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Abstract 
 

     This work deals with the detection of changes using hyperspectral images. Change 

detection is the process of automatically identifying and analyzing regions that have 

undergone spatial or spectral changes from multi temporal images. Detecting and 

representing change provides valuable information of the possible transformations a given 

scene has suffered over time. Change detection in sequences of hyperspectral images is 

complicated by the fact that change can occur in the temporal and/or spectral domains. 

This work studies the use of Temporal Principal Component Analysis (TPCA) for change 

detection in multi/hyperspectral images. Additional methods were implemented in order to 

compare its results with TPCA. These were: Image Differencing and Conventional 

Principal Component Analysis. Hyperspectral imagery from different sensors showing 

different scenarios was used to test and validate the methods presented in this study. The 

algorithms were implemented using Matlab, and its performances are presented in terms 

of false alarms and missed changes. Overall results showed that the performance of TPCA 

was the best, obtaining the smallest error percentage.   
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Resumen 

 
     Este trabajo atiende la detección de cambios utilizando imágenes hiperespectrales. La 

detección de cambios es el proceso automático de identificar y analizar las áreas que han 

sufrido cambios en  imágenes multitemporales, ya sea en el dominio espacial o espectral. 

El detectar y representar los cambios provee información valiosa sobre las posibles 

transformaciones que pudo haber sufrido una escena, a través del tiempo. La detección de 

cambios en secuencia de imágenes hiperespectrales se torna complicada por el hecho de 

que el cambio puede ocurrir tanto en el dominio espectral como en el temporal. Este 

trabajo estudia el uso del Análisis Temporal de Componentes Principales para detectar 

cambios en imágenes hiperespectrales. Dos métodos adicionales fueron implementados 

para comparar sus resultados con el método presentado en este trabajo. Estos fueron: 

Diferencia de Imágenes y el Análisis Convencional de Componentes Principales. 

Imágenes tomadas de distintos sensores hiperespectrales fueron utilizadas para probar y 

validar la capacidad de los algoritmos estudiados en detectar los cambios. Los algoritmos 

presentados fueron implementados en el programa MATLAB, y su desempeño se muestra 

en términos de la cantidad de falsas alarmas y pixeles de cambio no detectados. Los 

resultados generales demostraron que el método de Análisis Temporal de Componentes 

Principales fue el mejor obteniendo el menor porcentaje de error. 
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CHAPTER 1 
 
 
 
 

1. Introduction 
 

 

 
1.1 Motivation 
 

  Timely and accurate change detection of Earth’s surface features is extremely 

important for understanding relationships and interactions between human and natural 

phenomena in order to promote better decision making (Lu et al. 2004). Detecting and 

delineating changes in images of the same scene taken at different times has interested 

researchers for many years owing to a large number of applications in diverse disciplines 

(Radke et al. 2003). Examples of important applications include remote sensing, medical 

diagnosis and treatment, civil infrastructure and others. Because of the advantage of 

repetitive data acquisition, its synoptic view, and digital format suitable for computer 

processing, remotely sensed data have become the major source of information for 

different change detection applications during the past decades (Lu et al. 2004). Some 

aspects that could be monitored using remote sensing technologies for change detection 

are, for example, land-use and land-cover, forest or vegetation change, deforestation, 

wetland, landscape or vegetation change, and crop monitoring.   

 

 A variety of multispectral change detection techniques have been developed and 

its selection depends on the application. Examples of these are: Image Differencing, Post-

Classification Comparison, Change Vector Analysis, Principal Component Analysis, 

among others. Most of these methods perform change detection using single bands. This is 

they perform a band per band analysis of the images, making necessary a suitable 

selection of bands.  
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 The selection of bands to perform change detection is one of the major challenges 

the analyzer has to face. Since each band provides a certain amount of change information 

it becomes difficult to decide which bands are going to be chosen. The motivation of this 

work responds to the lack of methods that perform change detection by using multiple 

bands of hyperspectral images at the same time. By doing this it is intended to take 

advantage of all the possible change information available in the data. 

 

 

1.2 Problem Statement 
 
 
 Change detection in a sequence of hyperspectral images is complicated by the fact 

that change can occur in the temporal and/or spectral domains. Since hyperspectral images 

are composed of a considerable number of bands, it is difficult to determine which 

features are going to be selected to perform the detection of changes. On the other hand, 

considering for example that hyperspectral images with N spectral bands yields an N-

dimensional change space, change can occur independently in each spectral band. The 

majority of the existing change detection algorithms used to analyze spectral data are 

implemented to detect changes using specific bands for specific applications. In this work 

a change detection technique based on the Temporal Principal Component Analysis is 

presented. All the bands of each hyperspectral image are used to perform change 

detection. By using all the bands, we expect to maximize the amount of information that 

can be extracted by each image. Two threshold techniques (global and local threshold 

selection), based on simple hypothesis testing were applied in order to produce the binary 

change/no-change maps for each method.  

 

1.3 Objectives 
 
 
   The objectives of this study are:    

  

• Study and compare existing change detection methods used with 

multispectral imagery. 
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• Study change detection using hyperspectral images.  

• Study the temporal principal component analysis method and modify it to 

use in change detection using hyperspectral images.  

• Implement the most common change detection algorithms used with 

multispectral imagery and compare their performance with the technique 

studied. For this work, the algorithms to be implemented were the 

following: 

 

(1) Image Differencing 

(2) Conventional Principal Component Analysis 

(3) Post-Classification Comparison  

 

1.4 Literature Review 
 
 
  Currently, there are many change detection methods that have been implemented 

and their use depends on the application, which is in this case remote sensing. This section 

presents the different change detection methods, encountered in the literature review.   

 

(1) Bruzzone et al. (2002), presented an automatic approach to unsupervised 

classification of changes in multitemporal remote sensing images. In this 

method, two bands are subtracted and then a threshold is selected in order to 

generate a binary change/ no change map. The two bands are the same but 

correspond to different points in time.  The threshold selection is based on the 

formulation of the unsupervised change detection problem in terms of the 

Bayesian Approach. The statistical terms associated with the gray levels of 

changed and unchanged pixels in a difference image are estimated and used to 

make the decision if whether change has or has not occurred.  

 

(2) Wiemker et al. (1997) presented a change detection method using principal 

component analysis. Here a single band from each image is represented in vector 

form. These two vectors are used to form a bi-temporal feature space, in which 
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the first vector corresponds to an image at time 1 and the second vector 

corresponds to the same image at time 2. Principal Component Analysis is 

performed over this bi-temporal feature space. All the pixels that lie around the 

first component are considered to be no-change pixels, and the ones that lie 

around the second component are considered as pixels that have suffered change. 

This means that the information of the magnitude of change is contained in the 

second principal component. In order to generate a binary change/no change 

map, a threshold was obtained by using Bayes decision rule. This permits to 

observe the change detection problem as an unsupervised classification, where 

each pixel is assigned to one out of two classes: ‘change’ or ‘no-change’. 

 

(3) Nielsen et al. (1998) introduced the Multivariate Alteration Detection 

Transformation, which is based on the canonical correlation analysis. This 

method basically finds the difference between linear combinations of the spectral 

bands from the two acquisitions. The differences produced are orthogonal and 

constructed so they show maximum variance. The threshold for the generation of 

a change/no change map was selected by using the Bayesian approach.    

 

(4) Borrego et al. (2001) presented the change vector analysis detection method.  

The change vector analysis generates two variables, the magnitude of variation 

and the angle of the change vector. The change vector is obtained by subtracting 

the images represented in vector form. The magnitude of variation between the 

two vectors is obtained calculating the Euclidean distance between the 

differences in positions of the same pixel from different times.  The angle of the 

vector, which indicates the type of change that has occurred, varies according to 

the number of components used. Each vector is a function of the positive or 

negative changes through the spectral bands. 

 

(5) Huang et al. (2000) presented the Post Classification Change Detection method 

to detect changes over an area of natural grass. In this method both images were 

classified using supervised classification (Maximum Likelihood Classification). 
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The classification maps of both images were compared in order to determine if 

change occurred. After comparing both classification results a change map was 

constructed. 

 

 This study presents how Principal Component Analysis can be used to analyze 

temporal data for change detection purposes. The method uses the properties of PCA to 

transform the data in a way change can be detected. A group of multispectral and 

hyperspectral images were analyzed and the performance of the method was calculated in 

terms of percentage of false alarms and missed changes by using test images. 

 

 

1.5 Contribution 
 
 
 From the literature review realized as part of this work, it was encountered that the 

change detection methods currently used with multispectral imagery receive as input a 

single band or just a subset, from each image set, to perform the analysis. This demands 

the expertise of the analyst to choose suitable bands for a given application. In this study 

change detection was performed, by using all the bands of each image set. By doing this, 

it was pretended to exploit all the possible change information contained in both spatial 

and spectral domains. According to the experiments performed in this study, the proposed 

modified Temporal Principal Component Analysis method improved change detection in 

comparison with the Image Differencing and Conventional Principal Component Analysis 

techniques. Overall results also demonstrated that local threshold selection method 

decreased the overall error.  

 

1.6 Thesis Overview 
 
 

Chapter Two presents all the general concepts about remote sensing, hyperspectral 

images and change detection. A description of current change detection algorithms used to 

analyze multispectral imagery is also provided. 
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Chapter Three shows how the Principal Component Analysis was used to analyze 

temporal data.  

 

Chapter Four describes the methodology followed in order to achieve the 

objectives of this work. It also gives information about the hyperspectral images that were 

used in this research.  

 

Chapter Five presents the results obtained by each change detection technique 

implemented in this work. The metrics used to evaluate each algorithm performance is in 

terms of percentage of false alarms and missed changes. 

 

Chapter Six presents the conclusions and suggests possible future work. 

 

The appendices include the Matlab codes used to perform change detection over 

all the multi/hyperspectral images and provide a theoretical and mathematical background 

of Principal Component Analysis and Singular Value Decomposition. 
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CHAPTER 2 
 
 
 
 

2. Background 
 

 

 

 This chapter presents the general concepts in hyperspectral imaging, remote 

sensing and change detection necessary for the understanding of the fundamental aspects 

of this research work.  

 

2.1 Spectroscopy 
 
  

 Spectroscopy uses the absorption, emission, or scattering of electromagnetic 

radiation by matter to qualitatively or quantitatively study the matter or to study physical 

processes. Three basic interactions between light and matter are identified: 

 

• Absorption: It is the transition from a lower level to a higher level with transfer 

of energy from the radiation field to an absorber, atom, molecule, or solid. 

 

• Emission: It is the transition from a higher level to a lower level with transfer of 

energy from the emitter to the radiation field. If no radiation is emitted, the 

transition from higher to lower energy levels is called non radioactive decay. 

 

• Scattering: It refers to the redirection of light due to its interaction with matter. 

Scattering might or might not occur with a transfer of energy, i.e., the scattered 

radiation might or might not have a slightly different wavelength compared to the 

light incident on the sample (Tissue 2000). 
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 The instrument used to record the spectral properties of an object is called a 

spectrometer. There are four general parameters that describe the capability of a 

spectrometer: 

 

1. Spectral Range: It is the wavelength range measured by the instrument. 

The light spectra is divided in five regions (see Figure 1 and Table 1). 

 

 

Figure 1 - Spectral Range 

 
 

Table 1 –Regions of the Spectral Range 

 
  Region Spectral Range 

Ultraviolet 0.001 to 0.4µm 

Visible 0.4 to 0.7µm 

Near-Infrared 0.7 to 3.0µm 

Mid-Infrared 3.0 to 30µm 

Far-Infrared 30µm to 1mm 

 

 

2. Spectral resolution: this is the width of an individual spectral channel in the 

spectrometer. 
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3. Spectral sampling: it is the distance in wavelength between the spectral band 

pass profiles for each channel in the spectrometer as a function of wavelength. 

