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Abstract 

The vibratory feeder is used to feed parts in manufacturing processes. This work 

applied the multibody theory to describe the dynamic behavior of rectangular and 

cylindrical parts. The analysis studied the following cases: insolated part, part on the 

horizontal plane, and part on an inclined track. A new model was proposed to find the 

average transportation velocity to feed rectangular parts. The Coulomb friction and the 

Newtonian impact theories were used to describe the influence of the effects of the 

friction and part elasticity into the analysis. The multibody theory is complemented with 

the screw theory for the analysis of the cylindrical part on the horizontal plane. These 

results are employed in the simulation of the dynamic part. The simulation shows the 

importance of the friction coefficient in the dynamic of the part on the horizontal plane 

and on inclined plane. The results were compared with real data of other works. The 

results show correlation with this data.  
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Resumen 

El alimentador vibratorio es usado para alimentar piezas industrialmente. Este 

trabajo usó la teoría de multicuerpos para describir el comportamiento dinámico de piezas 

rectangulares y cilíndricas. Para este análisis se estudiaron los siguientes casos: piezas 

aisladas, piezas sobre una superficie plana y piezas sobre un plano inclinado. Además se 

incluye un análisis completo de piezas rectangulares sobre el carril incluyendo para ello 

todos los parámetros geométricos del mismo. Se propuso un nuevo modelo para calcular 

la velocidad promedio de transporte de piezas. Las teorías de fricción de Coulomb y la de 

impacto de Newton fueron usadas para describir la influencia de la fricción y la 

elasticidad dentro del análisis. Se empleó la teoría del tornillo como complemento para el 

análisis de multicuerpos de la pieza cilíndrica sobre un plano horizontal. Estos resultados 

se simularon y se compararon con datos reales obtenidos en otros trabajos de 

investigación obteniéndose una buena correlación. La simulación muestra la importancia 

del coeficiente de fricción en la dinámica de piezas sobre un plano horizontal y sobre un 

plano inclinado. 
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CHAPTER 1 
Introduction 

 

The vibratory bowl feeder is used to feed parts industrially. It is able to guide, 

transport, store and orient the parts for their assembly. During this process the parts 

collide with the feeder’s track and their walls. This collision can be studied under the 

multibody pattern assuming zero deformation or a rigid body model. This work will be 

based on this assumption for rectangular and cylindrical parts. The parts orientations are 

analyzed based on theories such as the Solid Angle and the Energy Barrier Methods. 

These theories are based in geometrical assumptions as areas and angles (Boothroyd, 

1994). These theories are statically correct for simple part geometries but need to be 

adjusted for applications in the dynamic cases. This study complements these theories 

with a classic dynamic analysis. 

The equations of motion for a multibody system can be derived using the 

Newtonian theory or Energy principle. The Newtonian theory advantage over the Energy 

principle is that it provides the accelerations and forces directly.  
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1.1 Justification 

The multibody theory allows the development of kinematic and kinetic 

relationships of the interaction of interconnected bodies to describe their behavior in a 

combined and non-singular way. The multibody theory is a compact way to describe the 

dynamic behavior of interconnected bodies. The collision of bodies occurs when the 

interaction time of two or more bodies is short and the interaction forces are very large. 

This collision affects each of to the parts that conform the group "multibody" differently. 

The collision of interconnected bodies is the physical phenomenon of the parts and bowl 

tracks, between parts and bowl walls or between parts. This theory will provide tools that 

will improve the design process of devices and parameters within the bowl.  

For the study of this phenomenon, the first thing that should be specified is the 

frame or reference axes that describe the movement in an absolute or relative way. This 

frame can be of zero movement, called Newtonian frame, or permanent or intermittent 

movement, called relative movement frame. Newton’s law of impact establishes that the 

relative speeds of the contact point determine the components of the impulsive force that 

can describe the movement after the collision. 

Friction is fundamental for transportation dynamics. Consequently, an analysis 

will be done taking into account frictional effects. The main objective of this work is to 

dynamically simulate the parts with the help of the multibody and screw theories. This 

analysis is based in the dynamic behavior of the impact. It is convenient for the natural 

rest study including the impact effect. The result of the analysis will be a new description 

of physical phenomenon based in dynamic assumptions for the rectangular and 

cylindrical parts. 
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The spatial geometry and mechanical properties of the parts, requires an 

individual adaptation of the feeder parameters, such as orientating device geometries, 

inclination angles and frictional properties. Due to the complex mechanics of the feeding 

process the design of the feeders is currently performed by trial and error, Wolfsteiner 

and Pfeiffer (2000). The current dynamic theories about feeding process, propose a two-

dimensional model, Boothroyd (1992). The two-dimensional model does not include the 

centripetal effects caused by the wall curvature. A three-dimensional dynamic model for 

rectangular and cylindrical parts allows a theoretical investigation and an improvement in 

the properties of the feeder. 

1.2 Objectives 

The research objectives of this work are: 

• To develop a numerical analysis of the dynamic behavior of rectangular and 

cylindrical parts in the feeder based on the multibody theory. 

• To make a kinematic study of cylindrical parts using the screw theory. 

• To study the dynamics of the parts on the bowl track considering the combined 

part - track as a multibody system. 
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CHAPTER 2 
Literature Review 

 

The multibody dynamics is studied from the impact and direct contact 

perspective. The analysis can be made with force or energy methods. The formulation of 

multibody dynamics with rigid contacts can be the theoretical basis to develop new 

sophisticated models of contact-impact laws. 

Andreaus and Casini (1999) modeled the case of three blocks assembled with 

deformable contact. First, they described the pattern from the rigid perspective and with 

the deformable formulation. They proposed a model of contact force that is appropriate 

for the study of the multibody dynamics with restricted unilateral contact. In the second 

part they showed the application of this proposed model for the trilith (the simplest 

scheme of a colonnade to a temple) to half-sine-wave pulse and to horizontal harmonic 

ground motion. According to this model they identified three motion areas: rest, stable 

motion and collapse. 

 

 

 4 



5 

Chang and Huston (2001) presented a computational procedure for the analysis of 

impact in multibody systems by combining the Newtonian theory of impact and dynamic 

of the multibody. Their work is applicable to the design and analysis of couplers, latches, 

docking mechanisms and grippers. They considered the collision between two multibody 

system and the internal collisions for the same multibody system. They also provided a 

method to find velocity changes during impact and to determine impulse at the point of 

contact and the motion after the collision. The procedure is applicable to the collision 

decoupled multibody system and for collisions of bodies within a single constrained 

multibody system.  

Gerstmayr and Schöberl (2002) combined the dynamics of multibody systems and 

numerical analysis techniques to study the field of 3D deformable multibody dynamics. 

Two analysis methods were used: (i) the finite element for small deformation and (ii) the 

Lagrangian description of the deformation including large deformation, displacements 

and rotations. The formulation is capable to treat small nonlinear effects like geometric 

stiffening by introducing additional rotational degrees of freedom for every single body. 

Small deformation means that its value is less or equal to the two percent of yield 

deformation and large deformation is on the contrary.  

Pennock and Meehan (2002) used the geometric relationships between the 

velocity screw and momentum screw to describe the kinetic of rigid body. They defined 

the centripetal screw, and they explained the significance of this screw in a study of the 

dynamics of a rigid body. The method presented in this paper will prove useful in a 

dynamic analysis of closed-loop spatial mechanism and multi-rigid body open-chain 

system. 
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Huang and Wang (2003) utilized Dimentberg’s definition of pitch to demonstrate 

that all possible screws for displacing a line from one position to another can indeed form 

a screw system of the third order. Two different approaches are taken: one uses the 

concept of a screw triangle, and the other is based on analytical geometry. They 

demonstrated that, by using Dimentberg’s definition of pitch, the displacement screws 

can indeed form a screw system of the third order. The screw system derived in this paper 

can be useful in applications where only certain line elements of a rigid body are of 

interest. These applications include the displacements of a cylindrical joint and light 

source. 

Pennock and Oncu (1992) applied screw theory to the dynamic analysis of a rigid 

body in general spatial motion. This research placed emphasis upon the geometric 

interpretation of the velocity, the momentum, and the force screw. The dynamic state of 

motion of the rigid body is described by a dual vector equation, referred to as the dual 

Euler equation. The geometric approach presented in this paper proves useful in the 

graphical representation of the dynamics of a rigid body. 

2.1 Multibody Theory 

The parts motion is composed of translations and rotations around an axis. The 

Kardan angles for three elementary rotations are given, Pfeiffer and Glocker (1996): 

1 0 0 cos( ) 0 sin( ) cos( ) sin( ) 0
0 cos( ) sin( ) ;  0 1 0 ;   sin( ) cos( ) 0
0 sin( ) cos( ) sin( ) 0 cos( ) 0 0 1

A A Aα β γ

β β γ γ
α α γ γ
α α β β

−⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜= − = =⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜−⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎠

  (2.1) 

where the transformation from B to R is RBA A A Aγ β α=  

The sequence is  1 2
AA AB B Bβα γ⎯⎯→ ⎯⎯→ ⎯⎯→R
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The equation motion for rigid body systems without unilateral constraint is 

A P

A A P P i

s

s sii i

0 0p
0

rs rsL

i 1, . . . , n ,
w ith

m 0 0p v
0 IL

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪− −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ Ω ΩΩ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

E F E F
E M E M

E
I

�
� � �

� �
�� �

=

     (2.2) 

where and  ∈  Rp� L� 3 respectively 

The subscript s denotes the center of mass of the rigid body under consideration, 

IS is the inertial matrix, E is the identity matrix, MP is moments vector, Ω is the angular 

velocities vector, F is the force vector and rG  is the position vector. 

2.1.1 Contact Kinematics 

The characteristic vectors for the contact point of the two bodies are shown in 

figure 2.1. The Vectors t and n are perpendicular vectors. Therefore, . i in t 0⋅ =

 
Figure 2.1 General orientations of two bodies 

P2P1

O

rOP2
rOP1

rPΣ2

rD n1

t2

rPΣ1

n1

t1
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The distance between bodies gN is  

N D 2 D 1

1 2 1 2 1

g ( , t) r n r n      
if

;  ;  

= = −

= − = − =

q

n n t t b b2

          (2.3) 

2.1.2  Impact Newton’s theory 

The impact theory formulated for Newton is a relation that describes the energy 

loss factor of impact, Pfeiffer and Glocker (1996). The energy loss factor is called the 

coefficient of restitution ε. This coefficient is  

NNE NA

N Ni

                        

diag{ }

ε

ε ε

= −

=

g g� �
           (2.4) 

Where NEg�  and NAg�  are the relative velocities before and after the impact respectively. 

