

ii ii

Abstract

In this thesis, a data preprocessing environment has been created, for use in a

supervised classification context, with the Windows platform of the R programming

language and environment for statistical computing and graphics.. The functions that

compose the environment have been selected based on the results of empirical studies on

the effects of the data preprocessing techniques investigated on the misclassification error

of well-known classifiers used on real datasets. Visualization techniques were also

included in the environment to support data exploration, as well as data preprocessing

decisions. The techniques considered in this thesis were applied to twelve real datasets

found at the Machine Learning Database Repository at the University of California,

Irvine. The datasets varied in the number of dimensions from 4 to 60, in the number of

observations from 150 to 4435, and in the number of classes from 3 to 7. Other existing

studies on data preprocessing study the effects of applying these techniques to the whole

dataset, but not by class.

The functions that form the data preprocessing environment were placed in a

package that can be downloaded to the R directory R_HOME/library and then, loaded to

the user’s workspace to create a data preprocessing environment for supervised

classification applications. Future investigations may explore the use of these functions

for data mining projects that involve very-high dimensional and very large datasets.

iii

Resumen

En esta tesis, se ha creado un ambiente de pre-procesamiento de datos para

usarse en aplicaciones de clasificación supervisada para la plataforma de Windows del

lenguaje de programación y ambiente estadístico y gráfico llamado R. Las funciones

que componen el ambiente han sido seleccionadas en base a los resultados de estudios

empíricos sobre el efecto del pre-procesamiento de datos en el error de la mala

clasificación de tres clasificadores muy conocidos. Las doce bases de datos usadas,

cuyas dimensionalidades varían de 4 a 60, número de observaciones de 150 a 4435 y

número de clases de 3 a 7, fueron tomadas del Machine Learning Database

Repository at the University of California, Irvine. Otros estudios existen en el área de

pre-procesamiento de datos, pero aplican las técnicas mencionadas a datos completos

y no a los datos agrupados por clase.

Las funciones codificadas han sido empaquetadas y el paquete puede ser

bajado al directorio de R “R_HOME/library”. Una vez ahí, el usuario puede montar el

paquete en su “workspace”, creando así un ambiente propicio para el pre-

procesamiento de datos para aplicaciones de clasificación supervisada.

Investigaciones futuras podrán explorar el uso de estas funciones para proyectos de

minería de datos.

iv

©Copyright by Caroline Kay Rodriguez on June 2004

v

Dedication

"If I have seen further it is by standing on the shoulders of giants."

- Isaac Newton

This work is dedicated to the two giants who, over this past year, have lent me

a shoulder to stand on. It was only with one foot on the shoulder of knowledge
and the other on the shoulder of love that this work was made possible.

… to my thesis advisor

... to my husband and children

vi

Acknowledgements

I would like to thank the following organizations and institutions for their

financial support during the last year and a half. Without the aid provided, the
completion of this work would have been improbable.

 The Office of Naval Research (ONR) – (grant number: N00014-03-1-0359)

 PRECISE group of the Engineering School at the University of Puerto Rico at
Mayagüez funded by NSF grant EIA 99-77071

 The Mathematics Department of the University of Puerto Rico at Mayagüez

I would also like to thank the emotional support and comradeship provided by

the Math Department administrative staff, faculty members and the members of the
CASTLE group. Your faith in my ability to complete this endeavor has made this a
rewarding research experience.

vii

Table of Contents

Chapter 1 Introduction ... 1
Chapter 2 A Brief Review of Data preprocessing... 3

2.1 Introduction .. 3
2.2 Motivation for applying data preprocessing ... 4

2.2.1 Data Characterization ... 5
2.2.2 Data Visualization ... 6

2.3 Techniques for Data Preprocessing .. 6
2.3.1 Data cleaning... 7
2.3.2 Data Integration .. 7
2.3.3 Data Transformation ... 8
2.3.4 Data Reduction .. 8

2.4 Aspects of data preprocessing studied in this thesis... 9
Chapter 3 Visualization .. 10

3.1. Introduction .. 10
3.2. Overview of some high-dimensional data visualizations ... 12

3.2.1. Scatter Plots ... 12
3.2.2. Survey Plots ... 15
3.2.3. Parallel Coordinate Plot ... 16
3.2.4. Radial Coordinate Visualization (RADVIZ) .. 17
3.2.5. Grand Tours... 18

3.3. Current visualization techniques available for R.. 18
3.4. New visualization functions for R .. 19

3.4.1. An implementation in R of the survey plot – surveyplot().................................... 20
3.4.2. An implementation in R of the parallel coordinate plot – parallelplot() 24

3.5. Limitations and future work ... 26
Chapter 4 Outlier Detection ... 30

4.1. Introduction .. 30
4.2. Univariate Outliers ... 31
4.3. Multivariate Outliers .. 32

4.3.1. Statistical based outlier detection... 34
4.3.2. Detection of outliers using clustering .. 42
4.3.3. Distance based outlier detection.. 44
4.3.4. Density-based local outliers .. 47

Chapter 5 Feature Selection ... 54
5.1. Introduction .. 54
5.2. Filter methods... 55

5.2.1. The RELIEF Algorithm .. 55
5.2.2. The Las Vegas Filter (LVF) ... 59
5.2.3. The FINCO method.. 63

5.3. Wrapper methods.. 64
5.3.1. Sequential Forward selection .. 65
5.3.2. Sequential Floating Forward Selection ... 67

Chapter 6 Missing Values ... 72
6.1. Introduction .. 72

viii

6.2. Mechanisms that lead to missing data .. 73
6.3. Methods of handling missing data.. 77

6.3.1. Case Deletion... 78
6.3.2. Mean Imputation.. 78
6.3.3. Median Imputation (MDI) ... 79
6.3.4. KNN Imputation (KNNI)... 80

6.4. Other imputations methods... 82
6.5. Effect of imputation on the misclassification error rate ... 83

Chapter 7 Experimental Results ... 87
7.1. Programming in R .. 87
7.2. The Datasets ... 89
7.3. Classifiers used in this thesis .. 89
7.5. Applications of Visualization Techniques.. 96
7.6. The effect of outliers on the misclassification error and their treatment in a
supervised classification context ... 105
7.7. The effect on the misclassification error rate for both filters and wrappers 109
7.8. Effect of imputation on the misclassification error of the contaminated real
datasets 112

Chapter 8 Conclusions and Future Projections ... 117
8.1 Conclusions .. 117
8.2. Future Projections... 118

Chapter 9 Appendix .. 120
Chapter 10 References .. 156

ix

List of Figures

FIGURE 3.1: 2D SCATTER PLOT FOR THE IRIS DATASET...13
FIGURE 3.2: 3D SCATTER PLOT OF IRIS DATA ...14
FIGURE 3.3 MATRIX OF SCATTER PLOTS FOR IRIS DATA ...14
FIGURE 3.4 SURVEY PLOT OF THE CAR DATASET SORTED BY CYLINDERS AND MPG (FAYYAD ET AL, 2002)....15
FIGURE 3.5: PARALLEL COORDINATE PLOT OF IRIS DATASET TAKEN FROM GRINSTEIN ET AL, (2002)16
FIGURE 3.6: RADVIZ PLOT OF IRIS DATASET...18
FIGURE 3.7: SURVEY PLOT OF IRIS DATASET PRODUCED IN R BY A CALL TO SURVEYPLOT().........................22
FIGURE 3.8: SURVEY PLOT FOR CARS DATASET PRODUCED IN R BY A CALL TO SURVEYPLOT()23
FIGURE 3.9: SURVEY PLOT OF IRIS DATASET FOR WHICH SEVERAL OBSERVATIONS HAVE BEEN

EMPHASIZED. ..23
FIGURE 3.10: PARALLEL COORDINATE PLOT FOR IRIS DATASET...25
FIGURE 3.11: DISTINCT PERMUTATIONS FOR THE IRIS DATASET AS PRODUCED BY THE PARALLELPLOT()

FUNCTION ...26
FIGURE 3.12: PLOT THAT REFLECTS THE “CLUTTER PROBLEM” FOR LARGE NUMBER OF ATTRIBUTES27
FIGURE 3.13: DISPLAY DEPICTING THE “CROSSOVER PROBLEM”..28
FIGURE 4.1: OUTLIERS OF THE FEATURES IN CLASS 1 OF THE IRIS DATASET ..33
FIGURE 4.2: OUTLIERS OF THE FEATURES IN CLASS 2 OF THE IRIS DATASET ..33
FIGURE 4.3: OUTLIERS OF THE FEATURES IN CLASS 3 OF THE IRIS DATASET. ...34
FIGURE 4.4: EXAMPLE OF A BI-DIMENSIONAL OUTLIER THAT IS NOT AN OUTLIER IN EITHER OF ITS

PROJECTIONS. ...35
FIGURE 4.5: DETECTING MULTIVARIATE OUTLIERS BY BOXPLOTS IN THE IRIS DATASET36
FIGURE 4.6: THE MASKING EFFECT OF MULTIVARIATE OUTLIERS IN THE HAWKINS DATASET.......................37
FIGURE 4.7: PLOT OF THE INSTANCES OF THE IRIS DATASET RANKED BY THEIR MAHALANOBIS DISTANCE

USING MVE ESTIMATOR...41
FIGURE 4.8: PLOT OF THE INSTANCES OF IRIS CLASS 3, RANKED BY THEIR MAHALANOBIS DISTANCE

USING MCD ESTIMATOR...41
FIGURE 4.9: INSTANCES OF THE CLASS 3 IN IRIS DATASET RANKED BY THE BAY’S ALGORITHM

OUTLYINGNESS MEASURE ...47
FIGURE 4.10: BAY’S ALGORITHM FOR FINDING DISTANCE-BASED OUTLIERS ..46
FIGURE 4.11: EXAMPLE TO SHOW THE WEAKNESS OF THE DISTANCE-BASED METHOD TO DETECT

OUTLIERS..48
FIGURE 4.12: THE LOF ALGORITHM..50
FIGURE 4.13: RUNTIME FOR THE COMPUTATION OF LOFS FOR DIFFERENT DATASETS...................................52
FIGURE 4.14: INSTANCES OF THE CLASS 3 IN IRIS DATASET RANKED BY THE LOF’S ALGORITHM

OUTLYINGNESS MEASURE ...53
FIGURE 5.1: THE RELIEF ALGORITHM..56
FIGURE 5.2: PLOT OF RELEVANCE WEIGHTS FOR THE FEATURES OF THE DATASET IONOSFERA59
FIGURE 5.3: THE LVF ALGORITHM ..62
FIGURE 5.4: THE FINCO ALGORITHM..64
FIGURE 5.5: THE SFS ALGORITHM..66
FIGURE 5.6: THE SEQUENTIAL FLOATING FORWARD SELECTION ALGORITHM (SFFS).68
FIGURE 5.7 : PLOT OF THE LOGARITHMS OF TIME COMPUTATION OF THE WRAPPERS VERSUS THE

LOGARITHM OF INSTANCES IN EACH OF THE TWELVE DATASETS...69
FIGURE 5.8: PLOT OF THE LOGARITHM OF THE COMPUTATION TIME OF THE WRAPPERS VERSUS THE

LOGARITHM OF THE NUMBER OF FEATURES IN EACH OF THE TWELVE DATASETS.69
FIGURE 5.9: PLOT IN LOGARITHM SCALE THAT SHOWS A LINEAR RELATIONSHIP BETWEEN THE NUMBER

OF INSTANCES AND THE COMPUTER RUNNING TIME OF THE FILTER ALGORITHMS.70

x

FIGURE 5.10: PLOT IN LOGARITHM SCALE THAT SHOWS THE QUADRATIC RELATIONSHIP BETWEEN THE
NUMBER OF FEATURES AND THE COMPUTER RUNNING TIME OF THE FILTER ALGORITHMS.71

FIGURE 6.1: AN EXAMPLE OF MISSING VALUES OBTAINED BY A MAR MECHANISM.75
FIGURE 6.2: AN EXAMPLE OF MISSING VALUES OBTAINED BY THE NMAR MECHANISM76
FIGURE 6.3: THE KNN IMPUTATION ALGORITHM. ...81
FIGURE 7.1: SCATTER PLOT OF CREDIT HISTORY DATA WITH LINEAR DISCRIMINANT LINE91
FIGURE 7.2: DECISION TREE FOR IRIS DATASET..92
FIGURE 7.3: SCATTERPLOTS OF THE FIRST ATTRIBUTE OF IRIS BEFORE AND AFTER APPLYING DIFFERENT

NORMALIZATION METHODS ..95
FIGURE 7.4: PARALLEL COORDINATE PLOT FOR CLASS 2 OF IRIS ..97
FIGURE 7.5: PARALLEL COORDINATE PLOT FOR CLASS 3 OF IRIS ..97
FIGURE 7.6: PARALLEL COORDINATE PLOT FOR CLASS 1 OF BUPA ...98
FIGURE 7.7: PARALLEL COORDINATE PLOT FOR CLASS 2 OF BUPA ...98
FIGURE 7.8: PARALLEL COORDINATE PLOT FOR CLASS 1 OF HEART ...99
FIGURE 7.9: PARALLEL COORDINATE PLOT FOR CLASS 2 OF HEART ...99
FIGURE 7.10: PARALLEL COORDINATE PLOT FOR CLASS 1 OF CRX ..100
FIGURE 7.11: PARALLEL COORDINATE PLOT FOR CLASS 2 OF CRX ..100
FIGURE 7.12: PARALLEL COORDINATE PLOT FOR CLASS 1 OF DIABETES ..101
FIGURE 7.13: PARALLEL COORDINATE PLOT FOR CLASS 2 OF DIABETES ..101
FIGURE 7.14: PARALLEL COORDINATE PLOT FOR CLASS 4 OF VEHICLE ..102
FIGURE 7.15: SURVEY PLOT OF CRX DATASET BEFORE FEATURE SELECTION SORTED BY THE SECOND

ATTRIBUTE ...103
FIGURE 7.16: CRX SORTED BY V9...104
FIGURE 7.17: CRX SORTED BY V10...104
FIGURE 7.18: PERCENTAGE OF FEATURES SELECTED BY THE WRAPPER METHODS..110
FIGURE 7.19: PERCENTAGE OF FEATURES SELECTED BY THE FILTER METHODS ...110

xi

List of Tables

TABLE 3-1: DESCRIPTION OF VISUALIZATION FUNCTIONS CURRENTLY AVAILABLE IN R 20
TABLE 4-1: TOP OUTLIERS PER CLASS IN THE IRIS DATASET BY FREQUENCY AND THE

OUTLYINGNESS MEASURE USING THE MVE ESTIMATOR ... 40
TABLE 4-2: TOP OUTLIERS IN CLASS 1 BY FREQUENCY AND THE OUTLYINGNESS MEASURE

USING THE MCD ESTIMATOR ... 40
TABLE 4-3: OUTLIERS IN THE IRIS DATASET ACCORDING TO THE PAM ALGORITHM........... 44
TABLE 4.4: EXPERIMENTAL RUNNING TIME FOR COMPUTING THE LOF FOR ALL

OBSERVATIONS... 51
TABLE 6-1: DESCRIPTION OF INCOMPLETE DATASETS USED IN THIS STUDY 85
TABLE 6-2 CROSS-VALIDATION ERRORS AND RATIOS FOR THE THREE CLASSIFIERS AND THE

FOUR METHODS USED TO DEAL WITH MISSING DATA ... 86
TABLE 7-1 : INFORMATION ABOUT THE DATASETS USED IN THESIS. 89
TABLE 7-2: CREDIT DATA FOR EXAMPLE 1... 91
TABLE 7-3: FEATURES SELECTED BY DIFFERENT METHODS FOR CRX. 103
TABLE 7-4: THE MISCLASSIFICATION ERROR RATE FOR THE LDA, KNN AND RPART

CLASSIFIERS USING THREE DIFFERENT TYPES OF SAMPLES.. 106
TABLE 7-5: FEATURES SELECTED USING SFS AND RELIEF FOR THE THREE TYPE OF SAMPLES

.. 106
TABLE 7-6: MISCLASSIFICATION ERROR RATE AFTER SFS FOR THE THREE TYPE OF SAMPLES

.. 107
TABLE 7-7 : THE MISCLASSIFICATION ERROR RATE FOR THE LDA, KNN AND RPART

CLASSIFIERS USING THREE DIFFERENT TYPES OF SAMPLES.. 108
TABLE 7-8: FEATURES SELECTED USING SFS AND RELIEF FOR THE THREE TYPE OF SAMPLES

.. 108
TABLE 7-9 MISCLASSIFICATION ERROR RATE AFTER FEATURE SELECTION FOR THE THREE

TYPE OF SAMPLES ... 109
TABLE 7-10: MISCLASSIFICATION ERROR RATIOS OF AFTER FEATURE SELECTION TO BEFORE

FEATURE SELECTION (LDA CLASSIFIER)... 111
TABLE 7-11: MISCLASSIFICATION ERROR RATIOS OF AFTER FEATURE SELECTION TO BEFORE

FEATURE SELECTION (KNN CLASSIFIER) .. 111
TABLE 7-12: MISCLASSIFICATION ERROR RATIOS OF AFTER FEATURE SELECTION TO BEFORE

FEATURE SELECTION (RPART CLASSIFIER) .. 112
TABLE 7-13: RATIOS OF CROSS VALIDATION ERRORS USING KNN..................................... 114
TABLE 7-14: RATIOS OF CROSS VALIDATION ERRORS USING LDA 115
TABLE 7-15: RATIOS OF CROSS VALIDATION ERRORS USING RPART 116

1

Chapter 1 Introduction

Data mining, sometimes called knowledge discovery, is the process of analyzing

data using statistical techniques and knowledge-based methods to extract meaningful

patterns from large datasets and turn these into useful information. During a data

mining process, different techniques are applied to find the patterns, associations or

relationships among the variables or attributes of the dataset, which can be converted

into knowledge about historical patterns and future trends. Generally any of four

types of relationships are sought: classes, clusters, associations and sequential

patterns. Data mining techniques that search for class and cluster relationships fall

under the category of Classification.

Classification refers to the data mining problem of attempting to predict the

category to which each observation of the dataset belongs by building a model based

on some predictor variables or features. Classification methods can be of two types:

supervised or unsupervised. In supervised classification, one feature of the dataset

contains values that represent a predetermined grouping of the data. These groups are

generally called classes. For unsupervised classification the goal is to divide the

observations of the dataset into groups or clusters based on some logical relationship

that exists among the values of the features but that must yet be discovered.

Classification may be considered the most well studied data mining problem.

The datasets used for current data mining projects are highly susceptible to

anomalies and impurities, sometimes referred to as noise. If this dirty data is used for

data analysis, the conclusions drawn from the process may be worthless. Since the

use of noisy data for data analysis is not recommended, a wide range of methods have

2

been developed with the intention of eliminating the noise. This practice, known as

data preprocessing, is now considered a necessary step in the data mining process.

This work uses the results of empirical studies to create a data preprocessing

environment to be used within the R statistical analysis software. The main

contribution of this work will be a library of data preprocessing functions that may be

downloaded and installed to the user’s R workspace to create an environment in

which data may be cleaned and visualized, missing values imputed, outliers detected

and dimensionality reduced before the data is analyzed in a supervised learning

context The real datasets used have been taken from the Machine Learning Database

Repository at the University of California, Irvine. The electronic address of the site is

http://www.ics.uci.edu/~mlearn/MLRepository.html. The functions to create the data

preprocessing environment can be downloaded from http://academic.uprm.edu/

~eacuna/softw.htm.

To create the environment, decompress the package in the R directory

“R\rw1081\library”. Then, open R, and choose the load option from the package

menu. Select the library drep from the list of available libraries. The functions have

been created at tested for version 1.8.1 of R.

 3

Chapter 2 A Brief Review of Data preprocessing

2.1 Introduction

 Data mining is a class of database applications that looks for hidden patterns

that can be used to predict future behavior in a group of data. Azzopardi (2002)

breaks the data mining process into five stages:

• Selecting the domain - Data mining should be assessed to determine

whether there is a viable solution to the problem at hand and a set of

objectives should be defined to characterize these problems.

• Selecting the target data - This entails the selection of data that is to be

used in the specified domain; for example, selection of subsets of features or

data samples from larger databases.

• Preprocessing the data – This phase is primarily aimed at preparing the

data in a suitable and useable format, so that a knowledge extraction process

can be applied.

• Extracting the knowledge/information – During this stage the types of data

mining operations (classification, regression, segmentation or clustering, etc),

the data mining techniques, and data mining algorithms are chosen and the

data is then mined.

• Interpretation and evaluation – This stage of the data mining process is

the interpretation and evaluation of the discoveries made. It includes filtering

information that is to be presented, visualizing graphically or locating the

4

useful patterns and translating the patterns discovered into an understandable

form.

In the process of data mining many patterns are found in the data. Patterns that are

interesting for the miner are those that are easily understood, valid, potentially useful,

and novel. (Fayyad, 1996) These patterns should validate a hypothesis that the user

seeks to confirm. The quality of patterns obtained depends on the quality of the

analyzed data. It is a common practice to prepare data before applying traditional data

mining techniques such as: statistical analysis, clustering, and supervised

classification.

Section two of this chapter provides a more precise justification for the use of data

preprocessing techniques. This is followed by a description in section three of some

of the data preprocessing techniques currently in use as well as those used in this

work.

2.2 Motivation for applying data preprocessing

 Pyle (1999) suggests that about 60% of the total time required to complete a

data mining project should be spent on data preparation since it is one of the most

important contributors to the success of the project. Transforming the data at hand

into a format appropriate for knowledge extraction has a significant influence on the

final models generated, as well as on the amount and quality of the knowledge

discovered during the process (Engels, 1998). At the same time, the effect caused

by changes made to a dataset during data preprocessing can either facilitate or

complicate even further the knowledge discovery process, thus changes made must be

selected with care.

 Today’s real-world datasets are highly susceptible to noise, missing and

inconsistent data due to human errors, mechanical failures and to their typically large

size. Common error existence rates are estimated to be at 5% (Muller, 2003). Data

affected in this manner is known as “dirty”. During the past decades, a number of

5

techniques have been developed to preprocess data gathered from real world

applications before the data is further processed for other purposes.

Cases where data mining techniques are applied directly to raw data without

any kind of data preprocessing are still frequent; yet, data preprocessing has been

recommended as an obligatory step. Data preprocessing techniques should never be

applied blindly to a dataset, however. Prior to any data preprocessing effort, the

dataset should be explored and characterized. Two methods for exploring the data

prior to preprocessing are data characterization and data visualization.

2.2.1 Data Characterization

 Data characterization describes data in ways that are useful to the miner and

begins the process of understanding what is in the data. Engels (1998) describes the

following characteristics as standard for a given dataset: the number of classes, the

number of observations, the number of attributes, the number of features with

numeric data type and the number of features with symbolic data type. These

characteristics can provide a first indication of the complexity of the problem being

studied.

In addition to the above mentioned characteristics, parameters of location and

dispersion can be calculated as single dimensional measurements that describe the

dataset. Location parameters are measurements such as minimum, maximum,

arithmetic mean, median, and empirical quartiles. On the other hand, dispersion

parameters such as range, standard deviation, and quartile deviation, provide

measurements that indicate the dispersion of values of the feature.

 Location and dispersion parameters can be divided in two classes: those that

can deal with extreme values and those that are sensitive to them. A parameter that

can deal well with extreme values is called robust. Some statistical software

packages provide for the computation of robust parameters in addition to the

6

traditional non-robust parameters. Comparing robust and non-robust parameter values

can provide insight to the existence of outliers during the data characterization phase.

2.2.2 Data Visualization

 Visualization techniques can also be of assistance during this exploration and

characterization phase. Visualizing the data before preprocessing it can improve the

understanding of the data, thereby, increasing the likelihood that new and useful

information will be gained from the data. Visualization techniques can be used to

identify the existence of missing values, and outliers, as well as to identify

relationships among attributes. These techniques can, in effect, assist in ranking the

“impurity” of the data and in selecting the most appropriate data preprocessing

techniques to apply.

2.3 Techniques for Data Preprocessing

 Applying the correct data preprocessing techniques can improve the quality of

the data, thereby helping to improve the accuracy and efficiency of the subsequent

mining process (Han, 2000). Pyle (1999) and Azzopardi (2002) present descriptions

of common techniques for preparing data for analysis. The techniques described by

both authors can be summarized as follows:

• Data cleaning – filling in missing values, smoothing noisy data,

removing outliers and resolving inconsistencies.

• Data reduction – reducing the volume of data (but preserving the

patterns) by removing repeated observations and applying feature

selection techniques.

7

• Data transformation – converting text and graphical data to a format

which can be processed, normalizing or scaling the data, aggregation,

generalization.

• Data integration – correcting differences in coding schemes due to the

combining of several sources of data.

2.3.1 Data cleaning

 Data cleaning provides methods to deal with dirty data. Since dirty datasets

can cause problems for data exploration and analysis, data cleaning techniques have

been developed to clean data by filling in missing values (value imputation),

smoothing noisy data, identifying and/or removing outliers, and resolving

inconsistencies.

 Noise is a random error or variance in a measured feature (Han, 2000). Given

a numeric attribute data, several methods can be applied to remove the noise. Binning

methods smooth a sorted data value by consulting the neighborhood or values around

it. Data can also be smoothed by using regression to find a mathematical equation to

fit the data. Smoothing methods that involve discretization are also methods of data

reduction since they reduce the number of distinct values per attribute. Clustering

methods can also be used to remove noise by detecting outliers.

2.3.2 Data Integration

 Some studies require the integration of multiple databases, or files. This

process is known as data integration. Since attributes representing a given concept

may have different names in different databases, care must be taken to avoid causing

inconsistencies and redundancies in the data. Inconsistencies are observations that

have the same values for each of the attributes but that are assigned to different

8

classes. Redundant observations are observations that contain the same information.

Attributes that have been derived or inferred from others may create redundancy

problems. Again, having a large amount of redundant and inconsistent data may slow

down the knowledge discovery process for a given dataset.

2.3.3 Data Transformation

 Many data mining algorithms provide better results if the data has been

normalized or scaled to a specific range before these algorithms are applied. The use

of normalization techniques is justified by the fact that if attributes are left un-

normalized and distance-based algorithms are applied, the distance measurements

taken on by attributes that assume many values will generally outweigh distance

measurements taken by attributes that assume fewer values (Han, 2000). Other

methods of data transformation include data aggregation and generalization

techniques. These methods create new attributes from existing information by

applying summary operations to data or by replacing raw data by higher level

concepts. For example, monthly sales data may be aggregated to compute annual

sales.

2.3.4 Data Reduction

The increased size of current real-world datasets has led to the development of

techniques that can reduce the size of the dataset without jeopardizing the data mining

results. The process known as data reduction obtains a reduced representation of the

dataset that is much smaller in volume, yet maintains the integrity of the original data

(Han, 2000). This means that data mining on the reduced dataset should be more

efficient yet produce similar analytical results. Strategies for data reduction include

the following.

• Dimension reduction, where algorithms are applied to remove irrelevant,

weakly relevant or redundant attributes.

9

• Data compression, where encoding mechanisms are used to obtain a

reduced or compressed representation of the original data. Two common

types of data compression are wavelet transforms and principal component

analysis.