 

4. Signal-to-noise ratio: is a measure of the strength of the spectral signal in 

comparison to that of the background noise, usually calculated as the average 

signal divided by the root-mean-square noise. 

 

2.2 Image Spectroscopy 
 

In Hyperspectral Imaging or Imaging Spectroscopy, spatial information along with 

high-spectral resolution of the scene under study is collected. As the object of interest is 

embedded in a translucent media (i.e. atmosphere, coastal waters or skin), the measured 

spectral signature is a distorted version of the object signature mixed with clutter. The 

high spectral resolution may allow discrimination between media and object contributions 

enabling the retrieval of information about the object of interest.  

 

2.3 Remote Sensing 
 

By definition, “Remote Sensing is the science and art of obtaining information 

about an object, area, or phenomenon through the analysis of data acquired by a device 

that is not in contact with the object, area, or phenomenon under investigation”. One way 

to achieve the retrieval of information in remote sensing applications is by the use of 

electromagnetic energy sensors that are currently operated from airborne and spaceborne 

platforms to assist in inventorying, mapping and monitoring earth resources. These 

sensors acquire data on the way various earth surface features emit and reflect energy, and 

these data are analyzed to provide information about the resources investigated (Lillesand 

et al. 1999). 

 

The process of remote sensing involves the interaction between the incident 

radiation and the objects that are observed. The basic elements involved in the retrieval of 

the scene spectral properties, are the following, see Figure 2: 
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A) Energy Source or Illumination - the first requirement for remote sensing is to 

have an energy source, which illuminates or provides electromagnetic energy 

to the target of interest. 

 

B) Radiation and the Atmosphere - as the energy travels from its source to the 

target, it will come in contact with and interact with the atmosphere it passes 

through. This interaction may take place a second time as the energy travels 

from the target to the sensor. 

 

C) Interaction with the Target - once the energy makes its way to the target 

through the atmosphere; it interacts with the target depending on the 

properties of both the target and the radiation. 

 

D) Recording of Energy by the Sensor - after the energy has been scattered by, 

or emitted from the target, it is required to the sensor (remote - not in contact 

with the target) to collect and record the electromagnetic radiation. 

 

E) Interpretation and Analysis - the processed image is interpreted, visually 

and/or digitally or electronically, to extract information about the target 

which was illuminated. 

 

G)   Application - the final element of the remote sensing process is achieved when   

the information extracted from the imagery about  the target is applied in order 

to better understand it, reveal some new information, or  assist in solving a 

particular problem (CCRS 2004). 
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Figure 2: Remote Sensing Scheme (from CCRS website). 

 
 

 The final result of the process described above is an image cube with the third 

dimension specified by spectral wavelengths. Each image pixels is indeed a column 

vector, of which each component represents a particular spectral band (CCRS 2004). 

 

2.4 Spectral Sensing 
 

Multispectral sensors are instruments that measure multiple, wide, separated 

wavelength bands while hyperspectral sensors acquire images in many, very narrow, 

contiguous spectral bands throughout the visible, near-IR, mid-IR, and thermal-IR 

portions of the spectrum (Shippert 2002).  These sensors take advantage of hundreds of 

contiguous spectral channels to uncover spectral features that usually cannot be resolved 

by multispectral sensors (Chang 2003). Although most hyperspectral sensors measure 

hundreds of wavelength bands, and most multispectral sensors measure only a few, it is 

not the number of measured wavelengths that defines a sensor as multispectral or 

hyperspectral, but the narrowness and contiguous nature of the measurements.  

 

Hyperspectral images contain a wealth of data, but interpreting them requires an 

understanding of exactly what properties of ground materials are intended to be measured, 

and how they relate to the measurements actually made by the hyperspectral sensor. 
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Figure 3 : Hyperspectral Images (from TNTmips website) 

 
 
2.5 Image Classification 
 

Digital image classification uses the spectral information represented by the digital 

numbers in one or more spectral bands, and attempts to classify each individual pixel 

based on this spectral information. This type of classification is termed spectral pattern 

recognition. In either case, the objective is to assign all pixels in the image to particular 

classes or themes (e.g. water, coniferous forest, deciduous forest, corn, wheat, etc.). The 

resulting classified image is comprised of a mosaic of pixels, each of which belongs to a 

particular theme, and is essentially a thematic map of the original image (see Figure 4, 

CCRS 2004). 

 

 

Figure 4: Image Classification (from CCRS website). 
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Common classification procedures can be broken down into two broad 

subdivisions based on the method used: supervised classification and unsupervised 

classification.  

 

2.5.1 Supervised Classification 
 

In a supervised classification, the analyst identifies in the imagery homogeneous 

representative samples of the different surface cover types of interest. These samples are 

referred to as training areas (see Figure 5). The selection of appropriate training areas is 

based on the analyst's familiarity with the geographical area and their knowledge of the 

actual surface cover types present in the image. Thus, the analyst is supervising the 

categorization of a set of specific classes. The numerical information in all spectral bands 

for the pixels comprising these areas is used to train the computer to recognize spectrally 

similar areas for each class. The computer uses a special program or algorithm, to 

determine the numerical "signatures" for each training class. Once the computer has 

determined the signatures for each class, each pixel in the image is compared to these 

signatures and labeled as the class it most “closely resembles" digitally. Thus, in a 

supervised classification there is first an identification of the information classes, which 

are then used to determine the spectral classes that represent those (CCRS 2004). 

 

 

 

 

Figure 5: Supervised Classification (from CCRS website). 
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2.5.2 Unsupervised Classification  
 

Unsupervised classification in essence reverses the supervised classification 

process. Spectral classes are grouped first, based solely on the numerical information in 

the data, and are then matched by the analyst to information classes (see Figure 6). 

Clustering algorithms are used to determine the statistical structures in the data. Usually, 

the analyst specifies how many groups or clusters are to be looked for in the data. In 

addition to specifying the desired number of classes, the analyst may also specify 

parameters related to the separation distance among the clusters and the variation within 

each cluster. The final result of this iterative clustering process may result in some clusters 

that the analyst will want to subsequently combine, or clusters that should be broken down 

further each of these requiring a further application of the clustering algorithm. Thus, 

unsupervised classification is not completely without human intervention. However, it 

does not start with a pre-determined set of classes as in a supervised classification (CCRS 

2004). 

 

 

Figure 6: Unsupervised Classification (from CCRS website). 
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2.6 Diabetic Retinopathy  
 
 

 The most common causes of vision loss among the elderly are age-related macular 

degeneration, glaucoma, cataract and diabetic retinopathy. The effect of diabetes on 

the eye is called diabetic retinopathy. Over time, diabetes affects the circulatory 

system of the retina.  The earliest phase of the disease is known as background 

diabetic retinopathy.  In this phase, the arteries in the retina become weakened and 

leak, forming small, dot-like hemorrhages.  These leaking vessels often lead to 

swelling or edema in the retina and decreased vision. The next stage is known as 

proliferative diabetic retinopathy.  In this stage, circulation problems cause areas of 

the retina to become oxygen-deprived or ischemic.  New, fragile, vessels develop as 

the circulatory system attempts to maintain adequate oxygen levels within the retina.  

This is called neovascularization.  Unfortunately, these delicate vessels hemorrhage 

easily.  Blood may leak into the retina and vitreous, causing spots or floaters, along 

with decreased vision (St. Luke’s Cataract and Laser Institute). 

 

 

 

 

  

 

 

 

 

 

 

 

 Figure 7: Effects to vision of diabetic retinopathy (from St. Luke’s Eye website). 
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 Figure 8: Illustration by Mark Erickson (from http://www.stlukeseye.com). 

 

 Another common cause of vision loss is age-related macular degeneration (AMD) 

(Quillen 1999). AMD is a degenerative condition of the macula (the central retina).  It 

is the most common cause of vision loss in the United States in those 50 or older, and 

its prevalence increases with age.  AMD is caused by hardening of the arteries that 

nourish the retina.  This deprives the sensitive retinal tissue of oxygen and nutrients 

that it needs to function and thrive.  As a result, the central vision deteriorates. 

  AMD can be divided into two categories: nonexudative (or dry and the most 

common) and exudative (wet) AMD (see Figure 10). Wet AMD occurs when 

abnormal blood vessels behind the retina start to grow under the macula. These new 

blood vessels tend to be very fragile and often leak blood and fluid. The blood and 

fluid raise the macula from its normal place at the back of the eye. Damage to the 

macula occurs rapidly. With wet AMD, loss of central vision can occur quickly. Wet 

AMD is considered to be advanced AMD and is more severe than the dry form. Dry 

AMD occurs when the light-sensitive cells in the macula slowly break down, 

gradually blurring central vision in the affected eye. As dry AMD gets worse, you may 

see a blurred spot in the center of your vision. Over time, as less of the macula 
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functions, central vision in the affected eye can be lost gradually. The most common 

symptom of dry AMD is slightly blurred vision. You may have difficulty recognizing 

faces. You may need more light for reading and other tasks. Dry AMD generally 

affects both eyes, but vision can be lost in one eye while the other eye seems 

unaffected (Medline Plus website). Within dry AMD there are drusen and geographic 

atography (GA). The latter is responsible for nearly all cases of severe loss of vision 

associated with dry AMD. Geographic atrophy is characterized by round or oval 

patches of atrophy of the retina, retinal pigment epithelium and underlying choroid. 

Over time, the patches may increase in size and number or may coalesce to form 

larger areas of atrophy. 

 

 Figure 9: Effects to vision of macular degeneration (from St. Luke’s Eye website). 

 

 

 

 

 

 

 

 

 Figure 10: Wet and dry AMD illustrations (from St. Luke’s Eye website). 
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2.7 Principal Components Analysis 
 
 
 Principal Component Analysis (PCA)  is a linear transformation that chooses a 

new coordinate system for the data set such that the greatest variance by any projection of 

the data set comes to lie on the first axis (then called the first principal component), the 

second greatest variance on the second axis, and so forth. 

 

Suppose that x is a vector of p random variables, and that the variances of the p 

random variables and the structure of the covariances or correlations between the p 

variables are of interest. Unless p is small, or the structure is very simple, it is not always 

very helpful to simply look at the p variances and all of the (1/2)p(p-1) correlations or 

covariances. An alternative approach is to look for a few (<<p) derived variables that 

preserve most of the variability information.  

 

The first step is to look for a linear function z1= α1'x of the elements of x having 

maximum variance, where α1 is a vector of p constants p11211 ,,, ααα K , and ′ denotes 

transpose, so that, 

z1 = α1'x = pp xxxx 1313212111 αααα ++++ L = ∑
=

p

j
jj x

1
1α  

α1 = arg{max(var(z1))} 

 

The next step is to look for a linear function α2'x uncorrelated with α1'x having 

maximum variance, and so on, so that the kth stage a linear function of αk'x is found that 

has maximum variance subject to being uncorrelated with z1, z2, …, zk-1 .  

 

The kth derived variable, αk'x is the kth principal component. Up to p principal 

components could be found, but in most applications the variability in x is accounted for 

by few, m << p principal components (Jollife 2002).  

