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Abstract 
 

This study uses hypothesis testing to determine the optimum pixel size to classify hyperspectral 

images. Pixel size is defined here as the size of the ground area captured in a pixel. Historically, more 

resolution or smaller pixel sizes, are considered better, but having smaller pixels can cause difficulties in 

the image classification. If the pixel size is too small, then the variation in pixels belonging to the same 

class could be vast. By assuming pixels are identically distributed random variables led to a derivation of 

a hypothesis test that uses the pixels covariance and variance. This new proposed hypothesis method was 

compared with results from the parametric hypothesis test F-test, and the non-parametric Ansari-Bradley 

hypothesis test. Promising similar results for synthetic and real hyperspectral images were obtained, 

validating the usability of the new proposed hypothesis method within the scope of this study. 
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Resumen 
 

En este estudio se utilizan pruebas de hipótesis para determinar el tamaño de pixel óptimo para 

clasificar imágenes hiperespectrales. Un tamaño de pixel es definido en este estudio como el tamaño del 

área capturada en un pixel. Históricamente se conoce que es mejor tener mayor resolución o menor 

tamaño de pixel, pero el tener pixeles pequeños ocasiona dificultades en la clasificación de imágenes. Si 

el pixel es muy pequeño, la variación de pixeles que pertenecen a la misma clase podría ser bien grande. 

Al asumir que los pixeles en la imagen son variables aleatorias idénticamente distribuidas, pero que no 

son independientes, se pudo derivar una prueba de hipótesis que utiliza la covarianza y varianza entre 

pixeles. Este nuevo método fue probado al compararlo con la prueba de hipótesis paramétrica llamada 

“F-test” y con la prueba de hipótesis no paramétrica llamada “Ansari-Bradley”. Resultados prometedores 

y similares se obtuvieron al probar los resultados para imágenes hiperespectrales sintéticas y reales, 

validando el uso de la nueva prueba de hipótesis bajo las condiciones desarrolladas en este estudio. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



iv 
 

Acknowledgments 
 

 I would like to thank my academic advisor, Dr. Shawn Hunt, for his encouragement, support, and 

guidance from the beginning of the pursuit of my graduate degree. He gave me an excellent education 

since my bachelor’s degree and built in me the necessity to study further. His guidance, passion for this 

area of study, and constant encouragement made possible for this work to be finished successfully. My 

most sincere gratitude and acknowledgment to the student Humberto Diaz for guiding me through the 

programming world, for granting me the knowledge and for believing I would pass the same to others. 

 Special thanks to Eduardo Ortiz for helping me understand that the tools needed to grow within 

my career were more than academicals, for his support to find my north when I got lost, and for his letters 

of recommendation that helped me reach my goals.  Also, I would like to thank Sandra Montalvo (Sandy) 

for being the support and light graduate students need at difficult times. Special thanks to all the members 

of the Graduate Committee for their support and review.  

Also, I will like to thank my partner for always being supportive and persuasive to give me the 

motivation to finish my thesis, and for being strong enough to endure difficult times. Moreover, finally, I 

would like to thank God for giving me a supporting and loving family, and the strength to fight through 

every obstacle that may come my way.  

  



v 
 

Table of Contents 
 

 Introduction .................................................................................................................................... 1 

1.1 Problem Statement .................................................................................................................. 1 

1.2 Purpose.................................................................................................................................... 2 

1.3 Motivation ............................................................................................................................... 3 

1.4 Outline ..................................................................................................................................... 4 

 Literature Review ............................................................................................................................ 5 

2.1 History of Image Classification Accuracy ................................................................................... 5 

2.2 Local Variance .......................................................................................................................... 6 

2.3 Experimental variogram ........................................................................................................... 7 

 Theoretical Background ................................................................................................................. 10 

3.1 Remote Sensing ..................................................................................................................... 10 

3.1.1 SOC700 Hyperspectral Spectrometer .............................................................................. 11 

3.2 Spatial Resolution .................................................................................................................. 11 

3.3 Classification .......................................................................................................................... 14 

3.4 Hypothesis Testing ................................................................................................................. 15 

3.4.1 Null and Alternative Hypotheses..................................................................................... 16 

3.4.2 Level of significance ........................................................................................................ 16 

3.4.3 Test statistic ................................................................................................................... 17 

3.4.4 Decision Rules ................................................................................................................ 17 

3.5 Sampling Statistics ................................................................................................................. 18 

3.5.1 Sample Mean Distribution .............................................................................................. 18 

3.5.2 Sample Variance Distribution.......................................................................................... 20 

3.5.3 Sample Covariance Distribution ...................................................................................... 22 

3.6 Hypothesis Test: Identically Distributed Random Variables ..................................................... 22 

3.7 Whitening Transform ............................................................................................................. 23 

 Methodology ................................................................................................................................. 25 

4.1 Downsampling ....................................................................................................................... 25 

4.2 Random Variables in the Image .............................................................................................. 26 

4.3 Hypothesis Testing: Variance .................................................................................................. 27 

4.4 Hypothesis Testing: Covariance method ................................................................................. 28 

4.4.1 Hypothesis Test: Band by Band ....................................................................................... 29 



vi 
 

4.4.2 Determination of the Statistics of the Test Statistic......................................................... 29 

4.5 Hypothesis Testing: Whitening Transform .............................................................................. 32 

4.6 Parametric and Non-Parametric Hypothesis Tests .................................................................. 33 

4.6.1 F-test .............................................................................................................................. 34 

4.6.2 Homogeneity of variance tests ....................................................................................... 34 

4.6.3 Nonparametric tests ....................................................................................................... 36 

 Experiments and Results ................................................................................................................ 37 

5.1 Generation of Synthetic images.............................................................................................. 38 

5.1.1 Different pixel probability of belonging to a class............................................................ 38 

5.1.2 Legendre and Gaussian Abundances Synthetic Images.................................................... 40 

5.2 Parametric and Non-Parametric Tests .................................................................................... 44 

5.3 Semivariogram ....................................................................................................................... 53 

5.4 Hypothesis Testing: Variance Method Results ........................................................................ 56 

5.5 Hypothesis Testing: Covariance Method Results ..................................................................... 62 

5.5.1 Hypothesis Testing After Whitening Transformation ....................................................... 71 

5.6 Image Classification ................................................................................................................ 74 

5.7 Results overview .................................................................................................................... 76 

 Application Example ...................................................................................................................... 79 

 Conclusions ................................................................................................................................... 86 

 Future Work .................................................................................................................................. 88 

  References .................................................................................................................................... 89 

 

  



vii 
 

List of Tables 
 

Table 3-1 Consequences of test decisions .............................................................................................. 17 

Table 5-1 Results from the Ansari-Bradley and F-test                                                                                      

Table 5-2 Results from the Ansari-Bradley and F-test ............................................................................. 47 

Table 5-3 Results Ansari-Bradley and F-test for image with Legendre abundances (c) ............................ 48 

Table 5-4 Results Ansari-Bradley and F-test for image with Spherical Gaussian abundances (d) ............. 49 

Table 5-5 Results Ansari-Bradley and F-test for image with Rational Gaussian abundances (e) ............... 50 

Table 5-6 Results Ansari-Bradley and F-test for real hyperspectral images (from left to right) shown in 

Figure 5-8: (f) leaves, (g) grass/soil and (h) dirt/leaves ........................................................................... 51 

Table 5-7 RSS from leaves and dirt at different window sizes ................................................................. 71 

Table 5-8 Confusion matrix ML 6x6 downsampling image (percentage) ................................................. 75 

Table 5-9 . Confusion matrix ML 8x8 downsampling image (percentage) ............................................... 76 

Table 6-1 RSS from each of the tank image classes at different window sizes ......................................... 81 

Table 6-2 Confusion matrix ML tank image 6x6 downsampling (in percentage) ...................................... 85 

 

List of Figures 
 

Figure 2-1 A typical semi-variogram function ........................................................................................... 9 

Figure 3-1 Relation between IFOV (B), sensor altitude (C) and ground area (A) ...................................... 13 

Figure 3-2 Supervised classification   Figure 3-3 Supervised classification (Maximum Likelihood) 

(Maximum Likelihood) of the original image   of ¼ size original image ................................................... 15 

Figure 4-1 Transformation from original image to a lower resolution image by using a 2X2 window ...... 26 

Figure 4-2 Definition of random variables in the original and lower resolution images ........................... 27 

Figure 5-1 Synthetic images endmembers ............................................................................................. 38 

Figure 5-2 Hyperspectral synthetic images with different probabilities of coming from class A: (a) Image 

generated with p=0.25, (b) Image generated with p=0.5 ........................................................................ 39 

Figure 5-3 Synthetic image generated with p=0.5, with its histogram and isotropic variogram ............... 39 

Figure 5-4 Variogram from image in Figure 5-12 (a) ............................................................................... 40 

Figure 5-5 Generation of Gaussian Field Synthetic Image using HYDRA GUI ........................................... 42 

Figure 5-6 Legendre and Gaussian Fields Synthetic Images: (a) Synthetic Image generated    using 

Legendre abundance, (b) Synthetic Image generated using Spherical Gaussian Fields abundance, (c) 

Synthetic Image generated using Rational Gaussian Fields abundance................................................... 43 

Figure 5-7 Legendre synthetic image, with its histogram and isotropic variogram .................................. 43 

Figure 5-8 Hyperspectral Images used on the experiments, synthetic images from a-e, and     real images 

from f-h: (a) Synthetic Image generated Image generated with p=0.25, (b) Image generated with p=0.5, 

(c) synthetic image generated using Legendre abundance, (d) Synthetic Image generated using Spherical 

Gaussian Fields abundance, (e) Synthetic Image generated using Rational Gaussian Fields abundance,(f) 



viii 
 

leaves real hyperspectral image shown in     natural color RGB, (g) lawn grass/soil real hyperspectral 

image shown in natural color RGB,     (h) soil/leaves real hyperspectral image band 45. ........................ 45 

Figure 5-10 Semivariograms from the different spectral bands from the leaves image:                                 

(a) band 1, (b) band 61,(c) band 71, (d) band 101 .................................................................................. 54 

Figure 5-11  Semivariograms from the different spectral bands from the grass/soil image:                         

(a) band 1, (b) band 31,(c) band 71, (d) band 111 .................................................................................. 55 

Figure 5-12 Semivariograms from the different spectral bands from the dirt/leaves image:                        

(a) band 1, (b) band 61,(c) band 71, (d) band 101 .................................................................................. 56 

Figure 5-13 Variance method hypothesis test for synthetic  image with p=0.25: (a) left and   right of the 

hypothesis, (b) residuals between the left and right side of the hypothesis ........................................... 58 

Figure 5-14 Variance method hypothesis test for synthetic image with p=0.50: (a) left and                               

right of the hypothesis, (b) residuals between the left and right side of the hypothesis ......................... 58 

Figure 5-15  Variance method hypothesis test for synthetic image with Legendre abundances:                   

(a) left and right of the hypothesis, (b) residuals between the left and right side of the hypothesis ....... 59 

Figure 5-16  Variance method hypothesis test for synthetic image with Spherical Gaussian   Fields 

abundances: (a) left and right of the hypothesis, (b) residuals between the left and     right side of the 

hypothesis ............................................................................................................................................. 59 

Figure 5-17  Variance method hypothesis test for synthetic image with Rational Gaussian    Fields 

abundances: (a) left and right of the hypothesis, (b) residuals between the left and     right side of the 

hypothesis ............................................................................................................................................. 60 

Figure 5-18  Variance method hypothesis test for leaves image: (a) left and right of the hypothesis,                 

(b) residuals between the left and right side of the hypothesis .............................................................. 60 

Figure 5-19  Variance method hypothesis test for the grass/soil image: (a) left and right of      the 

hypothesis, (b) residuals between the left and right side of the hypothesis ........................................... 61 

Figure 5-20  Variance method hypothesis test for the dirt/leaves image: (a) left and right                                                                        

of the hypothesis, (b) residuals between the left and right side of the hypothesis ................................. 61 

Figure 5-21 Residual Sums of Squares vs. window size of the p=0.25 synthetic image ............................ 63 

Figure 5-22 Residual Sums of Squares vs. window size of the p=0.50 synthetic image ............................ 64 

Figure 5-23 Residual Sums of Squares vs. window size of the synthetic image with Legendre abundances

.............................................................................................................................................................. 64 

Figure 5-24 Residual Sums of Squares vs. window size of the synthetic image with Spherical Gaussian 

abundances ........................................................................................................................................... 65 

Figure 5-25 Residual Sums of Squares vs. window size of the synthetic image with Rational Gaussian 

abundances ........................................................................................................................................... 66 

Figure 5-26 Residual Sums of Squares vs. window size of the leaves hyperspectral image ...................... 66 

Figure 5-27 Residual Sums of Squares vs window size of the grass/soil hyperspectral image .................. 67 

Figure 5-28 Residual Sums of Squares vs. window size of the dirt/leaves hyperspectral image ............... 68 

Figure 5-29 Regions extracted from the dirt/leaves image, (a) dirt crop, (b) leaves crop ........................ 69 

Figure 5-30 Residual Sums of Squares vs. window size of the dirt crop................................................... 69 

Figure 5-31 Residual Sums of Squares vs. window size of the leaves crop .............................................. 70 

Figure 5-32 Leaves/grass original image and its whitening transform ..................................................... 72 

Figure 5-33 Covariance of the original image and the covariance of the whitening transform ................ 72 



ix 
 

Figure 5-34 RSS vs. window size of the Soil crop after whitening transform ........................................... 73 

Figure 5-35 RSS vs. window size of the Leaves crop after whitening transform ...................................... 73 

Figure 5-36 RSS vs. window size of the covariance hypothesis test before and after preprocessing:             

(a) soil crop hypothesis test before pre-processing, (b) soil crop after whitening transform                                                   

(c) leaves crop before pre-processing, (d) leaves crop after whitening transform................................... 74 

Figure 5-37 Classification labeling using maximum likelihood classifier in the leaves/soil image at                          

different resolutions, red is used for leaves, and green for soil. From left to right:                                            

(a) Classification results for image using 6x6 downsampling, (b) classification results for   image using   

8x8 downsampling. ............................................................................................................................... 75 

Figure 6-1 Tank image shown in natural color RGB ................................................................................ 79 

Figure 6-2 Definition classes tank image ................................................................................................ 80 

Figure 6-3 Tank six classes with their histograms ................................................................................... 81 

Figure 6-4 Left: Training (polygons) and testing (rectangles) pixels of 5x5 downsampled  image, Right: 

Labeling of tank image after using a Maximum Likelihood Classifier ...................................................... 83 

Figure 6-5 Left: Training (polygons)  and testing (rectangles) pixels of 6x6 downsampled  image,                      

Right: Labeling of tank image after using a Maximum Likelihood Classifier ............................................ 83 



1 INTRODUCTION 

1.1 PROBLEM STATEMENT 

One of the questions most asked by researchers using remotely sensed data is how large an area 

should be covered to analyze a natural phenomenon, or at what resolution should the study be 

conducted. Multilevel, multiscale, and multitemporal data is often available, and a major concern is 

determining the most appropriate parameters affecting the study. This thesis focuses on finding an 

optimal selection of the spatial resolution (pixel size) for an image classification problem. 

Spatial resolution has a complex effect on image classification. Classification accuracy is not 

maximized simply by having a high spatial resolution. Woodcock and Strahler [2] found that observed land 

cover classification accuracies were the result of a tradeoff between two factors. The first factor is the 

influence of boundary pixels on classification results. With finer spatial resolution, the proportion of pixels 

falling within the boundary of objects will decrease. Decreasing the boundary objects will result in a higher 

classification accuracy since boundary pixels have a mix of elements which creates confusion in the 

classification process. The second factor affecting the classification accuracy is that finer spatial resolution 

increases the spectral variance of landcover types. Intra-variance or variation inside a class decreases the 

spectral separability of classes and results in lower classification accuracy.  