• Numerosity reduction, where the data are replaced or estimated by

alternative, smaller data representations such as parametric models (which

store only the model parameters instead of the actual data) or

nonparametric methods such as clustering, and the use of histograms.

• Discretization and concept hierarchy generation, where raw data values

for attributes are replaced by ranges or higher conceptual levels. For

example, concept hierarchies can be used to replace a low level concept

such as age, with a higher level concept such as young, middle-aged or

senior. Some detail may be lost by such data generalizations.

2.4 Aspects of data preprocessing studied in this thesis

The main objective of this thesis is to create a data preprocessing environment to

be used in a supervised classification context with the R statistical analysis program.

Functions have been created to implement techniques for data cleaning, data

reduction and data transformation. Specific techniques that have been investigated

include: visualization techniques, methods for outlier detection, feature selection and

missing value imputation. The functions have been programmed in the R

programming language for the Windows platform.

 10

Chapter 3 Visualization

3.1. Introduction

 Visualization is the process of transforming information into a visual form

enabling the user to observe the information. Using successful visualizations for data

mining and knowledge discovery projects can reduce the time it takes to understand the

underlying data, find relationships, and discover information. According to Keim (2001),

three different goals of data visualization are:

• explorative analysis

• confirmative analysis

• presentation

 In explorative analysis, the starting point is a set of data for which no hypothesis

has yet been constructed. The process involves a search for structures and the result is a

visualization of the data which provides a hypothesis about the data. In confirmative

analysis, the starting point is a set of hypotheses about the data. The data is examined

with the intention of confirming or rejecting the hypotheses. In presentation, an

appropriate presentation technique is chosen to create a high-quality visualization of a set

of fixed points. In this work, we focus on the use of visualization techniques with real

datasets to create spatial representations that are conducive to explorative analysis.

Explorative Analysis

 Visualization techniques can be applied during the data preprocessing phase of

data mining to obtain insight into the data before classification techniques are applied.

The ability to observe partitions of relevant data and navigate among “data slices” of

varied detail before applying these traditional data analysis techniques is

11

essential for obtaining more efficient classification results. This use of visualization

may improve the understanding that users have of their data, thereby, increasing the

likelihood that new and useful information will be gained from the data.

 The following is a possible classification of visualization techniques used for

exploratory data analysis as given by Poulet (1999):

• basic techniques

• geometric techniques

• symbolic techniques

• hierarchical techniques

• 3D techniques

 Basic techniques are those used in various spreadsheets: pie charts,

histograms, etc. Their main advantage is comprehensibility but they can represent

only simple relations between data. Techniques that perform geometric

transformations and projections are called Geometric techniques. Examples of these

techniques are 2D and 3D Scatterplot Matrices, Parallel Coordinates and Permutation

Matrices, and Survey Plots. In symbolic techniques, the basic idea is the visualization

of the data values as features of icons. Examples of these techniques are: Chernoff-

faces, glyphs, and stick-figures. In the last class of visualizations techniques

hierarchical and 3D-techniques, we find specific visualization algorithms such as

decision tree visualizations.

Data analysts need tools for creating hypotheses about large and/or high

dimensional datasets since these datasets are becoming commonplace in an increasing

number of applications. It is no longer unusual to have datasets with hundreds or even

thousands of dimensions and hundreds of thousands of instances. Visualization tools

can provide the ability to explore and understand data, allowing analysts to examine

“what if” scenarios while interacting with multivariate visual displays. Constructing a

visual display of the data that is useful for the researcher who works with large and/or

high dimensional datasets is currently one of the most difficult tasks in visualization.

For this reason, Sahling (2002) points out that the challenge for any visualization

12

method is to reduce the dimensionality of a dataset and create a visualization from

which relevant information can be extracted without changing the characteristics of

the original data.

In this thesis, some geometric techniques have been implemented for use in

the Windows platform of R to strengthen the set of visualization tools already

available for supervised classification in this statistical environment. The sections that

follow describe these techniques. Section 2 presents an overview of some of the most

frequently used visualization tools for high-dimensional data. Section 3 discusses the

visualization tools that are currently available in R whereas, in Section 4 we describe

the tools that we have created for the R environment. Finally, Section 5 describes

some limitations of our plots and future directions for continued work.

3.2. Overview of some high-dimensional data visualizations

 Many data visualization techniques stand out as high-dimensional

visualizations because they are better able to create informative displays for data that

contain a high number of attributes than the standard multidimensional displays. Yet,

it is not always precisely clear what characterizes a “high-dimensional” dataset.

Ferreira and Levkowitz (2003), state that the conceptual boundary between low and

high-dimensional data is around three to four data attributes. They suggest a general

guideline for characterizing dimensionality as: low – up to four attributes, medium –

five to nine attributes and high – 10 or more. We give a brief description of some

techniques that are mentioned most frequently for their ability to provide information

even for high-dimensional datasets.

3.2.1. Scatter Plots

A scatter plot is a point projection of the data into a 2D or 3D dimensional

space represented on the screen in classic (X, Y) or (X, Y, Z) format. This is the most

commonly utilized data visualization method because it is a useful exploratory

method for providing a first look at relationships between pairs of attributes, clusters

of points, trends, and outliers. Conventional scatter plots lose their effectiveness;

13

however, as the number of attributes of the dataset becomes large. The insight into the

higher dimensions is rarely as good as with the standard 2D plot.

 A scatter plot matrix is a tool for displaying multivariate data, in which each

plot of the matrix shows the data points based on two attributes. It is the standard

means for extending the scatter plot to higher dimensions since it is useful for looking

at all possible two-way interactions or correlations between dimensions. For n-

dimensional data this yields
2

)1(−pp scatter plots with shared scales. The power of

this plot resides in the possibility of making a visual link between the features of one

scatter plot with features on another.

Figures 3.1, 3.2 and 3.3 show 2D and 3D scatter plots and a scatter plot matrix

of the Iris dataset created by using functions available in existing R libraries. The

three graphs show an obvious formation of clusters indicating the discriminating

power of Petal length and Petal width.

Figure 3.1: 2D scatter plot for the Iris dataset.

Iris Dataset – 3 species

14

Figure 3.2: 3D scatter plot of Iris data

Figure 3.3 Matrix of scatter plots for Iris data

Iris Dataset – 3 species

15

3.2.2. Survey Plots

A survey plot is closely related to bar graphs and the permutation matrices

that were invented by a French cartographer Jaques Bertin in 1967. Survey plots

usually consist of n rectangular areas or lines (depending on the number of the

observations and the size of the plotting screen) – one for each dimension – that are

vertically arranged in rows. Each data value of an attribute is mapped to a point on

the vertical line and the point is extended to a line with length proportional to the

corresponding value. The strength of this visualization lays in its ability to show the

relations and dependencies between any two attributes, especially when the data is

sorted on a particular dimension (Fayyad et al, 2002). Tendencies and outliers can

also be extracted easily. In addition, survey plots can aid in identifying rules for

classification. (Grinstein et al, 2002). Figure 3.4 presents a survey plot created for the

Car dataset as presented in Fayyad et al. (2002).

Figure 3.4 Survey plot of the Car dataset sorted by cylinders and mpg (Fayyad et al, 2002)

16

3.2.3. Parallel Coordinate Plot

The parallel coordinate plot, which was first described by Al Inselberg in

1985, represents multidimensional data using lines. Whereas in traditional Cartesian

coordinates all axes are mutually perpendicular, in parallel coordinate plots, all axes

are parallel to one another and equally spaced. In this approach, a point in m-

dimensional space is represented as a series of m-1 line segments (Inselberg and

Dimsdale, 1990) in 2-dimensional space. Thus, if the original data observation is

written as (x1, x2, … xm,), then its parallel coordinate representation is the m-1 line

segments connecting points (1,x1), (2,x2), . . . (m,xm). Typically, continuous features

will be standardized before a parallel coordinate plot is drawn.

Wegman (1990) provide a description of the highly structured mathematical

nature of the transformation from Cartesian coordinates to parallel coordinates, as

well as some basic facts about parallel coordinate geometry. In summary, if two

attributes are highly positively correlated, lines passing from one feature to another

tend not to intersect between the parallel coordinate axes. For highly negatively

correlated attributes, the line segments tend to cross near a single point between the

two parallel coordinate axes. Figure 3.5 presents a parallel coordinate plot of the Iris

dataset as presented in Grinstein et al, (2002).

Figure 3.5: Parallel Coordinate plot of Iris dataset taken from Grinstein et al, (2002)

17

 The following visualization techniques are described here because they are

frequently used with high dimensional datasets. However, they have not been

implemented in this thesis.

3.2.4. Radial Coordinate Visualization (RADVIZ)

 Like the previous visualization technique, the RADVIZ method (Ankerst et al,

1996) maps a set of n-dimensional points onto a two dimensional space. However, in

this case the mapping is not linear. This technique applies the idea of using spring

constants to represent relational values between points. In the RADVIZ

implementation, n-dimensions are laid out as points equally spaced around the

perimeter of a circle. One end of n springs is attached to the n perimeter points. The

other ends of the springs are attached to a data point. The spring constant, k, equals

the value of the particular dimension of the fixed point. For each point the position is

placed where the sum of the spring forces equals 0. The data values are usually scaled

to have values between 0 and 1. Many points can map to the same position.

 Some features of this visualization are:

• Points where all the values of an attribute have approximately the same

value lie closer to the center.

• If one or two dimensional values are greater, points will lie closer to those

dimensional points.

• Where the point will lie depends on the layout of the attributes around the

circle.

• Certain symmetries of the data will be preserved.

Figure 3.6 shows a RADVIZ plot for the Iris dataset as taken from Grinstein et al,

(2002).

18

Figure 3.6: RADVIZ plot of Iris dataset

3.2.5. Grand Tours

The 2-dimensional grand tour was introduced by Asimov. A 2-dimensional

grand tour is a method for viewing multidimensional data by using linear projections

onto a sequence of two dimensional subspaces and then moving continuously from

one projection to the next. Wegman (1993) worked on generalizing the plot for d-

dimensions and Yang (2000) extended the work specifically to three dimensions. In

all cases, the aim is to automatically aid the user in finding interesting, informative

projections which are hard to find in the original data when the number of attributes is

high. Yang (1999) sustains that in the data preprocessing stage of a data mining

project, grand tours are efficient ways to examine the distribution of values of each

feature, the correlations among features, and to decide which features should be

included in further analysis. Wegman and Carr (1993) suggest coupling grand tours

with parallel coordinate displays, to allow for an in-depth study of high dimensional

data.

3.3. Current visualization techniques available for R

Several packages currently available in R include visualization functions. Table

3.1 lists several current R packages and the visualization functions they contain. The

19

list is not meant to be exhaustive but to provide a general idea of the options that are

currently available to R users. At the same time, the differences between the

visualizations provided by these functions and the functions designed as part of this

work are emphasized to highlight the need to gather a useful set of visualization

functions into one package.

Other visualization tools that can be embedded into the R environment are

currently available. A well known example is GGobi (Temple et al., 2001). GGobi, a

direct descendant of XGobi (Swayne et al., 1991), is a data visualization system with

interactive dynamic methods for the manipulation of views of data. It offers 2D

displays of projections of points and lines in high-dimensional spaces, such as

scatterplots, parallel coordinate plots, scatterplot matrices and time series plots.

GGobi runs on Linux systems as well as under the Microsoft Windows and

Macintosh OS operating system. GGobi is a stand-alone application that has been

constructed as a programming library to provide visualization functionality that can

be embedded within other applications either through language bindings or plugins.

3.4. New visualization functions for R

Two visualization functions that work well with datasets containing up to 20

features (high-dimensional) are the parallel coordinate and survey plots. Functions to

implement these techniques have been included in the data preprocessing

environment proposed in this thesis. These visualizations have been chosen to be

included in the environment we propose because they provide support for formulating

hypotheses, identifying clusters, outlier detection, determining feature relevance, as

well as for rule or pattern detection. The plots that are produced by these functions are

low-resolution graphics that provide not only an automated means for visualizing a

dataset but, also, provide several ways to modify the displays and increase the

information that can be obtained.

20

Table 3-1: Description of visualization functions currently available in R

3.4.1. An implementation in R of the survey plot – surveyplot()

The survey plot is most useful at determining correlations between attributes

and their relevance to classification if the data has been sorted by at least one of the

attributes. This sorting option has been provided in the version of the survey plot

created for this work, however, the plot is not an exact replicate of the original survey

plot as presented by program Inspect (Lohninger, 1994). This original version extends

a line around a center point, where the length of the line corresponds to the value of

R package Function name Visualization
technique

Description

MASS parcoord() parallel
coordinates

Creates a parallel coordinate plot for
an input dataset with the column of
classes removed on a white
background. Order of features of the
dataset must be arranged externally
before calling the plotting function.
Individual observations cannot be
highlighted.

lattice cloud() 3D scatter plot Creates a 3D scatter plot based on a
specified formula for the indicated
dataset on a gray background.

lattice splom() scatter plot
matrix

Creates a scatter plot matrix based on
a specified formula for the indicated
dataset on a gray background.

lattice parallel() parallel
coordinates

Creates a parallel coordinate plot for
input data on a gray background. The
class column is used to divide the plot
into panels, one for each class. The
order of features of the dataset must
be arranged externally before calling
the plotting function. Individual
observations cannot be highlighted.

base plot() scatter plot Plot points for two columns of a
dataset, one column provides the x-
coordinates and the other the y-
coordinates

base pairs() scatter plot
matrix

Creates a scatter plot matrix for the
specified columns of a dataset on a
white background.

21

the attribute. The survey plot shown in Figure 3.4 was created following Lohninger’s

(1994) design. It can be observed that each column is symmetric about its center (the

left side has been flipped horizontally and repeated on the right), in this way

displaying redundant information. The proposed version of the survey plot eliminates

this redundancy, simplifying the computations needed to create the plot and saving

space on the display screen. In this sense, this newer version of the plot is closer to a

permutation matrix display (introduced by a French cartographer, Jacques Bertin) in

that it allows for the observation of statistical information such as attribute means and

the shape of the distribution of the whole dataset. A more complete discussion of the

permutation matrix plot can be found in Schmid and Hinterberger (1994).

The R function that has been programmed for this work takes as minimum

input the dataset. First the column containing the classes is removed, and then the

data is standardized. Next, the screen space is distributed evenly among the number

of observations and the number of attributes. Finally the horizontal lines

corresponding to each normalized data value are plotted. Optional parameters to the

function are: the name of the dataset, the column number of an attribute by which to

order the dataset, the number of the class for which to limit the plot, and a vector

containing the observation number of those observations that are to be highlighted.

Survey plots of the Iris and Cars datasets that were created using this function are

shown in figures 3.7 and 3.8.

In figure 3.7, the survey plot of the Iris dataset, the three clusters of flower

types are easily observed. The plot has been sorted by petal length and a correlation

between petal length and petal width can be observed since petal width tends to

increase with petal length. It can also be seen that petal length and petal width appear

to be good discriminators for this dataset, since observations in each class assume

similar values (observations are grouped by colors). Several observations with

extreme values can also be observed.

In Figure 3.8, the Cars dataset has been sorted by the third column, the

number of cylinders. From this survey plot, the clustering of American cars (blue

22

segments) with respect to increased horsepower, weight, and cylinders can be

observed. The Japanese cars (green segments) have high mpg, low weight, and

smaller number of cylinders. The European cars (red segments) have more

intermediate values. Again, extreme values can be observed in different classes. Some

discrimination power can be observed, yet it appears that this power might be shared

by more than one feature.

Figure 3.9 shows the survey plot for the Iris data that has been ordered by

column one and in which several observations are being emphasized. If compared to

Figure 3.7, a difference in the discrimination power of the first and third features can

be observed.

Figure 3.7: Survey Plot of Iris Dataset produced in R by a call to surveyplot()

23

Figure 3.8: Survey plot for Cars dataset produced in R by a call to surveyplot()

Figure 3.9: Survey plot of Iris dataset for which several observations have been emphasized.

24

3.4.2. An implementation in R of the parallel coordinate plot – parallelplot()

The R function designed for this work that creates a parallel coordinate plot

takes as minimum input the dataset. Once again, the column containing the classes is

removed, and then the data is standardized. The number of distinct permutations of

the attributes is determined and a temporary matrix that stores the order of the

attributes for each combination is created. If a particular combination is specified at

input, then p axes are placed, where p is the number of attributes, by evenly dividing

the horizontal plotting space in p+1 rectangular spaces and then plotting the

standardized observation values on the axes for each observation. The color of the

poly-line will depend on the class to which the observation belongs. If no particular

combination of feature ordering is specified at input, all distinct combinations are

plotted (in reduced format) on a series of panels, four plots per display. This provides

the user with the opportunity to observe all combinations and select the one which is

believed to provide the most information.

Optional parameters to the function are: the name of the dataset, the number

of the class for which to limit the plot, and a vector containing the observation

number of those observations that are to be highlighted. The high-resolution

counterparts to these options would be the ability to zoom in on a particular class or

observation and the ability to obtain a different view.

Figure 3.10 shows a parallel coordinate plot for the Iris dataset created by the

function we designed for the R environment. Each different segment color represents

a different class. It can be observed, once again, that the attributes sepal width (V3)

and sepal length (V4) appear to be better discriminators, than the attributes petal

width (V1) and petal length (V2).

Other information that is conveyed by this plot is:

• Clustering is propagated through all attributes.

• The relationship between petal width and petal length shows relatively

little crossover, suggesting positive correlation. (Thin flowers tend to

have small petals.)

25

• Several segments can be observed in groups of segments of the same

color that do not follow the general pattern of the group. This suggests

the presence of outliers.

Figure 3.10: Parallel coordinate plot for Iris dataset.

In any parallel coordinate plot, pairwise comparison is limited to those axes

that are adjacent. Therefore, theoretically one could create n! permutations of the n

attributes in the dataset so that in some permutation every axis is adjacent to every

other axis. However, many of these are duplicate adjacencies. Wegman (1990)

provides the details for determining that there are actually 



 +

2
1p permutations

required for an p-dimensional dataset, where  * is the greatest integer function.

Figure 3.11 shows parallel coordinate plots for the two distinct combinations

of the Iris dataset using Wegman’s results (1990) as provided by the parallel

coordinate function that has been created. In the second plot, the pairwise

comparisons that were not available in the plot of the first combination are V1 with

V4, V2 with V3, and V1 with V3.

26

Figure 3.11: Distinct Permutations for the Iris dataset as produced by the parallelplot() function

3.5. Limitations and future work

 Though these two visualizations have been found useful for exploring the data

sets used in this thesis, they suffer from limitations as the number of attributes and the

number of observations increases. Both graphs suffer from the “clutter problem”

which occurs when individual data items can no longer be seen clearly from the

display due to the large number of attributes and/or observations. When the number

of attributes is over fifteen, the large number of axes needed to create these displays

tends to crowd the figure, limiting the value of the plot for detecting patterns or other

useful information. Even with a low number of observations, a high dimensionality

presents a serious challenge for these techniques. Figure 3.12 illustrates the “clutter

problem” for high number of attributes using the Ionosphere dataset which contains 2

classes, 32 attributes and 351 observations.

 In addition to the “clutter problem”, a parallel plot may suffer from the

“crossover problem”. When many of the poly-lines of the parallel coordinate plot

crossover each other, following the lines that share common points on axes becomes

27

very difficult, if not impossible. Figure 3.13 shows the Segmentation dataset, which

contains 7 classes, 17 attributes and 2310 observations. Individual observations are

difficult to identify although it is still possible to observe patterns related to

discriminating features.

Figure 3.12: Plot that reflects the “clutter problem” for large number of attributes

 One other limitation of these displays is the loss of the information that is

encoded into the lines between the axes for discrete, heterogeneous data attributes. If

A is a continuous attribute and B is discrete, line segments reflecting a positive slope

from attribute A to attribute B, may no longer imply that the value in attribute B is

higher than the value of attribute A, due to the normalization that was applied before

the graph was created. For example, x = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}

maps to x = {0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.000}, whereas z =

{0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1} maps to z = {0, 0.5, 1.0, 0, 0.5, 1.0, 0, 0.5, 1.0, 0, 0.5}

under the normalization method we used before constructing the plots. It can be

noticed that line segments crossing from x to z will not carry any correlation

information.

28

Figure 3.13: Display depicting the “crossover problem”

 Much effort is being dedicated by many researchers to overcome these

limitations. The authors of this work believe that the “cluttering problem” could be

addressed by modifying the current functions to include the ability to “slice” the

attribute set and view the complete display as a series of panel displays. A different

approach could be to apply dimensionality reduction techniques before plotting the

data as proposed by Yang et al (2003). Their approach combines automation and user

interaction to generate a meaningful attribute subspace that can be displayed using

traditional multidimensional techniques. Yang has developed a prototype of a

framework that forms clusters of attributes, automatically selects a representative

attribute for each cluster and then maps the high-dimensional dataset into the

subspace composed of these representatives and displays the projected subspace using

multidimensional visualization techniques.

29

 Graham et al. (2003) proposes a number of refinements to the parallel

coordinate graphing technique to solve the above mentioned problems. Graham

suggests replacing the traditional set of poly-lines with a collection of smooth curves

across the attribute axes. The curves allow the user to discern individual paths more

easily. Though this increases the utility of the plot by allowing for paths to be

followed more easily after crossovers occur, the plots may still become cluttered after

a large number of observations.

 30

Chapter 4 Outlier Detection

4.1. Introduction

According to Hawkins (1980), “An outlier is an observation that deviates so much

from other observations as to arouse suspicion that it was generated by a different

mechanism”. Almost all the studies that consider outlier identification as their

primary objective are in the field of statistics. A comprehensive treatment of outliers

appears in Barnet and Lewis (1994). They provide a list of about 100 discordancy

tests for detecting outliers in data that follow well-known distributions. The choice of

an appropriate discordancy test depends on:

a) the distribution,

b) the knowledge of the distribution parameters,

c) the number of expected outliers, and

d) the type of expected outliers.

These methods have two main drawbacks. First, almost all of them are for univariate

data, making them unsuitable for multidimensional datasets. Second, all of them are

distribution-based, and most of the time real-world data is multivariate with an

unknown distribution.

Detecting outliers is an important data mining task. The data mining

community became interested in outliers after Knorr and Ng (1998) proposed a non-

parametric approach to outlier detection based on the distance of an instance to its

nearest neighbors. Outlier detection has many applications such as: fraud detection,

network intrusion, and data cleaning. Frequently, outliers are removed to improve the

accuracy of estimators. However, this practice is not always recommendable because

sometimes outliers can have very useful information. The presence of outliers can

31

indicate individuals or groups that exhibit a behavior that is very different from the

norm. A growing practice in the data mining community is to rank the instances using

an outlyingness measure rather than classifying the instances as outliers or non-

outliers.

Section 2 of this chapter includes a brief discussion of the detection of outliers for

univariate data. Section 3 focuses on methods for the detection of multivariate

outliers. Four methods of outlier detection are considered: a method based on robust

estimation of the Mahalanobis distance, a method based on the PAM algorithm for

clustering, a distance-based method and a density-based method. The effect and

treatment of outliers in supervised classification will be discussed in Chapter 7.

4.2. Univariate Outliers

Given a dataset of n observations of a feature x, let x be the mean and let s be

the standard deviation of de data distribution. It is well known that an observation of

the dataset is declared as an outlier if it lies outside of the interval

),(ksxksx +− , (4.1)

where the value of k is usually taken as 2 or 3. The justification of these values relies

on the fact that when assuming normal distribution one expects to have 95 percent of

the data in the interval centered about the mean, with a radius equal to two standard

deviations. Also, one expects to have all of the data inside an interval that is centered

at the mean and that has a radius of three standard deviations.

From Equation 4.1, the observation x is considered an outlier if

k
s

xx
>

− ||
. (4.2)

The problem with the above criteria is that it assumes normal distribution of the data,

something that frequently does not occur. Furthermore, the mean and standard

deviation are highly sensitive to outliers themselves.

32

John Tukey (1977) introduced several methods for explorative data analysis,

one of which was the Boxplot. The Boxplot is a graphical display in which the

outliers appear tagged. Two types of outliers are distinguished: mild outliers and

extreme outliers. An observation x is declared a mild outlier if it lies outside of the

interval [Q1-1.5(IQR), Q3+1.5(IQR)]. The interval has a center at () 2/31 QQ + and a

radius of 2(IQR). An observation x is declared as an extreme outlier if it lies outside

of the interval [Q1-3(IQR), Q3+3(IQR)]. Notice that the center of the interval is

() 2/31 QQ + with a radius of 3.5(IQR), where IQR=Q3-Q1. IQR, called the

Interquartile Range, is a robust estimator of variability which can replace s in

Equation 4.1. The numbers 1.5 and 3 are chosen by comparison with a normal

distribution. On the other hand () 2/31 QQ + is a robust estimator of the center that

can be used instead of x in Equation 4. 1.

All the major statistical softwares include boxplots among their graphical

displays. Figures 4.1-4.3 show the outliers of the features in the three classes of the

dataset Iris detected through their boxplots.

4.3. Multivariate Outliers

Given a dataset D with p features and n instances (in a supervised

classification context) we must also know the class to which each of the instances

belongs. It is very common to include the classes as the last column of the data

matrix. The objective of outlier detection in supervised classification is to identify all

the complete instances that seem to be unusual in each class, these will be the

multivariate outliers. One might think that multivariate outliers can be detected based

on the univariate outliers for each feature but, as it is shown in the Figure 4.4, this is

not always true.

33

Figure 4.1: Outliers of the features in class 1 of the Iris dataset

Figure 4.2: Outliers of the features in class 2 of the Iris dataset

34

Figure 4.3: Outliers of the features in class 3 of the Iris dataset.

The instance appearing in the upper right corner is a multivariate outlier but it is not

an outlier in either feature. On the other hand, an instance can have values that are

outliers in several features and yet not be a multivariate outlier as a whole.

There are several methods for detecting multivariate outliers. The methods

discussed in this thesis are: statistical-based outlier detection, outlier detection by

clustering, distance-based outlier detection and density-based local outlier detection.

The before mentioned methods are discussed in the next sections.

4.3.1. Statistical based outlier detection.

Let x be an observation of a multivariate dataset consisting of n observations

and p features. Let x be the centroid of the dataset, which is a p-dimensional vector

with the mean of each feature as components. Let X be the matrix of the original

dataset with columns centered by their means. Then the p×p matrix S = 







−1
1

n
X’X

represents the covariance matrix of the p features.

35

The multivariate version of Equation 4.2 is

kD >−−= −)x(x)Sx(xxx, 1)(2 , (4.3)

where D2 is called the Mahalanobis square distance from x to the centroid of the

dataset. An observation with a large Mahalanobis distance can be considered as an

outlier.

Figure 4.4: Example of a bi-dimensional outlier that is not an outlier in either of its projections.

Assuming that the data follows a multivariate normal distribution, it has been

shown that the distribution of the Mahalanobis distance behaves as a Chi-Square

distribution for a large number of instances. The proposed cutoff point for Equation

4.3 is given by k= 2
)1,(αχ −p , where χ2 stands for the Chi-Square distribution and α is a

signification level, usually taken as 0.05. (Rousseeuw and Leroy, 1987)

A basic method for detecting multivariate outliers is observing the outliers

that appear in the boxplot of the distribution of the Mahalanobis distance of all the

instances. Rocke and Woodruff (1996) stated that the Mahalanobis distance works

well identifying scattered outliers however, it may fail to detect clustered outliers.