The range value for the restitution coefficient is 0 1ε≤ ≤ . The expression for the impact 

force is: 

1
N NG (E )ε−Λ = − + g� NA            (2.5) 

The term GN
-1 corresponds to the reduced mass of the multibody system, ΛN is the 

impulsive force in normal direction, and E is the identity matrix. The Coulomb friction 

equation is a linear approximation of the relationship between the friction force and the 

normal contact force. The Coulomb friction is given by  

( )Ti i Ni Ti Nising g   ;   0  λ µ λ λ= − ≥�           (2.6) 

Where µi is the coefficient of friction of the ith sliding contact, λNi is the corresponding 

normal force which is assumed to act only as a compressive force (λNi≥0), and the sing 

function includes the opposite direction of relative velocity respect to the friction force. 
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2.2 Screw Theory 

The Screw is associated with motion. However; it can be associated with other 

physical quantities like the load on a body. The Screw was defined by Sir Robert Stawell 

Ball in 1990 as follows: “A screw is a straight line with which a definite magnitude 

termed the pitch is associated.” Screw is a geometrical element that has the parameter h 

attached to it. This parameter h is called the pitch of the screw. The pitch measures linear 

advancement along the axis per unit rotation about the axis.  

Screw theory is based on two fundamental theorems, Lipkin and Duffy (2002): 

1. Chasles’ theorem. Rigid-body motion is equivalent to twist on a screw, i.e. a rotation 

along a unique axis and a translation parallel to the axis. 

2. Poinsot’s theorem. Rigid-body action is equivalent to a wrench on a screw, i.e. a force 

along a unique line and a couple parallel to the line. 

2.2.1 Vector Representation 

A screw quantity is represented using a pair of vectors. Let ω be the angular 

velocity of the body about the screw axis of the twist. Points on the axis, such as A, have 

a parallel linear velocity h ω= ⋅Av , where h is the pitch of the screw. If point A is known, 

then the vector pair (ωA, vA) is sufficient uniquely to specify the twist. Similarly, let f be 

the force on the body along the screw axis of the wrench. Points on the axis, such as A, 

have a parallel net moment Am h f= ⋅  , where h is the pitch of the screw. If point A is 

known, then the vector pair (f, mA) is sufficient uniquely to specify the wrench. 
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It is also sufficient to specify the twist or wrench using the linear velocity or net 

moment of any other point P on the body: 

P

P

( ; ) ( ; r h )  
( ;m ) ( ; r h )

P

P

v
f f f f
ω ω ω ω= × +

= × +
          (2.7) 

Were rP is vector from P to axis. All screw quantities can be expressed as scalar 

multiplies of a screw (S; So), so for a twist and a wrench. 

o
P

o
P

(S;S ) (S;r S hS) 

(S;S ) (S;r S hS)f f

ω ω= × +

= × +
          (2.8) 

Where S is a unit vector along the screw axis, ω is called the amplitude of the twist and f 

is called the intensity of the wrench. The pith and perpendicular vector a screw axis are 

given by: 

o

o

S Sh   
S S

                    
S Sr

S S⊥

=

×
=

i
i

i

          (2.9) 

A pure rotation has h=0 since all points long the axis are stationary. A pure force 

has h=0 since all moments about the axis are zero. A pure translation has h=∞ and a pure 

couple has h=∞.  

2.2.2 The velocity, momentum and force screws 

The velocity of a rigid body is completely specified, by the angular velocity 

vector ωG , and the linear velocity vector AV
G

 of an arbitrary point A fixed in the body, 

Pennock and Oncu (1992). 
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The screw velocity is then  

( )ˆ$̂ ;
A

 A AV Vω ω ε= = +
G GG G V            (2.10) 

the dual operator is defined as ε where ε2=0, and has the dimension [L]-1. 

The linear momentum vector of the mass center of the rigid body can be written 

as: 

( )Aq m V AGω= + ×
HJJGG GG  

where m is the mass of the body and AG
HJJG

 is the position vector directed from point A to 

the mass center G. The angular momentum vector, about the arbitrary point A fixed in the 

body, can be written as: 

[ ] (   A A AH I m AG Vω= + ×
JJJGG GG )

 

         (2.11) 

where [IA] is the (3x3) inertia matrix referred to point A.  

The momentum screw is defined as the combination of linear and angular 

momentum vectors, Pennock and Oncu (1992).  

( )ˆ$̂ ;
A A AH q H q Hε= = +

G GG G
          (2.12) 

The cross product of the velocity screw and the momentum screw is other screw which 

will, henceforth, be denoted as 

ˆ ˆ ˆ
ˆ ˆ ˆ$ $ $

A A AP V H= ⊗  

 o

           (2.13) 

the cross product of the equation 2.13 is a special operation between screws. This 

operation can be derived as the cross product between two dual vectors: 

     (2.14) 1 2 1 1 2 2 1 2 1 2 2 1$ $ ( ) ( ) ( )o o os s s s s s s s s sε ε ε⊗ = + ⋅ × + ⋅ = × + × −
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The resultant external force vector and the resultant external moment can be 

combined into the force screw 

$̂ ( ; )
AF AF M F Mε= = +

G G G G
A

 
A

 

The dual Euler equation can be written as 

ˆ ˆ ˆ$ $ $
A AF N P= +            (2.15) 

where is the time rate of change of the momentum screw. $̂
AN

ˆ ˆ$ $
A AN H=
�  

2.3 Summary 

The necessary equations for describe the rigid body dynamic were given in this 

chapter. The dual Euler equation is the screw form used to describe the rigid body 

motion. These equations will be used in next chapter to describe the motion of 

rectangular and cylindrical parts on a surface. 
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CHAPTER 3  
Dynamic Analysis with Multibody 

Theory 

 

3.1 Introduction  

Modeling mechanical systems requires engineering intuition and of a lot of practical 

imagination. The modeling process requires appropriate assumptions based on the 

physical nature of the problem. This chapter is divided in physical conditions for 

rectangular and cylindrical parts. The physical conditions are insolating the part, part on 

horizontal plane, part on inclined plane and interaction of the two parts. The goal of this 

chapter is to study the interaction of the rectangular and cylindrical parts using multibody 

theory. A complete mathematical formulation with a description of the physical 

phenomenon is provided in this chapter. 

3.2 Modeling of Rectangular Parts 

Rectangular parts are prisms with all the plane faces perpendicular or parallel to 

the motion surface. The rectangular parts are analyzed with five degrees of freedom for 

contact type point-surface, three degrees of freedom for contact type surface-surface and 

four degrees of freedom for contact type line-surface. The interaction of the parts with the 

bowl surfaces are the restrictions for its motion.  

13 
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3.2.1 Insulate Rectangular Part 

An Insulate Rectangular Part (IRP) is when the interaction between the parts is 

zero, but the interaction between part and bowl is not zero. This analysis is made in two 

dimensions.  

 

Figure 3.1 Coordinates and parameters of insulate parts. 
 

 

Figure 3.2 Free body diagram for the insulate part. 
 

 
The generalized coordinates for this motion are q (x, y, )ξ= . The figure 3.1 shows 

the position and orientation coordinates for this IRP. The variables x and y are the 

horizontal and vertical positions, respectively, of mass center with respect to the fixed 

frame while h and b represent the length and high of the part, respectively. Figure 3.2 

shows the free body diagram for an insulate part. The vectors λT and λN are the impulsive 

forces in the tangential and normal directions respectively.  

h 

x 
b y ξ 

gT

gN

λT 

b/2

h/2

ζ
mPg

ξ

λN 
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Based on the Newton’s second law: 

x P T

y P N P

2 2 2 2

0 N T

F :     m x

F :     m y m g                                  

h b h bM :   I cos( ) sin( ) 
2 2

λ

λ

ξ λ ξ ζ λ

=

= −

⎛ ⎞ ⎛ ⎞+ +
= − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑
∑

∑

��

��

�� ξ ζ

    (3.1) 

From the geometry: barctan
h

ζ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

The goal of this section is to find the distance between the contact point and a 

plane surface (gN, gT) and its time derivates ( ) ( )N T N Tg ,g  and g ,g� � �� �� . The distance g is: 

( )

( )

2 2
N

2 2
T

1g y b h sin
2

                                   
1g x b h cos
2

ζ ξ

ζ ξ

= − + +

= + + +

         (3.2) 

Differentiating 3.2 with respect to t: 

( )

( )

2 2

N

2 2

T

b hg y cos
2

                                                 

b hg x sin
2

ξ ζ ξ

ξ ζ ξ

+
= − +

+
= − +

�� �

�� �

         (3.3) 

Differentiating 3.3 with respect to t  

2 2 2 2
2

N

2 2 2 2
2

T

b h b hg y cos( ) sin(
2 2

                                                                                    

b h b hg x sin( ) cos( )
2 2

)ξ ζ ξ ξ ζ ξ

ξ ζ ξ ξ ζ ξ

+ +
= − + + +

+ +
= − + − +

�� ��� ��

�� ��� ��

      (3.4) 
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Equations 3.1 and 3.2 describe the contact state. The rectangular part has contact 

and can slide to right. Contact means that the distance (gN) and the relative velocity in 

normal direction (ġN) are zero. 

The sliding condition occurs if . Applying 2.6 it is obtained: Tg ≥� 0

T( )T N

T

T N

sing g
If  g 0    then

        

λ µ λ

λ µλ

= −

≥
= −

�
�             (3.5) 

The term sing ( ) is the sign function. Equations 3.1, 3.4 and 3.5 provide six 

equations for the six unknown accelerations 

Tg�

( )N Tx, y, ,g ,gξ�� �� ���� ��  and forces ( )N T,λ λ . 