Many researchers argue that obtaining the optimal spatial resolution depends on the 

characteristics of the scene and the objective of the analysis. Several methods have been suggested to 

understand the effects of spatial resolution, and the most popular methods are discussed in the literature 

review.  These methods have not been broadly adopted, due to not having a comprehensive and 

systematic procedure [3].  
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The method developed in this thesis focuses on finding the optimal pixel size for individual classes, 

so statistically based hard classification algorithms have maximum accuracy. In hard image classification 

algorithms, the pixels are labeled as coming from the one class with the highest maximum posterior 

probability of membership.  

The main assumption used to develop the method here is that the homogeneity of image clusters 

will increase the accuracy of hard classification by reducing the within-class variance. It is assumed that 

all classes have a variation that is not modeled well by a single class if the pixel size is small enough, and 

at some coarser scale, the pixels will become more homogeneous. For example, suppose there is a scene 

with leaves where small amounts of soil are visible through the leaves. If the pixel scale is tiny, then some 

of the pixels will be leaves and others soil, and will not be well modeled as a single class. As the pixel scale 

gets coarser, the pixels will contain both leaves and soil, becoming homogeneous at a scale determined 

by the scene.  

1.2 PURPOSE  

This research will benefit all types of hyperspectral classification applications. Greater 

accuracy during the classification will benefit the use of hyperspectral images for multiple areas 

such as agriculture, biotechnology, security and defense, and environmental monitoring.  

Image remote sensing techniques can be applied to interpret image data acquired from an 

airborne system (satellite or airplane). One of the highest challenges in developing an autonomous remote 

sensing monitoring system is to be able to discriminate a pixel correctly as one entity when the individual 

entity may be smaller than the individual pixels. To find the proper pixel size has shown not to have a one-

size fits all solution. Images have unique characteristics that affect the classification accuracy such as the 

size of spatial features and neighborhood properties, and heterogeneity on spatial patterns.  
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1.3 MOTIVATION 

This study’s motivation is to improve a NASA’s Puerto Rico Grant Consortium Research 

named Hyperspectral Imaging for Biodiversity Assessment of Coastal and Terrestrial Ecosystems 

[4].  This research project consisted of developing an effective biodiversity assessment using 

hyperspectral image processing techniques. The images were used to study identification, 

classification, mapping and detection of changes in biodiversity from satellite and airborne 

systems. 

 One of the conclusions from the research was that classification accuracy was affected by 

the pixel size. To access this situation, Lunzer, a graduate student from UPRM, in his thesis 

approached it by utilizing analysis of variance tests (ANOVA) to provide a method to test if classes 

in a hyperspectral image are homogeneous. There were various drawbacks such as the high 

sensitivity of the ANOVA test with real data. Also, the test could not be utilized on images 

containing only a single spectra, since the test was not sensitive enough to reject the null 

hypothesis [5].  

Typical hypothesis tests are designed for one-dimensional data, where independence 

assumptions can be made, which is not always the case for multidimensional data. Having a 

hypothesis test specific for hyperspectral images provides a more reliable and systematic 

procedure that can be used as the pre-processing procedure to improve classification accuracy. 

The result provides the researcher with more information about the images, and how to choose 

an appropriate spatial resolution for a particular problem. Therefore, biodiversity assessment for 

the NASA’s project can be improved as well as any other research that involves image 

classification. 

http://www.prsgc.upr.edu/index.php?option=com_content&view=article&id=115:hyperspectral-&catid=45:researchawards&Itemid=56
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1.4 OUTLINE 

The organization of this thesis is as follows. Chapter 2 contains a relevant literature review 

of image classification, and techniques available to estimate the optimal resolution to analyze 

hyperspectral images. In Chapter 3, the theoretical background of spatial resolution and 

classification is provided. Also, hypothesis testing and sampling statistics theory is explained to 

provide the background necessary to derive the methods described in Chapter 4.  

The methodology defines how random variables are defined in the hyperspectral images 

to apply hypotheses tests. The multiple statistical tests used presented explaining the advantages 

and disadvantages between them. Chapter 5 presents the different experiments done to improve 

the statistical analysis. Each of the experiments has results from synthetic images generated as 

explained in Section 5.1, and also from real hyperspectral images. Homogeneity results were 

validated by comparing common hypotheses tests with the one developed. The improvement of 

the classification accuracy is tested by comparing images classified at the spatial resolution  

determined by the test, along with a spatial resolution where pixels are less homogeneous.  

To be able to understand the statistical analysis made to the images in more detail, a 

practical example is shown in Chapter 6 where the ideal pixel size for classification is obtained by 

using the covariance hypothesis test. Chapter 7 encompasses the conclusions from all the 

experiments realized in Chapter 5. Finally, the recommended future work is included based on 

the possible improvements that could be made to this research.  
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2 LITERATURE REVIEW 

A literature review was done to find and summarize the studies relevant to the effects of spatial 

resolution on classification accuracy. The first part of this Chapter summarizes the evolution of the study 

of the image classification accuracy that started in the early 80’s. The main methods currently used to 

choose an appropriate spatial resolution for remote sensing applications are discussed in the remaining 

sections.  

2.1 HISTORY OF IMAGE CLASSIFICATION ACCURACY  

In 1981, Markham and Townshend [6] found that image classification accuracy is affected by two 

factors. One is the change of the number of mixed pixels located near the boundaries between classes, 

and the other is the change of spectral variations within classes. Finer spatial resolution (smaller pixels) 

reduces the mixed pixels and improves the classification accuracy, but it also increases the spectral 

variation within classes decreasing the classification accuracy. It could be noted that spatial resolution is 

a crucial factor that needs to be widely studied. 

In Bingwen et al. [7] local variance, semivariogram, and wavelet methods were compared on urban, 

agricultural and forest landscape images to find the optimal spatial resolution. The results varied with 

method and data source. The local variance gave relatively small values; the semivariogram gave a 

significant range of values, and the wavelet transform gave values within the bounds of the 

semivariogram. Also, the local variance is efficient in obtaining an ideal pixel size for small-scale 

observations, the wavelet transform is more suitable for large-scale areas, and the semivariogram is 

optimal over a significant range of values.  

This  problem has been researched for many years [8], but there are still various problems in identifying 

the optimal pixel size for classification. The results from all the methods give broad and unreliable results 

that are not consistent between them giving different optimum pixel sizes for the same image.  
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Local variance has been one of the most popular choices to find the optimal resolution necessary to 

classify hyperspectral images. Andre´foue¨t [9] presents how spatial resolution affects coral bleaching 

mapping. Local variance analysis provided information about the optimal resolution required for 

classification obtaining a range from 40-80 cm. In McCloy [9] the average local variance (ALV) was used to 

find the pixel size that maximizes the classification accuracy. The graph of ALV versus pixel size was 

hypothesized to have a peak where the size matches object size. By comparing this method with the 

semivariogram, similar results were not achieved. 

Several research papers show that a consistent, unique solution between methods has been 

extremely difficult or impossible to obtain. Also, the purpose of these methods is to demonstrate 

statistical properties of the image and leave the interpretation to the analyst, whom should select an 

appropriate spatial resolution for their particular study.  

2.2 LOCAL VARIANCE  

Agronomy researchers were the first ones to show interest in the size of the support. Support is a 

geostatistical term that is equivalent to the spatial resolution, but normally the size of the support is 

greater than the spatial resolution due to the sensor point spread function (PSF) [10]. Mercer and Hall 

[11] and Smith [12] performed studies to crop yields and discovered that the variance between samples 

decreases as the support increases in size. Woodcock and Strahler [6] noticed that the likelihood that 

observations close in space are more alike than those apart and relied on this to estimate the spatial 

dependence using the local variance.  

Let 𝑥𝑖𝑗 be the value of the pixel to be located in the ith row and jth column of an image. The local 

variance 𝜎𝑖𝑗
2  around  𝑥𝑖𝑗 can be calculated over a (2𝑛 + 1)  by (2𝑚 + 1) window as: 
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           𝜎𝑖𝑗
2 =

1

[(2𝑛 + 1)(2𝑚 + 1) − 1]
∑ ∑ {𝑥𝑘𝑙 − 𝜇𝑖𝑗}

2
,

𝑗+𝑚

𝑙=𝑗−𝑚

𝑖+𝑛

𝑘=𝑖−𝑛

                                      (1) 

where 𝜇𝑖𝑗  is the mean of the (2𝑛 + 1) by (2𝑚 + 1) window centered on the pixel 𝑥𝑖𝑗. The mean local 

variance is the mean of 𝜎𝑖𝑗
2  computed for all 𝑥𝑖𝑗with the exception of a border equal to either n or m.  

 Woodcock and Strahler [2] made the assumption that scenes in an image are composed of 

discrete objects distributed on a continuous background to find the relation between spatial resolution 

and local variance. Using local variance as a function of spatial resolution, the maximum is an indirect 

guide to the size of objects in the scene. Spatial resolution will be selected depending on the purpose of 

the research, and its relation to the object size in the image.  

2.3  EXPERIMENTAL VARIOGRAM 

In the local variance method, not only the final selection of the spatial resolution depends on the 

researcher, but also, the approach is strictly empirical. A new method was proposed in [10] by modeling 

images as realizations of random processes.  

A radiation sensed remotely can be modeled spatially as a random function 𝑍(𝑥)  defined for 

positions 𝑥 in a two dimensional space ℝ2: 

𝑍(𝑥) = 𝑚𝑣 + 𝑣(𝑥),         (2) 

𝑚𝑣 is the local mean of 𝑍(𝑥) in a region v, and 𝑣(𝑥) is a random function with zero mean. The spatial 

variation in Z allows it to adopt the intrinsic hypothesis of stationarity, such that the expectation exists 

and does not depend on x. With this characteristic all vectors of spatial separation h, the increment 

[𝑍(𝑥) − 𝑍(𝑥 + ℎ)], has finite variance which does not depend on x.  

2𝛾(ℎ) = 𝑣𝑎𝑟[𝑍(𝑥) − 𝑍(𝑥 + ℎ)] = 𝐸[[𝑍(𝑥) − 𝑍(𝑥 + ℎ)]2] ,  (3) 
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where 𝛾(ℎ) is the variogram, and (3) is a function that relates the semivariance at lag h, and also 

summarizes the spatial dependence in Z.    

The spatial means 𝑍𝑣(𝑥) is defined as the integral of 𝑍(𝑥)  over an area 𝑣 . Spatial integration is 

usually known as regularization, and in the context of remote sensing it is, analogous to increasing the 

pixel size and coarsening the spatial resolution. Since the punctual variogram is never know a priori, the 

variogram has to be estimated using the experimental data. The punctual variogram has been computed 

and used extensively in much research [11] [12].  

Having a measured property 𝑍 , on observations centered at 𝑥1, 𝑥2, …, the method of moments 

estimator variogram can be computed for 𝜌(ℎ) pairs of observations: 

𝛾̅(ℎ) =
1

2𝜌(ℎ)
∑ {[𝑍(𝑥𝑡) − 𝑍(𝑥𝑡 + ℎ)]}2𝜌(ℎ)

𝑡=1  .       (4) 

According to Armstrong in [13] , this experimental estimator may give a poor estimate of the true 

semi-variogram because the presence of just one outlier can result in an erratic variogram. Therefore, 

several robust semivariograms were developed to overcome different estimation problems. Some of 

them are presented in [14] and [15]. 

Since the variogram is used by punctual support, the measurements in the image are made on pixels 

on finite area changes have to be made. Taking into consideration that the value of a spatial attribute over 

an area 𝑣 is the mean value of all the points within 𝑣, the variogram on some support 𝑣 from the punctual 

variogram is defined as the following by Journel and Huijbregts [16]: 

𝛾𝑣(ℎ) = 𝛾̅(𝑣, 𝑣ℎ) − 𝛾̅(𝑣, 𝑣).                        (5) 

Where 𝛾̅(𝑣, 𝑣ℎ) is the mean value of the punctual semivariogram between two pixels of size 𝑣 whose 

centroids are separated by h, and 𝛾̅(𝑣, 𝑣) represents the mean value of the punctual semivariogram over 

the  𝑣 domain. 
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Experimentally the variogram is calculated using the estimation in Equation (4), and the spatially 

dependent components are regularized.  Coarser spatial resolutions are found by averaging the pixels 

values that will be considered a larger pixel value. The semivariance is plotted against the size of 

support; a typical result is shown in Figure 2-1.  

 

Figure 2-1 A typical semi-variogram function 

The graph is used to find at which lag the semivariogram reaches its maximum 𝛾̅𝑣(𝑣). Studies have 

shown that this value can be used to help ensure that the spatial resolution chosen has the information 

necessary to shown spatial variation in the data. One issue with this method is being able to choose the 

optimum spatial resolution based on the spatial variation that the investigator wants to obtain from the 

image.  

Even though variogram estimation seems very straight forward, assuming it is that simple can result 

in erratic conclusions. Several assumptions made to derive this equation should be verified before using 

this method. As previously written in this section, the experimental estimator may give a poor estimate 

of the true semi-variogram leading to false conclusions. 

In conclusion, previous literature in the area shows the lack of a reliable method that can be applied 

to different types of images. The methodology in this thesis demonstrates a viable solution to finding 

optimum pixel sizes depending on the scene.   
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3 THEORETICAL BACKGROUND 

3.1 REMOTE SENSING 

Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form 

images by detecting the solar radiation reflected from targets on the ground [17]. Different materials 

reflect, absorb, transmit or emit electromagnetic energy at different proportions and different 

wavelengths. This characteristic allows the targets to be differentiated by using their spectral reflectance 

signatures in the remotely sensed images. 

 Remote sensing usually refers to acquiring information about the Earth’s surface and atmosphere 

using airborne or spaceborne platforms. Therefore, the sensors are always looking first through a layer of 

the atmosphere, which causes wavelength dependent absorption and scattering of radiation. Some of the 

atmospheric effects can be corrected, but some wavelength bands in the electromagnetic spectrum are 

almost entirely absorbed by the atmosphere. For this reason, only wavelengths in the microwave, 

infrared, visible region and part of the near ultraviolet regions are usable for remote sensing. X-rays and 

gamma rays are also transparent to the atmosphere, but they are not used in remote sensing of the earth.  

After the satellite or airborne sensors acquire the electromagnetic radiation, it is transmitted to a 

ground station where it needs to be pre-processed before using the images for analysis and interpretation. 

Pre-processing steps are atmospheric corrections (as mentioned before), data error compensations, 

calibration and map registration. Any remote sensing textbook gives detailed information about this 

technique such as [18]. 

Remote sensing images are collected in the form of a data cube where they have two spatial 

dimensions (X-Y) and a third spectral dimension represented in the Z-direction. The latter consists of a 

broad number of spectral bands that measure radiation in a particular spectral range. Remote sensing 

systems are described by the quantity of bands is able to capture.  
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 Panchromatic system: the sensor is a single channel detector sensitive to radiation in a broad 

wavelength range. 

 Multispectral system: the sensor is a multichannel detector with a few spectral bands, and each 

channel is sensitive in a narrow wavelength band.  

 Hyperspectral system or imaging spectrometer: acquires images in about a hundred or more 

narrow contiguous bands.  

This research is primarily interested in imagery generated by hyperspectral sensors. These consist 

of a large number of spectral bands (100-300). 

3.1.1 SOC700 Hyperspectral Spectrometer 
 Synthetic images were created along with the acquisition of controlled real world data to be able 

to research the selection of a spatial resolution to improve classification accuracy. The majority of the 

hyperspectral images were gathered using a SOC-700 stand mounted Hyperspectral Imager with a spectral 

range of 430nm to 900nm and 120 spectral bands. Each band consists of 640x640 pixels with a 12-bit 

dynamic range. The SOC700 utilizes a push broom type sensor and a scanning mirror to generate the 

along-track dimension. Images gathered using this spectrometer were from areas around Mayagüez, 

Puerto Rico. Other images were taken from the database located at the Laboratory for Applied Remote 

Sensing and Image Processing (LARSIP), developed thanks to a NASA EPSCoR grant. The synthetic 

hyperspectral images were created by using an open source Matlab toolbox called HYDRA, and spectral 

signatures from the USGS Spectral Database. Additional details are explained in Section 5.1.2.  

