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El Zika es una enfermedad infecciosa desarrollada por el Virus del Zika (ZIKV

por sus siglas en ingles), la cual ha estado, alertando a las regiones tropicales y

subtropicales en los últimos años. La enfermedad es conocida como una infección

que puede ser trasmitida por v́ıa sexual o mediante un vector, en este caso un

mosquito [4].

Es muy conocido que los śıntomas son señales que permiten deducir el desarrollo

de algún tipo de enfermedad. Sin embargo, no siempre el cuerpo humano produce

śıntomas cuando es atacado por un virus o bacteria. Este es el caso de enfermedades

asintomáticas, pues son dif́ıciles de diagnosticar y en consecuencia de tratar. De-

safortunadamente, en muchos casos, las infecciones asintomáticas son detectadas

cuando la enfermedad ya ha causado mucho daño de forma silenciosa.

El Zika es una enfermedad sintomática en el 20% de los casos y asintomática

en el restante 80%. Debido a esto y con la motivación de trabajos anteriores, en

esta investigación se estudia la dinámica de la transmisión vectorial y sexual del

ZIKV considerando individuos infectados sintomáticos y asintomáticos. El modelo
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propuesto incluye un parámetro de alteración de infecciosidad, el cual permitirá es-

tudiar todos los posibles casos de infecciosidad desconocida al presente, analizar su

efecto en la población y entender el rol de los asintomáticos, no solo bajo transmisión

vectorial, si no también por transmisión sexual. Para esto, se formuló y estudió un

modelo matemático epidemiológico compuesto de ocho estados. Los ocho estados

representan las diferentes etapas que un humano y un mosquito con el ZIKV puede

experimentar. Se obtiene el número reproductivo básico R0, se realiza el análisis

cualitativo y numérico del sistema para valores de parámetros tomados de la liter-

atura, aśı como también, se realiza el análisis de sensibilidad de parámetros al R0.

Existen dos puntos de equilibrio en el sistema, el libre de Zika y el endémico. El

análisis numérico predice una epidemia, donde el número de infectados (incidencia)

puede crecer o decrecer dependiendo de los valores asignados a cada parámetro. Por

lo tanto, esfuerzos para controlar una epidemia podŕıan enfocarse en reducir la tasa

de infección de mosquito a humano, la tasa de transmisión sexual y controlar de

manera oportuna la cantidad de individuos asintomáticos en la población. Cuando

el numero reproductivo básico de transmisión vectorial es mas grande que el de

transmisión sexual hay un retardo en el que el virus invada la población y bajo este

escenario existen oportunidades para prevenir una epidemia del ZIKV con medidas

preventivas como insecticidas, repelentes, condones, etc. R0 es mas sensitivo a la

tasa de mortalidad del mosquito y a la tasa de transmisión vectorial, por lo tanto la

mejor manera de prevenir y controlar un brote del ZIKV es disminuyendo el número

de mosquitos en la población e iniciando campañas para que cada individuo elim-

ine los criaderos. Esta investigación también sugiere campañas para detectar los

infectados (ya sea asintomáticos o sintomáticos) por el ZIKV y aislarlos, a tiempo.
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Zika is an infectious disease developed by the Zika Virus (ZIKV), which has

been alarming people during the last few years in tropical and subtropical regions.

It is known as an infection that can be transmitted both sexually and through a

vector, in this case a mosquito [4].

It is well known that symptoms are signals that allow to deduce the develop-

ment of some type of disease. However, the human body does not always produce

symptoms when attacked by a virus or bacterium. This is the case of asymptomatic

diseases, a fact that makes them difficult to diagnose and, in consequence, to treat.

Unfortunately, in many cases, the asymptomatic infected are detected when the

disease has done much damage silently.

Zika is symptomatic in the 20% of cases and asymptomatic in the remaining

80%. Because of this and through the motivation of previous works, this research

analyzes the dynamics of the vector and sexual transmissions of ZIKV in symp-

tomatic and asymptomatic infected individuals. The model proposed includes a

parameter of alteration of infectiousness that will allow to study all possible cases
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of presently unknown infections, to analyze its effect on the population, and to un-

derstand the role of asymptomatic humans, not only under vector transmission but

also considering sexual transmission. Thus, a mathematical epidemiological model

composed of eight stages was formulated and studied. The eight stages represent

the different phases that humans and mosquitoes with ZIKV may experience. The

basic reproductive number R0 was obtained and the qualitative and numerical anal-

ysis of the system were done for values of parameters taken from the literature, as

well as the sensitivity analysis of parameters, thus obtaining two equilibrium points,

the Zika-free equilibrium and the endemic equilibrium. The numerical analysis pre-

dicts an epidemic, where the number of infected can grow or decrease depending

on the value of key parameters. Therefore, efforts to control an epidemic could fo-

cus on reducing the mosquito-to-human infection, sexual transmission rate, and the

control, in a timely manner, of the number of asymptomatic individuals in the pop-

ulation. When the vector transmission ratio is larger than the sexual transmission

ratio, there is a time delay for ZIKV to invade the population. Under this scenario

there is a window of opportunities to prevent an epidemic of ZIKV with preventive

measures, such as insecticide, repellents, condoms, among others. R0 is more sen-

sitive to the mosquito mortality rate and vector transmission rate; therefore, the

best way to prevent and control an outbreak of the ZIKV is by decreasing the num-

ber of mosquitoes in the population and initiating campaigns for each individual to

eliminate the breeding sites. This research also suggests campaigns to detect those

infected-whether asymptomatic or symptomatic-with the ZIKV and isolate them on

time.
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Chapter 1

INTRODUCTION

One of the main public health concerns are diseases of vector transmission which

are organisms that transmit pathogens and parasites, such as mosquitoes, These dis-

eases represent 17% of the estimated global burden of infectious diseases [34]. They

are transmited from person to vector to person and from vector to person to vector.

Some examples of vector borne diseases are Zika, dengue, schistosomiasis, lymphatic

filariasis, yellow fever and malaria, among others. The most deadly being malaria,

which caused an estimated 429000 deaths in 2015 worldwide [34]. On the other

hand, currently there are more than 30 types of viruses, bacterias, and parasites

which are transmitted through sexual contacts. The World Health Organization

(WHO) reports that more than 1 million individuals get infected by some sexual

transmission infection every day. Some of these sexually transmitted diseases are

genital herpes, gonorrhea, HIV-AIDS, human papillomavirus (HPV), and syphilis,

among others and now Zika [35].

Zika is an infectious disease that has turned emergency alarms in the last few

years in tropical and subtropical regions. The Zika Virus (ZIKV) develops Zika

fever or Zika disease. Its name comes from the Zika forest (in Uganda) where in

1947 this virus was first isolated [29]. In 2007, a major epidemic occurred in Yap

Island, Micronesia; and more recent outbreaks ocurred, in 2013 in French Polynesia

[29] and in 2016 in Puerto Rico. In March of 2017 the Puerto Rico Department of

Health reported (for the years 2015−2017), 39, 984 cumulative confirmed Zika cases
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in the island. The reports also showed 3, 448 cases from pregnant women (only)

of whom 1, 898 (55%) were symptomatic and 1, 550 (45%) were asymptomatic. It

was also reported that there were 415 (< 1%) hospitalized cases [13]. It is also

known that ZIKV can be transmitted from a pregnant woman to her fetus [10]. In

addition, serious defects are associated with children born of an infected mother

[24]. According to WHO, in Brazil, the spread of ZIKV has been accompanied by

an unprecedented rise in number of children being born with unusually small heads,

know as microcephaly. Also in Brazil, WHO reported a steep increase in Guillain

Barre Syndrome (GBS) a neurological disorder that could lead to paralysis and

death. Thus, there is scientific consensus that ZIKV can cause microcephaly and

Guillain Barre syndrome [36]. For example, the Puerto Rico Department of Health

informed that in August 2017 there were 72 cases of GBS of which 53 of them had

Zika [13].

ZIKV is now known as the first example of an infection that can be

transmitted both sexually and through mosquitoes [4], as well as, perina-

tally and by blood-transfusions. The principal vector of Zika is the infected female

mosquitoe of the flavivirus genus of name Aedes aegypti, the same mosquito that

transmits dengue [25] and chikungunya fever. ZIKV is the first flavivirus known to

be of sexual transmission [8]. It was in February 2016 that the Centers for Disease

Control and Prevention (CDC) first reported two confirmed cases of sexual trans-

mission of ZIKV [32]. The CDC also informed that Zika has been found in the

semen, vaginal fluids, urine and blood of those infected with the virus.

Figure 1–1 shows the cycle of the sexual and mosquito transmission of the ZIKV.

An infected female mosquito bites a susceptible human, which may get infected with

the virus, then the infected human can transmit the virus, through sexual contact

to susceptible persons or to mosquitoes not infected through its bite.
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An infected 
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Figure 1–1: Dynamics of direct and vector transmission of Zika disease.

Zika is a disease of great scientific interest. It has no vaccine, no treatment,

medicines that heal the patient’s burden. But the medical school of the Medical

Science Campus of the University of Puerto Rico, led by Dr. Jorge Santana, reported

in October 2016 that they are in charge of the research study called ZIKA 002, which

purpose is to evaluate the safety of a vaccine called GLS -5700 for the prevention of

infection caused by the Zika virus and if this vaccine produces an immune response

to this disease [7]. Valega, W. and Rios-Soto, K. [33] developed studies from a

mathematical model to understand the effects of a possible vaccine against Zika in a

the spread of the virus through the population. Some ways to prevent the spread of

Zika’s disease are: avoiding conserved water in containers that can become mosquito

breeding sites, use of mosquito repellents, and use of mosquito protection on windows

and beds. Sexual transmission can be prevented through the use of condoms, taking

preventive measures when traveling to areas with Zika.
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1.1 Symptomatic versus asymptomatic infection and their infectivity

When detecting the presence of pathogens, the human body manifests a warning

or signal that allows to deduce the development of some type of disease, which

cause is the presence of this agent in the body. These signs are called symptoms.

Therefore symptomatic infected individuals are the carriers of infectious agents and,

hence, manifest symptoms. Symptoms indicate the type of infectious agent that

is invading the human body (producing the disease) which allows to impose the

infected symptomatic to some form of treatment, to cure or control the disease and,

in some cases, to control a possible outbreak.

However the human body does not always, in the presence of an infectious

agent, produce warnings or develops symptoms. This is called asymptomatic disease

(without symptoms), where the carrier is called an asymptomatic infected individual.

This makes it difficult to detect the presence of this pathogen. Unfortunately, in

many cases, the asymptomatic infected are detected when the disease has done much

damage silently, when it has developed completely, and it is too late to prevent the

disease or its spread through the population.

Zika is a sexually and vector transmitted disease that in 20% of cases is symp-

tomatic and in the remaining 80% is asymptomatic ([3],[26]), making Zika more

difficult to diagnose and, in consequence, to treat. The most common symptoms of

Zika are fever, rash, join pain, conjunctivitis (red eyes), muscle pain, and headache.

The period of incubation of the virus in humans is 3 to 12 days while the symptoms

appear from 2 to 7 days in symptomatic patients. A person acquires permanent

immunity when he or she recovers from the disease.

According to the multilingual glossary of medical terms [21], infectivity refers to

the ability of a infected individual to transmit and establish the infection in another

susceptible individual. We can interpret this definition as in that if individual A is

more infectious than B, it means that A has the power to infect more individuals
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than B since contagion is more likely. An example that allows us to understand this

concept, but does not relate to the content of the research, is: if two people, A and

B, like to drink alcohol but the amount that A takes is much greater than the one

that B takes, then, person A likes more alcohol than B, so it could be that A can

influence more people to drink alcohol than B. Therefore A is more infectious than

B.

In this research we study through a mathematical model, the dynamics of the

vector and sexual transmissions of Zika under symptomatic and asymptomatic in-

fected individuals. As described by, Moreno, V., et. al. [26], there is no full

knowledge of the dynamics of Zika transmission. Thus, they assumed that symp-

tomatic and asymptomatic humans are equally infectious. Other authors such as P.

Padmanabhan [30] conducted their research under similar assumption. Therefore

for our work and motivated by previous investigation, a parameter of alteration of

infectiousness was added to the model allowing to study all possible cases of infec-

tions i.e a variable infectiveness (less, equal o greater) and to understand its effects

on population. It will also focus on understanding the role of asymptomatic humans

in an outbreak of Zika, not only under vector transmission, which Moreno et. al did

not [26], but also considering direct transmission (sexual), which would broaden the

knowledge about the ZIKV spread.

1.2 Objectives

The aim of this thesis work is to study the role that symptomatic and asymp-

tomatic individuals have in the propagation of Zika Virus (ZIKV) under direct and

vectorial transmission with infectious variability. For this we have proposed the

following objectives:
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• Formulate a mathematical model consisting of a system of non-linear ordinary

differential equations to describe the spread of Zika virus in a population con-

sidering asymptomatic and symptomatic individuals under sexual and vector

transmission.

• Compute the equilibria of the system and characterize their stability.

• To determine the basic reproductive number R0 associated with the ZIKV dis-

ease.

• Perform numerical simulations to verify the theoretical results obtained.

• Perform sensitivity analysis to identify key parameters of the model.

• Analyze and interpret the epidemiological consequences of the results obtained.