 

Let Σ be the covariance of x. For k=1,2, …,p the kth PC is given by zk = αk'x where 

αk is an eigenvector  of Σ corresponding to the largest eigenvalue λk and αk is chosen to 
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have unit length αk'* αk =1. Notice that var(zk)= λk. A quantity of the variability explained 

by the first m principal components is the percentage of variability, 

 

%var = ∑
∑=

=

m

i
p

i
i

i x
1

1

100
λ

λ
 

 

In dimensionality reduction m is chosen so that %var ≥ 90%. 

 

 
2.8 Change Detection 

 

Change detection is the process of automatically identifying and analyzing regions 

that have undergone spatial or spectral changes from multi temporal images. Detecting 

and representing change provides valuable information of the possible transformations a 

given scene has suffered over time. A typical change detection algorithm takes the images 

Im1 and Im2 as input and generates a binary image B, called a change mask that identifies 

changed regions (see Figure 11).  

 

 

 

 

 

 

 

Figure 11: Temporal Principal Component Analysis Procedure. 

   

 

Where, B(x) ═ { 

        

I1 

I2 

 
Change  
Detection 
Process 

B(x) 

1 if pixel xx corresponds to a significant change from Im1(x) to Im2(x) 
0 Otherwise            
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     The decision at pixel x generally involves evaluating a cost function and selecting a 

suitable decision threshold (Radke et al. 2003). 

 

The estimation of the change mask involves a series of steps, presented in 

Figure12. These steps involve: image pre-processing, feature extraction, dimension 

reduction, image comparison, decision rule application, and image post-processing. 

Nevertheless, these steps are not necessarily performed by every change detection 

technique; it depends on the method used. Below, a general description of each change 

detection step is provided: 

 

(1) Image pre-processing- this step makes the two images comparable in both 

the spatial and spectral domain. Concerning the spatial domain, the two 

images should be co-registered so that pixels with the same coordinates in 

the image may be associated with the same area on the ground. With 

regard to the spectral domain, changes in the illumination and atmospheric 

conditions between the two acquisition times may be a potential source of 

errors and should be taken into account in order to obtain accurate results 

(Bruzzone et al. 2002). This problem can be addressed performing 

radiometric calibration of the images. Other pre-processing steps are noise 

filtration, normalization of an image with respect to the other and 

topographic correction. 

 

(2) Feature Extraction - it consists on the extraction of a subset of new 

features from the original feature set by means of some functional 

mapping keeping as much information in the data as possible. The features 

selected depend on the application the change detection algorithm is going 

to be used for. Examples: Normalized Difference Vegetation Index 

(NDVI), and Principal Components. 

 

(3) Dimension reduction – it involves the representation of each image in a 

new space of lower dimension. In this step the pixel values of each image 
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can be fitted into polynomial functions or generated by normal 

distributions. By this, the change detection problem reduces to the 

comparison of the polynomial coefficients or the normal distributions, to 

determine if any change occurred. 

 

                  (4) Image comparison – The two registered and corrected images or their 

representation are compared, pixel-by-pixel, in order to generate a further 

image. A comparison measure used widely because of its simplicity is 

image differencing. The difference image is computed in such a way that 

pixels associated with changed areas present gray-level values significantly 

different from those pixels associated to unchanged areas.   

 

(5) Decision Rule- it is the most critical step of any change detection method. 

It involves the selection of a threshold, to decide if a pixel has or has not 

change from one time to another.  The selection of the decision threshold 

is of major importance as the accuracy of the change mask depends on this 

choice (Bruzzone et al. 2002) .   

 

(6) Post-processing- it is needed when change detection results are noisy or 

inadequately smooth. Change masks could be post processed to adjust the 

size, shape or boundary of regions representing change (Radke et al. 

2003).  

 

 

 

 
 

 

 

Figure 12: General steps for the estimation of the change mask. 
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2.9 Change Detection Techniques 
 

 

Many change detection techniques have been developed and their use depend in 

the application. As part of this study, the methodology of the following multispectral 

change detection techniques is described: Image differencing, Conventional Principal 

Component Analysis (PCA), Change Vector Analysis (CVA), Post Classification 

Comparison and Multivariate Alteration Detection (MAD). Due to the importance of 

detecting changes in many fields, new techniques are being developed constantly; 

nevertheless the ones mentioned above, are the most commonly used with multispectral 

imagery. 

 

2.9.1  Image Differencing 

 

   Image differencing is used widely because of its simplicity to implement and 

interpret. It consists in the subtraction of the first data image from a second-date image, 

pixel by pixel. One of the disadvantages that this change detection technique has is that it 

cannot provide a detailed change matrix, thus it requires a selection of a suitable threshold 

in order to produce a change/no-change binary map.   

 

Figure 13 presents a detailed diagram describing the change detection process for 

image differencing.  

 

 

 

 

 

 

 

 

Figure 13: Image Differencing Method. 
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2.9.2 Change Vector Analysis (CVA) 
 

The Change Vector Analysis (CVA) technique, illustrated in Figure 10, generates 

two outputs: magnitude and direction of the change vector.  Changed areas may then be 

described in these terms. CVA is a multivariate technique, which accepts as input n-bands, 

transforms, or spectral features. The first step on this method is to eliminate any redundant 

information or bands (band transformation) in order to concentrate change analysis in the 

features of interest.   

 

The change vector can be formed as follows:  

 

 

 

 

 

 

 

The next step is to calculate the magnitude of variation among spectral change 

vectors between the images pairs. The magnitude of the change vector is calculated by the 

Euclidean distance formula which measures the intensity of change. 

 

 

 

 

 

 

 The angle of the vectors, which indicates the nature of change that occurred, varies 

according to the number of components used. In other words, each vector is a function of 

the combination of positive or negative changes through channels or spectral bands. 
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Figure 14 presents a detailed diagram describing the change detection process for 

CVA.  

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Change Vector Analysis. 

 
 
 
2.9.3 Conventional Principal Component Analysis 
 

There are two ways to apply conventional Principal Component Analysis, and they 

are:  

 

(1) To put two or more images of different time instants into a single “cube”, then 

perform the analysis and analyze the minor principal component images for 

change information (see Figure 15). 

 

(2) Transform each image cube into its principal components and then apply 

change vector analysis in the principal component space (see Figure 16).  
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Figure 15: Conventional Principal Component Analysis. 

 
 
 

 

 

 

 

 
 
 

Figure 16: Conventional Principal Component Analysis. 
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depends on the quality of each classified image. If a supervised classification technique is 

considered, sufficient training sample data for classification is required. 

 

 

 

 

 

 

 

 

 

Figure 17: Post-Classification Comparison. 
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or similarity between pairs, it seems natural to base a change detection scheme on 

differences between these pairs of variates (Nielsen et al. 1998). 

 

If the multispectral pixel intensities measured at two different times by random 

vectors X and Y can be represented as follows: 

 

 
 

 Where K is the number of spectral components, then linear combinations are 

calculated: 

                            

 

 

 

Such that the difference of the transformed vectors has maximum variance: 
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with maximum variance corresponds to determining linear combinations with minimum 

(non-negative) correlation, 

 

min( }),({ YbXacorr TT ) 

 

This complies with canonical correlations analysis (Nielsen et al. 1998).  
 

 

Then the multivariate alteration detection is defined as: 
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where ai and bi are the defining coefficients from a standard canonical correlation analysis. 

The first difference (with the variates ap
T

 X, bp
T Y) shows maximum variation. The jth 

difference (with the variates ap-j+1
T

 X, bp-j+1
T Y ) shows maximum variation subject to the 

constraint of being uncorrelated with the previous ones.  

 

 

 

 

 

 

 

 

 

 
Figure 18: Multivariate Alteration Detection. 
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2.10 Summary 
 
 
 This chapter presented the basic concepts of image spectroscopy and hyperspectral 

remote sensing and change detection. The basic steps of the process of change detection as 

well as the most commonly used methods were described. Basic concepts on supervised 

and unsupervised image classification were also introduced. 
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CHAPTER 3 
 
 
 
 

3. Temporal Principal Component Analysis 
 (TPCA) 
 

 

 This chapter presents how Principal Component Analysis was used in this work to 

analyze temporal data. 

 

 

3.1 Introduction  
 

The main application of Principal Components Analysis (PCA) is to reduce the 

dimensionality of a data set that consists of a large number of interrelated variables, while 

retaining as much as possible of the variability present in the data set. This can be 

achieved by transforming to a new set of variables, or principal components, which are 

uncorrelated, and ordered so that the first few retain most of the variability present in the 

original variables. Applications such as the classification of multi/hyperspectral images 

benefit from dimensionality reduction of data, since the transformed data set provides 

sufficient information for the classifier to discriminate between the possible classes 

present in a given scene. In change detection applications the use of principal components 

differs from that in classification. As it was mentioned before the principal components 

are uncorrelated among them. The first components accumulate most of the common 

variability through the data set, while the latter components include the uncommon 

features. If PCA is applied to temporal data sets, the latter components will contain the 

information about features that are not common. This information can be interpreted as 

the features that are not present in either of the sets, i.e. change information.  
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3.2 Methodology for TPCA 
 

 

In this method the images were arranged in the same fashion as in the Image 

differencing method. But this time a bi-temporal feature space was constructed by placing 

the two image vectors in the same space. This is, 
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the bitemporal feature space is defined as, 
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where N is the number of spectral bands.  

 

 By constructing a bitemporal feature space, it is possible to use the general concept 

of principal components applied to change detection, which interprets that the pixels that 

have not suffered change will tend to lie around the first principal component and the 

changed pixels will tend to lie around the second principal component, which is 

orthogonal to the first. Figure 19 shows the general concept of change detection using 

principal components.  

 

 In this work all the bands are used to construct the bi-temporal feature space. By 

doing so, it is possible to project in two dimensions all the transformed data obtained from 

the images. This will lead to an easier interpretation of the results because all the change 
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information will be expected to be in the second principal component. It also permits to 

take advantage of all the information in the images. This means that for every band there 

is going to be a second image component that will offer unique information of change. 

 

 

Figure 19: Principal Component Analysis-General Concept 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Temporal Principal Component Analysis Procedure. 

 

1st 

2nd 

“Change” 

“No-Change” 

Spectral Value at T1 
Xi(T1)

Xi(T2) 

Spectral 
Value at T2 



 47

 Figure 20 presents step by step diagram of the modified Temporal Principal 

Component Analysis method. 

 

Figure 21 corresponds to the change detection diagram for the modified Temporal 

Principal Component Analysis method using the images from the sensor Hyperion. For 

the images obtained with the SOC-700 hyperspectral camera, there was no need for the 

registration or atmospheric correction stage. The images taken with the fundus camera 

were registered and corrected from illumination effects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Change detection diagram for the Temporal Principal Component Analysis method. 
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3.3 Summary 
 
  
 This chapter showed how Principal Components Analysis was used to analyze 

temporal data. The methodology for the implementation of the change detection method 

proposed in this study (TPCA) was also presented. 
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CHAPTER 4 
 
 
 
 

4. Methodology 
 

 

 This chapter presents the procedure that was followed in order to achieve the 

objectives presented in this work and mentioned in chapter one. 

 

4.1 Methodology used for change detection  
 
 

The methodology used to compare the performance of the different change 

detection methods studied in this work is described in this section. For this study, images 

from a hyperspectral camera, the sensor Hyperion and a Topcon TRG 50IA fundus 

camera were utilized to test the performance of the algorithms. The images taken with the 

SOC-700 hyperspectral camera available on campus at the Laboratory for Applied 

Remote Sensing and Image Processing (LARSIP) correspond to a concrete scene in which 

changes were induced by placing four coins and a drinking straw. On the other hand, the 

images from the fundus camera show the effects of diabetes to the human retina and the 

ones from the spaceborne sensor Hyperion were obtained over Enrique Reef at La 

Parguera (southwest of Puerto Rico). 

