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ABSTRACT 

Upper air information and artificial neural networks (ANN) are used to predict 

hurricane intensity in the North Atlantic basin. Competitive neural network is used to 

identify analog storms to the current hurricane. Once the analog hurricanes are 

identified the historical NCEP reanalysis data are used along of each storm tracks to 

develop a set of climatology, persistence and synoptic variables. Persistence, 

climatological and synoptic observations of the analog hurricanes and the current 

storm are combined to create a training set which is used to generate nonlinear 

transformations and an optimization algorithm is used to identify the variables that 

are best correlated with storm intensity. The best variables obtained from the 

optimization algorithm are used to train a neural network which used Levenberg-

Marquardt algorithm as a learning rule. Preliminary results show that the proposed 

prediction scheme is a potential tool to increase the accuracy in predicting hurricane 

intensity. 
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RESUMEN 

Redes neuronales artificiales e información atmosférica son utilizadas para 

predecir la intensidad de los huracanes en la parte norte del Océano Atlántico. Un 

proceso para identificar huracanes históricos que sean análogos al huracán actual es 

implementado usando una red neuronal competitiva. Una vez identificado los 

huracanes análogos, información histórica proveniente de NCEP es usada para crear 

una serie de variables sinópticas, climatologicas y persistentes a lo largo de la 

trayectoria de cada uno de los huracanes análogos. Estas variables son combinadas 

con las variables del huracán actual para crear un set de entrenamiento. Un algoritmo 

de optimización es implementado para identificar aquellas variables que tengan la 

mayor correlación con la intensidad. Estas luego son usadas para implementar una red 

neuronal que usa el algoritmo de Levenberg-Marquardt como regla de aprendizaje. 

Los resultados preliminares muestran que la metodología propuesta es una 

herramienta potencial en los esfuerzos por aumentar la precisión en la predicción de 

la intensidad de los huracanes.   
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CHAPTER I    INTRODUCTION 

1.1. Justification 

A tropical cyclone is the generic term for a non-frontal synoptic scale low-

pressure system over tropical or sub-tropical waters with organized convection and 

definite cyclonic surface wind circulation. It is known to form over all tropical oceans 

with the exception of the south Atlantic and the south Pacific east of about 140° W. 

Tropical cyclone in matured condition is known as hurricane in the Atlantic Ocean. 

The hurricane intensity is a measure of the destructive effects over a particular 

place on humans and (or) structures. It is measured by the maximum 1-min sustained 

surface wind in the walls of the hurricane (DeMaria et al., 1994). Usually, in 

hurricane landfall areas the resultant damages are often extensive, especially in 

developed coastal areas. The principal damaging forces associated with tropical 

cyclones are the storm surge, floods caused by torrential rains and heavy destructive 

winds. Actually, the trends of human losses from hurricanes in the United States and 

the Caribbean have gradually decreased as a result of improved prediction techniques 

and warning strategies.  However, property losses continue to rise because of the 

progressive development in vulnerable areas. 

Among the reasons to conduct this investigation, the most important is to 

provide an operational intensity model for Puerto Rico, ready to be used when a 

hurricane is detected over the Atlantic Ocean. It is well known that Puerto Rico, due 

to its geographic location, is under continuous threats of hurricane landfalls. 

Hurricane George (1998) was the last one that made landfall in Puerto Rico, with 
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sustained surface winds of 100 knots and was classified under category III. It caused 

considerable damage to infrastructures throughout the island. Table 1.1 shows the 

humans deaths and economical impact caused by Hurricane George. Therefore, to 

mitigate hurricane effects, it is necessary to predict the intensity of a hurricane with a 

high level of accuracy. The importance of an accurate hurricane intensity forecast is 

recognized by Gray (1997), who states that the costal population of the Unites States 

has grown exponentially, especially in Florida, exposing millions more people to the 

threat of hurricane landfalling. The required time to evacuate some highly vulnerable 

coastal areas is in the order of 36-48 hours, while the current time frame for 

meaningful hurricane intensity change guidance is in the order of 12-36 hours. These 

facts indicate that effective warnings for certain vulnerable and populated areas are 

difficult to make with the existent intensity forecast algorithms. 

Another reason for this study is the inclusion of new tools especially; 

satellite’s observations in the hurricane intensity prediction field that have given 

researchers a better understanding of hurricane behavior and improved intensity 

prediction models by including some parameters that can be used to explain better the 

hurricane intensity. Atmospheric Microwave Sounding Unit (AMSU) is a sensor 

located in satellites NOAA 15-17. This sensor has the ability to observe the inside of 

a hurricane and take direct measurements. AMSU data is used in this study and it is 

expected that the hurricane intensity model will improve its predictions.  
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Table 1.1 Estimates of deaths and economical damage associated to Hurricane 

George (Courtesy of the American Insurance Services) 

 
LOCATION Deaths ($ Billions)

Antigua 2   

St. Kitts and Nevis 4 0.402 

U.S. Virgin Islands 0 0.050 

Puerto Rico 0 1.750 

Dominican Republic 380 >1.0 

Haiti 209   

Bahamas 1   

Cuba 6   

United States (Mainland) 

Florida 0 0.340 

Mississippi 0 0.665 

Alabama 1 0.125 

Louisiana 0 0.025 

United States Total 1 2.955 

Storm Total 602   

 

Gutowski et al. (1994) argued that there are three factors that modify a 

hurricane’s intensity: sea surface temperature, atmospheric relative humidity, and the 

temperature difference between the surface and the lower stratosphere. From global 

climate models, it is known that doubling of the concentration of atmospheric carbon 

dioxide will likely increase sea surface temperature around the globe. DeMaria and 

Kaplan (1993) developed an empirical relationship between sea surface temperature 

and the maximum intensity of tropical cyclones in the North Atlantic basin using a 

31-year sample (1962-1992). 

They concluded that maximum possible intensity (MPI) of a given hurricane 

can be expressed as follows: 
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 Where: 

 V= maximum wind (m s-1) 

 T= sea surface temperature (oC) 

 To= Reference temperature, generally 30 oC 

 A, B, C= constants  

Artificial neural networks (ANN) are used in this research because ANN is a 

nonlinear modeling tool that can properly represent the nonlinear dynamic system 

inherent in the development of a hurricane intensity process. In this case, sufficient 

information is used and gathered from the National Center for Environmental 

Prediction (NCEP), Advanced Microwave Sounding Unit (AMSU), and the National 

Hurricane Center and Tropical Prediction Center (NHC/TPC) among others. 
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1.2. Objectives 

The main objective of this investigation is to develop and implement an 

algorithm based on climatology, persistence and synoptic observations as well as  

neural networks algorithms to predict the hurricane intensity change at certain 

intervals of time (6,12,18 and 24 hours). It is expected to accomplish the following 

specific objectives: 

• Develop an interactive database that includes hurricane historical records, 

upper-air information, and satellite data.  

• Assess the usefulness of AMSU information to predict the hurricane 

intensity changes in the Atlantic basin. 

• Develop a random variable selection scheme to identify the variables that 

explain best the relationships among the inputs and output of a nonlinear 

dynamic system. 

• Test the capability of the neural networks as a tool to model highly 

nonlinear processes such as the hurricane intensity process. 

• Compare the prediction capabilities of ANN with regression techniques. 
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1.3. Scope 

A statistical model is developed to estimate the hurricane intensity in the 

North Atlantic Ocean. The intervals of prediction are 6, 12, 18 and 24 hours. This 

model uses 27 years of historical information from 1975 to 2002 stored in a database. 

Three types of information are used in this study: climatology, persistence and 

synoptic information where each one of these types are processed to obtain a unique 

format. The designed prediction model includes 20 meteorological variables, which 

are lagged and mathematically transformed to be correlated with the hurricane 

intensity. 

1.4. Report Organization  

 The present study is organized in five chapters: Chapter I shows a brief 

justification, the main objectives and the scope of this investigation. 

Chapter II introduces the literature review that supports this work. This 

chapter is addressed in two directions. First, the theory about hurricane intensity and 

intensity prediction models that are actually in operation are briefly described. The 

advances achieved in this field are also explored and analyzed so that they may be 

incorporated into this study. The inclusion of satellite observations in the hurricane 

intensity field is also discussed in this chapter. Second, artificial neural network is 

introduced and some applications of this technique in the hurricane intensity and 

other meteorological events are described. 

Chapter III presents the entire methodology of this investigation. The 

proposed model is presented step by step and special attention is given to describe 

how it should be implemented. This chapter describes how hurricane historical data 
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and upper air information are combined with artificial neural network algorithms to 

predict the hurricane intensity. 

Chapter IV summarizes the results obtained when a set of hurricanes were 

selected for assessing the prediction algorithm.  A representative random sample was 

selected to implement the prediction algorithm. Experiments performed for different 

kind of hurricanes are also presented. A complete description of the statistics obtained 

by the proposed intensity model is finally recapitulated. 

Conclusions of this research and recommendations for future investigations 

are presented in Chapter V. 

Finally, appendixes are also included to describe the developed program and 

the procedure used to select the size of the hurricane sample to test the proposed 

intensity model. Also, a brief description of the AMSU and its improvements over 

hurricane intensity are given. Finally, the Saffir-Simpson hurricane scale is explained.   
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CHAPTER  II  LITERATURE REVIEW  

This chapter is aimed to describe the theories and arguments used in this 

study. A literature review of the most important contributions for the hurricane 

intensity field is described. Applications of artificial neural networks for modeling 

and predicting meteorological events such as hurricane intensity are also described.  

The hurricane intensity prediction models are divided into three categories: 1) 

statistical models whose predictors are based on climatology and persistence; 2) 

statistical-dynamical models which, in addition of using climatology and persistence, 

they are also using outputs from numerical models; and 3) dynamic models whose 

predictions are derived from physical principles and numerical models are typically 

used to perform the intensive computational work. 

Hope et al. (1970) developed the first operational model called HURRAN 

(HURRicane ANalog). By identifying previous storms that had characteristics in 

common with a current storm, HURRAN attempted to predict the most likely track of 

the current storm. Neumann (1972) introduced a model to predict hurricane tracks 

based on climatology and persistence called CLIPER (CLImatology and 

PERsistence). This model was a breakthrough in the hurricane field because it was 

the first operational model that used these kinds of variables. The persistence 

variables assumed that the integrated effects of all forces which have steered the 

hurricane during some past period will continue to predominate during some future 

period. In general, persistence is taken as the smoothed motion of the tropical cyclone 
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in the past 12- or 24-hour period. The persistence forecast is then the linear 

extrapolation of this motion for the next 12, 24, 36 and 72 hours. The problem with 

this type of forecast is that a higher order of persistence forecast requires a better 

knowledge of actual and past conditions. On the other hand, a climatological forecast 

makes use of the temporal and spatial repetitiveness of tropical cyclone tracks 

produced by synoptic patterns, the simultaneous observation of pressure, temperature, 

wind and other meteorological parameters.  Using a similar set of variables used by 

CLIPER, Jarvinen and Neuman (1979) developed an intensity prediction model 

called Statistical Hurricane Intensity Forecast (SHIFOR) which is used to predict the 

future intensity of the storm at 12-hour periods up to 72 hours. The predictor 

variables included: Julian day, initial storm intensity, intensity change during the past 

12 hours, initial storm latitude and longitude, and zonal and meridional components 

of the storm motion vector. Ten predictor terms are included in each equation; these 

are usually second and third order products of the seven primary predictors listed 

above. The most important terms are the current intensity, the 12 hour intensity 

change, the Julian day and the latitude. The SHIFOR equations were developed using 

data from all historic storms during the period 1900-1972 that were at least 30 

nautical miles from land. Thus, the SHIFOR intensity forecasts are not valid for 

storms less than 30 nautical miles from the coast. 

 It was in the 1980’s when several authors recognized the importance of 

synoptic data in the prediction of hurricane intensity. The concept of synoptic data is 
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used to represent simultaneous observation of atmospheric variables at different 

spatial geographic extensions. 

Pike (1985) used geopotential height and thicknesses as predictors in an 

attempt to include synoptic predictors in his statistical prediction model. Also, Merrill 

(1987) used a wider range of synoptic predictors in an intensity prediction model but 

failed to provide a significant improvement over climatology and persistence. 

However, in the study by Merrill, DeMaria states, “The prediction model was 

developed for tropical cyclones over land as well as over the ocean. It’s probably that 

the statistical properties of storms that decay over land are quite different from the 

properties of storms over the ocean.”  

DeMaria and Kaplan (1994) presented their model called Statistical Hurricane 

Intensity Prediction Scheme (SHIPS), a statistical-synoptic model, which was an 

improvement over SHIFOR because the authors were able to show that the average 

intensity error is 10-15% less than the error from a model that used only climatology 

and persistence (SHIFOR). In 1999, an update of SHIPS was presented (DeMaria and 

Kaplan, 1999). This version was considered a “statistical dynamical” model because 

data obtained for the first version from global model analysis was removed and 

synoptic predictors from a numerical models were added. 

In this decade, the use of satellite data has brought a new beginning to 

hurricane research. DeMaria (2002) developed new improvements to the SHIPS 

model. Data from GOES(Geostationary Operational Environmental Satellites)  

infrared imagery (10.7 µm), identified more specific brightness temperatures which 
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were previously azimuthally averaged on a 4 km, storm-centered radial grid, and 

Ocean heat content (OHC) data which at some depth of the ocean is important for 

tropical cyclone intensity changes. 

The Geophysical Fluid Dynamic Laboratory (GFDL) developed a model 

known as GFDL model which belongs to the third category of hurricane intensity 

models and it was developed specifically for hurricane tracking and hurricane 

intensity prediction. It includes 18 sigma levels and uses a horizontal finite-difference 

method with three nested grids. The two inner grids move to follow the storm, and the 

resolution of the inner domain is 1/6 degree. The GFDL model includes convective, 

radiative and boundary layer parameterizations and has a specialized method for 

initializing the storm circulation. The initial and boundary conditions are obtained 

from the Aviation run of the Medium Range Forecast (MRF) model. The 

representation of the storm circulation in the global analysis is replaced with the sum 

of an environmental flow and a vortex generating by nudging the fields in a separate 

run of the model to an idealized vortex. This idealized vortex is based upon a few 

parameters of the observed storm, including the maximum wind, radius of maximum 

wind and outer wind radii. The environmental flow is the global analysis modified by 

a filtering technique which removes the hurricane circulation. The forecasts from the 

interpolated GFDL forecasts are known as the Geophysical Fluid Dynamic Intensity 

(GFDI) model. A more detailed description of the GFDL model is given by Kurihara 

et al. (1995). 
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Kidder et. al. (2000) has described the potential of the Advance Microwave 

Sounding Unit (AMSU) and how it can be used to predict hurricane intensity. A 

relationship between temperature anomalies and both the surface wind speed and 

central pressure of tropical cyclones was found. Several hurricanes (Bonnie, Georges, 

and Mitch, and Super Typhoon Zeb) were examined, and the maximum temperature 

anomaly was calculated. In general, the temperature anomalies closely follow both 

the wind speeds and the pressures. Gaps in the data are caused by the storm being 

located between orbital swaths or by missing AMSU data. Correlating intensity 

versus maximum temperature anomaly yields a correlation coefficient of 0.84 and a 

standard error of 19 kt. Correlating central pressure versus maximum temperature 

yields a correlation coefficient of 0.86 and a standard error of 12 hPa. 