3.2 SPATIAL RESOLUTION 

There are multiple sensor parameters (i.e., spatial resolution, the number of spectral bands, signal-

to-noise ratio, spectral resolution, etc.), and the optimal selection of these parameters depends on the 
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objects under study and instruments used. This thesis focuses on finding the optimal selection of the 

spatial resolution for a particular problem.  

Spatial resolution refers to a parameter that measures the sensor’s ability to image or record closely 

spaced objects so that they are distinguishable as different objects. According to the previous definition, 

a higher spatial resolution number (1m) means that finer details can be observed in the image compared 

to 10 m spatial resolution.  

There are many definitions of the specific term of spatial resolution because many sensor 

parameters influence its value.  Ideally, a lens would image a point object as a point in the image plane, 

but diffraction causes the point object to be a bright disc (airy disc). The distribution of energy of this airy 

pattern is similar to a 2D sinc function, with the main peak followed by some minima and maxima. Two 

objects can be just resolved if the peak of the airy pattern of one object falls on the first minima of the 

other, and this is the resolving limit of two objects [19].  Nonetheless, diffraction is not the only influence 

on the spatial resolution; it is also determined by a combined effect of resolving power of the lens, object 

contrast, and signal-to-noise ratio of the other components. Therefore defining the spatial resolution as 

a measure of the smallest object that can be detected in an image is a rather simple definition. For 

example, it may be possible to identify an object smaller than the resolution of a sensor when there is a 

significant contrast between the object and its background. 

In this thesis, and when sensors using discrete detectors are used to generate an image, the spatial 

resolution is defined as the projection of the detector element onto the ground through optics [19]. The 

ground area viewed by a detector is determined mostly by the Instantaneous Field of View (IFOV), which 

is the angular measurement of the area viewed by a single detector at a given instant in time. When an 

image is acquired from a remote system as shown in Figure 3-1, the IFOV corresponds to item (B), and it 

determines the ground resolved area (A) or pixel size from a given altitude at one particular moment in 
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time. The size of the area viewed (A) is determined by multiplying the IFOV (B) by the distance from ground 

to sensor (C) [20].  

                                       

Figure 3-1 Relation between IFOV (B), sensor altitude (C) and ground area (A) 

As mentioned in section 3.1.1, images are composed of a matrix of pixels (picture elements).  These 

correspond to the smallest units of an image. Image pixels are normally square and represent a certain 

area on an image. To be clear on the terminology further explained in this document, low or coarse 

resolution refers to images where only large features are visible while the fine or high-resolution images 

refer to images where small objects can be visibly identified. 

Woodcock and Strahler [2] found that observed classification accuracies were the result of a 

tradeoff between two factors. Accuracy is not maximized simply by having a high spatial resolution. The 

first factor is the influence of boundary pixels on classification results. With finer spatial resolution, the 

proportion of pixels falling within the boundary of objects will decrease, but will increase spectral 

variance. The second factor affecting the classification accuracy is that with finer spatial resolution the 

spectral variance of land covers types associated increases.  

A 

C 
B 
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3.3 CLASSIFICATION 

Classification is a quantitative method to analyze hyperspectral images. It consists of recognizing 

categories of real-world objects and labeling these entities. There are two approaches to performing 

classification procedures: supervised and unsupervised classification.  

 In supervised classification, the classifier algorithm has to be trained to recognize the classes of 

interest. This is done by using sample pixels that are labeled with their respective classes. Practical Steps 

to implement a supervised classifier are: 

1. Selection of the discrimination rule (parametric or nonparametric) 

2. Collection of training samples 

3. Use of training data to estimate the parameters of the classifier to be used 

4. Use of the trained classifier to label or classify each pixel in the image into one of the classes. 

5. Produce tabular summaries or thematic maps to summarize classification results. 

In contrast, an unsupervised method does not require defining the training samples, nor defining 

classes in the image. This method uses clustering to determine the number of distinct categories present 

in the image and assigns pixels to those categories. Clustering is used to find similarities in characteristics 

between the inputs.  

 This thesis is focused on finding an optimal pixel size for individual classes, so its correct 

classification is maximized. Statistically based classification algorithms will be used. They are based on the 

assumption that each class has spatial features that can be statistically separated from other classes. 

Consequently, the spatial features can be modeled such that their means and variances allow this 

separation [18]. If a pixel is modeled as a single class, standard classification algorithms can be applied to 

perform pixel-wise classification.  
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To visualize how spatial resolution affects the classification in images, Figure 3-2 and Figure 3-3 

show the results from an image classified at different spatial resolutions. The image in Figure 3-2 was 

averaged to produce the image shown in Figure 3-3. Neighborhood pixel averaging produced an image ¼ 

the size of the original image. The classification shows that objects in this image were classified better 

when the pixel size was increased. For example, the region selected by the black square in both images, 

in the left the pixels were classified as coming from three classes (shown in different colors) while in Figure 

3-3 the pixels in this region are classified as coming from only two classes.  

 

 

Figure 3-2 Supervised classification   Figure 3-3 Supervised classification (Maximum Likelihood) 
(Maximum Likelihood) of the original image   of ¼ size original image 

3.4 HYPOTHESIS TESTING 

Inferential statistics enables the ability to measure the behavior of samples with the objective of 

learning more about the behavior of populations that are normally inaccessible or too large. Hypothesis 

testing is the method of testing a hypothesis made from a population, based on sample statistics. In an 

inferential statistical context, hypotheses are formulated as assumptions on 

(i) The probability distribution 𝑓 of one or more random variables 𝑋, 𝑌, … , 𝑍 in a population 

Ω, or on 

(ii) One or more parameters 𝜃 of this distribution function. 

Hypothesis testing methodology can be summarized in four steps: 
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1. A formulation of a hypothesis about what is to be tested, which is called the null hypothesis 

𝐻𝑜 , and the definition of its alternative hypothesis 𝐻𝐴 . 

2. A significance level 𝛼  is selected. This value states the probability at which the null 

hypothesis is incorrectly rejected.  

3. Calculation of a test statistic.  

4. Results are analyzed to state a conclusion based on 𝐻0. 

The test is performed to determine if the null hypothesis can be rejected. Therefore, not rejecting 

the null hypothesis does not prove that the null hypothesis is true, but it suggests that the null hypothesis 

is likely to be true.  

3.4.1 Null and Alternative Hypotheses 
The null hypothesis (𝐻0) is a statement about a population parameter, which is assumed to be 

true. The purpose is to test whether the null hypothesis statement is likely to be true. An alternative 

hypothesis is stated such as it contradicts the null hypothesis, in case of rejecting the null hypothesis then 

the alternative hypothesis (𝐻𝐴) states that the actual population parameter is less than, more than, or 

not equal to the value indicated in the null hypothesis.  

3.4.2 Level of significance 
The significance level 𝛼  is fixed prior to making the test, and it is typically selected such 

as 𝛼 𝜖 [0.01,0.05]. Fixing this value prior to performing the statistical test controls the risk of committing 

a Type I error, which is the probability of rejecting 𝐻0  when is true, defined as 𝑃(𝐻𝐴|𝐻0 𝑡𝑟𝑢𝑒) =  𝛼. 

Another potential error when performing a hypothesis test is not rejecting 𝐻0 when it’s false, which is 

defined as 𝑃(𝐻𝑜|𝐻𝐴  𝑡𝑟𝑢𝑒) =  𝛽. The probability 1 − 𝛽, is associated with the power of a statistical test. 

It is called the power since this is the outcome that is aimed when assuming that the null hypothesis is 

incorrect. The different possible outcomes when performing a test decision are summarized in the 

following table.  
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Table 3-1 Consequences of test decisions 

 𝑯𝟎 𝑯𝑨  

𝑯𝟎 𝒕𝒓𝒖𝒆 Correct decision 
𝑃(𝐻𝑜|𝐻0 𝑡𝑟𝑢𝑒) =  1 − 𝛼 

Type I error  
𝑃(𝐻𝐴|𝐻0 𝑡𝑟𝑢𝑒) =  𝛼 

𝑯𝑨 𝒕𝒓𝒖𝒆 Type II error 
𝑃(𝐻𝑜|𝐻𝐴  𝑡𝑟𝑢𝑒) =  𝛽 

Correct decision 
 𝑃(𝐻𝐴|𝐻𝐴  𝑡𝑟𝑢𝑒) =  1 − 𝛽 

 

  

3.4.3 Test statistic 
After defining the null hypothesis, alternative hypothesis and significance level, a random sample 

is collected, and the test statistic selected on the hypothesis is calculated. Since the statistic is calculated 

from a sample, it is necessary to evaluate how likely that sample outcome is if the null hypothesis is true. 

For example, the test statistic is used to determine how many standard deviations a sample mean is from 

the population mean. The larger the value of the test statistic, the further a sample mean is from the 

population mean stated in the null hypothesis. The value of the test statistic is used to make a decision 

regarding the null hypothesis.  

3.4.4 Decision Rules  

The decision rules for rejecting the null hypothesis is described in two ways by statisticians, with 

reference to a p-value or with reference to a region of acceptance [21].  

The p-value measures the strength of evidence in support of the null hypothesis. It measures the 

probability of observing a test statistic as stated in the null hypothesis, assuming the null hypothesis is 

true. If the p-value is less than the significance level 𝛼, the null hypothesis is rejected.  

Another method used to define a decision rule is by defining a range of values as the region of 

acceptance. This region is defined by obtaining the probability of making a Type I error equal to the 

significance level. If the test statistic falls within the region of acceptance, the null hypothesis is not 

rejected. Otherwise it is rejected rejected at the 𝛼 level of significance.  
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3.5 SAMPLING STATISTICS 

The collection of sample data is an arbitrary process where different outcomes are obtained from 

each experiment. Therefore, the statistic obtained from the sampling data is a random variable and 

understanding their sampling distributions is important to determine how close the sample statistic is 

from the population parameter. 

When a population parameter 𝜃 is unknown, it can be estimated with a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 

of size 𝑛. Since population data was randomly sampled, the statistic obtained from the sample is also a 

random variable with a certain probability distribution. To estimate a parameter 𝜃 from the sample it is 

necessary to model the sample by a probabilistic model that depends on 𝜃.  

3.5.1 Sample Mean Distribution 

To estimate the population mean 𝜇, the sample mean is defined as   

𝜇̂𝑥 =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 .       (6) 

By definition, when a sample is created by random selections of a population data, the 𝑋𝑖  random 

variables will be independent and identically distributed. Consequently, by combining this property with 

various expected value properties the theoretical mean and variance of the sample mean can be 

calculated as, 

𝐸(𝜇̂𝑥) =  𝐸 (
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 ) =

1

𝑛
(𝑛(𝐸(𝑋)) = 𝐸(𝑋), and    (7) 

𝑉𝑎𝑟(𝜇̂𝑥) = 𝑉𝑎𝑟 (
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 ) =

1

𝑛2
∑ 𝑋𝑖

𝑛
𝑖=1 =

1

𝑛2
(𝑛𝑉𝑎𝑟(𝑋)) =

𝑉𝑎𝑟(𝑋)

𝑛
.  (8) 

The last equation indicates that as the sample size increases the variance of the sample mean 

decreases. Also, if the 𝑋𝑖 are normally distributed independent random variables then the sample mean 

distribution is a normal distribution 𝜇̂~𝑁 (𝜇,
𝜎2

𝑛
). The linear combination of independent normal random 
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variables is a normal distribution, which can be proved by using the characteristic function of the sum of 

two random variables, 

𝜑𝑋+𝑌 (𝑡) = 𝐸(𝑒𝑖𝑡(𝑋+𝑌)) [22],     (9) 

and the characteristic function of the normal distribution,  

𝜑(𝑡) = exp (𝑖𝑡𝜇 −
𝜎2𝑡2

2
).      (10) 

3.5.1.1 Central Limit Theorem 

 

In Section 3.5.1 it was established that when there is sample of size n, 𝑋𝑖~𝑁(𝜇, 𝜎2),  for 𝑖 =

1,2, … , 𝑛, then  𝜇̂~𝑁 (𝜇,
𝜎2

𝑛
), but if the random sample does not follow a normal distribution the sample 

mean distribution can be estimated by using the Central Limit Theorem.  

The Central Limit Theorem states that if there is a random sample 𝑋1, 𝑋2, … 𝑋𝑛  from any 

distribution, with finite mean 𝜇 and finite variance 𝜎2, and the sample size 𝑛 is sufficiently large, then:  

(i) The sample mean 𝜇̂ follows an approximate normal distribution 

(ii) The mean 𝐸(𝜇̂𝑥) =  𝜇,  

(iii) And the variance of the sample mean is 𝑉𝑎𝑟(𝜇̂𝑥) =
𝜎2

𝑛
. 

In overview, the Central Limit Theorem (CLT) states that the sampling distribution of the sample 

mean is approximately normally distributed regardless of the distribution of the random sample [23], if 

the sample size if sufficiently large. Noting that if it is a random sample then the 𝑋𝑖  are independent 

identically distributed (i.i.d) random variables. The minimum sample size depends on the skewness of the 

distribution from which the random sample comes [24]: 
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(i) If the distribution of the sample is symmetric, unimodal or continuous, then a sample size 𝑛 as 

small as 4 or 5 could be adequate.  

(ii) If the distribution of the sample is skewed, then a sample size 𝑛 of at least 25 or 30 could yield an 

adequate approximation. 

(iii) If the distribution of the sample is extremely skewed, then a bigger sample size 𝑛 is needed.  

Another version for CLT is that if 𝑋1, 𝑋2, … , 𝑋𝑛  are independent random variables that are 

identically distributed with finite means and variances, then the normalized sum (𝑆𝑛 − 𝑛𝜇)/𝜎√𝑛), where 

𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ , 𝑋𝑛, as 𝑛 → ∞ converges to a Gaussian variable with zero mean and unit variance. In 

other words, the sum of a sufficient number of independent and identically distributed random variables 

with finite means and variances will result in a Gaussian random variable [25]. 

3.5.2  Sample Variance Distribution  
The variance is an important population measure because it is a measure of the spread of the data 

on the mean. The sample variance is defined to be  

𝜎̂2 =
1

𝑛
∑ (𝑋𝑖 − 𝜇̂𝑥)𝑛

𝑖=1
2
.     (11) 

A statistic is an unbiased estimate of a parameter when the mean of the sampling distribution of 

that statistic can be shown to be equal to the parameter being estimated [22]. Since 𝜎̂2 is estimating 𝜎2, 

if the 𝐸(𝜎̂2) = 𝐸(𝜎2), then 𝜎̂2 is an unbiased estimator.  

By calculating the expected value of Equation (11), 𝐸(𝜎̂2) =
𝑛−1

𝑛
𝜎2 it is noticed that the sample 

variance estimation is biased by a factor of 
𝑛−1

𝑛
. After correcting for the bias the unbiased sample variance 

is,  

𝑠2 =
𝑛

𝑛−1
𝜎̂2 =

1

𝑛−1
∑ (𝑋𝑖 − 𝜇̂𝑥)2𝑛

𝑖=1     (12) 
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In the case that 𝑋𝑖  are independent observations from a normal distribution, the Cochran’s 

theorem shows that 𝑠2 follows a chi-squared distribution [26] 

(𝑛 − 1)(𝑠2/𝜎2) ~ 𝜒2
𝑛−1.      (13) 

The Cochran’s theorem states that if there is a set 𝑌1 , … , 𝑌𝑛 of independent standard normally 

distributed random variables, and an identity of the form  

∑ 𝑌𝑖
2 = 𝑄1 + ⋯ + 𝑄𝑘

𝑛
𝑖=1      (14) 

can be written, where each 𝑄𝑖 is a sum of squares of linear combinations of the Ys, then the 𝑄𝑖 are 

independent and follow a chi-squared distribution with 𝑟𝑖 degrees of freedom [27]. Where 𝑟𝑖 is the rank 

of 𝑄𝑖, and 𝑟1 + ⋯ + 𝑟𝑘 = 𝑛. This rank is the number of independent linear combinations included in the 

sum of squares defining 𝑄𝑖.  