Substituting 3.1 in 3.4 the relative accelerations are: 

( )

2 2 2 2
2N

N P P
P

2 2
2

b h (h b )g 1 m cos ( ) m sin( ) cos( )
m 4I 4I

b h                                                                        sin( ) g           a
2

                                

λ µζ ξ ζ ξ ζ ξ

ξ ζ ξ

⎛ ⎞+ +
= + + − + +⎜ ⎟

⎝ ⎠

+
+ + −

��

�

2 2 2 2
2N

T P P
P

2 2
2

                                          

b h (h b )g m cos( ) sin( ) m sin ( )
m 4I 4I

b h                                                                          cos( )  
2

λ µµ ζ ξ ψ ξ ζ ξ

ξ ζ ξ

⎛ ⎞+ +
= + + + − +⎜ ⎟

⎝ ⎠

+
− +

��

� ( )            b

   (3.6) 

To simplify the analysis, equation 3.6a can be represented by: 

2 2 2 2
2

P P
P

2 2 2

1 b h (b h )1 m cos ( ) m sin( )cos( )
m 4I 4I

1g b h sin( ) 1
2g

µτ ζ ξ ζ ξ ζ ξ

χ ξ ζ ξ

⎛ ⎞+ +
= + + − + +⎜ ⎟

⎝ ⎠

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
�

 

The equation 3.6a is a linear equation with two unknowns: Ng  and Nλ�� . The 

system is in contact if the normal force is compressive and the normal acceleration is zero 

 or if ( . Then, contact exists if ( )N N0;  g 0λ ≥ =�� ) 0N N0;  g 0λ = ≥�� N N N Ng 0;   0;   gλ λ≥ ≥�� �� =  
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Then N N N N N Ng ;  g 0;  0;  and g 0τλ χ λ λ= + ≥ ≥ =�� �� �� . τ and χ may have positive or 

negative values depending on the parameters µ, ξ and 2ξ� . The normal relative 

acceleration is in linear form. The sings of τ and χ values generate the following cases of 

study. 

Case I τ>0 

(i) If χ>0: The solution for this case is: 

N Ng 0;  0χ λ= > =��  

Because the second possibility would contradict the condition λN≥0 

N Ng 0,  0χλ
τ

⎛ = = − <⎜
⎝ ⎠
�� ⎞

⎟ . This case corresponds to separation of the body. 

(ii) If χ <0: The solution for this case is:  

N Ng 0;  0χλ
τ

= = − >��  

This situation corresponds to continual sliding.  

Summarizing, for τ>0 the solution only is separation or continual sliding of the part. 

Case II τ<0 

(i) If χ >0: The solution for this case is:  

N Ng 0 and 0χ λ= > =��  

This is a solution, but now τ is negative and thus a second solution can be found  

N Ng 0;  and 0χλ
τ

= = − >��  

These solutions are continual sliding and separation as case I. 
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(ii)  If χ<0: The solution for this case is: 

N N

N N

g 0 and 0

              or
g 0 and 0

χλ
τ

χ λ

= = − <

= < =

��

��
 

In this case, sliding and separation are contradictory to the equation of motion and 

the contact law; thus the solution does not exist. 

For the special case when τ=0 the solution boundary is obtained. This boundary 

limits the regions of positive and negative values depending on the friction coefficient µ 

and the part angle ξ. The boundary function is given by: 

21 3cos ( )    
3sin( )cos( )

ζ ξµ
ζ ξ ζ ξ
+ +

=
+ +

          (3.7) 

The equation 3.7 is obtained with ( 2 2

12
Pm )I b h= + . The figure 3.3 is generated 

plotting µ(ξ). This figure shows the lines for τ=0. The region above these lines 

correspond τ <0 and the region below these lines correspond to τ >0. 

 Inclination Angle [rad]

Fr
ic

tio
n 

C
oe

ff
ic

ie
nt

 

Figure 3.3 Limit conditions for the rectangular part. Friction coefficient versus inclination 
angle. 
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From figure 3.3, µ < 4/3 the values of τ are always positive. If the coefficient of 

friction is chosen small enough (<4/3), then it will always provide a unique solution. 

3.2.2 Rectangular Part on the Horizontal Plane 

 In this section a study of the physical behavior of rectangular parts on the 

horizontal plane will be presented. Figure 3.4 shows a drawing of a basic rectangular part 

with the relevant parameters for the analysis of rectangular parts on the horizontal plane. 

Ux represents the part displacement in the x direction; Uy represents the part displacement 

in the y direction; θ represents the part rotation about the z direction. It is assumed that in 

the x and y directions there no rotation and in the z direction there is no translation. 

 

 

 

 

 

 

z 

θ 

Uy 

Ux

x 

Figure 3.4 Axes and parameters of a rectangular part on the horizontal plane 
y 

A free body diagram for the rectangular part on horizontal plane is shown in 

Figure 3.5. λTx and λTy are components of the friction force, λN is the normal force and 

mPAoω2 represents the vibration force. Where mP is the part mass, A0 is the vibration 

amplitude and w is the angular frequency of vibration. The  excitation angles of the 

vibration force are α and β.  
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z 

 

Figure 3.5 Free body diagram of rectangular parts on horizontal plane 
 

The motion in this condition has generalized coordinates given by: 

x
y

q
z
θ

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

where x, y and z represent the mass center position and θ is the rotation about the z axis.  

Based on the Newton’s second law  

2
x P o Tx P

2
y P o T y P

2
z P o P N P

F :   m A cos( ) cos( ) m x

F :   m A cos( )sin( ) m y 

F :   m A sin( ) m g m z

ω β α λ

ω β α λ

ω β λ

− =

− =

− + =

∑
∑
∑

��

��

��

        (3.8) 

Replacing the equation 2.6 in 3.8 it is obtained: 

k
2 N

o k
P

P

N

x cos( )cos( )
y A sin( )cos( )

m
z sin( ) m 1

α β µ
λω α β µ

β
λ

g

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎪ ⎪−

⎪ ⎪⎩ ⎭

��
��
��

        (3.9) 

x 

mPAoω2

β 

λTx α

λTx
λN y 

mPg 
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The equation 3.9 is the force matrix form of the motion of rectangular part on the 

horizontal plane. This equation does not include the rotation about the z axis. The rotation 

matrix is symbolized by [Am]n, where n is the rotation axis and m is the angle. 

Then [Am]n is: 

z

cos( ) sin( ) 0
[A ] sin( ) cos( ) 0

0 0
θ

θ θ
θ θ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦1

 

The rotation about z is:  

[ ]z

x x
y A y
z z

θ

′⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪′ =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪′⎩ ⎭ ⎩ ⎭

�� ��
�� ��
�� ��

 

The apostrophe means that the accelerations are given in rotate coordinates. The 

result of this matrix multiplication is given by equation 3.10. 

2
o

x y
N

x y
P

P

N

x cos( ) cos( ) cos( ) sin( ) cos( )sin( )
y A cos( ) cos( )sin( ) sin( ) cos( ) cos( )
z sin( )

cos( ) sin( )
           sin( ) cos( )

m
m g 1

α β θ α β θ
ω α β θ α β θ

β

µ θ µ θ
λ µ θ µ θ

λ

′ +⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥′ = − +⎨ ⎬ ⎢ ⎥
⎪ ⎪′ ⎢ ⎥⎩ ⎭ ⎣ ⎦

⎡ ⎤
⎢ ⎥+⎢ ⎥

− − +⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

��
��
��

         (3.10) 

3.2.3 Rectangular Part on the Inclined Plane 

The figure 3.6 shows the geometric parameters of rectangular part on the inclined 

plane. The angle θ is the rotation angle about the z axis. The angles β and α are the 

directions of the vibration force. The angle γ is the inclination of the plane. 
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γ

β

α

mPAoω2

θ
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y Figure 3.6 Rectangular part on inclined plane. 
 

γ 
λN

λTy 

β

α

mPAoω2

θ
z

 
x 

 

 

 

 λTx

 
y 

Figure 3.7 Free body diagram of rectangular part on inclined plane. 
mPg

 

The figure 3.7 shows the free body diagram for a rectangular part on the inclined 

plane. The friction forces are λTx and λTy. The normal force is λN. The Coulomb friction 

equation was used for this analysis.  

For the Newton second law, it is obtained: 

2
x o P Tx P P

2
y o P T y P

2
z o P P N P

F :  A m cos( ) cos( ) m g sin( ) m x

F :  A m cos( )sin( ) m y                 

F :  A m sin( ) m g cos( ) m z

ω β α λ γ

ω β α λ

ω β γ λ

− − =

− =

− + =

∑
∑
∑

��

��

��

      (3.11) 
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The equation 3.11 be write in matrix form 

P
x

N
2 N

o
P

P

N

m gsin( )
x cos( )cos( )
y A sin( ) cos( )

m
z sin( ) m g cos( 1

y

)

γµ
λα β

λω α β µ
β γ

λ

⎡ ⎤+⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥−
⎢ ⎥⎣ ⎦

��
��
��

      

Now the rotation about z is made: [ ]Z

x x
y A y
z z

θ

′⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪′ = ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪′⎩ ⎭ ⎩ ⎭

�� ��
�� ��
�� ��⎪

 

The result of this matrix multiplication is given by: 

2
o

P
x

N

N

P

x cos( )cos( )cos( ) sin( )sin( )cos( )
y A sin( )cos( )cos( ) cos( )sin( )cos( )
z sin( )

m gcos( ) cos( )sin(

                                                    
m

θ α β θ α β
ω θ α β θ α β

β

µ θ θ γ
λ

λ

′ +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ = − +⎢ ⎥ ⎢ ⎥
′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+

−

��
��
��

y

P
x y

N

P

N

) sin( )

m gsin( ) sin( )sin( ) cos( )

m g cos( ) 1

µ θ

µ θ θ γ µ
λ

γ
λ

θ

⎡ ⎤
+⎢ ⎥

⎢ ⎥
⎢ ⎥
− − +⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎣ ⎦

    (3.12) 

The equation 3.12 describes the body accelerations with respect to the mobile frame, 

fixed to the body. This equation is formed by the sum of two vectors: the first vector 

represented the vibrational effects and the second vector is the frictional and gravitational 

effects. 

3.2.4 Rectangular Part on the Narrow Track 

The figure 3.8 shows the rectangular part upward the track. The rectangular part 

has contact with the track floor and wall. The figure 3.9 shows the dimensions used for 

this analysis.  
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The contact between the part and the track wall move the action line of the normal 

force to a part corner because this contact generates a moment about of the mass center.  

From figure 3.8b and by geometry: 

arcsin
2
h
R

σ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

where R is the bowl radius. 

 
 

Figure 3.8 Part on the narrow track: (a) part, floor and wall, (b) plan view, (c) section 
view and (d) side view 

 

 

Figure 3.9 Geometric dimensions of a rectangular part. 
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The figure 3.10 shows the free body diagram of the part on the narrow track. The 

forces λ1 and λ2 are the normal forces of the contact between the part and track wall. The 

frictions forces are: λTx1, λTx2, λTz and λTy orientated as it shows in the figure. The angles γ 

and δ are the inclination angles of the track about y and x axis respectively showed in the 

figure 3.8d and 3.8c respectively.  