An artificial neural network (ANN) is a mathematical algorithm that pretends 

to mimic the biological brain by using mathematical models. A typical ANN consists 

of multiple layers of neurons interconnected with other neurons in the same or 

different layers so that each neuron acts as an independent processing element. Inputs 

and interconnection weights are processed by a nested function (typically a weighted 

summation) to yield a sum that is transformed to a nonlinear representation which is 

called a transfer function. 

Two causes were responsible for the rising of neural networks. The first was 

the use of statistical mechanics to explain the operation of a certain class of recurrent 

network, which could be used as an associative memory (Hopfield, 1982). The 

second key development of the 1980s was the backpropagation algorithm for training 
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multilayer perceptron networks. The most influential of the publications about 

backpropagation was by Rumelhart (et al. 1986) and it was the answer to the 

criticisms Minsky and Papert had made two decades ago.  

Since then, in the last ten years, thousands of papers have been written, and 

many applications of neural networks have been found, especially in the field of 

engineering. They are used in applications such as production (Ramirez-Beltran, 

1999a), chemical process control (Ramirez-Beltran et al.1999b, Ramirez-Beltran et 

al. 2000, 2002a), pattern recognition (Fukushima, 1988), downscaling techniques 

(Snell et al. 2000), and many others. 

Artificial neural networks have been used in many studies related to 

atmospheric sciences and climate dynamics. Baik et al. (1998) claim that in their 

intensity model of the North Pacific that using only climatology and persistence 

predictors, the percent of variance explained by the neural networks model was 

consistently larger than that explained by the regression model at all time intervals, 

with an average difference of 12 %. They also pointed out the potential of their work 

when more sources of information are considered. 

Tangang et. al (1998) applied neural network methodology to forecast the sea 

surface anomaly on three regions: el Niño 4, el Niño 3.5, and el Niño 3. Those 

regions represent the western-central, the central, and the Easter central parts of the 

equatorial Pacific Ocean, respectively. The inputs of the neural networks were the 

extended empirical orthogonal functions of the sea level pressure field that cover the 

Tropical Indian and Pacific Ocean and evolved over the course of one year. They 
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have claimed that by applying spectral analysis to neural network results, it is 

possible to identify the important inputs and the nonlinear responses. 

Ramirez-Beltrán et. al (2002b) developed a neural networks process to 

estimate atmospheric variables in three-dimensional space. The authors argue that 

because the relationship between local climatological events and large-scale 

phenomenon is nonlinear, neural networks can be used to explain this relationship 

because of the advantage of learning from data that exhibits a highly nonlinear 

relationship since the inherent transfer functions are nonlinear. 
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CHAPTER  III   METHODOLOGY  

3.1. Introduction   

Chapter III introduces the methodology of a hurricane intensity prediction 

algorithm. This methodology is developed under the framework of upper air 

information and neural networks techniques. It involves five main steps: (1) The 

methodology is briefly described considering data limitations and other constraints, 

(2) A database is designed to store information for each North Atlantic hurricane that 

occurred during the period of 1975 to 2002, (3) A competitive neural network 

procedure is used to classify hurricanes according to similar meteorological behavior, 

(4) A random selection scheme is developed to obtain the variables that best explain 

the variability of hurricane intensity, (5) A feedforward neural network is used to 

model and predict the hurricane intensity changes using persistence, climatology and 

synoptic data. Figure 3.1 shows the aforementioned procedure.  

3.2. General Description of Methodology  

A statistical model to predict hurricane intensity is presented in this work. The 

developed algorithm creates a different model at every point in time and predicts the 

hurricane intensity at the following time intervals: 6, 12, 18, and 24 hours. 

Climatology, persistence and synoptic variables are obtained using historical and 

actual information. Statistical and artificial intelligence techniques are used to model 

these meteorological variables. This model is valid for the North Atlantic Ocean so 
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that the successful application of this technique to another basin is related to the 

knowledge of the variables that have influence over the hurricane intensity in this 

particular basin. 

This model is also limited to those hurricanes that have developed on the 

North Atlantic basin from 1975 to 2002. This limitation occurred because the 

atmospheric pressure level was unknown for older hurricanes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Methodology used in this study 
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3.3. Design of Hurricane Database 

 A database was developed to store information from past North Atlantic 

hurricanes using information from several sources, including NCEP, NHC best track 

and radiosonde observations. This section presents:  (1) the data description; and (2) 

the design of the database.  

3.3.1. Data   

 The National Hurricane Center (NHC) provides a reliable historical data set 

that is usually known as the best track.  The best track is a comprehensive hurricane 

track analysis after considering all available observations and expert interpretation.  

Typically the observations are obtained from ships, radars, satellites, airplane 

reconnaissance, buoys data and other sources.  The best track contains observations 

obtained every 6 hours and includes the following variables: hurricane location, 

central pressure, hurricane intensity, and storm dates. The hurricane intensity is 

defined as the average 1-minute maximum sustained winds at sea level. The wind 

speed is measured in m/sec or in knots. In this study the knot is adopted as a measure 

for hurricane intensity.  The best tracks were obtained from the NHC for events 

occurred during 1995 to 2002. Before this date, the best track was collected from 

Unisys (http://weather.unisys.com/ hurricane/index.html), which is an online database 

dedicated to maintaining hurricane information, including tracks of the storms and the 

appropriate tracking information. 

http://weather.unisys.com/hurricane/index.html
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 The sea surface temperature (SST) data used in this work was obtained from 

the Comprehensive Ocean-Atmosphere Data Set (COADS), which is the most 

extensive collection of surface marine data available in the world for the past two 

centuries and can be downloaded from the internet (http://www.cdc.noaa.gov/cdc/ 

data.coads.1deg.html). Monthly mean values of SST are available on a 1°x1o of 

resolution on the horizontal. These values are linearly interpolated in space and time 

and were used for estimating the SST at specific hurricane location and a particular 

time. 

 The National Center for Environmental Prediction and The National Center 

for Atmospheric Research (NCEP/NCAR) Reanalysis data was used to obtain the 

upper air observations at different pressure levels with a 2.5ox2.5o horizontal 

resolution. This data was obtained at every six hours along the storm track. The 

NCEP/NCAR reanalysis project is a state-of-the-art reanalysis/forecast system to 

perform data assimilation using observations from 1948 to the present. A large subset 

of this data is available from Climate Diagnostic Center (CDC) in its original format 

as well as its daily averages. The obtained variables from this source are summarized 

in table 3.1. More information about this data is found in its web page (http://www 

.cdc.noaa.gov/cdc/data.ncep.reanalysis.html). 

 

 

 

 

http://www.cdc.noaa.gov/cdc/data.coads.1deg.html
http://www.cdc.noaa.gov/cdc/data.coads.1deg.html
http://www .cdc.noaa.gov/cdc/data.ncep.reanalysis.html
http://www .cdc.noaa.gov/cdc/data.ncep.reanalysis.html
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Table 3.1 Data obtained from NCEP/NCAR Reanalysis 
 

Variables at 17 pressure levels: Units Least Sig. Digit 
Air temperature K 0.1 
Geopotential height m 1. 
Relative humidity % 1. 
U-wind speed m/s 0.1 
V-wind speed m/s 0.1 

 

 

 

 

Radiosonde observations are obtained from radisonde stations located in the 

Caribbean and in the North Atlantic coasts.  Typically, radiosonde observations are 

obtained at every 12 hours and include the following variables: geopotential height, 

air temperature, dew point temperature, wind direction and speed.  The data is 

organized and is available since 1997 at the RAOB web site (http://raob.fsl 

.noaa.gov/). Observations recorded before 1996 can be obtained from CD-ROM. 

Satellite data provides almost a real time data and will be incorporated in the 

intensity prediction model. The AMSU sensor is located in the NOAA 15, 16 and 17 

satellites. The AMSU has the property of being almost transparent to the clouds and 

consequently precise air temperature at different pressure levels can be obtained from 

this sensor. AMSU data comes in 48x48 km resolution on the horizontal and it is 

available at about every 6 hours in the Caribbean.  The AMSU observations are 

accessible from a public ftp maintained by Cooperative Institute for Research in the 

Atmosphere (CIRA). Each variable is stored in one AMSU file, which is composed of 

three blocks: the area block, the navigation block, and the data block. The area block 

stores information about the file (location, date, size, etc.). The navigation block can 

be omitted because it stores technical information about the sensor. The data block, 

http://raob.fsl/
http://raob.fsl/
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on the other hand, is the most important because it stores the satellite data. Table 3.2 

shows AMSU variables which can be accessed by CIRA’s AMSU website 

(http://amsu.cira.colostate.edu/). 

Table 3.2 Data obtained from the Advanced Microwave Sensor (AMSU) 

Extension Variable 
C01...C20 antenna temps in channels 1-20
RR AMSU-A rain rate 
RRB AMSU-B rain rate 
TPW total precipitable water 
CLW cloud liquid water 
ICE sea ice 
IC2 sea ice (with edges) 
SNO AMSU-A snow cover 
SNB AMSU-B snow cover 
LAT Latitude 
LON Longitude 
THK 1000-500 hPa thickness 
L07 limb-adjusted channel 7 
SFC surface type (AMSU-A) 
SFB surface type (AMSU-B) 
IWP ice water path 
E23 23 GHz emissivity 
E31 31 GHz emissivity 
E50 50 GHz emissivity 
TSF surface temperature 

A large effort has been devoted to create a friendly framework where all of this data 

can be merged into a single platform and to be accessed at almost any time. 

3.3.3. Hurricane Database  

A historical database was built to store the climatology, persistence and 

synoptic observations of the Atlantic hurricanes since 1975. This database is an 

http://amsu.cira.colostate.edu/
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organized structure divided in fields, where each field contains a specific type of 

information.  

The main advantage of having a database is that the information about any 

hurricane that developed in the Atlantic can be accessed at any time and used 

according to the needs. The structure of the database is shown in figure 3.2.  

The Hurricane Database 

Figure 3.2 Hurricane database structure 

The Id Number is the first field and is used to sort the hurricane data in 

ascendant order. The Name field is used to store the name of the hurricane. The Initial 

Latitude and Initial Longitude fields are necessary to identify the initial location of 

Id Number 

Name 

Initial Latitude 

Initial Date 

Initial Intensity 

Julian Date  

Initial Pressure 

Initial Longitude 

75 

Field Value

Isidore 1990 

7.2 

23.4 

25 

6 

1010 

04091990 

Data Array 
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the storm. The Initial Intensity, Julian Date, Initial Pressure and Initial Date fields 

are utilized to save information about the initial state of the hurricane. 

Table 3.3 Data Subfields 

Subfield Source Description 

1 Best track Month of the storm 

2 Best track Day of the storm 

3 Best track Time 

4 Best track Storm Location Latitude (Slat) 

5 Best track Storm Location Longitude (SLon) 

6 Best track Storm Pressure (SPre) 

7 Best track Storm Intensity (SIn) 

8 Calculated Storm Intensity Change (SInC) 

9 Calculated Eastward comp. of storm motion (ESM) 

10 Calculated Northward comp. of storm motion (NSM)   

11 Calculated Magnitude of the Storm Motion (SM) 

12 Interpolated from COADS Sea Surface Temperature (SST) 

13 Calculated Maximum Possible Intensity (MPI)  

14 Interpolated from NCEP Eastward comp. of wind speed at 850 mb (ES850) 

15 Interpolated from NCEP Northward comp. of wind speed at 850 mb (NS850) 

16 Interpolated from NCEP Eastward comp. of wind speed at 200 mb (ES200) 

17 Interpolated from NCEP Northward comp. of wind speed at 200 mb (NS200) 

18 Calculated Vertical Wind Shear (VWS) 

19 Calculated Average angular momentum at 850 mb (M850) 

20 Calculated Average angular momentum at 200 mb (M250) 

21 Calculated K index (Kin) 

22 Calculated Total Totals (TT) 

The core part of the database is found in the Data field, which is also divided 

into 21 subfields that are shown in Table 3.3. This table also shows the subfield code, 

the source of information and the description of the field. 
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The Julian Date (T) is calculated using subfields 1, 2, and 3 of Data field and 

is expressed as follows: 

T= Absolute value (Julian Date – 253)    (3.3.1) 

The Julian Date was defined by equation (3.3.1) because the historical 

information shows that the largest hurricane frequency has occurred on September 10 

and corresponds to the Julian date 253. The estimates of the storm intensity and the 

atmospheric pressure for a given hurricane are available at every 6-hour interval 

(subfield 6 and 7). The hurricane’s displacement on zonal and meridional directions 

(subfield 4 and 5) are computed using the best track information obtained from the 

NHC. 

The Storm Intensity Change is calculated by computing the difference 

between two consecutive values of hurricane intensity from subfield 7 and it is stored 

in subfield 8.  The intensity change can be expressed as follows: 

∆It =It - It-1        (3.3.2) 

Where: 

∆It= Hurricane intensity change at the time t. 

It= Hurricane intensity at the time t. 

The values used to calculate the eastward and northward movements of a 

hurricane were obtained from the subfields 4 and 5. They are stored in subfields 9 and 

10.  The meridional and zonal displacements are expressed as follows: 
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∆Lot=Lot –Lot-1       (3.3.3)  

∆Lat =Lat –Lat-1       (3.3.4) 

Where: 

∆Lot= Eastward displacement at the time t. 

Lot= Hurricane zonal location at the time t 

∆Lat= Northward displacement at the time t. 

Lat= Hurricane meridional location at the time t. 

The magnitude of the storm motion is defined by the following equation: 

∆v= (∆Lo2
t + ∆La2

t) ½       (3.3.5) 

The sea surface temperature (SST) is stored in subfield 12 and is estimated 

using time and space interpolation depending on the date and the location of the 

tropical cyclone. The Maximum Possible Intensity (MPI) is determined from an 

empirical relationship developed by DeMaria and Kaplan (1994) and is saved in 

subfield 13.This relationship is valid for hurricanes that have developed in the 

Atlantic Basin since 1950.The MPI is defined as follows: 

[ ]0(C SST SST )MPI A B −= + ,      (3.3.6)  

Where: 

A=66.5 kt, 

B=108.5 kt, 

C=0.1813 oC-1, 



 25

SST0=30 oC. 

