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Abstract 

 

In this thesis, a data preprocessing environment has been created, for use in a 

supervised classification context, with the Windows platform of the R programming 

language and environment for statistical computing and graphics.. The functions that 

compose the environment have been selected based on the results of empirical studies on 

the effects of the data preprocessing techniques investigated on the misclassification error 

of well-known classifiers used on real datasets. Visualization techniques were also 

included in the environment to support data exploration, as well as data preprocessing 

decisions.  The techniques considered in this thesis were applied to twelve real datasets 

found at the Machine Learning Database Repository at the University of California, 

Irvine. The datasets varied in the number of dimensions from 4 to 60, in the number of 

observations from 150 to 4435, and in the number of classes from 3 to 7. Other existing 

studies on data preprocessing study the effects of applying these techniques to the whole 

dataset, but not by class.  

The functions that form the data preprocessing environment were placed in a 

package that can be downloaded to the R directory R_HOME/library and then, loaded to 

the user’s workspace to create a data preprocessing environment for supervised 

classification applications. Future investigations may explore the use of these functions 

for data mining projects that involve very-high dimensional and very large datasets. 
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Resumen 
 

En esta tesis, se ha creado un ambiente de pre-procesamiento de datos para 

usarse en aplicaciones de clasificación supervisada para la plataforma de Windows del 

lenguaje de programación y ambiente estadístico y gráfico llamado R. Las funciones 

que componen el ambiente han sido seleccionadas en base a los resultados de estudios 

empíricos sobre el efecto del pre-procesamiento de datos en el error de la mala 

clasificación de tres clasificadores muy conocidos. Las doce bases de datos usadas, 

cuyas dimensionalidades varían de 4 a 60, número de observaciones de 150 a 4435 y 

número de clases de 3 a 7, fueron tomadas del Machine Learning Database 

Repository at the University of California, Irvine. Otros estudios existen en el área de 

pre-procesamiento de datos, pero aplican las técnicas mencionadas a datos completos 

y no a los datos agrupados por clase. 

Las funciones codificadas han sido empaquetadas y el paquete puede ser 

bajado al directorio de R “R_HOME/library”. Una vez ahí, el usuario puede montar el 

paquete en su “workspace”, creando así un ambiente propicio para el pre-

procesamiento de datos para aplicaciones de clasificación supervisada. 

Investigaciones futuras podrán explorar el uso de estas funciones para proyectos de 

minería de datos. 
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Chapter 1 Introduction 
 
 
 
 

Data mining, sometimes called knowledge discovery, is the process of analyzing 

data using statistical techniques and knowledge-based methods to extract meaningful 

patterns from large datasets and turn these into useful information. During a data 

mining process, different techniques are applied to find the patterns, associations or 

relationships among the variables or attributes of the dataset, which can be converted 

into knowledge about historical patterns and future trends. Generally any of four 

types of relationships are sought: classes, clusters, associations and sequential 

patterns. Data mining techniques that search for class and cluster relationships fall 

under the category of Classification.  

Classification refers to the data mining problem of attempting to predict the 

category to which each observation of the dataset belongs by building a model based 

on some predictor variables or features. Classification methods can be of two types: 

supervised or unsupervised. In supervised classification, one feature of the dataset 

contains values that represent a predetermined grouping of the data. These groups are 

generally called classes. For unsupervised classification the goal is to divide the 

observations of the dataset into groups or clusters based on some logical relationship 

that exists among the values of the features but that must yet be discovered. 

Classification may be considered the most well studied data mining problem. 

The datasets used for current data mining projects are highly susceptible to 

anomalies and impurities, sometimes referred to as noise. If this dirty data is used for 

data analysis, the conclusions drawn from the process may be worthless. Since the 

use of noisy data for data analysis is not recommended, a wide range of methods have 
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been developed with the intention of eliminating the noise. This practice, known as 

data preprocessing, is now considered a necessary step in the data mining process. 

This work uses the results of empirical studies to create a data preprocessing 

environment to be used within the R statistical analysis software. The main 

contribution of this work will be a library of data preprocessing functions that may be 

downloaded and installed to the user’s R workspace to create an environment in 

which data may be cleaned and visualized, missing values imputed, outliers detected 

and dimensionality reduced before the data is analyzed in a supervised learning 

context  The real datasets used have been taken from the Machine Learning Database 

Repository at the University of California, Irvine.  The electronic address of the site is 

http://www.ics.uci.edu/~mlearn/MLRepository.html. The functions to create the data 

preprocessing environment can be downloaded from http://academic.uprm.edu/ 

~eacuna/softw.htm. 

To create the environment, decompress the package in the R directory 

“R\rw1081\library”. Then, open R, and choose the load option from the package 

menu.  Select the library drep from the list of available libraries. The functions have 

been created at tested for version 1.8.1 of R. 
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Chapter 2 A Brief Review of Data preprocessing 
 
 
 
2.1 Introduction  
 

 Data mining is a class of database applications that looks for hidden patterns 

that can be used to predict future behavior in a group of data. Azzopardi (2002) 

breaks the data mining process into five stages: 

• Selecting the domain - Data mining should be assessed to determine 

whether there is a viable solution to the problem at hand and a set of 

objectives should be defined to characterize these problems. 

• Selecting the target data - This entails the selection of data that is to be 

used in the specified domain; for example, selection of subsets of features or 

data samples from larger databases. 

• Preprocessing the data – This phase is primarily aimed at preparing the 

data in a suitable and useable format, so that a knowledge extraction process 

can be applied. 

• Extracting the knowledge/information – During this stage the types of data 

mining operations (classification, regression, segmentation or clustering, etc), 

the data mining techniques, and data mining algorithms are chosen and the 

data is then mined.  

• Interpretation and evaluation – This stage of the data mining process is 

the interpretation and evaluation of the discoveries made. It includes filtering 

information that is to be presented, visualizing graphically or locating the
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useful patterns and translating the patterns discovered into an understandable 

form.  

In the process of data mining many patterns are found in the data. Patterns that are 

interesting for the miner are those that are easily understood, valid, potentially useful, 

and novel. (Fayyad, 1996) These patterns should validate a hypothesis that the user 

seeks to confirm. The quality of patterns obtained depends on the quality of the 

analyzed data. It is a common practice to prepare data before applying traditional data 

mining techniques such as: statistical analysis, clustering, and supervised 

classification. 

Section two of this chapter provides a more precise justification for the use of data 

preprocessing techniques. This is followed by a description in section three of some 

of the data preprocessing techniques currently in use as well as those used in this 

work. 

 

2.2 Motivation for applying data preprocessing 
 
 Pyle (1999) suggests that about 60% of the total time required to complete a 

data mining project should be spent on data preparation since it is one of the most 

important contributors to the success of the project. Transforming the data at hand 

into a format appropriate for knowledge extraction has a significant influence on the 

final models generated, as well as on the amount and quality of the knowledge 

discovered during the process (Engels, 1998).    At the same time, the effect caused 

by changes made to a dataset during data preprocessing can either facilitate or 

complicate even further the knowledge discovery process, thus changes made must be 

selected with care.  

 Today’s real-world datasets are highly susceptible to noise, missing and 

inconsistent data due to human errors, mechanical failures and to their typically large 

size. Common error existence rates are estimated to be at 5% (Muller, 2003). Data 

affected in this manner is known as “dirty”. During the past decades, a number of 
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techniques have been developed to preprocess data gathered from real world 

applications before the data is further processed for other purposes.  

Cases where data mining techniques are applied directly to raw data without 

any kind of data preprocessing are still frequent; yet, data preprocessing has been 

recommended as an obligatory step. Data preprocessing techniques should never be 

applied blindly to a dataset, however. Prior to any data preprocessing effort, the 

dataset should be explored and characterized. Two methods for exploring the data 

prior to preprocessing are data characterization and data visualization. 

 

2.2.1 Data Characterization 

 
 Data characterization describes data in ways that are useful to the miner and 

begins the process of understanding what is in the data. Engels (1998) describes the 

following characteristics as standard for a given dataset: the number of classes, the 

number of observations, the number of attributes, the number of features with 

numeric data type and the number of features with symbolic data type.  These 

characteristics can provide a first indication of the complexity of the problem being 

studied.  

In addition to the above mentioned characteristics, parameters of location and 

dispersion can be calculated as single dimensional measurements that describe the 

dataset.  Location parameters are measurements such as minimum, maximum, 

arithmetic mean, median, and empirical quartiles. On the other hand, dispersion 

parameters such as range, standard deviation, and quartile deviation, provide 

measurements that indicate the dispersion of values of the feature.  

 Location and dispersion parameters can be divided in two classes: those that 

can deal with extreme values and those that are sensitive to them. A parameter that 

can deal well with extreme values is called robust.  Some statistical software 

packages provide for the computation of robust parameters in addition to the 
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traditional non-robust parameters. Comparing robust and non-robust parameter values 

can provide insight to the existence of outliers during the data characterization phase.  

 

2.2.2 Data Visualization  

 
 Visualization techniques can also be of assistance during this exploration and 

characterization phase. Visualizing the data before preprocessing it can improve the 

understanding of the data, thereby, increasing the likelihood that new and useful 

information will be gained from the data. Visualization techniques can be used to 

identify the existence of missing values, and outliers, as well as to identify 

relationships among attributes. These techniques can, in effect, assist in ranking the 

“impurity” of the data and in selecting the most appropriate data preprocessing 

techniques to apply. 

2.3 Techniques for Data Preprocessing 

 Applying the correct data preprocessing techniques can improve the quality of 

the data, thereby helping to improve the accuracy and efficiency of the subsequent 

mining process (Han, 2000). Pyle (1999) and Azzopardi (2002) present descriptions 

of common techniques for preparing data for analysis. The techniques described by 

both authors can be summarized as follows: 

 

• Data cleaning – filling in missing values, smoothing noisy data, 

removing outliers and resolving inconsistencies. 

 

• Data reduction – reducing the volume of data (but preserving the 

patterns) by removing repeated observations and applying feature 

selection techniques. 
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• Data transformation – converting text and graphical data to a format 

which can be processed, normalizing or scaling the data, aggregation, 

generalization. 

 

• Data integration – correcting differences in coding schemes due to the 

combining of several sources of data.  

 
 

2.3.1 Data cleaning 

 
  Data cleaning provides methods to deal with dirty data. Since dirty datasets 

can cause problems for data exploration and analysis, data cleaning techniques have 

been developed to clean data by filling in missing values (value imputation), 

smoothing noisy data, identifying and/or removing outliers, and resolving 

inconsistencies. 

 Noise is a random error or variance in a measured feature (Han, 2000). Given 

a numeric attribute data, several methods can be applied to remove the noise. Binning 

methods smooth a sorted data value by consulting the neighborhood or values around 

it. Data can also be smoothed by using regression to find a mathematical equation to 

fit the data. Smoothing methods that involve discretization are also methods of data 

reduction since they reduce the number of distinct values per attribute. Clustering 

methods can also be used to remove noise by detecting outliers. 

2.3.2 Data Integration 

 
 Some studies require the integration of multiple databases, or files. This 

process is known as data integration. Since attributes representing a given concept 

may have different names in different databases, care must be taken to avoid causing 

inconsistencies and redundancies in the data. Inconsistencies are observations that 

have the same values for each of the attributes but that are assigned to different 
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classes. Redundant observations are observations that contain the same information. 

Attributes that have been derived or inferred from others may create redundancy 

problems.  Again, having a large amount of redundant and inconsistent data may slow 

down the knowledge discovery process for a given dataset. 

2.3.3 Data Transformation 

 
 Many data mining algorithms provide better results if the data has been 

normalized or scaled to a specific range before these algorithms are applied. The use 

of normalization techniques is justified by the fact that if attributes are left un-

normalized and distance-based algorithms are applied, the distance measurements 

taken on by attributes that assume many values will generally outweigh distance 

measurements taken by attributes that assume fewer values (Han, 2000). Other 

methods of data transformation include data aggregation and generalization 

techniques. These methods create new attributes from existing information by 

applying summary operations to data or by replacing raw data by higher level 

concepts. For example, monthly sales data may be aggregated to compute annual 

sales. 

2.3.4 Data Reduction 

 
The increased size of current real-world datasets has led to the development of 

techniques that can reduce the size of the dataset without jeopardizing the data mining 

results. The process known as data reduction obtains a reduced representation of the 

dataset that is much smaller in volume, yet maintains the integrity of the original data 

(Han, 2000). This means that data mining on the reduced dataset should be more 

efficient yet produce similar analytical results.  Strategies for data reduction include 

the following. 

 

• Dimension reduction, where algorithms are applied to remove irrelevant, 

weakly relevant or redundant attributes. 
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• Data compression, where encoding mechanisms are used to obtain a 

reduced or compressed representation of the original data. Two common 

types of data compression are wavelet transforms and principal component 

analysis.  

 

• Numerosity reduction, where the data are replaced or estimated by 

alternative, smaller data representations such as parametric models (which 

store only the model parameters instead of the actual data) or 

nonparametric methods such as clustering, and the use of histograms. 

 

• Discretization and concept hierarchy generation, where raw data values 

for attributes are replaced by ranges or higher conceptual levels. For 

example, concept hierarchies can be used to replace a low level concept 

such as age, with a higher level concept such as young, middle-aged or 

senior. Some detail may be lost by such data generalizations.  

2.4 Aspects of data preprocessing studied in this thesis 
 

The main objective of this thesis is to create a data preprocessing environment to 

be used in a supervised classification context with the R statistical analysis program. 

Functions have been created to implement techniques for data cleaning, data 

reduction and data transformation. Specific techniques that have been investigated 

include: visualization techniques, methods for outlier detection, feature selection and 

missing value imputation.  The functions have been programmed in the R 

programming language for the Windows platform. 
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Chapter 3 Visualization 
 
 
 

3.1. Introduction 
 

 Visualization is the process of transforming information into a visual form 

enabling the user to observe the information.  Using successful visualizations for data 

mining and knowledge discovery projects can reduce the time it takes to understand the 

underlying data, find relationships, and discover information. According to Keim (2001), 

three different goals of data visualization are:  

• explorative analysis 

• confirmative analysis 

• presentation 

 In explorative analysis, the starting point is a set of data for which no hypothesis 

has yet been constructed. The process involves a search for structures and the result is a 

visualization of the data which provides a hypothesis about the data. In confirmative 

analysis, the starting point is a set of hypotheses about the data. The data is examined 

with the intention of confirming or rejecting the hypotheses. In presentation, an 

appropriate presentation technique is chosen to create a high-quality visualization of a set 

of fixed points. In this work, we focus on the use of visualization techniques with real 

datasets to create spatial representations that are conducive to explorative analysis. 

 
Explorative Analysis 
 

 Visualization techniques can be applied during the data preprocessing phase of 

data mining to obtain insight into the data before classification techniques are applied. 

The ability to observe partitions of relevant data and navigate among “data slices” of 

varied detail before applying these traditional data analysis techniques is 
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essential for obtaining more efficient classification results. This use of visualization 

may improve the understanding that users have of their data, thereby, increasing the 

likelihood that new and useful information will be gained from the data. 

 The following is a possible classification of visualization techniques used for 

exploratory data analysis as given by Poulet (1999): 

• basic techniques 

• geometric techniques 

• symbolic techniques 

• hierarchical techniques 

• 3D techniques 

 Basic techniques are those used in various spreadsheets: pie charts, 

histograms, etc. Their main advantage is comprehensibility but they can represent 

only simple relations between data. Techniques that perform geometric 

transformations and projections are called Geometric techniques. Examples of these 

techniques are 2D and 3D Scatterplot Matrices, Parallel Coordinates and Permutation 

Matrices, and Survey Plots. In symbolic techniques, the basic idea is the visualization 

of the data values as features of icons. Examples of these techniques are: Chernoff-

faces, glyphs, and stick-figures. In the last class of visualizations techniques 

hierarchical and 3D-techniques, we find specific visualization algorithms such as 

decision tree visualizations. 

Data analysts need tools for creating hypotheses about large and/or high 

dimensional datasets since these datasets are becoming commonplace in an increasing 

number of applications. It is no longer unusual to have datasets with hundreds or even 

thousands of dimensions and hundreds of thousands of instances. Visualization tools 

can provide the ability to explore and understand data, allowing analysts to examine 

“what if” scenarios while interacting with multivariate visual displays. Constructing a 

visual display of the data that is useful for the researcher who works with large and/or 

high dimensional datasets is currently one of the most difficult tasks in visualization. 

For this reason, Sahling (2002) points out that the challenge for any visualization 
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method is to reduce the dimensionality of a dataset and create a visualization from 

which relevant information can be extracted without changing the characteristics of 

the original data.  

In this thesis, some geometric techniques have been implemented for use in 

the Windows platform of R to strengthen the set of visualization tools already 

available for supervised classification in this statistical environment. The sections that 

follow describe these techniques. Section 2 presents an overview of some of the most 

frequently used visualization tools for high-dimensional data. Section 3 discusses the 

visualization tools that are currently available in R whereas, in Section 4 we describe 

the tools that we have created for the R environment. Finally, Section 5 describes 

some limitations of our plots and future directions for continued work. 

3.2. Overview of some high-dimensional data visualizations 
 

 Many data visualization techniques stand out as high-dimensional 

visualizations because they are better able to create informative displays for data that 

contain a high number of attributes than the standard multidimensional displays. Yet, 

it is not always precisely clear what characterizes a “high-dimensional” dataset. 

Ferreira and Levkowitz (2003), state that the conceptual boundary between low and 

high-dimensional data is around three to four data attributes.  They suggest a general 

guideline for characterizing dimensionality as: low – up to four attributes, medium – 

five to nine attributes and high – 10 or more. We give a brief description of some 

techniques that are mentioned most frequently for their ability to provide information 

even for high-dimensional datasets.  

3.2.1. Scatter Plots 

A scatter plot is a point projection of the data into a 2D or 3D dimensional 

space represented on the screen in classic (X, Y) or (X, Y, Z) format. This is the most 

commonly utilized data visualization method because it is a useful exploratory 

method for providing a first look at relationships between pairs of attributes, clusters 

of points, trends, and outliers. Conventional scatter plots lose their effectiveness; 
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however, as the number of attributes of the dataset becomes large. The insight into the 

higher dimensions is rarely as good as with the standard 2D plot. 

 A scatter plot matrix is a tool for displaying multivariate data, in which each 

plot of the matrix shows the data points based on two attributes. It is the standard 

means for extending the scatter plot to higher dimensions since it is useful for looking 

at all possible two-way interactions or correlations between dimensions. For n-

dimensional data this yields 
2

)1( −pp  scatter plots with shared scales. The power of 

this plot resides in the possibility of making a visual link between the features of one 

scatter plot with features on another.  

Figures 3.1, 3.2 and 3.3 show 2D and 3D scatter plots and a scatter plot matrix 

of the Iris dataset created by using functions available in existing R libraries. The 

three graphs show an obvious formation of clusters indicating the discriminating 

power of Petal length and Petal width.  

 

Figure 3.1: 2D scatter plot for the Iris dataset. 

 

Iris Dataset – 3 species
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Figure 3.2: 3D scatter plot of Iris data 

 

 

Figure 3.3 Matrix of scatter plots for Iris data 

Iris Dataset – 3 species 
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3.2.2. Survey Plots 

 
A survey plot is closely related to bar graphs and the permutation matrices 

that were invented by a French cartographer Jaques Bertin in 1967. Survey plots 

usually consist of n rectangular areas or lines (depending on the number of the 

observations and the size of the plotting screen) – one for each dimension – that are 

vertically arranged in rows. Each data value of an attribute is mapped to a point on 

the vertical line and the point is extended to a line with length proportional to the 

corresponding value. The strength of this visualization lays in its ability to show the 

relations and dependencies between any two attributes, especially when the data is 

sorted on a particular dimension (Fayyad et al, 2002). Tendencies and outliers can 

also be extracted easily. In addition, survey plots can aid in identifying rules for 

classification. (Grinstein et al, 2002). Figure 3.4 presents a survey plot created for the 

Car dataset as presented in Fayyad et al. (2002).    

 

Figure 3.4  Survey plot of the Car dataset sorted by cylinders and mpg (Fayyad et al, 2002) 
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3.2.3. Parallel Coordinate Plot 

 
The parallel coordinate plot, which was first described by Al Inselberg in 

1985, represents multidimensional data using lines. Whereas in traditional Cartesian 

coordinates all axes are mutually perpendicular, in parallel coordinate plots, all axes 

are parallel to one another and equally spaced. In this approach, a point in m-

dimensional space is represented as a series of m-1 line segments (Inselberg and 

Dimsdale, 1990) in 2-dimensional space. Thus, if the original data observation is 

written as (x1, x2, … xm,), then its parallel coordinate representation is the m-1 line 

segments connecting points (1,x1), (2,x2), . . . (m,xm).  Typically, continuous features 

will be standardized before a parallel coordinate plot is drawn.   

Wegman (1990) provide a description of the highly structured mathematical 

nature of the transformation from Cartesian coordinates to parallel coordinates, as 

well as some basic facts about parallel coordinate geometry. In summary, if two 

attributes are highly positively correlated, lines passing from one feature to another 

tend not to intersect between the parallel coordinate axes. For highly negatively 

correlated attributes, the line segments tend to cross near a single point between the 

two parallel coordinate axes. Figure 3.5 presents a parallel coordinate plot of the Iris 

dataset as presented in Grinstein et al, (2002). 

 

 

Figure 3.5:  Parallel Coordinate plot of Iris dataset taken from Grinstein et al, (2002) 
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 The following visualization techniques are described here because they are 

frequently used with high dimensional datasets. However, they have not been 

implemented in this thesis. 

3.2.4. Radial Coordinate Visualization (RADVIZ) 

 
 Like the previous visualization technique, the RADVIZ method (Ankerst et al, 

1996) maps a set of n-dimensional points onto a two dimensional space. However, in 

this case the mapping is not linear. This technique applies the idea of using spring 

constants to represent relational values between points. In the RADVIZ 

implementation, n-dimensions are laid out as points equally spaced around the 

perimeter of a circle. One end of n springs is attached to the n perimeter points. The 

other ends of the springs are attached to a data point. The spring constant, k, equals 

the value of the particular dimension of the fixed point.  For each point the position is 

placed where the sum of the spring forces equals 0. The data values are usually scaled 

to have values between 0 and 1. Many points can map to the same position. 

 Some features of this visualization are: 

• Points where all the values of an attribute have approximately the same 

value lie closer to the center. 

• If one or two dimensional values are greater, points will lie closer to those 

dimensional points. 

• Where the point will lie depends on the layout of the attributes around the 

circle. 

• Certain symmetries of the data will be preserved. 

 
Figure 3.6 shows a RADVIZ plot for the Iris dataset as taken from Grinstein et al, 

(2002).  
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Figure 3.6: RADVIZ plot of Iris dataset 
 

3.2.5. Grand Tours 

The 2-dimensional grand tour was introduced by Asimov. A 2-dimensional 

grand tour is a method for viewing multidimensional data by using linear projections 

onto a sequence of two dimensional subspaces and then moving continuously from 

one projection to the next. Wegman (1993) worked on generalizing the plot for d-

dimensions and Yang (2000) extended the work specifically to three dimensions. In 

all cases, the aim is to automatically aid the user in finding interesting, informative 

projections which are hard to find in the original data when the number of attributes is 

high. Yang (1999) sustains that in the data preprocessing stage of a data mining 

project, grand tours are efficient ways to examine the distribution of values of each 

feature, the correlations among features, and to decide which features should be 

included in further analysis.  Wegman and Carr (1993) suggest coupling grand tours 

with parallel coordinate displays, to allow for an in-depth study of high dimensional 

data.  

3.3. Current visualization techniques available for R 
 

Several packages currently available in R include visualization functions. Table 

3.1 lists several current R packages and the visualization functions they contain. The 
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list is not meant to be exhaustive but to provide a general idea of the options that are 

currently available to R users. At the same time, the differences between the 

visualizations provided by these functions and the functions designed as part of this 

work are emphasized to highlight the need to gather a useful set of visualization 

functions into one package.  

Other visualization tools that can be embedded into the R environment are 

currently available. A well known example is GGobi (Temple et al., 2001).  GGobi, a 

direct descendant of XGobi (Swayne et al., 1991), is a data visualization system with 

interactive dynamic methods for the manipulation of views of data. It offers 2D 

displays of projections of points and lines in high-dimensional spaces, such as 

scatterplots, parallel coordinate plots, scatterplot matrices and time series plots. 

GGobi runs on Linux systems as well as under the Microsoft Windows and 

Macintosh OS operating system. GGobi is a stand-alone application that has been 

constructed as a programming library to provide visualization functionality that can 

be embedded within other applications either through language bindings or plugins.  