Aoω2mP z

 
Figure 3.10 Free body diagram of the rectangular part on the narrow track. 

The ax, ay and az are the accelerations in x, y and z directions. Based on the 

second Newton law and employing the transformation matrix given in the equation 2.1, it 

is written 

2
1 2

1 0 0 cos( ) 0 sin( ) 0

0 cos( ) sin( ) 0 1 0 0

0 sin( ) cos( ) sin( ) 0 cos( )

0 cos( )cos( )

             cos( ) cos( ) cos

γ γ

δ δ

δ δ γ γ

β α

λ σ λ σ ω

λ

⎧ ⎫ ⎧ ⎫⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪=⎨ ⎬ ⎨ ⎬⎨ ⎬⎨ ⎬
⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪

− − −⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭⎩ ⎭

⎧ ⎫
⎪ ⎪⎪ ⎪+ + +⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

x

P y

z

o P

N

a

m a

a m

A m

1 2

1 2

( )sin( )

sin( )

λ λ λ

β α λ

β λ λ

− − −

g

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪+⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

− −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩

T x T x T x

T y

T z T z ⎭

(3.13) 

λTx2 

λ1 

λTz2

λ2 β
λTx2

λTz1

y

λTy

λTx λN

mPg
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The sum of moments about the center gives the following equations: 

1 2 1 2

1 2 1 2

1 2 1

b b a a bcos( ) cos( ) 0 
2 2 2 2 2

0
2 2 2 2 2

cos( ) cos( )
2 2 2

λ σ λ σ λ λ λ

λ λ λ λ λ

λ σ λ σ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑

∑

∑

ox Tz Tz Ty

oy Tz Tz Tx Tx Tx

oz Tx

M

h h b b bM

h h aM

=

2 0
2

λ ⎛ ⎞+ =⎜ ⎟
⎝ ⎠

Tx
a

    (3.14) 

By the Coulomb friction equation it can be written as: 

1 1

2 2

1 1

2 2

cos( )
cos( )

cos( )
cos( )

λ λ µ σ
λ λ µ σ
λ λ µ σ
λ λ µ σ

=
=
=
=

Tx k

Tx k

Tz s

Tz s

          (3.15a) 

Replacing the equations 3.14 and 3.15a into of the equation 3.13 it is obtained: 

( ) ( )

( )

1 2

2

2

cos( )

cos( ) 1

µλ λ
µ

µλ σλ µ µ
µ µ

µλ σλ µ
µ

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

µ µ
⎡ ⎤⎛ ⎞−

= + − −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞−

= + −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

k

k

k
N s k

k k

k
Ty s

k

h a
h a

h a h b h b
b h a

h a b a
b h a

s k
        (3.15b) 

 
The acceleration ay is the acceleration in radial direction. Therefore, ay is the 

centripetal acceleration. The centripetal acceleration is a function of the velocity; this 

acceleration can be expressed as: 

2

y
va
R

=  

where v is the velocity of the part and R is the radius of the bowl.  
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Replacing the equations 3.15a and 3.15b into of the equation 3.13 and solving for 

λ2 in function of the velocity  

( ) ( )
( )

( )
( )

P P

2
k 0 k 2

2
s s

m b a h A cos( )sin( ) gcos( )sin( ) m b h a
v

2cos( )h a 2b 2cos( )hR a 2b
µ ω β α γ δ µ

λ
σ µ σ µ

+ + +
= −

− −
    (3.16) 

Replacing the equation 3.16 into the equation 3.13 it is obtained for ax

( ) ( )2 2
0 cos( ) cos( ) sin( ) cos( )sin( ) sin( ) µω β α µ α µ γ δ γ= + + − k

x k ka A g v
R

−  

Simplifying this equation with the following abbreviations  

( ) ( )2
0 cos( ) cos( ) sin( ) cos( )sin( ) sin( )ω β α µ α µ γ δ γ= + +k kK A g −  

where K is a parameters that depend of the friction and track inclinations angles. 

The acceleration in the x direction can be written as: 

2µ
= − k

xa K v
R

           (3.17) 

The equation 3.17 shows that the acceleration in the x direction is not constant and is 

function of the part velocity. 

The differential equation for a part with variable acceleration in term of the 

velocity and displacement, is given by: 

xa dx v dv⋅ = ⋅  

Replacing the equation 3.17 into of this differential equation and solving for the 

velocity it is obtained the equation 3.18. 

2

1
µ

µ

µ

−⎛ ⎞
− ⋅ ⋅ ⋅ −⎜ ⎟

⎝ ⎠=

k x
R

k

k

K R e
v                (3.18) 
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The equation 3.18 represents the transportation velocity of the part. This model is 

a model in three-dimensional analysis. The equation 3.18 is the final result for this 

section. 

3.2.5 Contact Between Two Rectangular Parts 

The contact of two rectangular parts can be of three types. The first contact is 

between plane surface and plane surface. The second contact is between plane surface 

and a line. The third contact is between a line and a line. In this section only the second 

contact is analyzed because is the most frequent.  
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Figure 3.11 Vector diagram for the contact between two rectangular parts. 
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The figure 3.11 shows the vectors set used for the analysis of this situation. In the 

contact between two rectangular parts can occur: 

 

2 2
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1/ 2 min

r h

r a, if a<h

r h,  if a
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=
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Figure 3.12 Vector diagram before impact (rectangular parts). 

 

 
Figure 3.13 Vector diagram after impact (rectangular parts). 
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The figures 3.12 and 3.13 show the conditions before and after impact 

respectively. The subscript B represented the fixed frame (x, y, z). The subscripts A and 

C represented the mobile frames fixed to bodies A and C respectively. The vectors are 

given by: 

1 2 1

B 1i 1 B 2 i 2 B 1f 1 B 2 f 2

i i f

2 1 2 2 P

B 1/ 2 i 2 1 B 1/ 2 f 2 2 B Pf P

i f

x x x
r y ;        r y  ;     r y ;          r y

0 0 0

x x x x x
r y y ;     r y y ;           r y

0 0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G G G G

G G G

f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

2

f

x

0

0

 

0

P

i
0

⎞
⎟
⎟
⎟
⎠

 

In the initial and final positions, the vector equations are respectively given by  

B 1/ 2i C CP A AP Nr r r g+ − =
G G G G

          (3.19) 

B 1/ 2f C CP A APr r r+ − =
G G G

 

Equation 3.19 can be written by its components: 

2 1 CP AP

N 2 1 CP A

B i C i A

x x x x
g y y y y

0 0

−⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜= − + −⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

G  

 

Equation 3.19 can not be solved in this form because its terms are given in 

different reference frames. It is necessary to apply a coordinate transformation. The 

transformation matrix is symbolized by [Tn]m, where n is the rotation axis and m is the 

translation vector. The vector equations are: 

[ ] [ ]

[ ] [ ]

1

1

   then,    = 

   then,    = 
C C

A A

C pi z B CPi B CPi z C CPir r

A Pi z B APi B APi z C APir r

r T r r T r

r T r r T r

−

−

= ⋅ ⋅

= ⋅ ⋅
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The result is 

2 2

2 2

1
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cos( ) sin( ) 0 cos( ) sin( )
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0 0 1 0 0 0
0 0 0 1 1 1
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⎥ ⎢ ⎥ ⎢ ⎥
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Then, the relative distance between the contacts points can be written as: 

2 1

2 1

cos( ) co s( ) s in ( ) s in ( )
sin ( ) sin ( ) cos( ) cos( )

0
1

C P C A P A C P C A P A

C P C A P A C P C A P A
N

x x y y x x
x x y y y

g

θ θ θ θ
θ θ θ θ

− − + +⎡ ⎤
⎢ ⎥− + − +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

G y
−
−

x

�

�

y

�

�

   (3.20) 

Differentiating the equation 3.20 it found the relative velocity between two 

bodies. This derivate is given in Cartesian coordinates in the equation 3.21a.  
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 (3.21a) 
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( ) ( )
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The equation 3.21a can be separated in two terms  

The generalized coordinates given in the equation 3.21b can be reduced with a 

constrain on contact point. This constrain is to consider that the body A always impacts at 

one of its four corner. The constrain equations are: 
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        (3.21b) 
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The contact equation is given by [ ]( ) N0,   with   lim E

AE A

t

E A N N Ntt t
M q q W dtλ

→
− − Λ = Λ = ∫� �  

33 
 

33 

Where [M] is the mass matrix and Aq�  the derivates of the generalized coordinates at expansion and approximation 

respectively. 

and E

Replacing the equation 3.22 into 3.21 a relationship for the relative velocity is obtained 

 

q�
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Based on the impact Newton theory, it is obtained:  

NE NAg gε= −
G G� �  

And  

(  T
NE NA N E Ag g W q q− = −
G G
� � � � )

NA

          (3.23) 

Since  

( ) [ ]
111   T

N N NW M W gε
−−⎡ ⎤Λ = − ⋅ ⋅ ⋅ ⋅⎣ ⎦
G�         (3.24) 

The equation 3.24 is the final result for this section. 

 

3.3 Modeling of Cylindrical Parts 

The cylindrical parts have two surface types: one curve surface and two plane 

surfaces. The part curve surface has two different effects on its motion. These effects are 

a rolling effect if the motion is perpendicular to the cylinder axis and a stick-sliding effect 

if the motion direction is parallel to cylinder axis.  

3.3.1 Insulate Cylindrical Part 

When a cylindrical pat is in free fall, the contact can occur only of three forms: 

1. Contact between the cylindrical edge and the plane surface (point-

surface). 

2. Contact between two plane surfaces (surface-surface).  

3. Contact between the curved surface and the plane surface (line-surface). 
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Figure 3.14 (a) Position coordinates; (b) Free body diagram for contact edge; 
 (c) dimensions; (d) 3D parameters 

 

The figure 3.14 shows the parameters that will be used for the analysis of this 

section. The figure 3.14a shows the 2D position coordinates of the cylinder mass center. 

The figure 3.14b is the free body diagram of cylinder in contact with the plane surface. 

This contact is considered in the cylinder edge, the other contact type is analyzed later. 