36

Example 1. Find the multivariate outliers in each of the classes of the Iris dataset by

building boxplots of the Mahalanobis distance of all of the instances.

Figure 4.5: Detecting multivariate outliers by boxplots in the Iris dataset

Figure 4.5 shows the boxplots of the Mahalanobis distances for each feature in each

class of the Iris dataset. Notice that only two outliers (119 and 132) are detected in

class 3.

Datasets with multiple outliers or clusters of outliers are subject to the

masking and swamping effects.

• Masking effect. It is said that an outlier masks a second one that is

close by if the latter can be considered an outlier by itself, but not if it

is considered along with the first one. Equivalently, after the deletion

of one outlier, the other instance may emerge as an outlier. Masking

occurs when a group of outlying points skews the mean and

covariance estimates towards it, and the resulting distance of the

outlying point from the mean is small.

37

• Swamping effect. It is said that an outlier swamps other instances if

the latter can be considered as outliers only under the presence of the

first one. In other words after the deletion of one outlier, the other

outlier may become a “well-behaved” instance. Swamping occurs

when a group of outlying instances skew the mean and covariance

estimates towards it and away from other “good” instances, and the

resulting distance from these “good” points to the mean is large

making them look like outliers.

Example 2: Consider the dataset due to Hawkins, Bradu, and Kass (Rousseeuw and

Leroy, 1987) consisting of 75 instances and 3 features, in which the first fourteen

instances have been contaminated to become outliers. Using the Mahalanobis

distance, only observation 14 is detected as an outlier as is shown in Figure 4.6. The

remaining 13 outliers appear to be masked.

Figure 4.6: The Masking effect of multivariate outliers in the Hawkins dataset

Masking and swamping can be solved by using robust estimates of the

centroid (location) and the covariance matrix (dispersion), which by definition are

38

less affected by outliers. Outlying points are less likely to enter into the calculation of

the robust statistics, so they will not be able to influence the parameters used in the

Mahalanobis distance. Two robust estimators of the cetroid and the covariance

matrix include the minimum covariance determinant (MCD) and the minimum

volume ellipsoid (MVE), both introduced by Rousseeuw (1985).

The Minimum Volume Ellipsoid (MVE) estimator is the center and the

covariance of a subsample of size h (h ≤ n) that minimizes the volume of the

covariance matrix associated to the subsample. Formally,

MVE=(* *,J JSx) , (4.4)

where J={set of h instances: * *() ()J KVol S Vol S≤ for all K s. t . #(K)= h}.

The value of h can be thought of as the minimum number of instances which must not

be outlying and is usually equal to 






 ++
2

1pn , where [.] is the greatest integer

function, n is the number of observations and p is the number of features. The

volume of the ellipsoid is calculated using the formula:

2
1

2
,...2,1)(









== idhimediankSkSVol .

The Minimun Covariance Determinant (MCD) estimator is the center and the

covariance of a subsample of size h (h ≤ n) that minimizes the determinant of the

covariance matrix associate with the subsample. Formally,

MCD=(* *,J JSx) , (4.5)

where J={set of h instances: * *| | | |J KS S≤ for all K s. t . #(K)= h} As before, it is

common to take h = [(n+p+1)/2], where [.] is the greatest integer function.

The MCD estimator underestimates the scale of the covariance matrix, so the

robust distances are slightly too large, and too many instances tend to be nominated

as outliers. A scale correction has been implemented, and it seems to work well. The

39

algorithms used to compute the MVE and MCD estimators are based on

combinatorial arguments (for more details see Rousseeuw and Leroy, 1987).

In this thesis, both estimators, MVE and MCD, have been computed using the

function cov.rob available in the package lqs of R. This function uses the best

algorithms available so far to compute both estimators (Rousseeuw, 1989). Taking

into account their statistical efficiency and computational accuracy, the MCD is

preferred over the MVE.

Replacing the classical estimators of the center and the covariance in the usual

Mahalanobis distance, Equation 4.3, by either the MVE or MCD estimator, outlying

instances will not skew the estimates and can be identified as outliers by large values

of the Mahalanobis distance. The most common cutoff point k is again the one based

on a Chi-Square distribution, although Hardim and Rocke (2004) propose a cutoff

point based on the F distribution that they claim to be better.

In this thesis, two strategies to detect outliers using robust estimators of the

Mahalanobis distances have been used. The first method involves choosing a given

number of instances appearing at the top of a ranking based on their robust

Mahalanobis measure. The second method chooses as multivariate outliers the

instances that are tagged as outliers in the boxplot of the distribution of these robust

Mahalanobis distance.

Example 3: Find the multivariate outliers in each of the classes of the Iris dataset by

building boxplots for the distribution of the robust version of the Mahalanobis

distance.

Using the robout function we have written in R (see appendix) and

considering 10 repetitions the results appearing in the tables 4.1 an 4.2 have been

obtained from the boxplots for the distribution of the robust version of the

Mahalanobis distances. Notice that both methods detect two outliers in the first class,

but the MVE method detects the instance 42 as a second outlier whereas the MCD

40

method detects the instance 24. All the remaining outliers detected by both methods

are the same. Three more outliers are detected in comparison with the use of the

Mahalanobis distance.

Table 4.1: Top outliers per class in the Iris dataset by frequency and the
outlyingness measure using the MVE estimator

Instance class Frequency Outlyingness

44 1 8 5.771107

42 1 8 5.703519

69 2 9 5.789996

119 3 8 5.246318

132 3 6 4.646023

Table 4.2: Top outliers per class in the Iris dataset by frequency and the
outlyingness measure using the MCD estimator

Instance Class Frequency Outlyingness

44 1 10 6.557470

24 1 10 5.960466

69 2 10 6.224652

119 3 10 5.390844

132 3 7 4.393585

Figure 4.7 shows a plot of the ranking of the instances in class 3 of the Iris dataset

by their robust Mahalanobis distance using the MVE estimator. Figure 4.8 shows a

plot of the ranking of the instances in class 3 of Iris by their robust Mahalanobis

distance using the MCD estimator. According to Rocke (2002) robust methods work

well detecting scattered outliers but fail to detect clustered outliers. For this type of

outlier it is better to use a clustering algorithm as will be discussed in the next section.

41

Figure 4.7: Plot of the instances of the Iris dataset ranked by their Mahalanobis

distance using MVE estimator

Figure 4.8: Plot of the instances of Iris class 3, ranked by their Mahalanobis distance

using MCD estimator

42

4.3.2. Detection of outliers using clustering

A clustering technique can be used to detect outliers. Scattered outliers will

form a cluster of size 1 and clusters of small size can be considered as clustered

outliers. There are a large number of algorithms for finding clusters. In this thesis,

only the Partitioning around Medoids (PAM) method will be considered. PAM was

introduced by Kaufman and Rousseeuw (1990) to improve the well-known k-means

clustering method. It works efficiently on small datasets, but is extremely costly for

larger ones. This led to the development of CLARA (Clustering Large Applications)

(Kauffman and Rousseuw, 1990), where multiple samples of the dataset are

generated, and then PAM is applied to each sample. CLARA chooses the best

clustering as the output, basing quality on the similarity and dissimilarity of objects in

the entire set, not just the samples. A modification of CLARA that is applied to very

large datasets is CLARANS (Ng and Han, 1994).

Given k, the number of partitions to construct, PAM creates an initial

partitioning. It then uses an iterative relocation technique that attempts to improve the

partitioning by moving instances from one group to another. The general criterion of

“good” partitioning is that instances in the same cluster are “close” or related to each

other, whereas instances of different clusters are “far apart” or very different.

In order to find k clusters, PAM’s approach is to determine a representative

instance for each cluster. This representative instance called medoid, is meant to be

the most centrally located instance within the cluster. More specifically, a medoid can

be defined as that instance of a cluster, whose average dissimilarity to all the objects

in the cluster is minimal. After finding the set of medoids, each object of the dataset is

assigned to the nearest medoid.

If Oj is a non-selected instance and Oi is a selected medoid, we say that Oj

belongs to cluster represented by Oi if d(Oi,Oj) = minOe d(Oj,Oe) where the minimum

is taken over all medoids Oe, and d(Oa,Ob) denotes the dissimilarity or distance

between instances Oa and Ob.

43

The PAM algorithm consists of two steps:

1. The BUILD-step: This step sequentially selects k centrally located

instances, to be used as initial medoids.

2. The SWAP-step: If the objective function J = ∑),(imvid

d(i, mvi), which is the sum of the dissimilarities of all instances to their

nearest medoid mv, can be reduced by interchanging (swapping) a selected

object with an unselected object, then the swap is carried out. This is

continued until the objective function J can no longer be decreased.

There are k(n-k) possible pairs of (Oi ,Oh). For each pair, computing J requires

the examination of (n-k) non-selected instances. Thus, the combined complexity is:

O(k(n-k)2). Hence, PAM becomes very costly for large values of n and k. However,

PAM is very robust to the presence of outliers and does not depend on the order in

which instances are examined.

After the allocation of the instances to the k clusters, one must determine the

separation between them. The separation of the cluster C is defined as the smallest

dissimilarity between two objects; one which belongs to Cluster C and the other that

does not. That is, separationc = ChCldlh ∉∈ ,),(min .

If the separation of a cluster is large enough, then all of the instances that

belong to the cluster are considered outliers. In order to detect the clustered outliers

one must vary the number of clusters, k, until clusters of small size are obtained that

have a large separation from others clusters.

The algorithm PAM can be evaluated using the function pam available in the

library cluster in R.

Example 4: Find the outliers of the Iris dataset using the PAM algorithm.

Looking at the separation measures of ten clusters generated for each class, the

detected outliers are shown in the table 4.3.

44

Table 4.3: Outliers in the Iris dataset according to the PAM algorithm
Instance Class Separation

42 1 0.6244998

58 2 0.6480741

61 2 0.6480741

94 2 0.6480741

99 2 0.6480741

107 3 0.9110434

118 3 0.8185353

132 3 0.8185353

Notice that in the class 3, PAM detects the instance number 107 as an outlier but it

does not detect the instance 119.

4.3.3. Distance based outlier detection

Given a distance measure on a feature space, two different definitions of

distance-based outliers are the following.

1. An instance x in a dataset D is an outlier with parameters p and λ if at

least a fraction b of the objects are a distance greater than λ from x. (Knorr

and Ng, 1997, 1998, Knorr et al. 2000). This definition has certain

difficulties such as the determination of λ and the lack of a ranking for the

outliers. Thus an instance with very few neighbors within a distance λ can

be regarded as strong an outlier as an instance with more neighbors within

a distance λ. Furthermore, the time complexity of the algorithm is O(pn2),

where p is the number of features and n is the number of instances. Hence

it is not an adequate definition to use with datasets having a large number

of instances.

2. Given the integers k and n (k<n), outliers are the top n instances with the

largest distance to their kth nearest neighbor (Ramaswamy et al., 2000).

45

One shortcoming of this definition is that it only considers the distance to

the kth neighbor and ignores information about closer points. An

alternative is to the use of the average distance to the k nearest neighbors

instead of the greatest distance. The drawback of this alternative is that it

takes longer to calculate.

In this thesis a variant of a simple algorithm for distance-based outlier detection, that

is based on nested loops (Bay and Schwabacher, 2003), has been used.

Bay’s Algorithm.

Bay and Schwabacher (2003) proposed a simple nested loop algorithm that

tries to reconcile definitions 1 and 2. The main idea in the algorithm is that for each

instance in D one keeps track of the closest k neighbors found so far. When an

instance’s k closest neighbors achieve a score that is lower than a cutoff, then the

instance is removed from the list of possible candidates for outliers because it can no

longer be an outlier.

 In this thesis the score function used has been the median distance to the k

neighbors. Bay used the average distance to the k neighbors, but the median is more

robust than the mean. As more instances are processed, the algorithm finds more

extreme outliers and the cutoff increases along with pruning efficiency. The

performance of the algorithm in the worst case is of quadratic order. The algorithm is

shown in Figure 4.9.

Bay and Schwabacher (2003) determined experimentally that the algorithm

obtains linear performance with respect to the number of neighbors and almost linear

with respect to the number of instances, when the data is in random order and a

simple pruning rule is used. Using 6 datasets they found a complexity of order O(nα)

where α varied from 1.13 to 1.32. In this thesis work, an α value near 1.5 has been

obtained for three datasets: Ionosphere, Vehicle and Diabetes, sustaining that the

pruning rule has the effect of lowering the theoretical time complexity. A function

46

called baysout has been written in the R language to perform Bay’s algorithm. The

algorithm is shown in Figure 4.9.

Figure 4.9: Bay’s Algorithm for finding distance-based outliers

Example 5: Find the outliers of the class 3 in the Iris dataset using the Bay’s

algorithm.

Using the baysout function the top 20 outliers are shown in Figure 4.10.

Clearly the instance 107 is detected as an outlier. There is a second group that

includes 119, 120,132,123 and 118.

Input: k: number of nearest neighbors
n: number of outliers to return
D: dataset randomly ordered
BS: size of blocks in which D is divided.

Let distance(x,y) return the Euclidean distance between x and y.
Let maxdist(x,Y) return the maximum distance between the instance x and the set of instances Y.
Let Closest(x,Y,k) return the k closest instances in Y to x.
Let score(x) return median distance to the k neighbors

begin
c← 0 Set the cutoff for pruning to 0.
O←φ Initialize the set of outliers as the empty set.

NB←ceiling(# instances in
BS
D

)

 while nb<NB {
 Neighbors(b)←φ for all b in Bnb
 for each d in D {
 for each b in Bnb, b≠d{
 if |Neigbors(b)|<k or distance(b,d)<maxdist(b, Neighbors(b)){
 Neighbors(b) ←Closest(b, Neighbors(b)∪ d, k)
 if (score(Neighbors (b),b)<c{
 remove b from Bnb
 }}}}
 O←Top(Bnb ∪ O, n) //Keep only the top n outliers
 c←min(score(o)) for all in O //The cutoff is the score of the weakest outlier
}
end

Output: O, a set of outliers

47

Figure 4.10: Instances of the class 3 in Iris dataset ranked by the Bay’s algorithm outlyingness
measure

4.3.4. Density-based local outliers

The term density-based local outlier was introduced by Breunig et al (2000).

For density-based local outliers the density of an instance and the density of its

neighbors play a key role in classifying an instance as an outlier. Furthermore, an

instance is not explicitly classified as either an outlier or a non-outlier. Instead, for

each instance, a local outlier factor (LOF) is computed which will give an indication

of how strong of an outlier an instance has been found to be.

Figure 4.11 that follows, taken from Breunig et al (2000), shows the weakness

of the distance-based outlier detection method which would identify the instance o1 as

an outlier, but would not consider o2 as an outlier. Several definitions are needed in

order to formalize the algorithm.

48

Figure 4.11: Example to show the weakness of the distance-based method to detect outliers

Definition 1. k-distance of an instance x

For any positive integer k, the k-distance of an instance x, denoted by k-distance(x), is

defined as the distance d(x,y) between x and an instance y ε D such that:

(i) for at least k instances y’ ε D-{x}, d(x,y’) ≤ d(x,y)

(ii) for at most k-1 instances y’ ε D-{x}, d(x,y’) < d(x,y).

Definition 2. k-distance neighborhood of an instance x

Given an instance x of a dataset D its k-distance neighborhood contains every

instance whose distance from x is not greater than the k-distance. That is, the set of k-

nearest neighbors of x is given by

}≤ =)distance(x-k y)d(x, s.t. {x}-D{y)distance(x-kN ε . (4.6)

Definition 3. Reachability distance of an instance x w.r.t. instance y

Let k be a positive integer number. The reachability distance of the instance x with

respect to the instance y is defined as

reach-dist (x,y) max{k-distance(y),d(x,y)}k = . (4.7)

The density-based local algorithm to detect outliers requires only one

parameter, MinPts, which is the number of nearest neighbors used in defining the

local neighborhood of the instance.

49

Definition 4. Local reachability density of an instance x

Given an instance x of a dataset D its local reachability density is defined by

1

)

|)(|

),(
)((

−

∈















 −

=
∑

xN

yxdistreach
xlrd

MinPts

xNy
MinPts

MinPts
MinPts . (4.8)

This is the inverse of the average reachability distance based on the MinPts-

nearest neighbor of x. Finally the definition of the outlyingness measure is given

below.

Definition 5. Local outlier factor (LOF) of an instance x

The LOF measures the degree to which an instance x can be considered an outlier and

is defined by

1

)

|)(|
)(
)(

)((

−

∈





















=
∑

xN
xlrd
ylrd

xLOF
MinPts

xNy MinPts

MinPts

MinPts
MinPts . (4.9)

Breunig et al showed that instances deep inside a cluster have LOF’s that are

close to 1 and should not be labeled local outliers.

Since LOF is not monotonic, Breuing et al recommends finding the LOF for

each instance of a dataset using MinPts-nearest neighbors, where MinPts assumes a

range of values from MinPtsLB to MinPtsUB. They reported that for the datasets

they experimented with, MinPtsLB=10 and MinPtsUB=20 seemed to work well. In

this thesis, LOF were found in a range of MinPtsLB=10 and MinPtsUB=20 or

MinPtsLB=20 and MinPtsUB=30, depending on the range which produced a more

monotonic plot.

50

After deciding upon the values to use for MinPtsLB and MinPtsUB, the LOF

of each instance is computed over this range. Finally all the instances are ranked with

respect to the maximum LOF value within the specified range. That is, the ranking of

an instance x is based on:

MinPtsUB}MinPtsMinPtsLB s.t. MinPts(x)Max{LOF ≤≤ . (4.10)

A maxlof (see appendix) function has been written in the R language to

perform the LOF algorithm as part of this work. The algorithm is shown in figure

4.12.

Figure 4.12: The maxLOF Algorithm

Breunig et al.(2000) states that the time complexity of the maxLOF algorithm

can be analyzed by studying independently the time complexity of the two main steps

required to produce the LOF factor for each instance of the dataset. The first step,

finding the k-distance neighborhood, has a runtime complexity of O(n*time for a k-

nn query). Therefore, the actual time complexity of this step is determined by the

method used to perform the k-nn queries. For low dimensionality (no more than 5

features), if a grid based approach is used the query can be performed in constant time

leading to a complexity of O(n) to complete the entire step. For medium

Input: Dataset D, MinptsLB, MinptsUB

Let maxlofvect=φ

for each i in the interval [MinPtsLB, MinPtsUB]

{

1. Find the i nearest neighbors and their distance from each observation in D

2. Calculate the local reachability density for each observation in D

3. Compute the local outlier factor of each observation in D

4. maxlofvect=max(maxlofvect, lof)

 }

end

Output: maxlofvect, the local outlier factor for each observation in D

51

dimensionality (between 5 and 10 features), an index can be used that would provide

an average complexity of O(log n) for the k-nn queries, leading to a total complexity

of O(nlogn). Finally, for high dimensional data, a sequential scan may be used with a

complexity of O(n) that would lead to a total complexity of O(n2). Finding the

maximum outlier factors of all observations in the dataset can be done in linear time.

Table 4.4 shows the experimental running time for the local outlier factors for

all observations of the datasets used in this work. The times have been computed

using two different values for k, the number of neighbors. Note that the number of

neighbors does not affect the running time. Using k=15, the regression line of

log(time) versus log(n) and log(p) is

log(time) = - 4.80 + 1.62 log(n) + 1.09 log(p)

with a R2= 90.1%. Therefore a good estimate of the complexity would be

O(n1.62p1.09). Looking at the relationship of time versus the number of instances n,

one gets an estimated regression line given by

log(time) = - 4.21 + 1.87 log(n)

with R2 = 75.1% , and a good estimate for the complexity would be O(n1.87).

Table 4.4: Experimental running times for computing the LOF for all
observations

 k=15 k=25 n p log(time) log(n) log(p)
Iris 0.54 0.55 150 4 0.26761 2.17609 0.60206
Sonar 11.45 11.3 208 60 1.05881 2.31806 1.77815
Heartc 1.32 1.33 297 13 0.12057 2.47276 1.11394
Bupa 1.21 1.33 345 6 0.08279 2.53782 0.77815
Ionosfera 16.19 15.92 351 32 1.20925 2.54531 1.50515
Crx 8.51 8.56 653 15 0.92993 2.81491 1.17609
Breastw 4.8 4.72 683 9 0.68124 2.83442 0.95424
Diabetes 8.89 8.99 768 8 0.9489 2.88536 0.90309
Vehicle 11.18 11.43 846 18 1.04844 2.92737 1.25527
German 11.16 11.14 1000 20 1.04766 3 1.30103
Segment 323.45 321.3 2310 16 2.50981 3.36361 1.20412
Landsat 746.71 746.38 4435 36 2.87315 3.64689 1.5563

52

This agrees with the Breuning’s claim that for a high-dimensional data the LOF

algorithm has time complexity O(n2).

A log-scale plot that shows time required to compute the LOFs for all the

datasets in our study as the number of instances increases is shown in Figure 4.13.

This log-scale plot suggests a near quadratic relationship between the computing

running time of the LOFs and the number of instances.

log(instances)

lo
g(

ti
m

e)

3.83.63.43.23.02.82.62.42.22.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Regression Line for log(time) of the LOF algorithm versus log(instances)
log(time) = - 4.215 + 1.874 log(n)

Figure 4.13: Runtime for the computation of LOFs for different datasets

Example 6. Find the outliers of the third class in the Iris dataset using the LOF

algorithm.

Using the maxlof function, the top 10 outliers are shown in Figure 4.14. Clearly the

instance 107 is detected as an outlier. There is a second group that includes 119,

118,132 and 123. Finally, instance 106 appears as a third group.

53

Figure 4.14: Instances of the class 3 in Iris dataset ranked by the LOF’s algorithm outlyingness
measure

 54

Chapter 5 Feature Selection

5.1. Introduction

The dimensionality problem in a knowledge discovery process still remains as a

very important problem to be investigated in spite of the fact that computers are

becoming more powerful everyday. The classification task in knowledge discovery is

more conveniently done with few features for two reasons: a saving of computing

time and an easy interpretation of the model. The goal of feature selection is to

choose a small subset of features such that the recognition rate of the classifier does

not decrease significantly. Feature selection methods are classified by the way they

generate subsets and by the evaluation function used to measure the quality of the

subset produced. The subset generation procedure can be one of three types:

complete, heuristic and random. The evaluation function can be a distance measure,

an information measure, a dependence measure, a consistency measure, or the

misclassification error rate.

Dash and Liu (1997) established 15 categories of feature selection procedures,

based on the generation procedure of the subsets and the evaluation function used to

compare them. In this thesis, the performance of five feature selection procedures are

evaluated: The RELIEF, Las Vegas Filter, FINCO, Sequential forward selection

(SFS) and, Sequential floating forward selection (SFFS). The first three are

considered filter methods because they do not use a classifier to select features,

whereas the last two require a classifier and are known as wrapper methods.

The classifiers used in this thesis are: the discriminant linear analysis (LDA),

the k-nearest neighbor classifier, and the recursive partitioning classifier (rpart).

Filters and wrappers are compared according to the percentages of features selected

55

and the effect on the misclassification error rate of the feature subsets produced. The

comparison is carried out in twelve datasets available in the Machine Learning

Repository at the University of California, Irvine. The number of features of these

datasets varies from 4 to 60.

Section 2 of this chapter deals with the filter methods. Wrappers methods are

discussed in section 3.

5.2. Filter methods

These methods do not require the use of a classifier to select the best subset of

features. They use general characteristics of the data to evaluate features. In this paper

we considered three filter methods: the RELIEF, Las Vegas Filter (LVF) and a new

procedure introduced by Acuña et al (2003) called FINCO. We will describe each of

them briefly.

5.2.1. The RELIEF Algorithm

This method was introduced for a two class problem by Kira and Rendell in

1992. The general idea of this method is to choose the features that can be most

distinguished between classes. These are known as the relevant features. In a two

class problem, initially each of the p features of the dataset, D, have a relevance

weight wj (j=1,….p) equal to zero. Then, at each step of an iterative process, an

instance x is chosen randomly from D and the weights wj are updated according to the

distance of x to its Nearmiss and NearHit. The Nearmiss is the instance in the dataset,

D, that is closest to x but that belongs to the other class. The NearHit is the instance

in D that is closest to x and belongs to its same class. The updating formula of wj is

given by

2 2(,) (,)j j j j j jw w diff x Nearhit diff x Nearmiss= − + , (5.1)

where xj the j-th component of x, and the function diff computes the distance

between the values of a feature for two given instances. For nominal and binary

56

features, diff is either 1 (the values are different) or 0 (the values are equal). For

ordinal and continuous features, diff is the difference of the values of the feature for

the two instances normalized by the range (maximum-minimum) of the feature.

The process is repeated M times, where M is a predefined parameter, usually

taken as the number of instances in D. The repetition must be done to reduce the

variability generated by the randomization. In this work, the algorithm was repeated

ten times for datasets with less than 10 features and, twenty times for datasets with 10

o more features. The output of the algorithm is the best subset of features that

includes those features with relevance greater than a specified threshold. The RELIEF

works well in datasets containing mixed types of features, as well as with datasets

containing noise and correlated features. Its time complexity is O(n×M×p), that is,

linear in the number of features as well as in the number of instances.

The RELIEF algorithm appears in Figure 5.1.

Figure 5.1: The RELIEF algorithm

The RELIEF algorithm presents the following disadvantages:

Input: D=Dataset, p= number of features in D, M=number of instances randomly drawn,

Threshold=τ.

1. let T=φ , T is the subset containing the features being selected

2. Initialize all weights, wj (j=1,..,p), to zero

3. for i=1 to M

 { Choose at random an instance x in D.

 Find its Nearhit and NearMiss

 for j=1 to p
2 2(,) (,)j j j j j jw w diff x Nearhit diff x Nearmiss= − +

 }

4. for j=1 to p

if wj> τ then append featurej to T

5. Output: T, the set of most relevant features.

57

• The selection of the threshold τ and of the parameter M, are unclear. Yet the

choice of the threshold is very critical for the efficiency of the RELIEF

algorithm.

• The algorithm eliminates irrelevant features, but redundant features, and those

that might be correlated with others, can be selected.

 In this thesis, the threshold was chosen iteratively. First, the threshold was set to

0. Then, after looking at the plots of the feature weights, the threshold was increased

to equal the weight at which the lowest gap occurs in the plot (if one was present).

Otherwise, the value was moved away from zero, trying to obtain frequencies that

were near 10 for the chosen features. In some cases when the gap did not appear

clearly, then the threshold was refined with additional repetitions of the algorithm.

However, this situation did not occur very often.

In this thesis, for small datasets, M was chosen equal to the number of

instances of the dataset D. However, for large datasets, M was taken to be equal to a

value as low as a 10 percent of the total number of instances (depending on the

presence of a gap in the plot of relevance weights).

The RELIEF algorithm was extended to multiclass problems by Kononenko

(1994) and Kononenko et al. (1997). The new algorithm was named RELIEF-F. In

this case, one Nearmiss is found for every class distinct to the class containing x and

the distance from x to each Nearmiss is weighted according to the proportion of

instances in each class. The updating formula of the relevance weight wj is as follows:

2 2

()

()(,) (, ())
1 (())

j

j j j j j
C class x j

P Cw w diff x Nearhit diff x Nearmiss C
p class x≠

= − +
−∑ . (5.2)

The RELIEF algorithm used in this thesis was the one modified by Kononenko.