Chapter 2

MATHEMATICAL MODELS OF ZIKA

DISEASES

The use of mathematical models of infectious diseases has been of great interest

to scientists and health professionals. Mathematical modeling is the formulation,

for example through differential equations, of the relationships between variables or

parameters of epidemics processes and to study the behaviors of infectious disease.

Models can play an important role in the construction, planning and execution of

programs for the detection, prevention and control of diseases.

The pioneer mathematical epidemic model was built by Kermack and McK-

endrick [23] and since then variations have been implemented throughout. There

are four basic models of infectious diseases, although there are well known varia-

tions of these among the literature (see Hethcote H.W. (1994) ”A Thousand and

One Epidemic Models” [19]):

• SI: A susceptible-infected model describes when a susceptible individual (who

may be infected by the infectious agent) has no immunity to the disease. When

an individual is infected it becomes infectious and therefore can infect other

individuals of the susceptible population.

• SIR: A susceptible-infected-recovered model is related with diseases that confer

permanent immunity and describes when a susceptible individual is infected

and gets recovered. An individual can go directly from S to R through artificial

immunity, by vaccination or some other method.

7
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• SIS: A susceptible-infected-susceptible model describes when a susceptible indi-

vidual who is infected can be susceptible to infection again. This type of model

is used in cases where the disease does not confer immunity.

• SIRS: A susceptible-infected-recovered -susceptible model is similar to the SIR

model. But in this case the immunity is not permanent and an individual is

again susceptible to infected (for example a common cold).

• SEIR: A susceptible-exposed-infected-recovered -susceptible model is similar to

the SIR model. But in this case there is a new stage, the Exposed individual,

which is when an individual acquires the virus but it is in an incubation period

for a significant period of time, and typically not able to transmit the disease to

others.

Numerous efforts have been made to understand sexually and vectorial trans-

mitted diseases, in particular applying mathematical modeling. The follow is a

selection of some important work relevant to this thesis.

In 1998 Lourdes Esteva and Cristobal Vargas formulated a mathematical model

to analyze the dengue disease transmission in a constant human population and

variable vector population. The authors studied the global stability of the endemic

equilibrium and stability of periodic orbits and discussed the control measures of

vector population, as well as through the basic reproductive number with some

numerical simulations. The model consisted of 5 ordinary differential equations: 3

associated to the human population with a SIR type of behavior and 2 associated to

the vectorial population with an SI behavior. The authors concluded that decreasing

the carrying capacity of the environment for mosquitoes by frequent reduction of

the vector breeding sites, seems to be the more effective way to control the disease.

[17].

In June 2016, Gao D. et. al. [18] proposed a non-linear system of differential

equations as a mathematical model to investigate the impact of mosquito-borne and
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sexual transmission on the spread and control of ZIKV and calibrated the model to

ZIKV epidemic data from Brazil, Colombia, and El Salvador. They considered that,

an individual may progress from susceptible (Sh) to asymptomatically infected (Ah)

to recovered (Rh), or from susceptible to exposed (Eh) to symptomatically infected

(Ih1) to convalescent (Ih2) to recovered (Rh). On the other hand mosquitoes may

progress from susceptible (Sv) to exposed (Ev) to infectious (Iv). In there model, Gao

D et. al., assumed that mosquitoes can not be infected by biting asymptomatically

ZIKV infected people. They estimated the basic reproductive number to be 2.005,

perform a sensitivity analysis for it, obtaining that R0 is most sensitive to the

biting rate and mortality rate of mosquitoes. The author also concluded that if

sexual transmission increases the risk of infection and epidemic size also increases,

prolonging the outbreak. Prevention and control efforts against ZIKV should target

both the mosquito-borne and sexual transmission routes.

Note that Gao D. et. al. considered that a mosquito can not be infected by

an asymptomatic individual and also consider the immediate step from susceptible

to asymptomatic. The model proposed in our research, considers that a mosquito

can be infected by an asymptomatic individual and that the only difference between

an asymptomatic and symptomatic individual is that the first one does not present

symptoms but has the virus and the second has symptoms, this means, that both

type of individual go through a state of exposition to ZIKV and progress thought

the disease.
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In August of 2016, Fred Brauer, et. al. [4], proposed and analyzed some models

for epidemics of vector-transmitted diseases among them:

S ′ = −βS Iv
Nv

− αS I
N
, (2.1)

E ′ = βS
Iv
Nv

+ αS
I

N
− kE, (2.2)

I ′ = kE − γI, (2.3)

S ′v = µNv − µSv − βvSv
I

N
, (2.4)

E ′v = βvSv
I

N
− (µ+ η)Ev, (2.5)

I ′v = ηEv − µIv, (2.6)

where N = S + E + I and Nv = Sv + Ev + Iv are constant populations.

The authors considered that sexual transmission of the ZIKV was possible,

however according to the CDC and WHO the sexual transmission is now confirmed

[4]. The model was analyzed to clarify the relationship between sexual and vector

transmission. It was also formulated to assess epidemiological consequences and to

provided qualitative and quantitative behavior including calculations of the basic

reproductive number (R0), all insights for better comprehension of the ZIKV. The

basic reproductive number found by Brauer, et. al. was:

R0 = ββv
η

µγ(µ+ η)
+
α

γ
,

in which they identify Rd =
α

γ
as the vector transmission reproduction number

and Rv = ββv
η

µγ(µ+ η)
as the direct transmission reproduction number, so that

R0 = Rv +Rd.

In October 2016, Baca-Carrasco D. and Velasco-Hernandez J. [5] proposed three

mathematical models, in which vector transmission of the virus, sexual contact

transmission and migration were considered. The first is a SEIR-Vector Model,

the second is a two-sex SIR-Vector Model in where, they distinguish between the,
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male and female populations. The third model the Two-Sex SIR-Vector Model that

includes the role of migration in behavior of the virus when there is migration of the

infected population. They performed numerical simulations of the model showing

that sexual transmission influences the magnitude of the outbreaks and migration

generates outbreaks over time.

Note that although different type of models are propose, none of these discussed

consider the case of infected symptomatic and asymptomatic individual; and their

infectiousness in general.

Moreno V. et. al. in December 2016, [26], proposed a model in which sus-

ceptible individual (Sh) become infected through a mosquito bite them becomes an

exposed individual (Eh) of which, it passes to a state of asymptomatic individual

(Ih,a) and symptomatic (Ih,s) which finally recover (Rh). On the other hand borne

mosquitoes are susceptible (Sv) then become exposed (Ev) by stinging any of the

humans infected with the ZIKV and the progressing to, infected mosquitoes (Iv).

Note that the authors do not consider sexual transmission and assume that the in-

fected symptomatic and asymptomatic have equal infectiousness. In our research,

we consider the sexual transmission of the ZIKV and incorporate a parameter to

account for the infectivity of the two types of infected individuals in the population,

asymptomatic and symptomatic.



Chapter 3

MATHEMATICAL BACKGROUND

The analysis of the system of differential equations that models the Zika trans-

mission dynamics considered in this work is basically done according to the theories,

techniques, and methods developed in [6], [14] ,[15], [16], [20], [27], and [37] from

which definitions, theorems, and sections have been taken to support the purpose

of this work.

3.1 Definitions and Basic Theorems

In the development of this investigation, differential equations of the form

x′(t) = f(x), (3.1)

are considered, where f is a vector field of class C1, that is, f is a continuous function

with continuous first partial derivatives in an open U set of Rn. A differential

equation of this class in which the function f does not explicitly depend of the

independent variable t is called autonomous.

A solution of the Equation (3.1) in the interval I ⊂ R is a function x(t)

x : I → Rn,

continuously differentiable, which satisfies the Equation (3.1).

Theorem 1. Existence and Uniqueness( [20], Ch. 8, Sec. 2).

12
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Let U be an open subset of Rn, x0 a point in U , and f an application of class

C1 in U , then there exists an a > 0 such that the initial value problem

x′ = f(x),

x(0) = x0,

(3.2)

has a unique solution x(t) on the interval [−a, a].

Definition 3.1.1. Let U be an open subset of Rn and f an application of class C1

in U . For x0 in U we denote φ(t, x0) the solution of the Initial Value Problem (3.2)

defined over a maximal interval of existence I. For t in I, the set of applications

φt : U → U,

defined as φt(x0) = φ(t, x0), is called the flux of the differential equation, Equation

(3.1).

Definition 3.1.2. Let U be an open set of Rn, f ∈ C1(U), and φt : U → U the flux

of the Differential Equation (3.1) defined for all t ∈ R. Ω ⊂ U is called invariant

with respect to the flux if φt(Ω) ⊂ Ω for all t ∈ R, and Ω is called positively (or

negatively) invariant with respect to the flux if φt(Ω) ⊂ Ω for all t ≥ 0 (or t ≤ 0).

One way to consider the qualitative analysis, locally, of the differential equation

(3.1) is to use its linearization. This illustration is given below.

Definition 3.1.3. Let x be a point in U . x is an equilibrium point of system

(3.1) if f(x) = 0, that is, if x is a root of the function f .

Definition 3.1.4. The equilibrium point x is stable if for all ε > 0, there exists a

δ > 0 such that for all x in U with ||x − x|| < δ it is fulfilled that ||φt(x) − x|| < ε

for t ≥ 0. If a δ > 0 can be chosen such that for all x in U with ||x − x|| < δ it is

fulfilled that

lim
t−→∞

φt(x) = x,



14

then x is asymptotically stable. An equilibrium point x that is not stable is called

unstable.

Intuitively, a point of equilibrium is stable if all the solutions that start near the

point of equilibrium remain closed to it for all future time, and it is asymptotically

stable if all the solutions that start near the point of equilibrium are drawn closer

to it for all future time; otherwise it is unstable.

x
_

x
_

x
_

U U
U

Stable Asymptotically Stable Unstable

Figure 3–1: Stability of the equilibrium points.

Linearization Criteria

Let x be an equilibrium point of the differential equation system (3.1). We consider

a disturbance of x given by

x = x+ y, with x in U,

then developing f in the Taylor series around x we have

x′ = x′ + y′ = f(x+ y) = f(x) +Df(x)y +N(x, y),

with y in a neighborhood of the origin of Rn, N(x, y) a nonlinear function such that

lim
||y||−→0

N(x, y)

||y||
= 0,

and Df(x) the derivative of f at x defined by
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Df(x) =



∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x1

. . . ∂fn(x)
∂xn


.

This is known as the Jacobian Matrix of f in the point x.

Given that x is an equilibrium point of f , then f(x) = 0 and therefore

y′ = Df(x)y +N(x, y).

Under certain conditions the stability of the point x of System(3.1) is determined

by the stability of the origin y = 0 of the linear system

y′ = Df(x)y,

which is know as the linearization of system (3.1) around x. We consider this

below.

Definition 3.1.5. Let x be an equilibrium point of (3.1), then

• If none of the eigenvalues of the matrix Df(x) has real part equal to zero, x is

a hyperbolic equilibrium point.

• If any eigenvalue of Df(x) has real part equal to zero the equilibrium point is

non hyperbolic.

Definition 3.1.6. Let x be a hyperbolic equilibrium point of the differential equation

(3.1).

• x is a sink if all the eigenvalues of Df(x) have negative real part.

• x is a source if all the eigenvalues of Df(x) have positive real part.

• x is a saddle if Df(x) has at least one eigenvalue with negative real part and

one eigenvalue with positive real part.
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Definition 3.1.7. Let x be an equilibrium point of the differential equation (3.1).

x is a center if any eigenvalue of Df(x) has real part equal to zero.

Theorem 2. ( [20], Ch. 9, Sec. 1-2).

Let x be a hyperbolic equilibrium point of the differential equation system (3.1),

then:

1. If x is a sink, then x is asymptotically stable.

2. If x is a source or a saddle, then x is unstable.

A result that directly relates the flux of the nonlinear system (3.1) with its

linearization around an equilibrium point is the following:

Theorem 3. Hartman-Grobman. ( [37], Ch. 2, Sec. 2.2D).

Let U be an open subset of Rn, f an application of class Cr, that is, a continuous

function with continuous partial derivatives until order r, on U , r ≥ 1, and x in U

a hyperbolic equilibrium point of (3.1), then there exists a homeomorphism h defined

in some neighborhood V of x that transforms locally the orbits of the nonlinear flux

φt(x0) of (3.1) in the orbits of the flux

eDf(x)th(x0),

of the linear system

y′ = Df(x)y.

The homeomorphism h preserves the direction of the orbits and can be selected in a

way that preserves the orientation in the time.

3.2 Basic Reproductive Number

In this section, the concept of the basic reproductive number R0 is presented,

mathematically defined as the Next Generation Matrix method [6], [14]. [15].
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Figure 3–2: The Theorem of Hartman-Grobman.

Definition 3.2.1. Considerer that the differential equation (3.1) describes the evo-

lution of an infection in a healthy population in which a single infected individual

is introduced. The basic reproductive number, denoted by R0, is the average

number of infected secondary individuals generated by the first infected individual

during the period of infectivity in an entirely susceptible population.