The NCEP/NCAR reanalysis project is utilized to access wind speed 

components at 850 and 200 mb. These values are interpolated in space and time to the 

position and date of each tropical cyclone observation. The eastward ( ) and 

northward ( ) components of storm speed at 850 mb are stored in subfields 14 and 

15 and the eastward ( ) and northward ( ) components of storm speed at 200 

mb are saved in subfields 16 and 17, respectively.   

850u

850v

200u 200v

The vertical wind shear predictor (St), which is the magnitude of the 

difference between the 850 and 200 mb wind vectors (Knaff et al., 2004), is included 

in subfield 18. These variables are computed along the storm track and selected at the 

closest grid where the storm is located. The vertical wind shear can be expressed as 

follows: 

2
850200

2
850200t )vv()uu(S −+−=     (3.3.7) 

Where: 

tS = Vertical wind shear  

850u = Eastward component of storm speed at 850 mb. 

200u = Eastward component of storm speed at 200 mb. 

850v = Northward component of storm speed at 850 mb. 

200v = Northward component of storm speed at 200 mb. 
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The change of the vertical wind shear (∆∆SStt))  is considered to be another 

synoptic variable.  

An average momentum is estimated to wind speed at 200 and 850mb. This 

momentum is calculated to take into account the interactions between the tropical 

cyclone and synoptic systems. The momentum is calculated for the position and date 

of each tropical cyclone observation obtained from the NHC best track. It can be 

expressed as follows:  

The average momentum at 850 mb can be estimated as follows: 

∑
=

=
4

1i

)j(
ijj8 xr

4
1m        (3.3.8) 

∑
=

=
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1j
j8t8 m

3
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The average momentum at 200 mb is defined as follows: 

∑
=

=
4
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)j(
ijj2 xr

4
1m        (3.3.10) 

∑
=

=
3

1j
j2t2 m

3
1M        (3.3.11) 

where: 

j  = distance between the center of the storm and the position where the wind 
speed ( ) is obtained (j=1, 2, 3). 

r

ix

km 4001 =r  

km 600r2 =  

km 800r3 =  
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)j(
i

x = the ith wind speed (i=1, 2, 3, 4) at the jth position. (j=1, 2, 3.) 

j8m = 850 mb. partial momentum at jth location. 

j2m = 200 mb. partial momentum at jth location. 

t8M = 850 mb. momentum at the time t. 

t2M = 200 mb. momentum at the time t. 

 

u1=x2
(j)

v1=x1
(j)

v2=x3
(j)

rj 

u2=x4
(j)

Fig 3.3 Graphical representation of the Momentum variable 

The K index is a measure of thunderstorm potential based on vertical 

temperature lapse rate, moisture content of the lower atmosphere, and the vertical 

extent of the moist layer. This variable is stored in subfield 20 of the Data field. The 

K index is defined as follows: 

( )[ 700d700850d500850 TTT)TT(K ]−−+−=      (3.3.7) 

Where: 

850T = Air temperature at 850 mb. 
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500T = Air temperature at 500 mb. 

850dT = Dew point temperature at 850 mb. 

700T = Air temperature at 700 mb. 

700dT = Dew point temperature at 700 mb. 

The higher the K index the greater the likelihood of thunderstorm 

development. Table 3.4 shows the K index and its probability description. 

Table 3.4 K index values 
K index Thunderstorm Probability 

< 20 None 

20 to 25 Isolated 

26 to 30 Widely Scattered 

31 to 35 Scattered 

> 35 Numerous 

The Total Totals (TT) is the last subfield included in the Data field. This 

value is used to identify potential areas of thunderstorm development. General 

threshold values for Total Totals range from 44 for isolated convection to greater than 

55 for numerous thunderstorms. Total Totals can be expressed as follows: 

500850 TTVT −=        (3.3.8) 

500850d TTCT −=        (3.3.9) 

CTVTTT +=        (3.3.10) 

 where:  

850T = Air temperature at 850 mb. 

500T = Air temperature at 500 mb. 

850dT = Dew point temperature at 850 mb. 
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3.4. Identifying analog hurricanes 

A competitive neural network is used to identify analog hurricanes; where an 

analog is defined as a storm that best resemble the meteorological behavior of the 

current storm. A competitive neural network is an algorithm that learns associations 

from observations by identifying similarities among their properties. Once learned, 

associations allow networks to classify input vectors into clusters or families. This is 

considered as an unsupervised classification technique because no target variable or 

response variable is needed, i.e. the algorithm learns by identifying similarities among 

the provided input variables. 

This section is organized as follows. The first part describes the competitive 

neural network and the second part the neural network will be applied to identify the 

analog hurricanes.  

3.4.1 Description of a Competitive Neural Network 

A competitive neural network is composed generally of two layers (Hagan et 

al., 1996). The first layer computes the direction and other properties of the input 

patterns and the second layer determines which of the prototype vector is closest to 

the input vectors.  

The first layer is based on a single instar, which is a type of neural network 

that is capable of performing pattern recognition and is able to recognize only one 

pattern. To recognize more than one pattern, a set of instars is used. The input/output 

expression for the instar net is: 



 30

)bpwlim(hard)bWplim(harda T
1 +=+=    (3.4.1) 

where  represents a matrix of vectors which wants to be recognized, b is 

set equal to the number of elements in input vector( ), and hard lim is a transfer 

function that assign the number one if its net input reaches a given threshold, 

otherwise its outputs will be zero. This rule allows a neuron to perform a 

classification of the input patterns. 

W

p

The instar will be activated whenever the inner product between the weight 

vector and the input is greater than or equal to –b:  

 b        (3.4.2) pw T
1 −≥

It has been shown that for two vectors of constant length, the inner product will 

achieve the largest value when they point in the same direction.  

If the following relation is set:  

  pwb T
1−=        (3.4.3) 

 then the instar will only be active when focus in exactly the same direction 

as ( , whereθ  is the angle between the vectors and ). Thus, the neuron 

will recognize only the pattern . To recognize more than one pattern, a variation of 

the procedure mentioned above has been implemented as follows: 

p

w1 0=θ T
1 w p

w1

 Given the following input vectors: 

{ }Q21 p,,p,p K  

Where:  
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[ ]R112111 pppp L=  ; [ ]R222212 pppp L=  ; [ ]QR2Q1QQ pppp L=  

The weight matrix, , and the bias vector, , for Layer 1 will be:  1W 1b

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T
S

T
3

T
2

T
1

1
RxS

W

W
W
W

W
M

 ,   

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

R

R
R
R

b 1
1Rx

M

Where each row of represents a prototype vector that is needed to be recognized 

and each element of  is set equal to the number of elements in each input vector 

(R). The upper subscript in W and b represents the first layer. The number of neurons, 

S, is equal to the number of prototype vectors which will be identified as Q.  The 

upper subscript T represents the transpose operation. Each row of W

1W

1b
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expressed as follows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

Q11

131

121

111

1

W

W
W
W

W
M

 , ,  . . .  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

Q22

232

222

212

2

W

W
W
W

W
M

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

SQS

3SS

2SS

1SS

S

W

W
W
W

W
M

Thus, the output of the first layer is: 
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It should be noted that the output of the first layer, , is equal to the inner 

products of the prototype vectors with the input in addition of the constant R. These 

inner products indicate how close each of the prototype patterns is to the input vector.  

1a

  The second layer is called competitive layer and it is initialized using the 

outputs of the first layer. In this layer, the neurons compete with each other to 

determine a winner. The winning neuron indicates which category of input was 

presented to the network (each prototype vector represents a category). 

 The first layer output, , is used to initialize the second layer. 1a

12 a)0(a =          (3.4.5) 

Then the second-layer output is updated according to the following recurrence 

relation: 

))t(aW(poslin)1t(a 222 =+        (3.4.6) 

where the transfer function poslin is defined as follows: 

⎩
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otherwise n,

0n if ,0
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The second-layer weights W2 are set so that the diagonal elements are 1, and 

the off-diagonal elements have a small value as follows: 

⎩
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=
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jiif,1
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ij ε

  where 0 < ε < 
1S

1
−

   (3.4.7) 

This matrix produces an effect called lateral inhibition, in which the output of 

each neuron has an inhibitory effect on all of the neurons.  
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At this point the network has reached a steady state. The index of the second-

layer neuron with a stable positive output is the index of the prototype vector that best 

matched the input. This process is called the “winner-take-all competition” since only 

one neuron will have a nonzero output. 

The Kohonen learning rule is used to train the weights because it allows the 

weights of a neuron to learn from an input vector. It can be described as follows: 

))1q(w)q(p()1q(w)q(w 111 −−+−= α     (3.4.8) 

where the weights at the iteration  are updated using the weights at the 

iteration . Thus, the row of the weight matrix that is closest to the input vector 

moves toward the input vector. It moves along a line between the old row of the 

weight matrix and the input vector, as shown in the following graphic: 

q

1q −

 

)q(wi
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)1q(wi −

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 Graphical representation of the Kohonen Rule 
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3.4.2 Application of the Competitive Neural Network 

The prediction scheme uses historical data to identify the analog hurricanes. 

The analogs are based on climatology and persistence variables. At the early stage of 

the storm, the analog set is derived based on the first six observations, and as soon as 

the storm life increases the number of observations for selecting analogs will also 

increase by one unit at a time up to fifteen observations. When more than fifteen 

observations are available the size of the moving window is maintained fixed to 15 

observations.  The period from 1975 to 2002 was selected to identify the analogs 

because most of the synoptic variables were completed  

A self organized ANN with the Kohonen learning rule was designed to 

identify the storm analogs to the current hurricane. Ten neurons were used to 

characterize each persistence variable of each hurricane. The characteristics of the 

persistence variables of the current storm are the key to identify the potential analog 

set. The majority voting rule was used to identify a single code for each hurricane. All 

hurricanes that have the same code to the current storm were selected to be processed 

to a second ANN. The second ANN has the Kohonen learning rule and two neurons 

and again the assigned code to the current storm was used to select the set of analog 

storms. This process is repeated three times in order to increase the sample size and to 

derive a robust estimation, i.e., three sets of analog hurricanes were identified at every 

point in time. 

The implemented procedure includes four major steps and they will be described 

as follows:  
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1. Once a hurricane is detected NHC will collect a set of parameters (DA) at 

every 6 hours since the hurricane detection time until the current time (t), 

defined by the actual time of the hurricane in process. Figure 3.4 shows the 

time sequence of data collection. The parameters to be used for the 

identification process of analog hurricanes are: the Julian date, hurricane 

location (latitude and longitude), hurricane intensity, and hurricane direction. 

The continuous line in figure 3.4 shows the known intensity magnitudes of the 

current hurricane up to the current time and the dotted line shows the possible 

development of hurricane intensity in the near future.  The parameter sets 

(DPi) are associated to the historical hurricanes stored in the database that are 

extracted for the same storm life interval of the current hurricane.  
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Figure 3.5 Data obtained from the current hurricane 
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The set parameter, DA, is a matrix whose columns are the Di vectors (i=1, 2…, 

6) and a single column can be expressed as follows: 
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Where: 

D1 = Vector with hurricane’s information at time t-30 hrs, and D2 is the vector 

at time t-24 hrs, and so on as shown in figure 3.4 

Ju1=Julian Date at the time t-30 hrs 

La1= Hurricane location latitude at the time t-30 hrs 

Lo1= Hurricane location longitude at the time t-30 hrs 

I1= Hurricane intensity at the time t-30 hrs 

1α = Hurricane direction at the time t-30 hrs 

DA= Matrix of information for the current hurricane. 

DP is the set that contains information for each of the past hurricane (DPi) 

stored in the database and can be expressed as follows: 
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[ ]PnPi2P1PP DDDDD KK=  

where: 

i = hurricane index in the database 

n = number of the hurricanes in the database 

j,iPD = vector that contains historical information for hurricane i (i=1,2,…, n) 

in the time j (j=1,2,…,6) 

iPD = matrix that collect information for the hurricane i 

DT is a matrix formed by the union of the past data set (DP) and current data 

set (DA). This set is used in step 2 and can be expressed as follows: 

[ ]APT D  DD =  
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2. A competitive neural network (CNN) was implemented to classify the input set 

(DT) into a preliminary set (DS). To accomplish this task a number (S) of prototype 

vectors (W), which are selected in a random way, were defined so that the CNN 

can learn to detect similarities among the provided data set DT. This step can be 

represented mathematically as follows: 

        (3.4.9) )DW(CnnD Qx5T5xSS =

 where: 

 W= prototype vectors 

 s= class type (s=1, …, S) 

q= qth  observation (q=1, …, Q) 

DT=is the reunion of historical observations (n) and actual 

observations. 

DS is a row vector with the same number of columns as DT and its values 

fluctuate between 1 and S, which means that each single observation of every one 

of the hurricanes that composed DT is classified as follows: 

[ ]Q,6 Q,5Q,4Q,3Q,2Q,1i,6i,5i,4i,3i,21,i1,65,1 1,41,31,21,1S P P P P P P ;   ;P P P P P P;   ; P PP P P PD KK=
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 where Pi,j is the observation j (j=1,…,6) of the hurricane i (i=1,…,Q), and 

takes values between 1 and S.  For instance, if S is equal to10, DS may have the 

following distribution: 

[ ] 3 10, 3,5, 2, 3, ;    9;6,5,6,6,6,  ;  34,9,3,3,3, ; . . . ; ,8 3,5,3,3,3  ; 4,3,4,4,7,4DS K=  

The DS vector means that the set composed of historical data and actual data 

(DT) has been classified according to each one of the observations. In this way, the 

first observation of the first hurricane that composed DT is classified as class 4; the 

second observation of the first hurricane is classified as the class 4, and so on. 

3. A majority voting procedure was implemented to get a unique outcome from the 

generated information (DS) by the competitive neural network. After the six 

observations that correspond to each one of the hurricanes of the dataset (DT) were 

classified in S classes, a voting procedure is used to count the decision of each 

observation. If a majority decision is found, then the decision procedure will 

determine that the hurricane under analysis belongs to that majority class. The 

winner class would be the one that has the majority of the votes, and if there is tie 

any one could be the winner. This rule can be defined as follows: 

   (3.4.10) 1,...,6)j ( j ; Q)1,...,i ( i    )P(max)Dmax(V j,iS =∀=∀==

Using this rule, the vector V may be expressed as follows: 

 3] ; ...  ; 6 ; 3 ;  ...  ; 3  ; 4[V =  

The first element of vector V indicates that the first hurricane in DT belongs to 

class 4, because of the majority voting rule; the second element of vector V means 
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that the second hurricane in DT belongs to class 3, this process is repeated over and 

over until the last value is found, and it represents the current hurricane, which in 

this case, belongs to class 3. Therefore, the hurricanes that have the same class to 

the current hurricane are selected to be the first set of analogous hurricanes (DN). It 

follows: 

  ]D  , ... , D  , ... , D[D AP352PN =
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The DN matrix shows that the hurricane (DP2) in the database identified by ID-

number 2 is analogous to the current hurricane and also to the hurricane identified 

by ID-number 35 and DA represents the actual hurricane. It is important to notice 

that only two hurricanes are used to explain the idea of how the procedure works, 

but this does not happen in practice because of the great amount of past hurricanes 

that can be analogs. . 

