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Power consumption is an important constraint in embedded systems running

real time operating systems (RTOS). This study proposes an evaluation of the joint

effect of possible factors in the power consumption of RTOS running on small and

medium scale embedded systems. Design of experiments techniques (DOE) were

used to identify the impact in the power consumption of the system. A case of

study is presented with algorithms oriented to dynamic frequency scaling and mem-

ory management were applied to FreeRTOS. Experiments allowed us to find re-

lationships between the type of architecture, the workload, and OS algorithms in

power reduction.
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Consumo de potencia es una limitación importante en sistemas empotrados

corriendo sistemas operativos tiempo real (RTOS). Este estudio propone una evalu-

ación del efecto conjunto de posibles factores de interés en el consumo de potencia de

RTOS corriendo en sistemas empotrados de pequeña y mediana escala. Técnicas de

diseño de experimentos fueron utilizadas para identificar el impacto en el consumo

de potencia del sistema. Un caso de estudio es presentado con algoritmos orientados

a escalamiento de frecuencia dinámico y manejo de memoria aplicadas al FreeRTOS.

Experimentos nos permitieron encontrar relaciones entre el tipo de arquitectura, la

carga y las algoritmos de sistema opterativo en la reducción de potencia.
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CHAPTER 1

INTRODUCTION

Power consumption is an important constraint in embedded systems running

real time operating systems (RTOS) due to limited battery life time, heat dissipa-

tion of electronic components, size constraints, and costs [2]. RTOS are widely used

on the small-scale and medium-scale embedded systems applications [1]. Power con-

sumption can be reduced via various hardware techniques such as transistor resizing,

the design of dynamically variable voltage hardware [3], and VLSI techniques for low

power and frequency control methods. Another way to reduce power consumption

in embedded systems is through algorithms at the software level [4]. Instruction

level [5], compiler level [6], operating system level [2] [7], and high level algorithms

[8] have been proposed in literature. The related work in chapter 2 shows a brief

description of the low power techniques level by level.

When an RTOS runs on an embedded system, several algorithms at the oper-

ating system level have been proposed to reduce power consumption such as I/O

management, memory management schemes to make an energy efficient memory

allocation [9], dynamic power management techniques (DPM) to dynamically scale

the voltage and frequency on the hardware, low power modes, scheduling algorithms

[10], and energy characterization of embedded RTOS [11] [12]. Our work differs from

others since we evaluate the effect of variating simultaneously possible factors of in-

terest: platforms, benchmarks, operating system level algorithms oriented to DFS

and memory management, and their interaction in the power reduction of small

1
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and medium scale embedded systems running RTOS. Statistically sound conclu-

sions were obtained with design of experiments techniques (DOE) [13]. Results

show that operating system algorithms impact the reduction of power consumption

depending of the platform, and the workload, and their interaction. We found that

there is significative interaction between all factors in the power consumption of

the system. Moreover the operating system level algorithms impacted the power

reduction depending of the relationship between architecture and the application.

Additional results show that when general applications with diverse characteristics

were tested, only certain architectures experienced reduction in power consumption

when OS algorithms were applied.

1.1 Significance

Embedded systems are widely used in all aspects of our life: medical equipment,

technology, communications, industry, and others. Power reduction allows to obtain

benefits in terms of cost, increase of life time of battery in portable devices and the

wear of the devices. Low power software techniques are very attractive because it

is not necessary to make changes to hardware. Algorithms at the operating system

level allow a significant saving in power due to better use of hardware resources,

enabling applications to interact better with the hardware. Our study examines the

interaction between types of architecture, types of applications and OS algorithms

in reducing power in order to generalize on other architectures.

1.2 Contributions

∙ Our work was directed to medium to small embedded systems, which is different

to most works found in literature.

∙ We have provided a methodology and a circuit to measure power in run time.

∙ We have evaluated the simultaneous effect of combining factors and algorithms

in the analysis of power savings. Our work has found that there are interaction

among all factors in the experiments.
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∙ We have found a relationship among the type of architecture, the type of load, and

the RTOS algorithms on power reduction.

This thesis is organized as follows: in Chapter 2 discusses related work in low

power techniques for embedded software, Chapter 3 illustrates the methodology

implemented, and Chapter 4 shows the results obtained and the analysis. Finally,

conclusions are presented.



CHAPTER 2

LITERATURE REVIEW

One of the major constraints of embedded systems is the power consumption

which limits the lifetime of the battery. This problem can be approached at differ-

ent levels of the design of embedded systems: hardware level [14][15], instruction

level [16][5], compiler level [6], system level [7][2], and high level transformations [8].

Figure 2–1 shows the classification of the low power consumption techniques for em-

bedded system at the different levels given by [7]. Our interest is oriented to analyze

and minimize power consumption at the real-time operating systems (RTOS) that

run on microcontrollers based systems.

Figure 2–1: Classification of low power algorithms for embedded systems by [7]

A real time operating system is an embedded software layer that performs

functions at system level such as supervision of the application software, abstraction

4
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of hardware layer, provides a mechanism to the processor to run a process doing

scheduling, and do context-switch between multiple processes. It allows the system

tasks access to resources in sequence. An RTOS is characterized by following a

control plan for strictly meet the time deadlines for each task. Moreover it provides

a number of services to an embedded system:

∙ Task management: is the major task, determines the order in which tasks in

the present system will be implemented.

∙ Intertask communication and synchronization: allows exchange of infor-

mation and synchronization between tasks.

∙ Timer: time basis for each task.

∙ Device I/O supervisor: supervises the protocols for input and output data

through the peripherals.

∙ Memory allocation: allocates memory to each task and prevents fragmentation

of memory.

∙ Other services: see table 2–1.

2.1 Power and Energy Analysis of RTOS

An analysis of the power consumption of a RTOS that runs on an embedded

system has been done by Dick et al. [12]. The authors analyzed the interaction of the

RTOS/application on the embedded system power consumption. Their experiments

were accomplished with the uCOS-II RTOS running on the Fujitsu SPARClite pro-

cessor with three software applications as example tests: an antilock braking system

(ABS), a market composed of commodity trading agents, and a checksum computa-

tion and interfacing with an Ethernet controller with high per-access overhead. As

results they developed a embedded system RTOS/application energy profile which

can be used to rewrite the application software and use the RTOS in a more energy

efficient way. Moreover their study showed that the input/output and intertasks
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Table 2–1: RTOS services. Table extracted from [1].

Function Activities

Basic OS Functions Process Management, Resources Management,
Memory Management, Device Management, I/O
Devices subsystem and Network Devices and sub-
systems management.

RTOS Main functions Real-time Task Scheduling and Interrup-latency
control and use of timers and system clocks Pro-
cess Management, Resources Management, Mem-
ory Management, Device Management, I/O De-
vices subsystem and Network Devices and subsys-
tems management.

Time Management Time allocation and de-allocation to attain effi-
ciency in given timing constraints.

Predictability A predictable timing behaviour of the system and
a predictable task-synchronization.

Priorities Management Priorities Allocation and Priorities Inheritance.

IPC Synchronisation Synchronization of task with IPCs.

Time Slicing Time-slicing of the processes execution.

Hard and soft real-time
operatibility

Hard real-time and soft real-time operations [Hard
real-time means strict adherence to each task
schedule. Soft real-time means that only the prece-
dence and sequence for the task-operations are de-
fined.]
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communication components consume a lot of power in the ethernet and ABS ex-

amples. Based on these results a few general guidelines to use a RTOS in a power

efficient way were proposed:

∙ Rewrite the application to avoid unnecessary use of the RTOS scheduler.

∙ Remove the use redundant synchronization.

∙ If the power analysis show significant power consumption in the memory, then use

others memory management schemes such as uniform block.

∙ Concentrate on special modes available in the processor, like using adequately the

sleep mode.

In [11] the authors proposed a methodology to analyze the energy overhead of

an embedded operating system independently of the running application. They

experimented with the I/O drivers and the context switch components. Their

methodology is based in the energy characterization at different processor speeds.

In the results they noticed that an increment of 10 KHz in the context switch

frequency does not affect significantly the overall power consumption of the system.

With respect to I/O drivers their experiments showed that when the CPU sends

data to the I/O drivers in amount greater that buffer size, the power consumption

increase considerably due to bottleneck. The authors also found a considerable

amount of energy is consumed in the synchronization process. The conclusion

is that the context switch mechanism is energy-efficient, and as suggestion they

proposed that RTOS should send data into small fragments.

2.2 Algorithms at Hardware Level

Algorithms applied to bus encoding have been proposed for low power con-

sumption. The authors in [17] proposed a strategy named bus-inverter code, which

consists in coding the information that will be put in the bus to reduce the num-

ber of transitions. The algorithm takes into account the following consideration:

the width of the bus is N, then the N/2 measure is compared with the hamming
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distance among 2 successive patterns, if the distance hamming is bigger than N/2

then the current address is transmitted with inverse polarity, otherwise the address

is transmitted without changes. Their results showed power reduction when they

used random patterns in the time. In the case of irredundant codes the code gray

was good option.

Venkatachalam and Franz in [17] described low power techniques at the circuit,

logic, interconnection, and architectural level. At the circuit level they analyzed

transistor sizes and at the logic level, number of gates arrangements and clocks.

At the interconnection level, bus encoding techniques, crosstalk, low swing buses,

bus segmentation, and adiabatic buses were considered. At the architecture level,

hardware design with support of low power modes have been considered to control

power consumption when certain parts of the embedded processor are inactive.