In addition, R0 is the initial growth rate of an infection which refers only to

the situation in which there is not regulation on the infected population. By its

definition typically, if R0 < 1, each infected individual generates, in average, less

than one infected individual; in consequence, the infecion will tend to disappear

from the population. On other hand, if R0 > 1, each infected individual will infect,

in average, more than one susceptible individual, causing the spread of the infection

and this may result in an endemic state of disease. In the literature of mathematical

biology, there is a method to calculate R0 called the Next Generation Matrix method.

In addition, this method allows to interpret biologically the components of the

matrix. It is assumed that the population can be classified into compartments

where individuals from a given one are distinguishable from another. In detail,

the parameters may vary from each compartment, but they are identical for all

individuals within a given compartment. It is also assumed that the parameters

do not depend on the time in which an individual remains in a compartment. The

algorithm is based on a system of ordinary differential equations which describes

the evolution of the number of individuals in each compartment. It is assumed that
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from n compartments, m (m > 1) correspond to the infected population, while the

rest corresponds to individuals without infection [15]. The system of differential

equations for the infection transmission model, which models the exchange rate xi,

where xi ≥ 0, is the number of individuals in the compartment i, can be written as:

dX

dt
= F (X)− V (X),

X =



x1

·

·

·

xn


, F (X) =



f1(X)

·

·

·

fn(X)


, V (X) =



y−1 − y+1

·

·

·

y−n − y+n


,

where:

• fi(X) is the rate of appearance of new infections in the compartment i,

• y+i : transfer rate within the i− th compartment based in other forms,

• y−i : transfer rate outside the i− th compartment.

Note that F (X) should only include new infections that are appearing, but

should not include terms describing the transfer of infected individuals from one

infected compartment to another.

Definition 3.2.2.

Consider the Jacobian matrix of F and V at the equilibrium point x̄, this is,

DF (x̄) =

[
∂Fi(x̄)

∂xj

]
, DV (x̄) =

[
∂Vi(x̄)

∂xj

]
, i, j = 1, . . . ,m

the Next Generation Matrix (NGM) is defined as the following product:

(DF (x̄)).(DV (x̄)−1).

Each component of the matrix DF (x̄) represents the rate at which new infec-

tions are generated by infected individual . Each component DV (x̄)−1 represents



19

the mean time in which the infected individual remains in the population of unin-

fected individuals. Thus, each component (DF (x̄)).(DV (x̄)−1) denotes the expected

number of new infections generated by the infected individual throughout the period

of infectivity. Therefore, R0 is established as the largest positive eigenvalue of the

NGM.



Chapter 4

MODEL FOR ZIKA VIRUS DISEASES

To understand the dynamics of the Zika virus under vector and direct trans-

mission and the effect of variable infectivity on the asymptomatic and symptomatic

infected individual, a mathematical epidemiological model is built. The model is

composed of eight ordinals equations differentials, representing the stages that hu-

man and a vector with ZIKV may experience (see Figure: 4–1). According to their

epidemiological status, the total human and vector population are stratified into:

S̄(t) represents the number of susceptibles humans, Ēh(t) the number of exposed

humans , Īs(t) the number of symptomatic infectious humans, Īa(t) the number

of asymptomatic infectious humans, while R̄(t) represents the number of recov-

ered humans, all at time t. The variable S̄v(t) is the number of susceptibles vec-

tors (mosquitoes), Ēv(t) and Īv(t) is the number of exposed and infectious vectors

(mosquitoes) respectively, all at time t.

Meanwhile, Nh and Nv are the total population of humans and vectors respec-

tively. A human is considered susceptible (S̄) when he or she may be infected by

the ZIKV and has no immunity to the disease. The term µhNh represents the re-

cruitment rate or susceptibles human birth and because there are no official reports

of deaths from Zika’s disease alone, we do not assume death due to illness. The

natural death rate of humans in the population is denoted by µh. Therefore, µhS̄,

µhĒh, µhĪs, µhĪa and µhR̄ represent the number of individuals who are suscepti-

ble, exposed, symptomatic infectious, asymptomatic infectious, and recovered per

20
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unit of time, respectively. A susceptible individual can acquire the ZIKV by vec-

tor transmission with a transmission rate from vector to human βhv = afhv where

a is the biting rate of mosquitoes and fhv is the probability that a bite transmits

infection from vector to human. Therefore, βhvS̄
Īv
Nv

is the susceptible number that

gets infected by the bite of a mosquito and progresses to an exposed stage. In our

model, the ZIKV can be acquired by sexual transmission with a transmission rate α.

In consequence, αS̄

(
Īs + σĪa
Nh

)
is the susceptible number that is infected by sexual

contact with either symptomatic or asymptomatic individuals and progresses to the

exposed class. Since the degree of infectivity of asymptomatic and symptomatic

individuals is unknown, we defined a parameter σ to account for the infectivity

[26]. Therefore, a parameter of alteration of infectiousness σ is suggested, which

can represent all posible cases of infectiousness as follows:

• if 0 < σ < 1, then Ia is less infectious that Is,

• if σ = 1, then Ia and Is are equally infectious,

• if σ > 1, then Ia is more infectious that Is.

When a susceptible human acquires the ZIKV, it progresses to the exposed class

symptomatically infectious with probability ρ at a rate kh and asymptomatically

infected with a probability q = 1− ρ, also at a rate kh. Thus, the parameter kh rep-

resents the incubation period of ZIKV in humans. In consequence, ρkhĒh and qkhĒh

are the numbers of symptomatic and asymptomatic infected humans, respectively.

An individual infected by the ZIKV can recover and acquire permanent immunity;

the recovery rate are γs and γa for symptomatic and asymptomatic individuals, re-

spectively. Thus, γsĪs and γaĪa are the numbers of symptomatic and asymptomatic

recovered individuals, respectively.

The mosquito population becomes susceptible at a birth or recruitment rate

given by µvNv. On the other hand, they die naturally at a rate µv; therefore, µvS̄v,

µvĒv and µv Īv are the susceptible, exposed, and infected number of mosquitoes that
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leave the system by natural death. When a susceptible mosquito bites a symptomatic

or asymptomatic infected human, it becomes infected at a transmission rate from

human to vector given by βvh = avfvh where, av is the biting rate and fvh is the

probability that a bite transmits infection from human to vector. Then βvhS̄v
Īs
Nh

and

βvhS̄v
σĪa
Nh

are the number of infected mosquitoes that get ZIKV by the bitting of a

symptomatic or an asymptomatic infected human, respectively (notice the inclusion

of the parameter of alteration of infectiousness in the asymptomatic population σ).

When a mosquito in the exposed class develops the disease, it becomes infectious

at a note kv (kv is the incubation rate). In consequence, kvĒv is the numbers of

infected mosquitoes that progress to become infections. A flow chart of the model

is provided in Figure 4–1.
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Figure 4–1: Compartmental Model for the Dynamics of ZIKA Disease, under the
Inclusion of Symptomatic and Asymptomatic Infections Individuals.
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The model is given by the following system of non-linear ordinary differential

equations:

dS̄

dt
= µhNh − βhvS̄

Īv
Nv

− αS̄
(
Īs + σĪa
Nh

)
− µhS̄, (4.1)

dĒh
dt

= βhvS̄
Īv
Nv

+ αS̄

(
Īs + σĪa
Nh

)
− (ρ+ q)khĒh − µhĒh, (4.2)

dĪs
dt

= ρkhĒh − γsĪs − µhĪs, (4.3)

dĪa
dt

= qkhĒh − γaĪa − µhĪa, (4.4)

dR̄

dt
= γsĪs + γaĪa − µhR̄, (4.5)

dS̄v
dt

= µvNv − βvhS̄v
(
Īs + σĪa
Nh

)
− µvS̄v, (4.6)

dĒv
dt

= βvhS̄v

(
Īs + σĪa
Nh

)
− (kv + µv)Ēv, (4.7)

dĪv
dt

= kvĒv − µv Īv, (4.8)

where q = 1− ρ,

Nh = S̄ + Ēh + Īs + Īa + R̄,

and

Nv = S̄v + Ēv + Īv.

Notice that

dS̄

dt
+
dĒh
dt

+
dĪs
dt

+
dĪa
dt

+
dR̄

dt
= µhNh − µh(S̄ + Ēh + Īs + Īa + R̄) = 0

and

dS̄v
dt

+
dĒv
dt

+
dĪv
dt

= µvNv − µv(S̄v + Ēv + Īv) = 0.

In consequence the human and vector population are constants, that is Nh(t) =

N0
h and Nv(t) = N0

v for all time t.
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In the next section, we provide a qualitative analysis of the model where, the equi-

libria of the system are calculated, including a stability analysis. Finally, basic

reproductive numbers associated with the model are compared.

4.1 Analysis of the Model Proposed

In order to analyze the model to be studied more easily, without modifying its

qualities, the populations are rescaled into proportions.

4.1.1 Rescaled Model

Let the change of variables

S =
S̄

Nh

, Eh =
Ēh
Nh

, Is =
Īs
Nh

, Ia =
Īa
Nh

, R =
R̄

Nh

, Sv =
S̄v
Nv

, Ev =
Ēv
Nv

and Iv =
Īv
Nv

,

where S+Eh+Is+Ia+R = 1, and Sv+Ev+Iv = 1, since R = 1−(S+Eh+Is+Ia)

and Sv = 1−(Ev+Iv), we can reduce System 4 from seven to six equations a system,

given by:

S ′ = µh(1− S)− βhvSIv − αS (Is + σIa) , (4.9)

E ′h = βhvSIv + αS (Is + σIa)− (kh + µh)Eh, (4.10)

I ′s = ρkhEh − (γs + µh)Is, (4.11)

I ′a = qkhEh − (γa + µh)Ia, (4.12)

E ′v = βvh(1− (Ev + Iv)) (Is + σIa)− (kv + µv)Ev, (4.13)

I ′v = kvEv − µvIv. (4.14)

(4.15)
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4.1.2 Basic Reproductive Number R0

In epidemiology, an important threshold condition value is called the basic re-

productive number. It is denoted by R0 and it is the expected number of secondary

cases produced by a typical infective individual in a completely susceptible popu-

lation. This metric is useful because it helps determine when an infectious disease

can lead to an outbreak, or an epidemic in a population. The R0 is calculated using

the Next Generation Matrix Method (for detail see [14] and section 3.2).

Varied expressions for the basic reproductive number are allowed (Cushing and

Diekmann [22]). We will choose the vector of new infections F in two different

ways, obtaining two different representations of the basic reproductive number. In

Subsection 4.1.3 we consider that the new infections are in the human populations,

in which the process of human-vector-human infection is seen as a single generation,

and in Subsection 4.1.4 we considered two types of new infection in the susceptible

human population and in susceptible vectors, where the process of human-vector-

human infection is observed as two generations.

4.1.3 Considering Only Human Infectious as New Infections

In the disease’s development we can consider two different types of new infec-

tions caused by ZIKV, in the human population and in the mosquito population.

In this subsubsection we consider that the infections process human to vector to

human is only one generation of infections (for a recent discussion of this issue

see Cushing and Diekmann [22]). Therefore, the new infections are only in the

humans populations. Hence, the vector of new infections F contain the expression

βhvSIv+αS (Is + σIa) which is the term of contribution of new infections only in the

infected humans population, where βhvSIv is new infections by vector transmission

and αS (Is + σIa) by sexual transmission.
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First, sort the system so that the first m differential equations correspond to

infected states,that is:

E ′h = βhvSIv + αS (Is + σIa)− (kh + µh)Eh, (4.16)

I ′s = ρkhEh − (γs + µh)Is, (4.17)

I ′a = qkhEh − (γa + µh)Ia, (4.18)

E ′v = βvh(1− (Ev + Iv)) (Is + σIa)− (kv + µv)Ev, (4.19)

I ′v = kvEv − µvIv, (4.20)

S ′ = µh(1− S)− βhvSIv − αS (Is + σIa) . (4.21)

The Zika free equilibrium of our model is then given by:

E0 = (E∗h, I
∗
s , I

∗
a , E

∗
v , I
∗
v , S

∗) = (0, 0, 0, 0, 0, 1)

Let F the contribution of new infections to each compartment and the entries of the

column vector V are the remaining terms that do not contribute to new infections,

then

F =



βhvSIv + αS (Is + σIa)

0

0

0

0

0


, V =



(kh + µh)Eh

−ρkhEh + (µh + γs)Is

−qkhEh + (µh + γa)Ia

−βvh(1− (Ev + Iv)) (Is + σIa) + (kv + µv)Ev

−kvEv + µvIv

µh(1− S)− βhvSIv − αS (Is + σIa)


.
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According to Lemma 1 of [14]

F =



0 α σα 0 βhv

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, V =



µh + kh 0 0 0 0

−ρkh µh + γs 0 0 0

−qkh 0 µh + γa 0 0

0 −βvh −σβvh kv + µv 0

0 0 0 −kv µv


.

Let

b = ρ(µh + γa) + σq(µh + γs)

and

c = (µh + kh)(µh + γa)(µv + kv).

Thus,

V −1 =



1

µh + kh
0 0 0 0

khρ

(µh + kh)(µh + γs)

1

µh + γs
0 0 0

khq

(µh + kh)(µh + γa)
0

1

µh + γa
0 0

khβvhb

(µh + γs)c

βvh
(µh + γs)(µv + kv)

σβvh
(µh + γa)(µv + kv)

1

(µv + kv)
0

khkvβvhb

µv(µh + γs)c

βvhkv
(µh + γs)(µv + kv)

σkvβvh
(µh + γa)(µv + kv)

kv
µv(µv + kv)

1

µv


.