3.4. New visualization functions for R 
 

Two visualization functions that work well with datasets containing up to 20 

features (high-dimensional) are the parallel coordinate and survey plots. Functions to 

implement these techniques have been included in the data preprocessing 

environment proposed in this thesis.  These visualizations have been chosen to be 

included in the environment we propose because they provide support for formulating 

hypotheses, identifying clusters, outlier detection, determining feature relevance, as 

well as for rule or pattern detection. The plots that are produced by these functions are 

low-resolution graphics that provide not only an automated means for visualizing a 

dataset but, also, provide several ways to modify the displays and increase the 

information that can be obtained.  
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Table 3-1: Description of visualization functions currently available in R 

 

3.4.1. An implementation in R of the survey plot – surveyplot() 
 

The survey plot is most useful at determining correlations between attributes 

and their relevance to classification if the data has been sorted by at least one of the 

attributes. This sorting option has been provided in the version of the survey plot 

created for this work, however, the plot is not an exact replicate of the original survey 

plot as presented by program Inspect (Lohninger, 1994). This original version extends 

a line around a center point, where the length of the line corresponds to the value of 

R package Function name Visualization 
technique 

Description 

MASS parcoord() parallel 
coordinates 

Creates a parallel coordinate plot for 
an input dataset with the column of 
classes removed on a white 
background. Order of features of the 
dataset must be arranged externally 
before calling the plotting function. 
Individual observations cannot be 
highlighted. 

lattice cloud() 3D scatter plot Creates a 3D scatter plot based on a 
specified formula for the indicated 
dataset on a gray background. 

lattice splom() scatter plot 
matrix 

Creates a scatter plot matrix based on 
a specified formula for the indicated 
dataset on a gray background. 

lattice parallel() parallel 
coordinates 

Creates a parallel coordinate plot for 
input data on a gray background. The 
class column is used to divide the plot 
into panels, one for each class. The 
order of features of the dataset must 
be arranged externally before calling 
the plotting function. Individual 
observations cannot be highlighted. 

base plot() scatter plot Plot points for two columns of a 
dataset, one column provides the x-
coordinates and the other the y-
coordinates 

base pairs() scatter plot 
matrix 

Creates a scatter plot matrix for the 
specified columns of a dataset on a 
white background. 
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the attribute. The survey plot shown in Figure 3.4 was created following Lohninger’s 

(1994) design.  It can be observed that each column is symmetric about its center (the 

left side has been flipped horizontally and repeated on the right), in this way 

displaying redundant information. The proposed version of the survey plot eliminates 

this redundancy, simplifying the computations needed to create the plot and saving 

space on the display screen. In this sense, this newer version of the plot is closer to a 

permutation matrix display (introduced by a French cartographer, Jacques Bertin) in 

that it allows for the observation of statistical information such as attribute means and 

the shape of the distribution of the whole dataset.  A more complete discussion of the 

permutation matrix plot can be found in Schmid and Hinterberger (1994). 

The R function that has been programmed for this work takes as minimum 

input the dataset. First the column containing the classes is removed, and then the 

data is standardized. Next, the screen space is distributed evenly among the number 

of observations and the number of attributes. Finally the horizontal lines 

corresponding to each normalized data value are plotted. Optional parameters to the 

function are: the name of the dataset, the column number of an attribute by which to 

order the dataset, the number of the class for which to limit the plot, and a vector 

containing the observation number of those observations that are to be highlighted. 

Survey plots of the Iris and Cars datasets that were created using this function are 

shown in figures 3.7 and 3.8. 

In figure 3.7, the survey plot of the Iris dataset, the three clusters of flower 

types are easily observed. The plot has been sorted by petal length and a correlation 

between petal length and petal width can be observed since petal width tends to 

increase with petal length. It can also be seen that petal length and petal width appear 

to be good discriminators for this dataset, since observations in each class assume 

similar values (observations are grouped by colors). Several observations with 

extreme values can also be observed.  

In Figure 3.8, the Cars dataset has been sorted by the third column, the 

number of cylinders. From this survey plot, the clustering of American cars (blue 
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segments) with respect to increased horsepower, weight, and cylinders can be 

observed. The Japanese cars (green segments) have high mpg, low weight, and 

smaller number of cylinders. The European cars (red segments) have more 

intermediate values. Again, extreme values can be observed in different classes. Some 

discrimination power can be observed, yet it appears that this power might be shared 

by more than one feature. 

Figure 3.9 shows the survey plot for the Iris data that has been ordered by 

column one and in which several observations are being emphasized. If compared to 

Figure 3.7, a difference in the discrimination power of the first and third features can 

be observed. 

 
Figure 3.7:  Survey Plot of Iris Dataset produced in R by a call to surveyplot() 
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Figure 3.8: Survey plot for Cars dataset produced in R by a call to surveyplot() 

 

 

 

Figure 3.9: Survey plot of Iris dataset for which several observations have been emphasized. 
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3.4.2. An implementation in R of the parallel coordinate  plot – parallelplot() 
 

The R function designed for this work that creates a parallel coordinate plot 

takes as minimum input the dataset. Once again, the column containing the classes is 

removed, and then the data is standardized. The number of distinct permutations of 

the attributes is determined and a temporary matrix that stores the order of the 

attributes for each combination is created. If a particular combination is specified at 

input, then p axes are placed, where p is the number of attributes, by evenly dividing 

the horizontal plotting space in p+1 rectangular spaces and then plotting the 

standardized observation values on the axes for each observation. The color of the 

poly-line will depend on the class to which the observation belongs. If no particular 

combination of feature ordering is specified at input, all distinct combinations are 

plotted (in reduced format) on a series of panels, four plots per display. This provides 

the user with the opportunity to observe all combinations and select the one which is 

believed to provide the most information. 

Optional parameters to the function are: the name of the dataset, the number 

of the class for which to limit the plot, and a vector containing the observation 

number of those observations that are to be highlighted. The high-resolution 

counterparts to these options would be the ability to zoom in on a particular class or 

observation and the ability to obtain a different view. 

Figure 3.10 shows a parallel coordinate plot for the Iris dataset created by the 

function we designed for the R environment.  Each different segment color represents 

a different class. It can be observed, once again, that the attributes sepal width (V3) 

and sepal length (V4) appear to be better discriminators, than the attributes petal 

width (V1) and petal length (V2).  

Other information that is conveyed by this plot is: 

• Clustering is propagated through all attributes. 

• The relationship between petal width and petal length shows relatively 

little crossover, suggesting positive correlation. (Thin flowers tend to 

have small petals.) 
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• Several segments can be observed in groups of segments of the same 

color that do not follow the general pattern of the group. This suggests 

the presence of outliers. 

 

 
Figure 3.10:  Parallel coordinate plot for Iris dataset. 

 
In any parallel coordinate plot, pairwise comparison is limited to those axes 

that are adjacent. Therefore, theoretically one could create n! permutations of the n 

attributes in the dataset so that in some permutation every axis is adjacent to every 

other axis. However, many of these are duplicate adjacencies. Wegman (1990) 

provides the details for determining that there are actually 



 +

2
1p  permutations 

required for an p-dimensional dataset, where  *   is the greatest integer function.  

Figure 3.11 shows parallel coordinate plots for the two distinct combinations 

of the Iris dataset using Wegman’s results (1990) as provided by the parallel 

coordinate function that has been created.  In the second plot, the pairwise 

comparisons that were not available in the plot of the first combination are V1 with 

V4, V2 with V3, and V1 with V3. 
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Figure 3.11: Distinct Permutations for the Iris dataset as produced by the parallelplot() function 

 

3.5. Limitations and future work 
 
 Though these two visualizations have been found useful for exploring the data 

sets used in this thesis, they suffer from limitations as the number of attributes and the 

number of observations increases. Both graphs suffer from the “clutter problem” 

which occurs when individual data items can no longer be seen clearly from the 

display due to the large number of attributes and/or observations. When the number 

of attributes is over fifteen, the large number of axes needed to create these displays 

tends to crowd the figure, limiting the value of the plot for detecting patterns or other 

useful information. Even with a low number of observations, a high dimensionality 

presents a serious challenge for these techniques. Figure 3.12 illustrates the “clutter 

problem” for high number of attributes using the Ionosphere dataset which contains 2 

classes, 32 attributes and 351 observations.  

 In addition to the “clutter problem”, a parallel plot may suffer from the 

“crossover problem”. When many of the poly-lines of the parallel coordinate plot 

crossover each other, following the lines that share common points on axes becomes 
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very difficult, if not impossible. Figure 3.13 shows the Segmentation dataset, which 

contains 7 classes, 17 attributes and 2310 observations. Individual observations are 

difficult to identify although it is still possible to observe patterns related to 

discriminating features. 

 

 

Figure 3.12: Plot that reflects the “clutter problem” for large number of attributes 

 
 One other limitation of these displays is the loss of the information that is 

encoded into the lines between the axes for discrete, heterogeneous data attributes. If 

A is a  continuous attribute and B is discrete, line segments reflecting a positive slope 

from attribute A to attribute B, may no longer imply that the value in attribute B is 

higher than the value of attribute A, due to the normalization that was applied before 

the graph was created. For example, x = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0} 

maps to x = {0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.000}, whereas z = 

{0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1} maps to z = {0, 0.5, 1.0, 0, 0.5, 1.0, 0, 0.5, 1.0, 0, 0.5} 

under the normalization method we used before constructing the plots. It can be 

noticed that line segments crossing from x to z will not carry any correlation 

information. 
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Figure 3.13: Display depicting the “crossover problem” 

 
 Much effort is being dedicated by many researchers to overcome these 

limitations.  The authors of this work believe that the “cluttering problem” could be 

addressed by modifying the current functions to include the ability to “slice” the 

attribute set and view the complete display as a series of panel displays. A different 

approach could be to apply dimensionality reduction techniques before plotting the 

data as proposed by Yang et al (2003). Their approach combines automation and user 

interaction to generate a meaningful attribute subspace that can be displayed using 

traditional multidimensional techniques. Yang has developed a prototype of a 

framework that forms clusters of attributes, automatically selects a representative 

attribute for each cluster and then maps the high-dimensional dataset into the 

subspace composed of these representatives and displays the projected subspace using 

multidimensional visualization techniques. 
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 Graham et al. (2003) proposes a number of refinements to the parallel 

coordinate graphing technique to solve the above mentioned problems. Graham 

suggests replacing the traditional set of poly-lines with a collection of smooth curves 

across the attribute axes. The curves allow the user to discern individual paths more 

easily.  Though this increases the utility of the plot by allowing for paths to be 

followed more easily after crossovers occur, the plots may still become cluttered after 

a large number of observations.  
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Chapter 4 Outlier Detection 
 
 
 

4.1. Introduction 
 

According to Hawkins (1980), “An outlier is an observation that deviates so much 

from other observations as to arouse suspicion that it was generated by a different 

mechanism”. Almost all the studies that consider outlier identification as their 

primary objective are in the field of statistics. A comprehensive treatment of outliers 

appears in Barnet and Lewis (1994). They provide a list of about 100 discordancy 

tests for detecting outliers in data that follow well-known distributions. The choice of 

an appropriate discordancy test depends on:    

a) the distribution,  

b) the knowledge of the distribution parameters,  

c) the number of expected outliers, and  

d) the type of expected outliers.  

These methods have two main drawbacks. First, almost all of them are for univariate 

data, making them unsuitable for multidimensional datasets. Second, all of them are 

distribution-based, and most of the time real-world data is multivariate with an 

unknown distribution.  

Detecting outliers is an important data mining task. The data mining 

community became interested in outliers after Knorr and Ng (1998) proposed a non-

parametric approach to outlier detection based on the distance of an instance to its 

nearest neighbors.  Outlier detection has many applications such as: fraud detection, 

network intrusion, and data cleaning. Frequently, outliers are removed to improve the 

accuracy of estimators. However, this practice is not always recommendable because 

sometimes outliers can have very useful information. The presence of outliers can
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indicate individuals or groups that exhibit a behavior that is very different from the 

norm. A growing practice in the data mining community is to rank the instances using 

an outlyingness measure rather than classifying the instances as outliers or non-

outliers. 

Section 2 of this chapter includes a brief discussion of the detection of outliers for 

univariate data.  Section 3 focuses on methods for the detection of multivariate 

outliers. Four methods of outlier detection are considered: a method based on robust 

estimation of the Mahalanobis distance, a method based on the PAM algorithm for 

clustering, a distance-based method and a density-based method. The effect and 

treatment of outliers in supervised classification will be discussed in Chapter 7.  

 

4.2. Univariate Outliers 
 

Given a dataset of n observations of a feature x, let x be the mean and let s be 

the standard deviation of de data distribution.  It is well known that an observation of 

the dataset is declared as an outlier if it lies outside of the interval 

),( ksxksx +− , ( 4.1) 

where the value of  k is usually taken as 2 or 3. The justification of these values relies 

on the fact that when assuming normal distribution one expects to have 95 percent of 

the data in the interval centered about the mean, with a radius equal to two standard 

deviations. Also, one expects to have all of the data inside an interval that is centered 

at the mean and that has a radius of three standard deviations. 

From Equation 4.1, the observation x is considered an outlier if 

k
s

xx
>

− ||
. (4.2) 

The problem with the above criteria is that it assumes normal distribution of the data, 

something that frequently does not occur. Furthermore, the mean and standard 

deviation are highly sensitive to outliers themselves. 
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John Tukey  (1977) introduced  several methods for explorative data analysis, 

one of which was the Boxplot. The Boxplot is a graphical display in which the 

outliers appear tagged.  Two types of outliers are distinguished: mild outliers and 

extreme outliers. An observation x is declared a mild outlier if it lies outside of the 

interval [Q1-1.5(IQR), Q3+1.5(IQR)]. The interval has a center at ( ) 2/31 QQ +  and a 

radius of 2(IQR).  An observation x is declared as an extreme outlier if it lies outside 

of the interval [Q1-3(IQR), Q3+3(IQR)]. Notice that the center of the interval is 

( ) 2/31 QQ +  with a radius of 3.5(IQR), where IQR=Q3-Q1.  IQR, called the 

Interquartile Range, is a robust estimator of variability which can replace s in 

Equation 4.1.  The numbers 1.5 and 3 are chosen by comparison with a normal 

distribution.  On the other hand  ( ) 2/31 QQ +  is a robust estimator of the center that 

can be used instead of x in Equation 4. 1.  

All the major statistical softwares include boxplots among their graphical 

displays. Figures 4.1-4.3 show the outliers of the features in the three classes of the 

dataset Iris detected through their boxplots. 

4.3. Multivariate Outliers 
 

Given a dataset D with p features and n instances (in a supervised 

classification context) we must also know the class to which each of the instances 

belongs. It is very common to include the classes as the last column of the data 

matrix. The objective of outlier detection in supervised classification is to identify all 

the complete instances that seem to be unusual in each class, these will be the 

multivariate outliers. One might think that multivariate outliers can be detected based 

on the univariate outliers for each feature but, as it is shown in the Figure 4.4, this is 

not always true. 
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Figure 4.1: Outliers of the features in class 1 of  the Iris dataset 

  

 

Figure 4.2:  Outliers of the features in class 2 of the Iris dataset 
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Figure 4.3:  Outliers of the features in class 3 of the Iris dataset. 

 
The instance appearing in the upper right corner is a multivariate outlier but it is not 

an outlier in either feature. On the other hand, an instance can have values that are 

outliers in several features and yet not be a multivariate outlier as a whole. 

There are several methods for detecting multivariate outliers. The methods 

discussed in this thesis are: statistical-based outlier detection, outlier detection by 

clustering, distance-based outlier detection and density-based local outlier detection. 

The before mentioned methods are discussed in the next sections.  

4.3.1. Statistical based outlier detection. 
 

Let x be an observation of a multivariate dataset consisting of n observations 

and p features. Let x  be the centroid of the dataset, which is a p-dimensional vector 

with the mean of each feature as components. Let X be the matrix of the original 

dataset with columns centered by their means. Then the p×p matrix S = 







−1
1

n
X’X 

represents the covariance matrix of the p features. 
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The multivariate version of Equation 4.2 is 

kD >−−= − )x(x)Sx(xxx, 1)(2 , (4.3) 

 

where D2 is called the Mahalanobis square distance from x to the centroid of the 

dataset.  An observation with a large Mahalanobis distance can be considered as an 

outlier. 

 

Figure 4.4: Example of a bi-dimensional outlier that is not an outlier in either of its projections. 

 

Assuming that the data follows a multivariate normal distribution, it has been 

shown that the distribution of the Mahalanobis distance behaves as a Chi-Square 

distribution for a large number of instances. The proposed cutoff point for Equation 

4.3 is given by k= 2
)1,( αχ −p  , where χ2 stands for the Chi-Square distribution and α is a 

signification level, usually taken as 0.05.  (Rousseeuw and Leroy, 1987) 

A basic method for detecting multivariate outliers is observing the outliers 

that appear in the boxplot of the distribution of the Mahalanobis distance of all the 

instances. Rocke and Woodruff (1996) stated that the Mahalanobis distance works 

well identifying scattered outliers however, it may fail to detect clustered outliers. 
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Example 1.  Find the multivariate outliers in each of the classes of the Iris dataset by 

building boxplots of the Mahalanobis distance of all of the instances. 

 

Figure 4.5: Detecting multivariate outliers by boxplots in the Iris dataset 

 

Figure 4.5 shows the boxplots of the Mahalanobis distances for each feature in each 

class of the Iris dataset.  Notice that only two outliers (119 and 132) are detected in 

class 3. 

Datasets with multiple outliers or clusters of outliers are subject to the 

masking and swamping effects.  

• Masking effect. It is said that an outlier masks a second one that is 

close by if the latter can be considered an outlier by itself, but not if it 

is considered along with the first one. Equivalently, after the deletion 

of one outlier, the other instance may emerge as an outlier. Masking 

occurs when a group of outlying points skews the mean and 

covariance estimates towards it, and the resulting distance of the 

outlying point from the mean is small.  
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• Swamping effect.  It is said that an outlier swamps other instances if 

the latter can be considered as outliers only under the presence of the 

first one. In other words after the deletion of one outlier, the other 

outlier may become a “well-behaved” instance. Swamping occurs 

when a group of outlying instances skew the mean and covariance 

estimates towards it and away from other “good” instances, and the 

resulting distance from these “good” points to the mean is large 

making them look like outliers. 

  

Example 2:  Consider the dataset due to Hawkins, Bradu, and Kass (Rousseeuw and 

Leroy, 1987) consisting of 75 instances and 3 features, in which the first fourteen 

instances have been contaminated to become outliers. Using the Mahalanobis 

distance, only observation 14 is detected as an outlier as is shown in Figure 4.6. The 

remaining 13 outliers appear to be masked. 

 

Figure 4.6: The Masking effect of  multivariate outliers in the Hawkins dataset 

 

Masking and swamping can be solved by using robust estimates of the 

centroid (location) and the covariance matrix (dispersion), which by definition are 
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less affected by outliers. Outlying points are less likely to enter into the calculation of 

the robust statistics, so they will not be able to influence the parameters used in the 

Mahalanobis distance.  Two robust estimators of the cetroid and the covariance 

matrix include the minimum covariance determinant (MCD) and the minimum 

volume ellipsoid (MVE), both introduced by Rousseeuw (1985).  

The Minimum Volume Ellipsoid (MVE) estimator is the center and the 

covariance of a subsample of size h (h ≤ n) that minimizes the volume of the 

covariance matrix associated to the subsample. Formally, 

MVE=( * *,J JSx ) , ( 4.4) 

where J={set of  h instances: * *( ) ( )J KVol S Vol S≤  for all K s. t . #(K)= h}. 

 

The value of h can be thought of as the minimum number of instances which must not 

be outlying and is usually equal to 






 ++
2

1pn , where [.] is the greatest integer 

function, n is the number of observations and p is the number of features.  The 

volume of the ellipsoid is calculated using the formula: 

2
1

2
,...2,1)(









== idhimediankSkSVol . 

The Minimun Covariance Determinant (MCD) estimator is the center and the 

covariance of a subsample of size h (h ≤ n) that minimizes the determinant of the 

covariance matrix associate with the subsample. Formally, 

 

MCD=( * *,J JSx ) , ( 4.5) 

where J={set of  h instances: * *| | | |J KS S≤  for all K s. t . #(K)= h} As before, it is 

common to take h = [(n+p+1)/2], where [.] is the greatest integer function.   

The MCD estimator underestimates the scale of the covariance matrix, so the 

robust distances are slightly too large, and too many instances tend to be nominated 

as outliers. A scale correction has been implemented, and it seems to work well. The 
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algorithms used to compute the MVE and MCD estimators are based on 

combinatorial arguments (for more details see Rousseeuw and Leroy, 1987). 

In this thesis, both estimators, MVE and MCD, have been computed using the 

function cov.rob available in the package lqs of R. This function uses the best 

algorithms available so far to compute both estimators (Rousseeuw, 1989). Taking 

into account their statistical efficiency and computational accuracy, the MCD is 

preferred over the MVE. 

Replacing the classical estimators of the center and the covariance in the usual 

Mahalanobis distance, Equation 4.3, by either the MVE or MCD estimator, outlying 

instances will not skew the estimates and can be identified as outliers by large values 

of the Mahalanobis distance. The most common cutoff point k is again the one based 

on a Chi-Square distribution, although Hardim and Rocke (2004) propose a cutoff 

point based on the F distribution that they claim to be better.  

In this thesis, two strategies to detect outliers using robust estimators of the 

Mahalanobis distances have been used. The first method involves choosing a given 

number of instances appearing at the top of a ranking based on their robust 

Mahalanobis measure.  The second method chooses as multivariate outliers the 

instances that are tagged as outliers in the boxplot of the distribution of these robust 

Mahalanobis distance. 

 

Example 3:  Find the multivariate outliers in each of the classes of the Iris dataset by 

building boxplots for the distribution of the robust version of the Mahalanobis 

distance. 

 

Using the robout function we have written in R (see appendix) and 

considering 10 repetitions the results appearing in the tables 4.1 an 4.2 have been 

obtained from the boxplots for the distribution of the robust version of the 

Mahalanobis distances. Notice that both methods detect two outliers in the first class, 

but the MVE method detects the instance 42 as a second outlier whereas the MCD 
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method detects the instance 24. All the remaining outliers detected by both methods 

are the same. Three more outliers are detected in comparison with the use of the 

Mahalanobis distance. 

 

Table 4.1:  Top outliers per class in the Iris dataset by frequency and the 
outlyingness measure using the MVE estimator 

Instance class Frequency Outlyingness 

44 1 8 5.771107 

42 1 8 5.703519 

69 2 9 5.789996 

119 3 8 5.246318 

132 3 6 4.646023 

 

 

Table 4.2: Top outliers per class in the Iris dataset by frequency and the 
outlyingness measure using the MCD estimator 

Instance Class Frequency Outlyingness 

44 1 10 6.557470 

24 1 10 5.960466 

69 2 10 6.224652  

119 3 10 5.390844 

132 3 7 4.393585 

 

 

Figure 4.7 shows a plot of the ranking of the instances in class 3 of the Iris dataset 

by their robust Mahalanobis distance using the MVE estimator.  Figure 4.8 shows a 

plot of the ranking of the instances in class 3 of Iris by their robust Mahalanobis 

distance using the MCD estimator. According to Rocke (2002) robust methods work 

well detecting scattered outliers but fail to detect clustered outliers. For this type of 

outlier it is better to use a clustering algorithm as will be discussed in the next section. 
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Figure 4.7: Plot of the  instances of the Iris dataset ranked by their Mahalanobis 

distance using MVE estimator 

 

 
Figure 4.8: Plot of the instances of Iris  class 3,  ranked by their Mahalanobis distance 

using MCD estimator 
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4.3.2. Detection of outliers using clustering 
 

A clustering technique can be used to detect outliers. Scattered outliers will 

form a cluster of size 1 and clusters of small size can be considered as clustered 

outliers.  There are a large number of algorithms for finding clusters. In this thesis, 

only the Partitioning around Medoids (PAM) method will be considered. PAM was 

introduced by Kaufman and Rousseeuw (1990) to improve the well-known k-means 

clustering method. It works efficiently on small datasets, but is extremely costly for 

larger ones. This led to the development of CLARA (Clustering Large Applications) 

(Kauffman and Rousseuw, 1990), where multiple samples of the dataset are 

generated, and then PAM is applied to each sample. CLARA chooses the best 

clustering as the output, basing quality on the similarity and dissimilarity of objects in 

the entire set, not just the samples. A modification of CLARA that is applied to very 

large datasets is CLARANS (Ng and Han, 1994). 

Given k, the number of partitions to construct, PAM creates an initial 

partitioning. It then uses an iterative relocation technique that attempts to improve the 

partitioning by moving instances from one group to another. The general criterion of 

“good” partitioning is that instances in the same cluster are “close” or related to each 

other, whereas instances of different clusters are “far apart” or very different. 

In order to find k clusters, PAM’s approach is to determine a representative 

instance for each cluster. This representative instance called medoid, is meant to be 

the most centrally located instance within the cluster. More specifically, a medoid can 

be defined as that instance of a cluster, whose average dissimilarity to all the objects 

in the cluster is minimal. After finding the set of medoids, each object of the dataset is 

assigned to the nearest medoid. 

If Oj is a non-selected instance and Oi is a selected medoid, we say  that Oj 

belongs to cluster represented by Oi  if d(Oi,Oj) = minOe d(Oj,Oe) where  the minimum 

is taken over all medoids Oe, and d(Oa,Ob) denotes the dissimilarity or distance 

between instances Oa and Ob. 
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The PAM algorithm consists of two steps: 

1. The BUILD-step: This step sequentially selects k centrally located 

instances, to be used as initial medoids. 

2. The  SWAP-step: If the objective function  J = ∑ ),( imvid  

d(i, mvi), which is the sum of the dissimilarities of all instances  to their 

nearest medoid mv, can be reduced by interchanging (swapping) a selected 

object with an unselected object, then the swap is carried out. This is 

continued until the objective function J can no longer be decreased.  

There are k(n-k) possible pairs of (Oi ,Oh). For each pair, computing J requires 

the examination of (n-k) non-selected instances. Thus, the combined complexity is: 

O(k(n-k)2). Hence, PAM becomes very costly for large values of n and k. However, 

PAM is very robust to the presence of outliers and does not depend on the order in 

which instances are examined. 