 

 As it was described in Chapter 2, the process of change detection involves a series 

of steps necessary for the estimation of a change mask, which indicates the pixels that 

have suffered from any kind of transformation. These steps are: image pre-processing, 

feature extraction, dimension reduction, image comparison, decision rule application, and 

image post-processing.  
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4.1.1 Image Pre-Processing 
  

Image preprocessing is one of the steps that some change detection methods has to 

perform in order to obtain correct change detection results. One of the most common 

preprocessing procedures performed over all images is registration, which means the 

alignment of pixels with the same coordinates in the image so it can be associated with the 

same area on the ground. With regard to the spectral domain, changes in the illumination 

and atmospheric conditions between the two acquisition times may be a potential source 

of errors and should be taken into account in order to obtain accurate results.   

 

In this work, the images from the sensor Hyperion were registered and corrected 

atmospherically. There was no need to register the test images obtained with the SOC-700 

hyperspectral camera since registration was taken care of during acquisition. The images 

from the fundus camera were also registered and corrected from illumination (Narasimha-

Iyer et al.). 

 

4.1.1.1 Image Registration 

The registration of the images of Enrique Reef in La Parguera was done using 

routines for image registration from the program ITK (Insight Segmentation and 

Registration Toolkit). ITK is implemented in C++. ITK is cross-platform, using the 

CMake build environment to manage the compilation process. In addition, an automated 

wrapping process generates interfaces between C++ and interpreted programming 

languages such as Tcl, Java, and Python (using CableSwig). This enables developers to 

create software using a variety of programming languages (ITK website 2003). 

The registration procedure involves the calculation of a transformation matrix 

from the Hyperion image of the year 2002. This transformation matrix was obtained by 

using the best bands of that image. After the transformation matrix is produced it is 

applied to the image of the year 2003 in order to register it. The transformations 

performed were basically shifts and rotations.  
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4.1.1.2 Atmospheric Correction 

 
The program used to perform atmospheric correction over the Hyperion images 

was ACORN (Atmospheric Correction Now) (Gao et al. 2000). ACORN uses look-up-

tables calculated with the Modtran4 (Adler-Golder et al. 1998) radiative transfer code to 

model atmospheric gas absorption as well as molecular and aerosol scattering effects.  

These modeled atmospheric characteristics are used to convert the calibrated sensor 

radiance measurements to apparent surface reflectance.  The technique uses a fast and 

accurate look-up-table approach to calculate water vapor amounts on a pixel-by-pixel 

basis.  The user may choose to use the water vapor absorption bands at 940 or 1150nm or 

both for the water vapor derivations.  Additionally the user may input a visibility or ask 

ACORN to attempt to estimate the visibility from the data.  A set of artifact suppression 

options are also included in the ACORN software. 

 

ACORN is designed to work with all airborne and spaceborne calibrated 

hyperspectral and multispectral data types including HYPERION, ASTER, LANDSAT, 

AVIRIS, IKONOS, among others (Gao et al. 2000). 

 

ACORN provides the following specific modes of atmospheric correction: 

 

• Mode 1 Radiative transfer atmospheric correction of calibrated hyperspectral data. 

• Mode 1.5 Radiative transfer atmospheric correction of calibrated hyperspectral 

data with water vapor and liquid water spectral fitting 

• Mode 2 Single spectrum enhancement of a hyperspectral atmospheric correction. 

• Mode 3 Atmospheric correction using the empirical line method for hyperspectral 

data. 

• Mode 4 User specified convolution of hyperspectral data to multispectral data. 

• Mode 5 Radiative transfer atmospheric correction of calibrated multispectral data. 

• Mode 5.5 Radiative transfer atmospheric correction of calibrated multispectral 

data with independently know water vapor image for spatially varying water vapor 

correction 
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• Mode 6 Single spectrum enhancement of a multispectral atmospheric correction. 

• Mode 7 Atmospheric correction by the empirical line method for multispectral 

data (Gao et al. 2000). 

 
 

4.1.2 Change detection  
 

After the pre-processing stage was completed, three change detection algorithms 

were applied to both images. These were: Image Differencing, Conventional Principal 

Component Analysis, and Temporal Principal Component Analysis. The latter was 

described in Chapter 3. Post Classification Comparison was applied only to the 

HYPERION images of Enrique Reef at La Parguera since it has more classes than the 

images from the taken with the hyperspectral camera.  

 

4.1.2.1 Image Differencing 

 

In this method, the two images corresponding to different times were placed in 

vector form, by stacking the columns of each band together. Figure 22 shows the 

procedure followed to convert the hyperspectral cube into a long vector.  

 

 

 

 

 

 

Figure 22: Hyperspectral Cubes conversion to vector form. 

 

Where Vec (I) converts the image cube into a vector by stacking the columns of 

each band. 

 

 
X = [ Vec(I(t1)) , Vec(I(t2))] 
 I(t1) I(t2) 
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 By doing this two vectors were constructed, both corresponding to the images at 

time one and two respectively. This is, by letting X be a  m x n  image at time one and Y, a 

m x n image at time two, the new images in vector form are expressed as follows, 
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where N is the number of spectral bands, and each component X1, X2, . . . , XN, is itself a 

vector with  m x n rows and one column. Then the image vectors were subtracted in order 

to obtain a new vector D, containing the information of change. The absolute of the 

difference was calculated. This is, 

 

D = abs(X – Y) = abs (
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Since the Image differencing technique does not produce a change matrix, it was 

necessary to select a threshold in order to generate the binary change/no-change mask. In 

this work two threshold selection techniques (global and per band threshold selection) 

were used to generate the change maps. The procedure followed by both methods is 

described in section 4.1.3.  

 

Image differencing change detection technique is widely used because of its 

simplicity in the implementation and the interpretation of its results.  
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4.1.2.2 Conventional Principal Component Analysis 

 

In this approach, hyperspectral images measured at different times are stacked into 

a supercube and PCA is performed on it. Those components with smaller variances are 

associated with change.  

 

 

4.1.2.3 Post-Classification Comparison (HYPERION Images) 

 

 As a feature extraction process for classification, we used band subset selection 

based on Singular Value Decomposition (SVD). The subset band selection algorithm 

requires as input the number of bands to select, which in turn depends on the 

dimensionality of the data. The dimensionality of the image input to the band subset 

selection procedure was determined as the number of principal components needed to 

explain at least 99.5% of the total variability (Umaña et al, 2003). For this case the 

dimensionality of the data was 5 and the bands used for classification were:  5, 13, 16, 27 

and 56. A supervised classifier (Euclidean Distance) was used classify each image 

independently.  

 

 After obtaining the corresponding classification maps, they were compared, in 

order to produce a change map. The training samples were manually selected over the 

image, by using the classification tool of the Hyperspectral Image Analysis MATLAB 

Toolbox (Arzuaga et al, 2004). A high spatial-resolution image (IKONOS Sensor) was 

used to aid in the selection of the training samples. Figure 23 shows the areas from which 

the samples were selected.  
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Figure 23: Training Areas 

 

4.1.3 Decision Rule 
 

The decision rule is the most critical step of any change detection method. It 

involves the selection of a threshold, to decide if a pixel has or has not change from one 

time to another.  In this work, two ways of selecting a threshold were implemented. This 

section presents the procedures of both threshold selection techniques.  

 

 
4.1.3.1 Global Threshold Selection 

 
This method calculates a global magnitude image from all the change information 

bands generated by each change detection technique. Then the standard deviation of the 

magnitude image is obtained and the threshold is set to three times this value. Figure 24 

shows the procedure of the global threshold selection method. 
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Figure 24: Procedure for the application of a global threshold. 

 
 
4.1.3.2 Per-band Change detection 

  

This method produces per-band change masks from each one of the change 

information bands. These masks are produced by applying thresholds to each change 

band, using the same three-times the standard deviation criterion. Then we take the sum of 

all the maps and generate a final change mask taking into account the level of noise of the 

images. Then if the number of bands that labeled a certain pixel as change is greater or 

equal than: 

 

%Noise Level x n, 

 

where n is the number of total bands, the pixel is identified as change in the final mask.  

By doing this we pretend to minimize the probability that a pixel may be classified as 

change because of noise.  

 

 Figure 25 shows the procedure of the threshold selection technique discussed in 

this section. 
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Figure 25: Procedure for the application of per-band change detection approach. 

 
 
4.2    Hyperspectral Camera 
 

 

For this study, the images used for the implementation of the different change 

detection methods were obtained from the sensor Hyperion and the hyperspectral camera, 

available at the Laboratory of Remote Sensing and Image Processing (LARSIP). The model 

of the camera is SOC-700 built by the Surface Optics Corporation (see Figure 26). It covers 

the spectral range from 0.4 to 0.9 µm in 120 bands (640 x 640), with a spectral resolution of 

4nm. 

 

The images obtained with the hyperspectral camera were used to test the 

algorithms under controlled conditions.  
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Figure 26: SOC-700 Hyperspectral Camera (from Surface Optics web page) 

 
 
4.3    Hyperion Sensor  
 
 

The Hyperion sensor onboard the EO-1 satellite is the first hyperspectral sensor on 

an Earth Observation Satellite. It covers the reflective spectral range from 0.4 to 2.5 µm at 

10nm resolution. Such comprehensive spectral resolution permits very detailed land cover 

classifications or identifications to be performed. The instrument images a 7.5 km by 100 

km land area per scene providing detailed spectral mapping across all 220 channels. 

  

 

 

               

 

 

 

 

 

 

Figure 27: Hyperion Sensor (NASA EO1 Webpage) 

 

 

Table 2 presents the general specifications of the Hyperion sensor.  
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Table 2: Hyperion Sensor Specifications 

 
Specifications 

IFOV 0.043 mrad 

Bands 220 

Altitude 705 km 

Swath 7.5 km 

Range VNIR: 355 – 1000 nm 
SWIR: 900 – 2577 

nm 

 
 
 
4.4    Topcon TRG 50IA Fundus Camera 
 
 
 
 Figure 28 shows a picture of the instrument (fundus camera) used to take the 

images from the retina. The model of this camera is TRC 50IA and was built by the 

company Topcon (Tokyo, Japan). This camera takes digital photos of the retina and stores 

them in 35mm films. These images aid to monitor and study the transformations the retina 

may suffer as a consequence of diabetes. 

 

 
 

Figure 28: Topcon TRC 50IA fundus camera (from www.colcon.com ). 
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4.5    Hyperspectral Data 
 

4.5.1 Test Images 
 

Two sets of images were used in this work to evaluate the performance of the 

algorithms, under controlled conditions. These images were taken with the SOC-700 

hyperspectral camera. The first set of these images (see Figures 29 to 30) corresponds to a 

scene of a concrete sidewalk in which changes were induced deliberately by placing four 

metal coins. In the second set of images (see Figures 31 to 32), a drinking straw was 

placed over the sidewalk as well. In this case, the changes were caused by the object and 

its shadow.  

 

The images were originally 120 bands each, and then reduced to 50, when most of 

the noisy bands were eliminated. This reduction was performed by using Singular Value 

Decomposition (Velez 1998).  

 

 

Figure 29: Test hyperspectral image of sidewalk. 

  

  

Figure 30: Test hyperspectral image with coins. 

Coins 
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Figure 31: Test hyperspectral image of sidewalk. 

 
 

 
 
 
 
 
 
 

Figure 32: Test hyperspectral sidewalk image with straw on it. 