The Next Generation Matrix is then given by:

FV −1 =



a11 a12 a13 a14 a15

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


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where:

a11 =
αkhρ

(µh + kh)(µh + γs)
+

σαkhq

(µh + kh)(µh + γa)
+
khkvβvhβhvb

µv(µh + γs)c
,

a12 =
α

µh + γs
+

βvhβhvkv
(µh + γs)(µv + kv)

,

a13 =
σα

µh + γa
+

σkvβvhβhv
(µh + γa)(µv + kv)

,

a14 =
kvβhv

µv(µv + kv)
,

and a15 =
βhv
µv

.

The eigenvalues of the characteristic equation from the matrix FV −1 are:

λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 0

and

λ5 =
αρkh

(µh + kh)(γs + µh)
+

σαqkh
(µh + kh)(γa + µh)

+
βhvβvhkhkvb

(µh + γs)cµv

Thus, the basic reproductive number R0 of Model (4.1.1) is R0 = ϕ(FV −1) defined

by:

R0 =

(
ρkh

µh + kh

)(
βvh

µh + γs

)(
kv

µv + kv

)(
βhv
µv

)
+

(
σqkh
µh + kh

)(
βvh

µh + γa

)(
kv

µv + kv

)(
βhv
µv

)
+

(
ρkh

µh + kh

)(
α

µh + γs

)
+

(
qkh

µh + kh

)(
σα

µh + γa

)

or equivalent to

R0 = Rv
Is +Rv

Ia +Rd
Is +Rd

Ia

where:

1. Rv
Is

is the contribution to R0 by symptomatic individuals who acquire Zika

through mosquito bites, which is equivalent to

[(
βvh

µh + γs

)(
kv

µv + kv

)][(
ρkh

µh + kh

)(
βhv
µv

)]
.
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Rv
Is

describes the proportion of exposed humans that becomes symptomatic in-

fected, this multiplied by the transmission rate from symptomatic individual to

vectors, by the average time the symptomatic individuals spends with symp-

toms, multiplied by the proportion of mosquitoes that progress to infectious,

times the transmission rate from vector to human multiply by the average life

span a vector.

2. Rv
Ia

is the contribution to R0 of asymptomatic individual that acquire Zika

through mosquito bites, which is equivalent to

[(
βvh

µh + γa

)(
kv

µv + kv

)][(
σqkh
µh + kh

)(
βhv
µv

)]
.

Rv
Ia

describes the proportion of exposed humans that becomes asymptomatic in-

fected, this multiplied by the transmission rate from asymptomatic individual to

vectors, by the average time the asymptomatic individuals spends in as asymp-

tomatic, multiplied by the proportion of mosquitoes that progress to infectious,

times the transmission rate from vector to human, multiply by the average life

span of a vector.

3. Rd
Is

is the contribution to R0 by direct transmission of the symptomatic individ-

uals that is Rd
Is

=

(
ρkh

µh + kh

)(
α

µh + γs

)
describes the proportion of exposed

humans that becomes symptomatic infected, multiplied by the direct transmis-

sion rate of a symptomatic individual times the average time the symptomatic

individual spends with symptoms.

4. Rd
Ia

is the contribution to R0 by direct transmission of the asymptomatic individ-

uals that is Rd
Ia

=

(
qkh

µh + kh

)(
σα

µh + γa

)
describes the proportion of exposed

humans that to becomes asymptomatic infected, multiplied by the direct trans-

mission rate of an asymptomatic individual, length of time the average time the

asymptomatic individual spends as asymptomatic.

Notice that R0 can be rewritten as

Rv = Rv
Is +Rv

Ia and Rd = Rd
Is +Rd

Ia ,
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where

R0 = Rv +Rd.

Obtaining results similar to Brauer F., Castillo-Chavez C. [4] and Wencel V.,

Rios-Soto, K. [33] in which it is described that:

1. Rv is the vector transmission reproduction number, which is the contribution to

R0 by individuals who acquire Zika through mosquito bites.

2. Rd represents the direct transmission reproduction number, which is the con-

tribution to R0 by individuals who acquire Zika through sexual contact, either

symptomatic or asymptomatic.

4.1.4 Considering Human and Mosquitoes Infectious as New Infections

Previously, in the calculation of the R0, it was considered that the new infections

only appear in humans. Now, we consider that the infections process human-to-

vector-to-human are two generations of infections (for a recent discussion of this issue

see Cushing and Diekmann [22]). Therefore we will consider that these arise both

in humans and, in the mosquitoes and according to Next Generator Matrix Method

[14], this produces only a change in vector F including the expressions βhvSIv +

αS (Is + σIa) and βvh(1− (Ev + Iv)) (Is + σIa) that are the terms of infections new

for the human and vector population, respectively. In which βhvSIv new infectious

for humans is by sexual transmission and αS (Is + σIa) is by vector transmission in

the human papulation, where as βvh(1−(Ev+Iv)) (Is + σIa) represent new infectious

for mosquitoes from symptomatic and asymptomatic individuals.
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F =



βhvSIv + αS (Is + σIa)

0

0

βvh(1− (Ev + Iv)) (Is + σIa)

0

0


, V =



(kh + µh)Eh

−ρkhEh + (µh + γs)Is

−qkhEh + (µh + γa)Ia

(kv + µv)Ev

−kvEv + µvIv

µh(1− S)− βhvSIv − αS (Is + σIa)


.

According to Lemma 1 of [14]

F =



0 α σα 0 βhv

0 0 0 0 0

0 0 0 0 0

0 βvh σβvh 0 0

0 0 0 0 0


, V =



µh + kh 0 0 0 0

−ρkh µh + γs 0 0 0

−qkh 0 µh + γa 0 0

0 0 0 kv + µv 0

0 0 0 −kv µv


.

Thus,

V −1 =



1

µh + kh
0 0 0 0

khρ

(µh + kh)(µh + γs)

1

µh + γs
0 0 0

khq

(µh + kh)(µh + γa)
0

1

µh + γa
0 0

0 0 0
1

(µv + kv)
0

0 0 0
kv

µv(µv + kv)

1

µv


.
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The Next Generation Matrix is then given by:

FV −1 =



αkhρ

(µh + kh)(µh + γs)
+

σαkhq

(µh + kh)(µh + γa)

α

µh + γs

σα

µh + γa

kvβhv
µv(µv + kv)

βhv
µv

0 0 0 0 0

0 0 0 0 0

khρβvh
(µh + kh)(µh + γs)

+
khqσβvh

(µh + kh)(µh + γa)

σβvh
µh + γs

σβvh
µh + γa

0 0

0 0 0 0 0


The eigenvalues of the characteristic equation from the matrix FV −1 are:

λ1 = 0, λ2 = 0, λ3 = 0,

then

λ4 =
1

2

− αkhb

(µh + γs)(µh + γa)(µh + kh)
+

√(
αkhb

(µh + γs)(µh + γa)(µh + kh)

)2

+
4khkvβvhβhvb

µv(µh + γs)c

 ,

λ5 =
1

2

 αkhb

(µh + γs)(µh + γa)(µh + kh)
+

√(
αkhb

(µh + γs)(µh + γa)(µh + kh)

)2

+
4khkvβvhβhvb

µv(µh + γs)c

 .

Notice that λ5 is equivalent to

λ5 =
1

2
(Rd +

√
(Rd)2 + 4Rv).

Thus, the basic reproductive number R∗0 of Model (4.1.1) is R∗0 = ϕ(FV −1) defined

by:

R∗0 =
1

2
(Rd +

√
(Rd)2 + 4Rv)

Notice that R∗0 can be understood as function of Rv and Rd,

R∗0(Rv, Rd) =
1

2

(
Rd +

√
(Rd)2 + 4Rv

)
.

Now, R∗0(Rv, Rd) = 1 if only if R0 = Rv +Rd = 1 and that:
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• If there is no direct transmission (α = 0) then Rd = 0 and

R∗0(Rv, 0) =
√
Rv,

that is, the R0 with only vector transmission. Thus R∗0(Rv, Rd) is the combined

effect of direct and vectorial transmission.

The basic reproductive number is an important parameter to understand disease

spread, possible control measures, and prevention. Here, we show two different

expressions for this number R0 and R∗0, both valid in the study of the modeling of

infectious disease, but that we consider important to clarify. The value ofR0 provides

a threshold condition when new infections are considered only for humans where as

R∗0 provides a threshold condition for Zika virus spread when we consider mosquitoes

with new infections as well. We have chosen to use R0 for the basic reproductive

number as it is a simpler expression of the process, in which the infection process

human-vector-human is considered as one generation. It is because of this, that we

only consider new infections in the susceptible humans only (as was also done in

Brauer F. [4] and Wencel V., Rios-Soto, K. [33]).

4.1.5 Equilibrium Points of the Model

We use the system of algebraic equations associated to the system of differential

equations, to explicitly find the Zika-free equilibrium and by using simple concepts

such as the rule of Descartes Rule of sign, we deduce (from a quadratic polynomial

that derives from the system) the existence of a second fixed point, the endemic

equilibrium.

Theorem 4. For the System (4.1.1), there exist an equilibrium point E1 = (1, 0, 0, 0, 0),

the Zika-free equilibrium and is locally asymptotically stable provided that R0 ≤ 1.

If R0 > 1, there exists a unique Zika equilibrium, E2 = (S∗, E∗h, I
∗
s , I

∗
a , E

∗
v , I
∗
v ) (see

the Figure 4–2).
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Figure 4–2: Existence of equilibrium points.

Proof. The equilibria of equations of System (4.1.1) are calculated by setting the

equations equal to zero, thus obtaining the following algebraic system:

µh(1− S∗)− βhvS∗I∗v − αS∗ (I∗s + σI∗a) = 0, (4.22)

βhvS
∗I∗v + αS∗ (I∗s + σI∗a)− (kh + µh)E

∗
h = 0, (4.23)

ρkhE
∗
h − (γs + µh)I

∗
s = 0, (4.24)

qkhE
∗
h − (γa + µh)I

∗
a = 0, (4.25)

βvh(1− (E∗v + I∗v )) (I∗s + σI∗a)− (kv + µv)E
∗
v = 0, (4.26)

and kvE
∗
v − µvI∗v = 0. (4.27)

Next we algebraically manipulate the system to determine the points that satisfy it.

From the Equations (4.24) and (4.25) we have:

E∗h = E∗h(I
∗
s ) =

(µh + γs)I
∗
s

ρkh
, (4.28)

and E∗h = E∗h(I
∗
a) =

(µh + γa)I
∗
a

qkh
(4.29)

(4.30)
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respectively. Equating Equations (4.28) and (4.29), we obtain

I∗s (I∗a) =
(µh + γa)I

∗
aρ

(µh + γs)q
. (4.31)

And adding σI∗a to Equation (4.31) we have,

I∗s (I∗a) + σI∗a =
bI∗a

q(µh + γs)
(4.32)

where

b = ρ(µh + γa) + σq(µh + γs).

From the Equation (4.26)

E∗v =
µvβvh(I

∗
s + σI∗a)

(βvh(I∗s + σI∗a) + µv)(kv + µv)
,

and by Equation (4.32)

E∗v(I
∗
a) =

µvβvhbI
∗
a

(βvhbI∗a + µvq(µh + γs))(kv + µv)
. (4.33)

From Equation (4.27)

I∗v (I∗a) =
kvE

∗
v

µv

and by Equation (4.33)

I∗v =
kvβvhbI

∗
a

(βvhbI∗a + µvq(µh + γs))(kv + µv)
(4.34)

From Equation (4.22)

S∗ =
µh

µh + βhvI∗v + α(I∗s + σI∗a)
(4.35)

and from Equation (4.23)

S∗(βhvI
∗
v + α(I∗s + σI∗a))− (kh + µh)E

∗
h = 0. (4.36)
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Finally, replacing Equations (4.29), (4.32), (4.34) and (4.35) into Equation (4.36),

we obtain

µh

(
kvbβhvβvhI

∗
a

(µv + kv)(βvhbI∗a + µvq(γs + µh))
+

αbI∗a
q(µh + γs)

)
µh +

(
kvbβhvβvhI

∗
a

(µv + kv)(βvhbI∗a + µvq(γs + µh))
+

αbI∗a
q(µh + γs)

)− (µh + kh)(µh + γa)I
∗
a

qkh
= 0

After some calculations, a cubic equation is obtained in terms of I∗a given by:

I∗a(a2(I
∗
a)2 + a1I

∗
a + a0) = 0

where

a0 = µhq
2µv(µh + γs)

2c(R0 − 1),

a1 = µhqβvhb(µh + γs)c(Rd − 1)− qb(µh + kh)(µh + γa)(µh + γs)(kvβvhβhv + αµv(kv + µv)),

a2 = −cαb2βvh,

in which

c = (µh + kh)(µh + γa)(µv + kv).

Then

I∗a = 0 or a2(I
∗
a)2 + a1I

∗
a + a0,

in the case that I∗a = 0 and replacing in the Equations (4.29), (4.31), (4.33) and

(4.35) we have the Zika-free equilibrium

E1 = (1, 0, 0, 0, 0).