After the allocation of the instances to the k clusters, one must determine the 

separation between them. The separation of the cluster C is defined as the smallest 

dissimilarity between two objects; one which belongs to Cluster C and the other that 

does not. That is, separationc = ChCldlh ∉∈ ,),(min . 

If the separation of a cluster is large enough, then all of the instances that 

belong to the cluster are considered outliers.  In order to detect the clustered outliers 

one must vary the number of clusters, k, until clusters of small size are obtained that 

have a large separation from others clusters.  

The algorithm PAM can be evaluated using the function pam available in the 

library cluster in R. 
 

Example 4: Find the outliers of the Iris dataset using the PAM algorithm. 

Looking at the separation measures of ten clusters generated for each class, the 

detected outliers are shown in the table 4.3.  
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Table 4.3:   Outliers in the Iris dataset according to the PAM algorithm 
Instance Class Separation 

42 1 0.6244998 

58 2 0.6480741 

61 2 0.6480741 

94 2 0.6480741 

99 2 0.6480741 

107 3 0.9110434 

118 3 0.8185353 

132 3 0.8185353 

 

Notice that in the class 3, PAM detects the instance number 107 as an outlier but it 

does not detect the instance 119. 

4.3.3. Distance based outlier detection 
 

Given a distance measure on a feature space, two different definitions of 

distance-based outliers are the following. 

1. An instance x in a dataset D is an outlier with parameters p and λ if at 

least a fraction b of the objects are a distance greater than λ from x. (Knorr 

and Ng, 1997, 1998, Knorr et al. 2000). This definition has certain 

difficulties such as the determination of  λ and the lack of a ranking for the 

outliers. Thus an instance with very few neighbors within a distance λ can 

be regarded as strong an outlier as an instance with more neighbors within 

a distance λ. Furthermore, the time complexity of the algorithm is O(pn2), 

where p is the number of features and n is the number of instances. Hence 

it is not an adequate definition to use with datasets having a large number 

of instances.  

 

2. Given the integers k and n (k<n), outliers are the top n instances with the 

largest distance to their kth nearest neighbor (Ramaswamy et al., 2000). 
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One shortcoming of this definition is that it only considers the distance to 

the kth neighbor and ignores information about closer points. An 

alternative is to the use of the average distance to the k nearest neighbors 

instead of the greatest distance. The drawback of this alternative is that it 

takes longer to calculate. 

 

In this thesis a variant of a simple algorithm for distance-based outlier detection, that 

is based on nested loops (Bay and Schwabacher, 2003), has been used. 

 

Bay’s Algorithm.  

Bay and Schwabacher (2003) proposed a simple nested loop algorithm that 

tries to reconcile definitions 1 and 2.  The main idea in the algorithm is that for each 

instance in D one keeps track of the closest k neighbors found so far. When an 

instance’s k closest neighbors achieve a score that is lower than a cutoff, then the 

instance is removed from the list of possible candidates for outliers because it can no 

longer be an outlier. 

 In this thesis the score function used has been the median distance to the k 

neighbors. Bay used the average distance to the k neighbors, but the median is more 

robust than the mean. As more instances are processed, the algorithm finds more 

extreme outliers and the cutoff increases along with pruning efficiency. The 

performance of the algorithm in the worst case is of quadratic order. The algorithm is 

shown in Figure 4.9. 

Bay and Schwabacher (2003) determined experimentally that the algorithm 

obtains linear performance with respect to the number of neighbors and almost linear 

with respect to the number of instances, when the data is in random order and a 

simple pruning rule is used.  Using 6 datasets they found a complexity of order O(nα) 

where α varied from 1.13 to 1.32.  In this thesis work, an α value near 1.5 has been 

obtained for three datasets: Ionosphere, Vehicle and Diabetes, sustaining that the 

pruning rule has the effect of lowering the theoretical time complexity. A function 
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called baysout has been written in the R language to perform Bay’s algorithm.  The 

algorithm is shown in Figure 4.9. 

 

Figure 4.9:  Bay’s Algorithm for finding distance-based outliers 

 

Example 5:  Find the outliers of the class 3 in the Iris dataset using the Bay’s 

algorithm. 

 

Using the baysout function the top 20 outliers are shown in Figure 4.10. 

Clearly the instance 107 is detected as an outlier. There is a second group that 

includes 119, 120,132,123 and 118. 

Input:  k: number of nearest neighbors 
n: number of outliers to return 
D: dataset randomly ordered 
BS: size of blocks in which D is divided. 
 

Let distance(x,y) return the Euclidean distance between x and y. 
Let maxdist(x,Y) return the maximum distance between the instance x and the set of instances Y. 
Let Closest(x,Y,k) return the k closest instances in Y to x.  
Let score(x) return median distance to the k neighbors 
 
begin 
c← 0 Set the cutoff for pruning to 0. 
O←φ Initialize the set of outliers as the empty set. 

NB←ceiling(# instances in 
BS
D

) 

       while nb<NB { 
        Neighbors(b)←φ for all b in Bnb 
        for each d in D { 
               for each b in Bnb, b≠d{ 
                       if |Neigbors(b)|<k or distance(b,d)<maxdist(b, Neighbors(b)){ 
                            Neighbors(b) ←Closest(b, Neighbors(b)∪ d, k) 
                   if (score(Neighbors (b),b)<c{ 
                    remove b from Bnb 
                    }}}} 
      O←Top(Bnb ∪  O, n)   //Keep only the top n outliers 
      c←min(score(o)) for all in O  //The cutoff is the score of the weakest outlier 
} 
end 
 
Output: O, a set of outliers 
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Figure 4.10:  Instances of the class 3 in Iris dataset ranked by the Bay’s algorithm outlyingness 
measure 

 

4.3.4. Density-based local outliers 
 

The term density-based local outlier was introduced by Breunig et al (2000). 

For density-based local outliers the density of an instance and the density of its 

neighbors play a key role in classifying an instance as an outlier.  Furthermore, an 

instance is not explicitly classified as either an outlier or a non-outlier.  Instead, for 

each instance, a local outlier factor (LOF) is computed which will give an indication 

of how strong of an outlier an instance has been found to be.  

Figure 4.11 that follows, taken from Breunig et al (2000), shows the weakness 

of the distance-based outlier detection method which would identify the instance o1 as 

an outlier, but would not consider o2 as an outlier.  Several definitions are needed in 

order to formalize the algorithm. 
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Figure 4.11: Example to show the weakness of the distance-based method to detect outliers 

 

Definition 1.  k-distance of an instance x 

For any positive integer k, the k-distance of an instance x, denoted by k-distance(x), is 

defined as the distance d(x,y) between x and an instance y ε D such that: 

(i) for at least k instances y’ ε D-{x},  d(x,y’) ≤ d(x,y) 

(ii) for at most k-1 instances y’ ε D-{x},  d(x,y’) < d(x,y). 

 

Definition 2.  k-distance neighborhood of an instance x 

Given an instance x of a dataset D its k-distance neighborhood contains every 

instance whose distance from x is not greater than the k-distance. That is, the set of k-

nearest neighbors of x is given by 

}≤ = )distance(x-k y)d(x,  s.t.  {x}-D{y )distance(x-kN ε .  (4.6) 

Definition 3. Reachability distance of an instance x w.r.t. instance y 

Let k be a positive integer number. The reachability distance of the instance x with 

respect to the instance y is defined as  

reach-dist (x,y) max{k-distance(y),d(x,y)}k = .  ( 4.7) 

The density-based local algorithm to detect outliers requires only one 

parameter, MinPts, which is the number of nearest neighbors used in defining the 

local neighborhood of the instance.  
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Definition 4.  Local reachability density of an instance x 

Given an instance x of a dataset D its local reachability density  is defined by 

1
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This is the inverse of the average reachability distance based on the MinPts-

nearest neighbor of x. Finally the definition of the outlyingness measure is given 

below. 

 

Definition 5. Local outlier factor (LOF) of an instance x 

The LOF measures the degree to which an instance x can be considered an outlier and 

is defined by  
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Breunig et al showed that instances deep inside a cluster have LOF’s that are 

close to 1 and should not be labeled local outliers.  

Since LOF is not monotonic, Breuing et al recommends finding the LOF for 

each instance of a dataset using MinPts-nearest neighbors, where MinPts assumes a 

range of values from MinPtsLB to MinPtsUB.  They reported that for the datasets 

they experimented with, MinPtsLB=10 and MinPtsUB=20 seemed to work well.  In 

this thesis, LOF were found in a range of MinPtsLB=10 and MinPtsUB=20 or 

MinPtsLB=20 and MinPtsUB=30, depending on the range which produced a more 

monotonic plot. 
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After deciding upon the values to use for MinPtsLB and MinPtsUB, the LOF 

of each instance is computed over this range. Finally all the instances are ranked with 

respect to the maximum LOF value within the specified range. That is, the ranking of 

an instance x is based on: 

MinPtsUB}MinPtsMinPtsLB  s.t. MinPts(x)Max{LOF ≤≤ .  (4.10) 

 
A maxlof (see appendix) function has been written in the R language to 

perform the LOF algorithm as part of this work. The algorithm is shown in figure 

4.12. 

 

 

Figure 4.12: The maxLOF Algorithm 

 
Breunig et al.(2000) states that the time complexity of the maxLOF algorithm 

can be analyzed by studying independently the time complexity of the two main steps 

required to produce the LOF factor for each instance of the dataset. The first step, 

finding the k-distance neighborhood, has a runtime complexity of O(n*time for a k-

nn query).  Therefore, the actual time complexity of this step is determined by the 

method used to perform the k-nn queries. For low dimensionality (no more than 5 

features), if a grid based approach is used the query can be performed in constant time 

leading to a complexity of O(n) to complete the entire step.  For medium 

Input: Dataset D, MinptsLB, MinptsUB 

Let maxlofvect=φ 

for each  i in the interval [MinPtsLB, MinPtsUB] 

{ 

1. Find the i nearest neighbors and their distance from each observation in D 

2. Calculate the local reachability density for each observation in D 

3. Compute the local outlier factor of each observation in D 

4. maxlofvect=max(maxlofvect, lof) 

  } 

end 

Output: maxlofvect, the local outlier factor for each observation in D
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dimensionality (between 5 and 10 features), an index can be used that would provide 

an average complexity of O(log n) for the k-nn queries, leading to a total complexity 

of O(nlogn).  Finally, for high dimensional data, a sequential scan may be used with a 

complexity of O(n) that would lead to a total complexity of O(n2).  Finding the 

maximum outlier factors of all observations in the dataset can be done in linear time. 

Table 4.4 shows the experimental running time for the local outlier factors for 

all observations of the datasets used in this work. The times have been computed 

using two different values for k, the number of neighbors. Note that the number of 

neighbors does not affect the running time.  Using k=15, the regression line of 

log(time) versus log(n) and log(p) is 

log(time) = - 4.80 + 1.62 log(n) + 1.09 log(p) 

with a R2= 90.1%.  Therefore a good estimate of the complexity would be 

O(n1.62p1.09).  Looking at the relationship of time versus the number of instances n, 

one gets an estimated regression line given by  

log(time) = - 4.21 + 1.87 log(n) 

with R2 = 75.1% ,  and a good estimate for the complexity would be O(n1.87).  

Table 4.4: Experimental running times for computing the LOF  for all 
observations 
 
 k=15 k=25 n p log(time) log(n) log(p) 
Iris 0.54 0.55 150 4 0.26761 2.17609 0.60206
Sonar 11.45 11.3 208 60 1.05881 2.31806 1.77815
Heartc 1.32 1.33 297 13 0.12057 2.47276 1.11394
Bupa 1.21 1.33 345 6 0.08279 2.53782 0.77815
Ionosfera 16.19 15.92 351 32 1.20925 2.54531 1.50515
Crx 8.51 8.56 653 15 0.92993 2.81491 1.17609
Breastw 4.8 4.72 683 9 0.68124 2.83442 0.95424
Diabetes 8.89 8.99 768 8 0.9489 2.88536 0.90309
Vehicle 11.18 11.43 846 18 1.04844 2.92737 1.25527
German 11.16 11.14 1000 20 1.04766 3 1.30103
Segment 323.45 321.3 2310 16 2.50981 3.36361 1.20412
Landsat 746.71 746.38 4435 36 2.87315 3.64689 1.5563
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This agrees with the Breuning’s claim that for a high-dimensional data the LOF 

algorithm has time complexity O(n2). 

A log-scale plot that shows time required to compute the LOFs for all the 

datasets in our study as the number of instances increases is shown in Figure 4.13.  

This log-scale plot suggests a near quadratic relationship between the computing 

running time of the LOFs and the number of instances.   
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Figure 4.13:  Runtime for the computation of LOFs for different datasets 

 

Example 6.  Find the outliers of the third class in the Iris dataset using the LOF 

algorithm. 

 

Using the maxlof function, the top 10 outliers are shown in Figure 4.14. Clearly the 

instance 107 is detected as an outlier. There is a second group that includes 119, 

118,132 and 123. Finally, instance 106 appears as a third group. 
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Figure 4.14: Instances of the class 3 in Iris dataset ranked by the LOF’s algorithm outlyingness 
measure 
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Chapter 5 Feature Selection 
 
 
 

5.1. Introduction 

The dimensionality problem in a knowledge discovery process still remains as a 

very important problem to be investigated in spite of the fact that computers are 

becoming more powerful everyday. The classification task in knowledge discovery is 

more conveniently done with few features for two reasons: a saving of computing 

time and an easy interpretation of the model. The goal of feature selection is to 

choose a small subset of features such that the recognition rate of the classifier does 

not decrease significantly. Feature selection methods are classified by the way they 

generate subsets and by the evaluation function used to measure the quality of the 

subset produced. The subset generation procedure can be one of three types: 

complete, heuristic and random. The evaluation function can be a distance measure, 

an information measure, a dependence measure, a consistency measure, or the 

misclassification error rate.  

Dash and Liu (1997) established 15 categories of feature selection procedures, 

based on the generation procedure of the subsets and the evaluation function used to 

compare them. In this thesis, the performance of five feature selection procedures are 

evaluated: The RELIEF, Las Vegas Filter, FINCO, Sequential forward selection 

(SFS) and, Sequential floating forward selection (SFFS). The first three are 

considered filter methods because they do not use a classifier to select features, 

whereas the last two require a classifier and are known as wrapper methods.  

The classifiers used in this thesis are: the discriminant linear analysis (LDA), 

the k-nearest neighbor classifier, and the recursive partitioning classifier (rpart). 

Filters and wrappers are compared according to the percentages of features selected 
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and the effect on the misclassification error rate of the feature subsets produced.  The 

comparison is carried out in twelve datasets available in the Machine Learning 

Repository at the University of California, Irvine. The number of features of these 

datasets varies from 4 to 60.  

Section 2 of this chapter deals with the filter methods. Wrappers methods are 

discussed in section 3.  

5.2. Filter methods  

These methods do not require the use of a classifier to select the best subset of 

features. They use general characteristics of the data to evaluate features. In this paper 

we considered three filter methods: the RELIEF, Las Vegas Filter (LVF) and a new 

procedure introduced by Acuña et al (2003) called FINCO. We will describe each of 

them briefly.  

 

5.2.1. The RELIEF Algorithm 

This method was introduced for a two class problem by Kira and Rendell in 

1992. The general idea of this method is to choose the features that can be most 

distinguished between classes. These are known as the relevant features. In a two 

class problem, initially each of the p features of the dataset, D, have a relevance 

weight wj (j=1,….p) equal to zero. Then, at each step of an iterative process, an 

instance x is chosen randomly from D and the weights wj are updated according to the 

distance of x to its Nearmiss and NearHit. The Nearmiss is the instance in the dataset, 

D, that is closest to x but that belongs to the other class. The NearHit is the instance 

in D that is closest to x and belongs to its same class. The updating formula of wj is 

given by  

2 2( , ) ( , )j j j j j jw w diff x Nearhit diff x Nearmiss= − + ,  (5.1) 

where xj the j-th component of x, and the function diff  computes  the distance 

between the values of a feature for two given instances. For nominal and binary 
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features, diff is either 1 (the values are different) or 0 (the values are equal). For 

ordinal and continuous features, diff is the difference of the values of the feature for 

the two instances normalized by the range (maximum-minimum) of the feature.  

The process is repeated M times, where M is a predefined parameter, usually 

taken as the number of instances in D. The repetition must be done to reduce the 

variability generated by the randomization. In this work, the algorithm was repeated 

ten times for datasets with less than 10 features and, twenty times for datasets with 10 

o more features. The output of the algorithm is the best subset of features that 

includes those features with relevance greater than a specified threshold. The RELIEF 

works well in datasets containing mixed types of features, as well as with datasets 

containing noise and correlated features. Its time complexity is O(n×M×p), that is, 

linear in the number of features as well as in the number of instances.  

The RELIEF algorithm appears in Figure 5.1.  

Figure 5.1:  The RELIEF algorithm 
 

The RELIEF algorithm presents the following disadvantages:  

Input: D=Dataset, p= number of features in D, M=number of instances randomly drawn, 

Threshold=τ.  

1. let T=φ , T is the subset containing the features being selected  

2. Initialize all weights,  wj (j=1,..,p), to zero  

3. for i=1 to M  

   { Choose at random an instance x in D.  

      Find its Nearhit and  NearMiss  

      for j=1 to p  
2 2( , ) ( , )j j j j j jw w diff x Nearhit diff x Nearmiss= − +  

   }  

4. for j=1 to p  

if wj> τ then append featurej to T  

5. Output: T, the set of most relevant features. 
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• The selection of the threshold τ and of the parameter M, are unclear. Yet the 

choice of the threshold is very critical for the efficiency of the RELIEF 

algorithm. 

• The algorithm eliminates irrelevant features, but redundant features, and those 

that might be correlated with others, can be selected. 

  In this thesis, the threshold was chosen iteratively. First, the threshold was set to 

0.  Then, after looking at the plots of the feature weights, the threshold was increased 

to equal the weight at which the lowest gap occurs in the plot (if one was present). 

Otherwise, the value was moved away from zero, trying to obtain frequencies that 

were near 10 for the chosen features. In some cases when the gap did not appear 

clearly, then the threshold was refined with additional repetitions of the algorithm. 

However, this situation did not occur very often.    

In this thesis, for small datasets, M was chosen equal to the number of 

instances of the dataset D. However, for large datasets, M was taken to be equal to a 

value as low as a 10 percent of the total number of instances (depending on the 

presence of a gap in the plot of relevance weights). 

The RELIEF algorithm was extended to multiclass problems by Kononenko 

(1994) and Kononenko et al. (1997). The new algorithm was named RELIEF-F. In 

this case, one Nearmiss is found for every class distinct to the class containing x and 

the distance from x to each Nearmiss is weighted according to the proportion of 

instances in each class. The updating formula of the relevance weight wj is as follows: 

 

2 2

( )

( )( , ) ( , ( ))
1 ( ( ))

j

j j j j j
C class x j

P Cw w diff x Nearhit diff x Nearmiss C
p class x≠

= − +
−∑ .  (5.2) 

 

The RELIEF algorithm used in this thesis was the one modified by Kononenko.  

An R function named relief, (see appendix) was written to implement the RELIEF 

algorithm. 
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Example 1.  Apply the RELIEF algorithm to select the best subset of features for the 

Ionosphere dataset, which has 32 features and 351 instances. 
 

The results obtained after applying the relief function are: 

Frequencies and average weights of most relevant features in 10 replicates:  
 

     feature  frequency weight 

 [1,] 25 10  0.04112852 

 [2,] 26 10  0.03926254 

 [3,] 22 10  0.03513727 

 [4,] 28 10  0.02904335 

 [5, 13 10  0.02780220 

 [6,   3 10  0.02767617 

 [7,] 27   7  0.02761284 

 [8,] 24   8  0.02418991 

 [9,] 23   7  0.02417275 

[10,] 32 10  0.02339732 

[11,]   8   6  0.02265841 

[12,]   1   6  0.01999221 

[13,] 30   6  0.01981515 

 

Selected features  

 [1] 25 26 22 28 13 3 27 24 23 32 8 1 30 
 

The corresponding plot of the relevance weights is shown in figure 5.2. Notice 

the gap at weights = 0.02. There are other gaps above and below 0.02, but choosing a 

high value as a threshold will yield less features selected and choosing a lower 

threshold value will cause the selection of a large number of features. 
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Figure 5.2:  Plot of relevance weights for the features of the dataset Ionosfera 

 

5.2.2. The Las Vegas Filter (LVF) 

 
The Las Vegas Filter method (LVF) was introduced by Liu and Setiono 

(1996). LVF uses a random generation of subsets and an inconsistency measure as the 

evaluation function. Two instances of a dataset D are inconsistent if they have the 

same feature values but belong to different classes. The inconsistency measure of a 

given subset of features, T, relative to a dataset D, is defined as  

1
| | | |

( , )

K

i i
i

D M
Inconsistency T D

N
=

−
=

∑
, (5.3) 

 

where |Di| is the number of occurrences of the ith feature value combination on T, K is 

the number of the distinct combinations of feature values on T, |Mi| is the cardinality 

of the class to which the majority of instances on the ith feature values belong, and N 
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is the number of instances in the dataset D.  An R function inconsist was written to 

compute the inconsistency level of a dataset. 

 

Example 2.  The following table shows the inconsistency level of the Breastw dataset 

for several combinations of its features. The dataset has 9 features that take on integer 

values from 1 to 10. 

 

Subset Inconsistency  

1 0.14055 

1,4 0.05710 

1,4,6 0.01171 

1,4,8 0.02489 

1,2,4,6 0.001464 

1,2,4,5,6 0.001464 

1,2,3,4,5,6,7,8,9 0 

 

Notice that inconsistency is monotonically decreasing on the number of features. 

Thus, given two subsets of features A and B, such that A⊆B then inconsistency(A) ≤ 

inconsistency(B). 

   

The inconsistency measure can be applied to datasets with continuous features 

after applying a discretization process, such as the method of Fayyad and Irani that is 

based on partitioning by minimization of the class information entropy with Minimal 

Description Length Principle as a stopping criterion (Dougherty et al., 1995). In this 

thesis, we have applied a simple equal width interval discretization method based on 

Scott’s formula (see Venables and Ripley (1997), p. 169) to estimate the width 

interval. In this formula a feature with n values and standard deviation s can be 

discretized on k = 
h
R  integer values, where h = 3.5×s×n-1/3 and, R = Max – Min, is the 
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range of the feature.  An R function named discretar has been written to perform 

discretization using Scott’s formula. 

The LVF algorithm requires several input parameters. An inconsistency 

threshold that is close to or equal to zero must be set beforehand and sent to the 

algorithm. To determine this value, the inconsistency measure of the dataset, 

including all the features, was first computed. Then a value a little larger than the 

measure obtained was taken as the inconsistency threshold. Any candidate subset 

having an inconsistency measure greater than the threshold is rejected.  

Another parameter is the maximum number of subsets to be generated 

randomly. This number was varied between 1000 and 20,000 depending on the 

number of features of the dataset and the variability of the subsets obtained. The LVF 

method is suitable for datasets having only nominal features. If there are any 

continuous features in the dataset it must be discretized previously. The LVF 

algorithm is shown in Figure 5.3. 

 An R function named lvf  (see appendix) has been written to perform the 

LVF algorithm on the discretized dataset.  

 

Example 3. Apply the LVF algorithm to select the best subset of features for the 

Ionosphere  dataset. 

 

The inconsistency level of the complete set of features is zero. After performing 

20,000 iterations using a threshold of 0.001, and implementing a voting process 

consisting of 10 repetitions of the algorithm, the features 1, 5, 12, 14, 20, 29, 30 were 

selected. 
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Figure 5.3: The LVF algorithm 

                 

One disadvantage of the LVF algorithm is that it presents a high variation of 

the subsets being chosen. If one repeats the LVF algorithm a second time, several 

features will appear that did not appear the first time. For instance, for the Ionosphere 

dataset, LVF selects in one repetition the features: 5, 10, 13, 14, 28, 31, 32 and after a 

second repetition it selects 1, 2, 3, 8, 14, 27. Only the feature number 14 appears in 

the two “best” subsets.  One can reduce this variability either by choosing a large 

number of iterations or a smaller threshold but this will slow down the computation of 

the LVF algorithm. 

 

Input: D=Dataset, p=number of features in D, S=set of all features in D,         

MaxTries = maximum number of trials,  δ=Threshold. 

begin { 

  let Sbest=S  

  let Cbest = card(Sbest) = p  

  for i=1 to MaxTries {  

    Si= subset of S randomly selected.  

    Ci=card(Si) 

    if (Ci<Cbest) { 

      if (Inconsistency(Si,D) ≤ δ) 

       then δ=Inconsistency(Si,D) 

    let Sbes t= Si 

    let Cbes = Ci 

    }  

  if (Ci = Cbest){ 

     if Inconsistency(Si, D)<δ then Sbest=Si 

    }} } 

Output:  Sbest, the best subset of features 
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5.2.3.  The FINCO method 

 
The FINCO method was introduced by Acuña (2003). FINCO stands for 

Forward and Inconsistency. It uses a sequential forward generation of subsets along 

with the inconsistency measure used in the LVF method. The best subset of features, 

T, is initialized as the empty set and in each step we add to T the feature that gives the 

lowest inconsistency rate along with the features already included in T. The process 

continues until the inconsistency rate given by T and each of the features not yet 

selected is less than a predefined inconsistency threshold, which is chosen as in the 

LVF algorithm. A feature entering T can not be removed from it. Continuous features 

need to be discretizated before applying FINCO. The FINCO algorithm appears in 

Figure 5.4. 