Another hardware-oriented techniques named dynamic voltage scaling (DVS)

and dynamic power management (DPM) were considered by [18] [19], [20], [7]. In

DVS, the operating system runs the tasks at different voltages and frequencies. In

DPM, parts of the system as peripherals which are not in use are shut off in order

to save power.

2.3 Algorithms at Instruction Level

At the instruction level, the work has been directed at developing a methodology

for the power characterization of the instructions set for a particular architecture.

Tiwari at el al. [16] [5] describe a alternative to analyze the power consumption at

the instruction level. Their approach is based in placing each instruction into an

infinite loop and measuring the current consumed using an digital ammeter. The

experiments shown that the instructions involving memory access are much more

expensive than instructions that involve just register accesses. They propose that

a better use of registers will notably reduce the total power consumption in the
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system. This work has allowed the development of the others algorithms at instruc-

tion level such as Instruction Reordering and Energy Cost Driven Code Generation.

Instruction Reordering is focussed in diminishing the switching activity between

consecutive instructions. The idea with Energy Cost Driven Code Generation is to

select instructions based on their energy costs instead of the traditional metrics of

code size or running time.

Ana-Maria Badulescu et al. in [21] designed a mechanism of fetch predictor with

the purpose of eliminating the fetch state of the pipeline instructions which are not

needed from a cache line. This mechanism predicts which instructions will be fetched

before that they are put in the buffer. The prediction is used to search the useful

part of the cache lines saving power. Here they use a cache with the ability for fetch

any instruction from cache line, it was possible dividing the cache in subbanks then a

control vector is used for fetch the subbanks that contain the required instructions.

To eliminate the fetch of the instructions, they built a predicted-mask table, the

predicted-mask table is indexed with the control vector, which is a bit mask whose

length is equal to the number of instructions in a cache line. Each bit in the mask

is used to enable or disable the subbanks with the words to be fetched in the next

fetch cycle. The tests were carried out based on the simulator of the architecture

MIPS, the simulator models a superscalar processor and with nonblocking caches.

A subset of benchmark of SPEC95 is used. The results showed that the saving of

power with regard to total power of the processor was of 4.4%.

In [22], Tomiyama et al. the authors proposed an low power algorithm to

diminish the switching activity in the bus of data between the main memory and the

cache. In systems based on microprocessors, the access to memory is one of the main

problems in the consumption of energy. The algorithm uses the scheme of graphs

DAC (directed acyclic graph) to determine all the possible paths of organization of

the instructions. The algorithm determines the path with the less cost and therefore
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the minor numbers of transitions due to the great quantity of possible paths. The

algorithm uses two methods for a quicker search: the first method avoids redundancy

in the search and the second one avoids the number of sub trees to be searched. The

experiments were carried out on the SPARC architecture using several benchmarks:

compress, laplace, linear, lowpass, sor, wavelet, compress (Unix). The results showed

that the algorithm achieves a reduction of up to 28% in transitions on the data bus.

2.4 Algorithms at Compiler Level

In [23], Zambreno et al. analyzed the compiler level algorithms in the power

consumption of the memory system on embedded devices. Their work is based in the

interaction between compiler algorithms oriented to performance as loop unrolling

and function inlining and the power consumption of the memory, the experiments

were realized with the SPEC CPU 2000 and MediaBench benchmarks running on

the MIPSR10000 processor. They found that performance techniques did not lead

to power and energy savings.

In [6], Tiwari et al. had the hypothesis that since the switching activity in a

circuit is a function of the present inputs and the previous state of the circuit, then

the energy consumption of an instruction varies depending of the previous instruc-

tion. They proposed a low power reorganization of the instructions and analyzed the

power consumption of the memory accesses. The experiments were carried out with

the 486DX2 processor and shown that the power consumption of the memory access

instructions is significantly high but the instructions reordering does not impact sig-

nificantly the overall power consumption of the system, it showed an energy savings

of only 2%. A suggestion given by the authors is to try to avoid the instructions

with memory operands and making better use of the registers.

Another approach to reduce the power in the switching activity is given by

Cheng et al. In [24], they present some issues involved in obtaining low power

consumption for real-time system; they present a power reduction method at the
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software level compilation. The idea is to implement a power reduction techniques

inter instruction. The estimated power at instruction level is based on a change in

the order to execute the sequence of instructions compiled to produce a significant

change in the power consumption of the system.

2.5 High Level Transformations

Yingbiao et al. in [25] propose software techniques for low power consumption

applied to a RISC core MP3 decoder. The idea is to reach high performance y

memory space algorithm, to allow that the compiler creates energy efficient assembly

code for a specific processor.

Vishal and et al. in [4] performed a study of source code and its effect on power

consumption of embedded systems. They optimized high level code, and verified

code size. They utilized the DPCM speech compression algorithm as vehicle to de-

mostrate the following algorithms at high level: loop unrolling, function inlining,

creation of function macros through #define preprocessor directive and transfor-

mation in the branching operations. Their experiments were carried out on the

AMR 32 bits processor, in the results the branching transformation gave maximum

improvements in power.

Li and et al. in [8] did an analysis at high level where a transformation-selection

algorithm designed by the authors is applied to the source code of the program.

The transformation selection algorithm applies loop unrolling and function inlin-

ing transformations and determines in which part of the source code to choose

the combination and the order of the transformations that obtain the best energy

improvement without violating the memory size limit. Experimental results have

shown significant improvements (up to 95% ) in energy dissipation.

In [26] a study on transformation techniques for high level synthesis of low power

systems was done. The purpose of this work is to reduce the switching activity in

the datapath through the loop holding technique applied to the input operands. To
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evaluate this work a power analysis program called SPA was used. Their work is

based on the fact that the consumption of power is proportional to the correlation

of the input operands and the switching power diminishes if the correlation among

two consecutive groups of input operands to the same functional unit is high. The

loop folding algorithm improves the execution time of a loop through the use of the

resources. The tests were made with several different order FIR filters. The results

showed that is possible to obtain a reduction of power of up to 50%.

C. Chakrabarti in [27] proposes reducing the power consumption applying

memory-optimizing loop transformations and a procedure to choose a fit cache and

line size to satisfy the necessities of the system as for area, number of cycles and

energy consumption. Among the transformations, the following were analyzed: loop

reordering, loop fission, loop interchange enabled by loop skewing, loop fission en-

abled by loop normalization and loop peeling, loop tiling enabled by loop skewing

and loop unrolling. The tests were carried out with the MPG2 encoder algorithm

and varying the cache and cache line size. The results showed that for constant

instruction cache size, the variation in energy due to variation in data cache size

is small. In contrast, for constant data cache size, the variation in energy due to

variation in instruction cache is significant.

Studies carried out in [28], [29] showed that 50%-80% of the total power is

dissipated in the traffic with the memory and 25%-30% in the cache. Of the analysis

they showed that an increment in the size of the cache diminishes the miss rate, cycle

variation. Moreover the behavior of the power consumption with regard to the cache

size is different: The energy consumption increases with the increase in line size for

all cache sizes because a larger line size implies a bigger quantity of data to be

fetched from main memory.

In [30] the authors propose a survey from the techniques at high level of model-

ing, estimation, and algorithms for low power consumption. Their research is based
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in control-date-flow graph (CDFG) description of the design. The idea is to asso-

ciate each operation of the graph with the time and therefore the resources that are

not carrying out useful task then to disable them. Furthermore this provides an

efficient way to manage the resources because if in some moment in the time several

tasks are scheduled then the resources are reallocated again. The multiple supply

voltage scheduling technique varies the feeding voltage of the circuit to high level;

the advantage of this type of algorithm is assigning the appropriate feeding voltage

for each task in the (CDFG).

2.6 Operating System Level Algorithms

Swaminathan et al. in [31] studied I/O device scheduling for hard real-time

systems with the purpose of putting into sleep state devices that are not in use. They

designed an energy efficient algorithm named, LEDES for dynamically managing

power consumption of I/O devices in a hard real-time system. LEDES produces a

sequence of sleep/working states for each device. The inputs of the algorithm are the

task schedule and future knowledge of device requests. Their experiments showed

that LEDES can reduce energy consumption by almost a 50%.

Vahdat et al. [32] worked in memory management for low power consump-

tion, their study shows that the memory access is one significant cause of power

consumption in the RTOS running on embedded systems. The authors propose an

power efficient page allocation to prevent fragmentation. They conduced the exper-

iments using two simulators, a trace-driven simulator and a detailed out-of-order

execution-driven processor simulator. To evaluate this technique a set of programs

from the integer SPEC2000 suite that place higher demands on the memory system

was used. The results show that the power-aware page allocation allows a 6% to a

50% improvement in energy.

Voltage and frequency scaling are mechanisms by which energy consumption

may be reduced. They are based on the fact that power consumption is a quadratic
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function of the voltage and it is proportional to the clock frequency. Several works

have followed this approach.

Firsthand [3] Krishna et al. worked on voltage scaling in embedded systems

and built a voltage-sheduling algorithm based on the earlier deadline first (EDF)

sheduling algorithm. In this algorithm the tasks are executed under the assumption

of their worst case execution time (WCET), moreover the technique guarantees that

all task deadlines will be met. The experiments considered the impact of worst-

case task utilization. The results show that for low values of worst-case task set

utilization, the system runs at the lowest allowed energy level and an energy saving

of 56% is achieved.