On the other hand, if I∗a 6= 0 then

a2(I
∗
a)2 + a1I

∗
a + a0 = 0

Now we are going to determine the existence of nontrivial equilibria. Using Descartes’

Rule of Signs, we find that the polynomial f(Ia) = a2I
2
a + a1Ia + a0 has a unique
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positive root I∗a . Note that: a2 is always negative, IaMAX
= − a1

2a2
(since f ′(Ia) =

2a2Ia + a1) and that:

1. If R0 > 1 then f(0) = a0 > 0, while a1 can be positive or negative. Therefore,

the change of coefficient signs can be determined from the following table:

Table 4–1: Change of Signs Coefficient f(Ia) for R0 > 1

Case a2 a1 a0
I − + +
II − − +

In the two cases, there are two changes of signs then Descartes’ rule, impliying

the existence of only one positive root I∗a (see Figure 4–3). Therefore, if R0 > 1 in

addition to E1, there exists an infected equilibrium E2 = (S∗, E∗h, I
∗
s , I

∗
a , E

∗
v , I
∗
v ).

𝒇(𝑰𝒂) 

𝑰𝒂  

𝒂𝟎  

Case I 
 

 

   

  

 

 

 

 

 

 

𝒇(𝑰𝒂) 

𝑰𝒂  

𝒂𝟎  

 

Case II 
 

 

    

  

 

 

 

 

Figure 4–3: Graphic Illustration of the Existence of a Single Positive Root (Case I
and II).

2. If R0 < 1 then f(0) = a0 < 0 and as R0 = Rv + Rd < 1 thus Rd < 1 in

consequence a1 < 0. Therefore, we obtain the following table:

In the only case presented, we observe that there is not a change of sign then

Descartes’ rule implies the existence of zero positive roots (see Figure 4–4).

Therefore, if R0 < 1 there only exists the Zika-free equilibrium.



38

Table 4–2: Change of Signs Coefficient f(Ia) for R0 < 1

Case a2 a1 a0
I − − −

𝒇(𝑰𝒂) 

𝑰𝒂  

𝒂𝟎  

 

 

Case I 
 

 

  

 

 

  

 

 

 

 

 

𝒇(𝑰𝒂) 

𝑰𝒂  

𝒂𝟎  

 

 

Case I 
 

 

  

 

 

  

 

 

 

 

 

Figure 4–4: Graphic Illustration of the Absence of Real Roots Case I).

3. If R0 = 1 then f(0) = a0 = 0. Therefore a2(I
∗
a)2 + a1I

∗
a = 0 In consequence,

I∗a = 0 (E1 equilibrium) or I∗a =
a1
a2

and as R0 = Rv +Rd = 1 thus Rd ≤ 1 then

a1 < 0 then I∗a =
a1
a2

< 0 that does not have biological sense. Thus, if R0 = 1

the Zika-free equilibrium is the only equilibrium.

4.1.6 Stability Analysis of the Equilibrium Points

In this section we discuss the local stability of the Zika-free equilibrium E1 and

of infected equilibrium, E2 = (S∗, E∗h, I
∗
s , I

∗
a , E

∗
v , I
∗
v ). For this, we will use results

from the Second-Generation Matrix method described in the Theorem 2 of [14], and

also perform a numerical analysis supported by the Hartman-Grobman theorem.

Theorem 5. If R0 < 1, then Zika-free equilibrium E1 is locally asymptotically stable.
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Proof. We calculated R0 using Next Generator Matrix method and according to

Theorem 2 of [14] then, E1 is locally asymptotically stable if R0 < 1, but unstable

if R0 > 1.

To determine the local stability of the infected equilibrium, we used a

numerical analysis in which the real part of the eigenvalues associated with the

Jacobian matrices evaluated at the equilibrium points E1 and E2, respectively, are

presented for 1000 different values of R0 with values taken from 5–1, as illustrated in

Figure 4–5. Note that the red dots are the values of the real part of the eigenvalues

associated with R0 > 1 and the blue dots associated with R0 < 1. In the figure

it is shown that for these thousand values of R0 the real part of the eigenvalues

is negative. Consequently, it proves numerically that E2 is locally asymptotically

stable.

Figure 4–5: Graphic illustration of the Behavior of eigenvalues of J(E1) and J(E2)
for 1000 values of R0.

For example, for the particular values of the parameters gives in Table 4–3 in

R0,
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Table 4–3: Values Table to the numerical stability of endemic equilibrium

Parameter Value

µv 1/20
σ 1.5
γa 1/9
βhv 0.15
βvh 0.12
α 0.06
kv 1/9.5
q 0.8
γs 1/7
ρ 0.2
µh 1/(27× 365)
kh 1/5

We have that the basic reproductive number basic is R0 = 3.7044, the endemic

equilibrium is E2 = (S∗, E∗h, I
∗
s , I

∗
a , E

∗
v , I
∗
v ) = (0.2704, 0.0004, 0.0001, 0.0005, 0.0007, 0.0015).

Thus, the Jacobian matrices evaluated at the equilibrium point E2 provide all eigen-

values with negative real parts. Consequently, the endemic equilibrium E2 is locally

asymptotically stable, numerically.



Chapter 5

PARAMETER ESTIMATION AND

NUMERICAL SOLUTIONS

5.1 Parameters Values and Estimation

All parameter descriptions and the estimation were done by reviewing the math-

ematical and epidemiological literature. In this section, we describe the baseline of

parameter values used through the numerical simulation. Notice that ZIKV and

DENV are virus of the same genus and have similar symptoms, high proportion of

asymptomatic infections, duration of incubation, and infectiousness [5], [33], this as

done in previous research. we take parameters values similar to dengue fever.

• µh and µv represent the recruitment and natural death rate of the human and

vector populations in the system, respectively. The values that can take µh were

taken from [5]. A person is sexually active in average between the ages of 18 and

50 years or age. Thus, in a life time is 18 × 365 and 50 × 365 days. Therefore,

µh is in between

[
1

50× 365
,

1

18× 365

]
, and the average lifetime of a vector is

between 4 and 35 days [18] in consequence µv is between [1/4, 1/35] .

• βhv = afhv and βvh = afvh represent the transmission rate from vector to human

and human to vector, respectively, where a is the biting rate of mosquitoes and

fhv and fvh are the probability that a bite transmits infection from vector to

human and human to vector respectively. The biting rate for a mosquito is

between 0.3 and 1 humans per day [18], and the probability of an effective

41
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transmission fhv for human is reported inside of the interval [0.1, 0.75] [18].

On the other hand the probability fvh that a mosquito gets infected from an

infected human is taken freely between 0 and 1. Therefore, βhv ∈ [0.03, 0.75]

and βvh ∈ [0, 1].

• α represents the sexual transmission rate of ZIKV. Tower, S. [28] estimated the

basic reproductive number of the 2015 Zika outbreak in Barranquilla and found

that the percent of cases due to sexual transmission may be as high as 47%

with 95% confidence. Therefore, in a fraction between [0.01, 0.47] Now the CDC

reports [11] that in US for the period January 1, 2015 to March 22, 2017 (811

days), 5158 reported cases of Zika virus disease, of which 45 are due to sexual

transmission. Hence, we have α = 0.055 per day. In consequence, we will take

α ∈ [0.01, 0.07] for the different simulations.

• kh and kv represent the incubation rate of ZIKV for human and vector, respec-

tively. In the humans, the incubation period is between the 2 and 7 days and

in the mosquitoes it is between 8 and 12 days [18]. Thus, were considered to be

kh ∈ [1/7, 1/2] and kv ∈ [1/12, 1/8]

• Zika is symptomatic and asymptomatic infectious disease. Then ρ and q =

1− ρ represent the population of exposed humans developing symptoms or not,

respectively, but still infected with the virus. It is reported that 20% infected

with ZIKV are symptomatic and the remaining 80% are asymptomatic [26], [1].

Therefore, ρ = 0.2 and q = 0.8 are chosen as fixed parameters values.

• An individual infected by the ZIKV can recover and acquire permanent immu-

nity, γs and γa represents the recovery rate of symptomatic and asymptomatic

infectious humans, respectively. Symptomatic individuals are slow to recover

from 6 to 12 days, and the asymptomatic individuals between 5 and 10 days

[18]. Thus γs ∈ [1/12, 1/6] and γa ∈ [1/10, 1/5].
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• σ represents the parameter of alteration of infectiousness. For represents all

posible cases of infectiousness:

– if 0 < σ < 1, then Ia is less infectious that Is,

– if σ = 1, then Ia and Is are equally infectious,

– if σ > 1, then Ia is more infectious that Is,

It is assumed that σ ∈ (0, 2.5].

Table (5–1) summarizes the results of the estimated parameters.

Table 5–1: Description of Model Parameters.

Param. Definition Range Unit Ref.

µh Recruitment and natural death rate
of human sexually active

[
1

50× 365
,

1

18× 365
] days−1 [5]

µv Recruitment and natural death rate
of vector

[1/4, 1/35] days−1 [18]

a Biting rate [0.3, 1] days−1 [18]
fhv Probability that a bite transmits in-

fection vector to human
[0.1, 0.75] unitles [18]

fvh Probability that a bite transmits in-
fection human to vector

[0, 1] unitles Free

βhv Transmission rate vector to human [0.03, 0.75] days−1 [18]
βvh Transmission rate human to vector [0, 1] days−1 [18]
α Sexual transmission rate [0.03, 0.07] days−1 [11]
kh Humans’ incubation rate [1/7, 1/2] days−1 [18]
kv Vectors’ incubation rate [1/12, 1/8] days−1 [18]
ρ Probability of an exposed human de-

velop symptoms
0.2 unitles [26]

q Probability of an exposed human
not develop symptoms

0.8 unitles [26]

γs Recovery rate of symptomatic [1/12, 1/6] days−1 [5]
γa Recovery rate of asymptomatic [1/10, 1/5] days−1 [18]
σ Parameter of alteration of infec-

tiousness
(0, 2.5] unitles Est.
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5.2 Numerical Analysis

Numerical simulations were made using the computer software Matlab with the

function ODE45 based on an explicit Runge-Kutta (4,5) formula, in order to study

the effects of different values Rd, Rv and R0 or as well as the models solution for all

epidemiological classes as parameter were varied. The simulations help us explain

the dynamics of the disease and predict its future course. On the other hand, our

initial conditions are set to: (S(0), Eh(0), Is(0), Ia(0), R(0), Sv(0), Ev(0), Iv(0)) =

(0.98, 0.02, 0, 0, 0, 1, 0, 0) , which represent the start of the infection, i.e., when a

large percentage of the population are susceptible (98%) and a small percentage are

exposed (2%). Note that in the population of vector we do not considered an initial

number of infected mosquitoes that is (Iv(0) = 0), since, the basic reproductive

number was found from the fact of considering only humans as new infections.

First, we note that 8 different cases can be presented that illustrate the dif-

ferent values that can be taken of R0 as a function of the contribution to the

basic reproductive number by direct and vector transmission Rd and Rv

respectively. In consequence, a diagram depicted by regions of the changes in R0

as function of Rd and Rv in Figure 5–1 quadrant I is divided into two large regions:

the region R0 ≤ 1, where these are two cases Rd < Rv < 1 or Rv < Rd < 1 where the

existence of the Zika-free equilibrium is the only possible equilibrium. The second

regions being when R0 > 1 where there are two fixed points the Zika-free and the en-

demic equilibrium. The region in which R0 > 1 is further divided into 4 subregions,

where six different possible cases are considered for reproductive number of vecto-

rial and direct transmission. These are Rd < Rv < 1, Rv < Rd < 1, Rd < 1 < Rv,

Rv < 1 < Rd, 1 < Rd < Rv and 1 < Rv < Rd. Note that there may be an endemic

state of the disease even when the contribution to the basic reproductive number

by direct and vector transmission is smaller than one (Ri ≤ Rj < 1 for i, j ∈ v, d
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and i 6= j). The latter is an interesting case since, if in average, a mosquito and an

infected individual infect through a bite and sexual transmission to less than one

susceptible individual one average respectively, the combination of the two trans-

missions can generate an epidemic in the population. On the other hand, the case

in which the contribution to the basic reproductive number for one (Ri < 1 < Rj

for i, j ∈ {v, d} and i 6= j) of the two contributions is less than one and in which

the other contribution is greater than one, implies R0 > 1, generating, an epidemic

of the Zika virus. This case indicates that one of the two types of transmissions

(sexual or vector) is sufficient to develop a Zika virus epidemic. In the last case,

the contribution to the basic reproductive number due to the sexual and vectorial

propagation of the ZIKV, is greater than one, consequently R0 > 1. This is the

case in which the two types of transmissions generate an epidemic, consequently

the greatest amount of infected population occurs. For better understanding of the

epidemic associated with these cases observed, refer to (Figure 5–2).Figure 5–2 shows the simulations of the epidemic developed by the six possible

variations (all R0 > 1) of the contributions of the direct and vectorial transmission

Rd and Rv respectively, to the basic reproductive number R0 for the symptomatic

population (Figure 5–2a.), asymptomatic (Figure 5–2b.) and the total number in-

fected in the population (Figure 5–2c.) which is the sum of the two populations

mentioned above, whose values are shown in Table 5–2. Figure 5–2a shows that

the maximum number of symptomatic ZIKV infected that occur in the epidemic is:

0.045 reached at 40 days for the case in which 1 < Rv < Rd, 0.033 reached at 45

days for the case in which 1 < Rd < Rv, 0.025 reached the 50 days for the case in

which Rv < 1 < Rd, 0.014 reached the 80 days for the case in which Rd < 1 < Rv

and 0.004 reached the 110 days for the case in which Rd < Rv < 1 and Rv < Rd < 1.