To prove Equation (13), 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − 𝜇̂𝑥)2𝑛

𝑖=1 , where 𝑋1, 𝑋2, … , 𝑋𝑛 are independent normally 

distributed random variables with mean 𝜇 and standard deviation 𝜎, then 𝑌𝑖 = (𝑋𝑖 − 𝜇)/𝜎 is a standard 

normal for each 𝑖. By using Cochran’s theorem,  

∑ 𝑌𝑖
2 =𝑛

𝑖=1 ∑ (
𝑋𝑖−𝜇̂

𝜎
)

2

+ 𝑛𝑛
𝑖=1 (

𝜇̂−𝜇

𝜎
)

2

      (15) 

since the sample variance can be written as (𝑛 − 1)𝑆2 = ∑ (𝑋𝑖 − 𝜇̂𝑥)2𝑛
𝑖=1 , it can be substitued in Equation 

(15) to give 

∑ 𝑌𝑖
2 =𝑛

𝑖=1
(𝑛−1)𝑆2

𝜎2 + 𝑛
(𝜇̂−𝜇)2

𝜎2 .         (16) 

Equation (16) can be written as,  

(𝑛−1)𝑆2

𝜎2 =  𝑛
(𝜇̂−𝜇)2

𝜎2 − ∑ (
𝑋𝑖−𝜇̂

𝜎
)

2
𝑛
𝑖=1 = Q1 − Q2,        (17) 
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where Q1 is of rank 1 and Q2 is ranked n. Therefore, the theorem states that 𝑄1 and 𝑄2 are independent, 

chi-squared distributions with 1 and n degrees of freedom respectively. The latter proves the result in 

Equation (13) (𝑛 − 1)
𝑠2

𝜎2  ~ 𝜒2
𝑛−1 . Therefore, the mean of the sample variance is, 𝐸(𝑠2) =

 𝐸 (
𝜎2

𝑛−1
 𝜒2

𝑛−1
) =  𝜎2, and its variance is 𝑉𝑎𝑟(𝑠2) = 𝑉𝑎𝑟 (

𝜎2

𝑛−1
 𝜒2

𝑛−1
) = 2

𝜎4

𝑛−1
. 

3.5.3 Sample Covariance Distribution 

The covariance is the mean value of the product of deviations of two variates from their respective 

means. The covariance between 𝑋𝑝 and 𝑋𝑞 is defined as,  

𝐶𝑝𝑞 = 𝐸{(𝑋𝑝 − 𝜇𝑝)(𝑋𝑞 − 𝜇𝑞)}.    (18) 

The covariance matrix of a multivariate random variable is usually not known, and its estimation is 

needed. The unbiased estimation of the covariance is 

𝑆 =  𝐶𝑜𝑣̂(𝑋, 𝑌) =
1

𝑛−1
∑ (𝑋𝑖 −𝑛

𝑖=1 𝜇𝑥̂)(𝑌𝑖 − 𝜇𝑌̂)   (19) 

If a random vector 𝑋1, 𝑋2, … , 𝑋𝑘 is said to be k-variate normally distributed then the distribution of 

(𝑛 − 1)𝑆 is distributed as a Wishart random matrix with 𝑛 − 1 degrees of freedom [28].  

3.6 HYPOTHESIS TEST: IDENTICALLY DISTRIBUTED RANDOM VARIABLES 

A test statistic can be developed to test a null hypothesis indicating that a sum of random variables 

are dependent and identically distributed. The test statistic can be found by using the property that 

indicates that the variance of a sum of m random variables is the sum of pairwise covariances.  

𝑉𝑎𝑟(∑ 𝑋𝑖) =

𝑚

𝑖=1

𝐶𝑜𝑣(∑ 𝑋𝑗 , ∑ 𝑋𝑖) = ∑ ∑ 𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑖)

𝑚

𝑖=1

𝑚

𝑗=1

𝑚

𝑖=1

𝑚

𝑗=1

 

   

= ∑ ∑ 𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑖) + 𝑖=𝑗 ∑ ∑ 𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑖) 𝑖≠𝑗 ,     (20) 
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Since for any 𝑖 and 𝑗 the Cov(𝑋𝑗, 𝑋𝑖) =  𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗), Equation (20) can be written as,  

𝑉𝑎𝑟(∑ 𝑋𝑖) =𝑚
𝑖=1 ∑ 𝑉𝑎𝑟(𝑋𝑖) +𝑚

𝑖=1 2 ∑ ∑ 𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑖) 𝑖≠𝑗 .  (21) 

To use Equation (21) as a test statistic, it can be written as the difference,  

𝑉𝑎𝑟(∑ 𝑋𝑖) −

𝑚

𝑖=1

∑ 𝑉𝑎𝑟(𝑋𝑖) −

𝑚

𝑖=1

2 ∑ ∑ 𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑖) = 0

𝑖≠𝑗

.                        (22) 

Equation (22) can be used as the statistic in a hypothesis testing problem. For simplicity, a definition of 

variables could be done by stating that 𝑊 = 𝑉𝑎𝑟(∑ 𝑋𝑖)𝑚
𝑖=1  and Z=∑ 𝑉𝑎𝑟(𝑋𝑖) +𝑚

𝑖=1 2 ∑ ∑ 𝐶𝑜𝑣(𝑋𝑗, 𝑋𝑖)𝑖≠𝑗 , 

which summarizes as, 

𝑊 − 𝑍 = 0 .      (23) 

The null hypothesis represents the case of the zero difference while the alternative hypothesis 

indicates that the difference is greater than zero.  

3.7 WHITENING TRANSFORM  

The test statistic in the previous section needs strong assumptions about the random variables in 

order to have a less complex methodology for finding the resulting statistics. A pre-processing method 

can be applied to the images to be able to assume that 𝑋1, 𝑋2, … 𝑋𝑚 are uncorrelated random variables, 

such as 𝐸(𝑋𝑖 , 𝑋𝑗) = 𝐸(𝑋𝑖)𝐸(𝑋𝑗), for  all 𝑖 ≠ 𝑗.  

The Whitening Transform is a decorrelation method that transforms an arbitrary set of variables 

having a known symmetric and positive definite covariance matrix M into a set of new variables whose 

covariance is the identity matrix. If 𝑋 is a random column vector with covariance matrix 𝑀 and mean 0, 

then 𝑀 can be written as 𝑀 = 𝐸[𝑋𝑋𝑇]. If 𝑀 is a symmetric and positive definite matrix, 𝑀 has a positive 
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definite symmetric square root 𝑀
1

2, such that 𝑀
1

2𝑀
1

2 = 𝑀. The random vector 𝑋 is transformed to 𝑌 by 

using 𝑌 = 𝑀−
1

2X, which has covariance matrix,  

𝐶𝑜𝑣(𝑌) = 𝐸[𝑌𝑌𝑇] = 𝑀−
1

2𝐸[𝑋𝑋𝑇] (𝑀−
1

2)
𝑇

= 𝑀−
1

2𝑀𝑀−
1

2 = 𝐼.  (24) 
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4 METHODOLOGY 

In this chapter, the statistical method developed to find the ideal pixel size or spatial resolution for 

classification is fully explained. This methodology was developed by an improvement of several statistics 

methods with different assumptions made according to the hyperspectral image classification problem.  

The statistical analysis performed on the images is fully explained in the first sections. It includes the 

definition of random variables in the image and the downsampling methodology. After defining the 

variables, a hypothesis test is applied to the image by assuming independence between random variables. 

Another methodology to improve the results was established by changing independence assumptions 

made about the image. The last part of the chapter explains the typical parametric and non-parametric 

hypotheses tests used to determine when the pixels can be well modeled as coming from the same 

density. This last part is used to provide validation to the results of the hypothesis test developed.  

4.1 DOWNSAMPLING  

It is assumed that there is a pixel scale where the pixels from a single class become homogeneous. 

This means that we are trying to determine when statistics of the pixels become homogeneous, or when 

the pixels can be well modeled as coming from the same density. A downsampling of the image is 

performed to obtain a data set of multiple spatial resolution images.  

 In order to have the image at different spatial resolutions the original image is averaged to 

successively coarser spatial resolution pixels. Let the pixels of the original image be ijx , where i is the 

row and j the column. The pixels of the lower resolution image are then  ijx~ , where 

ww

x

x

wi

wwil

lm

wj

wwjm
ij



 
 



*

)1()*(

*

)1()*(~ and the window size w=2,3,4,…,W. Figure 4-1 shows an example where the 
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window size is w=2, therefore the lower resolution image pixel 𝑥̃11 =
(𝑥11+𝑥12+𝑥21+𝑥22)

4
, and the next pixel 

is obtained by shifting a  non-overlapping window. 

 

Figure 4-1 Transformation from original image to a lower resolution image by using a 2X2 window 

To find the relation between the downsampling window size 𝑤 𝑥 𝑤 and the lower resolution 

image pixel size 𝑝𝑥̃, it can be calculated by multiplying the pixel size of the image before being 

downsampled 𝑝 by one dimension of the window size, 𝑝 = 𝑤𝑝𝑥̃.  

4.2 RANDOM VARIABLES IN THE IMAGE 

To find a straightforward way of estimating at what resolution the pixels become homogeneous, the 

image is divided into multiple random variables defined by neighboring pixels. The random variables are 

defined to exploit the characteristics of the average of 𝑚  random variables. Each pixel in the 

downsampled image is obtained by taking an average of 𝑚  different random variables, where 𝑚  is 

determined by the window size. In the example in Figure 4-2, and in the rest of the thesis a window size 

of w = 2 is used such, such as 𝑚 = 𝑤2 = 4 and 𝑌1 =
𝑋1+𝑋2+𝑋3+𝑋4

4
.  The new random variable is determined 

by 4 random variables such as 

𝑌𝑖 =  𝑋̃ =
𝑋1+𝑋2+⋯𝑋𝑚

𝑚
= (

1

𝑚
) (𝑋1 + 𝑋2 + ⋯ 𝑋𝑚).   (25) 
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Figure 4-2 Definition of random variables in the original and lower resolution images 

4.3 HYPOTHESIS TESTING: VARIANCE 

To statistically determine when pixels become homogeneous, or can be modeled from the same 

density, a hypothesis test can be set up to determine the spatial resolution at which the pixels are 

identically distributed.  Since lower resolutions are obtained by doing a neighboring average of the original 

image, the variance of an average of identically distributed random variables can be used in the hypothesis 

test. 

Assuming that we have 𝑚 independent and identically distributed random variables 𝑋1, 𝑋2, … 𝑋𝑚, 

then each 𝑋𝑖 has the same mean 𝜇 and variance 𝜎2.  

Using this the mean and the variance of 𝑋̃ is: 

𝐸(𝑋̃) = 𝐸 [(
1

𝑚
) (𝑋1 + 𝑋2 + ⋯ 𝑋𝑚)] = (

1

𝑚
) 𝐸(𝑋1 + 𝑋2 + ⋯ 𝑋𝑚),  (26) 

𝑉𝑎𝑟(𝑋̃) = 𝑉𝑎𝑟 [(
1

𝑚
) (𝑋1 + 𝑋2 + ⋯ 𝑋𝑚)] = (

1

𝑚
)

2

𝑉𝑎𝑟(𝑋1 + 𝑋2 + ⋯ 𝑋𝑚). (27) 

To simplify (26), the property of the expected values that says that the expected value of a sum is 

always the sum of the expected values is used. Therefore, having the previous in consideration and 
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because the 𝑋𝑖
′𝑠 are identically distributed (they have the same mean and variance) Equation (26) will 

reduce to: 

𝐸(𝑋̃) = (
1

𝑚
) 𝑚𝜇=𝜇     (28) 

Equation (27) can also be simplified, since the 𝑋𝑖 are independent, the variance of the sum is the sum 

of the variances: 

𝑉𝑎𝑟(𝑋̃) = (
1

𝑚
)

2

𝑉𝑎𝑟(𝑋1 + 𝑋2 + ⋯ 𝑋𝑚) = (
1

𝑚
)

2
(𝑚𝜎2) =

𝜎2

𝑚
, for all m >0. (29) 

Equation (29) can be used to find the dependence of pixel size and variance. To test this hypothesis, 

the left and right side of Equation (29) is plotted. If 𝑋𝑖  are independent and identically distributed, then 

𝑉𝑎𝑟(𝑋̃) − 
𝜎2

𝑚
 = 0. 

4.4 HYPOTHESIS TESTING: COVARIANCE METHOD 

The variance hypothesis test assumed independence between the pixels. When not assuming 

independence of the pixels, a new hypothesis test can be set up to determine if spatially the pixels before 

averaging were identically distributed or not.  

The variance of the pixels in the lowered resolution image is: 

 



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

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
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







  

 

 

 
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wwil

lm

wj

wwjm

wi

wwil

lm

wj

wwjm
xVar

www

x

VarxVar
*

)1()*(

*

)1()*(
4

*

)1()*(

*

)1()*( 1
)~( .  (30) 

In general, the variance of a sum of variables is the sum of pairwise covariances. To simplify notation, let 

the pixels in the double summation of Equation (30) be numbered from 1 to 𝑤 ∗ 𝑤 = 𝑚. The variance of 

a sum can be written as 
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     
  


 





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



jiji

ji

m

i

i

m

i

m

j

ji

m

i

i xxCovxVarxxCovxVar
:,

,

11 1

,

1

2 .  (31) 

In the case that the pixels in the original image are identically distributed, this can be simplified to 

   
  













jiji

jii

m

i

i xxCovxmVarxVar
:,

,

1

2     (32) 

Combining (30) with (32),  

   
  

02)~(
:,

,
2  

 jiji

jii xxCovxmVarxVarm      (33) 

when the pixels in the original image are identically distributed.   

The difference stated in Equation (33) can be used as the statistic in a hypothesis testing problem. 

The null hypothesis represents the case of the zero difference while the alternative hypothesis indicates 

that the difference is greater than zero. If the null hypothesis cannot be rejected, then the pixels in the 

original image are determined to be identically distributed.  

4.4.1 Hypothesis Test: Band by Band 

The methodology above is applied spatially on the image. In order to include the spectral 

component of the hyperspectral images, the residual sum of squares (RSS) of the statistic in (33) is applied 

to each band. If each band is called b and the total of bands are k, the residual sum of squares in the whole 

image is, 

   
  

 









 


k

b jiji
bjbibib

RSS xxCovxmVarxVarm
1

2

:,
,,,

2 ,2)~( .    (34) 

4.4.2 Determination of the Statistics of the Test Statistic 
The statistics of the test statistic in Equation (33) are necessary to determine a decision rule for 

the hypothesis test. Since the population variance and mean are unknown most of the time, the sample 
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mean, variances and covariances equations presented in Sections 3.5.1-3.5.3 need to be used. Noting that 

since samples are randomly selected, the sample mean, sample variance and sample covariance are 

random variables. Since many parameters are unknown, it is necessary to make assumptions to be able 

to calculate the statistics of Equation (33).  

A common assumption is that 𝑋1, 𝑋2, … 𝑋𝑚  are normally distributed random variables. Another 

assumption made for the purpose of this research is to say they are also identically distributed. Therefore, 

the statistics of 𝑉𝑎𝑟̂(∑ 𝑋𝑖)𝑚
𝑖=1 , can be calculated by using the sample variance of N observations. If 𝑌 =

 ∑ 𝑋𝑖
𝑚
𝑖=1 , then  

𝜎𝑌
2̂ =

1

𝑁−1
∑ (𝑌 − 𝜇̂𝑌)2𝑁

𝑖=1 ,      (35) 

where 𝜇̂𝑌 = (
1

𝑁
) ∑ 𝑌𝑖 =𝑁

𝑖=1 ∑ 𝜇̂𝑋𝑖

𝑚
𝑖=1 = 𝑚𝜇̂𝑋 ,  since it is assumed that each 𝑋𝑖  is identically distributed. 