Kumar et al. in [10] developed predictive strategy, based on workload and the

current state of the processor in order to know the time that a task will start to be

executed. The system is put in idle mode, or a voltage and frequency scaling can be

applied during the intervals of inactivity. The mechanism was implemented on three

applications: the Avionics tasks set, INS (Inertial Navigation system) task set, and

CNC (computerized numerical control). The results based on simulation showed

that the power gain increases, as well as BCET (Best Case Execution Time) gets

smaller and the number of missed deadlines increase. Moreover, they noted that

when the power conservation level gets bigger the number of tasks missing their

deadlines also increases.

More recently, the reduction in power consumption is also focused towards the

different enterprise environments, databases, and servers. For example in [33] the

authors studied the power consumption at the components level and its variation

in a blade server. They developed a hybrid model of hardware and software for the

prediction of AC power named mantis. First, an analysis is done to find out which

parts of the enterprise system consumes much power. Nowadays, two approaches are

used to obtain a model for estimating power consumption; estimate the model from
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actual power measurements at the hardware level and simulation of the behavior of

the system.

The mantis model was used to predict power peaks and average power. Their

study showed that the processor is the component that consumes more power, much

more than the memory, adding to this more than 30-40% of the power is spent

on network, disk I/O, peripherals, the power supply, regulators and the rest of the

circuitry of the server. The mantis model must be calibrated with the appropri-

ate benchmarks running on the server to stress the parts of interest of the system

(memory, processing, I/O etc). Based on the output of the mantis model, it was

possible to predict the power consumption of the server and its components (mem-

ory system, processor, I/O and network). The researchers used an AC power meter

to measure the real power consumed, furthermore the metrics of measurement used

by the model are low-overhead OS utilization and hardware performance counters.

These OS metrics refer to CPU utilization and, rate of the I/O requests to the hard

drive and network.

Another work focused on power consumption in data center is [34]. In this

investigation, the authors seek to coordinate the different approaches to hardware

and software levels together. This way of bringing together both approaches, can

create conflict, to avoid this, they proposed a mathematical solution, based on con-

trol theory. In literature several research works are focused on reducing the average

power, the management of peaks power for air conditioning and the costs in the

power supply. In this study the researches propose an architecture for coordination

and evaluation of peaks of power and the average power handling through the use

of hardware and software for any complex enterprise environments. Their study

suggests a mechanism of feedback control. Previous work showed a tradeoff between

power consumption and performance, these included the tradeoff in their modeling.
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The specific options of this approach in order to control power are: frequency and

voltage scaling, sleep states, and system shut-down.

The system consists of the following parts:

∙ EC (controller efficiency) Optimizes the power consumption per server, the

controller monitors the past use and adjusts the state of the processor.

∙ SM (Server Manager): Thermal power capping used, if power budget is vio-

lated.

∙ EM (Enclosure Manager) and GM (group manager): Implement ther-

mal power capping at the blade enclosure and in the rack or data center levels,

respectively.

∙ VMC (VM Controller): Seeks to put the machines in off power when they are

not in use.

Their results based on large-scale simulations utilizing real data traces, showed

a 64% in energy savings of 3% in performance degradation, and a 5% of power

budget violation. In all scenarios, the coordinated solution resulted much better

than the effect of the uncoordinated cases (All solutions working independently).

2.7 Benchmarking

Raj Jain [35] defines benchmarking as the process of performance comparison for

two or more system by measurements. The workloads used in the measurements are

called benchmarks. Although benchmarking has been focused to evaluate computing

system performance, it can be used to analyze other types of metrics such as power

consumption in embedded system. That is, stressing the system to simulate a real

workload.

The four major considerations in selecting the workload are: the services exer-

cised by the workload, the level of detail, representativeness, and timeliness. The

exercised services refer to thought the system as a service provider, for this is nec-

essary that in order for the system provide multiple services, the workload should
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exercise as a complete set of services as possible. It is important to know the interface

level at which the workload is directed:

1. Arithmetic-logic Unit

2. Central Processing Unit

3. Operating System

4. Applications

Our research is interested in stressing the system at the operating system level,

moreover the workload is based in the services provided by the operating system,

including the operating system commands and system services. The level of de-

tail means the workload selection in recording and thus reproducing the requests

for these services. The most common alternative used is to select as workload the

most frequently request service. Representativeness refers to how a test workload

should be representative of a real application, that is, the test workload and the

real applications must match in the following characteristics: the arrival rate, re-

source demands, and resource usage profile; the resource usage profile relates to the

sequence and the amounts of resources used in a application. The timeliness relates

to time constraints, and here is important for the workload to represent the latest

usage pattern.

A benchmark has the following important features:

1. Easy to use.

2. Small size.

3. Adaptable to run on different platforms.

In the literature several benchmarks have been proposed to analyze the perfor-

mance of the embedded processors: sieve, ackerman function, whetstone, LINPACK,

Dhrystone, Mediabench, Cpu2, the SPEC benchmark suite, among others. In [36]

Guthaus et al., proposed an open source set the benchmarks oriented to measure
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performance in embedded systems named MiBench. These benchmarks are divided

in six groups which represent different embedded systems markets:

1. Automotive

2. Consumers

3. Office

4. Networking

5. Security

6. Telecommunications

These benchmarks were written in C language, making them portable to any

platform. MiBench showed different features with respect to SPEC 2000, however,

they are suitable for the evaluation of performance in embedded systems platforms.

MiBench presented a better behavior, including a good distribution of instructions,

memory, and available parallelism.



CHAPTER 3

METHODOLOGY

For the purpose of identifying the effect of different factors and their interaction

on the power consumption of RTOS running on embedded system, a case study was

selected as research methodology.

Our research is divided into the following steps:

1. Three commercial microcontrollers were used for the experiments in order to ana-

lyze the operating system level algorithms for RTOS running on small and medium

scale embedded system: the LM3S811 from LUMINARY MICRO, the MSP430

from TEXAS INSTRUMENT and, ATMEGA323 from ATMEL. These architec-

tures were chosen because they are respresentative of the world of embedded ap-

plications. They allow us to compare differences in bus size and architecture and

relate them to power consumption.

2. A set of benchmarks for embedded processors named MiBench [36] was chosen to

stress the overall system. These benchmarks represent six groups of embedded

applications: consumer, automotive, telecommunications, office, networking, and

security. Then the worst case execution time (WCET) of the selected benchmarks

was experimentally measured in order to apply the algorithms, next the bench-

marks were run on the platforms and a measure of the consumed power of the

system was taken.

3. Operating system level algorithms oriented to dynamic frequency scaling and mem-

ory management strategies were applied to FREERTOS, an open source, real time

operating system designed for microcontrollers.

19
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4. An electronic circuit was designed to measure the run time power and to make the

data acquisition through the virtual interface (VI) from host PC.

5. Design Techniques of Experiments (DOE) were used to validate the results and to

know whether if system level algorithms (dynamic frequency scaling and memory

management strategies) can be used to reduce the power consumption of small

and medium scale embedded system. Some of the constraints on these systems are

memory and resources limitations.

6. Additional experiments were done with the benchmarks running individually on

the platforms in order to find a relationship between type de workload, type of

platform and, the OS algorithms in power reduction of the system.

3.1 Target Platforms

To perform the analysis of power consumption on medium and small scale

embedded systems, three representative low power microcontrollers were chosen.

Some features of the selected platforms are described in this section.

LM3S811

The LMS311 is an 32-Bit RISC architecture based on ARM platform. In terms

of hardware power saving it has sleep and deep-sleep modes, on-chip Linear Drop-

Out (LDO) voltage regulator, software controls shutdown of individual peripherals,

up to 50-MHz of operation. In terms of memory, the microcontrollers has 64 KB

single-cycle flash, 8 KB single-cycle SRAM. In terms of peripherals this platform

is equipped with, two UARTs, a ADC with four 10-bit channels (inputs), three

PWM generator blocks, 1 to 32 general purpose input/output (GPIOs), three 32

bits general-purpose timers, one independent integrated analog comparator, among

others features. The applications include factory automation and control, industrial

control power devices, building and home automation, brushless DC motors. The

figure 3–3 shows the block diagram of the LMS3S811.
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Figure 3–1: LM3S811 Block Diagram. (Figure courtesy from Luminary Micro)
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MSP430F149

The MSP430F149 is a low power microcontroller, some features include: 16-

Bit RISC architecture, with five power-saving modes. In terms of memory, the

MSP430F149 has 60KB + 256B Flash Memory, 2KB RAM. In terms of peripherals it

has a 12-Bit A/D Converter, two 16 bits timers, one on chip analog comparator, two

serial communication interfaces, an internal digitally-controlled oscillator (DCO), a

high frequency crystal oscillator among other characteristics. Typical applications

include to capture analog signals of sensor systems converting them to digital values,

and process and transmit the data to a host system, industrial control applications

such as ripple counters, digital motor control, EE-meters, hand-held meters, etc.

Figure 3–2 shows the block diagram of the MSP430F149 platform.

Figure 3–2: MSP430F149 Block Diagram. (Figure courtesy from Texas Instruments)

ATMEGA323

The ATMEGA323 is a high-performance, low-power AVR 8-bit microcontroller

with RISC architecture and six sleep modes. In terms of memory it has 32K bytes of

flash, 1K byte of EEPROM, 2K bytes of SRAM. In terms of peripherals it presents:
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two 8-bit and one 16-bit timer/counters, four PWM Channels, one 8-channel 10-

bit ADC, one programmable serial USART, one on-chip analog comparator among

others additional features.