Note that the proportional maxima of the epidemic are reached each time in greater

number of days. Note that, in the case Rv < 1 < Rd (purple color) in which the
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𝑬𝟏. 

Figure 5–1: All the Possible Behavior of R0 as a Function of Rd and Rv .

contribution to R0 per vector transmission is less than one and for sexual trans-

mission is greater than one, the maximum is reached in less days than in the case

Rv < 1 < Rd (green color) in which the contribution to R0 per vector transmission

is greater than one and for sexual transmission is less than one, indicating that the

ZIKV is transmitted faster by having a sexual contact that leads to infection than

by mosquito bite. A behavior and similar analysis are shown in Figure 5–2b, for the

asymptomatic individuals (Ia) but note that the proportional maxima are different.

The maxima associated to each case in the symptomatic population are 80% lower

than those of the asymptomatic population. This is because from the beginning of
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this investigation the reports were followed indicating that in an 80% of the infected

population were asymptomatic and 20% symptomatic. Figure 5–2c is a summary

of the Figures 5–2a and 5–2b but considering the total of the infectious population

(Is+Ia). Note that the analysis of this graph is analogous to the analysis performed

for the region associated with R0 > 1 of Figure 5–1.

Table 5–2: Values for Figure 5–2.

Case Rd Rv R0

Rv < Rd < 1 0.7 0.6 1.3
Rd < Rv < 1 0.59 0.79 1.38
Rv < 1 < Rd 2.1 0.6 2.7
Rd < 1 < Rv 0.7 2.22 2.79
1 < Rd < Rv 2.1 2.99 5.09
1 < Rv < Rd 2.05 3.5 5.55

The parameter of alteration of infectiousness, the transmission rate from vector,

to human and human to vector and the sexual transmission rate represented by σ,

βhv, βvh and α respectively, are parameters that depending of values they take, can

determine the free status of ZIKV or an endemic state. For example, the absence

of vector and sexual transmission of the ZIKV would impede its propagation, de-

termining the extinction of the disease, contrary to the presence of high values of

these rates that would significant propagation allow of the ZIKV until potentially

reaching an epidemic of the disease. Note that this can be verified in the value of R0,

in which these parameters appear in the numerators of the fractions indicating that

they are directly influential in the extinction or progression of the disease. This fact

will be corroborated and understood, in Chapter 6 of sensitivity analysis of R0 to

parameters. In consequence, the outcome of ZIKV infection depends mainly on the

interplay of the parameters σ, βhv, βvh, and α. Numerical simulations are performed

for different values of of σ, βhv, βvh and α and the values of some parameters are

fixed as indicated in the Table 5–3.
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Figure 5–2: Temporal course of the infectious population all possible cases for the
R0 as function of Rd and Rv.

Table 5–3: Parameter with Fixed Values.

Param. ρ q γa γs µh µv kh kv

Valor 0.2 0.8 1/9 1/7 1/(27× 365) 1/20 1/5 1/9.5
Units Unitless Unitless day−1 day−1 day−1 day−1 day−1 day−1

Figure 5–3 Shows the impact of the value of basic reproductive number (R0)

on Zika disease for value R0 < 1. In any case, the solutions show the Zika free
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equilibrium to be locally stable. Thus, the epidemic does not spread in the popula-

tion, which means Zika dies out. Note that the population of susceptible mosquitoes

reaches their maximum in less time (at 20 days) than the population of susceptible

humans (at 90 days) because our model considers a recovered population and in the

case of the Zika, the virus provides permanent immunity.

Figure 5–3: Model Solutions when R0 = 0.71 < 1, the Epidemic Does Not Devel-
oped. This figure was created using the values from Table 5–3 with βhv = 0.035,
βvh = 0.07 and α = 0.05.

Figure 5–4 shows the impact of the basic reproductive number R0 on Zika

disease, for values of the parameters that provide R0 > 1 (Table 5–3 with βhv = 0.15,

βvh = 0.12 and α = 0.06) . The simulations demonstrate that populations stabilize

in an endemic equilibrium, as was demonstrated numerically. In this number of

humans, susceptible and recovered per day are always larger than the number of

infectious population (exposed, symptomatic and asymptomatic). Observe that

approximately in the first 90 days, there is a growth of the infectious populations

and consequently, a decrease in the susceptible ones. As the Zika disease produces
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permanent immunity and no disease related deaths, there is growth of the recovered

humans. After 90 days, the number of susceptible humans is less than the number

of individuals recovered, where the number of infected by the virus decreases. This

allows us to deduce that an epidemic of Zika virus would occur. But the permanent

immunity achieved by infected individuals will cause that the number of infected in

the population with the Zika virus will decrease, preventing the continued spread

of this disease. Similarly, we note that the vector population has also reached the

endemic equilibrium. Note that mosquitoes acquire the virus when they bite an

infected human. This explains that approximately before 90 days there is a growth

of infected vectors since in this same period of time, the number of infected humans

is growing. But after 90 days, the population of infected mosquitoes decreases

according to the population of infected people who are recovering.

Figure 5–4: Model Solutions when R0 = 3.7 > 1, the Infection Persists, Using the
Values from Table 5–3 with βhv = 0.15, βvh = 0.12 and α = 0.06.

Due to the scales that form the susceptible and recovered populations in the

previous figures, it is difficult to observe the role of Rd, Rv and R0. Consequently,
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we present the solutions only for the infected individuals symptomatic and asymp-

tomatic, which allow us to evaluate in more details the behavior of infection under

these important parameters for this study.

In Figure 5–5, the graphs a, b, and c illustrate the behavior of the asymptomatic

and symptomatic infected population, when the vector to human transmission rate

βhv variates. The maximums in proportion reached by the epidemic are: 0.03 and

0.006 for asymptomatic and symptomatic, respectively, in a time of 110 days for

βhv = 0.1 (Figure 5–5a.), 0.1 and 0.02 for asymptomatic and symptomatic individu-

als respectively, in a time of 70 days for βhv = 0.3 (Figure 5–5b.), and 0.15 and 0.003

for asymptomatic and symptomatic respectively, in a time of 50 days for βhv = 0.5

(Figure 5–5c.). These results show that when the vector to human transmission

rate increases, the maximum number of cases at peak time (t peak) is reached in

less days and the proportion of the maximum number of infected persons increases.

The percentage difference of 80% of the number of asymptomatic and symptomatic

infected persons is also preserved over time. Note the impact that the vector-to-

human transmission rate has on the epidemic not only accelerates its growth, but

also increases the infected population, and R0 also grows by the direct relationship.

In Figure 5–6, the behavior of the two basic reproductive numbers R0 (blue)

and R∗0 (yellow) are analyzed as a function of the contribution by direct transmission

and vector transmission Rd and Rv, respectively, and the constant plane R0 = 1 (in

red color). Recall that R0 is the basic reproductive number considering humans

as new infections and R∗0 is considering humans and mosquitoes as new infections.

The graph indicates that two basic reproductive numbers share the same region of

existence and stability for the equilibrium points.

Figure 5–7, a, b, and c illustrates the behavior of the asymptomatic and symp-

tomatic infected population when the sexual transmission rate α varies. Notice the

similar behavior that this figure has with the Figure 5–5 where the maximums in
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Figure 5–5: The graphs a, b, and c Represent the Behavior of the Symptomatic
vs Asymptomatic Infectious Population when we varied βhv for value R0 = 1.86,
R0 = 4.57 and R0 = 7.29, respectively. The parameter values are taken from Table
5–3 including σ = 1.2, βvh = 0.1 and α = 0.05

Figure 5–6: Behavior R0 and R∗0 as a function of Rd and Rv.
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proportion of humans reached by the epidemic are: 0.08 and 0.016 for asymptomatic

and symptomatic, respectively, in a time of 80 days for α = 0.03 (Figure 5–7a.), 0.09

and 0.018 for asymptomatic and symptomatic, respectively, in a time of 70 days for

α = 0.05 (Figure 5–7b.), and 0.1 and 0.02 for asymptomatic and symptomatic, re-

spectively, in a time of 60 days for α = 0.07 (Figure 5–7c.). The results show that

when the sexual transmission rate increases, the maximum number of cases a time

tpeak is reached in less days and the proportion of infected persons increases in the

population. However, note that these maxima does not vary much compared to the

maxima of Figure 5–5. Similarly, the percentage difference of 80% of the number

of asymptomatic and symptomatic infected persons is preserved over time. If we

compare the duration of the epidemic of this figure with those of the Figure 5–2,

we corroborate the results obtained, in which the direct transmission causes a faster

spread of the ZIKV than the vector transmission.

Figure 5–7: The graphs a, b and c represent the behavior of the symptomatic vs
asymptomatic infectious populations by varying α with a R0 = 3.75, R0 = 3.92 and
R0 = 4.09, respectively. The parameter values are taken from Table 5–3 including
σ = 1, βvh = 0.1 and βhv = 0.3
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Figure 5–8 illustrates the behavior of the total infectious population (I = Ia+Is)

in which in graph a, the rate of vector-to-human transmission βhv variates, while

that of graph b is for the sexual transmission rate (α) variation. Summarizing

illustrated in the Figures 5–5 and 5–7. In summary, the increase of the two rates

has a relationship with the time taken to reach the maximum, that is, tpeak m of

the infected population in an epidemic and a direct relationship with the growth of

it. With the suggestion of the literature that βhv is larger than α, the values of α are

small compared to the of vector transmission, rate βhv. Result shows that as both

βhv and α increase, the number of ZIKV cases also increases. However, the impact

on the number of cases increases higher with larger values of βhv that these of α.

Figure 5–8: The graphs a and b represent the behavior of the infectious total popu-
lation when βhv and α variate, respectively. For βhv equivalent to 0.1, 0.3 and 0.5,
R0 is 1.86, 4.57 and 7.29, respectively and for α equal to 0.03, 0.05 and 0.07, R0 is
3.75, 3.92 and 4.09, respectively. For a and b the parameter values are taken from
Table 5–3 including σ = 1.2, βvh = 0.1 and α = 0.05 for a and for b σ = 1, βvh = 0.1
and βhv = 0.3
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Figure 5–9, shows behavior of the symptomatic and asymptomatic infected pop-

ulation under the variations of the probability of that exposed human not developing

symptoms and developing symptoms, q and ρ, respectively. We observe that these

two probabilities, unlike the vector and sexual transmission rates, only influence the

number of infected people reached per day, but not the time tpeak since, for exam-

ple, in the two graphs, we observe that the maximum is reached at 80 days in any of

the cases of ρ and q. Note that if q grows, the population of infected asymptomatic

grows and that of the symptomatic decreases.

Figure 5–9: Behavior of the symptomatic and asymptomatic infected population
under the variation of probability of that exposed human no developing symptoms
and develop symptoms, q and ρ respectively .

In Figure 5–10 we observe the behavior of the basic reproductive number R0

(blue color) as a function of βhv and α, that is when the transmission rates of vector

to human (βhv) and of direct transmission (α) are varied. Here, the constant plane

is R0 = 1 is shown in red color. Note the direct relation between the indicated

parameters and the basic reproductive number. On the other hand, the region

where R0 ≤ 1 is represented by the bottom part of the intersection between the
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plane of R0 and the plane 1, is small in comparison with region R0 > 1 indicating

the strong impact of the direct and vectorial transmission rates on the development

of the disease observe that the influence of βhv is greater than that of α.

Figure 5–10: Behavior of the basic reproductive number R0 when the transmission
rates of vector a to human and of direct transmission βhv and α are varied of blue
color and the constant plane is R0 = 1 of red color.

5.3 Role of the Parameter of Infectiousness (σ)

The infectiousness is understood as the measure to be able to spread with

success an illness to a susceptible host, which means if the individual A is more

infectious than B, then A has the power to spread more individuals than B. The

study of the infectiousness in individuals affected by the virus, determines important

information to know its role in the illness and, thereby, to enlarge the knowledge of

it. For this, note that , R0 can be written as:

R0 = Rs + σRa, (5.1)
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where,

Rs =

(
ρkh

µh + kh

)(
βvh

µh + γs

)(
kv

µv + kv

)(
βhv
µv

)
+

(
ρkh

µh + kh

)(
α

µh + γs

)
,

and Ra =

(
qkh

µh + kh

)(
βvh

µh + γa

)(
kv

µv + kv

)(
βhv
µv

)
+

(
qkh

µh + kh

)(
α

µh + γa

)
,

therefore

Ra =
1

σ
(R0 −Rs). (5.2)

Similarly to Section 4.1.2, we can interpret Rs and Ra as the representation

of the asymptomatic or symptomatic infectious reproduction numbers, which are a

contribution to R0 by individuals who are infectious asymptomatic and symptomatic

to ZIKV, respectively.