An R function named relief, (see appendix) was written to implement the RELIEF

algorithm.

58

Example 1. Apply the RELIEF algorithm to select the best subset of features for the

Ionosphere dataset, which has 32 features and 351 instances.

The results obtained after applying the relief function are:

Frequencies and average weights of most relevant features in 10 replicates:

 feature frequency weight

 [1,] 25 10 0.04112852

 [2,] 26 10 0.03926254

 [3,] 22 10 0.03513727

 [4,] 28 10 0.02904335

 [5, 13 10 0.02780220

 [6, 3 10 0.02767617

 [7,] 27 7 0.02761284

 [8,] 24 8 0.02418991

 [9,] 23 7 0.02417275

[10,] 32 10 0.02339732

[11,] 8 6 0.02265841

[12,] 1 6 0.01999221

[13,] 30 6 0.01981515

Selected features

 [1] 25 26 22 28 13 3 27 24 23 32 8 1 30

The corresponding plot of the relevance weights is shown in figure 5.2. Notice

the gap at weights = 0.02. There are other gaps above and below 0.02, but choosing a

high value as a threshold will yield less features selected and choosing a lower

threshold value will cause the selection of a large number of features.

59

Figure 5.2: Plot of relevance weights for the features of the dataset Ionosfera

5.2.2. The Las Vegas Filter (LVF)

The Las Vegas Filter method (LVF) was introduced by Liu and Setiono

(1996). LVF uses a random generation of subsets and an inconsistency measure as the

evaluation function. Two instances of a dataset D are inconsistent if they have the

same feature values but belong to different classes. The inconsistency measure of a

given subset of features, T, relative to a dataset D, is defined as

1
| | | |

(,)

K

i i
i

D M
Inconsistency T D

N
=

−
=

∑
, (5.3)

where |Di| is the number of occurrences of the ith feature value combination on T, K is

the number of the distinct combinations of feature values on T, |Mi| is the cardinality

of the class to which the majority of instances on the ith feature values belong, and N

60

is the number of instances in the dataset D. An R function inconsist was written to

compute the inconsistency level of a dataset.

Example 2. The following table shows the inconsistency level of the Breastw dataset

for several combinations of its features. The dataset has 9 features that take on integer

values from 1 to 10.

Subset Inconsistency

1 0.14055

1,4 0.05710

1,4,6 0.01171

1,4,8 0.02489

1,2,4,6 0.001464

1,2,4,5,6 0.001464

1,2,3,4,5,6,7,8,9 0

Notice that inconsistency is monotonically decreasing on the number of features.

Thus, given two subsets of features A and B, such that A⊆B then inconsistency(A) ≤

inconsistency(B).

The inconsistency measure can be applied to datasets with continuous features

after applying a discretization process, such as the method of Fayyad and Irani that is

based on partitioning by minimization of the class information entropy with Minimal

Description Length Principle as a stopping criterion (Dougherty et al., 1995). In this

thesis, we have applied a simple equal width interval discretization method based on

Scott’s formula (see Venables and Ripley (1997), p. 169) to estimate the width

interval. In this formula a feature with n values and standard deviation s can be

discretized on k =
h
R integer values, where h = 3.5×s×n-1/3 and, R = Max – Min, is the

61

range of the feature. An R function named discretar has been written to perform

discretization using Scott’s formula.

The LVF algorithm requires several input parameters. An inconsistency

threshold that is close to or equal to zero must be set beforehand and sent to the

algorithm. To determine this value, the inconsistency measure of the dataset,

including all the features, was first computed. Then a value a little larger than the

measure obtained was taken as the inconsistency threshold. Any candidate subset

having an inconsistency measure greater than the threshold is rejected.

Another parameter is the maximum number of subsets to be generated

randomly. This number was varied between 1000 and 20,000 depending on the

number of features of the dataset and the variability of the subsets obtained. The LVF

method is suitable for datasets having only nominal features. If there are any

continuous features in the dataset it must be discretized previously. The LVF

algorithm is shown in Figure 5.3.

 An R function named lvf (see appendix) has been written to perform the

LVF algorithm on the discretized dataset.

Example 3. Apply the LVF algorithm to select the best subset of features for the

Ionosphere dataset.

The inconsistency level of the complete set of features is zero. After performing

20,000 iterations using a threshold of 0.001, and implementing a voting process

consisting of 10 repetitions of the algorithm, the features 1, 5, 12, 14, 20, 29, 30 were

selected.

62

Figure 5.3: The LVF algorithm

One disadvantage of the LVF algorithm is that it presents a high variation of

the subsets being chosen. If one repeats the LVF algorithm a second time, several

features will appear that did not appear the first time. For instance, for the Ionosphere

dataset, LVF selects in one repetition the features: 5, 10, 13, 14, 28, 31, 32 and after a

second repetition it selects 1, 2, 3, 8, 14, 27. Only the feature number 14 appears in

the two “best” subsets. One can reduce this variability either by choosing a large

number of iterations or a smaller threshold but this will slow down the computation of

the LVF algorithm.

Input: D=Dataset, p=number of features in D, S=set of all features in D,

MaxTries = maximum number of trials, δ=Threshold.

begin {

 let Sbest=S

 let Cbest = card(Sbest) = p

 for i=1 to MaxTries {

 Si= subset of S randomly selected.

 Ci=card(Si)

 if (Ci<Cbest) {

 if (Inconsistency(Si,D) ≤ δ)

 then δ=Inconsistency(Si,D)

 let Sbes t= Si

 let Cbes = Ci

 }

 if (Ci = Cbest){

 if Inconsistency(Si, D)<δ then Sbest=Si

 }} }

Output: Sbest, the best subset of features

63

5.2.3. The FINCO method

The FINCO method was introduced by Acuña (2003). FINCO stands for

Forward and Inconsistency. It uses a sequential forward generation of subsets along

with the inconsistency measure used in the LVF method. The best subset of features,

T, is initialized as the empty set and in each step we add to T the feature that gives the

lowest inconsistency rate along with the features already included in T. The process

continues until the inconsistency rate given by T and each of the features not yet

selected is less than a predefined inconsistency threshold, which is chosen as in the

LVF algorithm. A feature entering T can not be removed from it. Continuous features

need to be discretizated before applying FINCO. The FINCO algorithm appears in

Figure 5.4.

In order to avoid the nesting problem, a floating forward selection may be

applied, but it was not considered in this work. An R function called finco has been

written to perform the FINCO algorithm.

Example 4. Apply the FINCO algorithm to select the best subset of features for the

Ionosphere dataset.

 Choosing a threshold of 0.001 for the inconsistency the features 3, 4, 14, 32 were

selected.

FINCO seems to be biased towards small feature subsets, particularly if the

number of instances is small relative to the number of features. One example of this is

the Sonar dataset. FINCO and LVF have similar performance with respect to

misclassification error reduction, but FINCO has a lower computation time.

The computation time of the FINCO algorithm depends on the number of

instances, the number of features and the threshold for the inconsistency level. If a

small inconsistency level is chosen then there are more comparisons to carry out and

the computation time slows down.

64

Figure 5.4: The FINCO algorithm

The discretization method required for LVF and FINCO may affect their

performance. On average, RELIEF reduces the misclassification error rate more than

LVF and FINCO. The RELIEF algorithm also has a lower computation time than the

other two methods.

5.3. Wrapper methods

The wrapper methods use the misclassification error rate of a given classifier as

the evaluation function. A large discussion of wrappers can be found in Kohavi and

Input: D=Dataset, p=number of features in D, S=set of all the features in D.
∂=Threshold

Initialization:
Let k=0 and T=φ (Tk : Subset of features selected until the k-th step).

Inclusion step:
 for k=1 to p {

)(minarg ++
−∈

=+ xkTIncons
kTSx

x

 /*S-Tk is a subset of features not yet selected, Incons(Tk+x) is the inconsistency level
using the features in Tk along with feature x. Thus, +x is the most important feature with
respect to Tk */

 if ()()(kk TInconsxTIncons ≤+ + and ∂>+ +)(xTIncons k)
 then {
 Tk+1= Tk+x+
 k:=k+1

}
}

Termination:

 if ()()(1 kk TInconsTIncons >+ or ∂≤+)(1kTIncons)
 then print Tk

Output: Tk, a subset of the features of D.

65

John (1997). In this thesis, three classifiers have been used in the wrapper methods:

the linear discriminant analysis (LDA), the k-nn classifier, and rpart, a decision tree

classifier. The misclassification error rate is estimated by a 10-fold cross-validation

technique. In this work, only wrapper methods where the subsets are generated

heuristically, have been considered. The three main approaches are: Sequential

Forward selection (SFS), Sequential Backward selection (SBS), and the Sequential

Floating Forward selection (SFFS).

In SBS the best subset of features, T, is initialized as the set containing all the

features and in each step we remove from T the feature x for which T gives the

highest correct classification rate (CCR) when x is excluded. Thus, the worst feature

with respect to T is removed. The process continues until the CCR decreases when

excluding from T each of the remaining features. The SBS method has not been

considered in this thesis due to its slow computing time.

5.3.1. Sequential Forward selection

In Sequential Forward selection (SFS) the best subset of features T is

initialized as the empty set. In each step, the feature that gives the highest correct

classification rate (CCR) along with the features already included in T is added to T.

The process continues until none of the remaining features not yet included in T

produces an increase in the CCR when added to T. The complete algorithm is shown

in Figure 5.5. An R function called sfs has been written to perform the sequential

forward feature selection algorithm.

Example 5. Use SFS with the classifiers LDA, knn and rpart to perform feature

selection on the Ionosphere dataset.

The algorithm was repeated 20 times in order to reduce the variability of the

subset of selected features. The following features were selected.

66

 LDA KNN Rpart

Selected Features 3,6,19 1,3,4,14 1,3,5,6,32

In practice the size of the best subset was determined by averaging the number

of features selected in each repetition, and then a subset was formed using the

features with the highest frequencies. This subset was called the “best subset”.

Figure 5.5: The SFS algorithm.

Both methods, SFS and SBS, suffer from the nesting problem. This means

that a feature that is included (removed) in some step of the iterative process can not

be excluded (included) in a later step.

Input: D=Dataset, p=number of features in D, S= set of all features in D.

Initialization:

Let k = 0 and T = φ (T : Subset of features selected until the k-th step).

Inclusion step:

 for k=1 to p {

)(maxarg xkTCCR
kTSx

x +
−∈

=+

 //S-Tk: Subset of features not yet selected, CCR(Tk+x) is the correct classification rate of

the classifier using the features in Tk along with the feature x. Thus, x+: is the most

important feature with respect to Tk.//

 if (CCR(Tk+x+)>CCR(Tk))

 then {

 Tk+1= Tk+x+

 k = k +1

 }

Termination:

 if CCR(Tk+1)≤ CCR(Tk)

Output: Tk: Subset of selected features.

67

5.3.2. Sequential Floating Forward Selection

The Sequential Floating Forward selection (SFFS) method was introduced by

Pudil et al. (1994) to deal with the nesting problem. The best subset of features, T is

initialized as the empty set and at each step first a new feature is added to T as in the

SFS method but after that it searches for features that can be removed from T as in

the SBS method until the CCR decreases. The iterations continue until no new feature

can be added to T because the CCR does not increase. The SFFS algorithm is shown

in Figure 5.6.

An R function named sffs has been written to perform the sequential floating

forward feature selection algorithm.

Example 6. Using sequential floating forward selection with the classifiers LDA, knn

and rpart for the Ionosfera dataset the features selected are:

The algorithm was repeated 20 times in order to reduce the variability of the

subset of selected features. The following features were selected.

 LDA KNN Rpart

Selected Features 3,23 1,4,14 3,32,1,6

In practice the size of the best subset was determined by averaging the number

of features selected in each repetition, and then a subset was formed using the

features with the highest frequencies. This subset was called the “best subset”.

68

 Figure 5.6: The sequential floating forward selection algorithm (SFFS).

Figure 5.7 shows the computation time of the wrapper methods used in this

study. We observed that it is linear on the number of instances. For smaller datasets,

SFS and SFFS with the k-nn classifier, is computed a little bit faster but the graph

suggests that this difference will not be reflected in datasets with a large number of

instances.

Input: D=Dataset, p=number of features in D, S= set of all features in D.

Initialization:
T= Subset of selected features after applying SFS twice. Set k=2.

for (i=k to p) {

 \\Inclusion Step:

)(maxarg xkTCCR
kTSx

x +
−∈

=+

 \\Thus, x+ is the most important feature with respect to Tk
 let Tk+1 = Tk + x+
 let k = k + 1

repeat {
//Conditional exclusion

)(maxarg xkTCCR
kTx

x −
∈

=−

\\Thus, −x is the least important feature in Tk.

if)()(kTCCRxkTCRR >−

 then {

 let −−=− xkTkT 1

 let k = k-1
 }
until)()(kTCCRxkTCRR <−

}
Termination:
if CCR(Tk+1)≤ CCR(Tk)

Output: T = Subset of selected features.

69

log(instances)

lo
g(

ti
m

e)

3.83.63.43.23.02.82.62.42.22.0

4

3

2

1

0

Variab le

log(sfsrpart)
log(sffsk nn)
log(sffslda)
log(sffsrpart)

log(sfsk nn)
log(sfslda)

Figure 5.7 : Plot of the logarithms of time computation of the wrappers versus the logarithm of
instances in each of the twelve datasets

Figure 5.8 shows the relationship between the logarithms of the computation

time of all of the combinations of wrapper-classifier versus the logarithm of the

number of features. The graph suggests a linear relationship of slope 2 and therefore

a quadratic relationship between the computation time and the number of features in

the dataset.

log(features)

lo
g(

ti
m

e)

1.751.501.251.000.750.50

4

3

2

1

0

Variab le

log(sfsrpart)
lo g(sffsk nn)
log(sffslda)
log(sffsrpart)

lo g(sfsk nn)
log(sfslda)

Figure 5.8: Plot of the logarithm of the computation time of the wrappers versus the logarithm of
the number of features in each of the twelve datasets.

70

Both figures and the corresponding estimated regression lines suggest, empirically,

that the complexity time of the algorithms for the wrappers is O(np2). Approximated

time complexities for feature selection methods can be found in Kudo and Sklansky

(2000).

Below we present two plots in logarithmic scale that show the relationship

between the number of instances and features versus computer running time for the

filter methods. Figure 5.9 suggests that a linear relationship exists between the

number of instances and the computer running time.

log(instances)

lo
g(

ti
m

e)

3.83.63.43.23.02.82.62.42.22.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

Variable

log(relief)

log(lvf)
log(finco)

Figure 5.9: Plot in logarithm scale that shows a linear relationship between the number of

instances and the computer running time of the filter algorithms.

Figure 5.10 suggests the existence of a quadratic relationship between the

number of features and the computer running time for filter algorithms. Two datasets,

Sonar and Ionosphere, have been omitted from the plot because these datasets have a

high proportion of features as compared to the number of instances. This fact seems

to affect the performance of filter algorithms.

71

log(instances)

lo
g(

ti
m

e)

1.501.251.000.750.50

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

Variable

log(relief)

log(lvf)
log(finco)

Figure 5.10: Plot in logarithm scale that shows the quadratic relationship between the number of
features and the computer running time of the filter algorithms.

A discussion of the effect on the misclassification error rate for both filters

and wrappers will be considered in chapter 7.

 72

Chapter 6 Missing Values

6.1. Introduction

Missing data is a common problem in statistical analysis. In particular,

missing values in a dataset can affect the performance of a classifier constructed

using such a dataset as a training sample. Rates of less than 1% missing data are

generally considered trivial, 1-5% manageable. However, 5-15% must be handled by

sophisticated methods, and more than 15% may severely impact any kind of

interpretation. (Pyle, 1999)

Several methods have been proposed in the literature to treat missing data.

Many of these methods were developed for dealing with missing data in sample

surveys (Kalton and Kasprzyk (1986), Little and Rubin (2002)) and have some

drawbacks when they are applied to classification tasks. Chan and Dunn (1972)

considered the treatment of missing values in supervised classification using the LDA

classifier but only for two-class problems considering a simulated dataset from a

multivariate normal model. Dixon (1979) introduced the KNN imputation technique

for dealing with missing values in supervised classification. Tresp et al. (1995) also

considered the missing value problem in a supervised learning context for neural

networks.

The interest in dealing with missing values has continued with the statistical

applications to new areas such as Data Mining (Grzymala-Busse and Hu , 2000) and

Microarrays (Hastie et al, 1999, Troyanskaya et al, 2001). These applications include

supervised classification as well as unsupervised classification (clustering). When

working with data from microarrays, some people even replace missing values by

zero. Bello (1995) compared several imputation techniques in regression analysis, a

related area to classification.

73

In this thesis work, four methods for dealing with missing values are

considered: the case deletion method, mean imputation, median imputation and KNN

imputation procedure. In section 2 an explanation of the mechanisms that lead to

missing data is given. The four methods to treat of missing values considered in this

thesis are described in section 3. In section 4 other existing imputation methods that

are not included in this thesis work are described.

6.2. Mechanisms that lead to missing data

According to Little and Rubin (2002) there are three classes of missing data

mechanisms.

i) Missing completely at random (MCAR): If the probability of an instance having a

missing value for an attribute is the same for all the instances. This means that such

probability does not depend on either the known values or the missing data. As an

example, suppose weight and age are features of interest for a particular study. If the

likelihood that a person will provide his or her weight information is the same for all

individuals regardless of their weight or age, then the missing data in the attribute

weight is considered to be MCAR. More formally,

Let x = (xij) be the data matrix containing missing values. Let I be a

random variable that assumes the value of 1 if xij is present and 0 if xij

is missing. Then, in the MCAR mechanism, it is assumed that the

distribution of I does not depend on the data. Thus,

 Prob(I/xmiss,xobs)=Prob(I)

 Data that are missing because a researcher dropped the test tubes or survey

participants’ accidentally skipped questions are likely to be MCAR. The case deletion

74

method for dealing with missing values seems to give good results in this situation.

Unfortunately, most missing data are not MCAR.

In the context of supervised classification, the missingness in MCAR is

unrelated to the values of any attributes or even to the classes, whether missing or

observed. This mechanism is more suitable for data to be used in an unsupervised

classification task.

ii) Missing at random (MAR): If the probability of an instance having a missing value

for an attribute depends on a known value, such as the class to which the instance

belongs, but does not depend on the missing data itself, the missingness is classified

as MAR. Again, using the example of weight and age, if the likelihood that a person

will provide his or her weight varied according to an individual’s weight but not his

or her age, then the missing data is considered to be MAR. Formally,

 Prob(I/xmiss,xobs)=Prob(I/xobs)

Most missing data methods are designed under this assumption. In MAR,

cases with incomplete data differ from cases with complete data, but the pattern of

missingness of the data is traceable or predictable from other features in the database.

In other words, the actual features where data are missing are not the cause of the

incomplete data. Instead, the cause of the missing data is due to some other external

influence.

MAR is an assumption that is justifiable more frequently, though not always.

The more relevant and related the predictors that are to be included in statistical

models are, the more likely it is that the MAR assumption will be met.

In this thesis work, the MAR mechanism has been considered in two situations:

a) In datasets with a low percentage of missing values.

b) In datasets that contained simulated missing values, since the assigned

missing values have been assigned at random but proportional to the class

size.

75

An R function imagmiss has been written to display the distribution of the missing

values in the dataset.

Example 1. The image of Figure 6.1 shows the location of the missing values

assigned randomly to the three most relevant features of the Iris dataset in 19% of the

instances. Notice that a certain pattern exists in the distribution of the missing values.

Figure 6.1: An example of missing values obtained by a MAR mechanism.

iii) Non-ignorable or Not Missing at Random (NMAR): If the probability that a value

of an attribute is missing depends on the missing data itself, then it is considered to be

not missing at random. An example of this would be if the likelihood of an individual

providing his or her weight varied according to a person’s weight in each age

category. Typically this type of missing data is the hardest condition to deal with, but

unfortunately, the most likely to occur as well. It commonly occurs when

interviewed people do not want to reveal something very personal or unpopular about

76

themselves. Some methods for dealing with missing data can give highly biased

results for NMAR data.

In NMAR the pattern of data missingness is non-random and it is not

predictable from other features in the database. If a participant in a weight-loss study

does not attend a weigh-in due to concerns about his weight loss, his data are missing

due to non-ignorable factors. In contrast to the MAR situation outlined above where

data missingness is explainable by other measured features in a study, non-ignorable

missing data arises due to the fact that the data missingness pattern is explainable ---

and only explainable --- by the very feature(s) on which the data are missing.

Example 2: For the Hepatitis dataset which has a high percentage of missing values a

NMAR mechanism is considered. Figure 2 shows the missing values distribution of

Hepatitis. Note that Hepatitis has a high percentage of instances containing missing

values.

Figure 6.2: An example of missing values obtained by the NMAR mechanism

77

6.3. Methods for handling missing data

In general, methods for treating missing data can be divided into the three

categories listed below (Little and Rubin, 2002).

a) Case/Pairwise Deletion, which are the easiest and most commonly applied

methods.

b) Parameter estimation, where maximum likelihood procedures that use

variants of the Expectation-Maximization algorithm can handle parameter

estimation in the presence of missing data. These methods are generally

superior to case deletion methods, because they utilize all the observed data,

especially when the probability mechanism leading to missingness can be

included in the model. However, they suffer from several limitations,

including a strict assumption of a model distribution for the features, such as a

multivariate normal model, which has a high sensitivity to outliers and a high

degree of complexity (slow computation).

c) Imputation techniques, where missing values are replaced with estimated

ones based on information available in the dataset. The objective is to employ

known relationships that can be identified in the valid values of the dataset to

assist in estimating the missing values. There are many options varying from

naive methods, like mean imputation, to other robust methods based on

relationships among attributes.

In this thesis work four methods to treat missing values in supervised

classification problems are considered. The chosen techniques are:

i) The case deletion technique (CD),

ii) The mean imputation (MI),

iii) The median imputation (MDI) and,

iv) The k-nearest neighbor (KNN) imputation.

In the following sections a description of the above four methods for treating missing

values in the supervised classification context is given.

78

6.3.1. Case Deletion

 Case Deletion is also known as Complete Case Analysis. It is available in

some statistical packages and is the default method in many of those programs that

include it. This method consists of discarding all instances (cases) with missing

values for at least one feature. A variation of this method consists of determining the

extent of missing data on each instance and attribute and deleting the instances and/or

attributes with high levels of missing data. However, before deleting any attribute, it

is necessary to evaluate its relevance to the analysis. Unfortunately, relevant attributes

should be kept even with a high degree of missing values.

CD is less hazardous if it involves minimal loss of sample size (minimal

missing data or a sufficiently large sample size) and there is no structure or pattern to

the missing data. For other situations where the sample size is insufficient or some

structure exists in the missing data, CD has been shown to produce more biased

estimates than alternative methods. CD should be applied only in cases in which data

are missing completely at random (see Little and Rubin (2002)).

6.3.2. Mean Imputation

Mean Imputation is one of the most frequently used methods. It consists of

replacing the missing data for a given feature (attribute) by the mean of all known

values of that attribute. In a supervised classification context, the value is replaced by

the mean of all known values of the attribute that are in the class to which the

instance with the missing attribute belongs. Let us consider that the value xij of the k-

th class, Ck, is missing then it will be replaced by

∑=
∈ kCijxi jkn

ijx
ijx

:

ˆ , (6.1)

where njk represents the number of non-missing values in the j-th feature of the k-th

class. In some studies the overall mean is used but we consider that this does not take

79

into account the sample size of the class to which the instance with the missing values

belongs.

According to Little and Rubin (2002) among the drawbacks of mean

imputation are:

 (a) the sample size is overestimated,

(b) the variance of the estimator is underestimated,

(c) the correlation between two features can be negatively biased, and

(d) the distribution of the new values might be an incorrect representation of the

population values because the shape of the distribution is distorted by adding values

equal to the mean.

Replacing all missing records with a single value will deflate the variance and

artificially inflate the significance of any statistical tests based on it. Surprisingly

though, mean imputation has given good experimental results in datasets used for

supervised classification purposes (Chan and Dunn, 1972, Mundfrom and Whitcomb,

1998).

6.3.3. Median Imputation (MDI)

Since the mean is affected by the presence of outliers it seems natural to use

the median instead just to assure robustness. In this case, the missing data for a given

feature is replaced by the median of all known values of that attribute in the class to

which the instance with the missing value belongs. This method is also a

recommended choice when the distribution of the values of a given feature is skewed.

Let us consider that the value xij of the k-th class, Ck, is missing, then it will be

replaced by

}{
:

ˆ ijxmedian

kCijxi
ijx

∈
= . (6.2)

In the case of a missing value in a categorical feature we can use mode

imputation instead of either mean or median imputation. These imputation methods

are applied separately in each feature containing missing values. Notice that the

80

correlation structure of the data is not being considered in the above methods. The

existence of others features with similar information (high correlation), or similar

predicting power can make the missing data imputation useless, or even harmful.

6.3.4. KNN Imputation (KNNI)

In this method the missing values of an instance are imputed considering a

given number of instances that are most similar to the instance of interest. The

similarity of two instances is determined using a distance function. The algorithm is

shown in Figure 6.3.

The advantages of KNN imputation are:

(i) k-nearest neighbor can predict both qualitative attributes (the most

frequent value among the k nearest neighbors) and quantitative

attributes (the mean among the k nearest neighbors).

(ii) It does not require the creation of a predictive model for each

attribute with missing data. Actually, the k-nearest neighbor

algorithm does not create explicit models.

(iii) It can easily treat instances with multiple missing values.

(iv) It takes in consideration the correlation structure of the data.

The disadvantages of KNN imputation are:

(i) There are no set criteria for the choice of the distance function to be used. It

could be Euclidean, Manhattan, Mahalanobis, Pearson, etc. In this work we

have considered the Euclidean distance.

(ii) The KNN algorithm searches through all instances belonging to a class

looking for the most similar instances. This is a very time consuming process

and it can be very critical in data mining where large databases are analyzed.

81

Figure 6.3: The KNN imputation Algorithm.

No fixed criteria exist for the choice of k, the number of neighbors, either.

Troyanskaya et al. (2001), set the value of k empirically. Several numbers were tried

and it was decided to use k=10 based on the accuracy of the classifier after the

imputation process. The choice of a small k produces a deterioration in the

performance of the classifier after imputation due to overemphasis of a few dominant

instances in the estimation process of the missing values. On the other hand, a

neighborhood of large size would include instances that are significantly different

Input: D=Dataset, p=number of features in D, S=set of all features in D

begin{

1. Divide the dataset D into two parts. Let Dm be the set containing the instances in which

at least one of the feature values is missing. The remaining instances with complete

feature information form a set called Dc.

2. for each vector x in Dm {

a) Divide the instance vector into observed and missing parts as x=[xo;xm].

b) Calculate the distance between the xo and all the instance vectors from the set Dc. Use

only those features in the instance vectors from the complete set Dc, which are observed in

the vector x.

c) Use the K closest instance vectors (K-nearest neighbors) and perform a majority voting

estimate of the missing values for categorical attributes. For continuous attributes replace

the missing value using the mean value of the attribute in the k-nearest neighborhood. The

median could be used instead of the mean.