 
 
 
4.5.2  HYPERION Data – Benthic Habitat of Enrique Reef at La 

 Parguera 
 

The images obtained from the Hyperion sensors corresponding to the benthic 

habitat of Enrique Reef at La Parguera (Lajas, Puerto Rico) were used for change 

detection. The images have an area of 27 x 46 pixels and the number of bands used in the 

analysis was 126.  

 

The images were taken in August 28, 2002 and July 15, 2003, respectively. Figure 

33 present the location of the municipality of Lajas and shows an approximate location 

where Hyperion images were taken. Figures 34 and 35 present RGB composites of the 

HYPERION images. 

 

Straw 
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                 Figure 33: Area of La Parguera, taken by Hyperion (This map is from Lonely Planet web site). 

 

 

         Figure 34: Image at time one, taken on August 28, 2002 

 
 

 

               Figure 35: Image at time two, taken on July 15,2003. 
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4.5.3 Fundus Camera Data- Images from a Human Retina 
 
 
 Two images corresponding to a human eye were taken using a Topcon TRC 50IA 

fundus camera in order to detect changes related to the effects of diabetes on the retina. 

Figure 36 shows the images used for the analysis, in which the most noticeable changes 

are the enlargement of the geographic atrophy and the presence of small dot hemorrhages. 

The images have an area of 640 x 700 and are of three bands each. 

 

 

       
               

 Figure 36: Images taken with the Topcon TRC 50IA fundus camera. 

 
 
 
4.6 MATLAB Hyperspectral Image Analysis Toolbox 
 
 
 
 The hyperspectral image analysis toolbox (see Figure 37) developed at the 

Laboratory for Applied Remote Sensing and Image Processing (LARSIP) of the 

University of Puerto Rico at Mayaguez was used to aid in the reduction of bands and the 

supervised classification of the images for the post-classification comparison method.  

 The Hyperspectral Image Analysis Toolbox (HIAT) is a collection of algorithms 

that extend the capability of the MATLAB numerical computing environment for the 

processing of hyperspectral and multispectral imagery. The purpose of the HIAT Toolbox 

Geographic 
Atrophy 

Enlargement

Dot 
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is to provide information extraction algorithms to users of hyperspectral and multispectral 

imagery in environmental and biomedical applications. HIAT has been developed as part 

of the NSF Center for Subsurface Sensing and Imaging (CenSSIS) Solutionware that 

seeks to develop a repository of reliable and reusable software tools that can be shared by 

researchers across research domains. HIAT provides easy access to supervised and 

unsupervised classification algorithms developed at LARSIP over the last 8 years 

(Rosario-Torres 2005).  

 

 

Figure 37: Hyperspectral Image Analysis Toolbox. 

 
 
 Within the features the hyperspectral images analysis toolbox has, there are the 

following: 

 

• Load and Save options for different image formats such as MATLAB data 

(.mat), Remote Sensing binary formats (bil, bis, bsq), jpeg and tiff. 

• Images can be visualized, as RGB composites or band by band. 

•  The toolbox provides for the selection of the following available feature 

extraction/selection techniques: 

 



 65

1. Principal Components Analysis 

2. Discriminant Analysis 

3. Singular Value Decomposition (SVD)  

4. Band Subset Selection  

5. Projection Pursuit  

6. Optimized Information Divergence Projection Pursuit 

  

• Observation of the spectral responses at each pixel in the images. 

• Supervised and unsupervised classification options. The classification 

techniques available in the toolbox are the following: 

 

1. Euclidean Distance 

2. Fisher’s Linear Discriminant Analysis 

3. Mahalanobis Distance 

4. Maximum Likelihood 

5. Angle Detection  

 

Training and testing samples for the spectral classes present in the image can be 

selected by the user in order to perform classification. The unsupervised classification 

module also allows the user to select the stopping criteria for unsupervised classification.  

The stopping criteria available in the toolbox are: 

 

1.   Bhattacharyya Distance 

2.   Covariance matrix 

3.   Pixel quantity of variation 

4.   Sum of squared error 

5.   Sum of squared error with covariance matrix information 

 

• Post-processing techniques in order to enhance classification results. These are: 

 

1. Supervised & Unsupervised ECHO classifier 
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2. Spatial Information Integration based on Markov Random Fields 

 

• After classification is finished, a color map is produced. Each color represents a 

different class present in the scene.  

 

 

4.7 Summary 
 

The methodology for the implementation of the change detection algorithms 

studied in this work was presented in this chapter. Information about the instruments used 

to obtain the images as well as the tools for their analysis was also described. 
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CHAPTER 5 
 
 
 

5. Experimental Results 
 

 

 In order to evaluate the performance of the different change detection methods 

studied in this work, several experiments were conducted by using test and validation 

data. Two sets of images were used as control, to calculate how many missed changes and 

false alarms produced each change detection method.  The images were obtained from the 

SOC-700 hyperspectral camera, and correspond to concrete sidewalk, where changes were 

induced by placing four coins and a drinking straw in the scene.  Images corresponding to 

Enrique Reef in La Parguera and a human retina were also analyzed. 

 

5.1 Test Data – Coins over concrete  
 

 This section presents test results obtained with hyperspectral images taken with the 

SOC-700 camera where changes were induced by placing four coins and a straw over a 

concrete sidewalk. 

 

5.1.1 Image Differencing with Global Threshold Selection 
 

 Figure 38 shows the histogram and magnitude of the change vector obtained by 

substracting the two images. From the histogram a global threshold was calculated and set 

to three times the standard deviation of the pixels values data. In this case the mean value 

and the standard deviation were 0.0248 and 0.0282, respectively. The threshold value used 

to produce the binary change mask was 0.1094. Figure 39 presents the change mask 

generated after applying the global threshold.  
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Figure 38: Image Difference Magnitude of Change 

 

      

Figure 39: Image Difference Change Mask 

 

5.1.2 Image Differencing with Per-band Threshold Selection 
 

 Figure 40 shows the change mask obtained by applying per-band thresholds to 

each of the change information bands. As can be seen the algorithm was capable to detect 

changes better than in the case of global threshold selection, in which failed to label as 

change most of the coins. 

 

      

Figure 40: Image Difference Change Mask from individual thresholds. 
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5.1.3 CPCA with Global Threshold Selection  
 

 Figure 41, presents the first 12 principal components obtained by performing the 

analysis over the coins data. We can see that each component offers different information. 

This is due, as it was mentioned earlier, to their orthogonal property. Table 3 shows the 

variances and the percentages of variability. The first image component (see Figure 35a) 

contains the no-change information while the remaining ones are expected to highlight 

changes. For this study, the components considered to carry change information were the 

ones outside 90% of the total percentage of variability. Therefore the image components 

that should be taken into account for change detection in this case were PC2 to PC50. 

Nevertheless by looking at the principal components from PC8 to PC50 it was clear that 

they were noisy, thus there was not any substantial change information that could be 

obtained from them.    
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(a)  PC1                         (b) PC2                         (c)PC3                 

                  
                (d)  PC4                              (e)  PC5                                 (f)  PC6 

              
                  (g)  PC7                                (h) PC8                               (i) PC9 

                  
(j)  PC10                            (k) PC11                             (l) PC12 

Figure 41: CPCA Principal Components. 

 

. 
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Table 3:  Percentages of Variability and variance for each principal component. 

 
 

Component % of variability 
 

 
Eigenvalue 

 
1 95.248 1.6272e+005 
2 1.2451 2188.6 
3 0.83702 1424.3 
4 0.31579 562.58 
5 0.10936 192.77 
6 0.071902 120.84 
7 0.05744 96.648 
8 0.052216 87.651 
9 0.03582 58.194 

10 0.034254 53.689 
11 0.034063 53.094 
12 0.033845 52.722 

 
 

Figure 42 presents the histogram and the magnitude of change obtained from the 

principal components 2 to 8. After the magnitude was obtained, the mean and the standard 

deviation of the data were calculated and the values were 0.0137 and 0.0126 respectively. 

The threshold selected then was 0.0515. Figure 43 shows the change mask corresponding 

to the conventional principal component analysis using global threshold selection to 

produce a change map. In this case the algorithm was able to detect more changes than 

Image differencing with global threshold selection. 

 

       
Figure 42: CPCA Magnitude of Change. 
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Figure 43: CPCA Change Mask, components 2-12. 

 
 
5.1.4 CPCA with Per-band Threshold Selection  
 
 Figure 44 presents the change mask obtained from the per-band thresholds 

selection In this case thresholds were calculated for each principal component separately.  

As a result seven change maps were generated (from PC2 to PC8). These maps were then 

compared to generate a final change mask. As can be seen the algorithm was capable to 

detect changes better than in the case of CPCA with global threshold selection. 

 

        

Figure 44: CPCA Change Mask with individual threshold selection. 
 

5.1.5 TPCA with Global Threshold Selection 

 
 Figure 45 shows the histogram and the magnitude image of the second principal 

component cube obtained from the modified Temporal Principal Component Analysis 

method. The mean and the standard deviation values were 0.0067 and 0.0344 respectively. 
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The threshold was set to 0.1099. Figure 46 presents the change mask obtained after 

applying the threshold. In this case the algorithm was able to detect more changes than 

CPCA and Image differencing with global threshold selection. 

 

         

Figure 45: TPCA Magnitude of Change with global threshold. 

 
 

         

Figure 46: TPCA Change Mask with global threshold selection. 

 
 
5.1.5 TPCA with Per-band Threshold Selection 
 
 
 Figure 47 shows the change mask obtained from per-band threshold selection in 

TPCA. It was constructed by using all the second principal image components obtained 

after the analysis.  A local threshold was applied to each component, generating different 

change maps. These maps were then compared to generate a final change mask. As can be 

seen the algorithm was capable to detect changes better than in the case of TPCA with 

global threshold selection. 
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Figure 47: TPCA Change Mask with local threshold selection. 
 

5.2 Test Data – Plastic straw over concrete sidewalk 
 

 This section presents the results obtained with the hyperspectral images in which 

changes were introduced by placing a plastic drinking straw over the concrete surface. 

 

5.2.1 Image Differencing with Global Threshold Selection 
 

 Figure 48 corresponds to the change mask produced by the difference of the two 

image vectors. A histogram of the magnitude was calculated and the global threshold was 

set to three times the standard deviation of the pixels values data. In this case the mean 

value and the standard deviation were 0.0081 and 0.0606, respectively. The threshold 

value used to produce the binary change mask was 0.19.  

 

          

Figure 48: Image Difference Change Mask from global threshold selection. 
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5.2.2 Image Differencing with Per-band Threshold Selection 
 

 Figure 49 shows the change mask obtained by applying per-band thresholds to 

each of the change information bands. As can be seen the algorithm was capable to detect 

changes better than in the case of Image differencing with global threshold selection. In 

this case the changes related to the shadow of the straw were highlighted, unlike the 

previous case. 
 

          

Figure 49: Image Difference Change Mask from local thresholds selection. 

 
 
5.2.3 CPCA with Global Threshold Selection  
 

 Figure 50, presents the image principal components and Table 4 shows the 

eigenvalues and the percentages of variability obtained from their variances. The first 

image component (see Figure 50a) contains the no-change information while the 

remaining ones are expected to highlight changes. For this study, the components 

considered to carry change information were the ones outside 90% of the total percentage 

of variability. Therefore the image components that were taken into account for change 

detection in this case were PC3 to PC50.  Nevertheless by observing the principal 

components from PC9 to PC50 it was clear that they were noisy, thus there was not any 

substantial information that could be obtained from them.    
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(a)  PC1                         (b) PC2                         (c)PC3                 

 

 

                    
                (d)  PC4                              (e)  PC5                                 (f)  PC6 

 

 

                      
         (g)  PC7                                       (h) PC8                                     (i) PC9 

 

Figure 50: CPCA Principal Components. 
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Table 4:  Percentages of Variability and eigenvalues of each principal component. 