The figure 3.14d shows the three-dimensional parameter in the contact point. The figure 

3.14e shows the cylinder dimensions diameter and high. By geometry it is obtained: 
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By the second Newton law the kinetic equations for this case are 

:

:     

1: cos( ) sin( )
2

λ

λ

ξ λ ζ ξ λ ζ

=

= −

= − + − +

∑
∑
∑

��

��

��

x P T

y P N P

O N T

F m x

F m y m g

M I b b ξ

       (3.26) 

Replacing the equation 3.25 into the equation 3.26 for the third equation: 

2 2 2 21 1cos( ) sin( )
2 2

ξ λ ξ ζ λ= − + + − + +��
N TI d h d h ξ ζ       (3.27) 

The goal is to found the relative distance gN and its derivates: 

2 2

sin( ) 
2

ζ ξ+
= − +

G
N

d hg y          (3.28) 

The equation 3.28 has the following derivates: 

2 2

2 2 2 2 2

1 sin( )
2

                                                                   
1 1cos( ) sin( )
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ξ ξ ζ ξ ξ ζ

= − + +

= − + + + + +

G� ��

G�� �� ���

N

N

g y d h

g y d h d h

     (3.29) 

In the tangential direction the relative distance is: 

2 2

cos( )    
2

ξ ζ+
= + +

G
T

d hg x          (3.30) 

The derivates of the equation 3.30 are: 

2 2

2 2 2 2
2

sin( )
2
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T
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d h d hg x

      (3.31) 
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The equation 3.31 completely describes the condition of proximity from the body 

to surface. The body slides if the tangential relative velocity is larger that zero. The body 

is in contact with surface if gN is zero. Then by the condition for contact and sliding  

T

T

sig(g )

if  g 0 then 
     

λ µλ

λ µλ

= −

>
= −

G�
G�

T N

T N

           (3.32) 

Solving the equations 3.26 for ,  y and ξ���� ��x , and replacing into 3.29 and 3.31, it is 

obtained: 
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2
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− +�d h

 (3.33) 

Now the equation 3.33a is written using the following abbreviations: 

2 2
2 2 2

2 2
2

1 1 cos ( ) ( )sin( ) cos( )
4 4

sin( )
2

µτ ξ ζ ξ ζ ξ ζ
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Then, N N N N N Ng ;  g 0;  0;  and g 0τλ χ λ λ= + ≥ ≥ =�� �� �� . τ and χ may have positive or negative 

values depending on the parameters µ, ξ and 
2 2

2d h
2g

ξ+ � . This result and conclusions 

are equal to the results obtained in the section 3.2.1.  
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The boundary condition (τ=0) is 

2 2 2
P

2 2
P

4I+m cos( ) (d +h )
m sin ( )cos( )(d +h )

ξ ζµ
ξ ζ ξ ζ

+
=

+ +
        (3.34) 

For a cylinder 2 23
12 4

PmI d h⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

Replacing this value into the equation 3.34 it is obtained 

2 2 2 2 2

2 2

3 4 12cos ( )( )  
12sin( ) cos( )( )

ξ ζµ
ξ ζ ξ ζ

+ + + +
=

+ + +
d h d h

d h
 

The figure 3.15 is the plot of µ(ξ). This figure shows the lines for τ=0. The region 

above these lines correspond τ<0 and the region below this lines correspond τ>0.  
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Figure 3.15 Limit conditions for the cylindrical part: Friction coefficient versus 
inclination angle. 

 
From figure 3.15, when µ < 1.2 the values of τ are always positive. If the 

coefficient of friction is chosen small enough, then the solution is unique.  
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3.3.2 Cylindrical Part on Horizontal Plane 

In this section the physical phenomenon of cylindrical parts on the horizontal 

plane is analyzed. Figure 3.16 shows the situation when a part lies on its side and the 

horizontal plane is vibrating. The angle θ value is considered to be zero because this 

angle is consequence of the eccentricity in the part. In this study the eccentricity is 

assumed zero since the analysis focus on the part with uniform cylindrical confection. 

 

z 

 

Figure 3.16 Axes and parameters of cylindrical part on horizontal plane. 
 

For this case the generalized coordinates are: 
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Figure 3.17 Free body diagram of a cylindrical part on the horizontal plane. 

 

The figure 3.17 shows the free body diagram of cylindrical part on horizontal 

plane. The term mPAoω2 represent the vibration force, where mP is the part mass, Ao is 

the amplitude of vibration and ω is the angular frequency. The angles β and α represent 

the orientation and direction of this force. The forces λN, λTx and λTy are the normal force, 

tangential force in the x direction and tangential force in the y direction respectively. 

Applying the second Newton law the kinetic equations are: 
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Rewriting the equations 3.35 in matrix form: 
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Assuming  equal zero and resolving for equations 3.35:  z��
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      (3.36) 

 

Equation 3.36 is the final result for this section. This equation defines the 

accelerations of the cylindrical part on the horizontal surface.  

3.3.3 Cylindrical Part on the Inclined Plane 

Figure 3.18 shows the case the parameters and axis for the study. The angles α 

and β represent the direction of the vibration force. The angle γ is the inclination of 

surface respect to horizontal line. The term mPAoω2 is the magnitude of this force, where 

mP is the part mass, Ao is the vibration amplitude and w is the angular frequency. The 

angles φ and θ are the possible part rotations about X and Z axis respectively. The angle θ 

value is considered to be equal to zero because it is not eccentric part. 

mPAoω2

 

Figure 3.18 Axes and parameters of cylindrical part on inclined plane. 
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mPAoω2

z

θ β
x 

α
φ

λTx
λN

γ
λTy

y mPg  

Figure 3.19 Free body diagram for a cylindrical part on inclined surface 
 

The figure 3.19 shows the free body diagram for a cylindrical part on the inclined 

plane. This diagram shows the directions of the vibration force (α and β) and the rotations 

about the axis x and z (φ and θ). The friction and normal forces are represented by λTx, λTz 

and λN (tangential friction force in direction of axis x, tangential friction force in direction 

of axis Z and normal force respectively).  

 

Based on the Newton second law the kinetic equations are: 

2

2

2

2

: cos( )cos( ) sin( )

: cos( )sin( )

: sin( ) cos( )      

: cos( )sin( )
2

β α λ γ

β α λ

β γ λ

β α ϕ

− − =

− =

− + =

=

∑
∑
∑
∑

��

��

��

��

x o P Tx P P

y o P Ty P

z o P P N P

x o P

F A w m m g m x

F A w m m y

F A w m m g m z
dM A w m I

      (3.37) 
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From equations 3.37 it is obtained the following matrix form:  

2

Gravitational Fie
Vibration Effect

cos( ) cos( ) sin( )
cos( )sin( )

1
sin( ) cos( )

0cos( )sin( )
2

β α λ γ
β α λ

β γ λ

ϕ β α

⎧ ⎫ − −⎧ ⎫ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪−⎪ ⎪⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
− +⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭

��

��

��

��
������	�����


Tx P

Ty

o
P P N

P

x m

y
A w

mz m
d m
I

ld and Friction effects 

 

g

g

�����	����


     (3.38) 

The equation 3.38 is constituted by two parts. The first part represents the effects 

of the vibration force. The second part represents the effects of gravity and friction, 

represented by gravity acceleration and friction coefficients. Assuming that the friction 

coefficients are equal for different directions and applying the Coulomb friction equation 

in the equation 3.38, it is obtained: 

2

sin( )cos( ) cos( )

cos( )sin( )

sin( )
cos( ) 1

cos( )sin( )
2 0

µ γβ α λ
β α µλ

β
γ

λϕ β α

⎧ ⎫+⎧ ⎫ ⎪ ⎪⎧ ⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎪ ⎪

⎩ ⎭

��

��

��

��

P
N

N
o

P
P

N
P

g m
x

y
A w

mz g m
d m
I

 

3.3.4 Contact Between Two Cylindrical Parts 

The figure 3.20 shows the vector diagram the physical situation and vector 

configuration for this analysis. For this case the contact can occur of five forms: 

1. Contact between the cylinder edge and the plane surface of other cylinder.  

2. Contact between the cylinder edge and the curve surface of the other 

cylinder.  
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3. Contact between the plane surface of one part and the plane surface of the 

other part.  

4. Contact between the curved surface of one part and the curved surface of 

the other part.  

5. Contact between the plane surface and the curved surface.  

The two first forms are of point type, because the cylinder has contact only in one 

point. The third form is of planar type because the contact is in a plane. The fourth and 

fifth forms are of linear type because the contact is in a line. These situations are 

illustrated in the figure 3.21. 

 

Figure 3.20 Vector diagram for the contact between two rectangular parts. 
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(b) (a) 

(c) (d) 

(e)  

Figure 3.21 Contact forms between two cylindrical parts. Edge-plane, (b) Edge-curved 
surface, (c) plane-plane, (d) curved surface-curved surface and (e) Plane-
curved surface. 

 
 

The contact form determines the motion freedom degrees. Edge-plane is the 

motion of a point on a plane. Therefore, this motion has five freedom degrees. Edge-

curved surface (b) contact has four freedom degrees because the motion is a point on a 

line. Plane-plane (c) contact has three freedom degrees because the motion is a plane on 

other plane. Curved surface-curved surface (d) contact is the motion of a line on other 

line. Therefore, has two freedom degrees. Plane-curved surface (e) contact has four 

freedom degrees because the motion is a line on a plane. 
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The figures 3.22 and 3.23 show the vectors that are used for the dynamic analysis. 

The subscript “B” means that the vector is observed from fixed frame. With respect to 

figure 3.20 it is obtained.  

1 2

1 1 2 2;                             

0 0

B i B i

i i

x x

r y r y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G G  

C

 
Figure 3.22 Vector diagram before impact (cylindrical parts). 

 
Figure 3.23 Vector diagram after impact (cylindrical parts). 

Based on the figure 3.23 it is obtained: 

1
2

1
2

then
    

B C PCi A PAi Ni

N B C PCi A PAii

r r r g

g r r r

+ = +

= + −

G G G G

G G G G
          (3.39) 
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The rotations matrices are [Ax]φ and [Az]θ. These matrices are in homogenous 

coordinates. 