In order to avoid the nesting problem, a floating forward selection may be 

applied, but it was not considered in this work. An R function called finco has been 

written to perform the FINCO algorithm. 

 

Example 4. Apply the FINCO algorithm to select the best subset of features for the 

Ionosphere  dataset. 

 Choosing a threshold of 0.001 for the inconsistency the features 3, 4, 14, 32 were 

selected.  

 

FINCO seems to be biased towards small feature subsets, particularly if the 

number of instances is small relative to the number of features. One example of this is 

the Sonar dataset. FINCO and LVF have similar performance with respect to 

misclassification error reduction, but FINCO has a lower computation time. 

The computation time of the FINCO algorithm depends on the number of 

instances, the number of features and the threshold for the inconsistency level. If a 

small inconsistency level is chosen then there are more comparisons to carry out and 

the computation time slows down. 
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Figure 5.4: The FINCO algorithm 

 

The discretization method required for LVF and FINCO may affect their 

performance. On average, RELIEF reduces the misclassification error rate more than 

LVF and FINCO. The RELIEF algorithm also has a lower computation time than the 

other two methods. 

5.3. Wrapper methods 

 
The wrapper methods use the misclassification error rate of a given classifier as 

the evaluation function. A large discussion of wrappers can be found in Kohavi and 

Input: D=Dataset, p=number of features in D,  S=set of all the features in D. 
∂=Threshold  
 

Initialization:   
Let k=0 and T=φ (Tk : Subset of features selected until the k-th step). 
  
Inclusion step:  
 for k=1 to p  { 

  )(minarg ++
−∈

=+ xkTIncons
kTSx

x   

 
  /*S-Tk is a subset of features not yet selected,  Incons(Tk+x) is the inconsistency level 
using the features in Tk along with feature x. Thus, +x is the most important feature with 
respect to Tk */ 
 
  if ( )()( kk TInconsxTIncons ≤+ +  and ∂>+ + )( xTIncons k   ) 
  then { 
   Tk+1= Tk+x+ 
   k:=k+1 

} 
} 

Termination:  

  if ( )()( 1 kk TInconsTIncons >+ or ∂≤+ )( 1kTIncons ) 
  then print Tk 
 
Output: Tk, a subset of the features of D.  
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John (1997). In this thesis, three classifiers have been used in the wrapper methods: 

the linear discriminant analysis (LDA), the k-nn classifier, and rpart, a decision tree 

classifier. The misclassification error rate is estimated by a 10-fold cross-validation 

technique. In this work, only wrapper methods where the subsets are generated 

heuristically, have been considered. The three main approaches are: Sequential 

Forward selection (SFS), Sequential Backward selection (SBS), and the Sequential 

Floating Forward selection (SFFS).  

In SBS the best subset of features, T, is initialized as the set containing all the 

features and in each step we remove from T the feature x for which T gives the 

highest correct classification rate (CCR) when x is excluded. Thus, the worst feature 

with respect to T is removed. The process continues until the CCR decreases when 

excluding from T each of the remaining features.  The SBS method has not been 

considered in this thesis due to its slow computing time. 

 

5.3.1. Sequential Forward selection 

 
In Sequential Forward selection (SFS) the best subset of features T is 

initialized as the empty set. In each step, the feature that gives the highest correct 

classification rate (CCR) along with the features already included in T is added to T. 

The process continues until none of the remaining features not yet included in T 

produces an increase in the CCR when added to T.  The complete algorithm is shown 

in Figure 5.5. An R function called sfs has been written to perform the sequential 

forward feature selection algorithm. 

 

Example 5. Use SFS with the classifiers LDA, knn and rpart to perform feature 

selection on the Ionosphere dataset. 

The algorithm was repeated 20 times in order to reduce the variability of the 

subset of selected features.  The following features were selected. 
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 LDA KNN Rpart 

Selected Features 3,6,19 1,3,4,14 1,3,5,6,32 

 
In practice the size of the best subset was determined by averaging the number 

of features selected in each repetition, and then a subset was formed using the 

features with the highest frequencies. This subset was called the “best subset”.   

 

 

Figure 5.5:  The  SFS algorithm. 

 

Both methods, SFS and SBS, suffer from the nesting problem. This means 

that a feature that is included (removed) in some step of the iterative process can not 

be excluded (included) in a later step.  

Input: D=Dataset, p=number of features in D,  S= set of all features in D. 

Initialization:   

Let k = 0 and T = φ (T : Subset of features selected until the k-th step).  

Inclusion step:  

  for k=1 to p  { 

   )(maxarg xkTCCR
kTSx

x +
−∈

=+   

  //S-Tk: Subset of features not yet selected, CCR(Tk+x) is the correct classification rate of 

the classifier using the features in Tk along with the feature x. Thus, x+: is the most 

important feature with respect to Tk.// 

  if  (CCR(Tk+x+)>CCR(Tk) )  

  then { 

     Tk+1= Tk+x+ 

      k = k +1 

    } 

Termination:  

  if  CCR(Tk+1)≤ CCR(Tk) 

Output:  Tk: Subset of selected features.  
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5.3.2. Sequential Floating Forward Selection 
 

The Sequential Floating Forward selection (SFFS) method was introduced by 

Pudil et al. (1994) to deal with the nesting problem. The best subset of features, T is 

initialized as the empty set and at each step first a new feature is added to T as in the 

SFS method but after that it searches for features that can be removed from T as in 

the SBS method until the CCR decreases. The iterations continue until no new feature 

can be added to T because the CCR does not increase. The SFFS algorithm is shown 

in Figure 5.6.  

An R function named sffs has been written to perform the sequential floating 

forward feature selection algorithm. 

 

Example 6. Using sequential floating forward selection with the classifiers LDA, knn 

and rpart  for the Ionosfera dataset the features selected are: 

 

The algorithm was repeated 20 times in order to reduce the variability of the 

subset of selected features.  The following features were selected. 

 

 LDA KNN Rpart 

Selected Features 3,23 1,4,14 3,32,1,6 

 

In practice the size of the best subset was determined by averaging the number 

of features selected in each repetition, and then a subset was formed using the 

features with the highest frequencies. This subset was called the “best subset”.   
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 Figure 5.6: The sequential floating forward selection algorithm (SFFS). 

 
Figure 5.7 shows the computation time of the wrapper methods used in this 

study. We observed that it is linear on the number of instances. For smaller datasets, 

SFS and SFFS with the k-nn classifier, is computed a little bit faster but the graph 

suggests that this difference will not be reflected in datasets with a large number of 

instances. 

 

Input: D=Dataset,  p=number of features in D, S= set of all features in D. 
  
Initialization:  
T= Subset of selected features after applying SFS twice. Set k=2.  
 
for (i=k to p) { 
 
 \\Inclusion Step:  

   )(maxarg xkTCCR
kTSx

x +
−∈

=+  

 \\Thus, x+ is the most important feature with respect to Tk  
 let Tk+1 = Tk + x+ 
 let k = k + 1  
 
repeat {  
//Conditional exclusion  

  )(maxarg xkTCCR
kTx

x −
∈

=−  

\\Thus,  −x  is the least important feature in Tk.   
 
if  )()( kTCCRxkTCRR >−   

  then { 

     let −−=− xkTkT 1   

     let k = k-1  
   } 
until  )()( kTCCRxkTCRR <−   

}  
Termination:  
if CCR(Tk+1)≤ CCR(Tk) 
  
Output: T = Subset of selected features. 
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Figure 5.7 : Plot of  the logarithms of time computation of the wrappers versus the logarithm of 
instances in each of the twelve datasets 

 

Figure 5.8 shows the relationship between the logarithms of the computation 

time of all of the combinations of wrapper-classifier versus the logarithm of the 

number of features.  The graph suggests a linear relationship of slope 2 and therefore 

a quadratic relationship between the computation time and the number of features in 

the dataset.     
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Figure 5.8: Plot of the logarithm of the computation time of the wrappers versus the logarithm of 
the number of features in each of the twelve datasets. 
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Both figures and the corresponding estimated regression lines suggest, empirically, 

that the complexity time of the algorithms for the wrappers is O(np2).  Approximated 

time complexities for feature selection methods can be found in Kudo and Sklansky 

(2000).   

Below we present two plots in logarithmic scale that show the relationship 

between the number of instances and features versus computer running time for the 

filter methods. Figure 5.9 suggests that a linear relationship exists between the 

number of instances and the computer running time. 
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Figure 5.9: Plot in logarithm scale that shows a linear relationship between the number of 

instances and the computer running time of the filter algorithms. 

 
Figure 5.10 suggests the existence of a quadratic relationship between the 

number of features and the computer running time for filter algorithms. Two datasets, 

Sonar and Ionosphere, have been omitted from the plot because these datasets have a 

high proportion of features as compared to the number of instances. This fact seems 

to affect the performance of filter algorithms. 
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Figure 5.10: Plot in logarithm scale that shows the quadratic relationship between the number of 
features and the computer running time of the filter algorithms. 

 
A discussion of the effect on the misclassification error rate for both filters 

and wrappers will be considered in chapter 7.
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Chapter 6 Missing Values 
 
 
 

6.1. Introduction 

Missing data is a common problem in statistical analysis. In particular, 

missing values in a dataset can affect the performance of a classifier constructed 

using such a dataset as a training sample.  Rates of less than 1% missing data are 

generally considered trivial, 1-5% manageable. However, 5-15% must be handled by 

sophisticated methods, and more than 15% may severely impact any kind of 

interpretation. (Pyle, 1999)   

Several methods have been proposed in the literature to treat missing data. 

Many of these methods were developed for dealing with missing data in sample 

surveys (Kalton and Kasprzyk (1986), Little and Rubin (2002)) and have some 

drawbacks when they are applied to classification tasks. Chan and Dunn (1972) 

considered the treatment of missing values in supervised classification using the LDA 

classifier but only for two-class problems considering a simulated dataset from a 

multivariate normal model. Dixon (1979) introduced the KNN imputation technique 

for dealing with missing values in supervised classification. Tresp et al. (1995) also 

considered the missing value problem in a supervised learning context for neural 

networks.  

The interest in dealing with missing values has continued with the statistical 

applications to new areas such as Data Mining (Grzymala-Busse and Hu , 2000)  and 

Microarrays (Hastie et al, 1999, Troyanskaya et al, 2001). These applications include 

supervised classification as well as unsupervised classification (clustering). When 

working with data from microarrays, some people even replace missing values by 

zero. Bello (1995) compared several imputation techniques in regression analysis, a 

related area to classification. 
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In this thesis work, four methods for dealing with missing values are 

considered: the case deletion method, mean imputation, median imputation and KNN 

imputation procedure. In section 2 an explanation of the mechanisms that lead to 

missing data is given. The four methods to treat of missing values considered in this 

thesis are described in section 3. In section 4 other existing imputation methods that 

are not included in this thesis work are described.   

 

6.2. Mechanisms that lead to missing data 
 

According to Little and Rubin (2002) there are three classes of missing data 

mechanisms. 

i) Missing completely at random (MCAR): If the probability of an instance having a 

missing value for an attribute is the same for all the instances. This means that such 

probability does not depend on either the known values or the missing data. As an 

example, suppose weight and age are features of interest for a particular study. If the 

likelihood that a person will provide his or her weight information is the same for all 

individuals regardless of their weight or age, then the missing data in the attribute 

weight is considered to be MCAR. More formally, 

 

Let x = (xij) be the data matrix containing missing values. Let I be a 

random variable that assumes the value of 1 if xij is present and 0 if xij 

is missing. Then, in the MCAR mechanism, it is assumed that the 

distribution of I does not depend on the data. Thus, 

                                   Prob(I/xmiss,xobs)=Prob(I) 

 

  Data that are missing because a researcher dropped the test tubes or survey 

participants’ accidentally skipped questions are likely to be MCAR. The case deletion 
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method for dealing with missing values seems to give good results in this situation. 

Unfortunately, most missing data are not MCAR. 

In the context of supervised classification, the missingness in MCAR is 

unrelated to the values of any attributes or even to the classes, whether missing or 

observed. This mechanism is more suitable for data to be used in an unsupervised 

classification task. 

 

ii) Missing at random (MAR): If the probability of an instance having a missing value 

for an attribute depends on a known value, such as the class to which the instance 

belongs, but does not depend on the missing data itself, the missingness is classified 

as MAR. Again, using the example of weight and age, if the likelihood that a person 

will provide his or her weight varied according to an individual’s weight but not his 

or her age, then the missing data is considered to be MAR. Formally,                           

 

                                   Prob(I/xmiss,xobs)=Prob(I/xobs) 

Most missing data methods are designed under this assumption. In MAR, 

cases with incomplete data differ from cases with complete data, but the pattern of 

missingness of the data is traceable or predictable from other features in the database. 

In other words, the actual features where data are missing are not the cause of the 

incomplete data. Instead, the cause of the missing data is due to some other external 

influence.  

MAR is an assumption that is justifiable more frequently, though not always. 

The more relevant and related the predictors that are to be included in statistical 

models are, the more likely it is that the MAR assumption will be met. 

In this thesis work, the MAR mechanism has been considered in two situations: 

a) In datasets with a low percentage of missing values.  

b) In datasets that contained simulated missing values, since the assigned 

missing values have been assigned at random but proportional to the class 

size.  
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An R function imagmiss has been written to display the distribution of the missing 

values in the dataset. 

 

Example 1. The image of Figure 6.1 shows the location of the missing values 

assigned randomly to the three most relevant features of the Iris dataset in 19% of the 

instances.  Notice that a certain pattern exists in the distribution of the missing values.  

 

Figure 6.1:  An example of missing values obtained by a MAR mechanism. 

 

iii) Non-ignorable or Not Missing at Random (NMAR): If the probability that a value 

of an attribute is missing depends on the missing data itself, then it is considered to be 

not missing at random. An example of this would be if the likelihood of an individual 

providing his or her weight varied according to a person’s weight in each age 

category. Typically this type of missing data is the hardest condition to deal with, but 

unfortunately, the most likely to occur as well.  It commonly occurs when 

interviewed people do not want to reveal something very personal or unpopular about 
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themselves. Some methods for dealing with missing data can give highly biased 

results for NMAR data. 

In NMAR the pattern of data missingness is non-random and it is not 

predictable from other features in the database. If a participant in a weight-loss study 

does not attend a weigh-in due to concerns about his weight loss, his data are missing 

due to non-ignorable factors. In contrast to the MAR situation outlined above where 

data missingness is explainable by other measured features in a study, non-ignorable 

missing data arises due to the fact that the data missingness pattern is explainable --- 

and only explainable --- by the very feature(s) on which the data are missing.  

 

Example 2: For the Hepatitis dataset which has a high percentage of missing values a 

NMAR mechanism is considered.  Figure 2 shows the missing values distribution of 

Hepatitis. Note that Hepatitis has a high percentage of instances containing missing 

values. 

 

Figure 6.2: An example of missing values obtained by the NMAR mechanism 
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6.3. Methods for handling missing data 

In general, methods for treating missing data can be divided into the three 

categories listed below (Little and Rubin, 2002).  

a) Case/Pairwise Deletion, which are the easiest and most commonly applied 

methods.  

b) Parameter estimation, where maximum likelihood procedures that use 

variants of the Expectation-Maximization algorithm can handle parameter 

estimation in the presence of missing data. These methods are generally 

superior to case deletion methods, because they utilize all the observed data, 

especially when the probability mechanism leading to missingness can be 

included in the model. However, they suffer from several limitations, 

including a strict assumption of a model distribution for the features, such as a 

multivariate normal model, which has a high sensitivity to outliers and a high 

degree of complexity (slow computation). 

c)  Imputation techniques, where missing values are replaced with estimated 

ones based on information available in the dataset. The objective is to employ 

known relationships that can be identified in the valid values of the dataset to 

assist in estimating the missing values. There are many options varying from 

naive methods, like mean imputation, to other robust methods based on 

relationships among attributes. 

  

In this thesis work four methods to treat missing values in supervised 

classification problems are considered. The chosen techniques are: 

i) The case deletion technique (CD),  

ii) The mean imputation (MI),  

iii) The median imputation (MDI) and, 

iv) The k-nearest neighbor (KNN) imputation.  

In the following sections a description of the above four methods for treating missing 

values in the supervised classification context is given.  
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6.3.1. Case Deletion 

  Case Deletion is also known as Complete Case Analysis. It is available in 

some statistical packages and is the default method in many of those programs that 

include it. This method consists of discarding all instances (cases) with missing 

values for at least one feature. A variation of this method consists of determining the 

extent of missing data on each instance and attribute and deleting the instances and/or 

attributes with high levels of missing data. However, before deleting any attribute, it 

is necessary to evaluate its relevance to the analysis. Unfortunately, relevant attributes 

should be kept even with a high degree of missing values.  

CD is less hazardous if it involves minimal loss of sample size (minimal 

missing data or a sufficiently large sample size) and there is no structure or pattern to 

the missing data. For other situations where the sample size is insufficient or some 

structure exists in the missing data, CD has been shown to produce more biased 

estimates than alternative methods. CD should be applied only in cases in which data 

are missing completely at random (see Little and Rubin (2002)).  

 

6.3.2. Mean Imputation 

Mean Imputation is one of the most frequently used methods. It consists of 

replacing the missing data for a given feature (attribute) by the mean of all known 

values of that attribute. In a supervised classification context, the value is replaced by 

the mean of all known values of the attribute that are in the class to which the 

instance with the missing attribute belongs. Let us consider that the value xij of the k-

th class, Ck, is missing then it will be replaced by  

∑=
∈ kCijxi jkn

ijx
ijx

:

ˆ ,  (6.1) 

where njk represents the number of non-missing values in the j-th feature of the k-th 

class. In some studies the overall mean is used but we consider that this does not take 



 

 

79

into account the sample size of the class to which the instance with the missing values 

belongs.  

According to Little and Rubin (2002) among the drawbacks of mean 

imputation are: 

 (a) the sample size is overestimated,  

(b)  the variance of the estimator is underestimated,  

(c) the correlation between two features can be  negatively biased, and  

(d) the distribution of  the new values might  be  an incorrect representation of the 

population values because the shape of the distribution is distorted by adding values 

equal to the mean.  

Replacing all missing records with a single value will deflate the variance and 

artificially inflate the significance of any statistical tests based on it. Surprisingly 

though, mean imputation has given good experimental results in datasets used for 

supervised classification purposes (Chan and Dunn, 1972, Mundfrom and Whitcomb,  

1998).  

 

6.3.3. Median Imputation (MDI) 

Since the mean is affected by the presence of outliers it seems natural to use 

the median instead just to assure robustness. In this case, the missing data for a given 

feature is replaced by the median of all known values of that attribute in the class to 

which the instance with the missing value belongs. This method is also a 

recommended choice when the distribution of the values of a given feature is skewed. 

Let us consider that the value xij of the k-th class, Ck, is missing, then it will be 

replaced by  

}{
:

ˆ ijxmedian

kCijxi
ijx

∈
= .  (6.2) 

In the case of a missing value in a categorical feature we can use mode 

imputation instead of either mean or median imputation. These imputation methods 

are applied separately in each feature containing missing values. Notice that the 
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correlation structure of the data is not being considered in the above methods. The 

existence of others features with similar information (high correlation), or similar 

predicting power can make the missing data imputation useless, or even harmful.  

6.3.4. KNN Imputation (KNNI)  

In this method the missing values of an instance are imputed considering a 

given number of instances that are most similar to the instance of interest. The 

similarity of two instances is determined using a distance function. The algorithm is 

shown in Figure 6.3.  

The advantages of KNN imputation are:  

(i) k-nearest neighbor can predict both qualitative attributes (the most 

frequent value among the k nearest neighbors) and quantitative 

attributes (the mean among the k nearest neighbors).  

(ii) It does not require the creation of a predictive model for each 

attribute with missing data. Actually, the k-nearest neighbor 

algorithm does not create explicit models. 

(iii) It can easily treat instances with multiple missing values.  

(iv) It takes in consideration the correlation structure of the data. 

 

The disadvantages of KNN imputation are: 

(i) There are no set criteria for the choice of the distance function to be used. It 

could be Euclidean, Manhattan, Mahalanobis, Pearson, etc. In this work we 

have considered the Euclidean distance.  

(ii) The KNN algorithm searches through all instances belonging to a class 

looking for the most similar instances. This is a very time consuming process 

and it can be very critical in data mining where large databases are analyzed. 
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Figure 6.3: The KNN imputation Algorithm. 

 
No fixed criteria exist for the choice of k, the number of neighbors, either. 

Troyanskaya et al. (2001), set the value of k empirically. Several numbers were tried 

and it was decided to use k=10 based on the accuracy of the classifier after the 

imputation process. The choice of a small k produces a deterioration in the 

performance of the classifier after imputation due to overemphasis of a few dominant 

instances in the estimation process of the missing values. On the other hand, a 

neighborhood of large size would include instances that are significantly different 

Input: D=Dataset, p=number of features in D, S=set of all features in D 

 

begin{ 

1. Divide the dataset D into two parts. Let Dm be the set containing the instances in which 

at least one of the feature values is missing. The remaining instances with complete 

feature information form a set called Dc.  

 

2. for each vector x in Dm { 

a) Divide the instance vector into observed and missing parts as x=[xo;xm].  

b) Calculate the distance between the xo and all the instance vectors from the set Dc. Use 

only those features in the instance vectors from the complete set Dc, which are observed in 

the vector x.  

c) Use the K closest instance vectors (K-nearest neighbors) and perform a majority voting 

estimate of the missing values for categorical attributes. For continuous attributes replace 

the missing value using the mean value of the attribute in the k-nearest neighborhood. The 

median could be used instead of the mean. 

} 

} 

 

Output: D, a complete matrix. 
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from the instance containing missing values hurting their estimation process and 

therefore the classifier’s performance declines. For small datasets, a k value smaller 

than 10 can be used. 

6.4.  Other imputations methods 
Several other imputation methods exist, but few of them are suitable for 

classification tasks. Next, additional methods that have not been used in this work are 

described briefly. 

i) Hot deck Imputation. In this method, a missing attribute value is filled in with a 

value from an estimated distribution for the missing value from the current data. In 

Random Hot deck, a missing value (the recipient) of an attribute is replaced by an 

observed value (the donor) of the attribute chosen randomly. There are also cold deck 

imputation methods that are similar to hot deck but in this case the data source of the 

donor must be different from the current data source. For more details see Kalton and 

Kasprzyk (1986). 

ii) Imputation using a prediction model. These methods consist of creating a 

predictive model to estimate values that will substitute the missing data. The attribute 

with missing data is used as the response attribute, and the remaining attributes are 

used as input for the predictive model. The disadvantages of this approach are:  

a) the model estimated values are usually more well-behaved than the true values 

would be.  

b) if there are no relationships among complete attributes in the dataset and the 

attribute with the missing data, then the model will not be precise for 

estimating missing values.  

c) the computational cost is high since we have to build a large amount of 

models to predict missing values.  

This method is not suitable for either high dimensionality datasets or very large 

datasets having a large number of missing values because it will be very slow. 
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iii) Imputation using decision trees algorithms. All the decision tree classifiers handle 

missing values by using built in approaches. For instance, CART replaces a missing 

value of a given attribute using the corresponding value of a surrogate attribute which 

has the highest correlation with the original attribute. C4.5 uses a probabilistic 

approach to handle missing data in both the training and the test sample.  In this thesis 

some comparisons with these method have been done through the use of the rpart 

library available in R 

iv) Multiple imputation. In this method, the missing values in a feature are replaced 

with values drawn randomly (with replacement) from a fitted distribution for that 

feature. This is repeated a number of times, say M=5 times. After each iteration, a 

classifier can be applied to the "complete" dataset and the misclassification error 

computed for each dataset. The misclassification error rates are averaged to obtain a 

single estimate and also to estimate variances of the error rate. More details can be 

found in Little and Rubin (2002) and Schaffer (1997).  There are libraries available 

in R to perform multiple imputation. 

6.5. Effect of imputation on the misclassification error rate 

In this thesis, four methods for treating missing values were compared 

according to the effect on the misclassification rate of three classifiers: Linear 

Discriminant Analysis (LDA), K-nn (KNN), and Rpart (rpart).  Twelve datasets, 

coming from the Machine Learning Database Repository at the University of 

California Irvine, were used. Four of the datasets used contained missing values and 

eight of them did not contain missing values. Tests were run using the incomplete 

datasets and using the complete sets but applying a randomization allocation of 

certain percentages of missing values to them. The percentage of simulated missing 

values was varied from 1% to 20%.  

To evaluate more precisely the effect of missing value imputation on the 

accuracy of the classifier only the relevant features in each dataset were used. In 

doing so, the imputation process was also sped up. The relevant features were 
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selected using the RELIEF, a filter method for feature selection in supervised 

classification discussed in chapter 4 (see Acuña et al. (2003) for more details). Batista 

and Monard (2002) ran a similar experiment but they chose only the three most 

important features and computed the misclassification error after the imputation of 

each missing value rather than after the imputation of all values.  

In this work, first, each of the four datasets having missing values was passed 

through a cleaning process where features with more than 30% of missing as well as 

instances with more than 50% of missing were eliminated. An R function clean was 

written to perform this task. The function allows the user to modify the percentage of 

missing in the instances and attributes to tolerate. This cleaning process is carried out 

in order to perform the smallest number of imputations on each dataset.  