4. To prevent that a large number of hurricanes can be selected by the first 

competitive process, a second competitive neural network is developed to ensure 

that only the hurricanes that have the maximum degree of associations with the 

current hurricane are kept in the final set of analogous hurricanes (DF). 

 )       (3.4.11) DW(CnnD pX6N6XeF =
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where: 

 p= value that varies between 1 and the number of hurricane in set DN

 DN= first set of analogous hurricanes 

 W= matrix of prototype vectors  

 e = 2 (number of classes for the reclassified process) 

The prototypes vectors are defined in this way to assure that if a hurricane is 

classified as the same class as the current hurricane in the first instance and, in the 

reclassified process, this hurricane is again classified as the class of the current 

hurricane, then it is included in the final set of analogous hurricanes (DF). 

Table 3.5 Variables included in the final set of analog hurricanes

S1,1,k Description 

1 Storm Pressure(SPre) 

2 Storm Intensity Change(SInC) 

3 Eastward comp. of storm motion(ESM) 

4 Northward comp. of storm motion(NSM)  

5 Module of the Storm Motion(SM) 

6 Sea Surface Temperature(SST) 

7 Maximum Possible Intensity(MPI)  

8 Eastward component of wind speed at 850 mb(ES850) 

9 Northward component of wind speed at 850 mb(NS850) 

10 Eastward component of wind speed at 200 mb(ES200) 

11 Northward component of wind speed at 200 mb(NS200) 

12 Vertical Wind Shear (VWS) 

13 Average angular momentum at 850 mb (M850) 

14 Average angular momentum at 200 mb (M250) 

15 K index(Kin) 

16 Total Totals(TT) 

17 Maximum possible intensity (MPI) minus Initial Intensity 

18 VWS change  



 42

However, if the hurricane is not reclassified as the same class as the current 

hurricane, then it is removed from the final set of analogous hurricanes (DF).The 

final set of analogous hurricanes (DF) is composed of the five variables of each one 

of the past hurricanes and the current hurricane. In addition to these variables, 

another set of variables (DX), shown in table 3.5 is added for each one of the past 

hurricanes and is calculated for the current hurricane. The set DF is augmented with 

the inclusion of DX, which is composed of synoptic and persistence variables that 

were not considered in the classification process. Thus, the final set of analogous 

hurricanes (DF) can be expressed as a computer iterative statement as i.e., not as an 

algebraical statement: 

T
FF )D(D =  

[ ]XFF DDD =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

α

α
α

α

α

α

=

18,61,6

18,11,1

18,6,n1,6,n

18,1,n1,1,n

18,6,11,6,1

18,1,11,1,1

66

11

1,n1,n

1,n1,n

1,16,1

1,11,1

66

11

6,n6,n

1,n1,n

6,16,1

1,11,1

6

1

1,n

1,n

6,1

1,1

F

SS

SS
SS

SS

SS

SS

I

I
I

I

I

I

LoLa

LoLa
LoLa

LoLa

LoLa

LoLa

Ju

Ju
Ju

Ju

Ju

Ju

D

L

MM

L

L

MM

L

MM

L

MM

L

MM

MM

MM

MM

MM

MM

MM

M

M

M

M

 

where Si,j,k is the kth synoptic or persistence variable (Table 3.4.1) for the ith 

hurricane and for the jth observation and Sp,q is the qth synoptic or persistence variable 

for the current hurricane and for the pth observation. 
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3.5. Random Variable Selection Process 

A variable selection procedure is implemented to choose among the variables 

generated in the previous process, those that best explained the hurricane intensity 

behavior. The variable selection technique has been widely used throughout the years 

to find an appropriate number of regressors that can help to reduce the efforts of data 

collection and model maintenance.  

This section is organized as follows: first, the estimation of the regression 

coefficient using the method of least squares will be briefly described; second, the 

random variable selection will be applied to select the variables that explain best the 

hurricane intensity  

3.5.1 Estimation of regression coefficients  

In general, given a single variable (y) dependent on k independent variables, for 

example, x1, x2, …, xk, the relationship between these variables is characterized by a 

mathematical model called regression model which can be expressed as follows: 

εββββ +++++= kk xxxy  .  .  . 22110     (3.5.1) 

 The parameters βj, j=0, 1, 2,…, k are called the regression coefficients.  

The method of least squares chooses the β’s in equation3.5.2 so that the sum of 

the squares of the errors, , is minimized. The least squares estimators can be 

derived as follows:  

∑ 2ε

∑=
=

n

1i

2
ik10 ),...,,(S εβββ       (3.5.2) 
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The function S in a matrix form can be given as follows: 

∑ −−===
=

n

1i

2
i )Xy()'Xy(')(S ββεεεβ     (3.5.3) 

βββ X'X'y'X'2y'y +−=  

The least-squares estimators must satisfy 

0X'X2y'X2S
=+−=

∂
∂ ∧

∧
β

β β

  

Then, the least-squares estimators of β are: 

y'X)X'X( 1−
∧

=β        (3.5.4) 

3.5.2. Application of the random variable selection procedure 

The regression technique described above is used to correlate the intensity of a 

current storm with climatological and synoptic variables of analogous saved on the 

set (DF) obtained in the section 3.4 and the process includes the following steps:  

1. The analogous set (DF) was divided in two subsets: one is called the response 

variable (Y), composed of the hurricane intensity known up to time t, and the 

other is called the predictors variables represented by the matrix (X) and its 

elements are the variables of the analogous.  The matrix representation can be 

expressed as follows: 
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Where  is the first intensity observation for the first analog hurricane that 

composed of the set Y, is the first intensity observation for the last analog 

hurricane that composed of the set Y, n is the number of analogs hurricanes, 

and I

1,1I

1,nI

1 is the first intensity observation for the current hurricane. 

2. A lead time (tg) was defined so that the correlations between the dependent 

variable (Y) and the independent variable (X) could be lagged by tg periods of 

time. The value tg varied between 1 and 4, where tg=1 indicates that the lag 

period is six hours, and tg= 4 indicates that the lag period is 24 hours. 

Considering the following information: 
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and the lead time (tg) is set at 4. This lead lime indicates that the dependant 

variable(Y) at the time t is explained using information(X) at the time t-4.  

Thus, it follows: 
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The first four observations in the dependent variables are eliminated 

because of the effect of the lag.  The last four observations in the independent 

variables are saved and removed from the matrix to be used at the prediction 

stage. Then, the application of a given lead time (tg) can be described 

mathematically as follows: 
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Table 3.6 Lag value using in the model 

Lag Value(tg) Time (hours) 
2 12 

3 18 

4 24 

3. After step two was completed, a series of mathematical transformations were 

used in order to explore a possible nonlinear relationship between the 

regressors (X) and independent variable(Y). In order to accomplish this task, a 
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number of models were defined so that each model had a particular 

mathematical transformation as follows: 

[ ]b,a
n

b,a
1

b,ab)1n(,a
i )X(F)X(FXX L=∗+  

where i is the number of the model, a is the number of observations in 

the model, b is the number of variables in the model and the exponent 

n takes values between 1 and 4 as summarized in table 3.7 

Table 3.7 Mathematical transformations used in the prediction process 

n Transformation
1 Logarithm  
2 Quadratic 
 3 Inverse 
4 Power of three 

Table 3.8 Mathematical transformations for the regressors 

Model(Mr)  Response Regressors Number of variables 
1 Y X 20 
2 Y X   log(X) 40 
3 Y X   X2 40 
4 Y X   X-1 40 
5 Y X   X3 40 
6 Y X   log(X)  X2 60 
7 Y X   log(X)  X-1 60 
8 Y X   X2        X-1  60 
9 Y X   log(X)  X2 X3 80 
10 Y X   X2        X-1 X3 80 
11 Y X   log(X)  X-1 X3 80 
12 Y X   log(X)  X2  X-1   X3 100 

Table 3.8 shows the original set of regressors (X), which have changed 

into a Mr set of regressors (r=1,…, 12). It should be noted that the number of 

variables increase as soon as a new mathematical transformation is added to 

the original set of regressors (X).  
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The amount of data is manageable when the number of variables is 

small (i.e., less than twenty). However, it becomes burdensome when the 

number of variables is large (i.e., greater than thirty). 

4. To overcome this shortcoming, a random variable selection scheme was 

developed. This process has the ability to select the regressors that best fit the 

dependent variable, in this case the hurricane intensity. The procedure can be 

described as follows: First, the regressors of a selected model (Mr) are  

divided into n subsets of m variables, using the following rule: 

Given the regressor set (X) of the model Mr with a observations (rows) 

and b variables (columns), then the number of new variables (m) for each n 

subset is calculated as follows: 

• If the number of variables (b) is less than the twenty percent of the 

number of observations (a), then the number of new variables (m) per 

subset is set equal to b; otherwise, the number of new variables(m) is 

rounded to nearest integer of the twenty percent of the number of 

observations(a). 

 The number of subsets in the selection process is calculated as follows: 

• If the modulus of the division between the number of variables(b) and the 

new variables(m) is equal to zero, then the number of subsets is equal to 

this division; otherwise, the number of subset is equal to this division 

plus one, as shows in the following code: 

  If  mod (b/m) = 0 
   Then n=b/m  
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Else  
n=b/m 
n=n+1 

End 
   where mod = function to calculate the modulus after division 

Then, the set X is divided in n subset if the conditional is true as follows: 

[ ]n
m,a

1n
m,a

i
m,a

2
m,a

1
m,ab,a XXXXXX −= LL    

But if the conditional is not true: 
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Second, each one of these n or n+1 regressor subsets and its 

corresponding response (Y) is adjusted using a Matlab program called 

Stepwisefit, which is specially designed to fit regression models using 

stepwise regression. Stepwise regression is the combination of two procedures 

called forward and backward regression and is used to find a satisfactory 

number of regressors that best fit to a given response variable when the 

number of regressors is large but smaller that the number of observations. 

To fit a regressor set ( ), the stepwisefit function is executed as 

many times as the set requires. However, two conditions must be satisfied: 

first, the number of runs for the stepwisefit function has to be less or equal 

than a constant that gives the maximum number of runs. Second, the final 

variables chosen by the selection procedure must be less or equal than a 

number of maximum variables defined by the forecaster. To this work the 

maximum number of variables allowed by the system was seven variables.  

i
m,aX
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The stepwisefit program will stop when both conditions must be 

fulfilled. Then, only the best regressors for each one of the n or n+1 sets will 

be selected and collected to create a new set of regressors called the best 

subset ( ) and corresponding to the model r. The following figure shows 

the procedure used: 

r
BSX

b,aX

Is a mathematical 
transformation used? Yes

No

b)1n(,aX ∗+

b,aX

Divided the set in n 
new sets

Divided the set in n 
new sets

Stepwisefit for each 
n subset

Are The best 
regressors 
selected?

No

Yes

End

The best 
subset (XBS) 
is obtained

 

Figure 3.6 Stepwise selection procedure 
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The is used to measure the adequacy for each n subset. This is a 

statistic used to compare the adjustment of different regression models and to 

avoid the difficulty of interpreting the classic coefficient of determination 

(R

2
aR

2). The  does not necessarily increase as additional regressors are 

introduced into the model and it is better when its value is close to one 

(Montgomery et al.,1992) .Moreover, a multicollinearity test is performed for 

the best subset ( ) to discard the near-linear dependence among the best 

subset variables. The maximum and minimum eigenvalues associated to 

matrix ( ) are used to calculate the following index: 

2
aR

r
BSX

r
BS

'r
BS XX

min

maxk
λ
λ

=  

Generally, if the index is less than 100, there is no serious problem with 

multicollinearity. If the index is between 100 and 1000, it implies moderate to 

strong multicollinearity.  If k exceeds 1000, however, severe multicollinearity 

is indicated. If a multicollinearity problem is not present in the best 

subset ( )r
BSX , then the process is finished and the best subset is ready to be 

used in the intensity prediction; otherwise, the best subset is discarded and the 

number of available models (Mr) for calculating a best subset is reduced by 

one unit. In summary, there are three sets of analogous hurricanes, and each 

set generates twelve different best subsets, and consequently, the total number 

of best subsets is 36 at each time interval. The best subset will be saved to be 

used in the prediction process. 
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3.6. Intensity Prediction Using Feedforward Neural Network 

A feedforward neural network model (Figure 3.6) is characterized by 

receiving input information to accomplish a modeling identification task without 

processing feedback information. The training patterns are presented to the network 

model several times until eventually the algorithm determines the optimal weights 

and biases that minimize the deviation between the network outputs and the 

established targets. The feedforward neural network model uses a variation of the 

standard backpropagation algorithm as the learning rule, which is based on the 

steepest descent algorithm. The errors are used to modify the searching direction and 

the gradient is computed at each layer starting from the last layer and finishing with 

the first layer. This is the reason for the backpropagation name. 

This section is organized as follows: in the first part a variation of the standard 

backpropagation algorithm called the Levenberg-Marquardt is briefly described and 

in the second part this algorithm is applied to predict the hurricane intensity using the 

best subset obtained in the previous section. 

3.6.1 Description of the Levenberg-Marquardt Backpropagation Algorithm  

The following lines briefly describe the use of this algorithm for training 

multilayer networks. This algorithm, which is described in details in Hagan and 

Menhaj (1994), is preferred over the standard backpropagation algorithm because it is 

the fastest algorithm tested for multilayer neural networks (Hagan et al., 1996).The 

standard backpropagation depends to find a optimum solution in the selection of the 
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learning rate which is easy to select when the network has a single layer but it gets 

complex when the network has more than two hidden layers. The Levenberg-

Marquardt algorithm to overcome this problem generates a learning rate which 

changes between the steepest descent and Newton algorithm depending on whether 

the value of the function is near to the optimum solution or not. A key drawback of 

Levenberg-Marquardt over standard backpropagation is the storage requirement. The 

algorithm must store the approximate Hessian matrix which is an matrix where r 

is the number of parameters (weights and bias) in the network. 

rrx
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Given where p}t,p{,},t,p{},t,p{ QQ2211 L q is an input to the network and tq 

is the corresponding target output. 

1. Presents all inputs to the network and compute the corresponding networks 

outputs and the errors. 