 

[ ]

[ ]

1 0 0 0

0 cos( ) sin( ) 0

0 sin( ) cos( ) 0

0 0 0 1

cos( ) sin( ) 0 0

sin( ) cos( ) 0 0

0 0 1

0 0 0

ϕ

θ

ϕ ϕ

ϕ ϕ

θ θ

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

c c

x

c c

c c

c c

z

A

A
0

1

0

1

−

 

 

The transformation matrix is: 

[ ]

2

2

cos( ) sin( )cos( ) sin( )sin( )

sin( ) cos( ) cos( ) cos( )sin( )

0 sin( ) cos( )

0 0 0

θ θ ϕ θ ϕ

θ θ ϕ θ ϕ

ϕ ϕ

− −⎡ ⎤
⎢ ⎥
⎢ ⎥− −
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

c c c c c

c c c c c

C
c c

x

y
T  

 

With this matrix it obtains the vector respect fixed frame for the part C: 

2

2

cos( ) sin( )cos( )

sin( ) cos( ) cos( )
 

sin( )

1

θ θ ϕ

θ θ ϕ

ϕ

+ −⎡ ⎤
⎢ ⎥
⎢ ⎥− + −
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G

cp c cp c c

cp c cp c c

B CPi

cp c

x y x

x y
r

y
⎥

y
       (3.40) 
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[ ]
1

1

cos( ) sin( ) cos( ) sin( )sin( )
sin( ) cos( )cos( ) cos( )sin( )

0 sin( ) cos( ) 0
0 0 0 1

θ θ ϕ θ ϕ
θ θ ϕ θ ϕ

ϕ ϕ

 

The transformation matrix of the part A is obtained by the same way that the 

transformation matrix of part C and is given by:  

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A A A A A

A A A A A
A

A A

x
y

T

1

1

cos( ) sin( ) cos( )
sin( ) cos( )cos( )  

sin( )

θ θ ϕ
θ θ ϕ

ϕ

⎡ ⎤+ −
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥⎣ ⎦

G A Ap A A Ap

B Api Ap A Ap A A

Ap A

x y x
r x y y

y

sin( ) cos( ) cos( ) sin( ) cos( )
cos( ) cos( ) ) cos( )cos( )

sin( )

θ θ ϕ θ θ ϕ
θ θ θ θ ϕ

⎛ ⎞+ − − − +
⎜ ⎟

= − + − − +⎜ ⎟
⎜ ⎟
⎝ ⎠

G cp c cp c c Ap A A

N cp c cp c c A Ap A A

c c A

 

The relative distance is obtained from the equations 3.40 and 3.41: 

 

With this matrix it obtains the vector respect fixed frame for the part C: 

 

cos( )
sin( )

2 1

2 1sin(
sin( )

ϕ
ϕ ϕ

+
−

A Ap

Ap

p Ap

x y x x y x
g x y y yy x

y y

       (3.41) 

 

(3.42) 
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cos( ) sin( )cos( ) cos( ) sin( )cos( ) 1 1 0 0 sin( ) cos( )cos( )

sin( ) cos( )cos( ) sin( )sin( ) sin( )sin( )

sin( ) cos( )cos( ) sin( ) cos( )cos( ) 0 0 1 1 cos(

θ θ ϕ θ θ ϕ θ θ ϕ

θ θ ϕ θ ϕ θ ϕ

θ θ ϕ θ θ ϕ θ

− − − −

− + −

− − −
=

G�

A A A c c c A cp A A Ap

c cp c c cp A A Ap c c cp

A A A c c c

N

x y

x y y y

g
) sin( )cos( )

cos( ) sin( )cos( ) cos( )sin( ) cos( )sin( )

0 sin( ) 0 cos( ) 0 0 0 0 0

0 sin( ) cos( )

θ ϕ

θ θ ϕ θ ϕ θ ϕ

ϕ ϕ

ϕ ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦���������������������������������	������ 


A cp A A Ap

c cp c c cp A A Ap c c cp

A c

A c

T

x y

x y y y

W

N

1

2

1

2

θ

θ

ϕ

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

�

�

�

�

�

�

�

�

�
��������������������������

�

�
�

Ap

Ap

cp

cp

A

c

A

c

x

y

x

y

x

x

y

y

q

   (3.43) 

The relative velocity is obtained differentiating the equation 3.42  
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The mass matrix for the cylinder part respect to the rotation axis is given by a 

diagonal matrix. This matrix contained the displacements mass and rotations mass. 

The rotations mass are the inertia moments (I) respect to the rotation axis. 

2 21 1 3,    and   
16 12 4

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

x p z p
2+I m d I m d h  

[ ]

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

p

p

p

p

p

p

p

p

x

x

z

z

m
m

m
m

m
m

M
m

m
I

I
I

I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Replacing these matrices into the equation 3.24 it is obtained the final result 

for the contact of two cylindrical parts.  

( ) [ ]
111   T

N N NW M W gε
−−⎡ ⎤Λ = − ⋅ ⋅ ⋅ ⋅⎣ ⎦ NA
G�           (3.44) 

3.4 Summary  

In this chapter the multibody theory was employed for the analysis of the 

dynamic behavior of rectangular and cylindrical parts. The cases studied were: 

insolate part, part on horizontal plane, part on inclined plane and contact between two 

parts. The obtained equations describe the phenomenon of interaction and contact for 

parts on the bowl. The results obtained in this chapter will be used for different 

parameters. 
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CHAPTER 4  
Dynamic Analysis with Screw 

Theory 
 

4.1 Introduction 

In this chapter the screw theory is used to evaluate the friction forces on the 

cylindrical part; this analysis provides a complete description of the dynamic 

behavior. The Coulomb friction equation is the linear relationship between the normal 

force and friction force. This equation is correct for the maximums static and kinetic 

friction forces. In the case of the rolling motion of a cylinder, the friction forces are 

not necessarily maxima. For this case, the friction force must be found so that the 

dynamic analysis is complete. This chapter begins with a reduction of forces to a 

wrench based on Poinsot’s theorem (Lipkin and Duffy, 2002). This analysis is only 

for the case of rolling on the horizontal plane. The analysis of the spatial motion of 

the rigid body is based on the dual Euler equation 2.14, which completely describes 

the dynamic state of the rigid body. 
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4.2 Wrench analysis 

The goal of this section is to analyze the cylinder part dynamic behavior. This 

is accomplished by reducing the external forces and moments acting about a 

cylindrical part to a wrench. Figure 3.17 shows the free body diagram of a cylindrical 

part. The first step is placed at the center all the external forces with its generated 

moment (MTx and MTy) showed in figure 4.1. 

 
Figure 4.1 External forces on a cylindrical part. 

The figure 4.2 shows the resultant wrench ( ) and the position vector respect 

to part center. 

$̂R

 

 
 

Figure 4.2 Resultant wrench. 

The wrench direction is the resultant force direction. The resultant moment 

magnitude on resultant force axis is  

1 2
R R

R

F MM
F

=
G G
i
G               (4.1) 

where MR is the resultant moment vector and FR is the resultant force vector 

 

λTx
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From the equation 4.1 the wrench can be written as 

( ) ( )$̂ ;   = × + = + × +
G G G G G GG G

R R R R R R RF r F hF F r F hFε           (4.2) 

The condition is considered for M1 to be the unique resultant moment about 

the body 

2Rr F M× = −
G GG                (4.3) 

The moments M1 and M2 are the rectangular components of the resultant moment MR, 

where M1 and M2 are parallel and perpendicular to the screw axis respectively. 

1 2   RM M M+ =
G G G

              (4.4) 

Substituting the equations 4.1 and 4.3 into the equation 4.4 it is obtained 

2      R R
R R R

R

F Mr F M F
F

× = − +
G GG G GiG
G             (4.5) 

The unknown is r; applying the cross product in both side of the equation 4.5 by FR it 

is obtained: 

( ) 2
R R

R R R R

R

F Mr F F M F F
F

⎛ ⎞
⎜ ⎟× × = − + ×
⎜ ⎟⎜ ⎟
⎝ ⎠

G GG G G G GiG
G R  

The triple cross product is equal to 

( ) ( ) ( )R R R R R Rr F F F r F F F r× × = −
G G G G G GG Gi i G

 

but the dot product between FR and r is equal to zero. FR and r are perpendicular, then 

( ) ( )R R R Rr F F F F r× × = −
G G G GG Gi  
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Replacing this result and solving for r it is obtained 

  R R

R R

M Fr
F F
×

=
G G

G G G
i

              (4.6) 

Then, the wrench can be written as: 

2$̂ ; R R
R R R

R

F MF r F F
F

⎛ ⎞
⎜ ⎟= × +
⎜ ⎟⎜ ⎟
⎝ ⎠

G GG G GiG
G              (4.7) 

4.3 Analysis dynamic of cylindrical part using screw theory 

A part is considered cylindrical when the ratio L/D >0.8, where L is the length 

and D is the diameter. If the ratio L/D<0.8 then the part is a disc (Boothroyd 1989). 

The figure 4.3 shows the cylindrical part on the horizontal plane with two coordinates 

frame. The first frame is the fixed frame with center in the rolling point. The second 

frame is fixed to body with the center in the figure center. 

 

 

 

 

 

 

xo

Figure 4.3 Coordinates frame of a cylindrical part in rolling. 

The screw velocity referred to point A and expressed in the body frame is 

cos( ) sin( )
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0
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θ ϕ ϕ
ϕ
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⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

� �
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where  

A

cos( ) sin( )
sin( )    and  V cos( )

0

θ ϕ ϕ ϕ
ω θ ϕ ϕ ϕ

ϕ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

� �
GG � �

�
r  

The vectors ω and VA are the angular and linear velocities respectively. The 

momentum screw defined in the equation 2.11 is equal to 

$̂ = +
GG

AH Aq Hε  

The vector q is the linear momentum equal to 

( )P Aq m V AGω= + ×
JJJGG GG  

The angular moment is defined by 

[ ] ( )A A PH I m AG Vω= + ×
JJJGG GG

A  

but the vector AG is equal to zero because A and G are in the same position. Then the 

vectors q and HA are equal to: 

[ ]
and              

P A

A A

q m V

H I ω

=

=

GG

G G
               (4.8) 

The inertial matrix [IA] is equal to: 

[ ]

( )

( )

2

2 2

22
2 2

2

1 3 03 0 0
12

10 3 0 0 3
12 12

1 0 00 0
2

P

P
A P

P

L
m r L r

m r LI m r L
r

m r

0

0

6

⎡ ⎤⎛ ⎞⎡ ⎤ +⎢ ⎥⎜ ⎟+⎢ ⎥ ⎝ ⎠⎢ ⎥
⎢ ⎥ ⎢ ⎥⎛ ⎞⎢ ⎥ ⎢ ⎥= + = ⎜ ⎟⎢ ⎥ +

⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥

⎣ ⎦
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From the equation 4.8, the momentum screw can be written as: 

2

22

3 cos(

sin( )
$̂ cos( ) 3 sin( )   