Also, since they are normally distributed they follow the sample mean distribution 𝜇̂𝑋~𝑁(𝜇𝑋 ,
𝜎𝑋

2

𝑁
) . 

Therefore, 𝜎𝑌
2̂ is the sum of the squared differences between two normal random variables, which follows 

a Chi-squared distribution with 𝑁 − 1  degrees of freedom and mean and variance (𝜎𝑌
2, 2

𝜎𝑌
4

𝑁−1
) , if 𝑌𝑖  

observations are assumed independent.  

The 𝑌𝑖  corresponds to the sum of neighboring pixels used in a window size 𝑤𝑥𝑤. The observations 

of these random variables can be assumed independent as the sampling pixels are farther away, which is 

analogous to defining more than four random variables in an image. In this research four random variables 

were used through the whole process, therefore this approximation will not apply. Another problem with 

averaging more than four random variables is the amount of samples, which could put the constraint that 

the methodology would only be applicable for large images. 

The statistics of ∑ 𝑉𝑎𝑟(𝑋𝑖)𝑚
𝑖=1  is similar to the statistics of the variance of the sum. Because the 

𝑋𝑖  are identically distributed, ∑ 𝑉𝑎𝑟(𝑋𝑖)𝑚
𝑖=1 = 𝑚𝑉𝑎𝑟(𝑋),  and by using the sample variance equation, 
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𝜎𝑥̂ =
1

(𝑁−1)
∑ (𝑋 − 𝜇̂𝑋)2𝑁

𝑖=1 , it also follows a Chi-squared distribution with  𝜒2
𝑁−1 ,  and has mean and 

variance (𝜎𝑋
2, 2

𝜎𝑋
4

𝑁−1
). 

The statistics of the last term is much more complex since it has the sample covariance function, 

and several assumptions need to be made. This will be done in the next section.  

4.4.2.1 Approximation using the Central Limit Theorem  

The test statistic can be written using the sample mean, variance, and covariance, 

𝑚2 1

𝑁−1
∑ [(𝑌 − 𝜇̂𝑌)2]𝑁

𝑖=1 − 𝑚
1

𝑁−1
∑ [(𝑋 − 𝜇̂𝑋)]2𝑁

𝑖=1 -2
1

𝑁−1
∑ [∑ (𝑋𝑖𝑘 − 𝜇𝑥𝑖̂

)(𝑋𝑗𝑘
− 𝜇𝑋𝑗̂

) 𝑖<𝑗
𝑁
𝑘=1 ].  (36) 

As N →∞ the central limit theorem can be used to estimate the distribution of Equation (36). The squared 

differences between two normal random variables can be represented a chi-squared distribution. 

Therefore, every term in [.] corresponds to a chi-squared random variable, and these random variables 

are summed N times by the leading summation operator. 

 A version of the CLT is that if 𝑋1, 𝑋2, … , 𝑋𝑛 are independent random variables that are identically 

distributed with finite means and variances, then the normalized sum (𝑆𝑛 − 𝑛𝜇)/𝜎√𝑛), where 𝑆𝑛 = 𝑋1 +

𝑋2 + ⋯ , 𝑋𝑛,  as 𝑛→∞ converges to a Gaussian variable with zero mean and unit variance [29]. In other 

words, the sum of a sufficient number of independent and identically distributed random variables with 

finite means and variances will result in a Gaussian random variable.  

The expected value and variance of a chi-squared distribution with N−1 degrees of freedom (or 

sample size) are,  

𝐸(𝜒2
𝑁−1

) = 𝑁 − 1, and      (37) 

𝑉𝑎𝑟(𝜒2
𝑁−1

) = 2(𝑁 − 1).      (38) 
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These moments can be used to convert 𝜒2 into a standard normal variable by subtracting the 

expected value and dividing by the standard deviation [30],  

𝑍 =
[𝜒2−(𝑁−1)]

√2(𝑁−1)
.       (39) 

By the CLT, the normalized sum of 𝑍 converges to a Gaussian (normal) distribution with zero mean 

and unit variance. Therefore every sum of the terms in [.], after being converted to standard normal using 

Equation (39), can be approximated to a normal random variable as N is large. Also, since a linear 

combination of normal random variables tends to another normal variable, then the test statistic will 

follow a Gaussian distribution.  

4.5 HYPOTHESIS TESTING: WHITENING TRANSFORM  

Neighboring pixels are most likely to come from the reflectance of the same object. Therefore, 

there is a high statistical dependence between pixels in a natural image scene. A pre-processing method 

could be used to de-correlate pixels in an image and reduce the sensitivity of the sample covariance when 

there are outliers, or equivalent when the sample size is small. 

The whitening transform explained in Section 3.7 converts a random column vector to another 

vector that has identity covariance matrix [31]. Similarly to the other calculations, the whitening transform 

is performed band by band. Letting 𝑋 be each of the two-dimensional images, where the columns are 

variables and the rows are observations from this variables. 

To be able to write the covariance matrix of 𝑋  as 𝑀 = 𝐸[𝑋𝑋𝑇], the image 𝑋  is centralized by 

subtracting it by its mean. A decorrelation transform can be found by finding the eigenvectors and 

eigenvalues of 𝑀 by solving   

𝑀Φ =ΦΛ.      (40) 
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Λ is a diagonal matrix having the eigenvalues as its diagonal elements. Therefore, the matrix Φ 

diagonalizes the covariance matrix of 𝑋. The diagonalized covariance can be written as  

ΦT𝑀Φ = Λ.      (41) 

To apply the diagonalizing transform to a vector of data, it can be written as  

𝑦 = ΦT𝑋.       (42) 

Since the covariance is now a diagonal matrix, the data in 𝑦 is decorrelated. To whitening the data 

the diagonal elements of Λ need to be the same, which is obtained by  

Λ−
1

2ΛΛ−
1

2 = 𝐼, which after substituting in (41) the whitened data or image 𝑤 is,  

𝑤 = Λ−
1

2ΦT𝑋.      (43) 

4.6 PARAMETRIC AND NON-PARAMETRIC HYPOTHESIS TESTS 

The previous hypotheses methods will be compared with the traditional parametric and non-

parametric hypotheses tests that are used to determine when populations can be well modeled as coming 

from the same density. The drawback of some of these tests is that they are negatively affected by 

deviations from normality [32]. To test the assumption of normality, histograms and Q-Q plots of the 

populations can be calculated. A Q-Q plot displays a quantile-quantile plot of two samples. If they come 

from the same distribution, the plot will be linear. 

Since these hypothesis methods are developed to test homogeneity in an area additional steps 

are needed to apply it to a hyperspectral image where multiple objects are present. Areas, that are desired 

to be classified as a single class, will be manually extracted from the image, and then the hypothesis will 

be tested for each area in the image. It is hypothesized that the homogeneity in some parts of the image 

will increase the accuracy of hard classification by reducing the within-class variance. 
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4.6.1 F-test 
The F-test is designed to test if two populations have the same variance. This test is implemented 

by comparing the ratio of the two variances. If they are equal, the ratio of the variances will be 1. 

Therefore, the test statistic is F = 𝑠1
2/𝑠2

2  where 𝑠1
2 > 𝑠2

2 . The F hypothesis test for a two-tailed test is 

defined as: 

Ho: 𝜎1
2 = 𝜎2

2,  𝐻𝑎: 𝜎1
2 ≠ 𝜎2

2. The hypothesis that the two variances are equal is rejected when:  

𝐹 < 𝐹
(1−

𝛼

2
,𝑁1−1,𝑁2−1)

 or 𝐹 < 𝐹
(

𝛼

2
,𝑁1−1,𝑁2−1)

.                (44) 

The assumptions made by this test are: 

1. There are two samples from two populations 

2. samples are independent 

3. populations come from a normal distribution 

4. both population variances are unknown 

4.6.2 Homogeneity of variance tests 

When two or more variances are being compared, a homogeneity of variance (HOV) test can be 

performed. Most of the time, this test is performed to verify the HOV assumption in an ANOVA test. One 

major drawback of these tests is that they are not good for detecting small or moderate differences in 

variances. Also, some tests start from the assumption of normality in the data, but this is not always met. 

Q-Q plots are used to verify normality. The multiple homogeneity of variance (HOV) tests are explained 

below [33]. 

4.6.2.1 Barlett’s Test 

Barlett’s test for k samples is defined as Ho: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2,  𝐻𝑎: 𝜎𝑖

2 ≠ 𝜎𝑗
2 for at least one 

pair (i,j). Its test statistic is  
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𝑇 =
(𝑁−𝑘) ln 𝑠𝑝

2− ∑ (𝑁𝑖−1)𝑙𝑛 𝑠𝑖
2𝑘

𝑖=1

1+(
1

3(𝑘−1)
)((∑ (𝑁𝑖−1))−1(𝑁−𝑘))𝑘

𝑖=1

.    (45) 

The hypothesis that the variances are equal is rejected when 𝑇 > 𝜒1−𝛼,𝑘−1
2 . 

4.6.2.2 Levene’s test 

Levene's test is an alternative to the Barlett's test that is less sensitive to the normality 

assumption. It assumes that the samples from the population are independent, and also that the 

populations under consideration are approximately normally distributed. The Levene test for k samples is 

defined as Ho: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2,  𝐻𝑎: 𝜎𝑖

2 ≠ 𝜎𝑗
2 for at least one pair (i,j). The Levene test statistic is 

defined as:  

𝑊 =  ∑ 𝑛𝑖(𝑖 𝑧𝑖̿ − 𝑧̅. . )^2 /(𝑔 − 1))/((∑ ∑ (𝑧𝑖𝑗 − 𝑧𝑖̿)
2

)/ ∑ (𝑖𝑗 𝑛𝑖 − 1))𝑖 ,   (46) 

where  𝑍𝑖𝑗 =  |𝑦𝑖𝑗 − 𝑦𝑖̅|, 𝑦𝑖̅ is  the mean for the ith treatment, 𝑧𝑖̅ =  ∑ 𝑧𝑖𝑗/𝑛𝑖, and 𝑧. .̅̅ ̅ = ∑ ∑ 𝑧𝑖𝑗/ ∑ 𝑛𝑖. The 

hypothesis that the variances are equal is rejected when > 𝐹𝛼,𝑘−1,𝑁−𝑘 . 

Levene test is robust because the true significance level is very close to the nominal for a large variety of 

distributions. Also, it is not sensitive to symmetric heavy-tailed distributions.  

4.6.2.3 Brown-Forsythe Test 

The Brown-Forsythe test uses the median instead of the mean. It provides good robustness for 

non-normal data while retaining good statistical power. Using the mean provides the best hypothesis 

power for symmetric, moderate-tailed distributions than using another parameter [32]. The Browne-

Forsythe test for k samples is defined as: 

Ho: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2,  𝐻𝑎: 𝜎𝑖

2 ≠ 𝜎𝑗
2 for at least one pair (i,j). 

The test statistic used is the one-way ANOVA (analysis of variance) statistic, just as in the Levene test. 
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𝑊 =  ∑ 𝑛𝑖(𝑖 𝑧𝑖̿ − 𝑧̅. . )^2 /(𝑔 − 1))/((∑ ∑ (𝑧𝑖𝑗 − 𝑧𝑖̿ . )
2

)/ ∑ (𝑖𝑗 𝑛𝑖 − 1))𝑖 ,  (47) 

where 𝑍𝑖𝑗 =  |𝑦𝑖𝑗 − 𝑦𝑖̃|, where 𝑦𝑖̃ is  the median for the ith treatment. 

𝑧𝑖̅ =  ∑ 𝑧𝑖𝑗/𝑛𝑖, and 𝑧. .̅̅ ̅ = ∑ ∑ 𝑧𝑖𝑗/ ∑ 𝑛𝑖. 

The hypothesis that the variances are equal is rejected when 𝑊 > 𝐹𝛼,𝑘−1,𝑁−𝑘 . 

4.6.2.4 O’Brien test 

The O’Brien test constructs a dependent variable so that the group means of the new variable 

equal the group sample variances of the original response. An ANOVA on the O’Brien variable is actually 

an ANOVA on the group sample variances [34]. 

4.6.3 Nonparametric tests 

Many statistical tests are developed based on the assumption that the population is normally 

distributed. Nonparametric tests are designed for use when only a few statistical assumptions can be 

made. In the case of normality, the mean and variance are typically used to describe the center and spread 

of the population, but they are not robust enough when this assumption is not met. In the non-parametric 

tests the median is typically used to measure the center of a distribution if it is not heavily influenced by 

outliers and skewed data. The spread is harder to quantify, but it is usually represented by the 

interquartile range. This is the difference between the first and third quartiles. 

4.6.3.1 Ansari-Bradley 

Ansari-Bradley tests for differences in spread. It is a nonparametric alternative to the two-sample 

F-test for equal variances. It does not require a normality assumption and can be used with samples from 

distributions that do not have finite variances. One assumption made is that the samples have equal 

medians. Therefore, it is recommended to subtract the median from the samples to have them centralized 

around the median.  
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5 EXPERIMENTS AND RESULTS 

 Multiple hyperspectral images were used to test all the algorithms described in Sections 4.3, 4.4, 

and 4.5. First, synthetic images were used to verify the theoretical methodology without having the effect 

of real life uncertainties. These synthetic images were generated with different signal-to-noise ratios and 

with different probabilities of coming from two classes. To verify the applicability of the methods to real 

life, hyperspectral images gathered using the SOC-700 stand mounted were used.  

The chapter is organized by experiments realized according to the methodologies explained in 

Sections 4.3 to 4.5. Synthetic images and real hyperspectral images were used to verify the methods. The 

images are different in the sense that some images are more homogenous than others in its original spatial 

resolution.  

 In the first experiment typical hypotheses tests were applied to determine when pixels in an image 

can be well modeled as coming from the same density. Secondly, experiments were performed to verify 

the hyperspectral images applicability to the initial hypothesis test developed in this research, where 𝐻𝑜:  

𝑉𝑎𝑟(𝑋̃) = 
𝜎2

𝑚
. Most importantly, Section 5.5 contains the modification of the previous hypothesis test, 

where an applicable statistical methodology was developed to determine a spatial resolution to improve 

image classification.  

Finally, the method was validated by classifying images at different spatial resolutions and verifying 

that the spatial resolution obtained from the covariance hypothesis test (Section 5.5) improves the 

classification accuracy. 
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5.1 GENERATION OF SYNTHETIC IMAGES  

5.1.1 Different pixel probability of belonging to a class  

Synthetic images were generated by changing the probability of a pixel coming from one of the two 

classes present in the image. The image is composed with pure pixels where the endmembers used were 

functions in ℤ𝑁 . The two endmembers are shown in Figure 5-1, where the first endmember was generated 

using cos (
4𝜋𝑛

220
) + 1 and the other cos (

2𝜋𝑛

220
) + 24, for n bands. The idea behind these endmembers is to 

be able to test synthetic images were the classes had significantly different intensities.  

 

Figure 5-1 Synthetic images endmembers 

The classes in the image are defined as class A and class B. Different images were generated by 

changing the probability of a pixel to belong to a class A. A Bernoulli distribution was used to spatially 

distribute pixels with success probability p, where in this case success means coming from class A.  
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Two images were generated, one with p=0.25 and the other with p=0.5. Endmembers one and 

two from figure 5-1 were spatially distributed using the Bernoulli distribution to generate the two 

250x250x220 synthetic hyperspectral images shown in Figure 5-2. 

 
(a) 

 
(b) 

Figure 5-2 Hyperspectral synthetic images with different probabilities of coming from class A: (a) Image generated with p=0.25, 
(b) Image generated with p=0.5 

Since the image (a) shown in Figure 5-2 was generated with p=0.25, it can be seen that the 

endmember that corresponds to red is more predominant in the image than blue. In contrast image (b) 

from the same figure has the same quantity of blue than red. To understand the characteristics of the 

image the histogram and isotropic variogram were calculated and shown in Figure 5-3.  