 
 

Component % of variability 
 

 
Eigenvalue 

 
1 86.316 3.1875e+005 
2 11.088 40947 
3 0.80552 2974.6 
4 0.39854 1471.7 
5 0.13422 495.66 
6 0.075569 279.06 
7 0.047663 176.01 
8 0.037209 137.4 
9 0.032516 120.08 

 

 

After the magnitude was obtained, the mean and the standard deviation of the data 

were calculated and the values were 0.1965 and 0.0838 respectively. The threshold 

selected then was 0.4479. Figure 51 shows the change mask corresponding to the 

conventional principal component analysis using global threshold selection to produce a 

binary change/no-change map.  By looking   at the change mask it can be noticed that the 

algorithm was not able to detect the majority of changes produced by the straw and its 

shadow. However it increased the amount of false alarms by identifying as change some 

areas of the concrete sidewalk.   In this case the algorithm was not able to perform better 

than Image differencing with global threshold selection. 

 

 

          

Figure 51: CPCA Change Mask, components 3-8. 
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5.2.4 CPCA with Per-band Threshold Selection  
 
 Figure 52 presents the change mask obtained from the per-band threshold 

selection. It was constructed by using the same principal components from the global 

threshold selection.  This time a threshold was applied to each component, generating 

different change masks. These masks were then compared to generate a final change map. 

The results obtained for this case were better than those from CPCA with global threshold 

selection. As can be seen the number of missed changes and false alarms decreased, 

unlike the previous case.  

 

          

Figure 52: CPCA Change Mask with individual threshold selection. 
 

5.2.5 TPCA with Global Threshold Selection 

 
 Figure 53 corresponds to the change mask produced by the TPCA change 

detection method. A histogram of the magnitude was calculated and the global threshold 

was set to three times the standard deviation of the pixels values data. The mean and the 

standard deviation values were 0.0094 and 0.0596 respectively. The threshold was set to 

0.1882. In this case the algorithm was able to perform better than Image differencing and 

CPCA with global threshold, by decreasing the amount of misses. 
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Figure 53: TPCA Change Mask with global threshold selection. 

 
 
5.2.6 TPCA with Per-band Threshold Selection 
 
 Figure 54 presents the change mask obtained from the per-band thresholds 

selection using Temporal Principal Component Analysis. As can be seen the algorithm 

was capable to detect changes better than in the case of TPCA with global threshold 

selection, by detecting most of the shadow produced by the object. In comparison to the 

previous techniques, TPCA also obtained the best performance. 

 

           

Figure 54: TPCA Change Mask with local threshold selection. 
 
 
5.3 Algorithm Performance 
 

 The performance of the algorithms was tested in terms of missed changes and false 

alarms. Since the changes in the images were induced deliberately it was possible to 
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construct a reference mask in order to calculate which pixels that represented changes 

were classified as background and which pixels that represented background were 

classified as changes.  

 

 Figure 55 shows all the change masks obtained from the different change detection 

methods, by using global threshold selection. Table 5 shows the percentage of missed 

changes and false alarms obtained. The procedure was repeated for the per-band threshold 

selection technique and the results are presented in Table 6. It is possible to notice that the 

overall error was higher for the methods with the global threshold selection than with per-

band selection. Regardless of the way of how thresholds were selected, the method that 

produced the smallest percentage of error was Temporal Principal Component Analysis. 

Figures 57 and 58 show the results obtained for the image corresponding to a drinking 

straw over a concrete sidewalk. 
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Figure 55: (a) Reference Image, (b) Image difference, (c) CPCA and (d) TPCA change masks. 

 

Table 5: Methods Performances using global threshold selection. 

Method  Im-Diff CPCA TPCA 

Misses 53.4279% 40.2482% 36.9385% 

False Alarms 0.1964% 0.0861% 0.0707% 

Overall Error 1.0759% 0.7498% 0.6799% 

 

          

 

Figure 56: (a) Reference Image, (b) Image difference, (c) CPCA and (d) TPCA change masks. 

 

Table 6: Methods Performances using per-band threshold selection. 

Method  Im-Diff CPCA TPCA 

Misses 25.2955% 31.4569% 5.7033% 

False Alarms 0.5926% 0.1053% 0.3969% 

Overall Error 1.000% 0.6233% 0.4846% 

 
 
 

(a)                                (b)                                (c)                                (d) 

(a)                             (b)                                (c)                                (d) 
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Figure 57: (a) Reference Image, (b) Image difference, (c) CPCA and (d) TPCA change masks. 

 

Table 7: Methods Performances using global threshold selection. 

 
Method  Im-Diff CPCA TPCA 

Misses 75.8485% 68.8328% 74.3171% 

False Alarms 0% 0.2775% 0% 

Overall Error 3.5269% 3.4653% 3.4557% 

 
 
 

          
 

Figure 58: (a) Reference Image, (b) Image difference, (c) CPCA and (d) TPCA change masks. 

 
Table 8: Methods Performances using per-band threshold selection. 

 
Method  Im-Diff CPCA TPCA 

Misses 19.3295% 48.4478% 17.5290% 

False Alarms 0.0040 % 0.2089% 0.0050% 

Overall Error 0.9027% 2.4520% 0.8199% 

(a)                                (b)                                (c)                                (d) 

(a)                                (b)                                (c)                                (d) 
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5.4 Application of change detection to Benthic Habitats at 
Enrique Reef in La Parguera 

 

 The 2002 and 2003 HYPERION images of Enrique Reef sensor were used to test 

the change detection algorithms presented. This section includes the results obtained by 

each technique. 

 

5.4.1 Image Differencing with Global Threshold Selection 
 
 This section presents the results obtained with the Image Differencing method. 

Figure 59 shows the magnitude of the change vector and its histogram. The mean and the 

standard deviation obtained for this case were 0.0879 and 0.0747 respectively. The value 

of the threshold was 0.3121. Figure 60a shows the change mask obtained by applying the 

global threshold. The change mask over a RGB composite of the image is illustrated in 

Figure 60b. The changes detected correspond to areas of Mangrove and reef. 

 

                    

Figure 59: Image Differencing Magnitude of Change. 

 

       
(a)                                              (b) 

Figure 60: Image Differencing Change Mask with global threshold selection. 
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5.4.2 Image Differencing with Per-band Threshold Selection 
 
 Figure 61 shows the change mask obtained by applying per-band thresholds as 

well as the change mask over a RGB composite of the image.  As can be seen a higher 

number of changes were detected, compared to Image differencing with global threshold 

selection. Changes can be observed in the areas of Sea Grass, Reef and Mangrove. 

  

       

Figure 61: Image Differencing Change Mask with individual threshold selection. 

 
 
 
5.4.3 CPCA with Global Threshold Selection 

 
 Figure 62, presents the image principal components obtained by performing the 

analysis over the HYPERION data. Table 9 shows the variances and the percentages of 

variability obtained from the conventional analysis of principal components. The 

components selected for change detection were the ones outside a 90% of the total 

variability. Therefore the image components that should be taken into account for change 

detection are PC4 to PC50. Nevertheless by observing the principal components from PC9 

to PC50 it was clear that they were noisy, thus there was not any substantial information 

that could be obtained from them.    
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Figure 62: CPCA components of Enrique Reef. 

 

(a) PC1                                                  (b) PC2 

(c) PC3                                                 (d) PC4 

(c) PC5                                                 (d) PC6 

(e) PC7                                                 (f) PC8 
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Table 9: Percentages of Variability and eigenvalues of the principal components. 

 
 

Component % of variability 
 

 
Eigenvalue 

 
1 64.612 1.5148 
2 20.173 0.4730 
3 6.3838 0.1497 
4 2.5968 0.0609 
5 1.5583 0.0365 
6 0.59832 0.0140 
7 0.43891 0.0103 
8 0.29206 0.0068 

 
 

 Figure 63 shows the magnitude of change and its histogram obtained from the 

fusion of the principal components 4 to 8. The mean and standard deviation calculated 

from the data were 0.0528 and 0.0607. The threshold selected to produce the change mask 

was 0.2351. Figure 64 shows the change map obtained after threshold application. In this 

case more changes from the Mangrove area were detected. Just a few pixels from the reef 

were labeled as change.  
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Figure 63: CPCA Magnitude Image PCs 2-8 

 
 

        

Figure 64: CPCA Change Mask obtained with global threshold selection. 
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5.4.4 CPCA with Per-band Threshold Selection 

 

 Figure 65 presents the change mask obtained from the individual threshold 

selection. As can be seen a higher number of changes were detected, compared to CPCA 

with global threshold selection. Changes can be observed in the areas of Sea Grass, Reef 

and Mangrove. 

 

     

Figure 65: CPCA Change Mask obtained with local threshold selection. 

 
5.4.5 TPCA with Global Threshold Selection 
 
 Figure 66 shows the magnitude of change obtained with TPCA. The mean and the 

standard deviation values were 0.0432 and 0.0802 respectively. The threshold was set to 

0.2837. Figure 67 shows the change maps obtained after threshold application. In this case 

the changes were also from the areas of Mangrove and reef, but it is possible to observe a 

few pixels from the area of Carbonate sand labeled as change as well. 
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Figure 66: TPCA Magnitude Image 
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Figure 67: TPCA Change Mask with global threshold selection. 

 
 

 
5.4.6 TPCA with Per-band Threshold Selection 
 

Figure 68 presents the change mask obtained from the local thresholds selection 

using Temporal Principal Component Analysis. The changes highlighted in this case 

correspond to the area of reef-flat.  

  
 

     
 

Figure 68: TPCA Change Mask with individual threshold selection. 

 
 
 

5.4.7 Post Classification Comparison 
 

 The two images from the sensor Hyperion were classified using the Euclidean 

distance criterion. The supervised classification was performed over each image 

separately. Then the classification maps were compared to produce the change map. The 

areas from which samples were taken to train the classifier are presented in Figure 69. 

Figure 70 presents the classification maps obtained for each image.  
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Figure 69: Training samples areas. 

 
 

     
 

    Figure 70: Classification Maps of the Enrique Reef at years (a) 2002 and (b) 2003. 

 
 
 The images were labeled into the following classes: 

 

1. Reef -flat 

2. Carbonate Sand 

3. Mangrove 

4. Deep Water 

5. Sea Grass 

 

 Figure 71 shows the change mask obtained as a result of the comparison of the two 

classification maps presented in Figure 70. In this case just a few changes corresponding 

to the areas of Reef, Carbonate sand and Sea Grass, were detected. However the areas that 

seem to have suffered the majority of changes were the ones labeled as Reef and 

Carbonate sand in the image of 2002. 

 
Carbonate Sand 

Sea Grass 

Mangrove 

Reef -flat 

(a)                                                             (b) 

     Reef 
 
     Carbonate Sand 
 
     Mangrove 
 
     Deep water 
 
     Sea Grass 
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Figure 71: Post Classification Comparison Change Mask 

 

5.5 Application of change detection to the fundus camera 
images 

 
 

 Two images, corresponding to a human retina were analyzed to detect changes 

related to diabetes (diabetic retinopathy). These images were taken with a Topcon TRG 

50IA fundus camera. This section presents the results obtained by each algorithm.  

 

5.5.1 Image Difference with Global Threshold Selection 
 
 Figure 72 shows the result obtained with Image differencing with global threshold 

selection. As can be seen the algorithm was able to detect some changes related to the 

enlargement of the geographic atrophy as well as the dot hemorrhages. 