12
0

6

θ ϕ

ϕ ϕ
ϕ ϕ θ ϕ

ϕ

)
⎡ ⎤⎛ ⎞⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠
⎢ ⎥⎡ ⎤ ⎛ ⎞⎢ ⎥⎛ ⎞⎢ ⎥= + − +⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

�

�
��

�

A

P
H P

L
r

m r Lm r
r

ε          (4.9) 

The cross screw product of the velocity screw and the momentum screw is the screw 

$P: 

2

22

2 2 2

2

sin( ) 3
cos( )

1ˆ ˆ ˆ$ $ $ sin( )
12 cos( ) 3

0

θϕ ϕ
ϕ ϕ
ϕ ϕ

θϕ ϕθϕ
 

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟⎡ ⎤− ⎝ ⎠⎢ ⎥

⎢ ⎥ ⎛ ⎞ ⎢ ⎥= ⊗ = + ⎛ ⎞⎜ ⎟⎢ ⎥ ⎢ ⎥− −⎝ ⎠ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦
⎢ ⎥
⎣ ⎦

� �
�
� � �� �

A AP V H P

L
r

mr m r L
r

ε       (4.10) 

Differentiating equation 4.9 it is obtained: 

( )

2

2

2 2

2 2

2 2 2

2 2

ˆ ˆ$ $

sin( ) cos( )
cos( ) sin( )

0

3 cos( ) 3 sin(

1             
12 3 sin( ) 3 cos(

6

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

)

)

θ ϕ θϕ ϕ

θ ϕ θϕ

ϕ

= + =

⎡ ⎤+
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎛ ⎞ ⎛ ⎞
+ − +⎢ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢
⎛ ⎞+ ⎛ ⎞ ⎛ ⎞⎜ ⎟ − + − +⎝ ⎠ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎣

GG ��

�� �
�� �

�� � �

�� � �

��

A AH A N

P

P

d q H
dx

m r

L L
r r

m r L L
r r

ε

ε

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

ϕ       (4.11) 
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Based on the Euler dual equation  
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Figure 4.4 Forces on a cylindrical part. 

 
Figure 4.4 shows the free body diagram of the cylindrical part on the 

horizontal plane. The forces Fη and Fς are the friction forces about η and ς direction 

respectively. The force λN is the normal force between the two surfaces. The angles α 

and β are the vibration force directions. This set of forces and generate moments are 

referred and expressed in the body frame in the equation 4.13. 
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Equating the real and dual part of the equations 4.12 and 4.13 the following equations 

4.14 are obtained: 
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Equations 4.14a-4.14f are the necessary and sufficient relations for the description of 

the rolling cylinder. Manipulating equations 4.14a-4.14c, the components of the 

friction force and the normal reaction may be expressed, respectively, as: 
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2 cos( ) cos( )P PF m A m rς ω β α θ ϕ= + ��θ−

β

          (4.16) 

2 sin( )   λ ω= −N P Pm g m A            (4.17) 

Then manipulating equations 4.14d-4.14f, and with the aid of equations 4.15-4.17, the 

second order kinematic constraints imposed on the cylinder may expressed in the 

equations 4.18-4.20 
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The obtained result suggests that if the sum of angles α and θ is equal to 90 degrees 

then the sliding does not occur and only rolling occurs. 

4.4 Summary 

In this chapter, the screw theory was employed for the analysis of the dynamic 

behavior of cylindrical parts. The case studied were part on horizontal plane. The 

obtained equations in this chapter will be modeled for different parameters. The 

equations are more general that in the chapter 3 because they take into consideration 

the rotation in the vertical axis. The direction of the axis was different to the chapter 3 

by ease, but this does not change the result.  

 



60 

 

 

 

CHAPTER 5 
Cases Analysis 

5.1 Introduction 

This chapter includes the results obtained from the results of chapters three 

and four. The first case in the analysis is the cylinder on the plane surface, because is 

the more interesting case. The variable parameters are the frequency, friction 

coefficient and vibration direction. The responses studied are the accelerations about 

different directions and the contact force. The objective is the comparison of some 

simulation results and some results obtained in previous works. This comparison 

required some assumptions such as to change of accelerations to velocities assumed 

an effective distance of the vibration force. These assumptions are necessary because 

the vibration forces are pulsed on the part due to the part jumps.  

In this analysis the motion parameters such as frequency (f), vibration 

amplitude (A0), friction coefficient (µ), excitation angles (α and β) and track 

inclination angles (γ and δ) will be changed to analyze the accelerations and 

transportation velocity behavior. These motion parameters are chosen for typical 

values from other experimental works done by Boothroyd (1992) and Wolfsteiner and 

Pfeiffer (2000). Some contour line graphics will be included for better visualization 

of the physical behavior.  
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5.2 Analysis of Cylinder on the plane surface 

The analysis is based on the axes and excitation angles as shown in figure 

3.17 shows in chapter 3. The figure 5.1 shows the acceleration in the x direction. The 

parameters values used are: f=60Hz, A0 =5x10-4m, g=9.8m/s2 and µ=0.5. This figure 

shows the maxima region for values of α form 0º to 20o and β from 8o to 45o. For 

these values it is obtained the maximum efficiency in the rate of part transporting. 

Figure 5.2 shows surface contour lines of the figure 5.1. This figure shows the 

change in the acceleration versus the orientation parameters of vibration. The 

acceleration values are smaller for angles values out of maximum interval, and then 

the interval is an absolute maximum interval. 

 

 
 

Figure 5.1 Acceleration in the x direction versus the excitation angles for cylindrical 
part on plane surface (surface). 
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Figure 5.2 Acceleration in the x direction versus the excitation angles for cylindrical 
part on plane surface (contour lines). 

 

The figure 5.3 shows the acceleration in the x direction as function of the 

friction coefficient and the elevation angle of the vibration force. The figure 5.4 

shows the contour lines of the surface. The used parameters for this analysis are: 

f=60Hz, α=16o, Ao=5x10-4m and g=9.8m/s2. The friction coefficient increases if the 

acceleration increases; this is observed in the figure 5.3 and 5.4. A non-

proportionality behavior out of the maximum interval for the β angle is showed.  
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Figure 5.3 Acceleration in the x direction versus the excitation angle β and friction 
coefficient for cylindrical part on plane surface (surface). 

 

 
 

Figure 5.4 Acceleration in the x direction versus the excitation angle β and friction 
coefficient for cylindrical part on plane surface (contour lines). 
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Acceleration in the x direction versus the friction coefficient and frequency of 

vibration is shown in the figure 5.5. The contour lines are shown in the figure 5.6. 

The used parameters for these graphics are: α=16o, β=20o Ao=5x10-4m and 

g=9.8m/s2. The frequency effect in the acceleration is greater that the friction 

coefficient effect. In the study range the friction effect is linear but the frequency 

effect is parabolic. The friction effect is significant for µ>0.2 and in a range for the 

frequency of 50-80Hz. 

 

 
 

Figure 5.5 Acceleration in the x direction versus the frequency (f) and friction 
coefficient for cylindrical part on plane surface. Surface. 
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Figure 5.6 Acceleration in the x direction versus the frequency (f) and friction 
coefficient for cylindrical part on plane surface (contour lines). 

 

The acceleration in the x direction versus the frequency and vibration angle β 

is shown in the figures 5.7 and 5.8. These figures show that an increase of 

acceleration agree with a increase in frequency. The used parameters for these 

graphics are: α=16o, Ao=5x10-4m, µ=0.5 and g=9.8m/s2. The frequency effect is more 

significant and the excitation angle effect is significant in the high frequency region. 

The result agrees with the proposed model because the vibration force is modeled 

proportional to the square of the frequency and vibration amplitude.  
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Figure 5.7 Acceleration in the x direction versus the frequency (f) and vibration angle 

(β) for cylindrical part on plane surface (surface). 
 

 
 

Figure 5.8 Acceleration in the x direction versus the frequency (f) and vibration angle 
(β) for cylindrical part on plane surface (contour lines). 
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A comparison of the acceleration in the x direction versus the vibration 

amplitude and the frequency is shown in the figures 5.9 and 5.10. These figures can 

be used to find the approximate transportation velocity. The used parameters are: 

α=16o, β=15o, µ=0.5 and g=9.8m/s2. A non-linear behavior in function of the 

frequency is observed in these graphics; this result agrees with previous results. The 

behavior with respect to the vibration amplitude is linear and is significant in high and 

medium frequency regions. 

 

 
 

Figure 5.9 Acceleration in the x direction versus the frequency (f) and vibration 
amplitude for cylindrical part on plane surface (surface). 
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Figure 5.10 Acceleration in the x direction versus the frequency (f) and vibration 
amplitude for cylindrical part on plane surface (contour lines). 

 

The acceleration in the y direction versus the angles of vibration force α and β 

is shown in the figure 5.11 and 5.12. The figures show an interval minimum for α 

from 0º to 20o and β form 0º to 45o. The used parameters are: f=60Hz, A0 =5x10-4m, 

g=9.8m/s2 and µ=0.5. The acceleration in the y direction is a loss motion originated 

by the non-unidirectional vibration force and track inclination angles.  
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Figure 5.11 Acceleration in the y direction versus the excitation angles of the 

vibration force for cylindrical part on plane surface (surface). 
 

 
 

Figure 5.12 Acceleration in the y direction versus the excitation angles of the 
vibration force for cylindrical part on plane surface (contour lines). 
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The figures 5.13 and 5.14 show the acceleration in the y direction versus the 

angle β and the friction coefficient. The used parameters are: f=60Hz, A0 =5x10-4m, 

g=9.8m/s2 and α=16o. The combined effect of the friction coefficient and the 

vibration angle is the displacement of the work range. The friction coefficient effect is 

a hyperbolic behavior of the surface. This effect is significant in the regions for small 

and high values of excitation angles. 

 

 
 

Figure 5.13 Acceleration in the y direction versus the excitation angle β and the 
friction coefficient for cylindrical part on plane surface (surface). 
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Figure 5.14 Acceleration in the y direction versus the excitation angle β and the 

friction coefficient for cylindrical part on plane surface (contour lines). 
 

Acceleration in the y direction versus the angle β and the frequency is shown 

in the figures 5.15 and 5.16. These figures confirm the previous results. The 

interaction effect between β and the frequency is described as a translation of the 

work range. The used parameters are: A0 =5x10-4m, g=9.8m/s2 µ=0.5 and α=16o.  