All the selected arquitectures have low power features that make them appro-

priate when designing systems with power constraints.

3.2 Benchmarking

In order to analyze power consumption of the selected platforms and stress

the system, a set of benchmarks oriented to embedded applications was chosen.

MiBench is a open source group of benchmarks developed by Guthaus et al. [35]

and designed to measure performance in embedded processors, consists of 35 em-

bedded applications distributed into six categories that represent commercial appli-

cations of embedded systems: automotive and industrial control, network, security,

consumer devices, office automation, and telecommunications. These benchmarks

are written in C language, they have features of portability and readability, making

them adaptable to any embedded platform. A brief description of each one of the

six groups of MiBench follows.

Automotive and Industrial Control

This category represents the use of embedded processors in embedded control

systems. Here the processors require performance in basic math abilities, bit manip-

ulation, data input/output and simple data organization. Some applications are air

bag controllers, engine performance monitors and sensor systems. The algorithms

used in this tests are: a basic math test, a bit counting test, a sorting algorithm and

a shape recognition program. Following is a brief description of each program.

∙ Basicmath performs simple mathematical calculations such as cubic function

solving, integer square root and angle conversions from degrees to radians.

∙ Bitcount counts the number of bits in an array of integers for testing bit ma-

nipulation abilities of the processor.
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Figure 3–3: ATMEGA323 Block Diagram. (Figure courtesy from ATMEL)
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∙ Qsort : This test sorts a large array of strings into ascending order using the

well quick sort algorithm.

∙ Susan is an image recognition software. It is used in studies of the brain.

Consumer

The Consumer Devices benchmarks represents the variety of multimedia appli-

cations based on embedded systems like scanners, digital cameras and Personal Dig-

ital Assistants (PDAs). The algorithms of this group are: JPEG, tiff2bw, tiff2rgba,

tiffdither, tiffmedian, lame, mad, and Typeset algorithms. Following is a description

of each one:

∙ Jpeg encode/decode : Compression and decompression of the images in em-

bedded documents.

∙ Tiff2bw converts a color TIFF image to black and white image.

∙ Tiff2rgba is a converter of color image in the TIFF format into a RGB color

formatted TIFF image.

∙ Tiffdither reduces the resolution and size of a black and white TIFF image.

∙ Tiffmedian transforms an image to a reduced collection of colors.

∙ Lame is a MP3 encoder of small and large wave files.

∙ Mad is a MPEG audio decoder used in audio applications.

∙ Typeset is a tool of typesetting to process HTML documents. It is found in

web browser applications.

Office

This group of benchmarks works with text manipulation algorithms and data or-

ganization. The following algorithm belong to this group: Ghostscript, Stringsearch,

Ispell, Rsynth, and Sphinx. Below is a brief explanation of the algorithms.

∙ Ghostscript is a postscript language interpreter.

∙ Stringsearch searches words in a document.

∙ Ispell is spelling checker in several languages.
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∙ Rsynth is a text used in speech synthesis programs.

∙ Sphinx is a speech decoder.

Network

The Network benchmarks represent embedded applications of network devices

like switches, routers among others. In this group are Dijkstra, and Patricia bench-

marks. Here is a brief description of the benchmarks.

∙ Dijkstra calculates the shortest path between every pair of nodes in the net-

work.

∙ Patricia is an algorithm utilized to represent routing tables in the network

applications.

Security

These algorithms are benchmarks for data encryption, decryption and hashing.

The benchmarks of this group are Blowfish, Sha, Rijndael, and Pgp. Below is an

explanation of each one.

∙ Blowfish is a encryption cipher with a variable length key.

∙ Sha is utilized for generating digital signatures.

∙ Rijndael is security code configurable for 128, 192 and 256 bits.

∙ Pgp is a key encryption algorithm that uses digital signatures and the RSA

public key cryptosystem.

Telecommunications

This group represents the internet services and wireless communication appli-

cations. The benchmarks of this group are:

∙ FFT/IFFT is the Fast Fourier Transform and its inverse transform on an array

of data.

∙ GSM is the standard for voice encoding/decoding in the mobile communication.

∙ ADPCM encode/decode is a type of modulation where the signal are repre-

sented by digital code.



27

∙ CRC32 : This algorithm detects errors in data transmission.

3.2.1 Selected Benchmarks

The selected benchmarks for our study were: bitcount, basicmath, and dikstra

algorithm where the higher and lower priorities were assigned to bitcount and dijk-

stra respectively. The FreeRTOS ran simultaneously the benchmarks as tasks. The

FreeRTOS simultaneously ran the benchmarks.

In embedded applications there are computation intensive, control intensive

and I/O intensive applications. Where control intensive programs will have a much

larger percentage of branch instructions, computation intensive applications will

have a larger percentage of integer or floating point ALU operations, and I/O appli-

cations will have a larger percentage in manipulate transference of data. Bitcount

and basicmanth are categorized like computation intensive applications, therefore

they have many ALU operations. Dijsktra algorithm belong to I/O intensive appli-

cations since it performs many I/O control and memory operations. The previous

benchmarks were chosen due to constraints in memory of the target platforms and

the need to stress the overall system at computation, memory and I/O level. This

gave us a better understanding of the behavior of the algorithms in the total power

consumption of the system.

The uGC code

The uGC (micro gas chromatograph) is a project of the WIMS ERC; The

WIMS ERC was created by the University of Michigan, Michigan State Unviersity,

and Michigan Technological University with the goal of combining micro-power cir-

cuits, advanced packaging, and sensors into state of the art applications [37]. The

micro gas chromatograph is a portable chromatograph used in analytic chemistry

used for separating and analyzing compounds that can be vaporized without de-

composition. The portable characteristic allows to minimize human exposure to
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hazardous scenarios. The uGC helps to identify a compound. Other features in-

clude, real-time analysis, highly accurate measures and low power consumption, and

micro electromechanical system (MEMS) technology.

The University of Puerto Rico in Mayagüez (UPRM) is working in the firmware

with low power constraints which manages the uGC. It performs the data acquisition,

data analysis, and finally send the results to a host computer by implementing

wireless protocol. Figure 3–4 shows a description of the uCG Project.

Figure 3–4: uGC System

The uGC firmware is embedded in the ATMEL AT91 commercial microcon-

troller because it has low power features. The firmware performs data acquisition,

data analysis, and send the data via wireless to a host computer. The firmware has

the following parts: Control Code, Data Analysis Code, Memory Management, and

Wireless Communication.

3.3 The FreeRTOS Real Time Operating system

The FreeRTOS is a real time operating system with a scalable mini real time ker-

nel designed specifically for embedded microcontrollers. Some features include pre-

emptive, cooperative and hybrid configuration options, code structure written in C,

support for tasks and co-routines, queues, binary semaphores, counting semaphores,

recursive semaphores, and mutexes for communication and synchronization between
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tasks, or between tasks and interruptions. Furthermore, these features make the

FreeRTOS appropriate for our study.

3.4 The Operating System Level Algorithms

The algorithms oriented to DFS chosen were: DFS based on CPU usage, DFS

predictive strategy based on WCET, and DFS based on tasks priority [38] [10]. In

terms of memory management, static and dynamic memory allocation were consid-

ered [39]. Below is a brief description of the algorithms. In [38] the authors proposed

a predictive dynamic voltage scaling (DVS) scheduling strategy, for this they have

two approaches. The first one is based on assigning to each task a processor clock

frequency according to the priority of the task, this is assigned at the task with

the lowest priority with a low clock frequency, completing all task’s deadlines. The

second approach is based on reducing the clock frequency considering process usage,

which measures the workload of the active tasks in a determined time. In [10] the

authors took an approach based on simulations. A low power predictive scheduling

strategy was proposed. The mechanism predicts the execution time of task instances

doing an average of the previous instances, here the WCET (worst case execution

time) is used to compare if the task will finish its execution before the WCET, then

slow down the processor clock frequency (DFS) during the idle time intervals of the

CPU.

To calculate the WCET of the tasks we have found in the literature, several

ways to do it, through the static methods and measurement-based methods. We

have chosen the measurement-based methods because they are good in terms that

they have into account the target architecture and they produce WCET estimates

more precise-closer to the exact WCET than the bounds from static methods [40].

Measurement-based methods imply experimental end-to-end measurements of a sub-

set of all possible threads of executions of the tasks. Table 3–1 shows the WCET

for the selected benchmarks.
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Table 3–1: WCET for selected benchmarks

Platforms WCET (miliseconds)
Basicmath Bitcount Dikstra uGC

LM3S811 at (20MHz) 125.2 20.9 44 220

MSP430F149 at (4.9MHz) 162.7 27.1 57.3 160

ATMEGA323 at (2MHz) 420 70 148 950

In terms of memory management algorithms, we chose static and dynamic mem-

ory allocation [39]. Dynamic, differs from static memory allocation since runtime

searches for a block big enough in the heap, to satisfy the request of store data for

a given task.

We have used the previous approach taking into account dynamic frequency

scaling (DFS), and tested experimentally the processor clock frequencies which al-

lows for all deadlines to be completed. Dynamic frequency scaling (DFS) is used to

adjust the working frequency according to the system workload in order to save the

power consumption without degrading the system performance significantly beyond

the user tolerance.

3.5 Instrumentation

Dynamic power is consumed due to the switching of gates and is still respon-

sible for the largest percentage of the total power dissipated in current computing

devices. The power dissipation in embedded system based on CMOS circuits satisfies

approximately by the equation 3.1 [41]:

Psystem
∼= ptCLV

2
ddfclk (3.1)

Where pt is the probability of switching in power transition (the activity factor),

CL is the loading capacitance, Vdd the voltage supply and fclk the clock frequency.

Given that we measured physically the current variations because the voltage

is constant, our instrumentation circuit uses a resistor of 1 ohm in series with the

power supply of microcontrollers. The signal was filtered using an instrumentation
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amplifier (AD620). The data acquisition was done using a oscilloscope to a labview

virtual interface (VI) in the host via the GPIB protocol, then the signal was dis-

cretized at 100 MHz of the oscilloscope. According to the Nyquist law, it allows

obtain a reliable data to process. Finally at the end of the execution time of the

benchmarks, the average power consumed in that interval was calculated as the

equation 3.2 [42]:

Pav =
1

t2 − t1

∫ t2

t1

V (t)I(t) dt (3.2)

For example, figure 3–5 shows the variations of the physical current waveform

in the LM3S811 microcontroller. Figure 3–6 shows the instrumentation used to

measure the current variation of the target architectures.

Figure 3–5: The Physical Current Variations

3.5.1 Validation of the Instrumentation

Before running the experiments we had in mind that equipment such as power

supplies, the oscilloscope and the data acquisition card were properly calibrated for

measurements of current variations in each of the experiments. As a general rule

we always started with a multimeter measuring the output voltages of the power



32

Figure 3–6: The Instrumentation for Current Measurement

supply and then chek the same level of voltage across the probes of the oscilloscope

and he labview interface with data acquisition card.

3.6 Design of the Experiments and Statistical Analysis

An experiment is group of changes imposed to the input variables of a system

or process to observe the changes caused in the output variable [13]. Design of

experiments refers to the careful plan designed to obtain statistically significant

data from the experiment with the minimum amount of effort. Taking this into

account, our study intends to reach sound conclusions from statistical analysis when

power consumption of embedded systems is studied under different algorithms at the

operating system level software. In our case the two factors chosen were: algorithms

oriented to DVS and algorithms oriented to memory management, after that the

response variable selected was power consumption of the target platforms, after we

chosen the experimental design. Then a full factorial design with two replicates was

chosen, we mean that in each complete replication of the experiment all possible

combination of the levels of the factors are investigated, one of the advantages of
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this experiment is that it shows the impact of factors and a possible interaction

between them, then we performed the experiment and the data was recollected,

after of that a statistical analysis of the data using ANOVA was done and finally

the conclusions and recommendations are presented.

The analysis of variance (ANOVA) is a statistical method used to analyze if

the input factors are significant in the changes of the response of a system. ANOVA

assumes that errors and observations are normal and independently distributed.

This statistical analysis is based in p-value and the null hipothesis, the p-value is

the minimum level of significance which the null hipothesis will be rejected. The

significance level is selected according to the type of problem. The null hipothesis

establishes that there is no significative impact of the factors or entry variable on

the response. In our study a p-value of 0.05 was chosen, hence there is a 5% of

probability to reject the null hipothesis. The null hipothesis we have is that the DFS

and memory management algorithms do not have impact in the power reduction of

medium and small scale embedded system. The analysis of variance will tell us if

this assumption is statistically correct. In order to validate the results and find the

behavior patterns of the algorithms, the test after ANOVA named Dunnet’s test

was used in each particular case. In this test each treatment is compared with the

control (Static Memory Allocation - Constant Frequency) to see if the algorithm is

statistically significant in terms of power savings. Dunnet’s test provides a range of

significance and compares it with each treatment.

The factors and levels of the experiments are:

1. Algorithms oriented to dynamic frequency scaling. The levels for this factor are:

frequency constant, DFS based on CPU usage strategy, DFS predictive strategy

based on WCET, and DFS with task priority.

2. Algorithms oriented to memory management. The levels for this factor are: static

memory allocation and dynamic memory allocation.
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3. Benchmarks or workloads. The levels for this factor are: basicmath, dijkstra, and

bitcount.

4. Platforms. The levels for this factor are: LM3S811, MSP430F149, and AT-

MEGA323.



CHAPTER 4

EXPERIMENTAL RESULTS

This chapter shows the results and the analysis performed on the data obtained.

The design of the experiment is illustrated and the ANOVA is analyzed for each case.

A brief description of the experiments follows:

the first one consists of three platforms running simultaneously the MiBench,

dijkstra, and bitcount benchmarks. It had the purpose of analyzing the behavior of

the algorithms when the platforms are stressed simultaneously at I/O, processing,

and memory level. In the second experiment, a code for a microgas chromatograph

ran on all platforms to understand the effect that a real application load would have

on the power consumption. Finally, the last experiment consists of running each

algorithm individually, that is: MiBench, diskstra, and bitcount. The goal of this

experiment is to find relationships and patterns between the type of benchmark, the

architecture, and the algorithms on the power consumption.

4.1 Power Measurements

After performing the experiments, power consumption measurements for each

platform were obtained. Tables A–1 to A–3 show the execution time and power

consumption of four replicates taken when a subset of MiBench benchmarks are

run, and the software techniques are applied on each platform. Tables A–4 to A–6

show the results with the GC Code. Tables B–1 to B–3 show the experiment with

the MSP430F149 where the benchmarks were run individually. Tables B–4 to B–6

show the data with the ATMEGA323 where the benchmarks were run individually.

Finally the results for LM3S811 are presented in the tables B–7 to B–9.

35
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The results obtained from these experiments were used to perform a statistical

analysis to find the relationship that exist between the type of architecture, the

type of workload, and the OS algorithms in power reduction. A statistical analysis

follows.

Figures 4–1 to 4–3 illustrate the data obtained showing a comparison between

the averages the power consumed when MiBench and uGC Code are run on each

platform versus the operating system level algorithms.

Figures 4–8 to 4–10 illustrate the averages the power consumed when the plat-

forms run the benchmarks individually.

Figure 4–1: Power consumption averages on ATMEGA323 microcontroller

4.2 Full Factorial Design for each Platform

In this experiment, three factors were studied for each platform. The factors

considered in the study were: algorithms oriented to dynamic frequency scaling,
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Figure 4–2: Power consumption averages on MSP430F149 microcontroller



38

Figure 4–3: Power consumption averages on LM3S811 microcontroller
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algorithms oriented to memory management, and the benchmarks selected. Due to

the nature of the experiment, four replicates for experimental condition were taken,

hence a full-factor factorial design with four replicates was the design chosen to make

the analysis. One of the advantages of this experiment is that it shows the impact

of factors and the possible interaction between them and allows conclude about the

significance of the selected factors on each platform.

We performed the experiment and statistical analysis of the data using ANOVA

was done. Figures 4–4 to 4–6 show the ANOVA analysis for each platform.

Later, we have chosen the Dunnet’s analysis [13] to know the significance of

each algorithm with respect to control (Static Memory Allocation - Constant Fre-

quency (1)) in terms of power saving in each case. This allowed us to find patterns

of behavior and to obtain more general conclusions. Finally the conclusions and

recommendations are presented.

4.2.1 ANOVA for ATMEGA323 Microcontroller

The figure 4–4 shows the ANOVA for the experiment and the figure F–1 in the

appendix F, shows the normal probability plot. Here all factors and their interaction

have significance in the power consumption of the system. The p-values were 0.00.

The factor workload or benchmarks is the same.

The figures D–1 and D–4 in the appendix D, show the Dunnet’s tests for the

ATMEGA323 running the MiBench and uGC, and the tables E–1 and E–4 in the

appendix E, show the analysis in terms of the significance of the algorithms.

For example, the table 4–1 show the significant and not significant algorithms

in power reducction, this is the result of dunnet’s test for this experiment.

4.2.2 ANOVA for MSP430F149 Microcontroller

The figure 4–5 shows the ANOVA for the experiment and the figure F–2 (ap-

pendix F) shows the normal probability plot. The algorithm given by the interaction
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Figure 4–4: ANOVA for ATMEGA323 microcontroller

Table 4–1: Significant algorithms in power reduction on ATMEGA323 running
MiBench

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)
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between memory management and the workload was not significative, its p-value was

0.078 > 0.05.

Figure 4–5: ANOVA for MSP430F149 microcontroller

The figures D–2 and D–5 show the Dunnet’s tests for the MSP430F149 running

the MiBench and uGC, and the tables E–2 and E–5 show the analysis in terms of

the significance of the algorithms.

4.2.3 ANOVA for LM3S811 Microcontroller

The figure 4–6 shows the ANOVA for the LM3S811 microcontroller and the

figure F–3 shows the normal probability plot. Here all factors and their interaction

have significance in the power consumption of the system. The p-values were <0.05.

The figures D–3 and D–6 show the Dunnet’s tests for the MSP430F149 running

the MiBench and uGC, and the tables E–3 and E–6 show the analysis in terms of

the significance of the algorithms.

4.3 Results for the Full Factorial Design on the three Platforms

Here the platforms are considered as another factor of interest in the design.

Then four factors were analyzed in the experiment: algorithms oriented to dynamic

frequency scaling, algorithms oriented to memory management, the benchmarks
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Figure 4–6: ANOVA for LM3S811 microcontroller

selected, and the platforms. Due to the nature of the experiment, four replicates

for experimental condition were taken, hence a full-factor factorial design with four

replicates was the design chosen to make the analysis. One of the advantages of

this experiment is that this shows the impact of factors and the possible interaction

between them. We performed the experiment and statistical analysis of the data

using ANOVA was done. Figure 4–7 shows the results of ANOVA for the full factorial

design and the figure F–4 illustrates the normal probability plot.

We observed that statistically speaking, there is a significant effect of the plat-

forms, benchmarks, operating system level algorithms oriented to DFS and memory

management and their interaction in reduction of power consumption.

4.4 Results for the Experiment with the Benchmarks Running
Individually

Appendix B presents the power consumption on selected platforms running

the algorithms individually. The appendix C the ANOVA for each case when the

platforms run the benchmarks individually. The figures D–7 to D–15 show the

Dunnet’s tests. Appendix E contents the results of the analysis for the Dunnet’s
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Figure 4–7: Full Factorial Design on the three platforms

tests and appendix F presents the normal probability plots for all experiments. The

algorithms in appendix E are organized in order of highest to lowest power reduction

for each algorithm.

The previous experiments with the benchmarks running simultaneously (see

tables A–1 to A–3) showed that the combination of DFS algorithms and memory

management algorithms in some cases of the MSP430F149, LM3S811, and AT-

MEGA323 were not significant in reducing power. For example in the table A–1,

when the ATMEGA323 platform ran the MiBench benchmark, the algorithms Static

Memory Allocation - DFS with Tasks Priority and Static Memory Allocation - DFS

based on CPU Usage Strategy did not reduce power.

The OS algorithms in the past experiment with the MSP430F149 showed a poor

or null impact in terms of power reduction. In order to understand the behavior

of the system, we repeated experiments where each platform ran each benchmark
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individually to stress specific parts of the architecture (I/O, computation, memory).

This allowed us to find a relationship between the type of platforms, the type of

workload, and the OS algorithms in the power reduction.

For this case we selected three benchmarks: basicmath (mathematical opera-

tions), dijkstra (I/O algorithm) and bitcount (count the number of bits of a string).

Basicmath is categorized as computation intensive applications, therefore ALU op-

erations dominate performance, and dijkstra algorithm belong to I/O intensive ap-

plications and the bitcount is memory stressing. Figures 4–8 to 4–10 show the

averages of power consumption vs OS algorithms for each platform. For example

the figure 4–8 shows the power consumption on MSP430F149, here all algorithms

reduced power when the basicmath algorithm was run (see table E–7).

Figure 4–8: Power consumption averages on MSP430F149 microcontroller with the
benchmarks running individually

ANOVA and Dunnet’s (see appendix C, E) test demonstrated that OS algo-

rithms impacted power consumption significantly (saving power) when the basic-

math benchmark was running in MSP430F149 platform ( see tables 4–8, E–7) and
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dijkstra in LM3S811 and ATMEGA323 platforms (see tables 4–10, E–14, 4–9, and

E–11). Basicmath is computation driven and the architecture MSP430F149 was

designed for computation oriented applications. Dijkstra is I/O stressing and the

LM3S811 and ATMEGA323 have an architectural organization I/O oriented.

Figure 4–9: Power consumption averages on ATMEGA323 microcontroller with the
benchmarks running individually

4.5 Analysis of the Results

In this work we evaluated the effect of variating simultaneously possible factors

of interest: platforms, benchmarks, operating system level algorithms oriented to

DFS and memory management, and their interaction in the power reduction of small

and medium scale embedded systems running RTOS. Statistically sound conclusions

were obtained with design of experiments techniques (DOE) [13].

From the data obtained in the first experiment, where the three platforms run

simultaneously the benchmarks to stress the overall system at computation, I/O and

memory level, results showed that operating system algorithms impacted the reduc-

tion of power consumption depending of the platform and the workload, and their



46

Figure 4–10: Power consumption averages on LM3S811 microcontroller with the
benchmarks running individually

interaction (see figure 4–7). Dynamic memory allocation improved significantly the

power reduction on ATMEGA323 platform (see figure 4–1), due that dynamic mem-

ory allocation tuned well with the architecture and the workload. The combination

of DFS and memory management algorithms in some cases of the three platforms

were not significant in reducing power. The results showed a interaction between all

factors in power consumption of the system. In some cases the combination of OS

algorithms worsened the power consumption, it was because the OS algorithms, and

the application did not tune well with the characteristics of the platform. Accord-

ingly it is not possible conclude that OS algorithms will impact the power reduction

in any architecture running any workload, without having into consideration the

existent interaction between all factors.

In order to find the relationship between the factors and generalize about the

effect the algorithms in others architectures, it was necessary to make a more sound

analysis of the relation between the types of workload and the type of architecture
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and its effect on the OS power consumption. Therefore, in the next experiment, we

stressed specific parts of the architecture.

The table 4–2 shows the profiling of the benchmarks and algorithms used. The

Table 4–3 show the summary of results for the MSP430F149, ATMEGA323 and

LM3S811 running individually the three types of workload. The above experiments

(see figures 4–8 to 4–10) had shown the worst performance of the algorithms in

MSP430F149 architecture and some algorithms did not have impact in power re-

duction in the others platforms. From results we concluded that all OS algorithms

reduced power significatively when the application was of the same type that the

target architecture. Consequently tuning between factors was necessary in order to

saving power.

4.6 Observations

The table 4–4 shows each algorithm associated to a number, it with the purpose

of simplify the references to a particular algorithm.

1. The algorithms oriented to frequency with dynamic memory allocation reduced

power when the bitcount benchmarks was run.

2. Frequency reduction algorithm (2) worked good when it was associated with dy-

namic memory allocation.

3. All algorithm produced power reduction when the LM3S811 run dijkstra bench-

mark.

4. All algorithm produced power reduction when the ATMEGA323 run dijkstra bench-

mark.

5. All algorithm produced power reduction when the MSP430F149 run basicmath

benchmark.

6. Dynamic memory allocation worked well with bitcount benchmark.

7. The MSP430F149 is the platform where the greatest number of times the algo-

rithms worked (17 times).
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Table 4–2: Profiling of the benchmarks and algorithms

Benchmarks and Algorithms Profiling

Basicmath 720 operations of addition

720 operations of subtraction

720 operations of division

Non I/O , Memory stressing to save data

Dijkstra 6 I/O operations

2 comparisons

2 operations of addition

Bitcount 96 memory accesses in LM3S811

192 memory accesses in MSP430F149

384 memory accesses in ATMEGA323

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

3 comparisons

1 operation of division

1 operation of mutiplication

No I/O

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

7 operations of addition

1 operation of division

No I/O

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

3 comparisons

No I/O

Static Memory Allocation -
DFS based on CPU Usage
Strategy

3 comparisons

3 operations of division

1 operation of multiplication

No I/O

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

7 operations of addition

1 operation of division

No I/O

Static Memory Allocation -
DFS with Tasks Priority

3 comparisons

No I/O

Table 4–3: Summary of significant Algorithms on the selected platforms

Platforms Basicmath Dijkstra Bitcount

MSP430F149 3,5,4,8,2,6,7 2,7,5,8,4 5,3,8,2,4

LM3S811 3,2,8,7,4 6,7,8,2,5,3,4 7,5,2,3

ATMEGA323 8,2,5 2,8,4,5,3,7,6 8,2,4,3,5
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Table 4–4: Algorithms utilized in this research work

Algorithms

Static Memory Allocation - DFS
based on CPU Usage Strategy(2)

Dynamic Memory Allocation -
DFS with Tasks Priority (5)

Static Memory Allocation - DFS
with Tasks Priority (8)

Dynamic Memory Allocation -
DFS Predictive Strategy based on
WCET (3)

Dynamic Memory Allocation -
Constant Frequency (4)

Static Memory Allocation - DFS
Predictive Strategy based on
WCET (7)

Static Memory Allocation - DFS
based on CPU Usage Strategy (6)

8. Static Memory Allocation - DFS based on CPU Usage Strategy presented the worst

behavior in terms of power consumption.

9. Dynamic Memory Allocation - DFS based on CPU Usage Strategy was significant

in power reduction in all cases.

10. The algorithms 2,8,5,4 reduced power in MSP430F149 whit the three benchmarks.

11. The algorithms 2,3,7 reduced power in LM3S811 whit the three benchmarks.

12. The algorithms 2,8,5 reduced power in ATMEGA323 whit the three benchmarks.

4.7 Recommendations

1. Dynamic Memory Allocation DFS based on CPU Usage Strategy reduced power

in all architectures with the different benchmarks, in some cases presented the best

power consumption savings. The condition necessary is that this algorithm must

be associate with dynamic memory allocation.
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2. Our results showed that it is possible associate the power reduction of the studied

algorithms when the platforms run applications of same type of the application in

a RTOS (computation, I/O, and memory).

3. The MSP430f149 is the platform where the greatest number of times the algorithms

reduced power (17), its internal organization of the components connected to 3

buses allows better management of the data among the CPU, I/O, and memory.

This produces reduction in the switching activity and power consumption

4. We have classified the algorithms in order of best performance to worst performance

in terms of how many times they reduced power in all architectures (see table 4–

5). Based in this classification the designer of embedded systems can use the

algorithms associated with the greatest number of times.

Table 4–5: Number of times where the algorithms reduced power

Algorithms Number of times

Static Memory Allocation - DFS
based on CPU Usage Strategy(2)

9

Dynamic Memory Allocation -
DFS with Tasks Priority (5)

8

Static Memory Allocation - DFS
with Tasks Priority (8)

8

Dynamic Memory Allocation -
DFS Predictive Strategy based on
WCET (3)

7

Dynamic Memory Allocation -
Constant Frequency (4)

7

Static Memory Allocation - DFS
Predictive Strategy based on
WCET (7)

6

Static Memory Allocation - DFS
based on CPU Usage Strategy (6)

3



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis has addressed the effect of different strategies used in software at

the Real Time Operating System for reducing power consumption in middle to small

size embedded systems. In particular, we have studied the effect of the combined

use of these strategies on the consumption of the system and whether or not these

strategies interact with each other.

We have found that Dynamic Frequency Scaling (DFS) based on CPU usage,

DFS predictive strategy based on Worst Case Execution Time (WCET), and DFS

based on tasks priority, Dynamic Memory Allocation, and Static Memory Alloca-

tion not necessarily behave as expected in all platforms. Moreover,these strategies

interact among themselves, producing results which are not the sum or combination

of previous results.

5.1 Contributions

∙ Our work was directed to medium to small embedded systems, which is different

to most works found in literature.

∙ We have provided a methodology and a circuit to measure power in run time.

∙ We have evaluated the simultaneous effect of combining factors and algorithms

in the analysis of power savings. Our work has found that there are interaction

among all factors in the experiments.

∙ We have found a relationship among the type of architecture, the type of load, and

the RTOS algorithms on power reduction.
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Our future work includes the analysis of I/O strategies at the Real Time Op-

erating System level in all the platforms and the analysis of the effect of all three

interacting. In addition, we would like to study whether larger systems will have

similar behavior of small and medium size systems. Another possible study is to

study different types of operating systems and the study of a large number of archi-

tectures with the same bus size and architecture in order to identify if these affect

power consumption.
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APPENDIX A

POWER CONSUMPTION ON SELECTED

PLATFORMS RUNNING ALGORITHMS

SIMULTANEOUSLY
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Table A–1: Power consumption on ATMEGA323 platform using MiBench bench-
marks as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.106 21.065

0.106 21.258

0.106 21.116

0.107 21.197

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.638 16.177

0.636 16.543

0.640 17.067

0.636 16.653

Static Memory Allocation -
Constant Frequency

0.101 19.182

0.101 19.248

0.101 18.787

0.101 18.964

Static Memory Allocation -
DFS with Tasks Priority

0.160 23.157

0.159 23.069

0.160 23.318

0.160 22.890

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.260 11.326

0.260 11.698

0.260 11.102

0.260 11.800

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.300 10.902

0.301 10.270

0.300 10.847

0.302 11.452

Dynamic Memory Alloca-
tion - Constant Frequency

0.338 15.398

0.338 15.279

0.337 14.970

0.337 15.317

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.366 12.184

0.365 12.231

0.365 12.050

0.366 11.879
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Table A–2: Power consumption on MSP430F149 platform using MiBench bench-
marks as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.244 14.925

0.243 16.042

0.243 16.248

0.244 14.985

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.160 16.025

0.160 16.376

0.160 16.050

0.160 16.101

Static Memory Allocation -
Constant Frequency

0.158 14.474

0.158 14.524

0.158 14.395

0.158 14.356

Static Memory Allocation -
DFS with Tasks Priority

0.180 15.424

0.179 14.749

0.179 15.139

0.179 14.645

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.246 13.984

0.246 12.736

0.247 13.349

0.247 13.170

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.167 13.861

0.165 12.998

0.167 13.615

0.166 13.297

Dynamic Memory Alloca-
tion - Constant Frequency

0.160 12.709

0.160 12.700

0.160 12.712

0.160 12.285

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.210 15.545

0.209 15.049

0.209 15.343

0.209 15.167
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Table A–3: Power consumption on LM3S811 platform using MiBench benchmarks
as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.160 52.530

0.160 74.072

0.160 81.494

0.161 69.692

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.190 38.598

0.190 47.784

0.190 48.165

0.193 43.910

Static Memory Allocation -
Constant Frequency

0.160 52.798

0.151 60.566

0.160 68.383

0.151 73.715

Static Memory Allocation -
DFS with Tasks Priority

0.168 47.035

0.167 55.107

0.168 44.934

0.168 49.812

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.168 25.442

0.170 28.376

0.169 24.724

0.168 22.076

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.170 55.273

0.168 66.839

0.168 45.192

0.169 53.345

Dynamic Memory Alloca-
tion - Constant Frequency

0.160 54.059

0.159 51.430

0.160 61.016

0.160 59.234

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.170 14.710

0.180 13.259

0.165 12.915

0.175 13.259
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Table A–4: Power consumption on ATMEGA323 platform using uGC code as work-
load

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.150 15.935

0.150 15.289

0.150 14.857

0.152 14.864

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.920 14.800

0.920 14.743

0.920 14.819

0.920 14.792

Static Memory Allocation -
Constant Frequency

0.130 15.349

0.135 15.358

0.128 15.360

0.135 15.330

Static Memory Allocation -
DFS with Tasks Priority

0.180 15.119

0.175 15.222

0.185 15.281

0.178 15.065

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.380 12.692

0.370 15.544

0.360 10.911

0.360 12.779

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.260 11.124

0.260 11.168

0.260 11.096

0.260 11.243

Dynamic Memory Alloca-
tion - Constant Frequency

0.220 11.327

0.220 11.385

0.220 11.342

0.220 11.344

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.380 9.994

0.378 9.992

0.376 10.022

0.377 10.029
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Table A–5: Power consumption on MSP430F149 platform using uGC code as work-
load

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.110 19.911

0.110 19.876

0.110 23.447

0.110 19.757

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.104 17.035

0.104 15.375

0.104 15.189

0.104 15.359

Static Memory Allocation -
Constant Frequency

0.105 16.394

0.104 20.016

0.105 19.881

0.105 22.327

Static Memory Allocation -
DFS with Tasks Priority

0.160 14.881

0.160 15.753

0.160 16.438

0.160 19.575

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.108 15.034

0.108 15.367

0.108 14.260

0.108 15.480

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.105 17.312

0.105 16.904

0.105 14.296

0.105 13.215

Dynamic Memory Alloca-
tion - Constant Frequency

0.104 23.486

0.104 24.724

0.104 22.284

0.104 24.609

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.158 14.598

0.158 14.852

0.158 18.988

0.158 18.280
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Table A–6: Power consumption on LM3S811 platform using uGC code as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.110 35.638

0.113 44.239

0.113 42.138

0.113 43.015

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.150 30.095

0.150 41.664

0.150 40.859

0.150 44.970

Static Memory Allocation -
Constant Frequency

0.111 76.064

0.111 78.871

0.111 84.980

0.111 83.642

Static Memory Allocation -
DFS with Tasks Priority

0.145 34.522

0.145 28.756

0.145 28.651

0.145 32.290

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.114 35.842

0.114 34.807

0.113 38.573

0.113 36.949

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.220 23.923

0.220 24.741

0.220 25.451

0.220 22.194

Dynamic Memory Alloca-
tion - Constant Frequency

0.115 52.827

0.115 56.653

0.115 54.572

0.115 54.521

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.165 30.691

0.173 31.666

0.170 36.566

0.175 37.533



APPENDIX B

POWER CONSUMPTION ON SELECTED

PLATFORMS RUNNING ALGORITHMS

INDIVIDUALLY

Table B–1: Power consumption on MSP430F149 running basicmath as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.170 29.838

0.170 29.451

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.150 34.295

0.150 33.231

Static Memory Allocation -
Constant Frequency

0.155 39.544

0.155 35.995

Static Memory Allocation -
DFS with Tasks Priority

0.200 24.535

0.200 22.495

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.170 27.768

0.170 27.125

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.155 16.676

0.155 16.291

Dynamic Memory Alloca-
tion - Constant Frequency

0.110 22.981

0.110 22.281

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.180 19.070

0.180 19.137
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Table B–2: Power consumption on MSP430F149 running dijkstra as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.035 19.115

0.035 19.020

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.048 10.898

0.048 8.279

Static Memory Allocation -
Constant Frequency

0.028 23.347

0.028 22.307

Static Memory Allocation -
DFS with Tasks Priority

0.04 11.341

0.04 11.354

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.042 8.574

0.042 8.651

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.18 22.574

0.18 22.651

Dynamic Memory Alloca-
tion - Constant Frequency

0.035 16.816

0.035 16.944

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.054 9.999

0.054 9.985
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Table B–3: Power consumption on MSP430F149 running bitcount as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.018 45.100

0.017 44.200

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.015 50.000

0.014 48.000

Static Memory Allocation -
Constant Frequency

0.012 33.000

0.012 32.000

Static Memory Allocation -
DFS with Tasks Priority

0.02 24.000

0.019 25.000

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.02 26.300

0.021 26.400

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.015 22.000

0.015 23.000

Dynamic Memory Alloca-
tion - Constant Frequency

0.018 28.000

0.018 28.000

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.025 18.230

0.026 17.120
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Table B–4: Power consumption on ATMEGA323 running basicmath as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.25 5.158

0.25 5.188

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.19 4.861

0.19 4.871

Static Memory Allocation -
Constant Frequency

0.11 4.650

0.11 4.700

Static Memory Allocation -
DFS with Tasks Priority

0.27 3.353

0.27 3.373

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.22 3.502

0.22 3.652

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.19 4.722

0.18 4.820

Dynamic Memory Alloca-
tion - Constant Frequency

0.28 5.019

0.28 5.029

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.30 3.849

0.30 3.839
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Table B–5: Power consumption on ATMEGA323 running dijkstra as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.035 7.280

0.035 7.220

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.030 6.240

0.030 6.550

Static Memory Allocation -
Constant Frequency

0.042 11.320

0.042 11.410

Static Memory Allocation -
DFS with Tasks Priority

0.060 4.160

0.060 4.190

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.040 4.160

0.040 3.998

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.078 6.240

0.080 6.365

Dynamic Memory Alloca-
tion - Constant Frequency

0.028 5.200

0.028 5.298

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.070 6.240

0.07 6.119
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Table B–6: Power consumption on ATMEGA323 running bitcount as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.055 14.000

0.055 14.456

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.068 12.600

0.068 12.460

Static Memory Allocation -
Constant Frequency

0.060 12.600

0.060 11.900

Static Memory Allocation -
DFS with Tasks Priority

0.050 7.000

0.050 6.720

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.065 7.790

0.065 7.800

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.058 11.200

0.058 10.987

Dynamic Memory Alloca-
tion - Constant Frequency

0.053 8.400

0.053 8.394

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.068 11.200

0.068 11.109
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Table B–7: Power consumption on LM3S811 running basicmath as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.100 18.200

0.098 18.500

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.073 10.400

0.075 10.400

Static Memory Allocation -
Constant Frequency

0.078 14.300

0.077 14.300

Static Memory Allocation -
DFS with Tasks Priority

0.103 7.170

0.103 8.297

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.065 7.500

0.062 7.500

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.080 6.500

0.082 5.200

Dynamic Memory Alloca-
tion - Constant Frequency

0.114 11.000

0.115 11.000

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.122 19.500

0.122 19.500
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Table B–8: Power consumption on LM3S811 running dijkstra as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.029 8.432

0.029 8.566

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.031 11.003

0.031 11.200

Static Memory Allocation -
Constant Frequency

0.018 53.600

0.017 53.800

Static Memory Allocation -
DFS with Tasks Priority

0.025 25.200

0.025 25.200

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.038 33.100

0.037 33.226

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.034 36.400

0.035 36.200

Dynamic Memory Alloca-
tion - Constant Frequency

0.030 42.000

0.028 42.400

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.041 33.800

0.040 33.600
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Table B–9: Power consumption on LM3S811 running bitcount as workload

Algorithms Execution Time(s) P(mW )

Static Memory Allocation -
DFS based on CPU Usage
Strategy

0.019 45.078

0.018 45.000

Static Memory Allocation
- DFS Predictive Strategy
based on WCET

0.016 33.000

0.015 34.234

Static Memory Allocation -
Constant Frequency

0.011 47.871

0.011 45.098

Static Memory Allocation -
DFS with Tasks Priority

0.018 48.233

0.018 48.000

Dynamic Memory Alloca-
tion - DFS based on CPU
Usage Strategy

0.014 38.83

0.014 38.83

Dynamic Memory Alloca-
tion - DFS Predictive Strat-
egy based on WCET

0.015 39.542

0.015 39.712

Dynamic Memory Alloca-
tion - Constant Frequency

0.012 45.619

0.012 45.300

Dynamic Memory Alloca-
tion - DFS with Tasks Pri-
ority

0.020 36.002

0.020 36.100



APPENDIX C

ANOVA FOR THE PLATFORMS RUNNING

EACH BENCHMARK INDIVIDUALLY

Figure C–1: ANOVA for MSP430F149 platform running basicmath

Figure C–2: ANOVA for MSP430F149 platform running dijkstra
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Figure C–3: ANOVA for MSP430F149 platform running bitcount

Figure C–4: ANOVA for ATMEGA323 platform running basicmath

Figure C–5: ANOVA for ATMEGA323 platform running dijkstra
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Figure C–6: ANOVA for ATMEGA323 platform running bitcount

Figure C–7: ANOVA for LM3S811 platform running basicmath

Figure C–8: ANOVA for LM3S811 platform running dijkstra
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Figure C–9: ANOVA for LM3S811 platform running bitcount



APPENDIX D

DUNNET’S TEST FOR THE PLATFORMS

RUNNING THE BENCHMARKS

Figure D–1: Dunnet’s analysis for the algorithms on ATMEGA323 using MiBench

Figure D–2: Dunnet’s analysis for the algorithms on MSP430F149 using MiBench
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Figure D–3: Dunnet’s analysis for the algorithms on LM3S811 using MiBench

Figure D–4: Dunnet’s analysis for the algorithms on ATMEGA323 using uGC code

Figure D–5: Dunnet’s analysis for the algorithms on MSP430F149 using uGC code
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Figure D–6: Dunnet’s analysis for the algorithms on LM3S811 using uGC code

Figure D–7: Dunnet’s analysis for the algorithms on MSP430F149 using basicmath

Figure D–8: Dunnet’s analysis for the algorithms on MSP430F149 using dijkstra
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Figure D–9: Dunnet’s analysis for MSP430F149 platform running bitcount

Figure D–10: Dunnet’s analysis for ATMEGA323 platform running basicmath
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Figure D–11: Dunnet’s analysis for ATMEGA323 platform running dijkstra

Figure D–12: Dunnet’s analysis for ATMEGA323 platform running bitcount
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Figure D–13: Dunnet’s analysis for LM3S811 platform running basicmath

Figure D–14: Dunnet’s analysis for LM3S811 platform running dijkstra
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Figure D–15: Dunnet’s analysis for LM3S811 platform running bitcount



APPENDIX E

DUNNET’S ANALYSIS FOR THE

PLATFORMS RUNNING THE BENCHMARKS

Table E–1: Significant algorithms in power reduction on ATMEGA323 running
MiBench

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)
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Table E–2: Significant algorithms in power reduction on MSP430F149 running
MiBench

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Static Memory Allocation - DFS with
Tasks Priority (8)

Table E–3: Significant algorithms in power reduction on LM3S811 running MiBench

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS with
Tasks Priority (8)
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Table E–4: Significant algorithms in power reduction on ATMEGA323 running uGC
code

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Table E–5: Significant algorithms in power reduction on MSP430F149 running uGC
code

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Static Memory Allocation - DFS with
Tasks Priority (8)
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Table E–6: Significant algorithms in power reduction on LM3S811 running uGC

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - Con-
stant Frequency (4)
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Table E–7: Significant algorithms in power reduction on MSP430F149 running ba-
sicmath

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Table E–8: Significant algorithms in power reduction on MSP430F149 running di-
jkstra

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - Con-
stant Frequency (4)



86

Table E–9: Significant algorithms in power reduction on MSP430F149 running bit-
count

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Table E–10: Significant algorithms in power reduction on ATMEGA323 running
basicmath

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Static Memory Allocation - DFS with
Tasks Priority (8)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)
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Table E–11: Significant algorithms in power reduction on ATMEGA323 running
dijkstra

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)
Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Table E–12: Significant algorithms in power reduction on ATMEGA323 running
bitcount

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Static Memory Allocation - DFS with
Tasks Priority (8)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)
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Table E–13: Significant algorithms in power reduction on LM3S811 running basic-
math

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Static Memory Allocation - DFS with
Tasks Priority (8)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Table E–14: Significant algorithms in power reduction on LM3S811 running dijkstra

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)

Dynamic Memory Allocation - Con-
stant Frequency (4)
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Table E–15: Significant algorithms in power reduction on LM3S811 running bitcount

Algorithms significantly different
from control algorithm

Not significantly different from
control algorithm

Static Memory Allocation - DFS Pre-
dictive Strategy based on WCET (7)

Static Memory Allocation - DFS with
Tasks Priority (8)

Dynamic Memory Allocation - DFS
with Tasks Priority (5)

Dynamic Memory Allocation - Con-
stant Frequency (4)

Dynamic Memory Allocation - DFS
based on CPU Usage Strategy (2)

Static Memory Allocation - DFS based
on CPU Usage Strategy (6)

Dynamic Memory Allocation - DFS
Predictive Strategy based on WCET
(3)



APPENDIX F

NORMALITY PLOT FOR THE SELECTED

PLATFORMS

Figure F–1: Normal probability plot for ATMEGA323 platform
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Figure F–2: Normal probability plot for MSP430F149 platform

Figure F–3: Normal probability plot for LM3S811 platform
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Figure F–4: Normal probability plot for the full factorial Design on the three Plat-
forms

Figure F–5: Normal probability plot for MSP430F149 with the benchmarks running
individually
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Figure F–6: Normal probability plot for MSP430F149 running basicmath

Figure F–7: Normal probability plot for MSP430F149 running dijkstra
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Figure F–8: Normal probability plot for MSP430F149 running bitcount

Figure F–9: Normal probability plot for ATMEGA323 running basicmath
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Figure F–10: Normal probability plot for ATMEGA323 running dijkstra

Figure F–11: Normal probability plot for ATMEGA323 running bitcount
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Figure F–12: Normal probability plot for LM3S811 running basicmath

Figure F–13: Normal probability plot for LM3S811 running dijkstra
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Figure F–14: Normal probability plot for LM3S811 running bitcount
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