 

Figure 5-3 Synthetic image generated with p=0.5, with its histogram and isotropic variogram 

The isotropic variogram in Figure 5-3 (shown bigger in Figure 5-4) is a graph of semivariance vs. 

separation distance. When there is autocorrelation present in the image, the semivariance is lower at 

smaller separation distances. In this case it is lower from 0 to 5 separation distance (h). The sill is the upper 
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limit of the variogram where all semivariances are invariant with the sample separation distance. Even 

though in this image the semivariance varies after h=20, the sill can be estimated to be around 100.  The 

range of the variogram model is the separation distance at which samples are spatially autocorrelated, in 

this case it seems to be around h=8, but the semivariances as the separation distance h increases and 

does not follow a generalized variogram model as shown in Section 2.3.  

 

Figure 5-4 Variogram from image in Figure 5-12 (a) 

The histogram  in Figure 5-3 has two peaks indicating that the reflectance values from the two 

endmembers are widely separated. Therefore, the previous synthetic images do not simulate real life. 

Their histograms have two peaks which mean it is bimodal. Having two peaks in a histogram indicates that 

two processes with different distributions are present in the image. The two distributions in this case 

represent objects in the images, since these images were generated only with two endmembers. To 

generate synthetic images closer to real life events spatial and spectral features closer to real events need 

to be added to the image.  

5.1.2 Legendre and Gaussian Abundances Synthetic Images  
Spectral features are added to an image by using spectral signatures from the USGS Spectral 

Library. The spectra of lawn grass and chlorite shown in Figure 5-5 were used, where blue corresponds to 
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grass, and red to chlorite. The material reflectance were measured from 0.20 to 3.0 𝜇m [35]. The spatial 

characteristics of the image are computed by abundance image statistics. 

The new synthetic hyperspectral images are generated by using a linear combination of pure 

spectral signatures of endmembers. Let 𝐸 = [𝑒1, 𝑒2] be the pure endmember spectral signatures of lawn 

grass and chlorite respectively.  Using a linear model, each hyperspectral signature 𝑟 at each pixel in the 

image is formed by the sum of the pixel’s signal 𝑠 and an independent additive noise component 𝑛, 𝑟 =

𝑠 + 𝑛 .  The spatial features of the image are added by using a fractional abundance matrix. Each 

abundance indicates the fraction of an endmember available at a pixel. The hyperspectral signature 𝑟 at 

each pixel in an image with m endmembers can be expressed as,  

𝑟 = 𝑠 + 𝑛 =  ∑ 𝑒𝑖𝜙𝑖 + 𝑛𝑖
𝑚
𝑖=1 ,      (18) 

where 𝜙 is the m-dimensional vector of fractional abundances at the given pixel, which given its 

definition above is subject to constraints: 𝜙𝑖 ≥ 0, and ∑ 𝜙𝑖
𝑚
𝑖=1 =1. 

The generation of the abundance coefficients is a spatial process performed independently for 

each desired endmember, and after the abundances matrices are generated normalization conditions are 

imposed independently for each pixel.   

To ensure endmembers are distributed in the image similar to real life the Legendre polynomials 

and Gaussian fields are used to randomly generate the abundances with different spatial distributions. To 

reduce the time in developing the algorithms a Matlab Synthesis tools package called HYDRA was used.  

HYDRA was developed by the Computational Intelligence group of the Basque Country University. 

It a set of tools focused on the development of computational methods for the analysis of hyperspectral 

images, and it contains a set of methods to make synthetic hyperspectral images [36]. HYDRA is an open 
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source project under the GNU GPL3 license. It provides a GUI (Graphical User Interface), which was used 

to develop the synthetic images using the USGS spectral signatures. 

 

Figure 5-5 Generation of Gaussian Field Synthetic Image using HYDRA GUI 

As shown in the endmembers, the final image can have up to 480 bands, but in this research there 

is no need for so many bands. The final images have 151 bands using bands from 250 to 400.  

The images generated using the Legendre and Gaussian abundances methods are shown below. 

The differences in colors indicate the different intensities of the reflectance coming from the different 

endmembers present in the image. Even though there are only two endmembers in the image Gaussian 

additive noise was added to the images causing slight changes in the values.   
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(a) 

 
(b) 

 
(c) 

Figure 5-6 Legendre and Gaussian Fields Synthetic Images: (a) Synthetic Image generated using Legendre abundance, (b) Synthetic 
Image generated using Spherical Gaussian Fields abundance, (c) Synthetic Image generated using Rational Gaussian Fields 
abundance 

 The figure below shows the histogram of the Legendre synthetic image. This histogram indicates 

that the pixel values in the image follow a Gaussian distribution, which is typical in hyperspectral images. 

Therefore, this images generated by using abundance image statistics have a more realistic characteristic 

than the previous synthetic images.  

 

Figure 5-7 Legendre synthetic image, with its histogram and isotropic variogram 
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Sections in the rest of the chapter show the results from all the experiments realized with all the 

synthetic images shown above, and also for real images. The typical parametric and non-parametric 

hypotheses tests are shown first (methodology shown in Section 4.6), and then the results from the two 

hypotheses tests developed in this research (methodology explained in Sections 4.3 and 4.4).  

5.2  PARAMETRIC AND NON-PARAMETRIC TESTS 

As explained in Section 4.6 a hypothesis test can be performed to determine when populations 

can be well modeled as coming from the same density. Samples were taken from the image downsampled 

using window sizes from n=1 from n=20. Each hypothesis tests if two independent samples come from 

normal distributions with the same variance. To apply this concept to the hyperspectral images, a random 

sample vector is taken from the downsampled image at n equal to some factor in the range from 1 to 20. 

The second sample came from downsampling at n equal to factor+1 and randomly selecting a sample 

from this new coarser image.  Since the hypothesis tests when populations can be well modeled as coming 

from the same density when the null hypothesis cannot be rejected is an analog to not been able to reject 

that the images downsampled at n or n+1 the pixels in the image became homogenous. This process was 

performed from each of the bands in the image.  

The different parametric and non-parametric tests explained in Section 4.6 were used to test the 

hypothesis that populations come from the same density. A significance level of 𝛼 = 0.05, for a 5% of 

significance was used. Most of the hypothesis test gave results where the null hypothesis was always 

rejected. The only hypothesis test that gave significant results were the F-test and the Ansari Bradley tests. 

The Tables 5-1 to 5-5 shows numbers of hyperspectral bands where the null hypothesis was not rejected 

for the different downsampling window sizes, for each image shown in Figure 5-8.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 5-8 Hyperspectral Images used in the experiments, synthetic images from a-e, and real images from f-h: (a) Synthetic Image 
generated Image generated with p=0.25, (b) Image generated with p=0.5, (c) synthetic image generated using Legendre 
abundance, (d) Synthetic Image generated using Spherical Gaussian Fields abundance, (e) Synthetic Image generated using 
Rational Gaussian Fields abundance,(f) leaves real hyperspectral image shown in natural color RGB, (g) lawn grass/soil real 
hyperspectral image shown in natural color RGB, (h) soil/leaves real hyperspectral image band 45. 

 The results  of the F-test and Ansari-Bradley hypothesis tests are shown below in this section. The 

windows sizes to be compared with other methods are highlighted in blue. The null hypothesis for the F-

test is that the two independent samples come from a normal distribution, with the same variance, while 

the alternative hypothesis is that they come from normal distributions with different variances.  The null 

hypothesis for the non-parametric test Ansari- 

Bradley is that the two independent samples come from the same distribution. The alternative  
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hypothesis is that samples have same median and shape, but different dispersions (for example variance).  

The first hypotheses results shown in Tables 5-1 and 5-2 correspond to the synthetic images 

generated by selecting the pixel p probability of belonging to a class A that belongs to one of the two 

endmembers. 
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Table 5-1 Results from the Ansari-Bradley and F-test                                          Table 5-2 Results from the Ansari-Bradley and F-test 

for image with p=0.25               for image with p=0.50 

  
  
  

   

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both tests gave similar results, were there were 0 bands with true null hypothesis or 220 bands 

with true null hypothesis.  This could be due to how the images were generated. Each pixel has the same 

probability in all the bands, and the image is noiseless. To understand how these hypotheses act with 

synthesis images with additive Gaussian noise, the images (c) to (e) from Figure 5-8 were put under test. 

The results are shown in Tables 5-3 to 5-5. 

 

Ansari-

Bradley 
F-test 

Windows 
size n 

Total bands 
with true 
hypothesis 
 ( Image 
bands:220) 

Total bands 
with true 
hypothesis 
  (Image 
bands:220) 

1 220 220 

2 220 220 

3 220 220 

4 220 220 

5 220 220 

6 220 220 

7 220 0 

8 220 220 

9 220 220 

10 0 0 

11 0 0 

12 0 220 

13 0 220 

14 0 0 

15 220 0 

16 0 220 

17 0 0 

18 0 220 

19 0 220 

20 0 220 

    Image 
bands:220 

Ansari-
Bradley F-test 

Windows 
size n 

Total bands 
with true 
hypothesis 
  (Image 
bands:220) 

Total bands 
with true 
hypothesis 
  (Image 
bands:220) 

1 220 220 

2 220 220 

3 220 220 

4 220 220 

5 220 220 

6 220 220 

7 0 0 

8 220 220 

9 220 220 

10 0 0 

11 0 0 

12 0 220 

13 220 220 

14 0 0 

15 0 0 

16 0 0 

17 0 0 

18 0 220 

19 0 220 

20 220 220 
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Table 5-3 Results Ansari-Bradley and F-test for image with Legendre abundances (c) 

 
 

Ansari-
Bradley 
(Image 

bands:151) 

F-test 
(Image 

bands:151) 
 

Windows 
size n 

Total 
bands with 

true 
hypothesis 

Total 
bands with 

true 
hypothesis  

1 0 38  

2 0 151  

3 151 151  

4 0 151  

5 0 151  

6 0 122  

7 0 151  

8 151 151  

9 0 151  

10 0 151  

11 0 151  

12 0 151  

13 0 151  

14 0 151  

15 151 151  

16 0 151  

17 0 3  

18 0 151  

19 0 151  

20 0 151  
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Table 5-4 Results Ansari-Bradley and F-test for image with Spherical Gaussian abundances (d) 

 
 

Ansari-
Bradley 

F-test 

Windows 
size n 

Total 
bands with 

true 
hypothesis 

(Image 
bands:151) 

Total 
bands with 

true 
hypothesis 

(Image 
bands:151) 

1 151 151 

2 26 1 

3 0 1 

4 0 1 

5 0 1 

6 0 1 

7 0 1 

8 0 0 

9 0 1 

10 0 0 

11 0 0 

12 0 0 

13 0 0 

14 0 0 

15 0 0 

16 0 0 

17 0 0 

18 0 0 

19 0 0 

20 0 0 
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Table 5-5 Results Ansari-Bradley and F-test for image with Rational Gaussian abundances (e) 

Image 
bands:151 

Ansari-
Bradley 

F-test 

Windows 
size n 

Total 
bands with 

true 
hypothesis. 

(Image 
bands:151) 

Total 
bands with 

true 
hypothesis 

(Image 
bands:151) 

1 151 151 

2 151 151 

3 151 151 

4 151 151 

5 151 151 

6 151 151 

7 151 151 

8 0 1 

9 68 151 

10 0 2 

11 0 1 

12 0 151 

13 0 150 

14 151 151 

15 0 3 

16 0 1 

17 0 151 

18 0 151 

19 0 54 

20 0 1 

 

 The results from the abundance synthetic images (tables above) show more differences between 

the hypotheses tests. The Ansari-Bradley test rejected the null hypothesis more frequency than the F-test.  

At first glance, it may seem an assumption that image (c) is more homogenous than (d) and (e), and also 

(e) is to be more homogenous than (d). The results from the F-test seem to follow this assumption, since 

for most of the pixel sizes, the null hypothesis could not be rejected. Image (d) gave results where the 

hypothesis could not be rejected only for finer pixel sizes. Image (e) gave multiple ranges of pixel sizes 

where the null hypothesis could not be rejected.  
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 These hypotheses tests were also used for the real hyperspectral images shown in Figure 5-8. The 

results for these images are shown below in Table 5-6.  

Table 5-6 Results Ansari-Bradley and F-test for real hyperspectral images (from left to right) shown in Figure 5-8: (f) leaves, (g) 
grass/soil and (h) dirt/leaves 

bands 
120 

Ansari-
Bradley 
 

F-test 
(Image 
bands:  
120)  

bands 
120 

Ansari- 
Bradley 
 

F-test 
 

 

bands 
120 

Ansari- 
Bradley 
 

F-test 
 

 n 

bands 
with true 
hypothes
is 

bands 
with 
true 
hypot
hesis  

 n 

bands 
with true 
hypothes
is 

bands 
with 
true 
hypot
hesis  

 n 

bands 
with true 
hypothes
is 

bands 
with 
true 
hypot
hesis 

1 114 120  1 120 81  1 64 64 

2 7 41  2 16 17  2 52 52 

3 0 0  3 32 25  3 38 38 

4 0 0  4 22 7  4 0 0 

5 0 0  5 1 0  5 13 13 

6 0 0  6 0 0  6 0 0 

7 0 0  7 0 72  7 1 1 

8 0 0  8 4 63  8 0 0 

9 0 0  9 45 12  9 0 0 

10 0 0  10 49 63  10 0 0 

11 0 0  11 0 0  11 0 0 

12 0 1  12 0 65  12 0 0 

13 0 0  13 36 0  13 0 0 

14 0 0  14 0 0  14 5 5 

15 0 0  15 0 50  15 0 0 

16 0 0  16 0 0  16 0 0 

17 0 0  17 0 0  17 0 0 

18 12 0  18 0 0  18 0 0 

19 0 0  19 42 0  19 0 0 

20 0 0  20 31 0  20 220 0 

 

 The results using the leaves image indicate that pixels in the image cannot be determined to be 

identically distributed at neither resolution different from its original. Meanwhile, the results using the 
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grass/soil and dirt/leaves images indicate that at a few spatial resolutions, pixels can be determined to be 

identically distributed.  

The other parametric and non-parametric hypotheses tests were omitted since the null 

hypothesis was rejected for all window sizes n.  Most of the hypothesis tests are dependent on the 

normality assumption of the data. To verify how the hyperspectral images follow this assumption, Q-Q 

(quantile to quantile) plots were generated for the hyperspectral synthetic image with p=0.25. Both 

samples (the one on the left and the one on the right of Figure 5-9) were plotted against a Gaussian 

distribution shown in dashed lines in red. If the sample comes from the same distribution, the plot will be 

linear. In this case the plot seems to be linear, but skewed at the first and last quantiles. 

 

Figure 5-9 Q-Q plots from two samples (shown in blue) from the populations of the synthetic image with p=0.25 against a 
Gaussian distribution (red). 
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5.3 SEMIVARIOGRAM 

To verify results with another method from the literature, the semivariogram explained in the 

Literature Review Section 2.3 is used. According to multiple research papers such as [2], [10], spatial 

resolution used should be finer than the spatial resolution at which the maximum in local variance in the 

object of interest occurs; and the local variance can be estimated by using the semivariance at a lag of 

one pixel.  

 The semivariogram is suited for 2-dimensional data but not n-dimensional. The literature does 

not provide an alternative for include a spectral dimension. Therefore, the analysis has to be done band 

by band. Another disadvantage of using the semivariogram is the need to fit a theoretical model which 

depends on the specific application is being used and involves complex algorithms. A typical 

semivariogram model fitting used for hyperspectral images is the spherical model, but is not unique. Here, 

the spherical model was used, and to include the spectral component in the analysis several bands were 

analyzed independently. The different semivariogram at one lag were plotted for the real images and are 

shown in Figures 5-10 to 5-12.  
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Figure 5-10 Semivariograms from the different spectral bands from the leaves image: (a) band 1, (b) band 61,(c) band 71, (d) 
band 101 

 Image classification accuracy can be improved by selecting a finer spatial resolution than the 

spatial resolution at which the local variance is maximum. Maximum local variance is shown in the plots 

as the maximum semivariance at a lag of one pixel. According to the semivariograms of the leaves image 

shown in Figure 5-10, the local variance has local maximums at a window size of n=5 for all bands. 