The y acceleration behavior is parabolic with respect to the frequency and 

sinusoidal with respect to the excitation angles. This acceleration increases the 

friction forces and decreases the rate of transportation. The optimal range is in small 

excitation angle values and frequency values in the intersection of high accelerations 

in the x direction and small accelerations in the y direction. 
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Figure 5.15 Acceleration in the y direction versus the excitation angle β and the 
frequency for cylindrical part on plane surface (surface). 

 

 
Figure 5.16 Acceleration in the y direction versus the excitation angle β and the 

frequency for cylindrical part on plane surface (contour lines). 
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The figures 5.17 and 5.18 show the variation of the acceleration in the y 

direction versus the frequency and the friction coefficient. The figure 5.18 shows the 

contour lines for this response surface. The interaction effect of these two factors is 

the curvature direction in the acceleration line. This curvature direction shows the 

weight of the frequency variation in a given range. The used parameters are: 

Ao=5x10-4m, g=9.8m/s2, β=20o and α=16o. The friction effects are significant in the 

small and high frequency regions. The friction coefficient has a linear effect while the 

frequency has a parabolic effect.  

 

 
 

Figure 5.17 Acceleration in the y direction versus the frequency and the friction 
coefficient for cylindrical part on plane surface (surface). 
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Figure 5.18 Acceleration in the y direction versus the frequency and the friction 
coefficient for cylindrical part on plane surface (contour lines). 

 

The angular acceleration of the part versus the excitation angles α and β is 

shown in the figures 5.19 and 5.20. These figures show the variation of the angular 

acceleration and the effects of these two parameters. This acceleration is a 

consequence of all generated moments. The angular acceleration can be by rolling, 

sliding or both. The most general case is rolling plus sliding. The graphics show a 

sinusoidal behavior. The used parameters are: Ao=5x10-4m, g=9.8m/s2, f=60Hz and 

µ=0.5.  
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Figure 5.19 Angular acceleration versus the excitation angles α and β for cylindrical 
part on plane surface (surface). 

 

 
 

Figure 5.20 Angular acceleration versus the excitation angles α and β for cylindrical 
part on plane surface (contour lines). 
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Angular acceleration versus the frequency and the vibration angle β is 

presented in the figures 5.21. The used parameters are: Ao=5x10-4m, g=9.8m/s2 α=16o 

and µ=0.5. This graphic shows the interaction effect of the frequency and the vertical 

vibration angle on the angular acceleration. The frequency effect is parabolic and the 

effect of the excitation angle is sinusoidal. The angular acceleration increases if the 

frequency increases. Therefore, the work optimal frequency is the intersection of 

frequency curves for high accelerations in the x direction, small accelerations in the y 

direction and small angular accelerations. 

 
 

Figure 5.21 Acceleration in the y direction versus the excitation angles α and β for 
cylindrical part on plane surface. 

 

 

 

 



77 
5.3 Analysis of a Rectangular Part on the Narrow Track 

The figure 3.8 in chapter 3 shows the parameters used for this analysis. The 

three-dimensional analysis for different conditions is presented in this section. The 

interactions between the parts themselves are negligible. The figure 5.22 shows the 

variation of the transportation velocity versus of frequency and vibration amplitude. 

The used parameters are: β=5o, α=16o, δ=2o, R=0.8m, a=0.15cm, b=1cm, h=5cm, 

γ=5o and µ=0.3. 

 
 

Figure 5.22 Transportation velocity versus frequency and amplitude of vibration. 

 
The normal vibration amplitude is given by: 

0 0 sin( )NA A β=  

where A0N is the normal amplitude, A0 is the amplitude and β is the excitation angle. 

The transportation velocity rises if the vibration frequency and normal amplitude rise. 

This result can be observed from figure 5.22.  
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The transportation velocity in function of the excitation angle and the 

amplitude is shown in the figures 5.23. The used parameters are: f=60Hz, α=16o, 

δ=0o, R=0.8m, a=0.15cm, b=1cm, h=5cm, γ=5 o, δ=2o and µ=0.3. The maximum 

velocity is obtained in the region Ao=[0.9-1]mm, and β=[0-25o]. 

 
 

Figure 5.23 Transporting velocity versus inclination angle and vibration 
amplitude.  

 

Figure 5.23 shows high transportation velocity values for high vibration 

amplitudes and small excitation angles. This graphic shows an optimal range for high 

vibration amplitudes values and small excitation angles values in the range of 0º to 

40º. These values agree with the typical values presented in Boothroyd (1992). 
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In the figure 5.24 the variation of the transportation velocity in function of the 

frequency and inclination angle is shown. The used parameters are: Ao=0.35mm, 

α=16o, δ=0o, R=0.6m, a=0.15cm, b=1cm, h=5cm, γ=5 o and µ=0.3. The combined 

effect of the frequency and excitation angle is very high on the velocity, this is 

observed in the curvature of the contour curves. 

 
 

Figure 5.24 Transportation velocity versus frequency and excitation angle. 
 

The obtained result of this graphic agrees with the previous results. The 

transportation velocity rises for high vibration frequency values and small excitation 

angles values. The range of optimal values is high vibration frequency values and 

excitation angle from 0º to 35º. 
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The figure 5.25 shows the variation of the transportation velocity in function 

of the excitation angles. The combined effect of the angles is inversely proportional to 

the velocity. The used parameters are: Ao=1mm, f=60Hz, δ=0o, a=0.15cm, b=1cm, 

h=5cm, γ=0 o, R=0.8m and µ=0.3.  

 
 

Figure 5.25 Transportation velocity versus excitation angles. 
 

The results of this figure show an optimal region of excitation for the intervals 

from 0° to 45° for α and from 0° to 35° for β. These results agree with the real values 

and typical values given by Boothroyd (1992). 
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The figure 5.26 shows the transportation velocity versus the inclination 

angles. The effect of the angle δ is a small decrease in the velocity value. This 

decrease is consequence of the increase of the normal force between the wall and the 

part. The used parameters are: Ao=1mm, f=60Hz, a=0.15cm, α=0o, β=5o b=1cm, 

h=5cm, γ=5 o, R=0.8m and µ=0.3. 

 
 

Figure 5.26 Transportation velocity versus excitation angles. 
 

The figure 5.26 shows small transportation velocity values for high values of 

gamma due to the weight component rise which opposes the motion direction. The 

delta effect is small. 
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The figure 5.27 shows the variation of the transportation velocity versus the 

friction coefficient and the frequency. The friction effect is to decrease the velocity of 

transportation if the friction increases. The used parameters are: Ao=1mm, γ=5o, 

δ=2o, a=0.15cm, α=16o, β=5o b=1cm, h=5cm and R=0.8m. 

 
 

Figure 5.27 Transportation velocity versus friction coefficient and frequency. 
 

The figure 5.27 shows high transportation velocity values for small values of 

the friction coefficient. This result is acceptable because the energy of motion 

decreases due to the friction forces. There is an ideal motion behavior if the friction 

forces are zero. 

 

 

 

 



83 
5.4 Comparison of Results 

The figure 5.28 shows a comparison between the proposed model in this work 

versus the results obtained in the work of Wolfsteiner and Pfeiffer (2000). These 

results were obtained with the following parameters: f=100Hz, µ=0.3, α=5o, β=15o, 

Ao=0.35mm and δ=0o, dimension of the part 5cm x 1cm x 0.15cm. 
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Figure 5.28 Comparison of results for transportation velocity  

(Wolfsteiner and Pfeiffer). 
 

The velocity measured by Wolfsteiner and Pfeiffer was the real velocity. The 

velocity plotted is the average transportation velocity of the parts. The figure 5.28 

shows that the proposed model is adequate to describe the physical phenomenon 

calculated with equation 3.18. 
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The figure 5.29 shows a comparison between the proposed model in this work 

versus the result obtained in the work of Boothroyd (1992). These results were 

obtained with the following parameters: f=60Hz, µ=0.3, α=0o, γ=0o and δ=0o
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Figure 5.29 Comparison of results for the transportation velocity: B= Boothroyd 
(1992), J= Proposed Model. 

 

The velocity plotted is the average transportation velocity of the parts. 

Boothroyd employed a two-dimensional model for the transportation velocity. The 

figure 5.29 shows that the proposed model using equation 3.18 is adequate to describe 

the physical phenomenon. 
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CHAPTER 6 
Conclusions and Recommendations 

 

6.1 Conclusions 

• The presented model of the part feeder dynamics considered the main physical 

phenomena of the transportation process including multiple unilateral contacts 

based in the second Newtonian law and the Coulomb friction.  

• The model shows that the kinematic parameters such as relative velocities and 

accelerations depend of interactions between geometric and vibrations 

parameters.  

• The part is in contact if the normal force is compressive and the relative 

normal acceleration is zero or if the normal force is zero and the relative 

normal acceleration is greater that zero. 

•  The motion for a part in contact is separation or continual sliding. The 

condition for a unique solution depends of the friction. 
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• The transportations velocity of the rectangular part on the narrow track 

depends on the friction coefficient, vibration frequency, vibration amplitude, 

the track inclination angles, bowl radius, excitation angles, geometry and parts 

dimension.  

• The screw theory is employed to model the physical phenomenon of the 

cylindrical part on the horizontal plane. This concept is adequate for complex 

restriction conditions.  

• The combined effect of the friction coefficient and the vibration angle is the 

displacement of the work range; this result is shown in the figures 5.13 and 

5.14. The friction coefficient effect is a hyperbolic behavior of the 

acceleration surface in the y direction. This effect is significant in the regions 

for small and high values of excitation angles. 

• The y acceleration behavior is parabolic with respect to the frequency and 

sinusoidal with respect to the excitation angles, figure 5.13. This acceleration 

increases the friction forces and decreases the rate of transportation. The 

optimal range is in small excitation angle values and frequency values in the 

intersection of high accelerations in the x direction and small accelerations in 

the y direction. 

• The angular acceleration increases if the frequency increases; this is shown in 

figure 5.21. Therefore, the work optimal frequency is the intersection of 

frequency curves for high accelerations in the x direction, small accelerations 

in the y direction and small angular accelerations. 
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• Figure 5.23 shows high transportation velocity values for high vibration 

amplitudes and small excitation angles. This graphic shows an optimal range 

for high vibration amplitudes values and small excitation angles values in the 

range of 0º to 40º. 

6.2 Recommendations 

For future work it is recommended to study the dynamic behavior for other 

parts types such as conic or complex geometry parts. Other activity is to employ the 

proposed model to determine the transporting velocity including many parts.  

It is recommended to employ the screw theory for the analysis and simulation 

of a thin disc part on the feeder. Another future activity will be to improve of the 

model including deformation in the parts.  
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