After this first step, the four methods to treat missing values were applied but 

using only the relevant features. An R function ce.mimp was written to treat the 

missing values with the mean, median or mode and the function ec.knnmimp was 

written to treat missing values using k-nn imputation. Once a "complete" dataset was 

obtained, the 10-fold cross-validation estimates of the misclassification error were 

computed for the three classifiers under consideration. A similar sequence was carried 

out for datasets with simulated missing values. The results of the experimentation for 

the incomplete datasets are presented here. The remaining results appear in chapter 7. 

Table 6.1 below offers a description of the incomplete datasets used in this 

work. It also describes the cleaning process needed to prepare the datasets for 

analysis. Hepatitis has the largest percent of missing, both overall and in the number 

of affected instances. Based on the tolerance we have set for our experiments, only 

Hepatitis will have a column and a row eliminated.  After cleaning, the datasets 

ordered in decreasing order of number of missing are: Hepatitis, CRX, Breast and 

Heartc.  It can be observed from table 6.1, that since only the missing values in the 

relevant features will be imputed, Hepatitis will only have 18 imputations performed.  

Table 6.2 shows the cross validation errors (using the three classifiers: lda, knn 

and rpart) for each of the incomplete datasets when the observations containing 
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missing values are eliminated.. The table also shows that ratios between the errors 

obtained after imputation and the base error for each dataset. To interpret the data, we 

have applied the criteria that errors that change by 5% or more have been affected by 

the imputation method. 

 From this table, we can conclude that in the datasets with a small amount of 

instances containing missing values, there is not much difference between case 

deletion and other imputation methods for all of the classifiers used. This is observed 

by ratios that are close to one.  

 

 

 

Table 6-1: Description of incomplete datasets used in this study 
Datasets (number of missing) Heartc (6) Breast-W (16) CRX (67) Hepatitis (167) 
Percent of missing overall 0.15 % 0.25 % 0.64 % 5.67 % 
Features with missing - % missing 1.  V12   (1.32) 1.  V7 - (2.29) 1.  V1 (1.73) 1.  V4 (0.65) 
 2.  V13   (0.66)  2.  V2 (1.74) 2.  V6 (0.65) 
   3.  V4 (0.87) 3.  V7 (0.65) 
   4.   V5 (0.87) 4.  V8 (0.65) 
   5.  V6 (1.30) 5.  V9 (6.45) 
   6.  V7 (1.30) 6.  V10 (7.097) 
   7.  V14 (1.88) 7.  V11(3.23) 
    8.  V12 (3.23) 
    9. V13 (3.23) 
    10.  V14 (3.23) 
    11.  V15 (3.87) 
    12.  V16 (18.71) 
    13.  V17(2.58) 
    14.  V18 (10.32) 
    15.  V19 (43.23) 
Number of rows with missing:  6 16 37 75 
Percent of rows with missing:    1.98 2.29 5.36 48.38 
Number of values to be imputed
(relevant features only):   6 16 30 18 
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Table 6-2 Cross-validation errors and ratios for the three classifiers and the four 
methods used to deal with missing data 
Cross-validation error/Datasets with missing Heartc Breast-W CRX Hepatitis 
ECV10(lda) - NA omit 0.1644 0.0367 0.1363 0.1725 
ECV10(knn) - NA omit 0.1943 0.0344 0.2505 0.21825 
ECV10(rpart) -NA omit 0.1933 0.0442 0.1273 0.199 
Err_MI LDA ratio 0.9782 1.0161 1.0633 0.9577 
Err_MI KNN ratio 0.9672 1.1168 1.0061 0.9146 
Err_MI Rpart ratio 1.0093 1.2101 1.0238 1.0207 
Err_MDI LDA ratio 0.9831 0.9989 1.0633 0.981 
Err_MDI KNN ratio 0.9584 1.1285 0.9869 0.8361 
Err_MDI Rpart ratio 0.9546 1.1680 1.0227 0.9992 
Err_KNNI LDA ratio 0.9728 1.0816 1.0633 1.0069 
Err_KNNI KNN ratio 0.9626 1.0511 0.9814 0.9777 
Err_KNNI Rpart ratio 0.9546 1.1712 1.0124 1.0377 
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Chapter 7 Experimental Results 
 
 
 

7.1. Programming in R 
R is a computer language which can be considered an implementation of the S 

language of Becker, Chambers and Wilks (1988) that has adopted the evaluation 

model of the Lisp dialect, Scheme.  R was initially written by Robert Gentlemen and 

Ross Ihaka (1996).  The project began as an effort to bring some of the power of 

modern statistical systems to the class of low-end computers which were generally 

available for teaching purposes at the time. R has since been created for several 

platforms, including, UNIX, Windows and MacIntosh. 

R is not object oriented in the same sense as Java or C++, but in the sense that 

the basic entities of the language are objects, i.e. complex entities with type and 

defined behavior. These objects are characterized by their names and their content, 

but also by attributes which specify the kind of data represented by the object. For 

example, consider a feature that takes on the value 1,2, or 3. Such a feature could be 

an integer variable (i.e., the number of birds in a nest), or the coding of a categorical 

variable (i.e., sex in a population of crustaceus: male, female, or hermaphrodite). It is 

clear that the statistical analysis of this feature will not be the same in both cases. 

With R, the attributes of the object give the necessary information to determine the 

type of analysis allowed for this feature. Another difference between R and classical 

object oriented languages is that R doesn't (generally) have methods that are 

semantically part of objects. However, it does have class-based function dispatch and 

generic functions, so that a function can do different things for different kinds of 

objects, and for combinations of objects. 

R has elements of being a functional language like the fact that programs are 

composed of expressions that are turned into function objects that get evaluated. Yet, 
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it is not a pure functional language because functions can and do have side effects. 

Other distinctive features of the language are that basic operations are vectorized, and 

that "lists" in R are really generic vectors where each element can be of a different 

type. 

R has lazy evaluation (objects are not evaluated until their values are required) 

and weak dynamic typing (a variable can change type at will: a = 1 ; a = "a" is 

allowed). Conversion between types is often automatic or can be programmed to be 

so, hence operations on disparate types can often be carried out. Another 

characteristic of the language is that parameter passing follows call-by-value and 

copy-on-modify disciplines.  This means that arguments are not copied unless the 

function seeks to mutate their values. 

All actions of R are done on objects stored in the active memory of the 

computer, that is, no temporary files are used.  The results of functions are displayed 

directly on the screen, stored in an object, or written on the disk. Since results are 

themselves objects, they can be considered as data and analysed as such. The 

functions available to the user are stored in a library localized on the disk in a 

directory called R_HOME/library where R_HOME is the directory where R is 

installed. This directory contains packages of functions, which are themselves 

structured in directories. The package named base contains the basic functions of the 

language for reading and manipulating data, some graphic functions, and a few 

statistical functions. Each package has a directory called R with a file named like the 

package (for instance, R_HOME/library/base/R/base). This last file is in ASCII 

format and contains all the functions of the package. 

R currently has a large population of users and collaborators. Its ability to be 

both a statistical environment and a programming language provides the duality 

required for the rapid elaboration of code that implements advanced algorithms for 

statistical analysis. Since the creation of visualizations that would aid in statistical 

analysis was a primary goal of this work, the ease with which graphics are created in 

Windows was considered another advantage of this platform.  In addition, the 
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portability of the R language will allow the authors of this work to cross over to the 

Unix platform to improve memory usage of the code that was written for future work. 

 

7.2. The Datasets 
 

A summary of the characteristics of the complete datasets used in this work 

appears in Table 7.1. The number in parenthesis in the column “Number of Classes” 

indicates the number of instances in each class of the dataset. The asterisk (*) 

indicates that some features of the original dataset have not been considered. 

 

Table 7-1 : Information about the datasets used in thesis. 

Observations Datasets 
Number 

of 
Instances 

Number  of 
classes (Instances 

per class) 

Number 
of 

missing 
values 

Percent of 
instances 

with missing 
values 

Number 
of 

Features 

Iris 150 3(50, 50, 50)   4 
Hepatitis 155 2(32, 123) 75 48.38% 19 
Sonar 208 2 (111, 97)   60 
Heart-c 303 2(164, 139) 6 1.98% 13 
Bupa 345 2(145, 200)   6 
Ionosphere* 351 2(225, 126)   34 
Crx 690 2(383, 307) 37 5.36% 15 
Breast-w 699 2(458, 241) 16 2.29% 9 
Diabetes 768 2(500, 268)   8 
Vehicle 846 4(218, 212, 217,   18 
German 1000 2(700,300)   20 
Segment* 2310 7(330, 330, 330, 

330, 330, 330, 
  19 

Landsat 4435 6(1072, 479, 961, 
415, 470, 1038) 

  36 

 

7.3. Classifiers used in this thesis 
 

Throughout this thesis, three classifiers have been used to obtain classification 

results for the different experiments. These are: Linear Discriminant Analysis (LDA), 



 

 

90

K-nearest neighbor (KNN) and Recursive Partitioning (rpart). A brief description of 

each classification method follows. 

Linear Discriminant Analysis (LDA) is a commonly used classification 

method of parametric nature that uses the assumption of multivariate and equality of 

variance matrices.  This method maximizes the ratio of between-class variance to the 

within-class variance in any particular data set, thereby guaranteeing maximal 

separability.  LDA tries to draw a decision region between the classes of the dataset 

using the rule:  assign x to the class j that has the closest mean.  In general the 

discriminant function is written as: 

1 1 ...o p pD x xβ β β= + + + , 

where 1,..., pβ β are the discriminant coefficients and 1,..., px x  are the features of the 

dataset.  

 

 

Example 1.  Given the data on loans from table 7.2, compute the Linear Discriminant 

Function and plot the decision region. 

 

 In Table 7.2 below, the column labeled status contains the class information 

for the observations. Those observations labeled 0 represent customers whose credit 

history has been classified as “Bad risk” and those labeled 1 as “No risk”.  

 In R, the function lda from the library MASS is used to obtain the linear 

discriminant function. After obtaining the linear discriminant function, a scatter plot 

of the 11 observations is plotted as displayed in Figure 7.1. In this plot, M1 an M2 

represent the mean values of the “No risk” class marked with G’s and the “Bad risk” 

class marked with B’s respectively.  
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Table 7-2: Credit data for Example 1. 

Name Yearly income Age Status 

1 18,000 22 1 

2 26,000 26 1 

3 14,000 31 0 

4 20,000 42 1 

5 12,000 31 0 

6 21,000 24 0 

7 35,000 32 1 

8 40,000 46 1 

9 36,000 37 1 

10 22,000 28 0 

11 24,000 32 1 

 

The line crossing the plot is the linear discriminant function for the data. It 

can be observed that two observations would be incorrectly classified if this method 

is used. 

 

Figure 7.1: Scatter plot of Credit History data with linear discriminant line 

 



 

 

92

 The K-nearest neighbor classifier finds for each observation of the dataset, the 

k-nearest observations (using a distance measure), and the classification is decided by 

majority vote, with ties broken at random. If there are ties for the kth nearest 

observations, all candidates are included in the vote. 

Recursive Partitioning (rpart) is a tree structure that uses a classification tree 

to classify the observations. A classification tree will determine a set of logical if-then 

conditions (instead of linear equations) for predicting or classifying cases. Figure 7.2 

shows a classification tree developed for the Iris dataset. The interpretation of this 

tree is: if the petal length is less than 2.45, the respective flower would be classified 

as Setosa.  If the petal length is greater than or equal to 2.45, but less than 4.95 and 

the petal width is less than 1.75, then the respective flower should be classified as 

Versicolor; else, if the petal length is greater than or equal to 4.95, and the petal width 

is less than 1.75, then the respective flower belongs to class Virginica. Finally, if the 

petal width is greater than or equal to 1.75, then the flower should be placed in the 

Virginica group.  Tree classifiers use no implicit assumption about the underlying 

relationships between the predictor variables and the dependent variable. 

 

Figure 7.2: Decision Tree for Iris dataset 
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7.4. Normalization 
 

An attribute is normalized by scaling its values so that these fall within a small 

specified range, for instance from 0 to 1. Normalization is very useful for distance-

based algorithms such as k-nearest neighbors, because it helps to prevent attributes 

with large values from overweighing attributes with small values. In this work, 

normalization was applied to the datasets to construct parallel coordinate and survey 

plots and to study the effect or normalization on feature selection for the SFS wrapper 

method. The filter methods normalize data before determining the relevance as part of 

their algorithms.  

There are many methods for data normalization. The proposed data 

preprocessing environment will include R functions to implement the methods 

described below. 

 

Normalization methods included in this study 

1) Min-Max Normalization:- This type of normalization transforms the data into a 

desired range, usually [0,1]. The transformation formula for a value v(i) of the 

attribute A is given by:  

( ) min'( ) *( max min ) min
max min

v i Av i new A nen A new A
A A
−

= − +
−

, (7.1) 

where [minA, maxA] is the initial range of the attribute A and [newminA, newmaxA] 

is the new range. 

 

2) z-Score normalization: By using this type of normalization, the mean of the 

transformed set of data points is reduced to zero. For this, the mean and standard 

deviation of the initial set of data values are required. The transformation formula for 

a value v(i) of the attribute A is given by:  



 

 

94

( )'( ) v i meanAv i
stdevA
−

= , (7.2) 

where meanA and std_devA are the mean and standard deviation of attribute A.  

 

3) Decimal Scaling: This type of scaling transforms the data into a range between [-

1,1]. The transformation formula is given by  

v'(i) = ( )
10k

v i , ( 7.3) 

 for the smallest k such that max(|v'(i)|) ≤ 1.  

 
4) Sigmoidal normalization. This method transforms the input data nonlinearly into 

the range -1 to 1, using a sigmoid function. It calculates the mean and standard 

deviation of the input data. Data points within a standard deviation of the mean are 

mapped to the almost linear region of the sigmoid. Outlier points are compressed 

along the tails of the sigmoidal function. The transformation formula is given by 

)(

)(

1
1)(' ia

ia

e
eiV −

−

+
−

= ,  (7.4) 

where  
stdevA

meanAiVia −
=

)()( . 

         Sigmoidal normalization is especially appropriate when you have outlier data 

points you wish to include in the dataset. It prevents the most commonly occurring 

values from being compressed into essentially the same values without losing the 

ability to represent very large outlier values.  

 

5) Softmax normalization. It is so called because it reaches "softly" toward its 

maximum and minimum value, never quite getting there.  The transformation is more 

or less linear in the middle range, and has a smooth nonlinearity at both ends. The 

whole output range covered is 0 to 1 and the transformation assures that no present 

value lies outside this range. The transformation formula value v(i) of the attribute A 

is given by 
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= , (7.5). 

 

 

Figure 7.3: Scatterplots of the first attribute of Iris before and after applying different 
normalization methods  

 

Some observed effects of normalization on feature selection and outlier detection 

Normalization seems to affect the wrapper feature selection methods, in 

particular those based on knn and rpart as shown in the Example 2 that follows. 

Example 2.  Normalize the Diabetes dataset using z-Score normalization. Then apply 

feature reduction methods to reduce the dimensionality of the dataset. Find the 

misclassification error associated with the new subsets. 

Using the functions created in R to implement forward selection and floating 

selection on the normalized dataset, the following results are obtained: 
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> sfs(diabetes,"lda",repet=10) 
The best subset of features is: 
[1] 7 6 2 8 
 
> sfs(as.data.frame(sdiabetes),"lda",repet=10) 
The best subset of features is: 
[1] 6 2 7 8 
 
> sfs(diabetes,"knn",repet=10) 
The best subset of features is: 
[1] 2 6 7 
 
> sfs(as.data.frame(sdiabetes),"knn",repet=10) 
The best subset of features is: 
[1] 2 8 1 6 
 
> sfs(diabetes,"rpart",repet=10) 
The best subset of features is: 
[1] 2 3 4 
 
> sfs(as.data.frame(sdiabetes),"rpart",repet=10) 
The best subset of features is: 
[1] 2 7 
 

We can observe how the features selected changed for the KNN and RPART 

classifiers after the dataset had been normalized.  

7.5. Applications of Visualization Techniques 
 

Parallel Coordinate Plots by class 

 

Parallel Coordinate Plots and Survey Plots were created for each dataset used 

in this work to aid in the identification of relevant features and outliers. Since in a 

classification context, feature relevance is determined with respect to the entire 

dataset but outliers are determined with respect to each class, plots were created for 

each class of the dataset, as well. Below, graphs of the several datasets by class are 

presented. In each graph outliers that were suggested by the different algorithms are 

highlighted. 
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Figure 7.4: Parallel coordinate plot for class 2 of Iris 

 

  
Figure 7.5: Parallel coordinate plot for class 3 of Iris 
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Figure 7.6: Parallel coordinate plot for class 1 of Bupa 

 

Figure 7.7: Parallel coordinate plot for class 2 of Bupa 
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Figure 7.8: Parallel coordinate plot for class 1 of Heart 

 

Figure 7.9: Parallel coordinate plot for class 2 of Heart 
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Figure 7.10: Parallel coordinate plot for class 1 of CRX 

 

 

Figure 7.11: Parallel coordinate plot for class 2 of CRX 
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Figure 7.12: Parallel coordinate plot for class 1 of Diabetes 

 

Figure 7.13: Parallel coordinate plot for class 2 of Diabetes 
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Figure 7.14: Parallel coordinate plot for class 4 of Vehicle 

 

Survey Plots after feature selection 

 When a data analyst first encounters a dataset, little is known about the 

relationships among the features of the dataset. The survey plot was mentioned earlier 

as a possible visualization technique to aid in the identification of relevant features 

for classification, particularly if allowed the ability to sort on one or more features. 

Once a feature selection method has been applied, this visualization can further aid in 

the identification of features that possess stronger discrimination power than others. 

For example, notice the survey plot of the Crx dataset before feature selection 

presented in Figure 7.15. The attributes selected by the feature selection methods used 

in this study are shown in Table 7.3.  

 A survey plot after feature selection allows for the visualization of a display 

that reflects the discrimination capability of the attributes selected. Figures 7.16 and 

7.17 show the surveyplot of the Crx dataset when the dataset is ordered by the first 
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and second attributes (feature 9 and 10). Observe the clustering of colors in the 

graphs. 

 

Table 7-3: Features selected by different methods for Crx. 
Feature Selection Method Relevant Features  % of Features selected 

Relief 9, 10, 13 20 % 

SFS – LDA 9,15 13.3% 

SFS- KNN 9 6.67% 

SFS-Rpart 9 6.67% 

SFFS – KNN 9,15 13.3 % 

SFFS – LDA 9 6.67% 

SFFS – Rpart 9 6.67% 

 

With, the help of the survey plot, it can be confirmed that feature 9 has the strongest 

discrimination power of all other attributes. 

  

 

Figure 7.15: Survey plot of Crx dataset before feature selection sorted by the second attribute 
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Figure 7.16: Crx sorted by V9 

          
                                

 
Figure 7.17: Crx sorted by V10 
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7.6. The effect of outliers on the misclassification error and their in a 
supervised classification context 

 
In literature related to outliers, it is frequently mentioned that the presence of outliers 

affects the performance of classifiers, but there are few studies verifying this claim. This is 

not the case in a regression context where a large number of studies showing the effect of 

outliers in regression problems can be found. Two main aspects in supervised classification 

are feature selection and the misclassification error rate. In this thesis, an evaluation of the 

effect of outliers in these aspects is considered. The Iris and Bupa datasets will be used to 

show the effect of outliers. 

 

Example 3: Use the Iris dataset to show the effect of outliers on feature selection and 

the estimation of the misclassification error rate. 

 

Using all the criteria described in Chapter 4 and the visual help provided by the 

parallel coordinate plot to decide about the doubtful outliers, the following outliers 

have been detected in the Iris dataset.   
 

 

Outliers in class 1: (7) 

16, 15 ,34, 42, 44, 24, 23 
 

Outliers in class 2   (7) 

71, 63 ,58 ,61, 94, 99, 69 
  
Outliers in class 3  (5) 

107, 119, 132, 118 ,120 

 

In Table 7.4, the misclassification  error of  three classifiers: LDA, knn and 

rpart, has been computed using the original sample, the original sample without 

outliers and the original sample extracting a random sample of size equal to the 

number of outliers.  
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Table 7-4:  The misclassification error rate for the LDA, knn and rpart 
classifiers using three different types of samples 

 Original  

Sample 

Original sample without 

outliers 

Original sample 

excluding a random sub-

sample 

LDA 2.02 1.54 2.30 

Knn(k=1) 4.05 2.35 4.10 

Rpart 6.69 2.90 7.32 

 

Notice that all three classifiers are affected when outliers are removed, whereas there 

is only a minimum change on the misclassification error when a random subsample of 

instances is removed.  

Table 7.5 shows the feature selected using the three types of samples 

described before. The feature selected methods used here are the sequential forward 

selection (SFS) with the three classifiers used in Table 7.5 and the Relief method. 

Some differences can be observed between the subset of features selected by the four 

methods.   

Table 7-5: Features selected using SFS and Relief for the three type of samples 

 Original 

Sample 

Original sample 

without outliers 

Original sample excluding a 

random subsample 

SFS(lda) 4,2 4,2 4,3 

SFS(knn) 4,3 4,3 4,3 

SFS(rpart) 4 4 4 

Relief 2,3,4 4,3 4,3 

  

 

Finally, in Table 7.6, the misclassification error rates of the three classifiers 

after forward feature selection and for the three types of samples are shown.  
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Table 7-6:  Misclassification error rate after SFS for the three type of samples 

 Original 

Sample 

Original sample 

without outliers  

Original sample 

excluding a random 

subsample 

LDA  3.70 2.33 5.31 

knn(k=1)  4.01 1.87 4.80 

Rpart  5.29 2.29 5.25 

 

Notice that the lower misclassification errors are obtained for samples where 

the feature selection is performed after eliminating outliers. Another option for 

treating outliers is to treat them as if they were missing values and impute the values. 

Some data analysts prefer the latter because it avoids the loss of sample size but 

others dislike this method because it can create bias on the estimation. 

 
Example 4: Use the Bupa dataset to show the effect of outliers on feature selection 

and the estimation of the misclassification error rate. 

 

Using all the criteria described in Chapter 7 and the visual help provided by the 

parallel coordinate plot to decide about the doubtful outliers, the following outliers 

have been detected in the Bupa dataset.   

 

Outliers in class 1: (22) 

168, 175, 182, 190, 205, 316, 317, 335, 345, 148, 183, 26,1 311, 25, 167, 189, 312 

326, 343, 313, 20, 22 

 

Outliers in class 2   (26) 

36, 77, 85, 115, 134, 179, 233, 300, 323, 331, 342, 111, 139, 252, 294, 307, 123, 186, 

286, 2, 133, 157, 187, 224, 278, 337 
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In Table 7.7, the misclassification  error of  three classifiers: LDA, knn and 

rpart, have been computed using the original sample, the original sample without 

outliers and the original sample extracting a random sample of size equal to the 

number of outliers.  

Table 7-7 : The misclassification error rate for the LDA, knn and rpart 
classifiers using three different types of samples 

 Original  

Sample 

Original sample without 

outliers 

Original sample 

excluding a random sub-

sample 

LDA 31.82 26.23 31.17 

Knn(k=7) 31.55 27.65 32.26 

Rpart 31.86 33.24 35.07 

 

Notice that LDA and knn are the classifiers that are most affected, while Rpart is the 

least affected. The latter makes sense since it is well known that Rpart  is a classifier 

that  is robust to outliers. 

Table 7.8 shows the features selected using the three types of samples 

described before. The feature selection methods used here are the sequential forward 

selection (SFS) with the three classifiers mentioned earlier along with the Relief 

method. Differences can be observed between the subset of features selected by the 

four methods.   

 

Table 7-8: Features selected using SFS and Relief for the three type of samples 
 Original Sample Original sample 

without outliers 

Original sample excluding a 

random subsample 

SFS(lda) 5,4,3,6 5,3,4 5,4,3,6 

SFS(knn) 5,3,1 5,3,1,6 5,3,4,1 

SFS(rpart) 5,3,6,2 5,3,2 5,3,2 

Relief 6,3,4 4,2,5,3 2,4,3 
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Finally, in Table 7.9, the misclassification error rates of the three classifiers 

after feature selection and for the three types of samples are shown.  

Table 7-9 Misclassification error rate after feature selection for the three type of 
samples 

 Original 

Sample 

Original sample 

without outliers  

Original sample 

excluding a random 

subsample 

LDA  34.94 26.72 35.62 

knn(k=7)  36.53 30.65 40.99 

Rpart  37.47 32.48 39.78 

 

Notice that the lower misclassification errors are obtained for samples where the 

feature selection is performed after eliminating outliers. Another option for treating 

outliers is to treat them as if they were missing values and impute the values. Some 

data analysts prefer the latter because it avoids the loss of sample size but others 

dislike this method because it can create bias on the estimation. 

 

 

7.7. The effect on the misclassification error rate for both filters and 
wrappers  

 

 Figures 7.18 and 7.19 show the percentages of features selected by the filter 

and wrapper methods. Among the wrapper methods, the SFFS performs better than 

SFS, since they both  select similar percentages of features (a lower percentage of 

features than the filter methods) and they both obtain similar classification accuracies, 

but SFFS has a  faster computation time. Among the filters methods, FINCO appears 

to have the smallest percentage of features selected.  

In Tables 7.10 through 7.12, misclassification errors that have deteriorated are 

those that have increased by at least 5% after feature selection was applied. It can be 
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observed from these tables that wrapper methods are more effective than filter 

methods in reducing the misclassification error rate. 
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Figure 7.18: Percentage of features selected by the wrapper methods 
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Figure 7.19:  Percentage of features selected by the filter methods 
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Table 7-10:  Misclassification error ratios of after-feature-selection to before-
feature-selection (LDA classifier) 
 
Dataset SFS SFFS RELIEF FINCO LVF 
Iris 1.85 1.88 1.58 1.50 2.14 

Sonar 1.01 0.82 1.06 1.00 0.94 

Heartc 0.94 0.94 0.99 1.18 1.40 

Bupa 1.02 1.01 1.33 1.42 1.08 

Ionosfera 1.13 1.19 1.05 1.25 1.16 

Crx 1.00 1.00 1.01 1.01 1.01 

Breastw 0.94 0.93 1.34 0.99 1.15 

Diabetes 1.01 1.01 1.46 1.00 1.01 

Vehicle 1.11 1.16 1.24 1.93 2.31 

German 1.00 1.00 1.05 1.20 1.12 

Segment 0.98 1.00 0.55 1.38 1.42 

Landsat 1.01 1.02 1.03 1.14 1.14 

Mean 1.08 1.08 1.14 1.25 1.32 

Median 1.01 1.01 1.06 1.19 1.15 
 

Table 7-11: Misclassification error ratios of after feature selection to before feature 
selection (KNN classifier) 
Dataset SFS SFFS RELIEF FINCO LVF 
Iris 0.98 0.97 1.16 1.17 1.00 

Sonar 1.03 1.27 0.81 1.43 1.02 

Heartc 0.48 0.48 0.55 1.07 1.05 

Bupa 1.04 1.05 1.19 1.35 1.25 

Ionosfera 0.46 0.43 0.79 0.67 0.84 

Crx 0.45 0.45 0.47 0.99 1.27 

Breastw 1.08 1.08 1.51 1.20 1.20 

Diabetes 0.96 1.02 1.28 0.98 0.95 

Vehicle 0.82 0.84 1.00 1.32 1.22 

German 0.78 0.77 0.84 1.02 1.01 

Segment 0.67 0.70 1.97 2.36 2.60 

Landsat 1.10 1.10 1.09 1.54 1.36 

Mean 0.82 0.85 1.06 1.26 1.23 

Median 0.89 0.91 1.05 1.19 1.13 
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Table 7-12: Misclassification error ratios of after feature selection to before feature 
selection (RPART classifier) 

Dataset SFS SFFS RELIEF FINCO LVF 

Iris 0.70 0.70 1.00 1.03 1.00 

Sonar 0.83 0.75 1.01 0.92 0.93 

Heartc 0.77 1.35 0.94 0.85 1.19 

Bupa 0.97 1.03 1.01 1.28 1.26 

Ionosfera 0.70 0.68 0.93 0.84 0.73 

Crx 0.97 0.97 0.97 0.97 1.01 

Breastw 0.74 0.85 0.93 0.84 0.87 

Diabetes 1.01 0.99 1.38 1.01 1.01 

Vehicle 0.97 0.98 1.10 1.14 1.29 

German 0.96 0.96 1.02 1.11 1.08 

Segment 0.98 0.97 1.01 1.01 1.35 

Landsat 1.01 0.99 0.99 0.98 1.16 

Mean 0.88 0.94 1.02 1.00 1.07 

Median 0.96 0.97 1.01 1.00 1.05 

 
 

7.8. Effect of imputation on the misclassification error of the 
contaminated real datasets 

 
Tables 7.14 through 7.16 below, show the ratios of the misclassification errors 

over the base errors of the datasets used in this work for each of the imputation 

methods studied and the classifiers used. The ratios labeled in red show 

misclassification errors that suffered a change that was greater than 5%. 

 In general, small differences can be observed between the results obtained 

with mean and median imputation. As mentioned before, most of the datasets used in 

this work contain features with distributions that have outliers in both directions and 

their effect cancels out. Otherwise, one could expect a better performance from 

median imputation. The KNN imputation method yields somewhat better results than 

the other methods.  



 

 

113

It can also be observed, that the percent of instances with missing appears to 

have a larger influence on the effect of classification accuracy than the percent of 

missing overall. This is seen through the fact that for datasets with small amounts of 

missing values, little difference is observed between the errors obtained by the 

imputation methods employed. However, our results suggest that the case deletion 

method is more likely to yield a highly affected error when there are a high 

percentage of instances with missing values.  

Some datasets appear to be more resistant to a deteriorating misclassification 

error, even for large percentages of instance with missing. For example, Bupa and 

Ionosfera under the KNN classifier resist close to 50 and 80 percent of instances with 

missing respectively, and German and Segment resists close to 80% under the LDA 

classifier. It can also be observed that some datasets can be reduced severely (case 

deletion due to missing) and yet reflect a misclassification error that has only been 

slightly affected. Some cases are: Bupa under the KNN and RPART classifiers, 

Diabetes under the KNN classifier and Segment under the LDA classifier. 
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Table 7-13: Ratios of Cross Validation Errors using KNN 

Dataset 

% 
Missing 
(overall) 

% Missing 
(instances) 

Base 
error CD_Ratio MI_Ratio MDI_Ratio KNNI_Ratio 

Iris 1 2 4.68 1.0299 1.0278 1.0043 1.0385 
  7 21.33 4.68 1.2586 1.0171 1.0021 0.9936 
  13 33.33 4.68 0.9145 0.4872 0.5662 0.7350 
Sonar 1 33.65 14.74 1.1811 0.9851 1.035 0.998 
  3 69.71 14.74 1.6323 0.7802 0.8304 0.8813 
  5 81.73 14.74 1.8562 0.9064 0.9281 0.8996 
Heartc* 5 31.64 18.55 1.0421 0.9342 0.9536 0.9369 
  11 56.9 18.55 0.6367 0.9574 0.9655 0.834 
  21 79.46 18.55 0.8216 0.7121 0.7596 0.8259 
Bupa 3 8.69 36.49 0.9411 0.9792 0.9553 0.9553 
  11 30.14 36.49 0.9619 0.9197 0.9164 0.9268 
  19 46.95 36.49 1.0271 0.9720 1.0022 0.9942 
Ionosphere 1 19.65 13.28 1.1017 0.9428 0.9368 0.9691 
  5 65.24 13.28 1.3118 0.9518 0.9729 0.948 
  9 86.61 13.28 1.4287 1.0399 0.9654 1.0301 
Crx* 3 23.73 25.19 0.9575 0.9619 0.9841 0.9266 
  13 70.59 25.19 1.1679 0.9547 0.9984 0.9758 
  21 87.28 25.19 1.395 0.7527 0.8384 0.8634 
Breastw 3 14.64 3.41 0.9677 0.9736 0.956 0.9765 
  11 45.09 3.41 0.9795 0.827 0.827 0.8387 
  21 66.18 3.41 0.6217 0.5631 0.5777 0.607 
Diabetes 3 14.32 27.47 1.0076 0.9687 0.9709 0.9651 
  11 45.31 27.47 0.8580 0.8198 0.7674 0.7951 
  21 66.88 27.47 0.9884 0.6858 0.5872 0.7477 
Vehicle 5 42.08 34.87 1.1012 1.0419 1.0023 0.9535 
  13 74.82 34.87 1.1557 0.9687 0.9415 0.9295 
  21 92.55 34.87 1.2234 0.916 0.9036 0.8652 
German 5 48.7 29.78 1.091 0.9681 0.9785 0.954 
  13 83.7 29.78 1.0121 0.823 0.8251 0.9103 
  19 93 29.78 1.1061 0.8103 0.7898 0.8408 
Segment 5 43.03 4.64 1.403 1.3448 1.3168 0.9461 
  13 77.96 4.64 2.028 1.5172 1.4224 1.1444 
  21 92.46 4.64 1.9655 1.653 1.4677 1.0927 
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Table 7-14: Ratios of Cross Validation Errors using LDA 

Dataset 
% Missing 
(overall) 

% 
Missing 
(cases) 

Base 
error CD_Ratio MI_Ratio MDI_Ratio KNNI_Ratio 

Iris 1 2 3.18 0.9088 1.2013 1.1698 1.1447 
  7 20.67 3.18 1.0503 1.0629 1.044 0.8868 
  13 32.67 3.18 1.2013 0.934 0.9937 0.956 
Sonar 1 31.25 26.6 1.1229 0.9996 0.9993 0.9835 
  3 65.86 26.6 1.1891 0.9579 0.9741 0.9827 
  5 81.73 26.6 1.741 0.8748 0.8797 0.879 
Heartc* 5 26.93 16.51 0.785 0.8989 0.8546 0.9485 
  11 50.16 16.51 1.0903 0.8807 0.8328 0.9219 
  21 75.75 16.51 0.7117 0.7838 0.6445 0.8262 
Bupa 3 8.4 35.14 0.9807 1.0051 1.0062 0.9713 
  11 29.56 35.14 1.0148 1.0996 1.1104 0.9878 
  19 47.53 35.14 1.0976 1.0683 1.0461 0.9693 
Ionosphere 1 19.37 16.59 0.9385 0.9669 0.9740 0.9747 
  5 66.67 16.59 1.3207 0.956 0.94274 0.9675 
  9 86.04 16.59 1.6799 0.9210 0.912 0.9542 
Crx* 3 23.58 13.62 1.105 0.9677 0.9662 0.9802 
  13 71.05 13.62 0.8935 0.8767 0.8767 0.9192 
  21 88.36 13.62 1.2071 0.7944 0.7863 0.7863 
Breastw 3 13.32 3.66 0.9836 1.0055 0.9672 1.0683 
  11 43.77 3.66 1.2787 0.9453 0.9809 1.0328 
  21 70.13 3.66 1.3798 0.8005 0.847 0.9481 
Diabetes 3 14.32 24.64 1.0341 1.0142 1.011 1.011 
  11 45.05 24.64 0.9826 0.9688 0.9692 0.9765 
  21 69.53 24.64 1.0629 0.9436 0.9224 0.9322 
Vehicle 5 38.65 29.15 1.0621 1.0388 1.0415 0.9897 
  13 74.11 29.15 1.0604 1.1832 1.1942 0.9883 
  21 90.89 29.15 1.1252 1.1979 1.1485 1.1235 
German 5 48.4 24.38 1.0685 0.9934 0.9959 1.0008 
  13 84.8 24.38 1.0665 0.9795 0.9311 0.9828 
  19 94.6 24.38 1.1952 0.9081 0.8831 0.9680 
Segment* 5 42.9 9.15 0.9705 1.0186 1.0240 1.0021 
  13 78.74 9.15 0.906 1.0219 1.0317 0.9661 
  21 92.16 9.15 0.9792 0.8536 0.8404 0.8175 
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 Table 7-15: Ratios of Cross Validation Errors using RPART  
 
Dataset % Missing % Missing Base error CD_Ratio MI_Ratio MDI_Ratio KNNI_Ratio
Iris* 1 2 6.66 1.03904 1.003 1.02102 1.02102 
 7 20 6.66 0.7958 0.43994 0.46246 0.43544 
 13 33.33 6.66 0.98498 0.99099 1.06456 1.05706 
Sonar* 1 30.28 26.97 1.08194 1.00111 1.03411 0.94549 
 3 65.38 26.97 1.26993 1.02966 1.01965 1.00742 
 5 84.61 26.97 0.5191 0.92659 0.93585 0.91991 
Heartc* 5 29.62 17.75 0.97239 1.07211 1.04507 1.01915 
 11 58.25 17.75 1.47606 0.92958 0.87268 1.03437 
 21 83.16 17.75 1.36338 1.11944 1.08169 0.96789 
Bupa** 3 8.98 37.87 0.96884 0.96462 0.94243 0.98125 
 11 30.72 37.87 0.90863 0.85556 0.88566 0.85001 
 19 47.53 37.87 0.98495 0.70003 0.70267 0.76076 
Ionosphere 1 19.65 12.07 0.87655 1.01243 1.02568 0.98592 
 5 68.94 12.07 0.83099 0.96852 0.86578 0.99751 
 9 86.61 12.07 1.27258 0.93455 0.74731 0.93621 
Crx* 3 23.12 12.67 1.12628 1.05209 1.05288 1.08051 
 13 74.12 12.67 0.82794 0.90845 0.98185 0.93449 
 21 87.9 12.67 1.26046 0.75533 0.69613 0.68903 
Breastw* 3 13.61 4.69 0.9979 0.9702 0.9787 0.9936 
 11 44.5 4.69 1.2559 0.791 0.7932 0.7847 
 21 68.37 4.69 2.0192 0.9574 0.9211 0.9424 
Diabetes 3 14.45 27 0.9756 0.98 0.9682 0.9733 
 11 45.7 27 0.9822 0.7559 0.7707 0.7896 
 21 68.22 27 1.0822 0.6537 0.6537 0.8107 
Vehicle 5 39.59 34.58 1.0743 1.0234 1.0463 1.0272 
 13 75.76 34.58 1.1212 0.9501 0.9286 0.9569 
 21 90.3 34.58 1.4685 0.9069 0.895 0.9633 
German 5 46.4 28.06 1.0321 0.9608 0.9797 0.9704 
 13 84.3 28.06 1.1525 0.7719 0.788 0.8378 
 19 95.3 28.06 1.1586 0.6508 0.729 0.7659 
Segment 5 43.46 8.23 1.079 1.0316 1.0024 1.017 
 13 79.3 8.23 0.9101 0.8566 0.7995 0.9405 
 21 92.2 8.23 2.2819 0.7533 0.7436 0.932 
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Chapter 8 Conclusions and Future Projections 
 
 
 

8.1 Conclusions 
 
 The experiments carried out sustain the belief that datasets taken from real 

world applications are frequently “dirty”, that is, they may contain missing values 

and/or both univariate and multivariate outliers. Both the existence of missing values 

and the existence of outliers has an effect on the misclassification error of datasets 

used in a supervised classification context. Increasing percentages of either can have 

a detrimental on the results of the classification process.  

 Through this study, it was repeatedly observed that feature selection could 

prove to be a valuable tool for improving the time complexity of many other 

algorithms. If a subset of features can be chosen that maintains the intrinsic 

characteristics of the original dataset, then all other computations related to the 

classification of the observations in the dataset will be less time consuming. One 

limitation is that the most common complexity of the feature selection algorithms 

themselves is O(np2), which deteriorates the performance of these algorithms as the 

dimensionality and the number of observations increases. 

 During this work, visualization techniques have proven to be extremely useful 

for data exploration to identify patterns in missing data, as well as to aid in the 

identification of relevant features and the existence of outliers, early during the data 

analysis process. The visualization techniques included in the data preprocessing 

package of functions that was created can also assist in identifying correlations and 

patterns among attributes. Limitations to these visualizations exist, for example, the 

“cross-over” and “clutter” problems that occur as the size of the datasets grows. 

After studying empirically the effect of the different data preprocessing 

techniques on the misclassification error of the supervised classification datasets used 
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in this study, the following functions have been included to form a data preprocessing 

environment for the Windows R platform. The environment will include functions to: 

- Clean datasets by eliminating rows and columns with a percent of missing 

above a given tolerance provided by the user. 

- Perform imputation using mean, median or knn methods 

- Perform feature selection using filter algorithms such as: RELIEF, FINCO, or 

Las Vegas and wrapper methods such as: forward or floating sequential 

selection methods. 

- Detect outliers using Bay’s or LOF algorithms, clustering algorithms and 

robust estimators. 

- Normalize data using min-max, decimal scaling, z-score, sigmoidal and soft-

max normalizations 

- Visualize data using parallel coordinate or survey plots. 

8.2. Future Projections 
 

This study has been carried out using datasets that vary in dimensionality from 

four attributes to sixty and in number of observations from 150 to over 4435.  Future 

investigations would involve extending the use of the functions created to a data 

mining context using datasets of very-high dimensionality and very-large datasets.  

Though the algorithms created were promising in terms of their effectiveness and 

their state-of-the-art character, modifications to all algorithms could be proposed in 

the attempt to improve the experimental running times.  Modifications that could be 

investigated, that include the use of alternative data structures and search algorithms 

for the construction of the distance tables used in the outlier detection algorithms. 

Other possibilities for investigation in this area include the use of block 

management suggested by Bay (2003), in which the entire database is not written to 

memory at the same time, but the database is processed in blocks. This same idea 

could be applied to the visualization of high dimensional datasets by producing a 

“slide-show” of panels instead of visualizing the entire dataset. The combination of 
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feature reduction and visualization techniques could also be investigated for the 

possibility of obtaining a subset of features that characterized the entire dataset before 

visualization is carried out. The possibility of parallelizing some of the algorithms 

could also be explored.  

 Future projections for this work also include the incorporation of other 

classifiers and other techniques for data processing and visualization into the 

environment that has been developed. These techniques could include techniques for 

detecting and treating data redundancy.  
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Chapter 9 Appendix 
 
Function Codes 
 
imagmiss=function(data,name="") 
{ 
#Function to create a graph of the observations of the dataset 
#leaving white lines where data is missing. 
#The main idea is to use the original dataset to create  
#a temporary dataset containing 1 if a value is found or 
#0 is the value is missing. The temporary data set is graphed by column 
#changing color for each feature and leaving a blank horizontal line if 
#value is missing. 
#Uses the R function image from the base library. 
 
#data:  the dataset 
#name: the name of the dataset as desired in the graph title 
 
  ncol=dim(data)[2] 
  nrow=dim(data)[1] 
 
  xaxis=colnames(data) 
  #xaxis=xaxis[-ncol] 
 
  ticks=1:(dim(data)[2]-1) 
 
  data=as.matrix(data) 
  #data=data[,-ncol] 
  data[which(data!="NA")]=1 
  data[-which(data!="NA")]=0 
 
  #ncol1=ncol-1 
 
  for(i in 1:ncol) 
   { 
     data[data[,i]!=0,i]=i 
   } 
 
  x=1:ncol 
  y=1:nrow 
  graph.title=paste("Distribution of missing values by variable for - ",name) 
  
  
image(x,y,t(data),col=c(0,topo.colors(100)),xlab="features",ylab="instances",axes=FALSE,main=(gra
ph.title))
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  axis(1,labels=xaxis,at=ticks) 
 
} 
******************************************************************** 
parallelplot=function (x, name="",comb=0,class=0,obs=rep(0,0),col = 2, lty = 1, ...)  
{ 
 
#Function to create a parallel coordinate plot for a dataset. 
 
#x : the dataset 
#name : name of the dataset 
#comb : integer that represents the order in which the variables will be graphed 
#class : the number of the class to be graphed 
#obs : a list of row numbers of the observations to be highlighted 
#col : color to be used when graphing only one class 
#lty : width of poly-lines 
#... : other parameters accepted by the plot() function of R 
 
#Calculate number and size of classes in matrix 
 classes=x[,ncol(x)] 
 len.class=table(classes) 
 numclass=length(len.class) 
 
#remove classes and calculate size of matrix 
 x=x[,-ncol(x)] 
 r=nrow(x) 
 c=ncol(x) 
 
#find the number of distinct permutations of attributes 
 numgraphs=combinations(c) 
 
 class.list=as.integer(rownames(len.class)) 
  
#normalize matrix 
 xrnms=rownames(x) 
 x <- apply(x, 2, function(x) (x - min(x))/(max(x) - min(x))) 
 rownames(x)=xrnms 
    
#if graph of only one class is wanted, construct submatrix 
 if (class!=0) 
    { 
       same=(classes==class) 
       x=x[same,] 
       col=class+1 
    } 
 
graphtitle=paste("Parallel Coordinate Plot for ",name)  
 
# if more than one class, then obtain color vector for each class 
      if (class==0) 
       col=classes+1 
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#if comb equals 0, user wants to see ALL graphs of distinct permutations of variables 
 if (comb==0)  
     { 
                    
      j=1 
      def.par=par(mfrow=c(2,2)) 
    
#draw the different graphs, 4 to each screen 
      for (k in 1:ncol(numgraphs)) 
         { 
           if (k %% 4==1) {win.graph();par(mfrow=c(2,2))}           
           varorder=numgraphs[,j] 
           par(font.lab=2,font.sub=2,cex=.75,las=2) 
           subtitle=paste("Combination #",j) 
           matplot(1:c, t(x[,varorder]), type = "l", col = col, lty = lty, xlab = "", ylab = "",main=  
graphtitle, sub=subtitle,axes = FALSE, ...) 
           axis(1, at = 1:c, labels = colnames(x[,varorder]))       
           for (i in 1:c) lines(c(i, i), c(0, 1), col = "grey70") 
           j=j+1 
         } 
       }     
      
# else if only one particular combination is desired 
  else 
    { 
       varorder=numgraphs[,comb] 
 def.par=par(font.lab=2,font.sub=2,cex=.75,las=2,bg=gray(.8)) 
        subtitle=paste("Combination #",comb) 
       matplot(1:c, t(x[,varorder]), type = "l", col = col, lty = lty, xlab = "", ylab = "",main=  
 
graphtitle,sub=subtitle, axes = FALSE, ...) 
       axis(1, at = 1:c, labels = colnames(x[,varorder]))       
       for (i in 1:c) lines(c(i, i), c(0, 1), col = "grey70") 
         
       # if the user desires to highlight a particular observation 
       if (length(obs)!=0) 
        { 
          obsers=rep(0,0) 
          for(i in 1:length(obs)) obsers=c(obsers,which(rownames(x)==obs[i])) 
   colors=palette()[(numclass+2):8] 
          if (length(obsers)==1) matlines(1:c,x[obsers,varorder],lty=1,lwd=3,col=colors) 
   else  matlines(1:c,t(x[obsers,varorder]),lty=1,lwd=3,col=colors) 
   par(cex=.75) 
          text(1,x[obsers,varorder[1]],rownames(x[obsers,]),pos=3) 
          text(c,x[obsers,varorder[c]],rownames(x[obsers,]),pos=3) 
          palette("default") 
        } 
         
    } 
       
 invisible() 
 par(def.par) 
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} 
 
combinations=function(numcol) 
{ 
#A function for constructing the minimal set of permutations 
#of the elements of a vector as described by 
#Wegman in Hyperdimensional Data Analysis (1999) 
 
combine = rep(0,0) 
variables=seq(1,numcol) 
n=variables[1] 
combine=n 
for(k in 1:(numcol-1)) 
{ 
  ntemp=(n + (((-1)^(k+1))*k)) 
  if ((ntemp==0) | (ntemp==numcol)) n = numcol 
else n=(n + (((-1)^(k+1))*k)) %% numcol 
  combine=c(combine,n) 
} 
 
combinations = combine 
repet=ceiling((numcol-1)/2)-1 
m=seq(1,repet) 
for (j in m) 
{ 
   combine=(combine +1) %% numcol 
   combine[combine==0]=numcol 
   combinations = cbind(combinations, combine) 
} 
 
colnames(combinations)=NULL 
 
return(combinations) 
 
} 
 
 
surveyplot=function(datos,dataname="",orderon=0,class=0,obs=rep(0,0),lwd=1) 
 
{ 
 
#Function that will create a survey plot of a dataset. 
#datos : dataset to be graphed 
#dataname : name of the dataset 
#orderon : integer from 1-(p-1) where p is the number of columns of the dataset 
#    that gives the column by which to order 
#class  : number of the class to graph 
#obs  : list of rownumbers of the observations to highlight  
#lwd  : width of the plotting lines 
 
if (orderon==0) datos=datos[order(datos[,ncol(datos)],decreasing=FALSE),] 
data=datos 
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classes=datos[,ncol(datos)] 
r1=dim(datos)[1] 
c1=dim(datos)[2]-1 
colors=classes+1 
r=r1 
c=c1 
 
cnames=colnames(datos)[1:c] 
rnames=rownames(datos) 
graphtitle=paste("Survey Plot for ",dataname) 
 
if (orderon!=0) 
 { 
  neworder=order(data[,orderon],decreasing=T) 
  data=data[neworder,] 
  classes=classes[neworder] 
  if (class==0) colors=colors[neworder] 
 } 
 
data <- apply(data[,1:c], 2, function(data) (data - min(data))/(max(data) - min(data))) 
colnames(data)=cnames 
 
if (class !=0) 
     { 
 data=data[(classes==class),] 
 c=ncol(data) 
 r=nrow(data) 
        rnames=rownames(data) 
        colors=4 
     } 
 
width1=seq(.01, (c)*(.04), by=0.04) 
x=rep(1:c,r) 
x=x[order(x,decreasing=F)] 
x=matrix(x,ncol=c,byrow=F) 
for (i in 1:nrow(x)) x[i,2:ncol(x)]=x[i,2:ncol(x)]+width1[1:c-1] 
 
temp=seq(from=0,to=1,length=r+1) 
y=rep(temp,c) 
y=matrix(y,ncol=c,byrow=F) 
y=y[-1,] 
 
op=par(bg = gray(.8),xaxs="i",yaxs="i",yaxp=c(0,1,r+1),las=2,cex.axis=.75) 
plot(x,y,xlim=c(1,(c+2)),axes=F,type="n",xlab="Features",ylab="",main=graphtitle) 
 
axislabels=c(colnames(data)," ") 
 
width2=seq(1,c+1) 
width1=c(0,width1) 
width2=width2 + width1 
 
for (i in width2) lines(c(i, i), c(0, 1), col = "dark gray") 
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segments(x,y,(x+data),y,col=colors,lwd=lwd) 
 
axis(1, at = width2, labels = axislabels,pos=0) 
 
if (length(obs)!=0) 
 { 
   old.obs=obs 
   obs=rep(0,0) 
   if (orderon!=0)   
     { 
      if (class==0) for(i in 1:length(old.obs)) obs=c(obs,which(neworder==old.obs[i]))     
      else for(i in old.obs) obs=c(obs,which(rnames==i)) 
     } 
    
   else for(i in old.obs) obs=c(obs,which(rnames==i)) 
 
      
  axis(2,at=y[obs,1],old.obs,tick=F,cex.axis=0.5) 
  segments(x[obs,1:c],y[obs,1:c],x[obs,1:c]+data[obs,1:c],y[obs,1:c],col="dark blue",lwd=lwd+1) 
 } 
 
par(op) 
 
} 
 
outbox=function(data,nclass) 
{#****************************************************************** 
#This function detects univariate outliers simultaneously using boxplots 
#data: name of the dataset 
#nclass: class number 
#******************************************************************** 
ncols=dim(data)[2] 
out1<-NULL 
datatempo=data[data[,ncols]==nclass,1:(ncols-1)] 
for(i in 1:(ncols-1)){ 
blim=boxplot(datatempo)$stats 
b1=as.numeric(rownames(rbind(datatempo[datatempo[,i]<blim[1,i],],datatempo[datatempo[,i]>blim[5,
i],]))) 
out1=c(out1,b1) 
} 
sort(table(out1)) 
} 
 
 
baysout=function(D,blocks=5,k=3,num.out=2) 
{ 
 
#Function that gives the outlyingness measure for the requested number of 
#observations using the algorithms developed by Bay. 
#D : the dataset 
#blocks : size of block to be processed 
#k : number of nearest neighbors to compute to determine if observation 
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#   is a candidate for an outlier 
#num.out: number of candidates for outliers and their outlyingness measure 
#   to display as output. Must be less than or equal to block number. 
 
D=as.data.frame(D) 
nrows=dim(D)[1] 
c=0 
Out=NULL 
rep=ceiling(nrows/blocks) 
for (cycle in 1:rep) 
 { 
  block.size=blocks 
  if (block.size*cycle<=nrows) block=(block.size*(cycle-1)+1):(block.size*cycle)  
  else {block=(block.size*(cycle-1)+1):nrows;block.size=length(block)} 
  B=D[block,] 
  neighbors=matrix(rep(0,(block.size*k)),block.size,k) 
  rownames(neighbors)=rownames(B) 
  neighbors=as.data.frame(neighbors) 
  for (m in 1:nrows) 
  { 
   d=D[m,]    
   j=1 
   flag=0 
   reduce = 0 
   removeB=rep(0,0) 
   removeN=rep(0,0) 
   while ((j <= block.size)&(block.size>=1)) 
    { 
      if (!(as.integer(rownames(D)[m])==as.integer(rownames(B)[j]))) 
       { 
 b=B[j,] 
         if ((0%in%neighbors[j,])|(distancia(b,d)<maxdist(neighbors[j,])[1]))  
          { 
           neighbors[j,]=closest(b,d,neighbors[j,],3) 
           if (!(0%in%neighbors[j,])&(score(neighbors[j,]) < c))  
              { 
               removeB=cbind(removeB,j) 
               removeN=cbind(removeN,j) 
               reduce=reduce + 1 
              } 
 
          } 
       } 
    j=j+1 
     } 
   if (reduce==dim(B)[1]) flag=1 
   else if(reduce != 0) 
      { 
       block.size=block.size-reduce 
 B=B[-removeB,] 
        neighbors=neighbors[-removeN,] 
   
      } 
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   }  
    
   if (flag==0) 
   { 
    Out=top(Out,neighbors,num.out) 
    c=min(Out) 
   } 
  } 
xcoord=as.integer(rownames(Out)) 
plot(Out,main="Instances with Greatest Median distance from K nearest neighbors",ylab="Median 
Distance") 
text(1:num.out,Out,rownames(Out),pos=1) 
return(Out) 
} 
 
maxdist=function(dneighbors) 
{ 
#Function used by baysout to find the largest value of a distance vector 
#returns the value and the index number 
#dneighbors: row vector with the distance of the k nearest neighbors for a given b of B 
 
dneighbors=as.matrix(dneighbors) 
maxindex=which.max(dneighbors) 
max=dneighbors[maxindex] 
list(value=max,index=maxindex) 
} 
 
closest=function(b,d,neigh,k) 
{ 
# Function used by baysout to select the k vectors that are closest to  
# a given observation   
# b :  instance from B under study 
# neigh :  matrix containing the distance to each of the k neighbors 
#         rownames are rownames of D 
# d :  is the instance from D under study, must have rowname 
# k :  is number of nearest neighbors 
 
dist=distancia(b,d) 
if(0%in%neigh) { neigh[which(neigh[]==0)[1]]=dist;new=neigh} else {new = c(neigh,dist)} 
new.sort=new[order(new,decreasing=F)] 
nearest=new.sort[1:k] 
return(nearest) 
} 
score=function(data) 
{ 
#Function to determine the score measure that will be used to determine 
#candidates for outliers 
#data : vector containing distances to k nearest neighbors. 
 
s=median(as.matrix(data)) 
return (s) 
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} 
top=function(O,neighbors,n) 
{ 
 
#Function that finds the n candidates for outliers that 
#were requested by the user. 
 
#O:  n x 1 matrix with the median distance from k nearest neighbors 
#    of the n top outliers up to the moment. 
#    row names are equal to names from original matrix D. 
 
#neighbors: keeps distance from k nearest neighbors of prospective outliers 
#           maximum size= blocksize x k, where k is number of nearest neighbors 
#     
 
temp=as.matrix(apply(neighbors,1,median)) 
#rownames(temp)=rownames(ndistance) 
out=rbind(O,temp) 
out.sort=as.matrix(out[order(out,decreasing=T)]) 
outliers=as.matrix(out.sort[1:n,]) 
return(outliers) 
} 
 
maxlof=function(data,name="",minptsl=10,minptsu=20) 
{ 
 
#Function that displays the local outlier factor of each observation in a dataset 
#as a list and also as a plot. 
#Calls on lofactor. 
 
 j=seq(minptsl,minptsu) 
 maxlofvect=rep(0,dim(data)[1]) 
  
 for (i in j) 
  { 
        temp=lofactor(data,i) 
        maxlofvect=cbind(maxlofvect,temp) 
        maxlofvect=apply(maxlofvect,1,max) 
  } 
 
 names(maxlofvect)=rownames(data) 
  
 ord.maxlofvect=order(maxlofvect,decreasing=T) 
 maxlofvect.ord=maxlofvect[ord.maxlofvect] 
 
 title1=paste("Plot for lof of ",name) 
 title2=paste("lower minpts: ",minptsl,"  upper minpts: ",minptsu) 
 par(font.sub=2) 
 
 plot(maxlofvect.ord,main=title1,sub=title2,xlab="Observation number",ylab="local outlier factor") 
 text(1:10,maxlofvect.ord[1:10],names(maxlofvect.ord)[1:10],pos=4) 
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 return(maxlofvect) 
} 
 
dist.to.knn2=function(dataset,neighbors) 
{ 
 
#function returns an object in which each column contains 
#the indices of the first k neighbors followed by the 
#distances to each of these neighbors 
 
numrow=dim(dataset)[1] 
 
#applies a function to find distance to k nearest neighbors 
#within "dataset" for each row of the matrix "dataset" 
 
knndist=rep(0,0) 
 
 
for (i in 1:numrow) 
{ 
  neighdist=knneigh.vect2(dataset[i,],dataset,neighbors) 
  knndist=cbind(knndist,neighdist) 
} 
 
 
return(knndist) 
} 
 
knneigh.vect2 =function(x,data,k) 
{ 
#Function that returns the distance from a vector "x" to    
#its k-nearest-neighbors in the matrix "data" 
 
temp=as.matrix(data) 
numrow=dim(data)[1] 
dimnames(temp)=NULL 
 
#subtract rowvector x from each row of data 
difference<- scale(temp, x, FALSE) 
 
#square and add all differences and then take the square root 
dtemp <- drop(difference^2 %*% rep(1, ncol(data))) 
dtemp=sqrt(dtemp) 
 
#order the distances 
order.dist <- order(dtemp) 
nndist=dtemp[order.dist] 
 
#find distance to k-nearest neighbor 
#uses k+1 since first distance in vector is a 0 
knndist=nndist[k+1] 
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#find neighborhood 
#eliminate first row of zeros from neighborhood  
neighborhood=drop(nndist[nndist<=knndist]) 
neighborhood=neighborhood[-1] 
numneigh=length(neighborhood) 
 
#find indexes of each neighbor in the neighborhood 
index.neigh=order.dist[1:numneigh+1] 
 
# this will become the index of the distance to first neighbor 
num1=length(index.neigh)+3 
 
# this will become the index of the distance to last neighbor 
num2=length(index.neigh)+numneigh+2 
 
#form a vector 
neigh.dist=c(num1,num2,index.neigh,neighborhood) 
lvect=numrow-numneigh 
extra=lvect*2 
extrazeros=rep(0,extra) 
neigh.dist=c(num1,num2,index.neigh,neighborhood,extrazeros) 
 
return(neigh.dist) 
} 
 
reachability2=function(distdata,k) 
{ 
#function that calculates the local reachability density 
#of Breuing(2000) for each observation in a matrix, using 
#a matrix (distdata) of k nearest neighbors computed by the function dist.to.knn2 
 
p=dim(distdata)[2] 
lrd=rep(0,p) 
 
 
for (i in 1:p) 
 
 { 
j=seq(3,3+(distdata[2,i]-distdata[1,i])) 
# compare the k-distance from each observation to its kth neighbor 
# to the actual distance between each observation and its neighbors 
numneigh=distdata[2,i]-distdata[1,i]+1 
temp=rbind(diag(distdata[distdata[2,distdata[j,i]],distdata[j,i]]),distdata[j+numneigh,i]) 
 
#calculate reachability 
reach=1/(sum(apply(temp,2,max))/numneigh) 
lrd[i]=reach 
 } 
lrd 
} 
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robout=function(data,nclass,meth=c("mve","mcd","classical"),rep,plot=T) 
{ 
******************************************************************** 
#This function finds out the outliers using robust versions of the 
#Mahalanobis distance 
#data: name of the dataset 
#nclass: number of the class to check for outliers 
#meth=method used to compute the Mahalanobis distance, "mve"=minimum 
#      volume estimator, "mcd"=minimum covariance determinant, 
#      "classical"=the usual Mahalanobis distance.  
#rep= number of repetitions 
#*********************************************************************** 
ncol=dim(data)[2] 
tempo=data[data[,ncol]==nclass,1:(ncol-1)] 
namestempo=rownames(tempo) 
nrow=dim(tempo)[1] 
roboutl=NULL 
roboutall=matrix(0,nrow,rep) 
rownames(roboutall)=namestempo 
for(i in 1:rep) 
{mcdc=cov.rob(tempo,method=meth) 
mbc=sqrt(mahalanobis(tempo,mcdc$center,mcdc$cov,to=.00000000000001)) 
roboutl=c(roboutl,boxplot(mbc,plot=F)$out) 
roboutall[,i]=mbc 
} 
a=as.matrix(roboutl) 
b=apply(roboutall,1,mean) 
outme=rev(sort(b)) 
topo=rev(sort(b))[1:10] 
if(plot){ 
win.graph() 
plot(rev(sort(b)),ylab=paste("Mahalabobis distance(",meth,")")) 
text(1:10,topo,names(topo),cex=.6,pos=4) 
} 
top=rev(sort(table(as.numeric(rownames(a))))) 
top1=top[top>5] 
cat("\nTop outliers by frequency\n") 
print(top1) 
topout=as.numeric(names(top1)) 
ntops=length(topout) 
outly=rep(0,ntops) 
for(i in 1:ntops) 
{outly[i]=mean(a[as.numeric(rownames(a))==topout[i]]) 
} 
#topimp=cbind(topout,outly) 
topimp=cbind(topout,b[topout]) 
topimp=topimp[order(-topimp[,2]),] 
cat("\nTop outliers by outlyngness measure\n") 
#print(topout) 
zz=as.vector(outme) 
#names(zz)="outlyingness" 
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print(cbind(topout,zz[order(topout)])) 
list(outme=outme) 
} 
cv10lda=function(data) 
{ 
# This function finds the number of instances correctly classified  
# by the Linear Discriminant classifier using 10-fold cross validation  
# with one repetition. 
# Inputs: 
# data: dataset including the classes in the last colummn. 
# Requires the lda function of the MASS library due to Ripley. 
# 
# Edgar Acuna-Caroline Rodriguez, 2004 
#----------------------------------------------------- 
n<-dim(data)[1] 
p<-dim(data)[2]  
 
salida <- matrix(0, 1, 10) 
azar <- data[rank(runif(n)),  ] 
parti <- floor(n/10) 
 
for(j in 1:10)  
{ 
 cc <- ((j - 1) * parti + 1):(j * parti) 
 if(j == 10)  
 { 
  cc <- ((j - 1) * parti + 1):n 
 } 
 datap <- azar[cc,  ] 
 datat <- azar[ - cc,  ] 
 tempo <- lda(as.matrix(datat[, 1:p - 1]), datat[, p]) 
 tempo1 <- predict(tempo, as.matrix(datap[, 1:p - 1]))$class 
 salida[j] <- sum(tempo1 != as.numeric(datap[, p])) 
} 
 
gooderr <- n-sum(salida) 
 
return(gooderr) 
} 
 
cv10rpart<-function(datos) 
{ 
# This function finds the number of instances correctly classified by the 
# decision tree classifier, rpart, using 10-fold cross validation 
# and one repetition. 
# Requieres the rpart library  
# inputs: 
# datos: the dataset to be used 
# 
# Edgar Acuna-Caroline Rodriguez, March 2004 
#-----------------------------------------------  
 library(rpart) 
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 datos=as.data.frame(datos) 
 n <- dim(datos)[1] 
 p <- dim(datos)[2] 
 nombres<-colnames(datos) 
 f1<-as.formula(paste(nombres[p],".",sep="~")) 
  
 salida <- matrix(0, 1, 10) 
 azar <- datos[rank(runif(n)),  ] 
 azar[, p] <- as.factor(azar[, p]) 
 parti <- floor(n/10) 
 for(j in 1:10)  
  { 
   cc <- ((j - 1) * parti + 1):(j * parti) 
   if(j == 10)  
   { 
    cc <- ((j - 1) * parti + 1):n 
   } 
   datap <- azar[cc,  ] 
   datat <- azar[ - cc,  ] 
   arbol <- rpart(f1, data = datat, method="class") 
   pd1<-predict(arbol,datap) 
   pd2=max.col(pd1) 
   salida[j] <- sum(pd2!=datap[, p]) 
  } 
  
 gooderr<- n-sum(salida) 
  
 return(gooderr) 
} 
 
cv10knn=function(data, kvec) 
{ 
# This function finds the number of instances correctly classified by 
# the knn classifier, using 10-fold cross validation, with one repetition. 
# It requieres the knn function of the class library due to B. Ripley. 
# inputs: 
# data: dataset to be used 
# kvec: number of nearest neighbors 
# 
# Edgar Acuna-Caroline Rodriguez, March 2004 
#--------------------------------------------------------------------------------- 
n <- dim(data)[1] 
p <- dim(data)[2] 
salida <- matrix(0, 1, 10) 
azar <- data[rank(runif(n)),  ] 
azar[, p] <- as.factor(azar[, p]) 
parti <- floor(n/10) 
for(j in 1:10)  
{ 
 cc <- ((j - 1) * parti + 1):(j * parti) 
 if(j == 10)  
  { 
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   cc <- ((j - 1) * parti + 1):n 
  } 
 datap <- azar[cc,  ] 
 datat <- azar[ - cc,  ] 
 tempo <- knn(as.matrix(datat[, 1:p - 1]), as.matrix(datap[, 1:p - 1]), datat[, p], kvec) 
 salida[j] <- sum(tempo != as.numeric(datap[, p])) 
} 
ECV1 <- n-sum(salida) 
return(ECV1) 
} 
 
relief<-function(data,nosample, threshold) 
{ 
# ******************************************* 
# This program runs Relief for multiple classes 
# Uses the function near1 and distancia 
# data: name of the dataset 
# nosample: number of instances drawn from the original dataset 
# threshold: the cutoff point to select the features. First is 
#chosen as zero and later is corrected after looking at the plot  
# 
#Revised: June 2002, revised January 2003, February 2004 
#March 03,2004 
#Edgar Acuna-Caroline Rodriguez 
#*************************************************  
 
data <- as.matrix(data) 
p=dim(data)[2] 
f=p-1 
#Initializing acum, features, and pesototal 
acum<-rep(0,f) 
features <- seq(f) 
ngroups=length(unique(data[,p])) 
pesototal=rep(0,f) 
#Number of instances 
inst <- length(data[, 1]) 
#Computing the priors 
priors <- tabulate(data[, p])/inst 
#Calculating the range of each feature. range=Max-Min 
dh <- rep(0, f) 
for(j in 1:f)  
 { 
  dh[j] <- diff(range(data[, j])) 
 } 
#Here starts the loop of the 10 repetitions 
for (repet in 1:10) 
{ 
#Inilitializating nearhit, pesos and tempo 
nearhit <- matrix(0, nosample, f) 
pesos <- rep(0, f) 
tempo <- matrix(0, ngroups, f) 
#Here starts the loop for updating the pesos 
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for(i in 1:nosample)  
 { 
  indices <- sample(inst, 1, replace = T) 
  muestra <- data[indices,  ] 
  datatemp <- data[ - indices,  ] 
  data1=split.data.frame(datatemp[,1:f],datatemp[,p]) 
  indg <- muestra[p] 
  nearhit[i,  ] <- near1(muestra[ - p], data1[[indg]]) 
 #Finding the nearmiss in each group distinct to the group containing the nearhit  
  for(kk in 1:ngroups)  
   { 
    if(kk != indg)  
     { 
      nearmiss<- near1(muestra[ - p], data1[[kk]]) 
     tempo[kk,  ] <- (muestra[ - p] - as.vector(nearmiss)) 
     } 
    for(ii in 1:f)  
     { 
      tempo[kk, ii] <- (1/nosample)*(tempo[kk, ii]/dh[ii])^2 
     } 
   } 
  pesomiss <- rep(0, f) 
#Updating the pesos for each feature   
for(jj in 1:f)  
   { 
    for(kk in 1:ngroups)  
     { 
      if(kk != indg)  
       { 
        pesomiss[jj] <- pesomiss[jj] + priors[kk] * tempo[kk, jj] 
       } 
     } 
    pesomiss[jj] <- pesomiss[jj]/(1 - priors[indg]) 
   } 
  for(j in 1:f)  
   { 
    diff <-  - (1/nosample)*((muestra[j] - nearhit[i, j])/dh[j])^2 + pesomiss[j] 
    pesos[j] <- pesos[j] + diff 
   } 
 } 
#print(pesos) 
#Normalizing the pesos 
#pesos <- pesos/nosample 
#selecting the features with pesos greater than a threshold 
o1 <- order( - pesos) 
o2 <- pesos[o1] 
o3 <- o1[o2 > threshold] 
#Acumulating the pesos in each repetition 
 
pesototal=pesototal+pesos 
 
#Acumulating the frecuencies of the selected features 
acum[o3]=acum[o3]+1 
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#end of repet 
} 
#Ordering the total pesos 
pesotota=as.matrix(pesototal) 
of1 <- order( - pesotota) 
of2 <- pesotota[of1]/10 
acum=as.matrix(acum) 
#Ordering the features according to theirs weights 
tabla=cbind(1:f,acum,pesotota/10) 
colnames(tabla)=c("feature","frequency","weight") 
tabla=tabla[order(-tabla[,3]),] 
cat("Frequencies and average weights of more relevant features in 10 replicates: \n") 
print(tabla[tabla[,2]>5,]) 
#ploting the total pesos in order to update the threshold  
plot(of2,ylab="weights") 
text(1:f,of2,tabla[,1],pos=4) 
relevant1=which(acum>5) 
#Selecting the relevant features according to their total pesos and frequencies 
relevant2=which(pesotota/10>threshold) 
relevant=unique(c(relevant1,relevant2)) 
#print(relevant) 
cat("selected features", "\n") 
relevant=tabla[1:length(relevant),1] 
return(relevant) 
} 
 
 
moda<-function(x,na.rm=TRUE) 
{ 
   
#Function that finds the mode of vector x 
 
  if(na.rm==TRUE) m1=rev(sort(table(x[]))) 
    else m1=rev(sort(table(x,exclude=NULL))) 
  moda=names(m1[m1==m1[1]]) 
  if (is(x,"numeric")) moda=as.numeric(moda) 
  return(moda) 
} 
 
near1<-function(x, data) 
{ 
#**************************************** 
# Esta funcion encuentra la observacion en el 
#conjunto de datos data que esta mas cerca a 
# la observacion x requiere la funcion distancia 
#********************************************* 
 nd <- length(data[, 1]) 
 distall <- rep(0, nd) 
 for(i in 1:nd) { 
  distall[i] <- distancia(x, data[i,  ]) 
 } 
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#print(sort(distall)) 
 ind1 <- order(distall)[1] 
 near1 <- data[ind1,  ] 
 near1 
} 
 
sfs=function(data,method=c("lda","knn","rpart"),kvec=5,repet=10) 
{ 
# ******************************************************* 
# This function selects features using the sequential  
# forward method with either lda, knn or rpart 
# data: the data set 
# method: choice of classifier 
# kvec: the number of nearest neighbors to be used for the knn classifier 
# repet: number of repetitions. rep=20 for small datasets and =10 for large datasets 
# Required libraries: MASS, class and rpart 
# Edgar Acuna- Caroline Rodriguez, March 2004 
#--------------------------------------------------- 
if (!(method %in% c("lda","knn","rpart"))) 
 { 
  cat("The classifier entered is not supported by this function.\n") 
  return(method) 
 } 
# n: number of instances 
n=dim(data)[1] 
# p: number of columns 
p=dim(data)[2] 
#Initializing the vector of the number of selected features in each repetition 
numbersel=rep(0,repet) 
#Initializing the frequencies of the features 
fsel=rep(0,repet) 
for(i in 1:repet) 
{ 
# Initializing the vector that will contain the selected features 
 indic <- rep(0, p - 1) 
 output <- indic 
 #number of the column containing the classes 
 varia <- p 
 for(k in 1:(p-1))  
  { 
   correct <- rep(0, p - 1) #initializing the recognition rates for each feature 
   if(k > 1)  
    { 
 varia <- c(where, varia) 
    } 
   for(m in 1:(p - 1))  
    { 
 if(indic[m] == 0)  
  { 
   which <- c(m, varia) 
      if (method=="lda") correct[m] <- cv10lda2(data[, which]) 
      else if (method=="knn") correct[m] <- cv10knn2(data[, which],kvec) 
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     else correct[m] <- cv10rpart2(data[, which]) 
  } 
    } 
  prov <- correct + runif(p - 1) #Breaking ties randomly 
  where <- sum((1:(p - 1)) * as.numeric(max(prov) == prov)) 
  #recognition rate of the entering feature 
  output[k] <- correct[where]/n 
  indic[where] <- 1 
  if(k > 1)  
 { 
 if(output[k] <= output[k - 1])  
  { 
   #avoids ties of recognition rates 
   indic <- rep(1, p - 1) 
  } 
 } 
  } 
 which <- rev(which) 
 which <- which[-1] 
 which1 <- which[1:(length(which) - 1)] 
 numbersel[i]=length(which1) 
 fsel[which1]=fsel[which1]+1 
} 
bestsize=round(mean(numbersel)) 
rev(order(fsel)) 
bestsubset=rev(order(fsel))[1:bestsize] 
cat("The best subset of features is:") 
cat("\n") 
bestsubset 
} 
 
sbs1<-function(data,indic,correct0,kvec=5,method=c("lda","knn","rpart")) 
{ 
# This function performs a step of the Backward Selection method using  
# one of the classifiers: LDA, knn, or rpart. 
# data: dataset to be used 
# indic: vector of 0's and 1's. 1 indicates that the variable in that position 
# has been removed and 0 that it has not been removed. 
# correct0: recognition rate of the current best subset 
# kvec: number of neighbors if knn used 
# 
# Edgar Acuna-Caroline Rodriguez, March 2004 
# -------------------------------------------------- 
 
# n: number of instances 
n=dim(data)[1] 
# p: number of features 
p=dim(data)[2] 
output <- indic 
varia <- 1:(p - 1) 
varia <- varia[indic > 0] 
#print(varia) 
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#initializing the recognition rate vector 
correct <- rep(0, p - 1) 
  
mm=0 
for(m in 1:(p - 1))  
 { 
  if(indic[m] == 1)  
  { 
    mm=mm+1 
    #print(mm) 
    #print(varia) 
    temp<-varia 
    which <- temp[ - mm] 
    if (method=="lda") correct[m] <- cv10lda2(data[, c(which, p)]) 
    else if (method=="knn") correct[m] <- cv10knn2(data[, c(which, p)],kvec) 
    else correct[m] <- cv10rpart2(data[, c(which, p)]) 
  } 
 } 
 
#Breaking ties randomly 
prov <- correct + runif(p - 1) 
  
#The feature to be removed 
where <- sum((1:(p - 1)) * as.numeric(max(prov) == prov)) 
 