Therefore, according to this methodology classification accuracy can be improved by classifying the leaves 

image at the spatial resolution reached when downsampling at a 5x5 window size. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



55 
 

 

Figure 5-11  Semivariograms from the different spectral bands from the grass/soil image: (a) band 1, (b) band 31,(c) band 71, (d) 
band 111 

 For the grass/soil image, the semivariogram has its maximum at n=2 at bands 1,31,71, and 111 

giving a consistent result. Hence, the grass/leaves image classification accuracy can be improved by 

classifying the image at the spatial resolution reached when downsampling at a 2x2 window size. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 5-12 Semivariograms from the different spectral bands from the dirt/leaves image: (a) band 1, (b) band 61,(c) band 71, 
(d) band 101 

 For the dirt/leaves image, the semivariogram has its maximum at n=9 at band 1, n=15 at band 61, 

n=3 at band 71, and n=15 at band 101. The most common value between these results is the window size 

n=15, but the values are not equal and a determination of an optimum pixel size cannot be obtained. 

5.4 HYPOTHESIS TESTING: VARIANCE METHOD RESULTS 

A  hypothesis test was developed to determine if the pixels in an image were identically distributed 

or not, by using the variance. The method is further explained in Section 4.3. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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A hypothesis test with null hypothesis 𝐻𝑜:  𝑉𝑎𝑟(𝑋̃) = 
𝜎2

𝑛
, and alternative hypothesis 𝐻𝑎:  𝑉𝑎𝑟(𝑋̃) ≠

𝜎2

𝑛
 , were used to test if the pixels 𝑋𝑖 are independent and identically distributed random variables. To 

verify this hypothesis test the left and right side of the Equation (29) from Section 4.3 was plotted for each 

image.  

𝑉𝑎𝑟(𝑋̃) =
𝜎2

𝑛
, for all n >0.          (29) 

If pixels can be determined as coming from independent identically distributed variables, then the 

residuals from the left and right side of the null hypothesis will be close to zero which is equivalent to not 

been able to reject the null hypothesis stated above. The hypothesis was tested in the eight images and 

the results are shown in Figure 5-13 to 5-20. 
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(a) 

 

 
(b) 

Figure 5-13 Variance method hypothesis test for synthetic  image with p=0.25: (a) left and right of the hypothesis, (b) residuals 
between the left and right side of the hypothesis 

 
(a) 

 

 
(b) 

Figure 5-14 Variance method hypothesis test for synthetic image with p=0.50: (a) left and right of the hypothesis, (b) residuals 
between the left and right side of the hypothesis 
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(a) 

 

(b) 

Figure 5-15  Variance method hypothesis test for synthetic image with Legendre abundances:  (a) left and right of the 
hypothesis, (b) residuals between the left and right side of the hypothesis 

 
(a) 

 
(b) 

Figure 5-16  Variance method hypothesis test for synthetic image with Spherical Gaussian Fields abundances: (a) left and right of 
the hypothesis, (b) residuals between the left and right side of the hypothesis 
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(a) 

 

(b) 

Figure 5-17  Variance method hypothesis test for synthetic image with Rational Gaussian Fields abundances: (a) left and right of 
the hypothesis, (b) residuals between the left and right side of the hypothesis 

 

 
(a) 

 
(b) 

Figure 5-18  Variance method hypothesis test for leaves image: (a) left and right of the hypothesis, (b) residuals between the left 
and right side of the hypothesis 
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(a) 

 

 
(b) 

Figure 5-19  Variance method hypothesis test for the grass/soil image: (a) left and right of the hypothesis, (b) residuals between 
the left and right side of the hypothesis 

 
(a) 

 

 
(b) 

Figure 5-20  Variance method hypothesis test for the dirt/leaves image: (a) left and right of the hypothesis, (b) residuals between 
the left and right side of the hypothesis 

 The null hypothesis 𝐻𝑜:  𝑉𝑎𝑟(𝑋̃) = 
𝜎2

𝑛
 was rejected for all images except for the first synthetic 

images, as shown in Figure 5-13 and Figure 5-14. The pixel values in these synthetic images were 

previously demonstrated (Section 5.1.1) to have a bimodal distribution indicating that the reflectance 

values from the two endmembers are widely separated. Therefore the pixels in these two images can be 

easily separated to be determined as coming from independent identically distributed variables.  
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Since all the other synthetic and real images had residuals (of the left and right side of the null 

hypothesis equation) on the order of hundreds, the null hypothesis was rejected. All results indicate that 

this hypothesis is too sensitive to images where the endmembers cannot be widely separated (which is 

most of the time). A modification to the hypothesis was made by changing the assumption from the pixels 

𝑋𝑖 being independent and identically distributed random variables, to only being identically distributed. 

5.5 HYPOTHESIS TESTING: COVARIANCE METHOD RESULTS 

The next hypothesis test developed in this research was tested to validate its usability. This 

hypothesis test determines if the pixels before averaging were identically distributed or not, by using the 

variance and covariance. The method is further explained in Section 4.4.  

A hypothesis test with null hypothesis 𝐻𝑜:    
  

02)~(
:,

,
2  

 jiji

jii xxCovxmVarxVarm , and 

alternative hypothesis𝐻𝑎:    
  

02)~(
:,

,
2  

 jiji

jii xxCovxmVarxVarm , were used to test if the pixels 

𝑋𝑖 are identically distributed random variables. In overview, the difference stated in Equation (33) from 

Chapter 4,  

   
  

02)~(
:,

,
2  

 jiji

jii xxCovxmVarxVarm      (33) 

is used as the statistic in a hypothesis testing problem. If the null hypothesis cannot be rejected, the pixels 

in the original image are identically distributed.  

The methodology explained is applied spatially on the image, to include the spectral component 

of the hyperspectral images the residual sum of squares (RSS) of the statistic in (33) is applied to each 

band. Let each band be called b and the total of bands be k such that, 
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RSS =    
  
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





 

k

b jiji
bjbibib xxCovxmVarxVarn

1

2

:,
,,,

4 ,2)~(         (34) 

This was performed on each image, and the plot of RSS vs. factor (window size for downsampling) 

was plotted to visualize the results more easily. The hypothesis was tested using the eight images and the 

results are shown in Figure 5-21 to 5-28. 

 

Figure 5-21 Residual Sums of Squares vs. window size of the p=0.25 synthetic image 

The p=0.25 synthetic image was tested using the covariance hypothesis method. The RSS vs. 

window size plot in Figure 5-21 indicate high RSS at windows sizes, n=4,8,11,15,17,19,20. Therefore, the 

null hypothesis could be rejected indicating pixels are not identically distributed at these spatial 

resolutions. 



64 
 

 

Figure 5-22 Residual Sums of Squares vs. window size of the p=0.50 synthetic image 

The RSS vs. window size plot of the p=0.5 synthetic image shown in Figure 5-22 indicates high RSS 

at windows sizes, n=4,13,15,17,19,20. Therefore, the null hypothesis could be rejected indicating pixels 

are not identically distributed at these spatial resolutions. 

 

Figure 5-23 Residual Sums of Squares vs. window size of the synthetic image with Legendre abundances 
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In the Legendre abundances image, the RSS is small for all the window sizes as shown in Figure 5-

23. In this case, the null hypothesis could not be rejected for any of the window sizes. Therefore, according 

to the covariance hypothesis test pixels on the image are identically distributed at all spatial resolutions. 

 

Figure 5-24 Residual Sums of Squares vs. window size of the synthetic image with Spherical Gaussian abundances 

Spherical Gaussian abundances image results are similar to the Legendre abundances image. As 

shown in Figure 5-24 the RSS values are also very small (in the order of 1.0 𝑥 10−6) for all window sizes. 

Therefore, the null hypothesis could not be rejected for any of the window sizes and pixels on the image 

are identically distributed at all spatial resolutions. 
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Figure 5-25 Residual Sums of Squares vs. window size of the synthetic image with Rational Gaussian abundances 

Rational Gaussian abundances image experiment gave the same results to the previous two. 

Results shown in Figure 5-25 indicate that the null hypothesis for the covariance method could not be 

rejected for any of the window sizes. Therefore, pixels in the image are identically distributed at all spatial 

resolutions. 

 

Figure 5-26 Residual Sums of Squares vs. window size of the leaves hyperspectral image 
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Even though there is only one object in the leaves image, the variance in the image could be high 

due to the significant difference between the leaves. Leaves could have dissimilarities between 

healthiness and size resulting in different reflectance values. By observing the results shown in Figure 5-

26 the null hypothesis for the covariance method was rejected for all of the window sizes. Therefore, 

pixels in the image are not identically distributed at all spatial resolutions.  

 

Figure 5-27 Residual Sums of Squares vs window size of the grass/soil hyperspectral image 

The grass and soil image has the same characteristics as the leaves image, due to the high 

heterogeneity present in the grass. The variance in the image could be high due to the significant 

difference between regions of grass. Similar to leaves, grass could have dissimilarities between 

healthiness, and size resulting in different reflectance values. By observing the results shown in Figure 5-

27 the null hypothesis for the covariance method was rejected for all of the window sizes. Hence, in this 

image pixels also are not identically distributed at all spatial resolutions.  
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Figure 5-28 Residual Sums of Squares vs. window size of the dirt/leaves hyperspectral image 

The dirt/leaves image has a wide separation between dirt and leaves. Therefore, it is expected to 

be highly heterogeneous. Results shown in Figure 5-28 validates this observation by giving RSS in the order 

of 1.0 𝑥 109. The null hypothesis was rejected for all of the window sizes, then pixels on the image are 

not identically distributed at all spatial resolutions.  

The covariance hypothesis method tests homogeneity within one class. Therefore the image 

needs to be divided to be able to apply the hypothesis individually to each class. The image is divided by 

selecting manually regions that seem homogenous at simple eye. The first spectral band of the resulting 

dirt and leaves images are shown below.  
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(a) 

 

(b) 

Figure 5-29 Regions extracted from the dirt/leaves image, (a) dirt crop, (b) leaves crop 

After separating the two classes on the dirt/leaves image, the covariance hypothesis test was 

applied to each of the regions. Results from the test are shown in Figure 5-30 and Figure 5-31. 

 

Figure 5-30 Residual Sums of Squares vs. window size of the dirt crop 

 

The RSS vs. window size plot for the dirt crop shown in Figure 5-30 indicates low RSS values at 

windows sizes, n = 6,7,8,9,1013,17,20. Therefore, the null hypothesis could not be rejected indicating 

pixels are identically distributed at these spatial resolutions. 
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Figure 5-31 Residual Sums of Squares vs. window size of the leaves crop 

In the case of the leaves crop, results in Figure 5-31 indicate that at windows sizes, n=2,3,4,6,14,17 

the null hypothesis in the covariance method could not be rejected. This determines that pixels in the 

leaves crop image at these spatial resolutions are identically distributed. 

The main reason for testing homogeneity in an image is the assumption that image classification 

accuracy will improve under this condition. If there are multiple of objects or classes in an image it is 

assumed that classification accuracy will improve when individual classes are optimally classified. Using 

the hypothesis covariance test this could be achieved by selecting the pixel size at which the maximum 

number of classes has a low RSS, or a true null hypothesis. Therefore, to reach the maximum classification 

accuracy in the dirt/leaves image a window size should be obtained such as the pixels are identically 

distributed in both classes. The leaves crop image was determined to be homogeneous at n=2,3,4,6,14,17, 

and the dirt crop is homogenous at n =4,5,6,7,8,9,10,13,17,20. Both results have in common n=4 and n=6, 

hence any of these spatial resolutions will improve the classification accuracy of the dirt/leaves image. A 

review of the residual square differences is shown in table 5-7.  
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Table 5-7 RSS from leaves and dirt at different window sizes 

window 
size 

RSS 
leaves 

RSS dirt 

1 3.0491 0.0082 

2 3.0456 9.3458 

3 0.0011 5.712 

4 0.4846 1.949 

5 8.1173 0.7406 

6 0.4982 0.2541 

7 22.5543 0.0663 

8 10.6777 0.1528 

9 6.0803 0.2855 

10 19.388 0.0007 

11 11.8206 0.1538 

12 47.1636 5.2489 

13 37.2481 0.1379 

14 0.0921 0.4091 

15 59.8603 0.5036 

16 9.6073 2.3697 

17 1.1722 0.0017 

18 173.8349 8.6525 

19 4.1631 3.0801 

20 23.8957 0.1688 

 

5.5.1 Hypothesis Testing After Whitening Transformation 
The results from the covariance hypothesis test seem to be consistent with the Parametric and Non-

Parametric hypotheses tests, but there are several peaks shown in the plots, especially at high window 

sizes. Downsampling the image using a window 20x20 reduces the original image by a 1/20 factor. If the 

original image was 650x650, the new image would be 32 x 32. Reducing the image to a small size reduces 

drastically the sample size N that is used in the sample variance, mean and covariance.  

The variance and covariance estimators are extremely sensitive to outliers [37], which are increased 

when there is a smaller number of samples or observations. The image can be transformed so that its 

covariance has unity covariance. This will reduce the effect of the sample covariance by reducing the 

covariance between neighboring pixels. Shown below are the results obtained by whitening the 
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leaves/grass image and applying the covariance hypothesis after. Figure 5-32 shows how pixels change 

with the transformation, and Figure 5-33 shows how the covariance change from the original to the 

transformed image. 

 

Figure 5-32 Leaves/grass original image and its whitening transform 

 

 

 

 

Figure 5-33 Covariance of the original image and the covariance of the whitening transform 
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 After preprocessing the image with the whitening transform, the covariance hypothesis test was 

applied for the two classes of the leaves/soil image. The RSS vs. windows size plots shown below 

demonstrates how the peaks shown with the original image are reduced. Also,  shows a relation where 

at bigger pixel sizes there are smaller RSS values. 

 

Figure 5-34 RSS vs. window size of the Soil crop after whitening transform 

 

Figure 5-35 RSS vs. window size of the Leaves crop after whitening transform 
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To compare the results of the hypothesis test before and after pre-processing the image, the 

RSS vs. window size were plotted at the same logarithm scale (shown below). At high resolution both 

hypothesis test provide similar information, and the RSS keeps decreasing. At smaller resolution the 

covariance method without the whitening shows much more erratic behavior, than the whiten one. 

Figure 5-36 RSS vs. window size of the covariance hypothesis test before and after preprocessing: (a) soil crop hypothesis test 
before pre-processing, (b) soil crop after whitening transform, (c) leaves crop before pre-processing, (d) leaves crop after 

whitening transform 

5.6 IMAGE CLASSIFICATION  

The purpose of being able to determine the pixel size where the classes in an image are identically 

distributed is to obtain the spatial resolution that maximizes the image classification.  An increase in 

accuracy was verified by classifying the leaves/dirt image at the spatial resolutions obtained from the 

covariance method test (n=6, and n=8). According to the test hypothesis results, the classification accuracy 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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will be greater at n=6 than at n=8. To validate this, a Maximum Likelihood (ML) classifier was applied at 

these different resolutions using different regions for training and testing. The results from the pixel 

labeling and the confusion matrixes are shown below in Figure 3-37 and Tables 5-8 and 5-9.  

 

(a) 

 

(b) 

Figure 5-37 Classification labeling using maximum likelihood classifier in the leaves/soil image at different resolutions, red is used 
for leaves, and green for soil. From left to right: (a) Classification results for image using 6x6 downsampling, (b) classification 
results for image using 8x8 downsampling.  