1
0 pa =         (3.6.1) 

1-M,0,2,mfor   )baW(fa 1mm1m1m1m L=+= ++++   (3.6.2) 

Maa =         (3.6.3) 

Where is the neural network output for the input layer and  is the 

neural network input,  is the output for the layer 

0a 1p

1ma + 1m + ,  is the transfer 

function for the layer 

1mf +

1m + , is the weights matrix for the same layer and 

 is the bias vector for the layer 

1mW +

1mb + 1m + ,  is the output for the last layer. Ma

2. Compute the sum of squared errors over all inputs, F(x), using the 

following equations: 

∑
=

−−=
Q

1q
qq

T
qq )at()at()x(F      (3.6.4) 

3. Compute the Jacobian matrix using the equation 3.6.5. Calculate the 

sensitivities with the recurrence relations (equation 3.6.7), after initializing with 

equation 3.6.6. Augment the individual matrices into the Marquardt sensitivities 

matrix using 3.6.8. Compute the elements of the Jacobian matrix with equation 

3.6.9 and 3.6.10. 
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where J(x) is the Jacobian matrix, is the sensitivity which describes a 

recurrence relationship between this and the sensitivity at layer 

M~S

1m + , is the 

Marquardt sensitivities matrix and 

m~S

[ ] l,hJ  is the element of the Jacobian matrix that 

corresponds to the hth row and lth column. 

4. Use equation 3.6.11 to obtain kx∆  

[ ] )x(v)x(JI)x(J)x(Jx kk
T1

kkk
T

k
−

µ+−=∆     (3.6.11) 
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5. Recalculate the sum of squared errors using kk xx ∆+ . If this new sum of 

squares is smaller than that computed in step 2, then divide µ (small value, e.g., 

=0.01) by ϑ (larger than one, e.g., µ ϑ=10), let kk1k xxx ∆+=+ and go back to 

step 1. If the sum of squares is not reduced, then multiply µ  by  and go back to 

step 4. 

ϑ

6. The process continues until the difference between the network response 

and the target function reaches some acceptable level. This algorithm converged 

when the sum of square errors has been reduced to some error goal. 

3.6.2 Application of the Levenberg-Marquardt Backpropagation Algorithm 

The best subsets ( ) obtained in the selection variable procedure are used as 

input data for this algorithm which is used to estimate the hurricane intensity in a 

determined interval of time (t

r
BSX

g). 

The procedure used to train the neural network can be divided in five major 

tasks: 

1. Assembling the Training Data  

The current inputs ( ) and their target vectors (hurricane intensity) are 

arranged in the following way: 
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where  is the n best regressors for the model r at the t-t
r

n,tt g
x − g time and It is the 

intensity at the time t,  is the best subset of regressors for the model r. r
BSX

2. Create the Network Object  

A Matlab routine is used to create the network object. The function Newff 

creates a feedforward neural network (NN) and also initializes the weights and 

biases of the network; therefore the network is ready for training. The function 

can be expressed as follows: 

NET =newff (pr,[s1 s2 … sn1],{tf1 tf2 … tfn},btf) 

where: 

pr =is a nx2 matrix of min and max values for ( r
BSX )T

si = size of ith layer, for nl layers 

tfni = transfer function of ith layer 

btf = backpropagation network training function, in this case Levenberg-

Marquardt algorithm. 

3. Train the Network  

Once the network weights and biases had been initialized, the network is 

ready to be trained. The training process requires a training set (network inputs 

and target outputs). During training, the weights and biases of the network are 

adjusted to minimize the sum of square errors (F(x)).The training process is 

implemented using a Matlab function called Train that has the following 

parameters: 
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[net ,tr] = train (NET, p, t)  

where: 

       NET=original network 

       p = network inputs 

       t = network targets 

       net= new network 

       tr = training record 

       In this study, the training process is divided into 2 stages: One, to find out the 

optimum number of neurons in the hidden layer and the transfer function for the 

hidden and output layer. At this stage, a number of neurons was previously 

defined to the hidden layer and two arrays of transfer function for the hidden and 

output layers (first, Log-Sigmoid and Purelin, and second, Tan-Sigmoid and 

Purelin). Then, an iterative process is developed to test each one of the neurons 

with each one of the transfer function arrays. Use the sum of square error as a 

performance index and, select those that have the minimum sum of square errors. 

Once the optimum number of neurons and the transfer functions have been 

found, a random search is performed to obtain the best initial point using the sum 

of square errors as a performance index. The weights and bias that correspond to 

the point that had the minimum sum of square errors are loading by the neural 

network that up to this point is ready to simulate new inputs. 

5. Evaluate the Network Response to New Inputs 
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Up to this point, the NN has been trained using the inputs ( ) and compared 

with the known hurricane intensity (Y) to minimize the performance function. The 

next step is to present current hurricane parameters to the trained NN for obtaining a 

hurricane intensity prediction at the desired lead time (t+t

r
BSX

g) as follows: 

 [ ]n,t
r

1n,t
r

2,t
r

1,t
rr

New xxxxX −= L   

))X(,net(simI Tr
Newtt g

=+  

where  represents the hurricane parameters at the present time (t),  is the 

predicted intensity in the lead time(t

r
NewX

gttI +

g) and sim is a Matlab function used to evaluate 

the neural network (net) when new input values are provided.  

Finally, it is important to notice that each best subset ( ) is used to train an 

NN three times and a hurricane intensity prediction was obtained. Since the NN is a 

nonlinear optimization algorithm and highly dependent on the initial point, the NN 

will provide different results after every training process.  Thus, an individual best 

subset was used to perform three predictions and its median was selected as the 

prediction for the best subset.  The best prediction from the 36 subsets is selected 

based on attempting to avoid the multicollinearity problem and minimize the NN 

mean square error. 

r
BSX
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CHAPTER  IV  EXPERIMENTAL RESULTS 

This chapter presents the results obtained by the application of the proposed 

intensity prediction model to a set of hurricanes from the North Atlantic Ocean. . This set 

was selected to contain hurricanes from different Saffir-Simpson’s categories so that the 

model can be evaluated by using different types of intensification patterns: fast and slow 

intensification as well as re-intensification patterns. 

The sample size used in this work was 16 hurricanes because they are a 

representative sample of the hurricane population used in this work (150 hurricanes) and 

was determined using the concepts of minimizing the sampling errors as shown in 

Appendix B.  Table 4.1 shows the results from the sampling assessing procedure.  

The selection criterion of the hurricanes included in the testing sample was based 

in two aspects. First, hurricanes that have happened in the last few years were evaluated 

to take advantages of the climatology of the hurricanes stored in the developed hurricane 

database. Second, hurricanes from the season 96-97 were used to compare the results 

from the proposed intensity model with those obtained by existing intensity models. 

Several experiments were conducted to evaluate the ability of the model to deal 

with different kind of hurricanes. Strong and typical hurricane cases are first presented, 

followed by a hurricane with high rate of intensification. Next, the rapid intensity 

reduction rate is presented and a hurricane with re-intensification behavior is presented at 

the end.  The statistics for the hurricane sample are finally summarized. 
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Table 4.1 Hurricane sample used to test the proposed prediction model 

No Hurricane 
Name Year Maximum 

Intensity(kt) 
Saffir Simpson 

Scale 
1 Isabel 2003 145 Category 5 
2 Isidore 2002 110 Category 3 
3 Lili 2002 125 Category 4 
4 Kyle 2002 75 Category 1 
5 Erin 2001 105 Category 3 
6 Felix 2001 100 Category 3 
7 Michelle 2001 120 Category 4 
8 Ericka 1997 110 Category 3 
9 Danny 1997 70 Category 1 
10 Isidore 1996 100 Category 3 
11 Frank 1996 105 Category 3 
12 Lili 1996 100 Category 3 
13 Hortense 1996 120 Category 4 
14 Marco 1996 65 Category 1 
15 Edouard 1996 125 Category 4 
16 Bertha 1996 100 Category 3 

4.1 Experiment with Strong Hurricane Intensity   

An important aspect for any intensity prediction model is the capability of 

modeling hurricanes that reaches the strongest category (category 4 or 5). The proposed 

model was tested using a strong hurricane, hurricane Lili (2002) ,which crossed western 

Cuba as a category two and reached category four on October 3, 2002 while it was over 

the Gulf of Mexico and approaching to wind speed of 125 knots. It made landfall on the 

Louisiana coast as a category one. Figure 4.1 shows the official intensity (dotted line) for 

hurricane Lili given by the National Hurricane Center (NHC) and the forecast intensity at 

12 hours (continuous line) obtained by the proposed model. The average absolute 

prediction error at 12 hours interval was 9.7 knots and it was computed along of the 

storm. 
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Figure 4.1 Intensity predictions for hurricane Lili at 12 hours (October, 2002) 

Figure 4.2 shows the model fitting performance when the prediction interval was 

24 hours for hurricane Lili.  The average absolute prediction error was 12.5 knots.  It 

should be noted that the larger the prediction interval the large the prediction error.  This 

simple experiment shows that the suggested prediction model is capable of representing 

the intensity of strong hurricanes. 

4.2 Experiment with Typical Hurricane Intensity 

The majority of the hurricanes that have occurred on the North Atlantic Ocean 

can be classified as typical hurricanes, because of the hurricane intensity level. Hurricane 

Felix (2001) falls into this category. This hurricane remained over the open waters of the 

eastern Atlantic Ocean, but briefly threatened the Azores Islands. The average absolute 

prediction error at 12 hours interval was 5.62 knots, which was computed along the entire 

storm track and using the intensity measured by the NHC as the observed values. 
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Figure 4.2 Intensity predictions for hurricane Lili at 24 hours (October, 2002) 

Figure 4.3 shows the outputs for hurricane Felix (2001) at 12 hours. It was a 

hurricane that reached its peak at 100 knot and was categorized as hurricane of category 

three. The average absolute intensity error at 12 hours interval prediction for this 

hurricane using the proposed intensity model was 5. 62 knots along of the storm. 
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Figure 4.3 Intensity predictions for hurricane Felix at 12 hours (September, 2001) 
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The proposed model was also evaluated with a typical hurricane at 24 hours. 

Figure 4.4 shows the results. The average absolute intensity error at 24 hours interval 

prediction for this hurricane using the proposed intensity model was 7.88 knots along of 

the storm. 

It can be seen that the proposed algorithm has the potential to predict better the 

intensity of a typical hurricane (category 2 or 3 in Saffir-Simpson scale) than the intensity 

of a strong hurricane. However, the results obtained (12.5 knot) when a strong hurricane 

(Lili, 2002) was tested at 24 hours is in its average less than the results obtained by 

SHIPS which was 16 knots. (http://www.nhc.noaa.gov/2002lili.shtml)     

4.3 Fast Intensity Change and Re-Intensification Experiments  

The characteristics that are most difficult to deal with in the prediction of the 

hurricane intensity are the fast intensification, rapid reduction and re-intensification. The 

proposed model was tested with hurricanes that exhibit at least one of these conditions. 

The hurricane Hortense (1996) crossed the southwestern region of Puerto Rico and the 

eastern top of the Dominican Republic under category one, and the associated floods 

killed at least 21 people. Hortense which reached category four status with a peak 

intensity of 120 knots was used to implement the model when a rapid intensification was 

presented. Figure 4.5 shows the results for hurricane Hortense at 12 hours; the dotted line 

illustrates the rapid intensification forecast. The average absolute intensity error for this 

hurricane was 8.15 knots at 12 hours interval prediction along of the storm. 

It can be seen that the outputs from proposed model followed the official outputs 

up to the point where Hortense increases rapidly its intensity. Despite of the errors in this 

period seemed to be larger (10 -15 knot) for 12 hours, the proposed model tried to follow 
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the observed intensity but it failed to make a robust intensity estimation. After Hortense 

has reached its intensity peak, the proposed model made a suitable prediction with small 

errors(less than 7 knot). 
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Figure 4.4 Intensity predictions for hurricane Felix at 24 hours (September, 2001) 

The rapid reduction is also another attribute that is difficult to predict for any 

intensity hurricane model. The forecasting for hurricane Frank (1996) which was 

originated in Cape Verde was a hurricane that moved across the Atlantic during the peak 

of the hurricane season. This hurricane at 12 hours prediction interval was used to test the 

prediction methodology under fast intensity reduction. 

The hurricane Frank was evaluated because after it reached its intensity peak; it 

underwent to a fast intensity changing from 100 knots to 35 knots in 18 hours. Figure 4.6 

shows the results, dotted line illustrates the period of fast intensity reduction. The average 

absolute intensity error of this hurricane was 7.8 knots when it was evaluated along of its 

trajectory using 12 hours as an interval prediction. 
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 The proposed model up to the moment of the fast intensity reduction has been 

forecasted with average errors of 4 knot, but the effects of this phenomenon made that the 

final average error went up to almost 8 knot. Again, the skill of the model was affected 

by especial condition that was not presented in all hurricanes but when it happened, it 

made the proposed model lose some of its capabilities.  
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Figure 4.5 Forecasting for Hortense when rapid intensification is presented (September, 
1996) 

A characteristic that is also hard to predict is the re-intensification. This behavior 

challenges the model to response as soon as it is detected. Re-intensification means that 

the hurricane has gained (lost) enough strength to rise (decrease) its intensity. Hurricane 

Isidore (2002) was a slow-moving tropical cyclone that hit the northern Yucatan 

Peninsula of Mexico as a category 3 and it was used to test the proposed model when the 

re-intensification was presented. The re-intensification was probably the most hazardous 

of the three conditions before mentioned because it challenges the model to look out the 

new hurricane intensity behavior that could be increasing or decreasing. 
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Figure 4.6 Forecasting for Frank when rapid reduction is presented (September, 1996) 

The dotted line in figure 4.7 show the re-intensification process obtained from 

NHC and continuous line the forecast obtained by using the suggested prediction 

methodology.  
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Figure 4.7 Re-intensification of Hurricane Isidore (September, 2002)  
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The average absolute intensity error for hurricane Isidore was 10.51 knots at 12 

hours interval prediction. These results show that the model underestimated the hurricane 

intensity, i.e, the model does not have the same capability to predict the rapid changes in 

intensity. Future work may be concentrated the efforts to predict fast intensity changes. 

4.4 Summary of Results  

The average intensity prediction errors at 12 hours for each one of the hurricanes 

that composed of the selected sample to test the proposed intensity model are shown in 

table 4.2.The number of cases used to forecast is also shown in this table. 