}

}

Output: D, a complete matrix.

82

from the instance containing missing values hurting their estimation process and

therefore the classifier’s performance declines. For small datasets, a k value smaller

than 10 can be used.

6.4. Other imputations methods
Several other imputation methods exist, but few of them are suitable for

classification tasks. Next, additional methods that have not been used in this work are

described briefly.

i) Hot deck Imputation. In this method, a missing attribute value is filled in with a

value from an estimated distribution for the missing value from the current data. In

Random Hot deck, a missing value (the recipient) of an attribute is replaced by an

observed value (the donor) of the attribute chosen randomly. There are also cold deck

imputation methods that are similar to hot deck but in this case the data source of the

donor must be different from the current data source. For more details see Kalton and

Kasprzyk (1986).

ii) Imputation using a prediction model. These methods consist of creating a

predictive model to estimate values that will substitute the missing data. The attribute

with missing data is used as the response attribute, and the remaining attributes are

used as input for the predictive model. The disadvantages of this approach are:

a) the model estimated values are usually more well-behaved than the true values

would be.

b) if there are no relationships among complete attributes in the dataset and the

attribute with the missing data, then the model will not be precise for

estimating missing values.

c) the computational cost is high since we have to build a large amount of

models to predict missing values.

This method is not suitable for either high dimensionality datasets or very large

datasets having a large number of missing values because it will be very slow.

83

iii) Imputation using decision trees algorithms. All the decision tree classifiers handle

missing values by using built in approaches. For instance, CART replaces a missing

value of a given attribute using the corresponding value of a surrogate attribute which

has the highest correlation with the original attribute. C4.5 uses a probabilistic

approach to handle missing data in both the training and the test sample. In this thesis

some comparisons with these method have been done through the use of the rpart

library available in R

iv) Multiple imputation. In this method, the missing values in a feature are replaced

with values drawn randomly (with replacement) from a fitted distribution for that

feature. This is repeated a number of times, say M=5 times. After each iteration, a

classifier can be applied to the "complete" dataset and the misclassification error

computed for each dataset. The misclassification error rates are averaged to obtain a

single estimate and also to estimate variances of the error rate. More details can be

found in Little and Rubin (2002) and Schaffer (1997). There are libraries available

in R to perform multiple imputation.

6.5. Effect of imputation on the misclassification error rate

In this thesis, four methods for treating missing values were compared

according to the effect on the misclassification rate of three classifiers: Linear

Discriminant Analysis (LDA), K-nn (KNN), and Rpart (rpart). Twelve datasets,

coming from the Machine Learning Database Repository at the University of

California Irvine, were used. Four of the datasets used contained missing values and

eight of them did not contain missing values. Tests were run using the incomplete

datasets and using the complete sets but applying a randomization allocation of

certain percentages of missing values to them. The percentage of simulated missing

values was varied from 1% to 20%.

To evaluate more precisely the effect of missing value imputation on the

accuracy of the classifier only the relevant features in each dataset were used. In

doing so, the imputation process was also sped up. The relevant features were

84

selected using the RELIEF, a filter method for feature selection in supervised

classification discussed in chapter 4 (see Acuña et al. (2003) for more details). Batista

and Monard (2002) ran a similar experiment but they chose only the three most

important features and computed the misclassification error after the imputation of

each missing value rather than after the imputation of all values.

In this work, first, each of the four datasets having missing values was passed

through a cleaning process where features with more than 30% of missing as well as

instances with more than 50% of missing were eliminated. An R function clean was

written to perform this task. The function allows the user to modify the percentage of

missing in the instances and attributes to tolerate. This cleaning process is carried out

in order to perform the smallest number of imputations on each dataset.

After this first step, the four methods to treat missing values were applied but

using only the relevant features. An R function ce.mimp was written to treat the

missing values with the mean, median or mode and the function ec.knnmimp was

written to treat missing values using k-nn imputation. Once a "complete" dataset was

obtained, the 10-fold cross-validation estimates of the misclassification error were

computed for the three classifiers under consideration. A similar sequence was carried

out for datasets with simulated missing values. The results of the experimentation for

the incomplete datasets are presented here. The remaining results appear in chapter 7.

Table 6.1 below offers a description of the incomplete datasets used in this

work. It also describes the cleaning process needed to prepare the datasets for

analysis. Hepatitis has the largest percent of missing, both overall and in the number

of affected instances. Based on the tolerance we have set for our experiments, only

Hepatitis will have a column and a row eliminated. After cleaning, the datasets

ordered in decreasing order of number of missing are: Hepatitis, CRX, Breast and

Heartc. It can be observed from table 6.1, that since only the missing values in the

relevant features will be imputed, Hepatitis will only have 18 imputations performed.

Table 6.2 shows the cross validation errors (using the three classifiers: lda, knn

and rpart) for each of the incomplete datasets when the observations containing

85

missing values are eliminated.. The table also shows that ratios between the errors

obtained after imputation and the base error for each dataset. To interpret the data, we

have applied the criteria that errors that change by 5% or more have been affected by

the imputation method.

 From this table, we can conclude that in the datasets with a small amount of

instances containing missing values, there is not much difference between case

deletion and other imputation methods for all of the classifiers used. This is observed

by ratios that are close to one.

Table 6-1: Description of incomplete datasets used in this study
Datasets (number of missing) Heartc (6) Breast-W (16) CRX (67) Hepatitis (167)
Percent of missing overall 0.15 % 0.25 % 0.64 % 5.67 %
Features with missing - % missing 1. V12 (1.32) 1. V7 - (2.29) 1. V1 (1.73) 1. V4 (0.65)
 2. V13 (0.66) 2. V2 (1.74) 2. V6 (0.65)
 3. V4 (0.87) 3. V7 (0.65)
 4. V5 (0.87) 4. V8 (0.65)
 5. V6 (1.30) 5. V9 (6.45)
 6. V7 (1.30) 6. V10 (7.097)
 7. V14 (1.88) 7. V11(3.23)
 8. V12 (3.23)
 9. V13 (3.23)
 10. V14 (3.23)
 11. V15 (3.87)
 12. V16 (18.71)
 13. V17(2.58)
 14. V18 (10.32)
 15. V19 (43.23)
Number of rows with missing: 6 16 37 75
Percent of rows with missing: 1.98 2.29 5.36 48.38
Number of values to be imputed
(relevant features only): 6 16 30 18

86

Table 6-2 Cross-validation errors and ratios for the three classifiers and the four
methods used to deal with missing data
Cross-validation error/Datasets with missing Heartc Breast-W CRX Hepatitis
ECV10(lda) - NA omit 0.1644 0.0367 0.1363 0.1725
ECV10(knn) - NA omit 0.1943 0.0344 0.2505 0.21825
ECV10(rpart) -NA omit 0.1933 0.0442 0.1273 0.199
Err_MI LDA ratio 0.9782 1.0161 1.0633 0.9577
Err_MI KNN ratio 0.9672 1.1168 1.0061 0.9146
Err_MI Rpart ratio 1.0093 1.2101 1.0238 1.0207
Err_MDI LDA ratio 0.9831 0.9989 1.0633 0.981
Err_MDI KNN ratio 0.9584 1.1285 0.9869 0.8361
Err_MDI Rpart ratio 0.9546 1.1680 1.0227 0.9992
Err_KNNI LDA ratio 0.9728 1.0816 1.0633 1.0069
Err_KNNI KNN ratio 0.9626 1.0511 0.9814 0.9777
Err_KNNI Rpart ratio 0.9546 1.1712 1.0124 1.0377

 87

Chapter 7 Experimental Results

7.1. Programming in R
R is a computer language which can be considered an implementation of the S

language of Becker, Chambers and Wilks (1988) that has adopted the evaluation

model of the Lisp dialect, Scheme. R was initially written by Robert Gentlemen and

Ross Ihaka (1996). The project began as an effort to bring some of the power of

modern statistical systems to the class of low-end computers which were generally

available for teaching purposes at the time. R has since been created for several

platforms, including, UNIX, Windows and MacIntosh.

R is not object oriented in the same sense as Java or C++, but in the sense that

the basic entities of the language are objects, i.e. complex entities with type and

defined behavior. These objects are characterized by their names and their content,

but also by attributes which specify the kind of data represented by the object. For

example, consider a feature that takes on the value 1,2, or 3. Such a feature could be

an integer variable (i.e., the number of birds in a nest), or the coding of a categorical

variable (i.e., sex in a population of crustaceus: male, female, or hermaphrodite). It is

clear that the statistical analysis of this feature will not be the same in both cases.

With R, the attributes of the object give the necessary information to determine the

type of analysis allowed for this feature. Another difference between R and classical

object oriented languages is that R doesn't (generally) have methods that are

semantically part of objects. However, it does have class-based function dispatch and

generic functions, so that a function can do different things for different kinds of

objects, and for combinations of objects.

R has elements of being a functional language like the fact that programs are

composed of expressions that are turned into function objects that get evaluated. Yet,

88

it is not a pure functional language because functions can and do have side effects.

Other distinctive features of the language are that basic operations are vectorized, and

that "lists" in R are really generic vectors where each element can be of a different

type.

R has lazy evaluation (objects are not evaluated until their values are required)

and weak dynamic typing (a variable can change type at will: a = 1 ; a = "a" is

allowed). Conversion between types is often automatic or can be programmed to be

so, hence operations on disparate types can often be carried out. Another

characteristic of the language is that parameter passing follows call-by-value and

copy-on-modify disciplines. This means that arguments are not copied unless the

function seeks to mutate their values.

All actions of R are done on objects stored in the active memory of the

computer, that is, no temporary files are used. The results of functions are displayed

directly on the screen, stored in an object, or written on the disk. Since results are

themselves objects, they can be considered as data and analysed as such. The

functions available to the user are stored in a library localized on the disk in a

directory called R_HOME/library where R_HOME is the directory where R is

installed. This directory contains packages of functions, which are themselves

structured in directories. The package named base contains the basic functions of the

language for reading and manipulating data, some graphic functions, and a few

statistical functions. Each package has a directory called R with a file named like the

package (for instance, R_HOME/library/base/R/base). This last file is in ASCII

format and contains all the functions of the package.

R currently has a large population of users and collaborators. Its ability to be

both a statistical environment and a programming language provides the duality

required for the rapid elaboration of code that implements advanced algorithms for

statistical analysis. Since the creation of visualizations that would aid in statistical

analysis was a primary goal of this work, the ease with which graphics are created in

Windows was considered another advantage of this platform. In addition, the

89

portability of the R language will allow the authors of this work to cross over to the

Unix platform to improve memory usage of the code that was written for future work.

7.2. The Datasets

A summary of the characteristics of the complete datasets used in this work

appears in Table 7.1. The number in parenthesis in the column “Number of Classes”

indicates the number of instances in each class of the dataset. The asterisk (*)

indicates that some features of the original dataset have not been considered.

Table 7-1 : Information about the datasets used in thesis.

Observations Datasets
Number

of
Instances

Number of
classes (Instances

per class)

Number
of

missing
values

Percent of
instances

with missing
values

Number
of

Features

Iris 150 3(50, 50, 50) 4
Hepatitis 155 2(32, 123) 75 48.38% 19
Sonar 208 2 (111, 97) 60
Heart-c 303 2(164, 139) 6 1.98% 13
Bupa 345 2(145, 200) 6
Ionosphere* 351 2(225, 126) 34
Crx 690 2(383, 307) 37 5.36% 15
Breast-w 699 2(458, 241) 16 2.29% 9
Diabetes 768 2(500, 268) 8
Vehicle 846 4(218, 212, 217, 18
German 1000 2(700,300) 20
Segment* 2310 7(330, 330, 330,

330, 330, 330,
 19

Landsat 4435 6(1072, 479, 961,
415, 470, 1038)

 36

7.3. Classifiers used in this thesis

Throughout this thesis, three classifiers have been used to obtain classification

results for the different experiments. These are: Linear Discriminant Analysis (LDA),

90

K-nearest neighbor (KNN) and Recursive Partitioning (rpart). A brief description of

each classification method follows.

Linear Discriminant Analysis (LDA) is a commonly used classification

method of parametric nature that uses the assumption of multivariate and equality of

variance matrices. This method maximizes the ratio of between-class variance to the

within-class variance in any particular data set, thereby guaranteeing maximal

separability. LDA tries to draw a decision region between the classes of the dataset

using the rule: assign x to the class j that has the closest mean. In general the

discriminant function is written as:

1 1 ...o p pD x xβ β β= + + + ,

where 1,..., pβ β are the discriminant coefficients and 1,..., px x are the features of the

dataset.

Example 1. Given the data on loans from table 7.2, compute the Linear Discriminant

Function and plot the decision region.

 In Table 7.2 below, the column labeled status contains the class information

for the observations. Those observations labeled 0 represent customers whose credit

history has been classified as “Bad risk” and those labeled 1 as “No risk”.

 In R, the function lda from the library MASS is used to obtain the linear

discriminant function. After obtaining the linear discriminant function, a scatter plot

of the 11 observations is plotted as displayed in Figure 7.1. In this plot, M1 an M2

represent the mean values of the “No risk” class marked with G’s and the “Bad risk”

class marked with B’s respectively.

91

Table 7-2: Credit data for Example 1.

Name Yearly income Age Status

1 18,000 22 1

2 26,000 26 1

3 14,000 31 0

4 20,000 42 1

5 12,000 31 0

6 21,000 24 0

7 35,000 32 1

8 40,000 46 1

9 36,000 37 1

10 22,000 28 0

11 24,000 32 1

The line crossing the plot is the linear discriminant function for the data. It

can be observed that two observations would be incorrectly classified if this method

is used.

Figure 7.1: Scatter plot of Credit History data with linear discriminant line

92

 The K-nearest neighbor classifier finds for each observation of the dataset, the

k-nearest observations (using a distance measure), and the classification is decided by

majority vote, with ties broken at random. If there are ties for the kth nearest

observations, all candidates are included in the vote.

Recursive Partitioning (rpart) is a tree structure that uses a classification tree

to classify the observations. A classification tree will determine a set of logical if-then

conditions (instead of linear equations) for predicting or classifying cases. Figure 7.2

shows a classification tree developed for the Iris dataset. The interpretation of this

tree is: if the petal length is less than 2.45, the respective flower would be classified

as Setosa. If the petal length is greater than or equal to 2.45, but less than 4.95 and

the petal width is less than 1.75, then the respective flower should be classified as

Versicolor; else, if the petal length is greater than or equal to 4.95, and the petal width

is less than 1.75, then the respective flower belongs to class Virginica. Finally, if the

petal width is greater than or equal to 1.75, then the flower should be placed in the

Virginica group. Tree classifiers use no implicit assumption about the underlying

relationships between the predictor variables and the dependent variable.

Figure 7.2: Decision Tree for Iris dataset

93

7.4. Normalization

An attribute is normalized by scaling its values so that these fall within a small

specified range, for instance from 0 to 1. Normalization is very useful for distance-

based algorithms such as k-nearest neighbors, because it helps to prevent attributes

with large values from overweighing attributes with small values. In this work,

normalization was applied to the datasets to construct parallel coordinate and survey

plots and to study the effect or normalization on feature selection for the SFS wrapper

method. The filter methods normalize data before determining the relevance as part of

their algorithms.

There are many methods for data normalization. The proposed data

preprocessing environment will include R functions to implement the methods

described below.

Normalization methods included in this study

1) Min-Max Normalization:- This type of normalization transforms the data into a

desired range, usually [0,1]. The transformation formula for a value v(i) of the

attribute A is given by:

() min'() *(max min) min
max min

v i Av i new A nen A new A
A A
−

= − +
−

, (7.1)

where [minA, maxA] is the initial range of the attribute A and [newminA, newmaxA]

is the new range.

2) z-Score normalization: By using this type of normalization, the mean of the

transformed set of data points is reduced to zero. For this, the mean and standard

deviation of the initial set of data values are required. The transformation formula for

a value v(i) of the attribute A is given by:

94

()'() v i meanAv i
stdevA
−

= , (7.2)

where meanA and std_devA are the mean and standard deviation of attribute A.

3) Decimal Scaling: This type of scaling transforms the data into a range between [-

1,1]. The transformation formula is given by

v'(i) = ()
10k

v i , (7.3)

 for the smallest k such that max(|v'(i)|) ≤ 1.

4) Sigmoidal normalization. This method transforms the input data nonlinearly into

the range -1 to 1, using a sigmoid function. It calculates the mean and standard

deviation of the input data. Data points within a standard deviation of the mean are

mapped to the almost linear region of the sigmoid. Outlier points are compressed

along the tails of the sigmoidal function. The transformation formula is given by

)(

)(

1
1)(' ia

ia

e
eiV −

−

+
−

= , (7.4)

where
stdevA

meanAiVia −
=

)()(.

 Sigmoidal normalization is especially appropriate when you have outlier data

points you wish to include in the dataset. It prevents the most commonly occurring

values from being compressed into essentially the same values without losing the

ability to represent very large outlier values.

5) Softmax normalization. It is so called because it reaches "softly" toward its

maximum and minimum value, never quite getting there. The transformation is more

or less linear in the middle range, and has a smooth nonlinearity at both ends. The

whole output range covered is 0 to 1 and the transformation assures that no present

value lies outside this range. The transformation formula value v(i) of the attribute A

is given by

95

)(1
1)(' iae

iV −+
= , (7.5).

Figure 7.3: Scatterplots of the first attribute of Iris before and after applying different
normalization methods

Some observed effects of normalization on feature selection and outlier detection

Normalization seems to affect the wrapper feature selection methods, in

particular those based on knn and rpart as shown in the Example 2 that follows.

Example 2. Normalize the Diabetes dataset using z-Score normalization. Then apply

feature reduction methods to reduce the dimensionality of the dataset. Find the

misclassification error associated with the new subsets.

Using the functions created in R to implement forward selection and floating

selection on the normalized dataset, the following results are obtained:

96

> sfs(diabetes,"lda",repet=10)
The best subset of features is:
[1] 7 6 2 8

> sfs(as.data.frame(sdiabetes),"lda",repet=10)
The best subset of features is:
[1] 6 2 7 8

> sfs(diabetes,"knn",repet=10)
The best subset of features is:
[1] 2 6 7

> sfs(as.data.frame(sdiabetes),"knn",repet=10)
The best subset of features is:
[1] 2 8 1 6

> sfs(diabetes,"rpart",repet=10)
The best subset of features is:
[1] 2 3 4

> sfs(as.data.frame(sdiabetes),"rpart",repet=10)
The best subset of features is:
[1] 2 7

We can observe how the features selected changed for the KNN and RPART

classifiers after the dataset had been normalized.

7.5. Applications of Visualization Techniques

Parallel Coordinate Plots by class

Parallel Coordinate Plots and Survey Plots were created for each dataset used

in this work to aid in the identification of relevant features and outliers. Since in a

classification context, feature relevance is determined with respect to the entire

dataset but outliers are determined with respect to each class, plots were created for

each class of the dataset, as well. Below, graphs of the several datasets by class are

presented. In each graph outliers that were suggested by the different algorithms are

highlighted.

97

Figure 7.4: Parallel coordinate plot for class 2 of Iris

Figure 7.5: Parallel coordinate plot for class 3 of Iris

98

Figure 7.6: Parallel coordinate plot for class 1 of Bupa

Figure 7.7: Parallel coordinate plot for class 2 of Bupa

99

Figure 7.8: Parallel coordinate plot for class 1 of Heart

Figure 7.9: Parallel coordinate plot for class 2 of Heart

100

Figure 7.10: Parallel coordinate plot for class 1 of CRX

Figure 7.11: Parallel coordinate plot for class 2 of CRX

101

Figure 7.12: Parallel coordinate plot for class 1 of Diabetes

Figure 7.13: Parallel coordinate plot for class 2 of Diabetes

102

Figure 7.14: Parallel coordinate plot for class 4 of Vehicle

Survey Plots after feature selection

 When a data analyst first encounters a dataset, little is known about the

relationships among the features of the dataset. The survey plot was mentioned earlier

as a possible visualization technique to aid in the identification of relevant features

for classification, particularly if allowed the ability to sort on one or more features.

Once a feature selection method has been applied, this visualization can further aid in

the identification of features that possess stronger discrimination power than others.

For example, notice the survey plot of the Crx dataset before feature selection

presented in Figure 7.15. The attributes selected by the feature selection methods used

in this study are shown in Table 7.3.

 A survey plot after feature selection allows for the visualization of a display

that reflects the discrimination capability of the attributes selected. Figures 7.16 and

7.17 show the surveyplot of the Crx dataset when the dataset is ordered by the first

103

and second attributes (feature 9 and 10). Observe the clustering of colors in the

graphs.

Table 7-3: Features selected by different methods for Crx.
Feature Selection Method Relevant Features % of Features selected

Relief 9, 10, 13 20 %

SFS – LDA 9,15 13.3%

SFS- KNN 9 6.67%

SFS-Rpart 9 6.67%

SFFS – KNN 9,15 13.3 %

SFFS – LDA 9 6.67%

SFFS – Rpart 9 6.67%

With, the help of the survey plot, it can be confirmed that feature 9 has the strongest

discrimination power of all other attributes.

Figure 7.15: Survey plot of Crx dataset before feature selection sorted by the second attribute

104

Figure 7.16: Crx sorted by V9

Figure 7.17: Crx sorted by V10

105

7.6. The effect of outliers on the misclassification error and their in a
supervised classification context

In literature related to outliers, it is frequently mentioned that the presence of outliers

affects the performance of classifiers, but there are few studies verifying this claim. This is

not the case in a regression context where a large number of studies showing the effect of

outliers in regression problems can be found. Two main aspects in supervised classification

are feature selection and the misclassification error rate. In this thesis, an evaluation of the

effect of outliers in these aspects is considered. The Iris and Bupa datasets will be used to

show the effect of outliers.

Example 3: Use the Iris dataset to show the effect of outliers on feature selection and

the estimation of the misclassification error rate.

Using all the criteria described in Chapter 4 and the visual help provided by the

parallel coordinate plot to decide about the doubtful outliers, the following outliers

have been detected in the Iris dataset.

Outliers in class 1: (7)

16, 15 ,34, 42, 44, 24, 23

Outliers in class 2 (7)

71, 63 ,58 ,61, 94, 99, 69

Outliers in class 3 (5)

107, 119, 132, 118 ,120

In Table 7.4, the misclassification error of three classifiers: LDA, knn and

rpart, has been computed using the original sample, the original sample without

outliers and the original sample extracting a random sample of size equal to the

number of outliers.

106

Table 7-4: The misclassification error rate for the LDA, knn and rpart
classifiers using three different types of samples

 Original

Sample

Original sample without

outliers

Original sample

excluding a random sub-

sample

LDA 2.02 1.54 2.30

Knn(k=1) 4.05 2.35 4.10

Rpart 6.69 2.90 7.32

Notice that all three classifiers are affected when outliers are removed, whereas there

is only a minimum change on the misclassification error when a random subsample of

instances is removed.

Table 7.5 shows the feature selected using the three types of samples

described before. The feature selected methods used here are the sequential forward

selection (SFS) with the three classifiers used in Table 7.5 and the Relief method.

Some differences can be observed between the subset of features selected by the four

methods.

Table 7-5: Features selected using SFS and Relief for the three type of samples

 Original

Sample

Original sample

without outliers

Original sample excluding a

random subsample

SFS(lda) 4,2 4,2 4,3

SFS(knn) 4,3 4,3 4,3

SFS(rpart) 4 4 4

Relief 2,3,4 4,3 4,3

Finally, in Table 7.6, the misclassification error rates of the three classifiers

after forward feature selection and for the three types of samples are shown.

107

Table 7-6: Misclassification error rate after SFS for the three type of samples

 Original

Sample

Original sample

without outliers

Original sample

excluding a random

subsample

LDA 3.70 2.33 5.31

knn(k=1) 4.01 1.87 4.80

Rpart 5.29 2.29 5.25

Notice that the lower misclassification errors are obtained for samples where

the feature selection is performed after eliminating outliers. Another option for

treating outliers is to treat them as if they were missing values and impute the values.

Some data analysts prefer the latter because it avoids the loss of sample size but

others dislike this method because it can create bias on the estimation.

Example 4: Use the Bupa dataset to show the effect of outliers on feature selection

and the estimation of the misclassification error rate.

Using all the criteria described in Chapter 7 and the visual help provided by the

parallel coordinate plot to decide about the doubtful outliers, the following outliers

have been detected in the Bupa dataset.

Outliers in class 1: (22)

168, 175, 182, 190, 205, 316, 317, 335, 345, 148, 183, 26,1 311, 25, 167, 189, 312

326, 343, 313, 20, 22

Outliers in class 2 (26)

36, 77, 85, 115, 134, 179, 233, 300, 323, 331, 342, 111, 139, 252, 294, 307, 123, 186,

286, 2, 133, 157, 187, 224, 278, 337

108

In Table 7.7, the misclassification error of three classifiers: LDA, knn and

rpart, have been computed using the original sample, the original sample without

outliers and the original sample extracting a random sample of size equal to the

number of outliers.

Table 7-7 : The misclassification error rate for the LDA, knn and rpart
classifiers using three different types of samples

 Original

Sample

Original sample without

outliers

Original sample

excluding a random sub-

sample

LDA 31.82 26.23 31.17

Knn(k=7) 31.55 27.65 32.26

Rpart 31.86 33.24 35.07

Notice that LDA and knn are the classifiers that are most affected, while Rpart is the

least affected. The latter makes sense since it is well known that Rpart is a classifier

that is robust to outliers.

Table 7.8 shows the features selected using the three types of samples

described before. The feature selection methods used here are the sequential forward

selection (SFS) with the three classifiers mentioned earlier along with the Relief

method. Differences can be observed between the subset of features selected by the

four methods.

Table 7-8: Features selected using SFS and Relief for the three type of samples
 Original Sample Original sample

without outliers

Original sample excluding a

random subsample

SFS(lda) 5,4,3,6 5,3,4 5,4,3,6

SFS(knn) 5,3,1 5,3,1,6 5,3,4,1

SFS(rpart) 5,3,6,2 5,3,2 5,3,2

Relief 6,3,4 4,2,5,3 2,4,3

109

Finally, in Table 7.9, the misclassification error rates of the three classifiers

after feature selection and for the three types of samples are shown.

Table 7-9 Misclassification error rate after feature selection for the three type of
samples

 Original

Sample

Original sample

without outliers

Original sample

excluding a random

subsample

LDA 34.94 26.72 35.62

knn(k=7) 36.53 30.65 40.99

Rpart 37.47 32.48 39.78

Notice that the lower misclassification errors are obtained for samples where the

feature selection is performed after eliminating outliers. Another option for treating

outliers is to treat them as if they were missing values and impute the values. Some

data analysts prefer the latter because it avoids the loss of sample size but others

dislike this method because it can create bias on the estimation.

7.7. The effect on the misclassification error rate for both filters and
wrappers

 Figures 7.18 and 7.19 show the percentages of features selected by the filter

and wrapper methods. Among the wrapper methods, the SFFS performs better than

SFS, since they both select similar percentages of features (a lower percentage of

features than the filter methods) and they both obtain similar classification accuracies,

but SFFS has a faster computation time. Among the filters methods, FINCO appears

to have the smallest percentage of features selected.