 The classification labeling shows how the 6x6 downsampled image gave accurate results by 

correctly classifying objects and boundaries between objects. The leaves class is labeled as red, and the 

dirt as green. The image downsampled with an 8x8 window was incorrectly classified by classifying many 

leave pixels as dirt (soil). According to the confusion matrices shown in Table 5-8 and Table 5-9, the overall 

accuracy of the 6x6 downsampled image is 98.82%, with a Kappa Coefficient = 0.9576, and for the 8x8 

downsampled image has overall accuracy =  83.87%. The confusion matrices are shown in percentage.    

Table 5-8 Confusion matrix ML 6x6 downsampling image (percentage) 

    Class Leaves Soil Total 

Leaves-red 99.30 1.27 17.12 

Soil-green 0.70 98.73 82.88 

Total 100.00 100.00 100.00   

 

  



76 
 

 

Table 5-9 . Confusion matrix ML 8x8 downsampling image (percentage) 

    Class Leaves Soil Total 

Leaves-red 56.16 0.00 20.67 

Soil-green 43.84 100.00 79.33 

Total       100.00 100.00 100.00   

5.7 RESULTS OVERVIEW  

 The results in Section 5.2 and Section 5.5 should have the same results, since their purpose is to 

determine at which spatial resolution the pixels can be statistically identically distributed. Results from 

the Ansi-Bradley and F-test (Table 5-1 to Table 5-6) were compared with the results of the covariance 

hypothesis test (Figures 5-21 to Figure 5-28).  

5.7.1 Results overview: synthetic image generated by using probability of a pixel coming 

from one of the two classes p=0.25 

The results from the Ansi-Bradley and F-test tests and the covariance hypothesis test were 

compared for the first image. Comparing Table 5-1 with Figure 5-21 several similarities could be found. 

The results in Figure 5-21 indicate that at windows sizes, n=3,n=8, and n=13 the null hypothesis in the 

covariance method test can be rejected, indicating that pixels on this images at these spatial resolutions 

are not identically distributed. Table 5-1 has the result for the F-test, where the null hypothesis was also 

rejected at n=7, n=14. These numbers are not equal to the previous result n=8, and n=13, but the Ansi-

Bradley and F-test hypothesis tests as explained before was realized by using n, and n+1 as the 

populations. Therefore, the null hypothesis being rejected at n=7, and n=14 translates to indicate that the 

populations from n=7 and n=8 do not come from the same density, and also for n=13 and n=14. The 

hypothesis test for Ansari-Bradley did not reject the hypothesis at n=8, but it rejected it at n=13. Even 

though the null hypothesis was rejected at other spatial resolution it is ignored, since they are only used 

to validate this section methodology. Also, the Ansi-Bradley and F-test hypothesis tests are sensitive to 
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variations in the data and dependent on data normality and the results could possess type I (reject Ho 

when it is true) or type II errors (accept null hypothesis when it is not true).  

5.7.2 Results overview: synthetic image generated by using probability of a pixel coming 
from one of the two classes p=0.5 

 The results from the synthetic image generated with p=0.5 gave the same results for the 

covariance method as the image with p=0.25, with the difference that the residual sum of squares (RSS) 

at n=3 was greater. Performing the Ansari-Bradley and F-tests hypotheses tests in this image gave 

consistent results were both tests rejected the null hypothesis at n=7 and n=14. With these two images, 

the usability of the covariance hypothesis method for hyperspectral images has shown to be effective.  

5.7.3 Results overview: synthetic image with Legendre abundances  

Comparing Table 5-3 with Figure 5-23 several differences could be found.  The Ansari-Bradley test 

is more sensitive about accepting the null hypothesis, since only window sizes n=3, n=8 and n=15 have 

true null hypothesis. F-test has considerably different results than the Ansari-Bradley test, by classifying 

all the spatial resolution as coming from the same distribution. To compare the previous results with the 

covariance method hypothesis, the RSS vs. window size plot in figure 5-23 explains more in detail why 

most of the window sizes in the F-test gave true hypothesis results. The RSS vs. window size plot in Figure 

5-23 shows that the pixels on this image at most spatial resolutions can be determined as identically 

distributed, except when n>14. In comparison the F-test and the covariance method has some slight 

differences, but its tendency in the image are similar, showing homogeneity at most of the pixel sizes.  

5.7.4 Results overview: synthetic image with Spherical Gaussian abundances  
The Ansari-Bradley and F-test show similar hypotheses results when the image with spherical 

Gaussian abundances was used. According to these parametric and non-parametric tests the null 

hypothesis is rejected for all the spatial resolutions, except when n=1, or n=2. This means that these finer 

resolutions are the best in terms of indicating to have identically distributed pixels. This correlates to 

Figure 5-24, since the function SSE vs factor keeps incrementing after n=4.  
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5.7.5 Results overview: synthetic image with Rational Gaussian abundances  
Figure 5-25 results show that the null hypothesis from the covariance method cannot be rejected 

at n=8, n=15, n=16, n=17.  In comparison with the Ansari-Bradley and the F-test, the hypothesis can be 

rejected at n=8, but not at n=7, which indicates same distributions between n=7, and n=8. The hypothesis 

could also not be rejected at n=14, which indicated same distribution between n=14 and n=15. This two 

downsampling window sizes resulted in the same in both methods, but n=16 and n=17 from the 

covariance method gave results where the null hypothesis was rejected in the other two methods.  

5.7.6 Results overview: real hyperspectral image with leaves 
 After extensively verifying the covariance hypothesis test with synthetic images, the real images 

were put under test. The Figure 5-26 above show the results of the covariance method with the leaves 

image, where the hypothesis was rejected when the image was downsampled using window sizes of n=9, 

n=11 and n=13. In the case of the Ansari-Bradley and F-test, at most window sizes the hypothesis was 

rejected, except for n=1 or its original spatial resolution. The window sizes where the hypothesis was 

rejected at the covariance test were also rejected by the other hypotheses tests.  

5.7.7 Results overview: real hyperspectral image with grass/soil 
 Another real hyperspectral image was used to compare with the previous results. This image 

contains grass and soil and can be seen to be, more homogeneous than the leaves image. The covariance 

method (as shown in Figure 5-27) indicates that the hypothesis could not be rejected at n=2, n=5, and 

n=10. Also in this image it could be noted that the RSS vs window size function linearly increases after n= 

11. The Ansari-Bradley and F-test hypothesis could not be rejected in the case where n=10, n=1, but for 

n=5 the hypothesis was rejected.  

5.7.8 Results overview: real hyperspectral image with dirt/leaves 
The last experiment was realized with an image with well spatial separation between the objects 

in the image. The image contains the top half with only dirt (soil), and the other half is full of leaves.  The 

results from the covariance method shown in Figure 5-28 indicate that the hypothesis could not be 
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rejected at n= 1,2,3,4,5,8 and n=10. In this image RSS vs window size function is also linearly increasing 

after n= 11. The Ansari-Bradley and F-test hypothesis could not be rejected in the case where n= 1,2,3, 

but only in about half of the bands. For n=5, only 13 bands gave a true hypothesis, while for most of the 

other bands have zero bands with the true hypothesis.  

6 APPLICATION EXAMPLE 

A practical example is given going through all the steps with an image taken with the SOC700 

hyperspectral imager. The image has five different objects submerged 18 inches under water in a tank. 

The RGB corrected image is shown in Figure 6-1. 

 

Figure 6-1 Tank image shown in natural color RGB 

The procedure to statistically find an optimal pixel size to improve the image classification accuracy is 

summarized below: 

1. Select regions of the image that are to be classified. In this case, six regions or classes are chosen 

as shown in Figure 6-2. Their histograms are presented in Figure 6-3. 
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Figure 6-2 Definition classes tank image 
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Figure 6-3 Tank six classes with their histograms 

2. Pre-process each of image by applying the whitening transform  

3. Analyze the residual sums of squares (RSS) at  different window sizes, and select the pixel size at 

which the maximum number of classes has a low RSS. By observing the ranges in the RSS values 

in this application a 𝑅𝑆𝑆 <  0.1 was selected as the threshold to not reject the null hypothesis 

of belonging to the same distribution. 

 

 

Table 6-1 RSS from each of the tank image classes at different window sizes 

window 
(w) class 1 class 2 class 3 class 4 class 5 class 6 

1 0.044729 0.015939 0.018677 0.027251 0.153217 0.038557 

2 0.028057 0.006987 0.008518 0.01969 0.218817 0.011608 

3 0.031656 0.016104 0.007674 0.013108 0.443555 0.025356 

4 0.0389 0.021765 0.006969 0.00376 0.108653 0.003402 

5 0.012687 0.003938 0.000482 0.002294 0.084576 0.001386 

6 0.020295 0.043134 0.010317 0.011837 0.677991 0.002661 

7 0.007788 0.108936 0.013627 0.010514 0.043986 0.002234 

8 0.008265 0.094751 0.019936 0.006866 0.184041 0.000389 

9 0.018606 0.048136 0.008772 0.002162 2.031752 0.008911 
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10 0.006132 0.002954 0.001328 0.016942 0.00411 0.000315 

11 0.00542 0.043042 0.003877 0.00013 0.01593 0.003377 

12 0.031469 0.200918 0.047859 0.003273 0.044367 0.011428 

13 0.004957 0.003705 0.00102 0.011306 0.137259 0.035017 

14 0.003001 0.04523 0.008559 0.01792 0.498296 0.000307 

15 0.015598 0.042946 0.012436 0.000297 0.915019 0.003243 

16 0.001098 0.227107 0.033871 0.003685 1.591106 0.000807 

17 0.008058 0.003675 0.000884 0.000278 3.234408 0.021025 

18 0.016885 0.010669 0.004415 0.0062 6.942972 0.022662 

19 0.00239 0.010145 0.001482 0.029004 0.000254 0.066398 

20 0.01559 0.003245 0.006452 0.150092 0.000642 0.000307 

4. If there are many pixel sizes where the previous criteria fall on, select the lowest spatial 

resolution if many classes are interfering in the classification, or select the highest spatial 

resolution if many classes are needed to be classified.  

In this particular problem six well spatially separated classes are predominant in the image, and the 

purpose is to classify all of them. The highest spatial resolution at which the images are homogeneous is 

the ideal size to use, which according to Table 6-1 is by downsampling the image with a 5x5 window. 

With the purpose of validating the results the image downsampled with a 6x6 window is also classified. 

This image is more heterogeneous because  the hypothesis test for class 5 determined that pixels within 

the image are not identically distributed. 

The image was classified by using a ML classifier, using training classes shown as polygons, and 

testing classes as rectangles. The image to the right with 6 colors corresponds to the labeling of the 

classified image.  

 



83 
 

Figure 6-4 Left: Training (polygons) and testing (rectangles) pixels of 5x5 downsampled image, Right: Labeling of tank 
image after using a Maximum Likelihood Classifier 

 

Figure 6-5 Left: Training (polygons)  and testing (rectangles) pixels of 6x6 downsampled image , Right: Labeling of tank 

image after using a Maximum Likelihood Classifier 

The results are very similar at both spatial resolutions, but the image downsampled by using a 

5x5 window has a higher classification according to the test features, and the confusion matrix. The 

overall accuracy of the image downsampled with a 5x5 window is of 99.26% and for the 6x6 window it is 

96.26%.  
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Table 6-1 Confusion matrix ML tank image 5x5 downsampling (in percentage) 

Class 
Class 

1 
Class 

2 
Class 

3 
Class 

4 
Class 

5 
Class 

6 

 
Total 

Class 
1 

100 0 0 0 0 0 
 

31.05 

Class 
2 

0 95.83 0 0 0 0 
 

16.93 

Class 
3 

0 4.17 100 0 0 0 
 

13.29 

Class 
4 

0 0 0 100 0 0 
 

13.25 

Class 
5 

0 0 0 0 100 0 
 

14.86 

Class 
6 

0 0 0 0 0 100 
 

10.63 

Total 100 100 100 100 100 100 
 

100 
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Table 6-2 Confusion matrix ML tank image 6x6 downsampling (in percentage) 

Class 
Class 

1 
Class 

2 
Class 

3 
Class 

4 
Class 

5 
Class 

6 

 
Total 

Class 
1 

100 0 0 0 0 0 
 

34.73 

Class 
2 

0 100 10 0 0 0 
 

16.64 

Class 
3 

0 0 90 0 16.02 0 
 

14.40 

Class 
4 

0 0 0 100 0 0 
 

9.41 

Class 
5 

0 0 0 0 83.98 0 
 

12.04 

Class 
6 

0 0 0 0 0 100 
 

12.77 

Total 100 100 100 100 100 100 
 

100 

Since the image had classes already well spatially and spectrally separated the improvement 

could not be significant. Even though the classification accuracy in this case was not improved by a lot, it 

improved by 3%, which could mean a lot if there were a lot of pixels in the image.  
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7 CONCLUSIONS  

This research worked with hypothesis testing to efficiently determine the ideal pixel size for 

classification. Statistically based classification algorithms are based on the assumption that each class has 

features that can be statistically separated from other classes. Since their means and variances model this 

separation, the hypotheses tests developed here used the image statistics. The assumption that pixels in 

the image are identically distributed random variables, but they are not independent led to a derivation 

of a hypothesis test using a covariance and variance equation explained in detail in Section 4.4.  

The fundamental assumption in this research is that a class or endmember in an image has 

variations that are not modeled well by a single class if the pixel scale is small enough, but at some coarser 

scale the pixels will become homogeneous. At this spatial resolution or pixel size, the image classification 

errors will decrease, resulting in an ideal pixel size for classification. 

The experiments produced promising results that were compared by using parametric and non-

parametric known hypotheses tests. These tests are used to determine if two populations can be well 

modeled as coming from the same density. Various hypotheses tests were used with hyperspectral images 

data. The Ansari-Bradley non-parametric test and the parametric F-test were used as references for 

comparison as they produced the best results, and were less sensitive to reject the null hypothesis than 

the other tests. The F-test is designed to test if the samples come from the same density by testing if the 

two populations have the same variance. It is a parametric test and some of the assumption made to 

develop the test is that the populations come from a normal distribution (showed in their histograms) and 

that their variances are unknown.  The Ansari-Bradley tests for differences in spread. It is a nonparametric 

alternative to the two-sample F-test for equal variances. It does not require the normality assumption and 

can be used with samples from distributions that do not have finite variances. The assumption of variance 

for these two tests may be the reason for their good performance. At the beginning of the study, the 
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calculation of sample variances was used as the hypothesis test, but it did not show a good performance 

because random variables did not appear to be independent.  The covariance function had to be used 

instead because the variance of a sum of variables is the sum of pairwise covariances, and takes into 

account the correlation between the variables.  

All three methods showed promising similar results for synthetic and real hyperspectral images, 

validating the usability of the new proposed hypothesis method within the test scope. Results show that 

the covariance hypothesis method is a simple straightforward solution to finding an ideal pixel size for 

classification. Also, the sensitivity of the covariance to outliers can be addressed by applying a pre-

processing step of whitening the image. The biggest advantages of the covariance hypothesis method 

developed over the other methods shown in this thesis are that this method does not require normality 

assumption, does not assume that the random variables are independent, and it offers a comprehensive 

and systematic procedure.  
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8 FUTURE WORK  

Different kind of real hyperspectral images (such as satellite images) should be used to obtain more 

specific information about the limitations of this method.  Also, the images were downsampled by taking 

a neighborhood average from an original image, which involves the assumption of a square wave 

response, which is a rough approximation of reality. Real hyperspectral images with different spatial 

resolutions could be tested. 

The statistics of the test statistic was difficult to obtain even after making many convenient 

assumptions. The dependence of neighboring pixels makes it complicated to obtain a simple solution 

utilization common methods. More advanced statistical distributions approximations could be applied to 

obtain the acceptance region for the null hypothesis. For example, the methodology to approximate a 

linear combination of non-central chi-square random variables explained in research paper [38].  

The covariance test statistic developed was obtained by defining the hyperspectral images pixels as 

multiple one-dimensional random variables. This definition is not unique and could be modified by using 

multivariate random variables, which can include with major accuracy the characteristics of the image 

spectral dimension. 
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