 

     
 

Figure 72: Change Mask obtained by Image differencing with global threshold selection. 
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5.5.2 Image Difference with Per-band Threshold Selection 
 
 
 Figure 73 shows the result obtained with Image differencing with per-band 

threshold selection. For this case the algorithm was able to detect more changes related to 

the enlargement of the geographic atrophy in comparison to the previous method. The dot 

hemorrhages were detected as well. 

  

            
 

Figure 73: Change Mask obtained by Image differencing with per-band threshold selection. 

 
 
5.5.3 CPCA with Global Threshold Selection 
 
 Figure 74 presents the image principal components obtained by performing the 

analysis over the fundus camera data. The components selected for change detection were 

the ones outside a 90% of the total variability. Therefore the image components that 

should be taken into account for change detection in this case are PC2 to PC6. 

Nevertheless by observing the principal component PC6 it was clear that it was noisy, thus 

there was not any substantial information that could be obtained from it.    
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Figure 74: Principal Components and percentages of variability. 

 
 
 Figure 75 presents the change mask generated by the CPCA method with global 

threshold selection. In this case, the algorithm failed to detect changes related to the 

enlargement of the geographic atrophy. Instead, it labeled as change areas of the upper 

blood vessels and the center of the macula.  
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Figure 75: Change Mask obtained by CPCA with global threshold selection 

 
5.5.4 CPCA with Per-band Threshold Selection 
 
 Figure 76 presents the change mask generated by the CPCA method with per-band 

threshold selection. As can be seen the change detection performance of the algorithm 

improved for this case. Now the false alarms decreased considerably by not identifying 

the blood vessels and the center of the macula, as change. The changed areas are now 

related to geographic atrophy. 

 
 

           
 

Figure 76: Change Mask obtained by CPCA with per-band threshold selection. 
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5.5.5 TPCA with Global Threshold Selection 
 
 

 Figure 77 shows the result obtained with Image differencing with global threshold 

selection. As can be seen the algorithm was able to detect some changes related to the 

enlargement of the geographic atrophy as well as the dot hemorrhages. 

 

            
 

Figure 77: Change Mask obtained by TPCA with global threshold selection. 

 
 
5.5.6 TPCA with Per-band Threshold Selection 
 
 Figure 78 shows the result obtained with TPCA with per-band threshold selection. 

For this case the algorithm was able to detect more changes related to the enlargement of 

the geographic atrophy in comparison to the previous method. The dot hemorrhages were 

detected as well. The results are similar to those obtained with Image differencing. 

 



 95

             
 

Figure 78: Change Mask obtained by TPCA with per-band threshold selection. 

 
 
 
5.6 Summary 
 

 In this chapter, the results of the experiments realized as part of this study, were 

presented. Three change detection techniques were implemented by using hyperspectral 

data. The performance of each method was measured in terms of missed changes and false 

alarms. The results obtained from two threshold methods, global and per-band selection, 

were also included.  

 

 As it can be seen in Tables 10 and 11, the Temporal Principal Component Analysis 

change detection technique decreased the overall errors better than the other two methods, 

in both global and local thresholds selection. 
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Table 10: Overall error for the images of coins over concrete sidewalk. 

 
 

Method 

Overall Error % (Global 

Threshold) 

Overall Error % (Local 

Threshold) 

Image Difference 1.0759% 1.0000% 

CPCA 0.7498% 0.6233% 

TPCA 0.6799% 0.4846% 

 

Table 11: Overall error for the images of a drinking straw over concrete sidewalk. 

 
 

Method 

Overall Error % (Global 

Threshold) 

Overall Error % (Local 

Threshold) 

Image Difference 3.5269% 0.9027% 

CPCA 3.4653% 2.4520 % 

TPCA 3.4557% 0.8199% 
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CHAPTER 6 
 
 
 
 

6. Conclusions and Future Work 
 

 Three change detection methods have been tested and their performances 

compared. These methods were: Image Differencing, Conventional Principal Components 

Analysis (CPCA), and Temporal Principal Component Analysis (TPCA). The latter was 

modified as a contribution of this work. This chapter presents the conclusions of this work 

and proposes ideas for future work. 

 

 

6.1 Conclusions  
  
 
 The experiments performed over the test images shown that the modified 

Temporal Principal Component Analysis obtained the best results in terms of the amount 

of missed changes, false alarms and overall errors, with both global and individual 

threshold selection.  

 

 The modified Temporal Principal Component Analysis (TPCA) technique 

decreased the overall error in change detection by approximately 0.5931% in the case of 

global threshold selection and 0.5923% for the local threshold selection method. However 

the overall error was improved by the selection of local thresholds rather than a global one 

by approximately 1.11% .This is because by calculating a global magnitude image with all 

the change components, an average of all the information contained by each, was 

generated. Then just a single threshold is selected to produce a change mask, leading 

perhaps to errors on the classification of change/no change pixels. The idea of taking a 

global magnitude came from the synoptic nature hyperspectral images have. This means 

that each band provides different change information from the same scene, and it was 
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intended to take advantage of it by placing in a single space or component all the change 

information encountered in the analysis in order to make it simpler. On the other hand, by 

using per-band thresholds, different values were applied to produce the binary maps. 

Since these values are calculated from the statistics of each change information band or 

component, the final result corresponded to the change information given by each 

component. A final change mask was then obtained. This final mask is the sum of all the 

contributions of change information given by each band. 

 

 From the images obtained with the sensor HYPERION the most common changes 

detected belonged to the areas of mangrove and reef. Unfortunately there is no ground 

truth of the images at both dates, making it difficult to determine which change detection 

method presented in this study did a best job. On the other hand the results with the 

fundus camera images, with exception of CPCA with global threshold selection, seemed 

to detect the most evident changes related to the enlargement of the geographic atrophy 

and the formation of dot hemorrhages. However it looks like the methods using per-band 

threshold selection, performed better than the ones with global threshold selection. 

 

 Based on our results using test data, it can be concluded that Temporal Principal 

Components Analysis had a better performance over Image differencing and Conventional 

Principal Components change detection techniques, by decreasing the overall errors with 

both global and per-band threshold selection methods. 

 

   

6.2 Future Work 
 

 Test the algorithms with new data. Perform controlled experiments with different 

types of changes. 

  

 Evaluate the effects of different pre-processing methods such as atmospheric or 

illumination correction and Spectral Resolution Enhancement, in change detection. 
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 Compare multispectral vs hyperspectral change detection. 

  

 Combine unmixing of hypespectral images with change detection and see how the 

performance of the algorithms is affected. 

 

 Improve programming of TPCA and CPCA algorithms before incorporating into 

the HSI Toolbox. 
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APPENDICES 
 
 

A. Principal Component Analysis  
  

A.1 Derivation 
 

The vector x has a known covariance matrix ∑. This is the matrix whose (i,j)th 

element is the covariance between the ith and jth elements of  x when i ≠ j, and the 

variance of the jth element of x when i=j. For k=1,2, …, p, the kth PC is given by 

xz kk
/α=  where kα  is an eigenvector of  ∑ corresponding to its kth largest eigenvalue kλ . 

Furthermore , if kα is chosen to have unit length ( 1*/ =kk αα ), then var( kz ) = kλ , where 

var( kz ) is the variance of kz . 

 

Considering first x/
1α , the vector 1α maximizes var[ x/

1α ] = 1
/

1 αα ∑ . The maximum 

will not be achieved for finite 1α ; therefore a normalization constraint must be imposed. 

The constraint used in the derivation is 11
/

1 =αα , that is the sum of squares of elements of 

1α equals 1. The use of constraints other than   1
/

1αα = constant in the derivation leads to a 

more difficult optimization problem, and it will produce a set of derived variables 

different from the principal components. To maximize 1
/

1 αα ∑  subject to the constraint 

11
/

1 =αα , the standard approach is to use the technique of Lagrange multipliers. Maximize 

 

1
/

1 αα ∑ - )1( 1
/

1 −ααλ , 

 

where λ is a Lagrange multiplier. Differentiation with respect to 1α gives 

 

,011 =−∑ λαα  
or  
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,0)( 1 =−∑ αλ pI  

 

where Ip is the (p x p) identity matrix. Thus, λ is an eigenvalue of ∑ and 1α is the 

corresponding eigenvector. To decide which of the p eigenvectors gives x/
1α  with 

maximum variance, note that the quantity to be maximized is  

 

1
/

1 αα ∑ = λαλαλαα == 1
/

11
/

1 , 

 

so λ must be as large as possible. Thus, 1α is an eigenvalue of ∑, and var( x/
1α ) = 

1
/

1 αα ∑ =λ1, the largest eigenvalue.  

 

 In general, the kth principal component of x is xk
/α  and var( xk

/α ) = λk, where λk is 

the kth largest eigenvalue of ∑, and kα is the corresponding eigenvector.  

 

 The second principal component, ,/
2xα  maximizes 2

/
2 αα ∑  subject to being 

uncorrelated with x/
1α , or equivalently subject to cov[ x/

1α , x/
2α ] = 0, where cov(x,y) 

demotes the covariance between the random variables x and y. But 

 

2
/

111
/
2111

/
21

/
22

/
1

/
2

/
1 ],cov[ ααλααλαλααααααα ===∑=∑=xx . 

 

 Thus, any of the equations 

 

02
/

1 =∑αα ,  01
/
2 =∑αα , 

 

,02
/

1 =αα  01
/
2 =αα  
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could be used to specify zero correlation between x/
1α  and x/

2α . By choosing the last of 

these, and noting that a normalization constraint is again necessary, the quantity to be 

maximized is  

1
/
22

/
22

/
2 )1( αφαααλαα −−−Σ , 

 

where  λ, φ are Lagrange multipliers . Differentiation with respect to 2α  gives 

 

0122 =−−Σ φαλαα  

 

and multiplication of this equation on the left by x/
1α  gives  

 

01
/

12
/

12
/

1 =−−Σ αφααλααα , 

 

which, since the first two terms are zero and  11
/

1 =αα , reduces to φ=0. Therefore, 

22 λαα −Σ = 0, or equivalently 0)( 2 =−Σ αλ pI , so λ is once more an eigenvalue of ∑, 

and 2α  the corresponding eigenvector. 

 

 Again, λ= 2
/
2 αα Σ , so λ is to be as large as possible. Assuming that ∑ does not have 

repeated eigenvalues,  λ cannot equal λ1. If this happens, then 1α = 2α , violating the 

constraint 02
/

1 =αα . Hence λ is the second largest eigenvalue of  ∑ and 2α  is the 

corresponding eigenvector. It can be shown that for the third, fourth, … , pth PCs , the 

vectors of coefficients pααα ,,, 43 K  are the eigenvectors of  ∑ corresponding to 

pλλλ ,,, 43 K , the third and fourth largest, …, and the  smallest eigenvalue, respectively. 

Furthermore, 

 

kk x λα =]var[ /   for k = 1, 2,…, p. 
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A.2 Mathematical and Statistical Properties 
 

This section presents the mathematical and statistical properties of principal 

components in both the contexts of population and sample covariance.  

 
Population Principal Components 

 

Notation: 

 

Considering the derivation presented above, and denoting by z the vector whose 

kth element is zk , the kth PC , k=1, 2, …, p. Then, 

 

z = A′x 

where A is the orthogonal matrix whose kth column, kα , is the kth eigenvector of  ∑. 

Thus, the principal components are defined by an orthonormal linear transformation of x. 

From the   derivation above, 

 

Λ=Σ AA , 
// , AAorAA Λ=ΣΛ=Σ  

      

where Λ is the diagonal matrix whose kth diagonal element is λk , the kth eigenvalue of  

∑, and λk = )var()var( /
kk zx =α .  

 

The orthonormal linear transformation, z = A′x, has a number of properties which 

are presented below. 

 

Property 1. For any integer q, 1≤ q ≤p, consider the orthonormal linear transformation 

 

y = B′x, 
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where y is a q-element vector and B′ is a (q x p) matrix, and let BBy Σ=Σ / be the 

variance-covariance matrix for y. Then the trace of yΣ , denoted tr( yΣ ), is maximized by 

taking B=Aq consists of the first q columns of A. 

 

Property 2. Considering the orthonormal transformation 

 

y = B′x, 

 

with x, B, A and yΣ defined as before. Then tr( yΣ ) is minimized by taking B=Aq
* 

 where 

Aq
* 

 consists of the last q columns of A. 

 

Property 3. Spectral Decomposition of  ∑. 

 

∑ = //
222

/
111 ppp ααλααλααλ +++ L  

 

Property 4. Considering the transformation y = B′x, if det( yΣ ) denotes the determinant 

of the covariance matrix y, then det( yΣ ) is maximized when B=Aq. 

 

Property 5. Suppose that it is wished to predict each random variable, xj in x by a 

linear function of y, where y = B′x, as before. If 2
jσ is the residual variance in predicting 

xj from y, then ∑
=

p

j
j

1

2σ is minimized if B=Aq. 

 

Property 6. For any integer q, 1≤ q ≤ p, consider the orthonormal linear 

transformation 

 

y = B′x, 

Letting 2
:qjR  be the squared multiple correlation between xj and the q variables y1, y2, …, 

yq, defined by the elements of y. The criterion, 



 108

∑
=

p

j
qjR

1

2
: , 

 

is maximized when y1, y2, …, yq are the first q correlation matrix principal components. 

The maximized value of the criterion is equal to the sum of the q largest  eigenvalues of 

the correlation matrix. 

 

Property 7. Consider the family of p-dimensional ellipsoids 

 

x′∑-1x = constant, 

 

The principal components define the principal axes of these ellipsoids. 

 

Property 8. Supposing that x1, x2 are independent random vectors, both having the 

same probability distribution, and that x1, x2 are both subjected to the same linear 

transformation  

 

yi = B′xi, i=1,2 

 

If B is a (pxq) matrix with orthonormal columns chosen to maximize E[(y1-y2)′ (y1-y2)], 

then B=Aq, using the same notation. 

 

Sample Principal Components 

 

Notation: 

 

If there are n independent observations on the p element random vector x, these n 

observations are denoted by x1, x2, … , xn. S is defined as the covariance matrix for x1, x2, 

… , xn, and kα  is the corresponding eigenvector for k =1, 2, …, p. Then the (n x p) 

mtrices X and Z are defined to have (i,k)th elements equal to the value of the kth element 

xik of  xi, and to zik, respectively. Then Z and X are related by Z = XA, where A is the (p x 
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p) orthogonal matrix whose kth columns is kα . If the mean of each element of x is known 

to be zero, then S =
n
1 X′ X. If the mean of x is unknown S is 

)()(
1

1
1

kik

n

i
jij xxxx

n
−−

− ∑
=

 

where  

 

∑
=

=
n

i
ijj x

n
x

1

1 ,   j= 1, 2, … , p. 

 

Therefore the matrix S can be written as follows, 

S = 
1

1
−n

X′ X, 

where X is an (n x p) matrix with (i,j)th element )( jij xx − . The notation xij is used to 

denote the (i,j)th element of X, so that xij is the value of the jth variable measured about its 

mean jx for the ith observation. Then the matrix of principal component scores is denoted 

by, 

 

Z = XA 

 

Properties 1, 2, 4, 5 

 

Defining the linear transformation as  

 

yi = B′xi, for i =1, 2, …, n 

 

where B, as  in Properties 1, 2, 4, 5, (of population pc) is a (p x q) matrix whose columns 

are orthonormal. Properties 1, 2, 4, 5, still hold but with the sample covariance matrix of 

the observations yi, i= 1, 2, …, n, replacing yΣ , and with the matrix A now defined as 

having kth column ak , with Aq, Aq
*, representing its first and last q columns. 
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Property 3.   The spectral decomposition property is given by, 

 

S //
222

/
111 ppp aalaalaal +++= L  

 

Property 6. Supposing now that X consists of n observations on p predictor variable x 

measured about their sample means, and that the corresponding regression equation is  

 

y = Xβ + є, 

 

where y is the vector of n observations on the dependent variable, again measured about 

the sample mean. Supposing that X is transformed but h equation Z=XB, where B is a (p x 

p) orthogonal matrix. The regression equation can then be rewritten as  

 

y = Zγ + є, 

 

where γ =B-1 β. The usual least squares estimator for γ is γ̂ =(Z′Z)-1Z′y. Then the 

elements of γ̂  have successively, the smallest possible variances if B=A, the matrix whose 

kth column is the kth eigenvector of X′X, and hence the kth eigenvector of S. Thus Z 

consists of values of the sample principal components for x.  

 

Property 7. Suppose that the observations x1, x2, … , xn  are transformed by yi = B′xi, 

i= 1, 2, …, n, where B is a (p x q)matrix with orthonormal columns, so that y1, y2, … , yn  

are projections of x1, x2, … , xn   onto a  q dimensional subspace. A measure of goodness-

of-fit of this q-dimensional subspace to x1, x2, … , xn  can be defined as the sum of 

squared perpendicular distances of x1, x2, … , xn  from the subspace. This measure is 

minimized when B=Aq.  
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B. Singular Value Decomposition Noise Filtering 
 

B.1 Signal Model  
 

 Let us model the Hyperspectral pixel as a combination of a random spectral 

signature, s, (pure or mixed) with additive noise, n, given by:  

 

nsx += . 

 

where s is the spectral signature with covariance Σs, n is white noise with covariance µ2I 

and s and n are uncorrelated.  The nxn covariance matrix for x, Σx, given by  

 

Isx
2µ+Σ=Σ  

 

where Σs is of rank p<n which is equal to the dimension of the signal subspace.  The 

eigenvalues of Σx, λxi, are given by: 

 

λxi = λsi + µ2, i= 1, 2, ..., n 

 

where λsi is the i−th eigenvalue of Σs and the eigenvalues are ordered in descending order 

of magnitude.  Since Σs is rank p, λsi = 0 for i > p, so that:  

 

λxi = λsi + µ2,  i = 1, 2, ..., p (signal and noise) 

and 

λxi = µ2,         i = p+1, ..., n (only noise contribution) 

 

If we have a good signal to noise ratio, we should expect that λsi >> µ2 for all i. 

 

 Of the measured signal x, only the first p principal components carry signal 

information and a filtered x is constructed using the first p eigenvectors of the Σx, 
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Where xp is the filtering version of x, Vp is the matrix of the first p eigenvectors of the 

covariance matrix.  Notice that xp is a projection of x onto the space spawned by the signal 

eigenvectors.  This reconstruction is optimal in a mean squared sense; and it is used in 

many multivariable statistical applications.  

 

B.2 Computing the filtered image 
 

 Let A = [x1, x2, … , xN] (pixels of the Hyperspectral cube) be a set of independent 

measurement of the random variable x (mean subtracted).  

 

 The singular Value Decomposition (SVD) of a matrix A of size mxn is a 

decomposition of the form (Trefethen et al, 1997): 

 
TUSVA =     

   

where U and V are orthogonal, square matrices of sizes mxm and nxn respectively, and S 

is a diagonal matrix of size mxn.  The columns ui (1 ≤ i ≤ m) and vj (1 ≤ j ≤ n) of U and V 

are called the left and right singular vectors, respectively, and the diagonal elements skk (1 

≤ k ≤ min{m,n}) of S are called the singular values of A.  The left (ui) and right (vj) 

singular vectors of A form orthonormal bases, and are related by the following relation: 

 

           iii usAv =  

 

showing that each right singular vector is mapped onto the corresponding left singular 

vector, and the “magnification factor” is the corresponding singular value.   

 

xVVx T
pp=p
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Since
N

AAt

x =Σ , we get that
N

i
xi

2σ
λ = , where σi is the i-th singular value of A.  So we can 

use the SVD of A to compute the filtered mode.  The desired approximation is the rank p 

approximation to A.   Given by  T
pppp VUA Σ=  where Up is the matrix of the first p left 

singular vectors, Σp is a diagonal matrix with the first p singular values, and Vp is the 

matrix of the first p right vectors.  Notice that the right singular vectors of A are equal to 

the eigenvalues of Σx.  

 

  SVD has a variety of applications in scientific computing, signal processing, 

automatic control, and many other areas.   In signal processing, the SVD decomposition, 

followed by the truncation of the lower singular values has been traditionally used for 

noise reduction, in voice and image signals (Hansen et al, 98).  The central idea can be 

summarized as follows: let A be the matrix that represents the discretized noisy signal, 

compute the SVD decomposition of A, and then discard the smaller singular values of A 

and their corresponding singular vectors.  It can be shown that the small singular values of 

A, mainly represent the noise, and thus the rank-p matrix Ap (p < n) represents a filtered 

signal with less noise (A key problem is to determine the dimension of the signal space p).  

This application of the SVD is called Truncated SVD (TSVD) or Reduced-Rank Noise 

Reduction.  (Hansen et al.1998). 

 

 
C.  Matlab Codes: 
 
Image differencing code 
 
pixels1=reshape(imagen1,640*640,50); 
X=pixels1'; 
Im_T1=X'; 
clear X 
 
pixels2=reshape(imagen2,640*640,50); 
Y=pixels2'; 
Im_T2=Y'; 
clear Y 
 
clear pixels1 pixels2 
 
%Constructing Difference Image 
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Im_diff=abs(Im_T1-Im_T2); 
a=reshape(Im_diff,640,640,49); 
b=imrotate(a,-90); 
c=flipdim(b,2);%Final Image of difference. 
 
 
 
Conventional Principal Component Analysis Code 
 
X=pixels; 
Im_T1=X'; 
clear X 
 
Y=pixels; 
Im_T2=Y'; 
clear Y 
clear pixels 
 
Imagen=[Im_T1 Im_T2]; 
clear X Y 
 
[pc, eigval, porcentages]=pcacov(cov(Imagen)); 
 
T= Imagen*pc; %Transformed Image 
 
clear Imagen 
 
 
Temporal Principal Component Analysis Code 
 
pixels1=reshape(imagen1,640*640,49); 
X=pixels1'; 
Im_T1=X'; 
clear X 
 
pixels2=reshape(imagen2,640*640,49); 
Y=pixels2'; 
Im_T2=Y'; 
clear Y 
clear pixels1 pixels2 
 
% Temporal Principal Component Analysis: 
  
% 1. Reshaping Original data  
 
     [m,n]=size(Im_T1(:,1:50)); 
     T1=reshape(Im_T1(:,1:50),m*n,1); 
     T2=reshape(Im_T2(:,1:50),m*n,1); 
 
clear Im_T1 Im_T2 
 
Im_Mat=[T1 T2]; 
clear T1 T2 
 
[pc,EigVal,Percentages]=pcacov(cov(Im_Mat)); 
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%Rotating Data to the PC's 
 
Rot=Im_Mat*pc; 
clear  Im_Mat 
A1=Rot(:,1); 
A2=Rot(:,2); 
 
clear Rot 
 
A1r=reshape(A1,640,640,49); 
A2r=reshape(A2,640,640,49); % Change Information (Second Component) 
 
 