Let us consider that Ra as a function of Rs for a fixed value of R0, that is, it

represents a segment with intercepts

(
1

σ
R0, 0

)
and (0, Rs) in the Ra and Rs plane,

respectively. However, if we take R0 = 1 the intercepts are

(
1

σ
, 0

)
and (0, Rs). We

obtain the segment that divides the R0 > 1 and R0 < 1 regions, as shown in Figure

5–11. In Figure 5–11b, we show that if σ grows (asymptomatic are lower infectious)

then,
1

σ
approaches 0 and the area of the region R0 < 1 decreases as is illustrated

by Figure 5–11a. Note that in this region there are all the values in which the basic

reproductive number is less than 1, that is, where an infected individual infects

less than one susceptible individual on average. Therefore, the disease does not

develop and as it was verified mathematically in Section 4.1.5, when R0 < 1 there

is a Zika free equilibrium, which is asymptotically stable. Consequently, the disease

does not progress. This region in which R0 < 1 is called optimal region for the

epidemic. Reciprocally, if σ decreases, then
1

σ
take bigger values and the optimal

region R0 < 1 grows as is illustrated in Figure 5–11 c which verifies the impact
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of the infectivity for the development or extinction of the disease of the infected

population. In conclusion, if the parameter of infectivity alteration σ reaches values

smaller than one, then the area of the region where the basic reproductive number

is less than one increases, consequently increasing the probability of Zika’s disease

extinction.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5–11: Regions of R0 < 1 or R0 > 1 as function of σ.

Figure 5–12 associated σ through Equation 5.1 shows the direct relationship

between the basic reproductive numbers and the infectivity parameter (σ), corrobo-

rating the impact of this parameter on the spread of ZIKV. That is, there is a direct

relationship between R0 and σ, as σ increases (more infectivity for asymptomatic

infected R0 increases.

In Figure 5–13, the graphs a, b, and c illustrate the behavior of the asymp-

tomatic and symptomatic infected populations, while Figure 5–13d illustrates the

behavior of the total infected population. Notice the similar behavior that this figure
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Figure 5–12: Behavior of basic reproductive number R0 under the variation of pa-
rameter of alteration of infectiousness σ.

5–13 has with the Figure 5–5 and 5–7. Note that in Figure 5–13 a, b, and c the num-

ber of infected asymptomatic and symptomatic per day correspond to 80% and 20%

of the total of the infected population shown in Figure 5–13d. The epidemic illus-

trated in Figure 5–13a occurs when the infectivity of asymptomatic infected persons

is lower than that of symptomatic infected persons (σ < 1). At 100 days the maxi-

mum number of infected persons, is reached in a proportion of 0.025 and 0.006 for

asymptomatic and symptomatic persons respectively. Figure 5–13b illustrates the

development of an epidemic when the symptomatic and asymptomatic infected indi-

viduals have the same infectiousness (σ = 1), where the maximum number reached

by the asymptomatic and symptomatic epidemic is 0.06 and 0.01 at the 80 day, re-

spectively. On the other hand, Figure 5–13c occurs when the infected asymptomatic

has greater infectiousness than the symptomatic (σ > 1), where the maximum in

proportion is 0.12 and 0.03 for asymptomatic and symptomatic respectively at 60

days. Finally, Figure 5–13 d) illustrates the summary of Figures a, b, and c. An



60

epidemic of the total of the infected population (I = Is + Ia) is illustrated. In sum-

mary, it is observed that when the infectivity of the asymptomatic individuals in

comparison with the symptomatic ones grows, the maximum number of cases tpeak

reached on the epidemic grows and the time in which it is reach (tpeak) decreases.

Figure 5–13: The graphs a, b and c represent the behavior of the symptomatic vs
asymptomatic infectious population when σ is varied with a R0 = 1.63, R0 = 2.80
and R0 = 5.15 respectively, and the graph d is the combination of all graphs for
infectious total population. The parameter values are taken from Table 5–3 including
α = 0.055, βvh = 0.1 and βhv = 0.2.

Figure 5–14 illustrates the behavior at equilibrium for the populations of symp-

tomatic and asymptomatic infected when the parameter of alteration of infectious-

ness σ varies for all possible cases of probability of being symptomatic ρ and asymp-

tomatic q. Although, there is no bibliographic evidence of the case in which ρ > q.

Note that, Figure 5–14a illustrates the case supported by the literature that

is, when the probability of being infected asymptomatic is greater than that of

being symptomatically infected, the number of asymptomatic infected population

at the equilibrium is always greater than that of the symptomatic. Observe that the
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growth in the equilibrium of the symptomatic infected grows slowly in comparison

with that of the asymptomatic ones; this is due to the fact that the infectivity of the

asymptomatic grows and in the probability of being infected asymptomatic is greater

than that of being infected symptomatic (q > ρ). Although there is no bibliographic

evidence of this case, we present Figure 5–14b as a possible event when ρ > q, in

which we note that at equilibrium the number of symptomatic remains greater than

the number of asymptomatic in the population regardless of infectivity. This plot

allows us to understand the role of the infectiousness in the populations since the

quantity in the equilibrium of infected population of the two classes depends on

who has the greater probability of infectivity, but the total number of the infected

in the population (purple color) in the equilibrium is greater when the number of

asymptomatic is greater than that of the symptomatic, indicating that, when the

asymptomatic population is larger than the symptomatic, there are more cases of

infections in the population than when the number of symptomatic individuals is

greater than that of the asymptomatic. An explanation for this phenomenon that is

happening in the infected population is that infected symptomatic are detected and

therefore isolated to prevent the spread of the virus, while asymptomatic are not

detected, they spread the virus silently. Note that when ρ ≤ q and if the infected

symptomatic are more infectious than the asymptomatic σ < 1, the growth in the

equilibrium of the two classes of infected populations is accelerated, while, when

σ > 1 it slows down. (similarly for the case ρ > q).
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Figure 5–14: Behavior on equilibrium of the symptomatic and asymptomatic in-
fected population with the σ variation, for all possible cases of ρ and q



Chapter 6

SENSITIVITY ANALYSIS FOR R0

The parameter estimation provided baseline values or a range of values for the

parameters involved in the model. But these have uncertainty that might affect the

results obtained in Chapter 5. Sensitivity Analysis is a method that can be applied

to quantify the effects of an input parameter in the uncertainties in the model’s

output solution [2]. The method consists of applying small perturbations to the

parameters in order to quantify the change in the output solution (see Figure 6–1)

and in consequence determine which parameters have most or least effect in the

output.

 

Forward 

Problem Input Parameter Output Solution 

Input Parameter with 

small perturbation 

Forward 

Sensitivity 

Analysis 

Change in the Output 

Solution 

Figure 6–1: The forward problem with parameter ρ and output solution µ and small
perturbations δ.

Leon Arriola and James M. Hyman [2] describes a forward problem as one that

takes an input parameter ρ and produces the associated output solution µ. For

63
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example given the Initial Value Problem:

d−→µ
dt

=
−→
f (−→µ , t; ρ), −→µ (0) = −→µ 0,

then the forward sensitivity analysis consists of introducing small perturbations to

the parameter δρ in order to quantify the output perturbations is,

d−→µ + δ−→µ
dt

=
−→
f (−→µ + δ−→µ , t; ρ+ δ−→ρ ).

It is said that a parameter is more sensitive, if small changes in it produce

big changes in the solution output. Therefore, it relative size must be taken into

account.

Leon Arriola and James M. Hyman [2] defined the normalized sensitivity index

(SI) as

Sρ = lim
δρ→0

δµ

µ
δρ

ρ

=
ρ

µ

∂µ

∂ρ
µ 6= 0.

If the sign of the number of the SI is positive then when the value of the

parameter grows the output solution also grows. On the other hand, if the SI is

negative: where the value of the parameter grows the output solution decreases [2] .

A classic example, for a better understanding of the sensitivity analysis is based

on the SIR rescaled model by Kermack-McKendrick [23] given by:

dS

dt
= µ− βSI − µS,

dI

dt
= βSI − γI − µI,

and
dR

dt
= γI − µR,

where µ is the recruitment and natural death rates of the population, β is the

transmission rate, and γ is the recovered rate. The basic reproductive number
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associated with the model is:

R0 =
β

γ + µ
,

that is, the transmission rate times the total average time individuals spent as

infectious. The basic reproductive number is the output solutions and the SI’s for

each parameters is given by:

Sβ =
β

R0

· ∂R0

∂β
= 1,

Sγ =
γ

R0

· ∂R0

∂γ
= − γ

γ + µ
,

Sµ =
µ

R0

· ∂R0

∂µ
= − µ

γ + µ
.

Using arbitrary parameter values we verified the impact in R0 studying the sign

of the SI of the parameters. If we take µ = 1/79, γ = 1/7 and β = 0.3 then

R0 = 1.92907 and the SI value associated to every parameter is: Sµ = −0.081395,

Sγ = −0.918604 and Sβ = 1 telling us that if we increase β by 1% then R0 increases

by 1% since the sign of Sβ is positive. This is easily verified by increasing β = 0.3

to β = 0.303, which increase R0 from 1.92907 to 1.94836 in consequence its growth

represents a 1% increase in R0, as estimated from the SI. Similarly since Sγ =

−0.918604 is negative, if is γ increased by approximately 0.9186% then R0 decrease

approximately by 0.9186%. On the other hand, the parameters of greatest influence

in the epidemic are β and γ, since, their SI magnitudes are the largest among the

parameters. This result is to be expected since, when the rate of transmission

increases, the infectious population grows and if the recovery rate increases then

number of the infected individual decreases faster and in them decrease.

As mentioned before, the basic reproductive number R0 is the expected number

of secondary cases produced by a typical infective human in a completely humans
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and vecotor susceptible population. In consequence, if R0 ≤ 1 the infection dies

out while if R0 > 1 the infection produced by the ZIKV remains, and the epidemic

grows. Let us recall that in our case:

R0 =

(
ρkh

µh + kh

)(
βvh

µh + γs

)(
kv

µv + kv

)(
βhv
µv

)
+

(
σqkh
µh + kh

)(
βvh

µh + γa

)(
kv

µv + kv

)(
βhv
µv

)
+

(
ρkh

µh + kh

)(
α

µh + γs

)
+

(
qkh

µh + kh

)(
σα

µh + γa

)
,

and shown in Section 4.1.2.

First we calculate the SI’s of R0 for the twelve parameters involved.
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Sµh = −µh
R0

[
R0

µh + kh
+
Rv
Is

+Rd
Is

µh + γs
+
Rv
Ia

+Rd
Ia

µh + γa

]
,

Sµv = −µv
R0

[
Rv

µv + kv
+
Rv

µv

]
,

Sβhv =
Rv
Is

+Rv
Ia

R0

,

Sβvh =
Rv
Is

+Rv
Ia

R0

,

Sα =
Rd
Is

+Rd
Ia

R0

,

Skh =
µh

µh + kh
,

Skv =
µvRv

(µv + kv)R0

,

Sρ =
Rv
Is

+Rd
Is
− ρ/q(Rv

Ia
+Rd

Ia
)

R0

,

Sq =
ρ/q(Rv

Ia
+Rd

Ia
)− (Rv

Is
+Rd

Is
)

R0

,

Sγs = − γs
R0

[
Rv
Is

+Rd
Is

µh + γs

]
,

Sγa = − γa
R0

[
Rv
Ia

+Rd
Ia

µh + γa

]
,

and Sσ =
Rv
Ia

+Rd
Ia

R0

.

Table 6–1 shows the parameter that we chose from the literature as well as their

corresponding SI’s. From Table 6–1, we observe that the parameters with largest

SI’s (in magnitud), and in consequence, more influential to R0 are µv and γa with

negative SI follow by, σ, βhv and βvh with positive SI (See Figure 6–2). That is,

if µv and γa increase by 0.9835% and 0.8364%, respectively, then R0 decreasing by

0.9835% and 0.8364%, respectively. Similarly, if βhv, βvh and σ by 0.7440%, 0.7440%

and 0.8372% respectively then R0 also increases in the same percent. The recruit-

ment and natural death rate vector (µv) cannot be change, naturally only through

control measures. Now, if the death rate of mosquitoes grows, the basic reproductive
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number decreases since these are transmitters of the infection. Therefore, once an

epidemic occurs, efforts to control the epidemic should focus on the recovery rate of

asymptomatic γa, the transmission rate from vector to human βhv, the transmission

rate human to vector βvh and the parameter of greater interest based our research

the parameter of alteration of infectiousness σ. For example if we increase the recov-

ery rate of the asymptomatic infected γa then, considering that Zika is a disease with

permanent immunity, we will have fewer propagation contacts that transmit infec-

tion consequently R0 decreases, the vector transmission rates βhv and βvh have equal

positive SI’s value. The prevention of the vector contagion of the ZIKV whether by

medical treatment, the use of repellents or a possible vaccine (see [33]), could reduce

these transmission rates and speed up recovery, consequently decreasing R0 with the

possibility of reach the eradication of the disease (when R0 < 1).

Table 6–1: Fixed parameter values to compute the SI’s.

Parameter Value

µv 1/20
σ 1
γa 1/9
βhv 0.1
βvh 0.15
α 0.07
kv 1/9.5
q 0.8
γs 1/7
ρ 0.2
µh 1/(27× 365)
kh 1/5

SI Value

Sµv −0.9835
Sσ 0.8372
Sγa −0.8364
Sβhv 0.7440
Sβvh 0.7440
Sα 0.2560
Skv 0.2396
Sq 0.1859
Sγs −0.1627
Sρ −0.0464
Sµh −0.0013
Skh 0.0005071

On the other hand, note that the value of the SI associated with the parameters

γa and σ are negative and positive ,respectively, and its absolute value are the largest

of the rest of the parameters. Therefore, γa and σ are parameters most influential to

among R0. These two parameters are significantly related since if the parameter of

alteration infectious increases (with σ > 1), then the infectious of the asymptomatic
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Figure 6–2: Graphical representation of SI associated to each parameter.

infected individuals is greater than that of symptomatic infected particularly con-

sidering 80% of individuals are asymptomatic. On the other hand, if the recovery

rate of asymptomatic individuals decreases (γa), then there are more asymptomatic

infectious individual without recovery and if the σ parameter is growing in conse-

quence, a greater susceptible population are infected by asymptomatic individuals

which increases R0.

Now, we present the SI’s for all possible combination of σ, ρ and q. SI’s case for

when the infectivity of the symptomatic infected is lower than that of the asymp-

tomatic (σ < 1), the same than that of the asymptomatic (σ = 1) and greater than

that of the asymptomatic (σ > 1) are show the Figure 6–3, 6–4 and 6–5 respectively.

As a reminder, ρ is the probability that an individual infected by the ZIKV becomes

symptomatic, while q is the probability that become asymptomatic, therefore R0 is

more sensitive to:

• µv, βhv, and βvh in the cases when ρ = q and for all σ or when ρ < q and σ < 1.

• µv, σ, and γa when ρ < q and σ ≥ 1.

• µv, γs, and βhv when ρ > q and σ ≤ 1.

• µv, q and ρ when ρ > q and σ > 1.

This can be summarized in Table 6–2:
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Table 6–2: Sensitivity Analysis for General Cases

 

Param. 
𝝁𝒗 

 
𝜷𝒉𝒗 

 
𝜷𝒗𝒉 

 
𝝈 

 
𝜸𝒂 

 
𝜸𝒔 
 

𝒒 

 
𝝆 

 

SI sign - + + + - - + - 
 

 
 
 

Cases 
𝜌 < 𝑞 

 
𝜌 = 𝑞 

 
𝜌 > 𝑞 

 

𝜎 < 1 
 

𝝁𝒗 

 

𝝁𝒗 

 

𝝁𝒗 

 

𝜷𝒉𝒗 

 

𝜷𝒉𝒗 

 

𝜸𝒔 
 

𝜷𝒗𝒉 

 

𝜷𝒗𝒉 

 

𝜷𝒉𝒗 

 

𝝈 

 

𝜸𝒔 
 

𝜷𝒗𝒉 

 

𝜸𝒂 

 
  

 
 
 

𝜎 = 1 
 

𝝁𝒗 

 

𝝁𝒗 

 

𝝁𝒗 

 

𝝈 

 

𝜷𝒉𝒗 

 

𝜸𝒔 
 

𝜸𝒂 

 

𝜷𝒗𝒉 

 

𝜷𝒉𝒗 

 

𝜷𝒉𝒗 

 

𝝈 

 

𝜷𝒗𝒉 

 

𝜷𝒗𝒉 

 

𝜸𝒂 

 
 

 
 
 

𝜎 > 1 
 

𝝁𝒗 

 

𝝁𝒗 

 

𝝁𝒗 

 

𝝈 

 

𝜷𝒉𝒗 

 

𝒒 

 

𝜸𝒂 

 

𝜷𝒗𝒉 

 

𝝆 

 

𝜷𝒉𝒗 

 

𝝈 

 

𝜷𝒉𝒗 

 

𝜷𝒗𝒉 

 

𝜸𝒂 

 

𝜷𝒗𝒉 

 

  
𝜸𝒔 
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Figure 6–3: Graphical representation of SI associated to each parameter for σ < 1
and all possible cases σ, ρ and q.

Figure 6–4: Graphical representation of SI associated to each parameter for σ = 1
and all possible cases σ, ρ and q.
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Figure 6–5: Graphical representation of SI associated to each parameter for σ > 1
and all possible cases σ, ρ and q.

Note the similarity of the results obtained in the sensitivity analysis for some

cases, for example, the cases σ < 1, ρ < q, σ = 1, ρ = q and the case σ > 1, ρ = q

or when σ = 1, ρ < q and σ > 1, ρ < q or when σ < 1, ρ > q and σ = 1, ρ > q has

equal results.

In the case in which the number of asymptomatic and symptomatic infected are

equals (ρ = q) we have that parameter for which R0 is most sensitive are βhv, βvh

and σ with positive SI’s and µv with negative SI’s, for any infectious value but when

the asymptomatic individuals are less infectious that symptomatic (σ < 1), R0 is

sensitivity to γs with negative SI’s therefore if γs grows the decrease R0, while when

σ ≥ 1, R0 is sensitivity to γa with negative SI’s. Therefore if γs grows then decreases

R0. This is correct, since, if ρ = q and σ < 1, then the symptomatic recovery rate

has more influence on R0 than γa, because the asymptomatic individuals are less

infectious than the symptomatic ones.
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Note that, when σ > 1 and ρ > q, R0 is very sensitive to ρ and q, that is to

say that R0 grows if ρ decreases and q increases, since, if the number of infected

asymptomatic grows and as these are more infectious than the symptomatic, conse-

quently R0 also increases. This case is interesting because it appears only once, in

the sensitivity analysis, which indicates that only in it case the amount of infectious

population has a decisive influence on a possible outbreak of the disease.

When σ ≥ 1 and ρ < q, µv and the parameter of infectiousness alteration σ is

very influential in an outbreak of the ZIKV.

Finally, the sensitivity analysis determines that for any infectious situation of

the infected population (σ < 1, σ = 1, σ > 1) and the probability of reaching some

type of infection in the population, (ρ < q, ρ = q, ρ > q), the basic reproductive

number R0 is more sensitive to the mosquito mortality rate µv and the mosquito

bite rate βhv and βvh. Consequently, the decrease in the number of mosquitoes is

the best way to prevent and control an outbreak. Which agrees the words of the

current state epidemiologist Carmen Deseda, MD. of Puerto Rico, who reports that

one of the influential factors for controlling the spread of ZIKV was the population’s

own action to control mosquito breeding sites [12].



Chapter 7

CONCLUSIONS

In this work, a comprehensive bibliographic review and a summary on the

epidemiology of Zika virus disease was carried out, as well as the review of some

publications of previous mathematical epidemiological models on the dynamics of

ZIKV spread.

The found notions that motivated our investigation were that the Zika Virus

(ZIKV) develops Zika fever or Zika disease which has turned emergency alarms in

the last few years in tropical and subtropical regions. The ZIKV is today known as

the first example of an infection that can be transmitted both sexually and through

mosquitoes. The Zika disease has no vaccine and no treatments or medicines that

heal the burden of the patient for this is of great scientific interest. Zika is an

asymptomatic and symptomatic disease. According to some reports, most cases are

asymptomatic (8 : 2). There is scientific consensus that ZIKV can cause micro-

cephaly and Guillain Barre syndrome. Moreno, V. (December 2016), et. al., assess

that there is no complete knowledge of the dynamics of Zika Virus transmission.

Hence, they assume that symptomatic and asymptomatic humans are equally infec-

tious. Other authors such as P. Padmanabhan, (May 2017) conducted their research

on the disease under similar assumptions.

With these notions, we constructed the first model that considers variable in-

fectiousness in the human populations as well as populations of to be suscepti-

ble, exposed, symptomatic infected, asymptomatic infected and recovered and the

74
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mosquitoes population to be, susceptible, exposed and infected we also considered

parameters that promote the development of the disease under sexual and vector

transmission. We found the basic reproductive number associated to the model

which is interpreted as the number of secondary infections produced by a typical

infected human in a completely susceptible population of humans and mosquitoes.

In terms of this condition, we performed a qualitative, numerical and sensitivity

analysis of the model.

In the qualitative analysis, we made a rescale version of the model and found

two basic reproductive number R0 and R∗0, both valid in the study of the mod-

eling of infectious diseases. The value of R0 provides a threshold condition when

new infections are considered only for humans and the process of infection human-

vector-human is considered as one generation. Meanwhile, R∗0 provided a threshold

condition for Zika virus spread when we also incorporated mosquitoes contributing

to new infections where the process of infection human-vector-human is considered

as two generations. We chose to use R0 for the basic reproductive number as it is a

simpler expression of the process. This can be expressed as the sum of two reproduc-

tive ratios, one associated to the vector transmission and one to sexual transmission

(R0 = Rv +Rd) (See Brauer et. al. [4], Valega, W. and Rı́os-Soto, K. [33]). In terms

of R0 , we found two equilibrium points of the system. One of them, the Zika-free

equilibrium, was determined explicitly and for the second, which is the endemic

equilibrium, we demonstrate its existence and uniqueness since it cannot be found

explicitly. In summary, if R0 ≤ 1, then there exists an unique equilibrium point

E1 = (1, 0, 0, 0, 0) the Zika-free equilibrium, which indicates a healthy state where

there is no infection and if R0 > 1, then in addition to E1, there exist an infected

equilibrium, the Zika equilibrium E2 = (S∗, L∗, I∗s , I
∗
a , E

∗
v , I
∗
v ), where all populations

co-exist.
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We analyzed the stability of the Zika free equilibrium using the basic repro-

ductive number. In Theorem 5, we concluded that if R0 < 1, then the Zika-free

equilibrium E1 is locally asymptotically stable indicating that, in this case, the dis-

ease does not develop [14]. While, if R0 > 1 then E1 is unstable, but in this region

the endemic equilibrium emerges as a second equilibrium point E2 which we showed

numerically that is locally asymptotically stable using our fixed parameter values.

Therefore, in this case it is always possible that ZIKV never dies out. Due to the

complexity of our model, deduced by its 8 equations and its non-linearity, the global

equilibrium stability will be considered for future work.

In Chapter 5, Figures 5–3 and 5–4 with parameters taken from the bibliographic

review verify the existence of the two equilibria based on the basic reproductive num-

ber, the Zika-free equilibrium and Endemic equilibrium. As well as it is performed

a regions diagram which illustrates the different behaviors of R0 as a function of Rd

and Rv Figure 5–2 shows simulations of the epidemics that develop when R0 > 1

and six possible variations of the contributions of the direct and vectorial transmis-

sion Rd and Rv are considered. We learned that that when the vector transmission

ratio is larger than the sexual transmission ratio there is a time delay for ZIKV to

invade the population. Under this scenario there is a window of opportunities to pre-

vent an epidemic of ZIKV with preventive measures, such as insecticide, repellents,

condoms, etc.

Figures 5–5, 5–7 and 5–13 present the behavior of the asymptomatic and symp-

tomatic infected populations, when the vector to human transmission rate (βhv), the

sexual transmission rate (α) and the infectious alteration (σ) rates are varied. Here,

the impact that the three parameter has in the ZIKV diseases spread on an epidemic

is notable since the maximum number of infected grows, by the direct relationship

increasing R0.
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Figure 5–11 verified the role of the infectivity that is the development or extinc-

tion in the disease of the infected population. If σ decreases, then the area of the

region where the basic reproductive number is less than one increases, consequently,

increasing the possibility of Zika’s disease extinction.

In summary, the numerical analysis predicts an epidemic, where the number of

infected can grow or decrease depending on the value of the parameters σ, βhv, ρ or

q. It is observed that mainly the population of asymptomatic infected individuals

(q > ρ) influence the growth of the infected population spreading the ZIKV and

therefore generating a greater number of infected, by its silent transmission of the

disease. In addition,campaigns for the detection of the ZIKV by means of tests, as

well as by invitation to the community, even if individual do not show symptoms

or have suspicions can help to decrease the number of cases. Efforts should also

focus on the appropiate manage to detect the asymptomatic infected individuals

and isolate them.

The sensitivity analysis showed the impact of the parameters µv, βhv and βvh

in the dynamics of the development of the disease. An important conclusion from

the sensitivity analysis is that, the basic reproductive number R0 is more sensitive

to the mosquito mortality rate µv and the mosquito transmission rates βhv and βvh.

Therefore, mosquito eradication is the best way to prevent and control an epidemic.

This agrees with words of the current state epidemiologist MD Carmen Deseda of

Puerto Rico [12], who reports that one of the influential factors for controlling the

spread of ZIKV is the population’s own action to control mosquito breeding sites.
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diferencias. Sistemas dinámicos. Editorial Thomson. Madrid. 2003

[17] Esteva L. and Vargas C.: Analysis of a Dengue Disease Transmission Model,

Mathematical Biosciencies Journal, 1998



80

[18] Gao,D.,Lou, Y., He, D., Porco, T., Kuang, Y., Chowell, G. and Ruan,

S.:Prevention and Control of Zika as a Mosquito-Borne and Sexually Trans-

mitted Disease: A mathematical Modeling Analysis, Scientific Reports, 2016.

[19] Hethcote H.W. (1994) A Thousand and One Epidemic Models. In: Levin S.A.

(eds) Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol

100. Springer, Berlin, Heidelberg.

[20] Hirsch, M.W and Smale, S. Ecuaciones Diferenciales, Sistemas Dinámicos y
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