Table 4.2 Average absolute prediction error at 12 hours for the hurricane sample 

No Hurricane Name No Cases Average error (kt) 
1 Isabel 44 7.35 
2 Isidore 34 10.59 
3 Lili 39 9.7 
4 Kyle 28 5.86 
5 Erin 30 7.5 
6 Felix 26 5.62 
7 Michelle 19 9.32 
8 Ericka 53 5.49 
9 Danny 35 4.67 
10 Isidore 21 6.03 
11 Frank 51 7.8 
12 Lili 45 5.46 
13 Hortense 35 8.15 
14 Marco 30 8.02 
15 Edouard 54 6.42 
16 Bertha 42 7.27 

Number of Cases and 
Total Avg. Error 588 7.2 

Similarly, the average intensity prediction errors for 24 hours of prediction 

interval are shown in table 4.3. 
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Table 4.3 Average absolute prediction error at 24 hours for the hurricane sample 

No Hurricane Name No Cases Average Error(kt) 
1 Isabel 44 12.46 
2 Isidore 32 17.3 
3 Lili 31 12.5 
4 Kyle 23 11.8 
5 Erin 26 10.32 
6 Felix 24 7.88 
7 Michelle 16 10.44 
8 Ericka 50 9.27 
9 Danny 34 9.05 
10 Isidore 17 12.94 
11 Frank 49 12.4 
12 Lili 44 9.48 
13 Hortense 33 11.37 
14 Marco 26 11.64 
15 Edouard 50 9.4 
16 Bertha 39 10.81 

Number of Cases and 
Total Avg. Error 

539 11.19 

The contribution of the variables (predictors) used in the intensity forecast of the 

hurricane sample (table 4.1) at 12 hours is shown in figure 4.7. The predictors are 

described in table 4.4.  
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Figure 4.7 Variable contribution for the hurricane sample at 12 hours 
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Table 4.4 Variable contribution for the hurricane sample at 12 hours 

Variable  Name  Percentage 
Var_1 Storm Location Latitude 6.956 
Var_2 Storm Location Longitude 8.296 
Var_3 Storm Pressure 19.703 
Var_4 Storm Intensity Change 12.248 
Var_5 Storm Northward Displacement  5.381 
Var_6 Storm Eastward displacement 4.000 
Var_7 Module of the Storm Motion 3.862 
Var_8 Sea Surface Temperature 3.841 
Var_9 Maximum Possible Intensity 3.011 
Var_10 U850 6.027 
Var_11 V800 3.894 
Var_12 U200 4.395 
Var_13 V200 3.416 
Var_14 Vertical Wind Shear(VWS) 2.127 
Var_15 Average angular momentum at 850 mb 1.857 
Var_16 Average angular momentum at 200 mb 2.09 
Var_17 Total Total  3.237 
Var_18 Kindex 2.054 
Var_19 MPI-Initial Intensity 3.218 
Var_20 VWS Change 0.385 

The contribution of the variables (regressors) used in the intensity forecast of the 

hurricane sample (table 4.1) at 24 hours is shown in figure 4.8 and is described in table 

4.5. 
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Figure 4.8 Variable contribution for the hurricane sample at 24 hours 
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Table 4.5 Variable contribution for the hurricane sample at 24 hours 

Variable  Name  Percentage 
Var_1 Storm Location Latitude 6.202 
Var_2 Storm Location Longitude 8.411 
Var_3 Storm Pressure 16.868 
Var_4 Storm Intensity Change 9.911 
Var_5 Storm Northward Displacement  4.302 
Var_6 Storm Eastward displacement 5.713 
Var_7 Module of the Storm Motion 4.407 
Var_8 Sea Surface Temperature 3.675 
Var_9 Maximum Possible Intensity 3.705 
Var_10 U850 6.405 
Var_11 V800 3.972 
Var_12 U200 4.728 
Var_13 V200 3.640 
Var_14 Vertical Wind Shear(VWS) 2.743 
Var_15 Average angular momentum at 850 mb 1.99 
Var_16 Average angular momentum at 200 mb 2.46 
Var_17 Total Total  3.277 
Var_18 Kindex 3.476 
Var_19 MPI-Initial Intensity 3.376 
Var_20 VWS Change 0.549 

The most important variables in this work were: the storm pressure, the intensity 

change, the storm location (longitude and latitude) and the eastward component of wind 

speed at 850 mb. The contributions of the variables used in this study are shown in table 

4.4 and 4.5. 

The storm pressure variable measured in the hurricane’s eye has been the most 

important predictor in this work. This result is not surprised since the relation between 

hurricane intensity and hurricane pressure is directly proportional. The storm latitude and 

longitude variables have also proved their advantages to explain the hurricane intensity. 

These results can be explained using the idea that the smaller the central pressure, the 

greater winds that surrounded the hurricane. 

The intensity change is the second important variable that explains the hurricane 

intensity for the proposed model. This result comes in agreement with the results found 
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by DeMaria (1997) who pointed out that the intensity change provides a pattern of future 

hurricane’s behavior which means that hurricane that has intensified in the past 6 hours is 

likely to continue intensifying. 

It has been pointed out that the sea surface temperature (SST) is an important 

predictor in the hurricane intensity models (Merrill, 1987; etc.) but alone it only gives an 

upper bound on the hurricane intensity. However, SST in this study is a variable that 

exhibits a marginal contribution in the intensity model. The causes of this performance 

could be the explanation given by Merrill or the lack of real time SST because the SST 

used in this study was obtained from historical records and was interpolated in space and 

time for the current hurricane. The next predictor called maximum possible intensity 

which is a function of SST exhibits also marginal contribution. This results is probably 

caused by the lack of real time observations of sea surface temperature. 

The contribution of different mathematical transformations described in 

section3.5 and used in the prediction intensity model is described in table 4.6. 

Table 4.6 Model contribution for the intensity prediction 
 

Model Model Contribution 
at 12 hours (%) 

Model Contribution 
at 24 hours ( %) 

Linear 62.378 55.522 
Logarithm 11.699 13.406 
Quadratic 6.396 9.945 
Inverse 14.283 15.271 
Cubic 5.243 5.855 

 
 
 
 
 
 
 

Results have shown that the performance of the proposed model for different 

types of hurricanes. The performance of the model cannot be compared with existing 

models because of limitation of published results.  However, a comparison with small 

sample size was conducted. Table 4.8 was developed using hurricanes from the season 

96-97 (Table 4.7) and the information published by DeMaria 



 73

(http://www.nhc.noaa.gov/aboutmodels.shtml).  Table 4.8 shows the comparison between 

the performance of the proposed model (NN Model) and the models used by the National 

Hurricane Center during the season 96-97, in this case the Statistical Hurricane Intensity 

Forecast (SHIFOR), the Statistical Hurricane Intensity Prediction Scheme (SHIPS) and 

the Geophysical Fluid Dynamic Intensity (GFDI). 

Table 4.7 Hurricanes used to compare the proposed model and NHC’s models 

No Hurricane 
Name Year Maximum 

Intensity Category 

1 Ericka 1997 110 Category 3 
2 Danny 1997 70 Category 1 
3 Isidore 1996 100 Category 3 
4 Frank 1996 105 Category 3 
5 Lili 1996 100 Category 3 
6 Hortense 1996 120 Category 4 
7 Marco 1996 65 Category 1 
8 Edouard 1996 125 Category 4 
9 Bertha 1996 100 Category 3 

 
Table 4.8 Comparison between the proposed model and NHC’s models 

 12 Hours 24 Hours 

Model Season No Cases Average 
error (kt) No Cases Average 

error(kt) 
NN Model 96-97 366 6.59 343 10.71 
SHIFOR 96-97 305 8.2 270 11.4 
SHIPS 96-97 305 8.1 270 11 
GFDI 96-97 305 9.3 270 11.6 

Table 4.9 shows the relative improvement by the proposed model over the official 

NHC’s models. It noticed that the proposed model achieved a considerable improvement 

at 12 hours interval over the other models used by NHC but the improvement is not the 

same at 24 hours interval.  

Table 4.9 Proposed models’ improvement over NHC’s models 

Model  At 12 hours (%) At 24 hours (%)
SHIFOR 19.63 6.05 
SHIPS 18.64 2.64 
GFDI 29.14 7.67 

http://www.nhc.noaa.gov/aboutmodels.shtml
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Figure 4.9 shows the fitness of the NN model (small dotted line) over the multiple 

linear regression model (continuous line) when both models were tested using the same 

variables to predict the hurricane intensity. Also, the official forecast is showed (dotted 

line). This figure shows that the NN model has a better behavior in the prediction stage 

than the Regression model which is also the same results obtained by Baik et al. (1998).  

 

160 

140 

120 

1

Knot 
00 

80 

60 

40 
Official Fore st ca

NN Forecast 
20 Regresion Forecast 

0 
0 0 0 0 0 0 12 12 12 12 12 12 0 0 0 0 0 00 012 12 12 12 12 12 12

Time Interval(hr)

Figure 4.9 NN model enhancements over regression model for hurricane Edouard at 12 
hours (September, 1996) 

Table 4.10 displays the average absolute errors obtained by the proposed NN 

model and those obtained by the multiple linear regression model. Furthermore, the 

percentages of this improvement are shown. 

Table 4.10 Proposed model improvements over multiple linear regression model 

  At 12 Hours At  24 Hours 

Model Season No Cases Average 
error (kt) No Cases Average 

error (kt) 
NN Model 96-97 366 6.59 343 10.71 

Regression Model 96-97 366 8.82 343 12.53 
NN improvement over Regression (%) 25.3  14.53 
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A 95 % confidence interval was developed to take into account the natural 

variation of the neural network’s outputs at the prediction stage. The intensity prediction 

for each point in time was calculated 100 times varying the initial point in the neural 

network training. The cumulative distribution of the prediction sample was fitted to the 

closest distribution function using as a measure of fitness the Kolmogorov – Smirnov 

test. Once, the distribution function that best adjust the sample under study was detected, 

an interval of confidence was calculated using the parameters that correspond for this 

adjusted distribution function. Hurricane Isaac (Sept, 2000) was used to implement this 

concept. Isaac was a hurricane that was formed over Cape Verde and developed a long, 

parabolic path over the eastern half of the Atlantic. Its maximum sustained winds reached 

an estimated 120 knot. The Kolmogorov-Smirnov test was used to know the distribution 

function that best fit with the cumulative distribution of the prediction sample. Figure 

4.10 shows the confidence interval implemented for the intensity prediction of hurricane 

Isaac at 12 hours. The complete procedure to calculate the confidence interval for a given 

hurricane intensity prediction is given in Appendix E.  
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Figure 4.10 Confidence Interval for hurricane Isaac (Sept, 2000)
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CHAPTER  V  CONCLUSIONS AND RECOMMENDATIONS 

The key contribution of this study is the development of a hurricane intensity 

prediction model for the North Atlantic basin. A combination of statistical and artificial 

neural networks techniques is used to predict the intensity at 6, 12, 18 and 24 hours. This 

type of approach has not been addressed before in the literature to solve this problem. 

Preliminary results were derived on the basis of studying a representative sample 

and these results show that the proposed intensity model has a potential skill to reduce the 

hurricane prediction errors for a lead time of 12 and 24 hours. The ability of the model to 

predict the intensity reduces when the hurricane is classified as a strong hurricane (figure 

4.1 and figure 4.2). This lack of prediction capabilities is probably caused by the absence 

of a variable that can anticipate the fast changes on intensity in a period of time greater 

than 12 hours. 

Atlantic Hurricanes for the season 96-97 were used to compare the proposed 

intensity model with other intensity models. The results (table 4.7) showed that the 

reduction of the intensity errors at 12 hours was in the order of 1.6 knot which represents 

18 % of improvement over the NHC’ model that had the minimum intensity error (table 

4.8). In 24 hours prediction interval, the improvement was in the order of 0.29 knot 

which is an improvement of 6%.  

In this study, a number of the best subsets formed by the union of the variables 

(predictors) were generated to relate with the hurricane intensity. Some of the best 

subsets were linear and others were non-linear. The contribution of the linear and non-

linear best subsets in the intensity hurricane prediction (table 4.6) is evaluated. At 12 
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hours prediction interval, it can be noted that the intensity model had basically a linear 

behavior. 

 The non-linear transformations (logarithm, quadratic and inverse) were used with 

less frequency. The results changed when the prediction interval was 24 hours; the 

logarithm transformation has increased its participation in 13 %, the quadratic 

transformation has also increased its participation in 35 % and the linear participation has 

decreased by 10%. This maybe means that the hurricane intensity at intervals of equal 

and less of 12 hours could have a linear behavior and probably just linear predictors were 

needed to predict the hurricane intensity. However, when the prediction interval is greater 

or equal than 24 hours, the hurricane intensity behavior must include non-linear 

predictors, since the linear predictors only explained 50 % of the hurricane intensity 

variability. 

The improvement of the neural network technique to model the hurricane 

intensity over multiple linear regression, which is the technique used in the previous 

intensity studies, was assessed in this work. The results (table 4.10) showed that the 

errors at 12 hours were reduced in 25 % and the errors at 24 hours were reduced in almost 

15 % which clearly suggested the potential of the neural network over the multiple 

regression technique to model this kind of meteorological phenomenon.   

The importance of synoptic information has been proved in this work. The 

eastward component of wind speed at 850 mb is among the most relevant variables for 

the proposed intensity model. This result confirmed the tendency pursued by the newest 

hurricane intensity models (SHIPS, GFDI, etc.) which have increased their attention in 

synoptic information in the last few years. 
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An important aspect in this work is the selection of the analog hurricanes for a 

given tropical storm. This study used the competitive neural network as the technique to 

perform this selection.  In the future, a different unsupervised and supervised technique 

may be used to improve the classification algorithm.  Supervised techniques based on a 

preliminary classification may be an alternative to improve the analog identification 

procedure.  One of the most relevant supervised techniques that can be used in the future 

is the Learning Vector Quantization (LVQ)  

The addition of new predictors is definitely a work that must be done in the 

future. In this study, the capability of AMSU to detect the hurricane and to relate its 

brightness temperature in some channels with hurricane intensity has been proved. The 

next task to do is the inclusion of this data to the intensity model. Moreover, AMSU data 

can be used to correlate with NCEP Reanalysis Data and to obtain temperature at 

different pressure levels that can be used to calculate the Kindex and Total Total. The 

resolution at AMSU data is 48 km in the horizontal and the NCEP is 276.43 km. 

The entire computational code for the proposed intensity model was developed in 

Matlab to take advantage of its toolboxes which contains predefined routines that make 

the programming more pleasant. A disadvantage of dealing with Matlab was the 

computational time that takes to run a program which used so many routines. To 

overcome this problem, two servers with double processors Xeon and one Gigabyte of 

memory RAM were used to run the program. 
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APPENDIX A 

COMPUTER PROGRAM DESCRIPTION 

A computer program has been developed to predict hurricane intensity at 

different intervals of time. The Matlab environment is used in order to take advantage 

of its toolboxes, especially designed to deal with statistical and artificial intelligence 

problems. The computer program is divided into two major modules: 

A.1 The Hurricane Database  

A graphical user interface (GUI) was implemented to generate a hurricane 

database to provide enough data for the hurricane intensity model so that a robust 

estimation can be made. This feature implies that the data is always updated. Another 

reason to develop the GUI was to let the user had a friendly communication with the 

machine and avoided input data mistakes. The database is created using several 

sources of information as shown in Figure 4.1. The complete description of the 

sources of information for the hurricane database is given in Section 3.3. 