In Tables 7.10 through 7.12, misclassification errors that have deteriorated are

those that have increased by at least 5% after feature selection was applied. It can be

110

observed from these tables that wrapper methods are more effective than filter

methods in reducing the misclassification error rate.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Iris

Sonar

H
eartc

B
upa

Ionosphere

C
rx

B
reastw

D
iabetes

Vehicle

G
erm

an

Segm
ent

Landsat

LDA (SFS) LDA (SFFS) KNN (SFS) KNN (SFFS) RPART (SFS) RPART (SFFS)

Figure 7.18: Percentage of features selected by the wrapper methods

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Iris

Sonar

H
eartc

B
upa*

Ionosphere

C
rx

B
reastw

D
iabetes

Vehicle*

G
erm

an

Segm
ent

Landsat

Relief FINCO LVF

Figure 7.19: Percentage of features selected by the filter methods

111

Table 7-10: Misclassification error ratios of after-feature-selection to before-
feature-selection (LDA classifier)

Dataset SFS SFFS RELIEF FINCO LVF
Iris 1.85 1.88 1.58 1.50 2.14

Sonar 1.01 0.82 1.06 1.00 0.94

Heartc 0.94 0.94 0.99 1.18 1.40

Bupa 1.02 1.01 1.33 1.42 1.08

Ionosfera 1.13 1.19 1.05 1.25 1.16

Crx 1.00 1.00 1.01 1.01 1.01

Breastw 0.94 0.93 1.34 0.99 1.15

Diabetes 1.01 1.01 1.46 1.00 1.01

Vehicle 1.11 1.16 1.24 1.93 2.31

German 1.00 1.00 1.05 1.20 1.12

Segment 0.98 1.00 0.55 1.38 1.42

Landsat 1.01 1.02 1.03 1.14 1.14

Mean 1.08 1.08 1.14 1.25 1.32

Median 1.01 1.01 1.06 1.19 1.15

Table 7-11: Misclassification error ratios of after feature selection to before feature
selection (KNN classifier)
Dataset SFS SFFS RELIEF FINCO LVF
Iris 0.98 0.97 1.16 1.17 1.00

Sonar 1.03 1.27 0.81 1.43 1.02

Heartc 0.48 0.48 0.55 1.07 1.05

Bupa 1.04 1.05 1.19 1.35 1.25

Ionosfera 0.46 0.43 0.79 0.67 0.84

Crx 0.45 0.45 0.47 0.99 1.27

Breastw 1.08 1.08 1.51 1.20 1.20

Diabetes 0.96 1.02 1.28 0.98 0.95

Vehicle 0.82 0.84 1.00 1.32 1.22

German 0.78 0.77 0.84 1.02 1.01

Segment 0.67 0.70 1.97 2.36 2.60

Landsat 1.10 1.10 1.09 1.54 1.36

Mean 0.82 0.85 1.06 1.26 1.23

Median 0.89 0.91 1.05 1.19 1.13

112

Table 7-12: Misclassification error ratios of after feature selection to before feature
selection (RPART classifier)

Dataset SFS SFFS RELIEF FINCO LVF

Iris 0.70 0.70 1.00 1.03 1.00

Sonar 0.83 0.75 1.01 0.92 0.93

Heartc 0.77 1.35 0.94 0.85 1.19

Bupa 0.97 1.03 1.01 1.28 1.26

Ionosfera 0.70 0.68 0.93 0.84 0.73

Crx 0.97 0.97 0.97 0.97 1.01

Breastw 0.74 0.85 0.93 0.84 0.87

Diabetes 1.01 0.99 1.38 1.01 1.01

Vehicle 0.97 0.98 1.10 1.14 1.29

German 0.96 0.96 1.02 1.11 1.08

Segment 0.98 0.97 1.01 1.01 1.35

Landsat 1.01 0.99 0.99 0.98 1.16

Mean 0.88 0.94 1.02 1.00 1.07

Median 0.96 0.97 1.01 1.00 1.05

7.8. Effect of imputation on the misclassification error of the
contaminated real datasets

Tables 7.14 through 7.16 below, show the ratios of the misclassification errors

over the base errors of the datasets used in this work for each of the imputation

methods studied and the classifiers used. The ratios labeled in red show

misclassification errors that suffered a change that was greater than 5%.

 In general, small differences can be observed between the results obtained

with mean and median imputation. As mentioned before, most of the datasets used in

this work contain features with distributions that have outliers in both directions and

their effect cancels out. Otherwise, one could expect a better performance from

median imputation. The KNN imputation method yields somewhat better results than

the other methods.

113

It can also be observed, that the percent of instances with missing appears to

have a larger influence on the effect of classification accuracy than the percent of

missing overall. This is seen through the fact that for datasets with small amounts of

missing values, little difference is observed between the errors obtained by the

imputation methods employed. However, our results suggest that the case deletion

method is more likely to yield a highly affected error when there are a high

percentage of instances with missing values.

Some datasets appear to be more resistant to a deteriorating misclassification

error, even for large percentages of instance with missing. For example, Bupa and

Ionosfera under the KNN classifier resist close to 50 and 80 percent of instances with

missing respectively, and German and Segment resists close to 80% under the LDA

classifier. It can also be observed that some datasets can be reduced severely (case

deletion due to missing) and yet reflect a misclassification error that has only been

slightly affected. Some cases are: Bupa under the KNN and RPART classifiers,

Diabetes under the KNN classifier and Segment under the LDA classifier.

114

Table 7-13: Ratios of Cross Validation Errors using KNN

Dataset

%
Missing
(overall)

% Missing
(instances)

Base
error CD_Ratio MI_Ratio MDI_Ratio KNNI_Ratio

Iris 1 2 4.68 1.0299 1.0278 1.0043 1.0385
 7 21.33 4.68 1.2586 1.0171 1.0021 0.9936
 13 33.33 4.68 0.9145 0.4872 0.5662 0.7350
Sonar 1 33.65 14.74 1.1811 0.9851 1.035 0.998
 3 69.71 14.74 1.6323 0.7802 0.8304 0.8813
 5 81.73 14.74 1.8562 0.9064 0.9281 0.8996
Heartc* 5 31.64 18.55 1.0421 0.9342 0.9536 0.9369
 11 56.9 18.55 0.6367 0.9574 0.9655 0.834
 21 79.46 18.55 0.8216 0.7121 0.7596 0.8259
Bupa 3 8.69 36.49 0.9411 0.9792 0.9553 0.9553
 11 30.14 36.49 0.9619 0.9197 0.9164 0.9268
 19 46.95 36.49 1.0271 0.9720 1.0022 0.9942
Ionosphere 1 19.65 13.28 1.1017 0.9428 0.9368 0.9691
 5 65.24 13.28 1.3118 0.9518 0.9729 0.948
 9 86.61 13.28 1.4287 1.0399 0.9654 1.0301
Crx* 3 23.73 25.19 0.9575 0.9619 0.9841 0.9266
 13 70.59 25.19 1.1679 0.9547 0.9984 0.9758
 21 87.28 25.19 1.395 0.7527 0.8384 0.8634
Breastw 3 14.64 3.41 0.9677 0.9736 0.956 0.9765
 11 45.09 3.41 0.9795 0.827 0.827 0.8387
 21 66.18 3.41 0.6217 0.5631 0.5777 0.607
Diabetes 3 14.32 27.47 1.0076 0.9687 0.9709 0.9651
 11 45.31 27.47 0.8580 0.8198 0.7674 0.7951
 21 66.88 27.47 0.9884 0.6858 0.5872 0.7477
Vehicle 5 42.08 34.87 1.1012 1.0419 1.0023 0.9535
 13 74.82 34.87 1.1557 0.9687 0.9415 0.9295
 21 92.55 34.87 1.2234 0.916 0.9036 0.8652
German 5 48.7 29.78 1.091 0.9681 0.9785 0.954
 13 83.7 29.78 1.0121 0.823 0.8251 0.9103
 19 93 29.78 1.1061 0.8103 0.7898 0.8408
Segment 5 43.03 4.64 1.403 1.3448 1.3168 0.9461
 13 77.96 4.64 2.028 1.5172 1.4224 1.1444
 21 92.46 4.64 1.9655 1.653 1.4677 1.0927

115

Table 7-14: Ratios of Cross Validation Errors using LDA

Dataset
% Missing
(overall)

%
Missing
(cases)

Base
error CD_Ratio MI_Ratio MDI_Ratio KNNI_Ratio

Iris 1 2 3.18 0.9088 1.2013 1.1698 1.1447
 7 20.67 3.18 1.0503 1.0629 1.044 0.8868
 13 32.67 3.18 1.2013 0.934 0.9937 0.956
Sonar 1 31.25 26.6 1.1229 0.9996 0.9993 0.9835
 3 65.86 26.6 1.1891 0.9579 0.9741 0.9827
 5 81.73 26.6 1.741 0.8748 0.8797 0.879
Heartc* 5 26.93 16.51 0.785 0.8989 0.8546 0.9485
 11 50.16 16.51 1.0903 0.8807 0.8328 0.9219
 21 75.75 16.51 0.7117 0.7838 0.6445 0.8262
Bupa 3 8.4 35.14 0.9807 1.0051 1.0062 0.9713
 11 29.56 35.14 1.0148 1.0996 1.1104 0.9878
 19 47.53 35.14 1.0976 1.0683 1.0461 0.9693
Ionosphere 1 19.37 16.59 0.9385 0.9669 0.9740 0.9747
 5 66.67 16.59 1.3207 0.956 0.94274 0.9675
 9 86.04 16.59 1.6799 0.9210 0.912 0.9542
Crx* 3 23.58 13.62 1.105 0.9677 0.9662 0.9802
 13 71.05 13.62 0.8935 0.8767 0.8767 0.9192
 21 88.36 13.62 1.2071 0.7944 0.7863 0.7863
Breastw 3 13.32 3.66 0.9836 1.0055 0.9672 1.0683
 11 43.77 3.66 1.2787 0.9453 0.9809 1.0328
 21 70.13 3.66 1.3798 0.8005 0.847 0.9481
Diabetes 3 14.32 24.64 1.0341 1.0142 1.011 1.011
 11 45.05 24.64 0.9826 0.9688 0.9692 0.9765
 21 69.53 24.64 1.0629 0.9436 0.9224 0.9322
Vehicle 5 38.65 29.15 1.0621 1.0388 1.0415 0.9897
 13 74.11 29.15 1.0604 1.1832 1.1942 0.9883
 21 90.89 29.15 1.1252 1.1979 1.1485 1.1235
German 5 48.4 24.38 1.0685 0.9934 0.9959 1.0008
 13 84.8 24.38 1.0665 0.9795 0.9311 0.9828
 19 94.6 24.38 1.1952 0.9081 0.8831 0.9680
Segment* 5 42.9 9.15 0.9705 1.0186 1.0240 1.0021
 13 78.74 9.15 0.906 1.0219 1.0317 0.9661
 21 92.16 9.15 0.9792 0.8536 0.8404 0.8175

116

 Table 7-15: Ratios of Cross Validation Errors using RPART

Dataset % Missing % Missing Base error CD_Ratio MI_Ratio MDI_Ratio KNNI_Ratio
Iris* 1 2 6.66 1.03904 1.003 1.02102 1.02102
 7 20 6.66 0.7958 0.43994 0.46246 0.43544
 13 33.33 6.66 0.98498 0.99099 1.06456 1.05706
Sonar* 1 30.28 26.97 1.08194 1.00111 1.03411 0.94549
 3 65.38 26.97 1.26993 1.02966 1.01965 1.00742
 5 84.61 26.97 0.5191 0.92659 0.93585 0.91991
Heartc* 5 29.62 17.75 0.97239 1.07211 1.04507 1.01915
 11 58.25 17.75 1.47606 0.92958 0.87268 1.03437
 21 83.16 17.75 1.36338 1.11944 1.08169 0.96789
Bupa** 3 8.98 37.87 0.96884 0.96462 0.94243 0.98125
 11 30.72 37.87 0.90863 0.85556 0.88566 0.85001
 19 47.53 37.87 0.98495 0.70003 0.70267 0.76076
Ionosphere 1 19.65 12.07 0.87655 1.01243 1.02568 0.98592
 5 68.94 12.07 0.83099 0.96852 0.86578 0.99751
 9 86.61 12.07 1.27258 0.93455 0.74731 0.93621
Crx* 3 23.12 12.67 1.12628 1.05209 1.05288 1.08051
 13 74.12 12.67 0.82794 0.90845 0.98185 0.93449
 21 87.9 12.67 1.26046 0.75533 0.69613 0.68903
Breastw* 3 13.61 4.69 0.9979 0.9702 0.9787 0.9936
 11 44.5 4.69 1.2559 0.791 0.7932 0.7847
 21 68.37 4.69 2.0192 0.9574 0.9211 0.9424
Diabetes 3 14.45 27 0.9756 0.98 0.9682 0.9733
 11 45.7 27 0.9822 0.7559 0.7707 0.7896
 21 68.22 27 1.0822 0.6537 0.6537 0.8107
Vehicle 5 39.59 34.58 1.0743 1.0234 1.0463 1.0272
 13 75.76 34.58 1.1212 0.9501 0.9286 0.9569
 21 90.3 34.58 1.4685 0.9069 0.895 0.9633
German 5 46.4 28.06 1.0321 0.9608 0.9797 0.9704
 13 84.3 28.06 1.1525 0.7719 0.788 0.8378
 19 95.3 28.06 1.1586 0.6508 0.729 0.7659
Segment 5 43.46 8.23 1.079 1.0316 1.0024 1.017
 13 79.3 8.23 0.9101 0.8566 0.7995 0.9405
 21 92.2 8.23 2.2819 0.7533 0.7436 0.932

 117

Chapter 8 Conclusions and Future Projections

8.1 Conclusions

 The experiments carried out sustain the belief that datasets taken from real

world applications are frequently “dirty”, that is, they may contain missing values

and/or both univariate and multivariate outliers. Both the existence of missing values

and the existence of outliers has an effect on the misclassification error of datasets

used in a supervised classification context. Increasing percentages of either can have

a detrimental on the results of the classification process.

 Through this study, it was repeatedly observed that feature selection could

prove to be a valuable tool for improving the time complexity of many other

algorithms. If a subset of features can be chosen that maintains the intrinsic

characteristics of the original dataset, then all other computations related to the

classification of the observations in the dataset will be less time consuming. One

limitation is that the most common complexity of the feature selection algorithms

themselves is O(np2), which deteriorates the performance of these algorithms as the

dimensionality and the number of observations increases.

 During this work, visualization techniques have proven to be extremely useful

for data exploration to identify patterns in missing data, as well as to aid in the

identification of relevant features and the existence of outliers, early during the data

analysis process. The visualization techniques included in the data preprocessing

package of functions that was created can also assist in identifying correlations and

patterns among attributes. Limitations to these visualizations exist, for example, the

“cross-over” and “clutter” problems that occur as the size of the datasets grows.

After studying empirically the effect of the different data preprocessing

techniques on the misclassification error of the supervised classification datasets used

118

in this study, the following functions have been included to form a data preprocessing

environment for the Windows R platform. The environment will include functions to:

- Clean datasets by eliminating rows and columns with a percent of missing

above a given tolerance provided by the user.

- Perform imputation using mean, median or knn methods

- Perform feature selection using filter algorithms such as: RELIEF, FINCO, or

Las Vegas and wrapper methods such as: forward or floating sequential

selection methods.

- Detect outliers using Bay’s or LOF algorithms, clustering algorithms and

robust estimators.

- Normalize data using min-max, decimal scaling, z-score, sigmoidal and soft-

max normalizations

- Visualize data using parallel coordinate or survey plots.

8.2. Future Projections

This study has been carried out using datasets that vary in dimensionality from

four attributes to sixty and in number of observations from 150 to over 4435. Future

investigations would involve extending the use of the functions created to a data

mining context using datasets of very-high dimensionality and very-large datasets.

Though the algorithms created were promising in terms of their effectiveness and

their state-of-the-art character, modifications to all algorithms could be proposed in

the attempt to improve the experimental running times. Modifications that could be

investigated, that include the use of alternative data structures and search algorithms

for the construction of the distance tables used in the outlier detection algorithms.

Other possibilities for investigation in this area include the use of block

management suggested by Bay (2003), in which the entire database is not written to

memory at the same time, but the database is processed in blocks. This same idea

could be applied to the visualization of high dimensional datasets by producing a

“slide-show” of panels instead of visualizing the entire dataset. The combination of

119

feature reduction and visualization techniques could also be investigated for the

possibility of obtaining a subset of features that characterized the entire dataset before

visualization is carried out. The possibility of parallelizing some of the algorithms

could also be explored.

 Future projections for this work also include the incorporation of other

classifiers and other techniques for data processing and visualization into the

environment that has been developed. These techniques could include techniques for

detecting and treating data redundancy.

 120

Chapter 9 Appendix

Function Codes

imagmiss=function(data,name="")
{
#Function to create a graph of the observations of the dataset
#leaving white lines where data is missing.
#The main idea is to use the original dataset to create
#a temporary dataset containing 1 if a value is found or
#0 is the value is missing. The temporary data set is graphed by column
#changing color for each feature and leaving a blank horizontal line if
#value is missing.
#Uses the R function image from the base library.

#data: the dataset
#name: the name of the dataset as desired in the graph title

 ncol=dim(data)[2]
 nrow=dim(data)[1]

 xaxis=colnames(data)
 #xaxis=xaxis[-ncol]

 ticks=1:(dim(data)[2]-1)

 data=as.matrix(data)
 #data=data[,-ncol]
 data[which(data!="NA")]=1
 data[-which(data!="NA")]=0

 #ncol1=ncol-1

 for(i in 1:ncol)
 {
 data[data[,i]!=0,i]=i
 }

 x=1:ncol
 y=1:nrow
 graph.title=paste("Distribution of missing values by variable for - ",name)

image(x,y,t(data),col=c(0,topo.colors(100)),xlab="features",ylab="instances",axes=FALSE,main=(gra
ph.title))

121

 axis(1,labels=xaxis,at=ticks)

}
**
parallelplot=function (x, name="",comb=0,class=0,obs=rep(0,0),col = 2, lty = 1, ...)
{

#Function to create a parallel coordinate plot for a dataset.

#x : the dataset
#name : name of the dataset
#comb : integer that represents the order in which the variables will be graphed
#class : the number of the class to be graphed
#obs : a list of row numbers of the observations to be highlighted
#col : color to be used when graphing only one class
#lty : width of poly-lines
#... : other parameters accepted by the plot() function of R

#Calculate number and size of classes in matrix
 classes=x[,ncol(x)]
 len.class=table(classes)
 numclass=length(len.class)

#remove classes and calculate size of matrix
 x=x[,-ncol(x)]
 r=nrow(x)
 c=ncol(x)

#find the number of distinct permutations of attributes
 numgraphs=combinations(c)

 class.list=as.integer(rownames(len.class))

#normalize matrix
 xrnms=rownames(x)
 x <- apply(x, 2, function(x) (x - min(x))/(max(x) - min(x)))
 rownames(x)=xrnms

#if graph of only one class is wanted, construct submatrix
 if (class!=0)
 {
 same=(classes==class)
 x=x[same,]
 col=class+1
 }

graphtitle=paste("Parallel Coordinate Plot for ",name)

if more than one class, then obtain color vector for each class
 if (class==0)
 col=classes+1

122

#if comb equals 0, user wants to see ALL graphs of distinct permutations of variables
 if (comb==0)
 {

 j=1
 def.par=par(mfrow=c(2,2))

#draw the different graphs, 4 to each screen
 for (k in 1:ncol(numgraphs))
 {
 if (k %% 4==1) {win.graph();par(mfrow=c(2,2))}
 varorder=numgraphs[,j]
 par(font.lab=2,font.sub=2,cex=.75,las=2)
 subtitle=paste("Combination #",j)
 matplot(1:c, t(x[,varorder]), type = "l", col = col, lty = lty, xlab = "", ylab = "",main=
graphtitle, sub=subtitle,axes = FALSE, ...)
 axis(1, at = 1:c, labels = colnames(x[,varorder]))
 for (i in 1:c) lines(c(i, i), c(0, 1), col = "grey70")
 j=j+1
 }
 }

else if only one particular combination is desired
 else
 {
 varorder=numgraphs[,comb]
 def.par=par(font.lab=2,font.sub=2,cex=.75,las=2,bg=gray(.8))
 subtitle=paste("Combination #",comb)
 matplot(1:c, t(x[,varorder]), type = "l", col = col, lty = lty, xlab = "", ylab = "",main=

graphtitle,sub=subtitle, axes = FALSE, ...)
 axis(1, at = 1:c, labels = colnames(x[,varorder]))
 for (i in 1:c) lines(c(i, i), c(0, 1), col = "grey70")

 # if the user desires to highlight a particular observation
 if (length(obs)!=0)
 {
 obsers=rep(0,0)
 for(i in 1:length(obs)) obsers=c(obsers,which(rownames(x)==obs[i]))
 colors=palette()[(numclass+2):8]
 if (length(obsers)==1) matlines(1:c,x[obsers,varorder],lty=1,lwd=3,col=colors)
 else matlines(1:c,t(x[obsers,varorder]),lty=1,lwd=3,col=colors)
 par(cex=.75)
 text(1,x[obsers,varorder[1]],rownames(x[obsers,]),pos=3)
 text(c,x[obsers,varorder[c]],rownames(x[obsers,]),pos=3)
 palette("default")
 }

 }

 invisible()
 par(def.par)

123

}

combinations=function(numcol)
{
#A function for constructing the minimal set of permutations
#of the elements of a vector as described by
#Wegman in Hyperdimensional Data Analysis (1999)

combine = rep(0,0)
variables=seq(1,numcol)
n=variables[1]
combine=n
for(k in 1:(numcol-1))
{
 ntemp=(n + (((-1)^(k+1))*k))
 if ((ntemp==0) | (ntemp==numcol)) n = numcol
else n=(n + (((-1)^(k+1))*k)) %% numcol
 combine=c(combine,n)
}

combinations = combine
repet=ceiling((numcol-1)/2)-1
m=seq(1,repet)
for (j in m)
{
 combine=(combine +1) %% numcol
 combine[combine==0]=numcol
 combinations = cbind(combinations, combine)
}

colnames(combinations)=NULL

return(combinations)

}

surveyplot=function(datos,dataname="",orderon=0,class=0,obs=rep(0,0),lwd=1)

{

#Function that will create a survey plot of a dataset.
#datos : dataset to be graphed
#dataname : name of the dataset
#orderon : integer from 1-(p-1) where p is the number of columns of the dataset
that gives the column by which to order
#class : number of the class to graph
#obs : list of rownumbers of the observations to highlight
#lwd : width of the plotting lines

if (orderon==0) datos=datos[order(datos[,ncol(datos)],decreasing=FALSE),]
data=datos

124

classes=datos[,ncol(datos)]
r1=dim(datos)[1]
c1=dim(datos)[2]-1
colors=classes+1
r=r1
c=c1

cnames=colnames(datos)[1:c]
rnames=rownames(datos)
graphtitle=paste("Survey Plot for ",dataname)

if (orderon!=0)
 {
 neworder=order(data[,orderon],decreasing=T)
 data=data[neworder,]
 classes=classes[neworder]
 if (class==0) colors=colors[neworder]
 }

data <- apply(data[,1:c], 2, function(data) (data - min(data))/(max(data) - min(data)))
colnames(data)=cnames

if (class !=0)
 {
 data=data[(classes==class),]
 c=ncol(data)
 r=nrow(data)
 rnames=rownames(data)
 colors=4
 }

width1=seq(.01, (c)*(.04), by=0.04)
x=rep(1:c,r)
x=x[order(x,decreasing=F)]
x=matrix(x,ncol=c,byrow=F)
for (i in 1:nrow(x)) x[i,2:ncol(x)]=x[i,2:ncol(x)]+width1[1:c-1]

temp=seq(from=0,to=1,length=r+1)
y=rep(temp,c)
y=matrix(y,ncol=c,byrow=F)
y=y[-1,]

op=par(bg = gray(.8),xaxs="i",yaxs="i",yaxp=c(0,1,r+1),las=2,cex.axis=.75)
plot(x,y,xlim=c(1,(c+2)),axes=F,type="n",xlab="Features",ylab="",main=graphtitle)

axislabels=c(colnames(data)," ")

width2=seq(1,c+1)
width1=c(0,width1)
width2=width2 + width1

for (i in width2) lines(c(i, i), c(0, 1), col = "dark gray")

125

segments(x,y,(x+data),y,col=colors,lwd=lwd)

axis(1, at = width2, labels = axislabels,pos=0)

if (length(obs)!=0)
 {
 old.obs=obs
 obs=rep(0,0)
 if (orderon!=0)
 {
 if (class==0) for(i in 1:length(old.obs)) obs=c(obs,which(neworder==old.obs[i]))
 else for(i in old.obs) obs=c(obs,which(rnames==i))
 }

 else for(i in old.obs) obs=c(obs,which(rnames==i))

 axis(2,at=y[obs,1],old.obs,tick=F,cex.axis=0.5)
 segments(x[obs,1:c],y[obs,1:c],x[obs,1:c]+data[obs,1:c],y[obs,1:c],col="dark blue",lwd=lwd+1)
 }

par(op)

}

outbox=function(data,nclass)
{#**
#This function detects univariate outliers simultaneously using boxplots
#data: name of the dataset
#nclass: class number
#**
ncols=dim(data)[2]
out1<-NULL
datatempo=data[data[,ncols]==nclass,1:(ncols-1)]
for(i in 1:(ncols-1)){
blim=boxplot(datatempo)$stats
b1=as.numeric(rownames(rbind(datatempo[datatempo[,i]<blim[1,i],],datatempo[datatempo[,i]>blim[5,
i],])))
out1=c(out1,b1)
}
sort(table(out1))
}

baysout=function(D,blocks=5,k=3,num.out=2)
{

#Function that gives the outlyingness measure for the requested number of
#observations using the algorithms developed by Bay.
#D : the dataset
#blocks : size of block to be processed
#k : number of nearest neighbors to compute to determine if observation

126

is a candidate for an outlier
#num.out: number of candidates for outliers and their outlyingness measure
to display as output. Must be less than or equal to block number.

D=as.data.frame(D)
nrows=dim(D)[1]
c=0
Out=NULL
rep=ceiling(nrows/blocks)
for (cycle in 1:rep)
 {
 block.size=blocks
 if (block.size*cycle<=nrows) block=(block.size*(cycle-1)+1):(block.size*cycle)
 else {block=(block.size*(cycle-1)+1):nrows;block.size=length(block)}
 B=D[block,]
 neighbors=matrix(rep(0,(block.size*k)),block.size,k)
 rownames(neighbors)=rownames(B)
 neighbors=as.data.frame(neighbors)
 for (m in 1:nrows)
 {
 d=D[m,]
 j=1
 flag=0
 reduce = 0
 removeB=rep(0,0)
 removeN=rep(0,0)
 while ((j <= block.size)&(block.size>=1))
 {
 if (!(as.integer(rownames(D)[m])==as.integer(rownames(B)[j])))
 {
 b=B[j,]
 if ((0%in%neighbors[j,])|(distancia(b,d)<maxdist(neighbors[j,])[1]))
 {
 neighbors[j,]=closest(b,d,neighbors[j,],3)
 if (!(0%in%neighbors[j,])&(score(neighbors[j,]) < c))
 {
 removeB=cbind(removeB,j)
 removeN=cbind(removeN,j)
 reduce=reduce + 1
 }

 }
 }
 j=j+1
 }
 if (reduce==dim(B)[1]) flag=1
 else if(reduce != 0)
 {
 block.size=block.size-reduce
 B=B[-removeB,]
 neighbors=neighbors[-removeN,]

 }

127

 }

 if (flag==0)
 {
 Out=top(Out,neighbors,num.out)
 c=min(Out)
 }
 }
xcoord=as.integer(rownames(Out))
plot(Out,main="Instances with Greatest Median distance from K nearest neighbors",ylab="Median
Distance")
text(1:num.out,Out,rownames(Out),pos=1)
return(Out)
}

maxdist=function(dneighbors)
{
#Function used by baysout to find the largest value of a distance vector
#returns the value and the index number
#dneighbors: row vector with the distance of the k nearest neighbors for a given b of B

dneighbors=as.matrix(dneighbors)
maxindex=which.max(dneighbors)
max=dneighbors[maxindex]
list(value=max,index=maxindex)
}

closest=function(b,d,neigh,k)
{
Function used by baysout to select the k vectors that are closest to
a given observation
b : instance from B under study
neigh : matrix containing the distance to each of the k neighbors
rownames are rownames of D
d : is the instance from D under study, must have rowname
k : is number of nearest neighbors

dist=distancia(b,d)
if(0%in%neigh) { neigh[which(neigh[]==0)[1]]=dist;new=neigh} else {new = c(neigh,dist)}
new.sort=new[order(new,decreasing=F)]
nearest=new.sort[1:k]
return(nearest)
}
score=function(data)
{
#Function to determine the score measure that will be used to determine
#candidates for outliers
#data : vector containing distances to k nearest neighbors.

s=median(as.matrix(data))
return (s)

128

}
top=function(O,neighbors,n)
{

#Function that finds the n candidates for outliers that
#were requested by the user.

#O: n x 1 matrix with the median distance from k nearest neighbors
of the n top outliers up to the moment.
row names are equal to names from original matrix D.

#neighbors: keeps distance from k nearest neighbors of prospective outliers
maximum size= blocksize x k, where k is number of nearest neighbors

temp=as.matrix(apply(neighbors,1,median))
#rownames(temp)=rownames(ndistance)
out=rbind(O,temp)
out.sort=as.matrix(out[order(out,decreasing=T)])
outliers=as.matrix(out.sort[1:n,])
return(outliers)
}

maxlof=function(data,name="",minptsl=10,minptsu=20)
{

#Function that displays the local outlier factor of each observation in a dataset
#as a list and also as a plot.
#Calls on lofactor.

 j=seq(minptsl,minptsu)
 maxlofvect=rep(0,dim(data)[1])

 for (i in j)
 {
 temp=lofactor(data,i)
 maxlofvect=cbind(maxlofvect,temp)
 maxlofvect=apply(maxlofvect,1,max)
 }

 names(maxlofvect)=rownames(data)

 ord.maxlofvect=order(maxlofvect,decreasing=T)
 maxlofvect.ord=maxlofvect[ord.maxlofvect]

 title1=paste("Plot for lof of ",name)
 title2=paste("lower minpts: ",minptsl," upper minpts: ",minptsu)
 par(font.sub=2)

 plot(maxlofvect.ord,main=title1,sub=title2,xlab="Observation number",ylab="local outlier factor")
 text(1:10,maxlofvect.ord[1:10],names(maxlofvect.ord)[1:10],pos=4)

129

 return(maxlofvect)
}

dist.to.knn2=function(dataset,neighbors)
{

#function returns an object in which each column contains
#the indices of the first k neighbors followed by the
#distances to each of these neighbors

numrow=dim(dataset)[1]

#applies a function to find distance to k nearest neighbors
#within "dataset" for each row of the matrix "dataset"

knndist=rep(0,0)

for (i in 1:numrow)
{
 neighdist=knneigh.vect2(dataset[i,],dataset,neighbors)
 knndist=cbind(knndist,neighdist)
}

return(knndist)
}

knneigh.vect2 =function(x,data,k)
{
#Function that returns the distance from a vector "x" to
#its k-nearest-neighbors in the matrix "data"

temp=as.matrix(data)
numrow=dim(data)[1]
dimnames(temp)=NULL

#subtract rowvector x from each row of data
difference<- scale(temp, x, FALSE)

#square and add all differences and then take the square root
dtemp <- drop(difference^2 %*% rep(1, ncol(data)))
dtemp=sqrt(dtemp)

#order the distances
order.dist <- order(dtemp)
nndist=dtemp[order.dist]

#find distance to k-nearest neighbor
#uses k+1 since first distance in vector is a 0
knndist=nndist[k+1]

130

#find neighborhood
#eliminate first row of zeros from neighborhood
neighborhood=drop(nndist[nndist<=knndist])
neighborhood=neighborhood[-1]
numneigh=length(neighborhood)

#find indexes of each neighbor in the neighborhood
index.neigh=order.dist[1:numneigh+1]

this will become the index of the distance to first neighbor
num1=length(index.neigh)+3

this will become the index of the distance to last neighbor
num2=length(index.neigh)+numneigh+2

#form a vector
neigh.dist=c(num1,num2,index.neigh,neighborhood)
lvect=numrow-numneigh
extra=lvect*2
extrazeros=rep(0,extra)
neigh.dist=c(num1,num2,index.neigh,neighborhood,extrazeros)

return(neigh.dist)
}

reachability2=function(distdata,k)
{
#function that calculates the local reachability density
#of Breuing(2000) for each observation in a matrix, using
#a matrix (distdata) of k nearest neighbors computed by the function dist.to.knn2

p=dim(distdata)[2]
lrd=rep(0,p)

for (i in 1:p)

 {
j=seq(3,3+(distdata[2,i]-distdata[1,i]))
compare the k-distance from each observation to its kth neighbor
to the actual distance between each observation and its neighbors
numneigh=distdata[2,i]-distdata[1,i]+1
temp=rbind(diag(distdata[distdata[2,distdata[j,i]],distdata[j,i]]),distdata[j+numneigh,i])

#calculate reachability
reach=1/(sum(apply(temp,2,max))/numneigh)
lrd[i]=reach
 }
lrd
}

131

robout=function(data,nclass,meth=c("mve","mcd","classical"),rep,plot=T)
{
**
#This function finds out the outliers using robust versions of the
#Mahalanobis distance
#data: name of the dataset
#nclass: number of the class to check for outliers
#meth=method used to compute the Mahalanobis distance, "mve"=minimum
volume estimator, "mcd"=minimum covariance determinant,
"classical"=the usual Mahalanobis distance.
#rep= number of repetitions
#***
ncol=dim(data)[2]
tempo=data[data[,ncol]==nclass,1:(ncol-1)]
namestempo=rownames(tempo)
nrow=dim(tempo)[1]
roboutl=NULL
roboutall=matrix(0,nrow,rep)
rownames(roboutall)=namestempo
for(i in 1:rep)
{mcdc=cov.rob(tempo,method=meth)
mbc=sqrt(mahalanobis(tempo,mcdc$center,mcdc$cov,to=.00000000000001))
roboutl=c(roboutl,boxplot(mbc,plot=F)$out)
roboutall[,i]=mbc
}
a=as.matrix(roboutl)
b=apply(roboutall,1,mean)
outme=rev(sort(b))
topo=rev(sort(b))[1:10]
if(plot){
win.graph()
plot(rev(sort(b)),ylab=paste("Mahalabobis distance(",meth,")"))
text(1:10,topo,names(topo),cex=.6,pos=4)
}
top=rev(sort(table(as.numeric(rownames(a)))))
top1=top[top>5]
cat("\nTop outliers by frequency\n")
print(top1)
topout=as.numeric(names(top1))
ntops=length(topout)
outly=rep(0,ntops)
for(i in 1:ntops)
{outly[i]=mean(a[as.numeric(rownames(a))==topout[i]])
}
#topimp=cbind(topout,outly)
topimp=cbind(topout,b[topout])
topimp=topimp[order(-topimp[,2]),]
cat("\nTop outliers by outlyngness measure\n")
#print(topout)
zz=as.vector(outme)
#names(zz)="outlyingness"

132

print(cbind(topout,zz[order(topout)]))
list(outme=outme)
}
cv10lda=function(data)
{
This function finds the number of instances correctly classified
by the Linear Discriminant classifier using 10-fold cross validation
with one repetition.
Inputs:
data: dataset including the classes in the last colummn.
Requires the lda function of the MASS library due to Ripley.

Edgar Acuna-Caroline Rodriguez, 2004
#---
n<-dim(data)[1]
p<-dim(data)[2]

salida <- matrix(0, 1, 10)
azar <- data[rank(runif(n)),]
parti <- floor(n/10)

for(j in 1:10)
{
 cc <- ((j - 1) * parti + 1):(j * parti)
 if(j == 10)
 {
 cc <- ((j - 1) * parti + 1):n
 }
 datap <- azar[cc,]
 datat <- azar[- cc,]
 tempo <- lda(as.matrix(datat[, 1:p - 1]), datat[, p])
 tempo1 <- predict(tempo, as.matrix(datap[, 1:p - 1]))$class
 salida[j] <- sum(tempo1 != as.numeric(datap[, p]))
}

gooderr <- n-sum(salida)

return(gooderr)
}

cv10rpart<-function(datos)
{
This function finds the number of instances correctly classified by the
decision tree classifier, rpart, using 10-fold cross validation
and one repetition.
Requieres the rpart library
inputs:
datos: the dataset to be used

Edgar Acuna-Caroline Rodriguez, March 2004
#---
 library(rpart)

133

 datos=as.data.frame(datos)
 n <- dim(datos)[1]
 p <- dim(datos)[2]
 nombres<-colnames(datos)
 f1<-as.formula(paste(nombres[p],".",sep="~"))

 salida <- matrix(0, 1, 10)
 azar <- datos[rank(runif(n)),]
 azar[, p] <- as.factor(azar[, p])
 parti <- floor(n/10)
 for(j in 1:10)
 {
 cc <- ((j - 1) * parti + 1):(j * parti)
 if(j == 10)
 {
 cc <- ((j - 1) * parti + 1):n
 }
 datap <- azar[cc,]
 datat <- azar[- cc,]
 arbol <- rpart(f1, data = datat, method="class")
 pd1<-predict(arbol,datap)
 pd2=max.col(pd1)
 salida[j] <- sum(pd2!=datap[, p])
 }

 gooderr<- n-sum(salida)

 return(gooderr)
}

cv10knn=function(data, kvec)
{
This function finds the number of instances correctly classified by
the knn classifier, using 10-fold cross validation, with one repetition.
It requieres the knn function of the class library due to B. Ripley.
inputs:
data: dataset to be used
kvec: number of nearest neighbors

Edgar Acuna-Caroline Rodriguez, March 2004
#---
n <- dim(data)[1]
p <- dim(data)[2]
salida <- matrix(0, 1, 10)
azar <- data[rank(runif(n)),]
azar[, p] <- as.factor(azar[, p])
parti <- floor(n/10)
for(j in 1:10)
{
 cc <- ((j - 1) * parti + 1):(j * parti)
 if(j == 10)
 {

134

 cc <- ((j - 1) * parti + 1):n
 }
 datap <- azar[cc,]
 datat <- azar[- cc,]
 tempo <- knn(as.matrix(datat[, 1:p - 1]), as.matrix(datap[, 1:p - 1]), datat[, p], kvec)
 salida[j] <- sum(tempo != as.numeric(datap[, p]))
}
ECV1 <- n-sum(salida)
return(ECV1)
}

relief<-function(data,nosample, threshold)
{

This program runs Relief for multiple classes
Uses the function near1 and distancia
data: name of the dataset
nosample: number of instances drawn from the original dataset
threshold: the cutoff point to select the features. First is
#chosen as zero and later is corrected after looking at the plot

#Revised: June 2002, revised January 2003, February 2004
#March 03,2004
#Edgar Acuna-Caroline Rodriguez
#***

data <- as.matrix(data)
p=dim(data)[2]
f=p-1
#Initializing acum, features, and pesototal
acum<-rep(0,f)
features <- seq(f)
ngroups=length(unique(data[,p]))
pesototal=rep(0,f)
#Number of instances
inst <- length(data[, 1])
#Computing the priors
priors <- tabulate(data[, p])/inst
#Calculating the range of each feature. range=Max-Min
dh <- rep(0, f)
for(j in 1:f)
 {
 dh[j] <- diff(range(data[, j]))
 }
#Here starts the loop of the 10 repetitions
for (repet in 1:10)
{
#Inilitializating nearhit, pesos and tempo
nearhit <- matrix(0, nosample, f)
pesos <- rep(0, f)
tempo <- matrix(0, ngroups, f)
#Here starts the loop for updating the pesos

135

for(i in 1:nosample)
 {
 indices <- sample(inst, 1, replace = T)
 muestra <- data[indices,]
 datatemp <- data[- indices,]
 data1=split.data.frame(datatemp[,1:f],datatemp[,p])
 indg <- muestra[p]
 nearhit[i,] <- near1(muestra[- p], data1[[indg]])
 #Finding the nearmiss in each group distinct to the group containing the nearhit
 for(kk in 1:ngroups)
 {
 if(kk != indg)
 {
 nearmiss<- near1(muestra[- p], data1[[kk]])
 tempo[kk,] <- (muestra[- p] - as.vector(nearmiss))
 }
 for(ii in 1:f)
 {
 tempo[kk, ii] <- (1/nosample)*(tempo[kk, ii]/dh[ii])^2
 }
 }
 pesomiss <- rep(0, f)
#Updating the pesos for each feature
for(jj in 1:f)
 {
 for(kk in 1:ngroups)
 {
 if(kk != indg)
 {
 pesomiss[jj] <- pesomiss[jj] + priors[kk] * tempo[kk, jj]
 }
 }
 pesomiss[jj] <- pesomiss[jj]/(1 - priors[indg])
 }
 for(j in 1:f)
 {
 diff <- - (1/nosample)*((muestra[j] - nearhit[i, j])/dh[j])^2 + pesomiss[j]
 pesos[j] <- pesos[j] + diff
 }
 }
#print(pesos)
#Normalizing the pesos
#pesos <- pesos/nosample
#selecting the features with pesos greater than a threshold
o1 <- order(- pesos)
o2 <- pesos[o1]
o3 <- o1[o2 > threshold]
#Acumulating the pesos in each repetition

pesototal=pesototal+pesos

#Acumulating the frecuencies of the selected features
acum[o3]=acum[o3]+1

136

#end of repet
}
#Ordering the total pesos
pesotota=as.matrix(pesototal)
of1 <- order(- pesotota)
of2 <- pesotota[of1]/10
acum=as.matrix(acum)
#Ordering the features according to theirs weights
tabla=cbind(1:f,acum,pesotota/10)
colnames(tabla)=c("feature","frequency","weight")
tabla=tabla[order(-tabla[,3]),]
cat("Frequencies and average weights of more relevant features in 10 replicates: \n")
print(tabla[tabla[,2]>5,])
#ploting the total pesos in order to update the threshold
plot(of2,ylab="weights")
text(1:f,of2,tabla[,1],pos=4)
relevant1=which(acum>5)
#Selecting the relevant features according to their total pesos and frequencies
relevant2=which(pesotota/10>threshold)
relevant=unique(c(relevant1,relevant2))
#print(relevant)
cat("selected features", "\n")
relevant=tabla[1:length(relevant),1]
return(relevant)
}

moda<-function(x,na.rm=TRUE)
{

#Function that finds the mode of vector x

 if(na.rm==TRUE) m1=rev(sort(table(x[])))
 else m1=rev(sort(table(x,exclude=NULL)))
 moda=names(m1[m1==m1[1]])
 if (is(x,"numeric")) moda=as.numeric(moda)
 return(moda)
}

near1<-function(x, data)
{
#**
Esta funcion encuentra la observacion en el
#conjunto de datos data que esta mas cerca a
la observacion x requiere la funcion distancia
#***
 nd <- length(data[, 1])
 distall <- rep(0, nd)
 for(i in 1:nd) {
 distall[i] <- distancia(x, data[i,])
 }

137

#print(sort(distall))
 ind1 <- order(distall)[1]
 near1 <- data[ind1,]
 near1
}

sfs=function(data,method=c("lda","knn","rpart"),kvec=5,repet=10)
{

This function selects features using the sequential
forward method with either lda, knn or rpart
data: the data set
method: choice of classifier
kvec: the number of nearest neighbors to be used for the knn classifier
repet: number of repetitions. rep=20 for small datasets and =10 for large datasets
Required libraries: MASS, class and rpart
Edgar Acuna- Caroline Rodriguez, March 2004
#---
if (!(method %in% c("lda","knn","rpart")))
 {
 cat("The classifier entered is not supported by this function.\n")
 return(method)
 }
n: number of instances
n=dim(data)[1]
p: number of columns
p=dim(data)[2]
#Initializing the vector of the number of selected features in each repetition
numbersel=rep(0,repet)
#Initializing the frequencies of the features
fsel=rep(0,repet)
for(i in 1:repet)
{
Initializing the vector that will contain the selected features
 indic <- rep(0, p - 1)
 output <- indic
 #number of the column containing the classes
 varia <- p
 for(k in 1:(p-1))
 {
 correct <- rep(0, p - 1) #initializing the recognition rates for each feature
 if(k > 1)
 {
 varia <- c(where, varia)
 }
 for(m in 1:(p - 1))
 {
 if(indic[m] == 0)
 {
 which <- c(m, varia)
 if (method=="lda") correct[m] <- cv10lda2(data[, which])
 else if (method=="knn") correct[m] <- cv10knn2(data[, which],kvec)

138

 else correct[m] <- cv10rpart2(data[, which])
 }
 }
 prov <- correct + runif(p - 1) #Breaking ties randomly
 where <- sum((1:(p - 1)) * as.numeric(max(prov) == prov))
 #recognition rate of the entering feature
 output[k] <- correct[where]/n
 indic[where] <- 1
 if(k > 1)
 {
 if(output[k] <= output[k - 1])
 {
 #avoids ties of recognition rates
 indic <- rep(1, p - 1)
 }
 }
 }
 which <- rev(which)
 which <- which[-1]
 which1 <- which[1:(length(which) - 1)]
 numbersel[i]=length(which1)
 fsel[which1]=fsel[which1]+1
}
bestsize=round(mean(numbersel))
rev(order(fsel))
bestsubset=rev(order(fsel))[1:bestsize]
cat("The best subset of features is:")
cat("\n")
bestsubset
}

sbs1<-function(data,indic,correct0,kvec=5,method=c("lda","knn","rpart"))
{
This function performs a step of the Backward Selection method using
one of the classifiers: LDA, knn, or rpart.
data: dataset to be used
indic: vector of 0's and 1's. 1 indicates that the variable in that position
has been removed and 0 that it has not been removed.
correct0: recognition rate of the current best subset
kvec: number of neighbors if knn used

Edgar Acuna-Caroline Rodriguez, March 2004
--

n: number of instances
n=dim(data)[1]
p: number of features
p=dim(data)[2]
output <- indic
varia <- 1:(p - 1)
varia <- varia[indic > 0]
#print(varia)

139

#initializing the recognition rate vector
correct <- rep(0, p - 1)

mm=0
for(m in 1:(p - 1))
 {
 if(indic[m] == 1)
 {
 mm=mm+1
 #print(mm)
 #print(varia)
 temp<-varia
 which <- temp[- mm]
 if (method=="lda") correct[m] <- cv10lda2(data[, c(which, p)])
 else if (method=="knn") correct[m] <- cv10knn2(data[, c(which, p)],kvec)
 else correct[m] <- cv10rpart2(data[, c(which, p)])
 }
 }

#Breaking ties randomly
prov <- correct + runif(p - 1)

#The feature to be removed
where <- sum((1:(p - 1)) * as.numeric(max(prov) == prov))

#recognition rate of the removed feature
output <- correct[where]/n

if(output >= correct0)
{
 indic[where] <- 1
}
else
{
 output <- correct0
 where <- NULL
 which1 <- NULL
}

which <- rev(which)

which1 <- where
indic[where] <- 0

list(variaelim = which1, indic = indic, correcto = output)

}

sfs1=function(data,indic,correcto,kvec,method=c("lda","knn","rpart"))
{
This function carries out one "forward step" using either

140

the lda, knn or rpart classifier.
inputs:
data: the dataset
indic: vector of 0's and 1's. 1 indicates the the variable in that
position has been selected and 0 that it has not been selected.
correcto=recognition rate of the current best subset
kvec : the number of nearest neighbors

Edgar Acuna-Caroline Rodriguez, March 2004
#--
n: number of instances
n=dim(data)[1]
p: number of variables
p=dim(data)[2]
output<-indic
varia <- 1:(p - 1)
varia <- varia[indic > 0]
#print(varia)

#Initializing the recognition rate vector
correct <- rep(0, p - 1)

for(m in 1:(p - 1))
{
 if(indic[m] == 0)
 {
 which <- c(m, varia, p)
 if (method=="lda") correct[m] <- cv10lda2(data[, which])
 else if (method=="knn") correct[m] <- cv10knn2(data[, which],kvec)
 else correct[m] <- cv10rpart2(data[, which])
 }
}

#Breaking ties randomly
prov <- correct + runif(p - 1)

#The entering feature
where <- which(max(prov) == prov)

#recognition rate of the entering feature
output <- correct[where]/n
#print(output)

if(output > correcto)
{
 indic[where] <- 1
}

list(indic = indic, varselec = where, accuracy = output)
}

141

sffs<-function(data,method=c("lda","knn","rpart"),kvec=5,repet=10)
{

This function selects features using the sequential
floating forward method with either the lda, knn
or rpart classifiers
data: the data set
method: choice of classifier
kvec: the number of nearest neighbors to be used for the knn classifier
Required libraries: MASS, class, and rpart
Caroline Rodriguez-Edgar Acuna, March 2004
#--

if (!(method %in% c("lda","knn","rpart")))
 {
 cat("The classifier entered is not supported by this function.\n")
 return(method)
 }
n: number of instances
n=dim(data)[1]

p: number of variables
p=dim(data)[2]
grupos=data[,p]

ngroups: number of classes
ngroups=dim(table(data[,p]))

selected=rep(0,p)
numselect=0

for (j in 1:repet)
{
indic <- rep(0, p - 1)
correcto <- 0

paso1 <- sfs1(data,indic,correcto,kvec,method)
correcto <- paso1$accuracy
indic <- paso1$indic

i <- 2

while(i <= (p - 1))
{
 paso2 <- sfs1(data,indic,correcto,kvec,method)
 if(paso2$accuracy > correcto)
 {
 correcto <- paso2$accuracy
 indic <- paso2$indic
 for(j in 1:(i - 1))
 {
paso3 <- sbs1(data,indic,correcto,kvec,method)

142

correcto <- paso3$correcto
indic <- paso3$indic
 }
 }
 else
 {
 i <- p
 }
}

variables <- seq(1, (p - 1))
variables <- variables[indic == 1]
cat("Selected variables for ",method," classifier on this repetition are: \n")
print(variables)
numselect=numselect+length(variables)
selected[variables]=selected[variables]+1
}
numselect=round(numselect/repet)
fselect=order(selected,decreasing=T)[1:numselect]
cat("\nThe best subset of features is:\n")
return(fselect)
}

distancia<-function(x, y)
{
#**
Finds the euclidean distance between
two vector x and y or the matrix y and the vector x

 if(class(y)=="matrix")
 {
 distancia = drop(sqrt(colSums((x-t(y))^2)))
 distancia= t(distancia)
 }
 else distancia = sqrt(sum((x-y)^2))
 distancia
}

mmnorm<-function (data)
{
#This is a function to apply min-mas normalization to a matrix or dataframe.
#Min-max normalization subtracts the minimum of an attribute from each value
#of the attribute and them divides the difference by the range of the attribute.
#Uses stats function found in R fields package and scale function found in the R base package.
#Input: data= The matrix or dataframe to be scaled

library(fields)

#store all attributes of the original data
d=dim(data)
c=class(data)

143

cnames=colnames(data)

#remove classes from dataset
classes=data[,d[2]]
data=data[,-d[2]]

minvect=stats(data)[4,]
rangevect=stats(data)[8,]-stats(data)[4,]
zdata=scale(data,center=minvect,scale=rangevect)

#remove attributes added by the function scale and turn resulting
#vector back into a matrix with original dimensions
attributes(zdata)=NULL
zdata=matrix(zdata,dim(data)[1],dim(data)[2])
zdata=cbind(zdata,classes)

if (c=="data.frame") zdata=as.data.frame(zdata)
colnames(zdata)=cnames
return(zdata)

}
decscale<-function (data)
{
#This is a function to apply decimal scaling to a matrix or dataframe.
#Decimal scaling transforms the data into a range from [-1,1] by
#finding k such that the absolute value of the maximum value of each attribute divided by 10^k
#is less than or equal to 1.
#Uses stats function found in R fields package and scale function found in the R base package.
#Input: data= The matrix or dataframe to be scaled

library(fields)

#store all attributes of the original data
d=dim(data)
c=class(data)
cnames=colnames(data)

#remove classes from dataset
classes=data[,d[2]]
data=data[,-d[2]]

maxvect=stats(abs(data))[8,]

#find k such that max/10^k is less than 1.
kvector=ceiling(log10(maxvect))
scalefactor=10^kvector
decdata=scale(data,center=FALSE,scale=scalefactor)

#remove attributes added by the function scale and turn resulting
#vector back into a matrix with original dimensions
attributes(decdata)=NULL
decdata=matrix(decdata,dim(data)[1],dim(data)[2])

144

decdata=cbind(decdata,classes)

if (c=="data.frame") decdata=as.data.frame(decdata)
colnames(decdata)=cnames
return(decdata)

}

signorm<-function (data)
{
#This is a function to apply sigmoidal normalization to a matrix or dataframe.
#Sigmoidal normalization transforms the data into a range from [-1,1] by
#using a sigmoid function.
#Input: data= The matrix or dataframe to be scaled

#store all attributes of the original data
d=dim(data)
c=class(data)
cnames=colnames(data)
classes=data[,d[2]]

#first step of sigmoidal normalization is to standardize data
zdata=znorm(data)

#remove classes from normalized dataset
d2=dim(zdata)
zdata=zdata[,-d2[2]]

#scaling used: (1-e^-zdata)/(1+e^-zdata)
sigdata=(1-exp(-zdata))/(1+exp(-zdata))

#return classes to normalized dataset
sigdata=cbind(sigdata,classes)

if (c=="data.frame") sigdata=as.data.frame(sigdata)
colnames(sigdata)=cnames
return(sigdata)

}

softmaxnorm<-function (data)
{
#This is a function to apply softmax normalization to a matrix or dataframe.
#Softmax normalization transforms the data into a range from [0,1] by
#Input: data= The matrix or dataframe to be scaled

#store all attributes of the original data
d=dim(data)

145

c=class(data)
cnames=colnames(data)
classes=data[,d[2]]

#first step of softmax normalization is to standardize data
zdata=znorm(data)

#remove classes from standardized dataset
d2=dim(zdata)
zdata=zdata[,-d2[2]]

#scaling used: 1/(1+e^-zdata)
softdata=1/(1+exp(-zdata))

softdata=cbind(softdata,classes)

if (c=="data.frame") softdata=as.data.frame(softdata)
colnames(softdata)=cnames
return(softdata)

}

znorm<-function (data)
{
#This is a function to apply z-Score normalization to a matrix or datafram.
#Uses scale function found in the R base package.
#Input: data= The matrix or dataframe to be scaled

#store all attributes of the original data
d=dim(data)
c=class(data)
cnames=colnames(data)

#remove classes from dataset
classes=data[,d[2]]
data=data[,-d[2]]

zdata=scale(data)

#remove attributes added by the function scale and turn resulting
#vector back into a matrix with original dimensions
attributes(zdata)=NULL
zdata=matrix(zdata,dim(data)[1],dim(data)[2])
zdata=cbind(zdata,classes)

if (c=="data.frame") zdata=as.data.frame(zdata)
colnames(zdata)=cnames
return(zdata)

}

146

ce.mimp=function (w.cl,method=c("mean","median"),atr,nomatr=0,name="")
{
#find dimensions of matrix
p=dim(w.cl)

#find indexes of missing values
index.na=which(is.na(w.cl),arr.ind=TRUE)
o=order(index.na[,1], index.na[,2])
index.na=index.na[o,]
dimnames(index.na)=NULL

#find variables with missing values
var.na=sort(as.numeric(names(table(index.na[,2]))))

#find values of var.na that are equal to relevant attributes, reduce var.na
 var.na=var.na[var.na%in%atr]

if (length(var.na)==0) stop("Error: No missing values occur in relevant variables!")

#reduce rows of index.na to only (row,col) of relevant variables with missing
 index.atr=matrix(index.na[index.na[,2] %in% atr[]],,2)

#find classes of rows with missing
 class.na=as.matrix(w.cl[index.atr[,1],p[2]])
 dimnames(class.na)=NULL
 class.na=cbind(index.atr,class.na)

 classes=sort(as.numeric(names(table(w.cl[index.na[,1],p[2]]))))
 num.class=length(classes)

 replace.na=rep(0,0)

#replace na is row with mean or median of class
 for(i in 1:dim(class.na)[1])
 {
 #split matrix into submatrices to find mean of class
 sub=w.cl[w.cl[,p[2]]==class.na[i,3],]
 #method=match.arg(method)

 if (class.na[i,2]%in%nomatr) imput.col=moda(sub[,class.na[i,2]])[1]
 else if (method=="mean") imput.col=mean(sub[,class.na[i,2]],na.rm=TRUE)
 else if (method=="median") imput.col=median(sub[,class.na[i,2]],na.rm=TRUE)

 #create a vector with imput value for column of class
 replace.na=rbind(replace.na,imput.col)
 }
 dimnames(replace.na)=NULL
 class.na=cbind(class.na,replace.na)

 for (i in 1:dim(class.na)[1])

147

 w.cl[class.na[i,1],class.na[i,2]]=class.na[i,4]

#Remove comments if screen view is desired
cat("\nSummary of imputations using substitution of ",method,"(mode for nominal features):\n")
colnames(class.na)=c("Row","Column","Class","Imput.value")
print(class.na)
cat("\nTotal number of imputations per class: \n")
for (i in classes)
 {
 amount=sum(class.na[,3]==i)
 cat("Class ",i,": ",amount,"\n")
 }
cat("\nTotal number of imputations: ",dim(class.na)[1],"\n")

#Remove comments if workspace result file is not desired
#filename=paste("Imput.rep.",method,".",name,sep="")
#yy <- textConnection(filename, "w")
#rep.title=paste("Imputation report for the matrix: ",name)
#sink(yy)
#cat("\n",rep.title,"\n\n")
#cat("\nSummary of imputations using substitution of ",method,"(mode for nominal features):\n")
#colnames(class.na)=c("Row","Column","Class","Imput.value")
#print(class.na)
#cat("\nTotal number of imputations per class: \n")
#for (i in classes)
{
amount=sum(class.na[,3]==i)
cat("Class ",i,": ",amount,"\n")
}
#cat("\nTotal number of imputations: ",dim(class.na)[1],"\n")
#sink()
#close(yy)
#End comments to eliminate workspace result file

return(w.cl)
}

clean<-function (w,tol.col=0.3,tol.row=0.5,name="")

{

#w: matrix that will be cleaned
#tol.col: maximum percentage of missing to be allowed for columns
#tol.row: maximum percentage of missing in relevant variables to be allowed
#attrib: matrix, mx1, containing column index of relevant variables

w=as.data.frame(w)
w=as.matrix(w)
if (sum(is.na(w))==0) cat ("No cleaning required.\n")
else

148

 {
 filename=paste("Clean.rep.",name,sep="")
 zz <- textConnection(filename, "w")
 rep.title=paste("Cleaning report for the matrix: ",name)
 sink(zz)
 cat("\n",rep.title,"\n\n")
 sink()

 #Find column indexes of columns with NA
 sumcol=which(colSums(is.na(w))!=0,arr.ind=TRUE)

 if (length(sumcol)!=0)
 {
 #clean columns

 dr=dim(w)[1]
 dc=dim(w)[2]
 if (length(sumcol)==1)
 {
 per.miss.col=sum(is.na(w[,sumcol]))/dr

 #Report of variables to be removed
 colmiss=colnames(w)[sumcol]

table.miss=data.frame(cbind(Variables=colmiss,Percent.of.missing=(per.miss.col*100)),row.names=N
ULL)
 print(table.miss)
 cat("\n")

 sink(zz)
 print(table.miss)
 cat("\n")
 sink()

 if (per.miss.col>tol.col)
 {
 cat("Only one variable eliminated: ",colnames(w)[above.tol],"\n\n")

 sink(zz)
 cat("Only one variable eliminated: ",colnames(w)[above.tol],"\n\n")
 sink()

 w=w[,-sumcol]
 w=as.matrix(w)
 }
 }
 else
 {
 #find percent of missing
 per.miss.col=colSums(is.na(w[,sumcol]))/dr

 #find index of columns with NA over tolerance
 above.tol=sumcol[which(per.miss.col>tol.col,arr.ind=TRUE)]

149

 #Preparing report on percents missing per variable
 colmiss=colnames(w)[sumcol]

table.miss=data.frame(cbind(Variables=colmiss,Percent.of.missing=(per.miss.col*100)),row.names=N
ULL)
 print(table.miss)
 cat("\n")

 sink(zz)
 print(table.miss)
 cat("\n")
 sink()

 if (length(above.tol)==dim(w)[2])
 {
 cat("All variables have missing values above tolerance level.\n\n")

 sink(zz)
 cat("All variables have missing values above tolerance level.\n\n")
 sink()
 }
 else
 if (length(above.tol)!=0)
 {
 #Report of columns to be eliminated
 col.above.tol=matrix(colnames(w)[above.tol],length(above.tol),1)
 colnames(col.above.tol)="Variables eliminated"
 rownames(col.above.tol)=c(1:length(above.tol))
 print(col.above.tol)
 cat("\n\n")

 sink(zz)
 print(col.above.tol)
 cat("\n\n")
 sink()

 #Column elimination
 w=w[,-above.tol]
 w=as.matrix(w)
 }

 }

 #recalculate for new w and row cleaning
 dr=dim(w)[1]
 dc=dim(w)[2]

 }

 #Find index of rows with missing values
 sumrow=which(rowSums(is.na(w))!=0,arr.ind=TRUE)

150

 if (length(sumrow)!=0)
 {
 if (length(sumrow)==1)
 {
 per.miss.row=sum(is.na(w[sumrow,]))/dc
 #clean rows
 if (per.miss.row>tol.row)
 {
 cat("Number of instances eliminated: 1\n")
 cat("Instance eliminated :",sumrow,"\n\n")

 sink(zz)
 cat("Number of instances eliminated: 1\n")
 cat("Instance eliminated :",sumrow,"\n\n")
 sink()

 w=w[-sumrow,]
 }
 }
 else
 {
 #begin to clean rows
 #calculate percent of rows with missing
 per.miss.row=rowSums(is.na(w[sumrow,]))/dc

 #calculate percent of rows with missing
 #rowmiss=
 #cat("Percent of rows with missing: ",per.miss.row*100,"\n")
 #cat("Number of rows with missing: ",rowSums(is.na(w[sumrow,])),"\n")
 #sink(zz)
 #cat("Percent of rows with missing: ",per.miss.row*100,"\n")
 #cat("Number of rows with missing: ",rowSums(is.na(w[sumrow,])),"\n")
 #sink()

 #find index of rows with NA over tolerance
 above.tol=sumrow[which(per.miss.row>tol.row,arr.ind=TRUE)]
 if (length(above.tol)==dr) cat("All instances have missing values above tolerance level.\n")
 else
 if (length(above.tol)!=0)
 {
 cat("Number of instances eliminated:",length(above.tol),"\n")
 cat("Instance eliminated :",as.numeric(above.tol),"\n\n")

 sink(zz)
 cat("Number of instances eliminated:",length(above.tol),"\n")
 cat("Instance eliminated :",as.numeric(above.tol),"\n\n")
 sink()

 w=w[-(above.tol),]
 }
 }
 }

151

 }

w=as.matrix(w)
cat("Maximum number of values to be imputed: ",sum(is.na(w)),"\n")

sink(zz)
cat("Maximum number of values to be imputed: ",sum(is.na(w)),"\n")
sink()
close(zz)
#print(w)
return(w)
}

 w=w[,-sumcol]
 w=as.matrix(w)
 }
 }
 else
 {
 #find percent of missing
 per.miss.col=colSums(is.na(w[,sumcol]))/dr

 #find index of columns with NA over tolerance
 above.tol=sumcol[which(per.miss.col>tol.col,arr.ind=TRUE)]

 #Preparing report on percents missing per variable
 colmiss=colnames(w)[sumcol]

table.miss=data.frame(cbind(Variables=colmiss,Percent.of.missing=(per.miss.col*100)),row.names=N
ULL)
 print(table.miss)
 cat("\n")

 sink(zz)
 print(table.miss)
 cat("\n")
 sink()

 if (length(above.tol)==dim(w)[2])
 {
 cat("All variables have missing values above tolerance level.\n\n")

 sink(zz)
 cat("All variables have missing values above tolerance level.\n\n")
 sink()
 }
 else
 if (length(above.tol)!=0)
 {
 #Report of columns to be eliminated
 col.above.tol=matrix(colnames(w)[above.tol],length(above.tol),1)
 colnames(col.above.tol)="Variables eliminated"
 rownames(col.above.tol)=c(1:length(above.tol))

152

 print(col.above.tol)
 cat("\n\n")

 sink(zz)
 print(col.above.tol)
 cat("\n\n")
 sink()

 #Column elimination
 w=w[,-above.tol]
 w=as.matrix(w)
 }

 }

 #recalculate for new w and row cleaning
 dr=dim(w)[1]
 dc=dim(w)[2]

 }

 #Find index of rows with missing values
 sumrow=which(rowSums(is.na(w))!=0,arr.ind=TRUE)

 if (length(sumrow)!=0)
 {
 if (length(sumrow)==1)
 {
 per.miss.row=sum(is.na(w[sumrow,]))/dc
 #clean rows
 if (per.miss.row>tol.row)
 {
 cat("Number of instances eliminated: 1\n")
 cat("Instance eliminated :",sumrow,"\n\n")

 sink(zz)
 cat("Number of instances eliminated: 1\n")
 cat("Instance eliminated :",sumrow,"\n\n")
 sink()

 w=w[-sumrow,]
 }
 }
 else
 {
 #begin to clean rows
 #calculate percent missing of rows with missing
 per.miss.row=rowSums(is.na(w[sumrow,]))/dc

 #find index of columns with NA over tolerance
 above.tol=sumrow[which(per.miss.row>tol.row,arr.ind=TRUE)]
 if (length(above.tol)==dr) cat("All instances have missing values above tolerance level.\n")

153

 else
 if (length(above.tol)!=0)
 {
 cat("Number of instances eliminated:",length(above.tol),"\n")
 cat("Instance eliminated :",as.numeric(above.tol),"\n\n")

 sink(zz)
 cat("Number of instances eliminated:",length(above.tol),"\n")
 cat("Instance eliminated :",as.numeric(above.tol),"\n\n")
 sink()

 w=w[-(above.tol),]
 }
 }
 }
 }

w=as.matrix(w)
cat("Maximum number of values to be imputed: ",sum(is.na(w)),"\n")

sink(zz)
cat("Maximum number of values to be imputed: ",sum(is.na(w)),"\n")
sink()
close(zz)
#print(w)
return(w)
}

ec.knnimp<-function(data,nomatr,k = 10)
{
#xnom: vector containing the indexes of the nominal variables
#data: matrix containing data
 x <- data
 N <- dim(x)[1]
 p <- dim(x)[2]

#Checking if a row has a missing value
nas <- is.na(drop(x %*% rep(1, p)))
if(sum(nas)==N) stop("Error: All cases have missing values. Cannot compute neighbors.")

#submatrix with complete rows
#matrix needed in case xcomplete has only one row
 xcomplete <- matrix(x[!nas,],,p)
 colnames(xcomplete)=seq(p)

#submatrix of rows with at least one missing value
 xbad <- x[nas,,drop=FALSE]

#forming logical vector of nominal variables
 xnom=seq(p) %in% nomatr

#Locating the missing values in the missing submatrix

154

 xnas <- is.na(xbad)
 xbadhat <- xbad
 cat(nrow(xbad), fill = TRUE)
 for(i in seq(nrow(xbad)))
 {
 cat(i, fill = TRUE)
 xinas <- xnas[i,]
 xbadhat[i,] <- nnmiss(xcomplete, xbad[i,],xinas,xnom, K = k)
 }
 x[nas,] <- xbadhat
 data2 <-x
 return(data2)
}

nnmiss<-function(x, xmiss, ismiss,xnom, K=1)
{
#x:submatrix of complete rows from original matrix
#xmiss: a row with a missing value
#ismiss: vector that indicates whether a value in xmiss is missing or not
#xnom: vector with indexes of nominal variables

#Find distance between xmiss (not NA) and each row of x
 xd <- scale(x, xmiss, FALSE)[, !ismiss]
 col=length(xmiss)-sum(is.na(xmiss))
 xd=matrix(xd,,col)
 dd <- drop(xd^2 %*% rep(1, ncol(xd)))

#order of the rows of x according to their closeness to xmiss
 od <- order(dd)[seq(K)]
#if column of ismiss is nominal, find mode if not find mean of KNN

 ismiss.nom=ismiss[]&xnom[]
 ismiss.con=ismiss[]&!xnom[]
 xmiss[ismiss.nom] <- as.numeric(moda(x[od, ismiss.nom, drop = FALSE])[1])
 xmiss[ismiss.con] <- drop(rep(1/K, K) %*% x[od, ismiss.con, drop = FALSE])
 xmiss
}

ce.knn.imp=function(m,k1)
{

#Function that calls ec.knnimp to perform knn imputation
#m : matrix to be tested with relevant variables and classes

m=as.matrix(m)

dr=dim(m)[1]
dc=dim(m)[2]

classes=tabulate(m[,dc])

155

no.classes=length(classes)

r=NULL

for(i in 1:no.classes)
{
m.imp=ec.knnimp(m[m[,dc]==i,],k1)
r=rbind(r,m.imp)
}
s2=sum(is.na(r))
cat(s2,"\n")
return(r)
}

 156

Chapter 10 References

1. Acuña, E., Rojas, A. and Coaquira, F. (2002). The effect of feature selection on

combining classifiers based on kernel density estimates. In K.Jajuga, A. Sokodowski,

H.-H. Bock (Eds). Classification, Clustering and Data Analysis. Springer-Verlag,

Berlin, 161-168.

2. Acuña, E., Coaquira, F. and Gonzalez, M. (2003). A comparison of feature

selection procedures for classifiers based on kernel density estimation. Proc. of the

Int. Conf. on Computer, Communication and Control technologies, CCCT’03. Vol I.

p. 468-472. Orlando, Florida.

3. Atkinson, A. (1994). Fast very robust methods for the detection of multiple

outliers. Journal of the American Statistical Association, 89:1329-1339.

4. Azzopardi, L. (2002). “Am I Right?” asked the Classifier: Preprocessing Data in

the Classification Process. Computing and Information Systems, 9: 37-44.

5. Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. John Wiley, New

York.

6. Batista, G. and Monard, M. C. (2002). K-Nearest Neighbour as Imputation

Method: Experimental Results. Tech. Report 186, ICMC-USP.

7. Bay, S.D., and Schwabacher, M. (2003). Mining distance-based outliers in near

linear time with randomization and a simple pruning rule. Proceedings from the 9th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

157

8. Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The New S Language: A

programming environment for data analysis and graphics. Chapman and Hall, New

York.

9. Bello, A. L. (1995). Imputation techniques in regression analysis: Looking closely

at their implementation. Computational Statistics and Data Analysis, 20: 45-57.

10. Blake, C.L. and Mertz, C.J. (1998). UCI Repository of machine learning

databases [http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA:

University of California, Department of Information and Computer Science.

11. Breuning, M., Kriegel, H., Ng, R.T, and Sander. J. (2000). LOF: Identifying

density-based local outliers. In Proceedings of the ACM SIGMOD International

Conference on Management of Data.

12. Coaquira, F. (2002). Selección de variables para clasificación supervisada. Tesis

MS. Universidad de Puerto Rico, Mayagüez.

13. Dash, M. and Liu, H. (1997). Feature Selection for classification. Intelligent Data

Analysis I. 131-156.

14. Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised

discretization of continuous features. Proceedings of the Twelfth International

Conference in Machine Learning, Morgan Kaufmann. San Francisco, 194-202.

15. Engels, R., Theusinger, C. (1998). Using a Data Metric for Preprocessing Advice

for Data Mining Applications. Proceedings of 13th European Conference on Artificial

Intelligence. , 430-434.

158

16. Fayyad, U., Grinstein, G, and Wierse, A. (2001). Information Visualization in

Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco.

17. Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth,P. (1996). From data mining to

knowledge discovery: An overview. In Advances in Knowledge Discovery and Data

Mining, AAAI Press and the MIT Press, Chapter 1, 1-34.

18. Ferreira de Oliveira, M., Levkowitz, H. (2003). From Visual Data Exploration to

Visual Data Mining: A Survey. IEEE Transactions on Visualization and Computer

Graphics 9(3): 378-394.

19. Graham, M. and Kennedy, J. (2003). Using Curves to Enhance Parallel

Coordinate Visualizations. In IV 2003 - 7th International Conference on Information

Visualization, 10-16. London, UK: IEEE Computer Society Press.

20. Grinstein, G., Trutschl, M. and Cvek, U. (2001). High-Dimensional

Visualizations. Proceedings of the Visual Data Mining workshop, KDD'2001.

21. Grzymala-Busse, J.W. and Hu, M. (2000). A Comparison of Several Approaches

to Missing Attribute Values in Data Mining. In RSCTC’2000, pages 340-347.

22. Hadi, A. (1992). Identifying multiple outliers in multivariate data. Journal of the

Royal Statistical Society B, 54:761-771.

23. Hall, M.A. (2000). Feature Selection for Discrete and Numeric Class Machine

Learning. Proc. Seventeenth International conference on Machine Learning. Morgan

Kaufmann, San Francisco, CA: 359-366.

159

24. Han, J., and Kamber, M. (2000). Data Mining: Concepts and Techniques. Morgan

Kaufman Publishers.

25. Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M, Brown, P. and Bolstein, D.

(1999). Imputing missing data por gene expression arrays. Techical Report. Division

of Biostatistics, Stanford University.

26. Hawkins, D. (1980). Identification of Outliers. Chapman and Hall. London.

27. Healey, C. (1996). Effective Visualization of Large Multidimensional Datasets,

PhD thesis., University of British Columbia.

28. Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics.

Journal of Computational and Graphical Statistics: 5, 299-314.

29. Inselberg, A. (1985). The Plane with Parallel Coordinates, Special Issue on

Computational Geometry. The Visual Computer, 1: 69-97.

30. Inselberg, A. and Dimsdale, B. (1990). Parallel coordinates: A tool for visualizing

multidimensional geometry. Proc. of Visualization '90, p. 361-78.

31. Kalton, G. and Kasprzyk, D. (1986). The treatment of missing survey data.

Survey Methodology, 12: 1-16.

32. Kaufman, L. and Rousseeuw, P.J. (1990). Finding Groups in Data: An

Introduction to Cluster Analysis. Wiley, New York.

33. Keim, D. (2001). Visual Data Mining and Exploration of Large Databases.

Tutorial 12th European Conference on Machine Learning (ECML’01).

160

34. Kira, K. and Rendel, L. (1992). The Feature Selection Problem : Traditional

Methods and a new algorithm. Proc. Tenth National Conference on Artificial

Intelligence, MIT Press, 129-134.

35. Knorr, E. and Ng, R. (1997). A unified approach for mining outliers. Proc. KDD:

219–222.

36. Knorr, E., and Ng. R. (1998). Algorithms for mining distance-based outliers in

large datasets. Proc. 24th Int. Conf. Very Large Data Bases, VLDB, 392–403, 24–27.

37. Knorr., E., R. Ng, and V. Tucakov. (2000). Distance-based outliers: Algorithms

and applications. VLDB Journal: Very Large Data Bases, 8(3–4):237–253.

38. Kohavi, R and John, G. H. (1997). Wrappers for feature subset selection.

Artificial Intelligence Journal, 97, 1-2 273-324.

39. Kononenko, I., Simec, E., and Robnik-Sikonja, M. (1997). Overcoming the

myopia of induction learning algorithms with RELIEFF. Applied Intelligence Vol 7:

1, 39-55.

40. Kononenko, I. (1994). Estimating Attributes: Analysis and Extension of Relief. In

F. Bergadano y L. D.Raedt, eds. Proc. seventh European Conference on Machine

Learning, 171-182.

41. Kudo, M. and Sklansky, J. (2000). Comparison of algorithms that select features

for pattern classifiers. Pattern recognition 33(1) 25-41.

42. Little, R. J. and Rubin, D.B. (2002). Statistical Analysis with Missing Data.

Second Edition. John Wiley and Sons, New York.

161

43. Liu, H., and Setiono, R. (1996). A probabilistic approach to feature selection- a

filter solution. Proc. of the thirteenth International Conference of Machine Learning,

319-337.

44. Lohninger, H. (1994). “INSPECT: A Program System to Visualize and Interpret

Chemical Data”. Chemomet. Intell. Lab. Syst. 22,147-153.

45. Lu, H., Sun, S., Lu, Y. (1996). On Preprocessing Data for Effective Classification.

ACM SIGMOD’96 Workshop on Research Issues on Data Mining and Knowledge

Discovery, Montreal, Canada.

46. Merz, C., Murphy, P. (1998). UCI Repository of machine learning databases.

http://www.ics.uci.edu/~mlearn/MLRepository.html

47. Müller, H., Freytag, J., (2003). Problems, Methods, and Challenges in

Comprehensive Data Cleansing Technical Report HUB-IB-164, Humboldt University

Berlin.

48. Mundfrom, D.J and Whitcomb, A. (1998). Imputing missing values: The effect on

the accuracy of classification. Multiple Linear Regression Viewpoints, 25(1), 13-19.

49. Ng, R.T. and Han, J. (1994). Efficient and effective clustering methods fro

spatial data mining. Proc. 20th Int.Conf. on Very Large Data bases. Morgan and

Kaufmann Publishers, San Francisco, 144-155.

50. Poulet, F., (1999). Visualization in data mining and knowledge discovery. Proc.

HCP'99, 10th Mini Euro Conference on Human Centered Processes.

162

50. Pudil, P., Ferri, J., Novovicová, J., and Kittler, J. (1994). Floating search methods

for feature selection with nonmonotonic criterion function. 12th International

Conference on Pattern Recognition, 279-283.

51. Pyle, D. (1999). Data Preparation for Data Mining. Morgan Kaufmann, San

Francisco.

52. Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient algorithms for

mining outliers from large datasets. In Proceedings of the ACM SIGMOD

International Conference on Management of Data.

53. Rocke, D. and Woodruff, D. (1996). Identification of outliers in multivariate data.

Journal of the American Statistical Association, 91:1047-1061.

54. Rousseeuw, P. (1985). Multivariate estimation with high breakdown point.

Mathematical statistics and applications.

55. Rousseeuw, P. and Leroy, A. (1987). Robust Regression and Outlier Detection.

John Wiley, New York.

56. Rousseeuw, P. and Van Zomeren, B. (1990). Unmasking multivariate outliers and

leverage points. Journal of the American Statistical Association, 85:633-639.

57. Rousseeuw, P. J. and Van Driessen, K. (1999). A Fast Algorithm for the

Minimum Covariance Determinant Estimator. Technometrics, 41, 212-223.

58. Sahling, G. (2002). Interactive 3D Scatterplots - From High-Dimensional Data to

Insight. http://www.VRVis.at/vis/resources/DA-NSahling/. (29-jan-2004)

163

59. Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. Chapman and

Hall, London.

60. Schmid, C, and Hinterberger, H. (1994). Comparative Multivariate Visualization

Across Conceptually Different Graphic Displays. Proceedings of the Seventh

International Working Conference on Statistical and Scientific Database

Management, SSDBM 94, Charlottesville, Virginia, September 28 - 30.

61. Swayne, D.F., Cook, D. and Buja. A. (1991). XGobi: interactive dynamic

graphics in the X window system with a link to S. In Proceedings of the ASA Section

on Statistical Graphics, pages 1–8, Alexandria, VA.

62. Temple, D., Swayne, D. (2001). GGobi meets R: an extensible environment for

interactive dynamic data visualization. DSC 2001 Proceedings of the 2nd

International Workshop on Distributed Statistical Computing March 15-17, Vienna,

Austria

63. Tresp, V., Neuneier, R. and Ahmad, S. (1995). Efficient methods for dealing with

missing data in supervised learning. In G. Tesauro, D. S. Touretzky, and Leen T. K.,

editors, Advances in NIPS 7. MIT Press.

64. Tukey, J.W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA.

65. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P. Hastie, T., Tibshirani, R.,

Bostein, D. and Altman, R.B. (2001). Missing value estimation methods for dna

microarrays. Bioinformatics, 17(6), 520-525.

66. Venables, W.N. and Ripley, B.D. (1997). Modern Applied Statistics with S-PLUS.

Second Edition. Springer-Verlag, New York.

164

67. Wegman, H. (1990). Hyperdimensional data analysis using parallel coordinates.

Journal of the American Statistical Association, Vol. 411(85), p. 664-675.

68. Wegman, E.J. and Carr, D.B. (1993). Statistical graphics and visualization, in

Handbook of Statistics 9: Computational Statistics, (Rao, C. R., ed.), Amsterdam:

North Holland, 857-958.

69. Wegman, E. and Luo, Q. (1997). High dimensional clustering using parallel

coordinates and the grand tour. Computing Science and Statistics, Vol 28, p. 352-360.

70. Yang, J., Ward, M. O., Rundensteiner, E. A., and Huang, S. (2003). Visual

hierarchical dimension reduction for exploration of high dimensional datasets.

VisSym 2003, p. 19-28.

71. Yang, L. (2000). Interactive exploration of very large relational datasets through

3D dynamic projections. Proceedings of the sixth ACM SIGKDD international

conference on Knowledge Discovery and Data Mining, 236 - 243. Boston,

Massachusetts.