#recognition rate of the removed feature 
output <- correct[where]/n   
 
if(output >= correct0)  
{ 
  indic[where] <- 1 
} 
else  
{ 
  output <- correct0 
  where <- NULL 
  which1 <- NULL 
} 
 
which <- rev(which) 
 
which1 <- where 
indic[where] <- 0  
 
list(variaelim = which1, indic = indic, correcto = output) 
 
} 
 
sfs1=function(data,indic,correcto,kvec,method=c("lda","knn","rpart")) 
{ 
# This function carries out one "forward step" using either 
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# the lda, knn or rpart classifier. 
# inputs: 
# data: the dataset 
# indic: vector of 0's and 1's. 1 indicates the the variable in that 
# position has been selected and 0 that it has not been selected. 
# correcto=recognition rate of the current best subset 
# kvec : the number of nearest neighbors 
# 
# Edgar Acuna-Caroline Rodriguez, March 2004 
#------------------------------------------------------------------ 
# n: number of instances 
n=dim(data)[1] 
# p: number of variables 
p=dim(data)[2] 
output<-indic 
varia <- 1:(p - 1) 
varia <- varia[indic > 0]  
#print(varia) 
 
#Initializing the recognition rate vector 
correct <- rep(0, p - 1) 
 
for(m in 1:(p - 1))  
{ 
 if(indic[m] == 0)  
  { 
   which <- c(m, varia, p)  
   if (method=="lda") correct[m] <- cv10lda2(data[, which]) 
   else if (method=="knn") correct[m] <- cv10knn2(data[, which],kvec) 
   else correct[m] <- cv10rpart2(data[, which]) 
  } 
} 
 
#Breaking ties randomly 
prov <- correct + runif(p - 1)  
 
 
#The entering feature 
where <- which(max(prov) == prov) 
 
#recognition rate of the entering feature 
output <- correct[where]/n   
#print(output) 
 
if(output > correcto)  
{ 
 indic[where] <- 1 
} 
 
list(indic = indic, varselec = where, accuracy = output) 
} 
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sffs<-function(data,method=c("lda","knn","rpart"),kvec=5,repet=10) 
{ 
# ******************************************************* 
# This function selects features using the sequential  
# floating forward method with either the lda, knn  
# or rpart classifiers  
# data: the data set 
# method: choice of classifier 
# kvec: the number of nearest neighbors to be used for the knn classifier 
# Required libraries: MASS, class, and rpart 
# Caroline Rodriguez-Edgar Acuna, March 2004 
#------------------------------------------------ 
 
if (!(method %in% c("lda","knn","rpart"))) 
 { 
  cat("The classifier entered is not supported by this function.\n") 
  return(method) 
 } 
# n: number of instances 
n=dim(data)[1] 
 
# p: number of variables 
p=dim(data)[2] 
grupos=data[,p] 
 
# ngroups: number  of classes 
ngroups=dim(table(data[,p])) 
 
selected=rep(0,p) 
numselect=0 
 
for (j in 1:repet) 
{ 
indic <- rep(0, p - 1) 
correcto <- 0 
 
paso1 <- sfs1(data,indic,correcto,kvec,method) 
correcto <- paso1$accuracy 
indic <- paso1$indic 
 
i <- 2 
 
while(i <= (p - 1))  
{ 
  paso2 <- sfs1(data,indic,correcto,kvec,method) 
  if(paso2$accuracy > correcto)  
   { 
    correcto <- paso2$accuracy 
    indic <- paso2$indic 
    for(j in 1:(i - 1))  
     { 
paso3 <- sbs1(data,indic,correcto,kvec,method) 
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correcto <- paso3$correcto 
indic <- paso3$indic 
     } 
   } 
  else  
   { 
    i <- p 
   } 
} 
 
variables <- seq(1, (p - 1)) 
variables <- variables[indic == 1] 
cat("Selected variables for ",method," classifier on this repetition are: \n") 
print(variables) 
numselect=numselect+length(variables) 
selected[variables]=selected[variables]+1 
} 
numselect=round(numselect/repet) 
fselect=order(selected,decreasing=T)[1:numselect] 
cat("\nThe best subset of features is:\n") 
return(fselect) 
} 
 
distancia<-function(x, y) 
{ 
#**************************************************** 
# Finds the euclidean distance between 
# two vector x and y or the matrix y and the vector x 
# *************************************************** 
 if(class(y)=="matrix")  
    { 
        distancia = drop(sqrt(colSums((x-t(y))^2))) 
        distancia= t(distancia) 
    } 
  else distancia = sqrt(sum((x-y)^2)) 
 distancia 
} 
 
 
mmnorm<-function (data)  
{ 
#This is a function to apply min-mas normalization to a matrix or dataframe. 
#Min-max normalization subtracts the minimum of an attribute from each value 
#of the attribute and them divides the difference by the range of the attribute. 
#Uses stats function found in  R fields package and scale function found in the R base package. 
#Input: data= The matrix or dataframe to be scaled 
 
library(fields) 
 
#store all attributes of the original data 
d=dim(data) 
c=class(data) 
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cnames=colnames(data) 
 
#remove classes from dataset 
classes=data[,d[2]] 
data=data[,-d[2]] 
 
minvect=stats(data)[4,] 
rangevect=stats(data)[8,]-stats(data)[4,] 
zdata=scale(data,center=minvect,scale=rangevect) 
 
#remove attributes added by the function scale and turn resulting 
#vector back into a matrix with original dimensions 
attributes(zdata)=NULL 
zdata=matrix(zdata,dim(data)[1],dim(data)[2]) 
zdata=cbind(zdata,classes) 
 
if (c=="data.frame") zdata=as.data.frame(zdata) 
colnames(zdata)=cnames 
return(zdata) 
 
} 
decscale<-function (data)  
{ 
#This is a function to apply decimal scaling to a matrix or dataframe. 
#Decimal scaling transforms the data into a range from [-1,1] by 
#finding k such that the absolute value of the maximum value of each attribute divided by 10^k   
#is less than or equal to 1. 
#Uses stats function found in  R fields package and scale function found in the R base package. 
#Input: data= The matrix or dataframe to be scaled 
 
library(fields) 
 
#store all attributes of the original data 
d=dim(data) 
c=class(data) 
cnames=colnames(data) 
 
#remove classes from dataset 
classes=data[,d[2]] 
data=data[,-d[2]] 
 
maxvect=stats(abs(data))[8,] 
 
#find k such that max/10^k is less than 1. 
kvector=ceiling(log10(maxvect)) 
scalefactor=10^kvector 
decdata=scale(data,center=FALSE,scale=scalefactor) 
 
#remove attributes added by the function scale and turn resulting 
#vector back into a matrix with original dimensions 
attributes(decdata)=NULL 
decdata=matrix(decdata,dim(data)[1],dim(data)[2]) 



 

 

144

decdata=cbind(decdata,classes) 
 
if (c=="data.frame") decdata=as.data.frame(decdata) 
colnames(decdata)=cnames 
return(decdata) 
 
} 
 
 
signorm<-function (data)  
{ 
#This is a function to apply sigmoidal normalization to a matrix or dataframe. 
#Sigmoidal normalization transforms the data into a range from [-1,1] by 
#using a sigmoid function.  
#Input: data= The matrix or dataframe to be scaled 
 
 
#store all attributes of the original data 
d=dim(data) 
c=class(data) 
cnames=colnames(data) 
classes=data[,d[2]] 
 
#first step of sigmoidal normalization is to standardize data 
zdata=znorm(data) 
 
#remove classes from normalized dataset 
d2=dim(zdata) 
zdata=zdata[,-d2[2]] 
 
#scaling used: (1-e^-zdata)/(1+e^-zdata) 
sigdata=(1-exp(-zdata))/(1+exp(-zdata)) 
 
#return classes to normalized dataset 
sigdata=cbind(sigdata,classes) 
 
if (c=="data.frame") sigdata=as.data.frame(sigdata) 
colnames(sigdata)=cnames 
return(sigdata) 
 
} 
 
 
softmaxnorm<-function (data)  
{ 
#This is a function to apply softmax normalization to a matrix or dataframe. 
#Softmax normalization transforms the data into a range from [0,1] by 
#Input: data= The matrix or dataframe to be scaled 
 
 
#store all attributes of the original data 
d=dim(data) 



 

 

145

c=class(data) 
cnames=colnames(data) 
classes=data[,d[2]] 
 
#first step of softmax normalization is to standardize data 
zdata=znorm(data) 
 
 
#remove classes from standardized dataset 
d2=dim(zdata) 
zdata=zdata[,-d2[2]] 
 
#scaling used: 1/(1+e^-zdata) 
softdata=1/(1+exp(-zdata)) 
 
softdata=cbind(softdata,classes) 
 
if (c=="data.frame") softdata=as.data.frame(softdata) 
colnames(softdata)=cnames 
return(softdata) 
 
} 
 
 
znorm<-function (data)  
{ 
#This is a function to apply z-Score normalization to a matrix or datafram. 
#Uses scale function found in the R base package. 
#Input: data= The matrix or dataframe to be scaled 
 
#store all attributes of the original data 
d=dim(data) 
c=class(data) 
cnames=colnames(data) 
 
#remove classes from dataset 
classes=data[,d[2]] 
data=data[,-d[2]] 
 
zdata=scale(data) 
 
#remove attributes added by the function scale and turn resulting 
#vector back into a matrix with original dimensions 
attributes(zdata)=NULL 
zdata=matrix(zdata,dim(data)[1],dim(data)[2]) 
zdata=cbind(zdata,classes) 
 
if (c=="data.frame") zdata=as.data.frame(zdata) 
colnames(zdata)=cnames 
return(zdata) 
 
} 
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ce.mimp=function (w.cl,method=c("mean","median"),atr,nomatr=0,name="") 
{ 
#find dimensions of matrix 
p=dim(w.cl) 
 
#find indexes of missing values 
index.na=which(is.na(w.cl),arr.ind=TRUE) 
o=order(index.na[,1], index.na[,2]) 
index.na=index.na[o, ] 
dimnames(index.na)=NULL 
 
#find variables with missing values 
var.na=sort(as.numeric(names(table(index.na[,2])))) 
 
#find values of var.na that are equal to relevant attributes, reduce var.na    
  var.na=var.na[var.na%in%atr] 
 
if (length(var.na)==0) stop("Error: No missing values occur in relevant variables!") 
 
#reduce rows of index.na to only (row,col) of relevant variables with missing  
  index.atr=matrix(index.na[index.na[,2] %in% atr[]],,2) 
 
#find classes of rows with missing 
  class.na=as.matrix(w.cl[index.atr[,1],p[2]]) 
  dimnames(class.na)=NULL 
  class.na=cbind(index.atr,class.na) 
 
  classes=sort(as.numeric(names(table(w.cl[index.na[,1],p[2]])))) 
  num.class=length(classes) 
 
  replace.na=rep(0,0) 
 
#replace na is row with mean or median of class 
  for(i in 1:dim(class.na)[1]) 
   { 
    #split matrix into submatrices to find mean of class 
     sub=w.cl[w.cl[,p[2]]==class.na[i,3],] 
     #method=match.arg(method) 
 
     if (class.na[i,2]%in%nomatr) imput.col=moda(sub[,class.na[i,2]])[1] 
      else if (method=="mean") imput.col=mean(sub[,class.na[i,2]],na.rm=TRUE) 
            else if (method=="median") imput.col=median(sub[,class.na[i,2]],na.rm=TRUE) 
       
     #create a vector with imput value for column of class 
     replace.na=rbind(replace.na,imput.col)       
   } 
  dimnames(replace.na)=NULL 
  class.na=cbind(class.na,replace.na) 
   
  for (i in 1:dim(class.na)[1])   



 

 

147

    w.cl[class.na[i,1],class.na[i,2]]=class.na[i,4] 
   
 
#Remove comments if screen view is desired 
cat("\nSummary of imputations using substitution of ",method,"(mode for nominal features):\n") 
colnames(class.na)=c("Row","Column","Class","Imput.value") 
print(class.na) 
cat("\nTotal number of imputations per class: \n") 
for (i in classes) 
  { 
  amount=sum(class.na[,3]==i) 
  cat("Class ",i,": ",amount,"\n") 
 } 
cat("\nTotal number of imputations: ",dim(class.na)[1],"\n") 
 
#Remove comments if workspace result file is not desired 
#filename=paste("Imput.rep.",method,".",name,sep="") 
#yy <- textConnection(filename, "w") 
#rep.title=paste("Imputation report for the matrix: ",name) 
#sink(yy) 
#cat("\n",rep.title,"\n\n") 
#cat("\nSummary of imputations using substitution of ",method,"(mode for nominal features):\n") 
#colnames(class.na)=c("Row","Column","Class","Imput.value") 
#print(class.na) 
#cat("\nTotal number of imputations per class: \n") 
#for (i in classes) 
# { 
#  amount=sum(class.na[,3]==i) 
#  cat("Class ",i,": ",amount,"\n") 
# } 
#cat("\nTotal number of imputations: ",dim(class.na)[1],"\n") 
#sink() 
#close(yy) 
#End comments to eliminate workspace result file 
 
return(w.cl) 
} 
 
 
clean<-function (w,tol.col=0.3,tol.row=0.5,name="")  
 
{ 
 
#w: matrix that will be cleaned 
#tol.col: maximum percentage of missing to be allowed for columns 
#tol.row: maximum percentage of missing in relevant variables to be allowed 
#attrib: matrix, mx1, containing column index of relevant variables 
 
w=as.data.frame(w) 
w=as.matrix(w)  
if (sum(is.na(w))==0) cat ("No cleaning required.\n") 
else 
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 {  
  filename=paste("Clean.rep.",name,sep="") 
  zz <- textConnection(filename, "w") 
  rep.title=paste("Cleaning report for the matrix: ",name) 
  sink(zz) 
  cat("\n",rep.title,"\n\n") 
  sink() 
 
  #Find column indexes of columns with NA  
  sumcol=which(colSums(is.na(w))!=0,arr.ind=TRUE) 
 
  if (length(sumcol)!=0)   
   { 
    #clean columns 
   
    dr=dim(w)[1] 
    dc=dim(w)[2] 
    if (length(sumcol)==1) 
     { 
      per.miss.col=sum(is.na(w[,sumcol]))/dr 
       
      #Report of variables to be removed 
      colmiss=colnames(w)[sumcol] 
      
table.miss=data.frame(cbind(Variables=colmiss,Percent.of.missing=(per.miss.col*100)),row.names=N
ULL) 
      print(table.miss) 
      cat("\n") 
  
     sink(zz) 
     print(table.miss) 
     cat("\n") 
     sink() 
 
      if (per.miss.col>tol.col) 
        { 
         cat("Only one variable eliminated: ",colnames(w)[above.tol],"\n\n") 
 
         sink(zz) 
 cat("Only one variable eliminated: ",colnames(w)[above.tol],"\n\n") 
         sink() 
 
         w=w[,-sumcol]  
         w=as.matrix(w) 
        } 
     } 
    else 
    { 
    #find percent of missing 
    per.miss.col=colSums(is.na(w[,sumcol]))/dr 
 
    #find index of columns with NA over tolerance 
    above.tol=sumcol[which(per.miss.col>tol.col,arr.ind=TRUE)] 
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    #Preparing report on percents missing per variable 
    colmiss=colnames(w)[sumcol] 
    
table.miss=data.frame(cbind(Variables=colmiss,Percent.of.missing=(per.miss.col*100)),row.names=N
ULL) 
    print(table.miss) 
    cat("\n") 
      
    sink(zz) 
    print(table.miss) 
    cat("\n") 
    sink() 
 
    if (length(above.tol)==dim(w)[2]) 
     {  
      cat("All variables have missing values above tolerance level.\n\n")  
 
      sink(zz) 
      cat("All variables have missing values above tolerance level.\n\n") 
      sink() 
     } 
    else  
     if (length(above.tol)!=0)       
      { 
       #Report of columns to be eliminated 
       col.above.tol=matrix(colnames(w)[above.tol],length(above.tol),1) 
       colnames(col.above.tol)="Variables eliminated" 
       rownames(col.above.tol)=c(1:length(above.tol)) 
       print(col.above.tol) 
       cat("\n\n") 
       
       sink(zz) 
       print(col.above.tol) 
       cat("\n\n") 
       sink() 
 
       #Column elimination 
       w=w[,-above.tol] 
       w=as.matrix(w) 
      } 
    
    } 
     
    
    #recalculate for new w and row cleaning 
    dr=dim(w)[1] 
    dc=dim(w)[2] 
      
   } 
 
  #Find index of rows with missing values 
  sumrow=which(rowSums(is.na(w))!=0,arr.ind=TRUE) 
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  if (length(sumrow)!=0) 
   { 
    if (length(sumrow)==1) 
       { 
        per.miss.row=sum(is.na(w[sumrow,]))/dc 
        #clean rows 
        if (per.miss.row>tol.row) 
           { 
            cat("Number of instances eliminated: 1\n") 
            cat("Instance eliminated              :",sumrow,"\n\n") 
 
            sink(zz) 
          cat("Number of instances eliminated: 1\n") 
            cat("Instance eliminated              :",sumrow,"\n\n") 
            sink() 
 
            w=w[-sumrow,]  
           } 
        } 
    else 
      { 
      #begin to clean rows 
      #calculate percent of rows with missing 
      per.miss.row=rowSums(is.na(w[sumrow,]))/dc 
       
      #calculate percent of rows with missing 
      #rowmiss= 
      #cat("Percent of rows with missing: ",per.miss.row*100,"\n") 
      #cat("Number of rows with missing: ",rowSums(is.na(w[sumrow,])),"\n") 
      #sink(zz) 
      #cat("Percent of rows with missing: ",per.miss.row*100,"\n") 
      #cat("Number of rows with missing: ",rowSums(is.na(w[sumrow,])),"\n") 
      #sink() 
 
      #find index of rows with NA over tolerance 
      above.tol=sumrow[which(per.miss.row>tol.row,arr.ind=TRUE)] 
      if (length(above.tol)==dr) cat("All instances have missing values above tolerance level.\n")  
      else  
      if (length(above.tol)!=0) 
       { 
        cat("Number of instances eliminated:",length(above.tol),"\n") 
        cat("Instance eliminated           :",as.numeric(above.tol),"\n\n") 
 
        sink(zz) 
        cat("Number of instances eliminated:",length(above.tol),"\n") 
        cat("Instance eliminated           :",as.numeric(above.tol),"\n\n") 
        sink() 
 
        w=w[-(above.tol),]  
       } 
      } 
    } 
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   } 
 
w=as.matrix(w) 
cat("Maximum number of values to be imputed: ",sum(is.na(w)),"\n") 
 
sink(zz) 
cat("Maximum number of values to be imputed: ",sum(is.na(w)),"\n") 
sink() 
close(zz)  
#print(w) 
return(w) 
} 
 
         w=w[,-sumcol]  
         w=as.matrix(w) 
        } 
     } 
    else 
    { 
    #find percent of missing 
    per.miss.col=colSums(is.na(w[,sumcol]))/dr 
 
    #find index of columns with NA over tolerance 
    above.tol=sumcol[which(per.miss.col>tol.col,arr.ind=TRUE)] 
     
    #Preparing report on percents missing per variable 
    colmiss=colnames(w)[sumcol] 
    
table.miss=data.frame(cbind(Variables=colmiss,Percent.of.missing=(per.miss.col*100)),row.names=N
ULL) 
    print(table.miss) 
    cat("\n") 
      
    sink(zz) 
    print(table.miss) 
    cat("\n") 
    sink() 
 
    if (length(above.tol)==dim(w)[2]) 
     {  
      cat("All variables have missing values above tolerance level.\n\n")  
 
      sink(zz) 
      cat("All variables have missing values above tolerance level.\n\n") 
      sink() 
     } 
    else  
     if (length(above.tol)!=0)       
      { 
       #Report of columns to be eliminated 
       col.above.tol=matrix(colnames(w)[above.tol],length(above.tol),1) 
       colnames(col.above.tol)="Variables eliminated" 
       rownames(col.above.tol)=c(1:length(above.tol)) 
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       print(col.above.tol) 
       cat("\n\n") 
       
       sink(zz) 
       print(col.above.tol) 
       cat("\n\n") 
       sink() 
 
       #Column elimination 
       w=w[,-above.tol] 
       w=as.matrix(w) 
      } 
    
    } 
     
    
    #recalculate for new w and row cleaning 
    dr=dim(w)[1] 
    dc=dim(w)[2] 
      
   } 
 
  #Find index of rows with missing values 
  sumrow=which(rowSums(is.na(w))!=0,arr.ind=TRUE) 
 
  if (length(sumrow)!=0) 
   { 
    if (length(sumrow)==1) 
       { 
        per.miss.row=sum(is.na(w[sumrow,]))/dc 
        #clean rows 
        if (per.miss.row>tol.row) 
           { 
            cat("Number of instances eliminated: 1\n") 
            cat("Instance eliminated              :",sumrow,"\n\n") 
 
            sink(zz) 
     cat("Number of instances eliminated: 1\n") 
            cat("Instance eliminated              :",sumrow,"\n\n") 
            sink() 
 
            w=w[-sumrow,]  
           } 
        } 
    else 
      { 
      #begin to clean rows 
      #calculate percent missing of rows with missing 
      per.miss.row=rowSums(is.na(w[sumrow,]))/dc 
 
      #find index of columns with NA over tolerance 
      above.tol=sumrow[which(per.miss.row>tol.row,arr.ind=TRUE)] 
      if (length(above.tol)==dr) cat("All instances have missing values above tolerance level.\n")  
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      else  
      if (length(above.tol)!=0) 
       { 
        cat("Number of instances eliminated:",length(above.tol),"\n") 
        cat("Instance eliminated           :",as.numeric(above.tol),"\n\n") 
 
        sink(zz) 
        cat("Number of instances eliminated:",length(above.tol),"\n") 
        cat("Instance eliminated           :",as.numeric(above.tol),"\n\n") 
        sink() 
 
        w=w[-(above.tol),]  
       } 
      } 
    } 
   } 
 
w=as.matrix(w) 
cat("Maximum number of values to be imputed: ",sum(is.na(w)),"\n") 
 
sink(zz) 
cat("Maximum number of values to be imputed: ",sum(is.na(w)),"\n") 
sink() 
close(zz)  
#print(w) 
return(w) 
} 
 
ec.knnimp<-function(data,nomatr,k = 10)  
{ 
#xnom: vector containing the indexes of the nominal variables 
#data: matrix containing data 
  x <- data 
  N <- dim(x)[1] 
  p <- dim(x)[2]  
 
#Checking if a row has a missing value 
nas <- is.na(drop(x %*% rep(1, p))) 
if(sum(nas)==N) stop("Error: All cases have missing values. Cannot compute neighbors.") 
 
#submatrix with complete rows 
#matrix needed in case xcomplete has only one row 
  xcomplete <- matrix(x[!nas,  ],,p)  
  colnames(xcomplete)=seq(p) 
 
#submatrix of rows with at least one missing value 
  xbad <- x[nas,,drop=FALSE ] 
 
#forming logical vector of nominal variables 
 xnom=seq(p) %in% nomatr 
 
#Locating the missing values in the missing submatrix  
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  xnas <- is.na(xbad) 
  xbadhat <- xbad 
  cat(nrow(xbad), fill = TRUE) 
  for(i in seq(nrow(xbad)))  
  { 
    cat(i, fill = TRUE) 
    xinas <- xnas[i,  ] 
    xbadhat[i,  ] <- nnmiss(xcomplete, xbad[i,  ],xinas,xnom, K = k) 
  } 
  x[nas,  ] <- xbadhat 
  data2 <-x 
  return(data2) 
} 
 
 
nnmiss<-function(x, xmiss, ismiss,xnom, K=1)  
{ 
#x:submatrix of complete rows from original matrix 
#xmiss: a row with a missing value 
#ismiss: vector that indicates whether a value in xmiss is missing or not 
#xnom: vector with indexes of nominal variables 
 
#Find distance between xmiss (not NA) and each row of x 
  xd <- scale(x, xmiss, FALSE)[, !ismiss] 
  col=length(xmiss)-sum(is.na(xmiss)) 
  xd=matrix(xd,,col) 
  dd <- drop(xd^2 %*% rep(1, ncol(xd))) 
 
#order of the rows of x according to their closeness to xmiss 
  od <- order(dd)[seq(K)] 
#if column of ismiss is nominal, find mode if not find mean of KNN 
   
  ismiss.nom=ismiss[]&xnom[] 
  ismiss.con=ismiss[]&!xnom[] 
  xmiss[ismiss.nom] <- as.numeric(moda(x[od, ismiss.nom, drop = FALSE])[1]) 
  xmiss[ismiss.con] <- drop(rep(1/K, K) %*% x[od, ismiss.con, drop = FALSE]) 
  xmiss 
} 
 
 
ce.knn.imp=function(m,k1) 
{ 
  
#Function that calls ec.knnimp to perform knn imputation 
#m      : matrix to be tested with relevant variables and classes 
 
m=as.matrix(m) 
 
dr=dim(m)[1] 
dc=dim(m)[2] 
 
classes=tabulate(m[,dc]) 
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no.classes=length(classes) 
 
r=NULL 
 
for(i in 1:no.classes)  
{ 
m.imp=ec.knnimp(m[m[,dc]==i,],k1) 
r=rbind(r,m.imp) 
} 
s2=sum(is.na(r)) 
cat(s2,"\n") 
return(r) 
} 
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