 
Figure A.1 Information used to created the hurricane database 
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Recall that the hurricane best track stored the hurricane trajectory and others 

parameters such as pressure and time. The Sea Surface Temperature (SST) data is 

used to obtain the SST along the location of the storm. The NCEP data is used to 

generate the synoptic variables utilized in this study.  

The hurricane database interface is composed of a list of events that has a 

defined purpose. Figure 4.2 shows the hierarchical tree of these events: 
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Figure A.2 Relationships among hurricane database’s procedures  

The main difference between a Matlab script and Matlab graphical user 

interface(GUI) is that the latter is ruled by events and the first is composed of a 

number of functions, so that each one of these must be defined as an independent file.  

However, in a Matlab GUI, all of these events are written in a common file. This 

feature makes it more attractive for the programmer to work with GUI than the 

original Matlab script.  

The first step to execute the hurricane database GUI is to create a new record 

clicking the button New (event new) to invoke the procedure create_new. This 
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procedure creates a new record to input a new hurricane. Then, the user must proceed 

to fill the needed fields manually as shown in figure A.3.After that, the user is ready 

to call the different events defined in the figure A.2 (Bu_open, Bu_open_SST, 

Load_ncep, Open_kindex and Open_total).  

 
Figure A.3 Hurricane Database Graphical User Interface (GUI) 

The event Bu_open is invoked when the Best Track button is clicked and used 

to call the hurricane best track previously defined in an ASCII file; this event brings 

on the procedure Hurr_calculo necessary to calculate the differences in hurricane 

intensity, latitude and longitude. The SST data button is used to call the event 

Bu_open_SST which initializes two procedures: Get_ncep_sst used to read and 
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convert the Sea Surface Temperature (SST) binary file into ASCII file and 

Finding_SST used to capture the nearest SST for the position and date of each tropical 

cyclone observation.  

The NCEP data are added to the database when the user called Load_ncep 

event clicking the Vertical Wind button. This event called the Get_ncep procedure 

which is used read NCEP binary data and convert it into a readable ASCII format. In 

addition to this action, Get_ncep called other procedures such as: Finding_velo is 

needed to get the nearest wind speed at 200 and 800 mb for position and date of each 

hurricane observation. Busca_velo is used to decompose the wind speed at 200 and 

800 mb in their eastward and northward component. Windshear calculates the 

Vertical Wind Shear (VWS) using the wind speed components. Expansion procedure 

calculates the momentum at different distances from the hurricane’s eye at 200 and 

800 mb. Calc_distancia procedure is employed to obtain the distances used in the 

previous procedure. 

The Open_total event is activated by clicking the Total Total button by the 

user. This event called the TotalT procedure which is used to calculate the Total Total 

index as is defined in section 3.3.2. The event Open_index is initialized by clicking 

the K index button and called the Kindex procedure which performs a series of 

calculations to obtain the K index as is defined in section 3.3.2. 

Up this point, the fields defined in table 3.3 have been filled or calculated so 

that the next step is to save these and continue with another hurricane. To do this 

action, the user must click the Save button to assure the process has finished 
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successfully. Is important to notice that the GUI’s source code is not published 

because of the amount of space required but it is available at a_veneros@yahoo.com.  

A.2 The Hurricane Prediction Framework 

The hurricane database was developed using Matlab GUI to assure that no 

mistakes have done during input data process and let a friendly communication 

between user and computer. Despite of these advantages, the time consumed to 

execute a Matlab GUI is usually larger than a Matlab script and when a program 

consists of a series of repetitive steps is better developed using the later mode. The 

hurricane prediction model falls into this category because it is made up by a number 

of predefined routines which are executed as many times as the forecaster needs. 

The hurricane intensity model is composed of four main sections as shown in 

Figure A.3: 

 

 

 

 

 

 

 

 

Figure A.3 Hurricane Intensity Model Functions 

2.1. Main.m 

The Main program gives the initial settings to run the hurricane intensity model. 

The tasks of this program are summarized as follows: 
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1. The hurricane database mentioned in the previous section is loaded. Moreover, 

initial and final observations are defined to establish the numbers of files used in 

step 2. Finally the number of replicates, number of classes and number of epochs 

for the classification process are set. 

2. The data of the current hurricane that are used to obtain the analogous hurricanes 

are loaded in this step. Using the format shown in figure A.4, a set of ASCII files is 

loaded. These files have a generic name as follows: 

HurricaneName_data_NroObservation.txt 

Where HurricaneName is the name of a given hurricane, data is a word used to 

indicate that this file contains hurricane data, NroObservation indicates how many 

observations are presented in this file and .txt gives the extension of this file. 

 
Figure A.4 Data input to initialize the hurricane model 

3. After the data have been uploaded, the second routine called Pattern is initialized 

using the following code: 

For i=initial_observation to final_observation 

Data=load (HurricaneName_data_i.txt); 

For j=1:nro_replicates 

[Y, X]=Pattern (Data, Hurricane_Database, Nro_Class, Nro_Epochs)  



 88

End 

End 

where the routine Pattern has been executed as many times as the range 

defined by initial_observation and final_observation variables. The second For Loop 

is repeated up the value of nro_replicates variable.  

2.2. Pattern.m 

This function is used to find a set of analogous hurricanes of a current hurricane. 

The sentence that is employed to call this routine is again repeated here: 

[Y, X]=Pattern (Data, Hurricane_Database, Nro_Class, Nro_Epochs)  

where Data store the current hurricane data known until the actual time (t), 

Hurricane_Database stores the data of the hurricanes data since 1975, Nro_Class is 

the number of classes to perform the classification using Competitive Neural 

Network, Nro_Epochs is the number of epochs to be used in the Competitive Neural 

Network  

Pattern.m

Angle_question.m Arrange_data.m

Nn_training.m

Voting.m

Search_solution.m

Correction.m

 

Figure A.5 Pattern Routine and Its Subroutines 
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This routine is composed of a number of subroutines (Figure A.5) where each 

one of these has a defined purpose. A brief description of these subroutines is given 

as follows: 

2.2.1. Angle_question.m 

Function used to calculate the hurricane’s direction given two hurricane’s 

positions. It is based in the calculus of the arc tangent of two distances (d1, d2). For 

two positions of the hurricane’s trajectory at time t and t-6 hr, the hurricane’s 

direction from Pt-6 to Pt is given by α as shown in figure A.6: 

)La,Lo(P 6t6t6t −−−

)La,Lo(P ttt

α
1d

2d

 
Figure A.6. Hurricane’s direction procedure 

2.2.3. Arrange_data.m 

Function used to sort the historical data and mix with actual data. This function 

generates the input for the Competitive Neural Network. It also uses as a preliminary 

filter to reject hurricanes that don not have the same format as the current hurricane 

data. 

2.2.4. Nn_training .m 

This is the core part of Pattern routine because it is here where the Neural 

Network (NN) to classify is created and trained using the input generated by the 
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previous function The Matlab Neural Network Toolbox is used to create the NN with 

the following code: 

Pr = minmax (P); 

Net = newc (Pr,classes); 

Net.trainParam.epochs = epochs; 

Net = train (Net,P); 

Solution = sim (Net,P); 

where P is matrix of inputs composed of historic data and actual data, Pr is a 

matrix that contains a maximum and minimum value of each column of P, Net is the 

NN created with the Matlab function newc using two parameters Pr and the number 

of classes defined at the beginning of Pattern routine. The train Matlab function is 

used to train the Net and the solution is obtained using the Matlab function called sim. 

2.2.5 Voting.m 

 This function is used to obtain a unique solution using the majority voting 

concept explained in section3.4.The output of this function is a row vector where 

each element of the vector represents a hurricane and its value is the selected class. 

2.2.6 Search_solution.m 

 Function that is called by the previous function to identify the hurricanes that 

have the same class as the current hurricane, in other words,  the analogous hurricanes 

for the current hurricane. 

2.2.7 Correction.m 

 This function is used to complete the current hurricane data with synoptic 

variables. These variables are calculated from the past data using a interpolation for 

each variable in time and space. This procedure is explained at details in section 3.4  
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2.3. Selection.m 

Up to this point, a set of analogous hurricanes have been selected. The Selection 

routine is used to find out a correlation between the variables that composed that set 

and the hurricane intensity. The multiple regression technique and the stepwise 

selection model are used to develop this routine and the output of this function is the 

input of the last routine called Prediction. The figure A.7 shows the several sub 

functions used to this routine.  

Selection.m

Busca_variables.m

Final_process.m

Stepwisefit.m

Create_lag.m

Lagear.m

Grupos.m

 
Figure A.7 Sub functions used in Selection routine 

2.3.1. Busca_variables.m 

This function is used to label the variables. This is a necessary task because the 

selection procedure is randomized which means that the variables are changing their 

position in the set at each iteration. However, the user must know the correct name 

and position of each variable at the end of the process. 
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2.3.2. Create_lag.m 

This function is implemented to create the lag between the regressors and the 

response variable. The lead time is chosen by the user and it depends of the desired 

prediction time. More information of how the lag works is found in section 3.5. 

2.3.3. Final_process.m 

This function is applied to set a number of required parameters to run the 

selection procedure. It is an important function because it stores the function Grupos 

Stepwisefit. 

2.3.4. Grupos.m 

 Function that is called by the preceding function and is used to divide the 

original set of variables into n subsets of m variables where n and m are calculated by 

the program following the rules described in section 3.5. 

2.3.5. Stepwisefit.m 

 Having the original set of variables divided in n subsets of m variables, the 

Stepwisefit function uses stepwise regression to model the response variable Y as a 

function of the predictor variables represented by the columns of the matrix X. The 

result is a vector b of estimated coefficient values for all columns of X. The b value 

for a column not included in the final model is the coefficient that you would obtain 

by adding that column to the model. This function has the following syntax: 

)1000,'iter',out_p,'premove',in_p,'penter',Y,X(tstepwisefi]stats,elmodin,pval,se,b[ =  

where:  

 se is a vector of standard errors for b.  

 pval is a vector of p-values for testing whether b is 0.  
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 inmodel is a logical vector, whose length equals the number of columns in X, 

specifying which predictors are in the final model. A 1 in position j indicates that 

the jth predictor is in the final model; a 0 indicates that the corresponding predictor 

in not in the final model.  

 stats is a structure containing additional statistics.  

 penter is the maximum p-value for a predictor to be added. The default is 0.05. 

 premove is the minimum p-value for a predictor to be removed. The default is 0.10. 

 iter is the maximum number of steps to take (default is no maximum) 

Up to this point, the stepwisefit has selected the best subset to explain the 

hurricane intensity. The next step is predicted the hurricane intensity using Artificial 

Neural Network (ANN).  

2.4. Prediction.m 

The best subset of regressors obtained in the previous function is used as an 

input for this procedure. An ANN is created and trained using Matlab functions and 

the intensity prediction values are saved in ASCII file. However, a number of 

necessary steps must be accomplished in order to obtain a reliable solution. Figure 

A.8 shows the required routines for this procedure. 
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Predicition.m

Confident_interval.m Nn_main.m

Simulation.m

Print_valores.m

 

Figure A.8 Sub functions used in Prediction routine 

2.4.1. Confident_interval.m 

Function employed to create an interval of confidence to restrict the forecast 

value. The idea is to calculate a minimum and maximum limits using intensity 

information known up to the current time so that if the predictable intensity falls into 

this interval, it is valid and is used for the intensity prediction model. But it does not, 

it is discarded  

2.4.2. Nn_main.m 

Using this function, a feed-forward backpropagation network is created to predict 

the hurricane intensity. The inputs of this function are basically the best regressors 

obtained during the selection procedure. The target is the intensity lagged in its 

respective lead time. A Matlab function called newff is used to create the network as 

follows: 

[ ] { }( )pf,btf, tf  tftf,s  s s,prnewffnet LL= n121n121  
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where: 

• net is the feed-forward backpropagation network created recently. 

• pr is the  matrix of minimum and maximum values for r input elements.  2rX

• si  is the size of the ith layer, for n1 layers. 

• tfi  is the transfer function of ith layer. 

• btf is the backpropagation network training function. 

• pf is the performance function. 

Moreover, a training function is used to train and update the weighting and bias 

for each neuron. A Matlab function called train is used as follows: 

[ ] )t,p,NET(trainy,tr,net =  

where: 

• NET is the network created using newff. 

• p is a matrix that contains the network inputs. 

• t is a vector that contains the network targets. 

• net is the new neural network after the training process 

• tr is a vector that stores the performance ot the training process 

• y is a vector that contains the network outputs.     

Up to this point, the NN is ready to calculate its intensity prediction, the next step 

is to simulate the network using current information to obtain results at the time 

defined by the lead time  

2.4.3. Simulation.m 

This function is applied to simulate the trained NN with actual information. The 

syntax is shown as follows: 
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)r,net(simy =  

Where y is the simulated output applying the model net and r is the input vector 

that contains information don not know for the model at the training time. For the 

intensity prediction model, y is the forecast intensity and r is the current information 

about the hurricane under study. 

2.4.5. Print_valores.m 

This function is used to print the results in an ASCII file. It also keeps information 

about the best regressors and the neural network and regression performance indexes. 

 
 
 



 97

APPENDIX B 

DETERMINATION OF HURRICANE SAMPLE SIZE  

Determining sample size is a very important issue because samples that are too large 

may waste time, resources and money, while samples that are too small may lead to 

inaccurate results. 

When sample data is collected and the sample mean is calculated, that sample mean 

is typically different from the population mean

−

x

µ . This difference (δ ) between the 

sample and population means can be thought of as an error. A formula that will 

determine the appropriate sample size (n) for a given type II error (β ), type I error 

(α ) and δ  is shown as follows (Montgomery et al., 1995): 

( )
2

22zz
n

δ
σβα +

=  

Using a sample intensity mean of 50 kt, a standard deviation of 25 kt and δ is defined 

as 20 kt which is the difference allows between the sample mean and the population 

mean. The type I error probability is 0.05 and the type II error probability is 0.1.Then, 

the sample size is: 

cases 164.16
20

25*)28.196.1(n 2

22

==
+

=  

This procedure determines the sample size required when estimating the mean of a 

normal distribution. Assuming that the standard deviation of the normal distribution 

equals 25 kt, 16 cases are required to have a 90.0% chance of rejecting the hypothesis 

that µ =50 kt when the true µ =65 kt. 
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APPENDIX C 

ADVANCED MICROWAVE SOUNDING UNIT (AMSU) 

The Advanced Microwave Sounding Unit (AMSU) was launched on May 13, 

1998 and became the first microwave sounder with complete temperature sounding 

capability from the lower troposphere to the upper stratosphere. The AMSU is well 

suited for the observation of tropical cyclones because its measurements are not 

significantly affected by the ice clouds that cover tropical storms. It is a cross-track, 

line-scanned instrument designed to measure scene radiances in 15 discrete frequency 

channels which permit the calculation of the vertical temperature profile from about 3 

milibars (45 km) pressure height to the Earth's surface (figure C.1). 

 
Figure C.1 AMSU-A scanning characteristics  
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At each channel frequency, the antenna beamwidth is a constant 3.3 degrees 

(at the half power point). Thirty contiguous scene resolution cells are sampled in a 

stepped-scan fashion every eight seconds, each scan covering 50 degrees on each side 

of the sub satellite path. These scan patterns and geometric resolution translate to a 50 

km diameter cell at nadir and a 2,343 km swath width from the 833 km nominal 

orbital altitude. 

The main tropical cyclone parameters of interest to the forecaster are storm 

location and movement, thermal anomalies, wind speeds, and rain rate. While other 

satellite instruments can be used to estimate these parameters, the AMSU is the first 

satellite instrument that has the potential to measure all of them. Since clouds are 

nearly (but not completely) transparent to microwave radiation, the AMSU can 

measure the above parameters even through the central dense overcast that prevents 

visible and infrared satellite instruments from making these measurements. 

The AMSU has significantly improved spatial resolution, radiometric 

accuracy, and the number of channels over the previous Microwave Sounding Unit 

(MSU; figure C.2) that has been used for tropical cyclone analysis. The filled gray 

ellipses illustrate the 110-km resolution of the MSU. The black outlined ellipses 

illustrate the 48-km resolution of the AMSU-A instrument. The black dots mark the 

centers of the scan spots of the 16-km resolution AMSU-B instrument. 
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Figure C.2 Resolution improvements of AMSU over MSU 

The AMSU complements the much more frequent and higher-resolution 

observations of the geostationary satellites to give a more complete description of 

tropical storms.  

An application of the upper-level warm temperature anomalies is in assessing the 

intensity of tropical cyclones (maximum 1-min average wind speed at 10 m). Using 

data from previous microwave instruments, several investigators have examined the 

relationship between temperature anomalies (figure C.3) and the surface wind speed 

and central pressure of tropical cyclones (e.g., Kidder et al. 1978, 1980; Velden and 

Smith 1983; Velden 1989; Velden et al. 1991). The much higher spatial resolution of 

the AMSU allows one to more accurately estimate the storm intensity. The maximum 

temperature anomaly near the center of the storm was related with surface wind 

speeds and central pressures obtained from operational track data. 
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Figure C.3 Relationship between temperature anomaly and pressure  

Figure C.4 8 shows for the hurricane Bonnie (1998) that the temperature 

anomalies closely follow both the wind speeds and the pressures. Gaps in the data are 

caused by the storm being located between orbital swaths or by missing AMSU data.  

 

Figure C.4 Plot of wind speed, central pressure, and maximum  

temperature anomaly (retrieved from AMSU data) 
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To prove the effect of the hurricanes over the AMSU-A data, the following 

experiment was developed: Amsu-A data was obtained for the Julian date 253(Sept 

10, 2003) in the Atlantic Ocean. The same day, the hurricane Isabel was located in the 

coordinates of 21.1 degrees of latitude and 50.4 degrees of longitude with sustained 

winds of 115 knot. After two corrections (Mo, 1999; Wark, 1993), the brightness 

temperature of AMSU-A (channel 7) is plotted to find out the hurricane’s position 

(figure C.5). 

 

Hurricane Location 

Figure C.5 Amsu data (channel 7) for hurricane Isabel (03/0910) 

This figure showed that the hurricane had clearly an effect in the brightness 

temperature’s behavior. To see with more details this effect, an area was extracted 

(figure C.6) from the original view. The result (figure C.7) showed clearly the effects 

of the hurricane over the brightness temperature at 250 mb and proved the results 

obtained by Kidder et al. (2000). 
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Figure C.5 Aerial view of Amsu data (channel 7) for hurricane Isabel (03/0910) 

The next task in this attempt to use the AMSU data in the hurricane intensity 

prediction was to prove the relation obtained by Kidder et al. (2000) who 

demonstrated a correlation among the hurricane intensity, hurricane pressure and 

temperature at 250 mb obtained from AMSU.  

 

 

 

 

 

 

 

Figure C.6 Extracted area from AMSU (channel) for hurricane Isabel (03/09/10) 

Up to this moment the methodology to obtain the temperature at different 

pressure levels from AMSU is under development, instead temperature from NCEP at 
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250 m was used to prove this relationship. The experiment can be summarized as 

follows: first, intensity and pressure observations for 6 days (4 observations per day 

since 8 to 13 Sept, 2003) were taken for the hurricane Isabel. For each one of these 

observations, a NCEP file that contained the temperature at 250 mb was obtained. 

Second, a program was developed to get the five nearest NCEP temperature that 

surround the hurricane position and the following array was created: 

=data   

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

5,24

5,2

5,1

4,243,242,241,242424

4,23,22,21,222

4,13,12,11,111

T

T
T

 

TTTTPI

TTTTPI
TTTTPI

MMMMM

where is the  intensity observation (iI thi 24,,1i K= ), is the pressure 

observation, and  is  temperature observation for the  position ( ). 

iP thi

j,iT thi thj 5,,1j K=

Third, a linear regression was developed to relate the intensity ( ) with 

pressure ( ) and the 250 milibars temperatures ( ). The results (figure C.7 and 

C.8) obtained using Statgraphics 5.1 showed that both variables were significant at 95 

% and the variability of the intensity is explained at 97.4 %. 

iI

iP j,iT

 

Figure C.7 Output from the multiple regression procedure  



 105

 

 

 

 

 

 

 

Plot of Intensity

predicted

ob
se

rv
ed

80 100 120 140 160
80

100

120

140

160

Figure C.8 Observed and predicted intensity obtained from the regression 

Figure C.9 is used to judge the relative magnitude of the residuals with respect 

to the explanatory power of the hurricane pressure. The same analysis is performed 

for the temperature and shown in figure C.10 
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Figure C.9 Component effect plot for the hurricane pressure 

This analysis has proved again the importance of the hurricane pressure in the 

intensity prediction. It has also given a potential variable that can be used in the future 

to estimate the hurricane intensity. 
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Figure C.10 Component effect for the hurricane temperature at 250 mb. 
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APPENDIX D 

THE SAFFIR -SIMPSON HURRICANE SCALE 

The Saffir-Simpson Hurricane Scale is a 1-5 rating based on the hurricane's 

present intensity. This is used to give an estimate of the potential property damage 

and flooding expected along the coast from a hurricane landfall. Wind speed is the 

determining factor in the scale, as storm surge values are highly dependent on the 

slope of the continental shelf in the landfall region. 

D.1 Hurricane Category One 

Hurricane winds between 64 and 82 knot. Storm surges generally 4-5 ft above 

normal .No real damage to building structures. Damage primarily to unanchored 

mobile homes and trees. Some damage to poorly constructed signs. Also, some 

coastal road flooding and minor pier damage. Hurricanes Allison of 1995 and Danny 

of 1997 were Category One hurricanes at peak intensity. 

D.2 Hurricane Category Two 

Hurricane winds between 83 and 95 knot. Storm surges generally 6-8 ft above 

normal. Some roofing material, door, and window damage of buildings. Considerable 

damage to trees with some trees blown down. Considerable damage to mobile homes, 

poorly constructed signs, and piers. Coastal and low-lying escape routes flood 2-4 

hours before arrival of the hurricane center. Small craft in unprotected anchorages 

break moorings. Hurricane Bonnie of 1998 was a Category Two hurricane when it hit 

the North Carolina coast, while Hurricane Georges of 1998 was a Category Two 

Hurricane when it hit the Florida Keys and the Mississippi Gulf Coast. 
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D.3 Hurricane Category Three 

Hurricane winds between 96 and 113 knot. Storm surges generally 9-12 ft 

above normal. Some structural damage to small residences and utility buildings with 

a minor amount of curtain wall failures. Damage to trees with foliage blown off trees 

and large trees blown down. Mobile homes and poorly constructed signs are 

destroyed. Low-lying escape routes are cut by rising water 3-5 hours before arrival of 

the center of the hurricane. Flooding near the coast destroys smaller structures with 

larger structures damaged by battering from floating debris. Terrain continuously 

lower than 5 ft above means sea level may be flooded inland 8 miles (13 km) or more. 

Evacuation of low-lying residences with several blocks of the shoreline may be 

required. Hurricanes Roxanne of 1995 and Fran of 1996 were Category Three 

hurricanes at landfall on the Yucatan Peninsula of Mexico and in North Carolina, 

respectively.  

D.4 Hurricane Category Four 

Hurricane winds between 114 and 135 knot. Storm surges generally 13-18 ft 

above normal. More extensive curtain wall failures with some complete roof structure 

failures on small residences. Shrubs, trees, and all signs are blown down. Complete 

destruction of mobile homes. Extensive damage to doors and windows. Low-lying 

escape routes may be cut by rising water 3-5 hours before arrival of the center of the 

hurricane. Major damage to lower floors of structures near the shore. Terrain lower 

than 10 ft above sea level may be flooded requiring massive evacuation of residential 

areas as far inland as 6 miles (10 km). Hurricane Luis of 1995 was a Category Four 
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hurricane while moving over the Leeward Islands. Hurricanes Felix and Opal of 1995 

also reached Category Four status at peak intensity.  

D.5 Hurricane Category Five 

Hurricane winds greater than 135 knot. Storm surges generally greater than 18 ft 

above normal. Complete roof failure on many residences and industrial buildings. 

Some complete building failures with small utility buildings blown over or away. All 

shrubs, trees, and signs blown down. Complete destruction of mobile homes. Low-

lying escape routes are cut by rising water 3-5 hours before arrival of the center of the 

hurricane. Major damage to lower floors of all structures located less than 15 ft above 

sea level and within 500 yards of the shoreline. Massive evacuation of residential 

areas on low ground within 5-10 miles (8-16 km) of the shoreline may be required. 

Hurricane Mitch of 1998 was a Category Five hurricane at peak intensity over the 

western Caribbean. Hurricane Gilbert of 1988 was a Category Five hurricane at peak 

intensity and is one of the strongest Atlantic tropical cyclones of record.
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APPENDIX E 

CONFIDENCE INTERVAL FOR THE HURRICANE INTENSITY 

PREDICTION 

A confidence interval for the prediction of the hurricane intensity was developed to 

take into account the inherent variation of the neural network during its training stage 

due especially to the selection of the initial point. 

An interval of confidence of an unknown parameter θ is an interval of the form 

 where the end-points l and u depend on the numerical value of the statistic 

for a particular sample and on the sampling distribution of . Since different 

samples will produce different values of θ  and, consequently, different values of the 

end-points l and u, these end-points are values of random variables, say, L and U, 

respectively. From the sampling distribution of , then, to determine values of L 

and U such that the following probability statement is true:  

ul ≤θ≤

θ̂ )ˆ(F Θ

ˆ

)ˆ(F Θ

α−=≤θ≤ 1)UL(P  

where .Thus, the probability of selecting a sample that will produce an 

interval containing the true value of 

10 ≤α≤

θ  is α−1 . 

The procedure used to calculate the interval of confidence is explained as follows: 

1. The intensity prediction for each instance of time was repeated 100 times 

varying the initial point in the neural network’ stage. 

2. The cumulative distribution of the prediction sample was fitted to the closest 

distribution function using as a measure of fitness the Kolmogorov – Smirnov 

test. 
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The Kolmogorov - Smirnov test calculates the maximum distance between the 

cumulative distribution of the data and the cumulative distribution function of 

the fitted distribution. This calculation is a nonparametric method that tests the 

overall goodness of fit between the distribution of the data and a given 

distribution. The Kolmogorov – Smirnov can be expressed as follows: 

)x(F̂)x(FmaxD −=  

This test involves two distribution functions nd where  is the 

cumulative probability density function of the population and  is the 

cumulative probability density function of the sample. If the two have been 

drawn from the same population distribution, the cumulative distributions of 

both samples may be expected to be close to each other; if the two cumulative 

distributions differ, this suggests that the samples come from different 

populations. 

)x(F  a )x(F̂ )x(F

)x(F̂

3. Once, the distribution function that best adjusted the sample under study was 

detected, an interval of confidence was calculated using the parameters that 

correspond for this adjusted distribution function. 

The prediction of the intensity for Hurricane Isaac (2000) at 12 hours was used to 

calculate a confidence interval using the procedure describes above. Figure E.1 shows 

the predictions that have been calculated 100 times and the distribution function that 

best fit the sample was used to obtain the parameter estimates of this fitted 

distribution, and a 95 % confidence interval was calculated. Table E.1 shows the 

values obtained for the hurricane Isaac. 
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Figure E.1 Confidence interval at 95% for the hurricane Isaac (Sept, 2000) 

A histogram was developed to show the frequency of the identified 

probability density functions. Figure E.2 shows that the majority of the predictions 

follow a non normal distribution.  

Table E.1 Hurricane Isaac (2000) interval of confidence (upper and lower bound) 
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Figure E.2 Histogram for the distribution function used in the development of the 

hurricane Isaac confidence interval 

For the 25 intensity predictions, the Laplace and Logistic distribution were 

used 8 times to fit the distribution of the intensity prediction sample, the Weibull 

distribution was used 5 times, the Lognormal distribution, and the Normal and 

Uniform distribution were used one time each. 

Figure E.3 shows four examples of the most representative distribution 

functions used in the development of the confidence interval for the hurricane Isaac. 
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Figure E.2 Histogram for the most representative distribution function used in the 

development of the hurricane Isaac confidence interval 

 


	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I    INTRODUCTION
	1.1. Justification
	1.2. Objectives
	1.3. Scope
	1.4. Report Organization

	CHAPTER  II  LITERATURE REVIEW
	CHAPTER  III   METHODOLOGY
	3.1. Introduction
	3.2. General Description of Methodology
	3.3. Design of Hurricane Database
	3.3.1. Data
	3.3.3. Hurricane Database

	3.4. Identifying analog hurricanes
	3.4.1 Description of a Competitive Neural Network
	3.4.2 Application of the Competitive Neural Network

	3.5. Random Variable Selection Process
	3.5.1 Estimation of regression coefficients
	3.5.2. Application of the random variable selection procedur

	3.6. Intensity Prediction Using Feedforward Neural Network
	3.6.1 Description of the Levenberg-Marquardt Backpropagation
	3.6.2 Application of the Levenberg-Marquardt Backpropagation


	CHAPTER  IV  EXPERIMENTAL RESULTS
	4.1 Experiment with Strong Hurricane Intensity
	4.2 Experiment with Typical Hurricane Intensity
	4.3 Fast Intensity Change and Re-Intensification Experiments
	4.4 Summary of Results

	CHAPTER  V  CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES

