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ABSTRACT 

 

The detection, identification, and quantification of threat chemical substances such as 

high energetic materials (HEM), abuse drugs, and related compounds is a subject that 

has become a heightened priority in recent years for homeland security, counter-

terrorism, and drug dealing prevention applications. Law-enforcement and forensic 

agencies have interest in promoting research and development for efficient sensing 

systems than help to detect explosives and abuse drugs at public places, such as airports, 

maritime, and railway or coach stations. This way terrorist threats and illegal drugs traffic 

can be minimized or prevented in most cases.  

This scientific contribution describes a series of investigations aimed at improving 

detection capabilities of most used HEM (TNT, PETN, RDX and TATP) present as 

contamination residues on ideal surfaces (metallic), no-ideal surfaces (wood, baggage 

and cardboard), and in soil and ambient air. IR vibrational analytical methods were used 

for identification and classification of HEM, with the assistance of multivariate analyses 

such as PCA, PLS, and PLS-DA. In addition, synthetic cannabinoids present on vegetable 

mixes were studied using GC-MS. The contribution specifically deals with: 

1. A quantum cascade laser spectrometer used to obtain reflectance spectra of highly 

energetic materials (HEMs) deposited on non-ideal, low reflectivity substrates such 

as travel bags (black polyester), cardboard and wood. HEMs used were the 

nitroaromatic explosive 2,4,6-trinitrotoluene (TNT), the aliphatic nitrate ester 

pentaerythritol tetranitrate (PETN), and the aliphatic nitramine 1,3,5-

trinitroperhydro-1,3,5-triazine (RDX). Chemometrics algorithms were applied to 



iii 

 

analyze the recorded spectra. The results demonstrate that the infrared vibrational 

method described in this study is well suited for rapid screening analysis of HEMs 

on low reflectivity substrates. 

2. The presence of the nitroaromatic HEM 2,4-dinitrotoluene (2,4-DNT) and the cyclic 

organic peroxide triacetone triperoxide (TATP) in air was detected by 

chemometrics enhanced vibrational spectroscopy. Several infrared experimental 

setups were tested using traditional heated sources (Globar), modulated and non-

modulated FT-IR and quantum cascade laser (QCL)-based dispersive IR 

spectroscopy. The QCL based methodology exhibited a better capacity for the 

discrimination for the detected presence of HEM in air compared to other 

methodologies. 

3. Detection of explosives, such as TNT, 2,4-DNT and PETN and present in soils and 

other real world complex media using thin layer chromatographic coupled to mid 

infrared spectroscopy using QCL sources was accomplished. This allows rapid, 

reproducible, separation and identification of explosives in the field in short time. 

The results show that TLC-QCL is a useful new tool for separation, identification, 

and quantification of trace concentrations of explosives as low as 0.39 µg (390 ng) 

4. Two remote detection systems were assembled using an infrared telescope 

coupled to an Open Path Fourier Transform infrared spectrometer (OP/FT-IR), a 

cryo-cooled MCT detector, and a telescope-coupled mid-infrared (MIR) excitation 

source. Samples of 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate 

(PETN) deposited on aluminum plates were detected at several source-target 

distances. The effect of the collection angle of the returned IR beams on the signal 
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to noise ratio (S/N) and vibrational band intensities were evaluated. Partial least 

squares regression analysis was applied to the obtained spectra. Overall, remote 

MIR detection in active mode was useful for quantifying HEM deposited on the 

aluminum plates with high confidence level. Source-target distances were in the 

range of 1-25 m. 

5. Three analytical methods based on a gas chromatography coupled to a mass 

spectrometer (GC-MS) were developed and tested for abuse-drugs standards of 

synthetic cannabinoids (SC), THC, cocaine, and heroin. Analytical procedures for 

extracting synthetic cannabinoids form herbal mixes were implemented. Gas 

chromatography was used for separation and purification of SC. Electron impact 

MS was utilized as confirmatory method to identify the SC on the herbal sample. 

Two SC were found in real-world samples. The results show that the analytical 

methods developed can be useful to identify SC rarely used such as PB-22 and 

5F-PB-22 when these are present in herbal mixtures.  
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RESUMEN 

 

La detección, identificación y cuantificación de sustancias químicas peligrosas como 

materiales altamente energéticos (HEM, por sus siglas en inglés), drogas de abuso y 

compuestos relacionados es un tema que se ha convertido en una prioridad en los 

últimos años para aplicaciones en seguridad nacional, la lucha contra el terrorismo y la 

lucha contra el tráfico de drogas. Las agencias gubernamentales de ley y forenses tienen 

interés en promover la investigación y el desarrollo de sistemas de detección eficientes 

que ayuden a detectar explosivos y drogas de abuso en lugares públicos, como 

aeropuertos, terminales marítimos, y estaciones de ferrocarril o de autobuses. De tal 

manera que los daños y el tráfico ilegal puedan minimizarse o evitarse en el mejor de los 

casos. 

Esta contribución científica describe una serie de investigaciones encaminadas a mejorar 

la detección de HEM más utilizados: TNT, PETN, RDX, y TATP, presentes en superficies 

ideales (metal), superficies no ideales (madera, maleta y cartón), aire y suelos. Métodos 

analíticos vibracionales infrarrojo se utilizaron para la identificación y clasificación de 

HEM, con la ayuda de análisis multivariado tal como PCA, PLS, y PLS- DA. Además, 

cannabinoides sintéticos presentes en mezclas vegetales se estudiaron utilizando 

cromatografía de gases acoplada a espectrometría de masas (GC-MS). La contribución 

en concreto se trata de: 

1. Un espectrómetro Infrarrojo con láser de cascada cuántica (QCL) se utilizó para 

obtener espectros de reflectancia de HEM depositados sobre sustratos no ideales 

de baja reflectividad, tales como maletas de viaje (poliéster negro), cartón, y 
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madera. HEM utilizados fueron el explosivo nitroaromático 2,4,6-trinitrotolueno 

(TNT), éster de nitrato alifático pentaeritritol tetranitrato (PETN), y la nitramina 

alifática 1,3,5-trinitroperhydro-1,3,5-triazina (RDX). Algoritmos quimiométricos se 

utilizaron para analizar los espectros IR. Los resultados demuestran que el método 

vibracional infrarrojo descrito en este estudio es muy adecuado para el análisis 

rápido de HEM depositados en superficies de baja reflectividad. 

2. La presencia del HEM nitroaromático 2,4-dinitrotolueno (2,4-DNT) y peróxido 

cíclico orgánico triperóxido triacetona (TATP) en aire se detectó por 

espectroscopia vibracional realzada por quimiometría. Se probaron varios 

montajes experimentales infrarrojos utilizando fuentes IR tradicionales (globar), 

FT-IR modulada y no modulada y espectroscopia IR dispersivo basado QCL. La 

metodología basada en QCL exhibió una mejor capacidad para la discriminación 

de la presencia de HEM en aire, en comparación con otras metodologías. 

3. Se llevó a cabo la detección de explosivos tales como TNT, 2,4-DNT, y PETN 

presentes en suelos y otras matrices complejas del mundo real, usando 

cromatografía de capa fina (TLC, por sus siglas en inglés) acoplada a 

espectroscopia infrarroja de QCL. Esto permitió una rápida, reproducible, 

separación e identificación de explosivos en el campo real en corto tiempo. Los 

resultados muestran que TLC-QCL es una herramienta útil para detectar 

concentraciones trazas de explosivos tan bajas como 0.39 μg (390 ng). 

4. Se ensamblaron dos sistemas de detección a distancia utilizando telescopios de 

infrarrojo acoplados a un espectrómetro de infrarrojo de transformada de Fourier 

de paso libre, un detector MCT crio-enfriado y una fuente infrarrojo medio 
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acoplada a un telescopio. Se detectó muestras de 2,4,6-trinitrotolueno (TNT) y 

tetranitrato de pentaeritritol (PETN) depositadas sobre láminas de aluminio a 

varias distancias fuente-blanco. Se evaluó el efecto del ángulo de colección de la 

luz IR retornante en la intensidad de banda vibracional detectada y la relación del 

cociente señal a ruido (S/N). Se aplicó análisis de regresión de cuadrados 

mínimos parciales (PLS) a los espectros obtenidos. En general, la detección a 

distancia en modo activo fue útil para la cuantificación de HEM depositados sobre 

láminas de aluminio con un alto nivel de confianza hasta distancias de 1-25 m. 

5. Se desarrolló tres métodos analíticos usando GC-MS y se ensayaron utilizando 

estándares de drogas de abuso como cannabinoides sintéticos (SC), THC, 

cocaína, y heroína. Se implantaron procedimientos analíticos para la extracción 

de SC en mezclas vegetales. Se utilizó GC para la separación y purificación de 

SC. Además, se utilizó espectrometría de masa de impacto con electrones como 

método de confirmación para identificar los SC en las muestras a base de hierbas. 

Se encontró dos SC en las muestras del mundo real. Los resultados demuestran 

que los métodos analíticos desarrollados pueden ser útiles para identificar SC 

raramente utilizados como PB-22 y 5F-PB-22, cuando están presentes en la 

mezcla vegetal.  

 

 

 

 



viii 

 

 

 

 

 

Dedicated to: 

God,  

My wife Vanessa, my future sons  

My parents Betty and Ricardo 

My sisters Elena and Monica 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright 2015 

John R. Castro Suarez 

All rights reserved 

 

This dissertation contains portions that have been published in Advances in Optical 

Technologies, in the Proceedings of SPIE Defense, Security, and Sensing 

(proceedings.spiedigitallibrary.org), InTech Open, and in Applied Spectroscopy. 

 



x 

 

ACKNOWLEDGEMENTS 

First, thanks to GOD and My Family. 

Thanks to:  Dr. Samuel P. Hernández-Rivera for his guidance, his wisdom, and for giving 

me the opportunity to be part of his excellent research team.  

To the University of Puerto Rico-Mayaguez for giving me the opportunity to pursue my 

graduate studies. 

To my lab-partners and the graduate committee for their help and important feedbacks. 

To my graduate committee for unconditional support in the research and dissertation. 

The U.S. Department of Defense supported this contribution, agreement number: 

W911NF-11-1-0152. The authors would also like to acknowledge contributions from Dr. 

Richard T. Hammond of the U.S. Army Research Office, DOD.  

The Defense Threat Reduction Agency (DTRA), DOD under grant #DODRIF11-

DTRA020-P-0017, also supported the contribution: “IED Sentry Based on Mid-Infrared 

Laser Arrays” awarded to Eos Photonics, Cambridge, MA. Contributions by Dr. Mark 

Witinski are also gratefully acknowledged.  

Support from the U.S. Department of Homeland Security under Award Number 2013-ST-

061-ED0001 is also acknowledged. However, the views and conclusions contained in this 

document are those of the authors and should not be considered as a representation of 

the official policies, either expressed or implied, of the U.S. Department of Homeland 

Security.  

 



xi 

 

I. TABLE OF CONTENS 

II. LIST OF TABLES .............................................................................................. xiv 

III. LIST OF FIGURES ..............................................................................................xv 

IV. CHAPTER I BASICS CONCEPTS ....................................................................... 1 

1.1 INFRARED SPECTROSCOPY .......................................................................... 1 

1.1.1 Characteristics of infrared spectroscopy ................................................ 3 

1.2 CHEMOMETRICS IN VIBRATIONAL SPECTRAL ANALYSIS ............................ 4 

1.2 REFERENCES ................................................................................................... 9 

V. CHAPTER II DETECTION OF HIGHLY ENERGETIC MATERIALS ON NON-

REFLECTIVE SUBSTRATES USING QUANTUM CASCADE LASER 

SPECTROSCOPY .............................................................................................. 11 

OVERVIEW ................................................................................................................ 11 

2.1 INTRODUCTION .............................................................................................. 12 

2.2 MATERIALS AND METHODS ......................................................................... 15 

2.2.1 Reagents and Materials ........................................................................... 15 

2.2.2 Sample preparation ................................................................................. 16 

2.2.3 Setup......................................................................................................... 17 

2.3 RESULTS ........................................................................................................ 20 

2.3.1 Spectral analysis ..................................................................................... 20 

2.3.2 Concentration Profiles and Difference Spectra Identification. ............ 24 

2.3.3 Target Identification ................................................................................ 25 

2.3.4 Quantification of HEMs Using PLS Regressions .................................. 39 

2.4 CONCLUSIONS ............................................................................................... 41 

2.5 ACKNOWLEDGEMENTS ................................................................................ 42 

2.6 REFERENCES ................................................................................................. 43 

VI. CHAPTER III DETECTION OF NITROAROMATIC AND PEROXIDE 

EXPLOSIVES IN AIR USING INFRARED SPECTROSCOPY: QCLS AND      

FT-IR .................................................................................................................. 49 

OVERVIEW ................................................................................................................ 49 

3.1 INTRODUCTION .............................................................................................. 50 

3.2 EXPERIMENTAL SETUP ................................................................................ 53 

3.2.1 Materials ................................................................................................... 53 

3.2.2 Synthesis of TATP ................................................................................... 53 



xii 

 

3.2.3 Instrumentation ....................................................................................... 54 

3.3 MEASUREMENTS AND ANALYSES ............................................................. 55 

3.3.1 Experiment ............................................................................................... 55 

3.3.2 Partial Least Squares (PLS) – Discriminant Analysis (DA) .................. 56 

3.4 RESULTS AND DISCUSSION ........................................................................ 57 

3.4.1 Proof of presence of 2,4-DNT and TATP in air at trace levels ............. 62 

3.4.2 Limits of Detection .................................................................................. 64 

3.5 CONCLUSIONS ............................................................................................... 65 

3.6 ACKNOWLEDGMENTS .................................................................................. 65 

3.7 REFERENCES ................................................................................................. 66 

VII. CHAPTER IV SEPARATION, IDENTIFICATION AND QUANTIFICATION OF 

EXPLOSIVES USING THIN LAYER CHROMATOGRAPHY COUPLED TO 

QUANTUM CASCADE LASER SPECTROSCOPY ........................................... 70 

OVERVIEW ................................................................................................................ 70 

4.1 INTRODUCTION .............................................................................................. 71 

4.2 EXPERIMENTAL ............................................................................................. 76 

4.2.1 Materials and reagents ............................................................................ 76 

4.2.2 Sample Preparation: TLC ........................................................................ 77 

4.2.3 Experimental Setup ................................................................................. 78 

4.3 RESULTS AND DISCUSSION ........................................................................ 79 

4.3.1 Preparation of ZrO2 TLC .......................................................................... 79 

4.3.2 TLC: TNT and PETN................................................................................. 80 

4.3.3 Spectral profiles of high explosives on various stationary phase ...... 81 

4.3.4 TNT quantification profiles using TLC ................................................... 85 

4.4 CONCLUSIONS ............................................................................................... 86 

4.5 ACKNOWLEDGEMENTS ................................................................................ 87 

4.6 REFERENCES ................................................................................................. 87 

VIII. CHAPTER V ACTIVE MODE REMOTE INFRARED SPECTROSCOPY 

DETECTION OF TRINITROTOLUENE AND PENTAERYTHRITOL 

TETRANITRATE ON ALUMINUM SUBSTRATES ............................................ 93 

OVERVIEW ................................................................................................................ 93 

5.1 INTRODUCTION ................................................................................................. 94 

5.2 EXPERIMENTAL ............................................................................................. 97 



xiii 

 

5.2.1 Reagents .................................................................................................. 97 

5.2.2 Sample Preparation ................................................................................. 97 

5.2.3 Experimental Setup ................................................................................. 98 

5.3 RESULTS AND DISCUSSION ...................................................................... 100 

5.3.1 HEM Standoff Detection ........................................................................ 100 

5.3.2 HEM Quantification using PLS Regression ......................................... 108 

5.4 CONCLUSIONS ............................................................................................. 113 

5.5 ACKNOWLEDGMENTS ................................................................................ 114 

5.6 REFERENCES ............................................................................................... 114 

IX. CHAPTER VI DEVELOPMENT OF GC-MS ANALYSIS METHODS FOR 

EMERGENT GROUPS OF SYNTHETIC CANNABINOIDS FOUND IN 

VEGETATIVE SAMPLES................................................................................. 119 

OVERVIEW .............................................................................................................. 119 

6.1 INTRODUCTION ............................................................................................ 119 

6.2 MATERIALS AND METHODS ....................................................................... 125 

6.2.1 Reagents and materials ........................................................................ 125 

6.2.2 Sample preparation ............................................................................... 128 

6.2.3 GC-MS Analysis ..................................................................................... 129 

6.3 RESULTS AND DISCUSSION ...................................................................... 130 

6.3.1 GC-MS Method Development ............................................................... 130 

6.3.2 Vegetal samples analyses using GC-MS ............................................. 134 

6.4 CONCLUSIONS ............................................................................................. 143 

6.5 FUTURE WORK ............................................................................................ 144 

6.6 REFERENCES ............................................................................................... 144 

 

  



xiv 

 

II. LIST OF TABLES 

Table 2-1. Values of spectral correlation coefficients (HQI) for spectra of HEM 

deposited on various substrates. ................................................................................... 29 

Table 2-2. Summary of results of PLS-DA of QCLS spectra of HEMs on surfaces 

obtained for calibration, cross validation (10 groups split in venetian blinds) and 

prediction set. ................................................................................................................ 33 

Table 2-3. Statistical parameters of PLS calibration models for spectra of HEM 

deposited on non-ideal, low reflectivity substrates using QCLS. Spectral range: 1000-

1600 cm-1. ..................................................................................................................... 41 

Table 3-1. Validation parameters for the various models constructed. ......................... 59 

Table 3-2.Validation parameters for models in the sub-spectral range: 850-1400 cm-1 61 

Table 3-3. Mass of 2,4-DNT determined by GC-μECD for 2 mL of injected gas. .......... 63 

Table 4-1. Rf values of TNT and PENT mixture on different solvent systems. ............. 80 

Table 5-1. PLS calibration parameters for the different analyzed standoff distance. .. 111 

Table 5-2. PLS calibration parameters for the different analyzed angle of collection. . 111 

Table 6-1. Chemical structures and IUPAC name of abuse drugs used ..................... 127 

Table 6-2. GC-MS methods parameter used for analysis of SC present in blend   

vegetal ......................................................................................................................... 129 

Table 6-3. Retention time for SC standards and other drugs standards using    

analytical methods show in Table 6-2 ......................................................................... 131 

 

 

  



xv 

 

III. LIST OF FIGURES 

Figure 1-1. Simplified scheme for a PCA analysis. ......................................................... 5 

Figure 1-2. Simplified scheme for a PLS transformation. ............................................... 8 

Figure 2-1. Experimental setup. (a) Sample preparation: HEM samples deposited on 

substrates. (b) In situ QCL spectral measurements. (c) Multivariate statistical analyses.

 ...................................................................................................................................... 19 

Figure 2-2. QCL spectra of HEM on substrates: (a) Al, (b) CB, (c) wood and (d) TB. 

Surface concentrations were 15 μg/cm2. QCL spectra of substrates are included to 

establish the degree of spectral interference. ................................................................ 21 

Figure 2-3. Comparison of MIR spectra of 2,6-DNT/NaF pellets: (a) QCL and %T FT-IR 

spectra for thin 2,6-DNT(5%)/NaF pellet; (b) QCL and FT-IR spectra for thick 2,6-

DNT(10%)/NaF pellet. ................................................................................................... 23 

Figure 2-4. Surface concentration profiles for. (a) RDX on wood; (b) TNT on CB and (c) 

PETN on wood; (d) difference spectrum: PETN/CB minus CB and comparison with QCL 

transflectance spectrum PETN/Al (used as reference).................................................. 25 

Figure 5-5. Representation of multivariate analysis (PLS-DA) on spectral data used in 

this research to identify and classify HEMs deposited on non-ideal, non-reflective 

substrates. ..................................................................................................................... 30 

Figure 2-6. PLS-DA model for discrimination of HEM on TB: (a) class prediction for 

PETN; (b) class prediction for RDX; (c) class prediction for TNT; (d) scores plot of LV2 

vs. LV1 for detection of PETN, RDX and TNT on TB. Preprocessing steps applied were: 

1st derive. (15 pt.) and MC. Threshold for discrimination and 95% confidence level for 

clustering are represented with red dotted lines. ........................................................... 34 

Figure 2-7. PLS-DA model for QCL spectra of PETN, RDX, and TNT deposited on TB, 

CB, and wood substrates. Preprocessing steps applied were 2nd deriv. (17 pts.) + SNV 

+ MC: (a) 2D-Score plot using LV1 and LV2; (b) 3D-Score plot using LV1, LV2 and LV3. 

95% confidence level for clustering is represented with red dotted line. ....................... 37 

Figure 2-8. PLS regression plots of predicted vs. measured surface concentrations for 

HEM deposited on substrates. (a) RDX on TB, (b) TNT on CB and (c) PETN on wood. 

Spectral range used: 1000-1600 cm-1. .......................................................................... 40 



xvi 

 

Figure 3-1. Schematic diagram of the experimental setup. (a). FT-IR instrument using 

modulated light source. (b). Open path FT-IR. (c). Quantum cascade scan. ................ 56 

Figure 3-2. (a). Histogram for discrimination using modulated source FT-IR. (b). 

Histogram for discrimination using non-modulated source FT-IR. (c). Histogram for 

discrimination using QCL. ............................................................................................. 58 

Figure 3-3. (a). First loadings for TATP models for the region (873-1400 cm-1). (b). First 

loadings for DNT models for the region (873-1400 cm-1). Reference gas phase spectra 

included. ........................................................................................................................ 62 

Figure 3-4. Low pressure spectra in the gas phase with baseline correction of: (a) 

TATP; (b) DNT. ............................................................................................................. 64 

Figure 4-1. Experimental setup: (a) sample preparation, extraction, and separation from 

matrices; (b) in situ QCLS spectral measurements; (c) spectroscopic analysis. ........... 79 

Figure 4-2. Preparation of ZrO2 TLC using different solvents. ..................................... 79 

Figure 4-3. (a) Spectra form different stationary phases (BaF2, CaF2, ZrO2 and silica 

gel) used to TLC. (b) Spectra of DNT and PETN on silica gel-TLC. .............................. 82 

Figure 4-4. Explosives spectra on Silica Gel-TLC. (a) 2,4 DNT spectrum, (b) TNT 

spectrum. Silica gel was used as background. .............................................................. 83 

Figure 4-5. Explosives spectra on ZrO2-TLC. Baseline correction was applied to each 

spectrum. ...................................................................................................................... 84 

Figure 4-6. Explosive spectra on CaF2-TLC. Baseline correction was applied to each 

spectrum. ...................................................................................................................... 85 

Figure 4-7. TNT spectra in different concentrations on silica gel-TLC. Baseline 

correction and smoothing (25 pt.) was applied to each spectrum. ................................ 86 

Figure 5-1. FT-IR interferometer configuration; (a) active mode setup for standoff 

measurements using reflective telescope: 1. IR source; 2. Al plate. (b) Plate mount; 3. 

Tilting mount. (c) Active mode setup for standoff measurements using refractive 

telescope. ...................................................................................................................... 98 

Figure 5-2. Ratio signal to noise (P-P; principal “y” axis) at various distances for active 

mode. IR beam spot size (secondary “y” axis) vs. range. Noise levels were measured at 

830-870 cm-1 and peak heights were measured for signal at 790 cm-1. ..................... 102 



xvii 

 

Figure 5-3. (a) Active mode standoff FT-IR spectra of TNT deposited on an Al plate 

measured at several distances: 8, 20, 30 m and surface concentrations: 400 g/cm2 and 

50 g/cm2; (b) active mode standoff FT-IR spectra of PETN deposited on an Al plate 

and black painted Al measured at 4 m. ....................................................................... 104 

Figure 5-4. Vibrational bands intensity and S/N in different angle of collection for PETN 

(200 µg/cm-2). .............................................................................................................. 106 

Figure 5-5. (a) Predicted vs. true coverage for TNT explosives on Al plates at different 

standoff distances: 20 m and 25 m. (b) Predicted vs. true coverage for PETN explosives 

on Al plates at different angle of collection: 1 and 60. .............................................. 110 

Figure 5-6. (a) Regression coefficient and loading plot for PLS model of detection of 

TNT explosives on Al plates at a remote distance 8 m; (b) Regression coefficient and 

loading plot for PLS model of detection of PETN explosives on Al plates at 1 m standoff 

distance and angle of collection 1. ............................................................................. 113 

Figure 6-1. Experimental Setup for extraction and instrumental analysis of SCs present 

in vegetal blend. .......................................................................................................... 128 

Figure 6-2. Chromatograms using method 1. ............................................................. 132 

Figure 6-3. Chromatograms using method 2 described in Table 6-2. ......................... 133 

Figure 6-4. Chromatograms using method 3. ............................................................. 134 

Figure 6-5. Mass spectra of THC, heroin, cocaine, and JHW-018 standards using 

method 1. .................................................................................................................... 137 

Figure 6-6. Mass Spectra of AM-2201, CP-47,797, XLR-11, MDPV and WIN55,212-2 

standards using method 1.. ......................................................................................... 138 

Figure 6-7. MS spectra and GC chromatograms from extract of Sample #1 using 

method 1. (a) Chromatogram of acetone extract; (b) chromatogram of dichloromethane 

extract; c) mass spectrum of peak with Rt = 8.04 min. ................................................ 139 

Figure 6-8. MS spectrum and GC Chromatograms from extract of sample #1 method 2. 

a) Chromatogram of acetone extract; (b) mass spectrum of peak with Rt = 6.98 min. 140 

Figure 6-9. GC Chromatograms from extract of Samples 1 and 2 using method 3. 

Sample # 1: (a) methanol extract; (b) acetone extract. Sample # 2: (c) methanol extract; 

(d) acetone extract. ..................................................................................................... 141 



xviii 

 

Figure 6-10. MS spectrum of SCs present in extracts of Samples 1 and 2 using 

analytical method 3. (a) Mass spectrum of characteristic peak with Rt = 6.32 min shown 

in Figures 6-9a to 6-9d; (b) Mass spectrum of characteristic peak with Rt = 7.15 min 

shown in Figure 6-9c to 6-9d. ...................................................................................... 142 

 

 

 



1 

 

IV. CHAPTER 1 

BASICS CONCEPTS 

1.1 INFRARED SPECTROSCOPY 

When irradiated with infrared light, a molecule absorbs it under certain well-established 

conditions. The energy of the light quantum or photon (h) of the absorbed infrared light 

is equal to an energy difference between a certain energy level of vibration of the molecule 

(having an energy Em) and another energy level of vibration of the molecule (having an 

energy En). In the form of an equation: 

En - Em = h                                                                                                         (1) 

In other words, absorption of infrared light occurs principally based on a transition 

between the vibrational energy levels of the molecule. This is why an infrared absorption 

spectrum is a vibrational spectrum of the molecule. 

Satisfying Eq. (1) does not always cause infrared absorption. Transitions are permitted 

by a selection rule (i.e., allowed transitions) and others are not allowed by the same rule 

(i.e., forbidden transitions). The principal selection rule with respect to infrared absorption 

vibrational spectroscopy is based on the symmetry of the vibrational states of the 

molecule. This selection rule specifies that infrared energy may be absorbed when the 

electric dipole moment of a molecule changes as a function of the internuclear distance 

of the two atom bonded that participate in the vibration. The second selection rule states 

that transitions occur with a change in the vibrational quantum number v = ±1. 
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The two selection rules are developed from quantum-mechanical considerations. 

According to quantum mechanics, for a molecule to transition from a certain state m to 

another state n by absorbing or emitting infrared light, it is necessary that the following 

definite integral: 

(𝜇𝑥)𝑚𝑛 =  ∫ 𝛹𝑛𝜇𝑥𝛹𝑚𝑑𝑞
∞

−∞
                                                                                     (2) 

or at least one of (𝜇𝑦) and (𝜇𝑧) which are expressed by a similar equation is not 0, where 

𝜇𝑥 denotes an x-component of the electric dipole moment; 𝛹 denotes the eigenfunction 

of the molecule in its vibrational state; and 𝑄 denotes a normal coordinate (i.e., a normal 

mode of vibration) expressed as a single coordinate.  

Considering only (𝜇𝑦), a distribution of electrons in the ground state changes as the 

coordinate expressing a vibration changes, therefore, the electric dipole moment is a 

function of the normal coordinate 𝑞. Hence, 𝜇𝑥 can be expanded as follows: 

𝜇𝑥 = (𝜇𝑥)0 + (𝜕𝜇𝑥/𝜕𝑞)0𝑞 +
1

2
(𝜕2𝜇𝑥/𝜕𝑄𝑞2)0𝑄𝑞2 + ⋯                                       (3) 

Expressed by a displacement of atoms during the vibration, 𝑞 has a small value. This 

allows to omit 𝑞2 and the subsequent terms in the equation above. Substituting the terms 

up to 𝑞 of Eq. (3) in Eq. (2) 

(𝜇𝑥)𝑚𝑛 =  (𝜇𝑥)0 ∫ 𝛹𝑛𝛹𝑚𝑑𝑞 + (𝜕𝜇𝑥/𝜕𝑞)0 ∫ 𝛹𝑛𝑞𝛹𝑚𝑑𝑞                                            (4) 

is obtained. Due to the orthogonality of the eigenfunction, the first term of this equation is 

zero except when m = n holds. The first term denotes the magnitude of the permanent 

dipole of the molecule. For the second term to have a value other than zero, both 

(𝜕𝜇𝑥/𝜕𝑞)0 ≠ 0 and ∫ 𝛹𝑛𝑞𝛹𝑚𝑑𝑞 ≠ 0 must be satisfied. These two conditions lead to the 

two selection rules. The nature of the eigenfunction permits the integral to have a value 

other than zero only when n = m ± 1 holds. Considering 𝑞2 and the subsequent terms of 
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Eq. (3) as well, it can be proven that even when n = m ± 1 fails to hold, (𝜇𝑥)𝑚𝑛has a value, 

even though small, other than zero. The second selection rule regarding infrared 

absorption is thus proved. The other selection rule, which is based upon the symmetry of 

a molecule, is obtained from (𝜕𝜇𝑥/𝜕𝑞)0 ≠ 0. The relationship (𝜕𝜇𝑥/𝜕𝑞)0 ≠ 0 indicates that 

infrared absorption occurs only when certain vibration changes the electric dipole 

moment. The vibration is infrared active when (𝜕𝜇𝑥/𝜕𝑞)0 ≠ 0 holds, but is infrared inactive 

when (𝜕𝜇𝑥/𝜕𝑞)0 = 0 holds. 

Since most molecules are in the ground vibrational state at room temperature, a transition 

from the state v = 0 to the state v = 1 (first excited state) is possible. Absorption 

corresponding to this transition is called the fundamental transition. Although most bands 

that are observed in infrared absorption spectra arise from fundamental transitions, in 

some cases one can find bands which correspond to transitions from the state v = 0 to 

the state v = 2, 3, 4 ... (i.e., overtone transitions). However, overtone bands are weak 

based on the Boltzmann distribution of energy states of a molecule. [1-5] 

 

1.1.1 Characteristics of infrared spectroscopy 

Infrared spectroscopy provides detailed information about the vibrations of a molecule. 

Since molecular vibrations readily reflect chemical features of a molecule, such as an 

arrangement of nuclei and chemical bonds within the molecule, infrared spectroscopy 

contributes considerably not only to identification of the molecule but also to study of the 

molecular structure. Furthermore, an interaction with a surrounding environment also 

causes a change in molecule vibrations, and hence, infrared spectroscopy is useful in 

studying the interaction too. Infrared spectroscopy has many uses from basic research to 
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numerous applications. Why is infrared spectroscopy useful? The answer is simple: it is 

spectroscopy that probes the vibrations of a functional group. Infrared spectroscopy can 

be used not only for the identification of a functional group, but also for the investigation 

of the chemical bond and environment of the functional group. For example, groups of 

C=O, -C=C-C=O, and -CH2-CH2-C=O give rise to different frequencies. Of course, a -

C=O group and -C=O...H-O- also yield different frequencies. The specific characteristics 

of infrared spectroscopy can be summarized as follows: 

1. Using an electromagnetic wave of low energy, such as in infrared spectroscopy 

(IRS), rarely damages a sample. Thus, IRS may be used for non-destructive 

analysis of a sample. 

2. IRS is applicable to samples in various physical states, e.g., solids, crystals, films, 

liquids, solutions, and gases and vapors. Furthermore, measurements of infrared 

spectra of a sample in a solution and in its solid state, allows comparing its 

structure in the solution with respect to that of the solid. 

3. IRS includes IR absorption, but also IR reflection, emission, photoacoustic, and 

other types of spectroscopies as well. 

4. Connection with an optical microscope, a gas chromatograph, a liquid 

chromatograph, or other instruments is relatively easy. This allows doing 

hyphenated analysis. [6-8] 

 

1.2 CHEMOMETRICS IN VIBRATIONAL SPECTRAL ANALYSIS 

The automation and computerization of laboratories have been carried out with various 

important consequences. One of them is the rapid acquisition of large amounts of data. 
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However, it is well know that acquiring such large amount of data is far from to providing 

appropriate answers quicker. Obtaining vibrational spectroscopy multivariate data is not 

synonymous with possessing vibrational information. The later must be interpreted and 

placed in context to convert it into useful information for the user. Chemometrics is the 

field of chemistry that provides the user with the required tools to enable that capability.  

A great deal of chemometrics tools have been developed and tested. However, the most 

used of these tools to identify, quantify, and classify data sets are those that make use of 

principal components analysis (PCA), partial least squares (PLS), discriminant analysis 

(DA), and their combined usage: PLS-DA and hierarchical cluster analysis (HCA). PCA 

transforms a set of variables into fewer variables (called factors, rank, dimensions, 

principal components, or components) which contain most of the information (variance) 

of the initial data set [9-12].   

 

Figure 1-1. Simplified scheme for a PCA analysis. 

 

The PCA algorithm seeks to save the information from a large number of variables in a 
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small number of uncorrelated components, with minimal loss of information. The main 

reasons for performing PCA are reduction of the number of variables to fewer dimensions 

that contain as much information as possible and to have uncorrelated dimensions (used 

to avoid multi-collinearity in multiple regressions, among other things). An important 

method for qualitative analysis of spectral data is principal component analysis. PCA is a 

method for the investigation of the variation within a multivariable data set. The first step 

in PCA is to subtract the average value or spectrum from the entire data set, this is called 

mean centering. The largest source of variation in the data set is called principal 

component # 1 (PC-1). The second largest source of variation in the data, which is 

independent of PC-1, is called PC-2. Principal components form a set of orthogonal 

vectors. For each one of the data points, the projection of the data point onto the P1 or 

P2 vector is called a score value. Plots of sample score values for different principal 

components, typically P1 versus P2 are called score plots. Score plots provide important 

information about how different samples are related to each other. Principal component 

plots, also called loading plots, provide information about how different variables are 

related to each other. In practical cases, PCA uses a single X matrix, which is represented 

by the infrared spectra. PCA is a purely qualitative analysis (does not give a quantitative 

value that establishes how different are a spectral dataset) to visualize if there is variability 

between a set of infrared spectra. PCA can thus also be used to detect the presence of 

outliers. Figure 1-8 shows a simplified scheme for a PCA [9-10]. 

Partial least squares (PLS) regression is a quantitative spectral decomposition technique 

that is closely related to PCA regression. The importance of PLS is that it is used to design 

and build robust calibration models for multivariate quantitative analysis. PLS actually 
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uses the concentration information during the decomposition process. This causes 

spectra containing higher constituent concentrations to be weighted heavier than those 

with lower concentrations. The main idea of PLS is to get as much concentration 

information as possible into the first few loading vectors (number of component, factors, 

ranks or principal components). PLS regression consists of two fundamental steps. The 

first step is to transform the X predictive matrix (spectra) of order n × p (n = number of 

samples and p = number of variables: cm-1 or nm), into a matrix of components or latent 

variables uncorrelated, T = (T1, ..., Tp) of order n × p, called PLS components. Using the 

Y response vector (concentrations) of order n × 1 contrasts with the principal component 

analysis in which the components are obtained using only the X predictive matrix. The 

second step is to calculate the estimated regression model using the Y response original 

vector as predictive, PLS components. The dimensionality reduction can be applied 

directly on the components, as they are orthogonal. The number of components required 

for the regression analysis must be much smaller than the number of predictors. There is 

a number of ways of expressing these, a convenient one being (equations 9 and 10) [12]: 

𝐗 = 𝐓. 𝐏 + 𝐄                                                              (9) 

𝐜 = 𝐓. 𝐪 + 𝐟                                                               (10) 

Figure 1-8 illustrates a simplified scheme for PLS: X represents the experimental 

measurements (e.g. spectra) and c (or Y) the concentrations. The first equation above 

appears similar to that of PCA, but the scores matrix also models the concentrations, and 

the vector q has some analogy to a loadings vector. The matrix T is common to both 

equations. E is an error matrix for the X block and f an error vector for the C block. The 

scores are orthogonal, but the loadings (P) are not orthogonal, unlike in PCA, and usually 
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they are not normalized. 

 

 

Figure 1-2. Simplified scheme for a PLS transformation. 

 

Various preprocessing methods such as vector normalization (VN), mean centering (MC), 

auto scaling (AS), multiple scattering correction (MSC), standard normal variate (SNV), 

and first and second derivatives have been developed to improve a good multivariate 

quantification. The performance of the final PLS and DA-PLS models are evaluated 

according to the root mean square error of cross-validation (RMSECV), a leave-one-

sample-out cross-validation method and the predictive ability of models were assessed 

by  the root mean square error of prediction (RMSEP) and the correlation coefficient (R) 

in prediction set. In general, for PLS models the values of RMSECV can be calculated as 

follows: 

𝑅𝑀𝑆𝐸𝐶𝑉 = √  ∑ (𝑐𝑝−𝑐𝑖)2𝑛𝑐𝑎𝑙𝑙

𝑖=1

𝑛𝑐𝑎𝑙
                                                (3) 

Where ci and cp are the experimental and predicted concentration, respectively, of the ith  

calibration sample when situated in a left out segment, ncal is the number of calibration 

samples in the training set. The number of PLS components included in the model is 

X
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selected according to the lowest RMSECV. This procedure is repeated for each of the 

preprocessed spectra. For the test set, the root mean square error of prediction (RMSEP) 

is calculated as follows: 

𝑅𝑀𝑆𝐸𝑃 = √
  ∑ (𝑐𝑖−𝑐𝑝)2𝑛𝑡𝑒𝑠𝑡

𝑖=1

𝑛𝑡𝑒𝑠𝑡
                                                        (4) 

The best model with the overall lowest RMSECV will be selected as final model. 

Correlation coefficients between the predicted and the true concentration are calculated 

for both the calibration and the test set, which are calculated as follows Equation 11, 

where  𝐶𝑖̅ is the mean of the experimental measurement results for all samples in the train 

and test sets. 

𝑅 = √1 −
  ∑ (𝑐𝑝−𝑐𝑖)2𝑛

𝑖=1

∑ (𝑐𝑖−𝑐𝑖̅)2𝑛
𝑖=1

                                                            (11) 

 

1.2 REFERENCES 

[1] B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2011. CRC 

Press, Boca Raton, Florida. 2nd Edition. 

[2] P. Griffiths, J. de Haseth, Fourier Transform Infrared Spectrometry, 2007. Wiley, 

New York, New York. 2nd Edition.  

[3] J. M. Hollas, Modern Spectroscopy, 1996. Wiley, New York, New York, 3rd Edition. 

[4] B. C. Smith, Quantitative Spectroscopy: Theory and Practice, 2002. Academic 

Press, Boston, Massachusetts. 

[5] B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach, 1999. CRC 

Press, Boca Raton, Florida. 



10 

 

[6] N. Colthup, L. Daly and S. Wiberley, Introduction to Infrared and Raman 

Spectroscopy, 1990. Academic Press, Boston, Massachusetts. 

[7] D. Lin-Vien, N. Colthup, W. Fateley and J. Graselli, The Handbook of Infrared and 

Raman Characteristic Frequencies of Organic Molecules, 1991. Academic Press, 

Boston, Massachusetts. 

[8] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and 

Charts, 2001. John Wiley, Boston, Massachusetts. 

[9] K. R. Beebe, R. J .Pell and M. B. Seasholtz, Chemometrics: A Practical Guide, 1998. 

John Wiley & Sons, New York, NY. 

[10] R.G. Brereton, Applied Chemometrics for Scientists, 2007. The Atrium, Southern 

Gate, John Wiley & Sons Ltd. Chichester. 

[11] D. L. Massart, B. G. M. Vandeginste and L. M. C. Buydens, Data Handling in Science 

and Technology Handbook of Chemometrics and Qualimetrics Part B, 1997. The 

Netherlands: Elsevier Science B.V. 

[12] D. L. Massart, B. G. M. Vandeginste and L. M. C. Buydens L, Handling in Science 

and Technology Handbook of Chemometrics and Qualimetrics Part A, 1997. The 

Netherlands: Elsevier Science, B.V. 

 

 

  



11 

 

V. CHAPTER 2 

DETECTION OF HIGHLY ENERGETIC MATERIALS ON NON-

REFLECTIVE SUBSTRATES USING QUANTUM CASCADE 

LASER SPECTROSCOPY 

 

OVERVIEW  

A quantum cascade laser spectrometer was used to obtain reflectance spectra of highly 

energetic materials (HEMs). These were deposited on non-ideal, low reflectivity 

substrates such as travel bags (polyester), cardboard and wood. Various deposition 

methods were used to prepare the standards and samples used in the study. HEMs used 

were the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT), the aliphatic nitrate ester 

pentaerythritol tetranitrate (PETN), and the aliphatic nitramine 1,3,5-trinitroperhydro-

1,3,5-triazine (RDX). Chemometrics algorithms were applied to analyze the recorded 

spectra. Partial least squares (PLS) regression analysis was used to find the best 

correlation between the infrared signals and the surface concentrations of the samples 

and PLS combined with discriminant analysis (PLS-DA) was used to discriminate, classify 

and identity similarities in the spectral data sets. Several preprocessing steps were 

applied to prepare the mid-infrared spectra of HEMs deposited on the target substrates. 

The results demonstrate that the infrared vibrational method described in this study is well 

suited for rapid screening analysis of HEMs on low reflectivity substrates when a 
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supervised model has been previously constructed or when a reference spectrum of the 

neat substrate can be acquired to be subtracted from the HEM/substrate spectrum. 

 

2.1 INTRODUCTION 

The detection and identification of hazardous chemical compounds on substrates, such 

as highly energetic materials (HEMs), is of great interest to defense and security agencies 

and is of importance in forensic applications. When detonated, HEMs have the potential 

to destroy public and private buildings and may jeopardize the lives of, first responders, 

of law enforcement employees and of civilians. Over the past few years, vibrational 

spectroscopy techniques, such as Raman and infrared spectroscopies, have frequently 

been used to deter possible terrorist threats by providing the basis for the required 

countermeasures to prevent explosive terrorist events [1-5]. 

Mid-infrared (MIR) electromagnetic radiation is located in the spectral region from 

approximately 350 to 4000 cm-1. In this region, molecules have characteristic vibrational 

energy states that can be populated upon interaction with photons from an appropriate 

excitation source, enabling the detection of trace amounts of compounds by measuring 

the intensities of absorbed, reflected, or transmitted MIR light. [6] Fourier transform 

infrared (FT-IR) spectroscopy has been extensively used in both active and passive 

modalities in the MIR region in many defense and security applications [1,2,7-10]. Active 

mode FT-IR spectroscopy has been used for the post-blast detection of energetic 

materials using infrared radiation produced from both globar and synchrotron sources. 

Reports have also validated FT-IR spectroscopy as a useful tool for forensic science 

applications [7,8]. Emission (passive mode) and absorption MIR spectroscopies have 
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recently been used as vibrational techniques for the standoff detection of explosives and 

other chemical agents deposited on metallic surfaces [2,9,10]. 

The need to develop more powerful IR sources that would enable detection at longer 

distances when a target is deposited on substrates at trace levels suggests the use of 

collimated, coherent, and polarized sources. These sources were first developed in 1994 

at Bell Labs with the invention of quantum cascade lasers (QCLs). [11] A QCL is a 

unipolar semiconductor injection laser based on sub-interband transitions in a multiple 

quantum-well heterostructure. As a semiconductor laser that has the ability to produce 

varying wavelengths and to operate at various temperatures, this type of laser has various 

advantages over other types of lasers [11,12]. QCLs are capable of producing from a few 

tens to hundreds of milliwatts of continuous mode or pulsed power under ambient 

conditions, are commercially available, and have enabled the development of ruggedized 

systems for the detection of hazardous chemical compounds. Recent developments in 

QCL technology include size reduction, which have enabled the transition from tabletop 

laboratory instruments to easy-to-handle, small instrument designs, and portable units 

that can be used by first responders and military personnel outside the confinement of a 

sample compartment. Moreover, the increase in output power has enabled the use of 

QCL-based spectrometers in long-distance (range) applications, making the detection of 

chemical and biological threat agents possible at tens of meters from the source [13,14]. 

Furthermore, QCLs can be operated in field conditions, allowing for the sensitive 

detection of homemade explosives such as triacetone triperoxide (TATP), of aliphatic 

nitrate esters such as pentaerythritol tetranitrate (PETN), of aliphatic nitramines as 1,3,5-

trinitroperhydro-1,3,5-triazine (RDX) and of nitroaromatic HEMs as 2,4-dinitrotoluene 
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(2,4-DNT) and 2,4,6-trinitrotoluene (TNT) in the vapor phase using photoacoustic 

spectroscopy [15-17]. The detection of TATP and TNT in the vapor phase has also been 

achieved using infrared absorption spectroscopy with satisfactory results [3,18]. 

Moreover, the use of QCL sources has been useful for remote detection of HEMs 

deposited on surfaces using photoacoustic and traditional infrared absorption 

spectroscopies [19-23]. Thundat’s group recently reported that nanomechanical infrared 

spectroscopy provides high selectivity for the detection of TNT, RDX and PETN without 

the use of chemoselective interfaces by measuring the photothermal effect of the 

adsorbed molecules on a thermally sensitive microcantilever [23]. However, the majority 

of previous investigations focused on the detection of HEMs deposited on nearly ideal, 

highly reflective substrates (such as metallic surfaces), and there are few published 

reports on the effects of non-ideal, low reflectivity substrates on the spectra of the 

analyzed target HEMs. 

In this study, non-contact detection experiments using QCL spectroscopy (QCLS) were 

performed. The experiments were conducted using an active mode QCL source to excite 

the MIR molecular vibrations from the investigated HEMs. Two chemometrics routines 

were applied to analyze the characteristics of the recorded spectra using QCLS: partial 

least squares (PLS) regression analysis, which assisted in finding the best correlation 

between the MIR signals and the analyte surface concentrations, and partial least 

squares coupled with discriminant analysis (PLS-DA), which was used to discriminate, 

classify and identity similarities between the spectral data. Several preprocessing steps 

were applied prior to the multivariate analyses protocols employed. The results indicate 

that the QCL based methodology described in this study could be used for rapid screening 
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analysis of HEMs on low reflectivity substrates such as travel bags materials, cardboard 

and wood when a supervised model has been previously constructed or when a reference 

spectrum of the neat substrate can be acquired prior to acquiring the HEM/substrate 

spectrum. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Reagents and Materials  

The reagents and materials used in this study included HEMs, solvents, and substrates. 

2,6-Dinitrotoluene (2,6-DNT) and TNT were acquired as a crystalline solids (99% min.; 

30% min. water content; standard grade) from Chem Service, Inc. (West Chester, PA, 

USA). PETN and RDX were synthesized and purified in the laboratory according to the 

methods described by Ledgard [24]. Methanol (99.9%, HPLC grade), dichloromethane 

(CH2Cl2, HPLC grade), acetone (99.5%, GC grade) were purchased from Sigma-Aldrich 

(Milwaukee, WI, USA) and were used as obtained as solvents to deposit HEM samples 

at various surface concentrations onto test substrates. Sodium fluoride (NaF, ACS 

reagent, ≥ 99%) was purchased from Sigma-Aldrich (Milwaukee, WI, USA) and was used 

to make pellets with 2,6-DNT. The substrates used were travel bag fabric (TB; black 

polyester), cardboard (CB; corrugated single-wall) and wood (grade C-C, plugged soft 3-

ply spruce plywood). Aluminum (Al; highly polished) plates were used as reference 

substrates of high reflectivity. The substrates were acquired from local suppliers. These 

were cut into square pieces of approximately 31 mm x 31 mm, gently cleaned using 

acetone or methanol and stored in Dry Keeper™ desiccator cabinets to stabilize their 

weights by controlling their moisture contents. Attempts to stabilize the weights of the 
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substrates were only successful for TB substrates. Because the humidity levels in the 

laboratory varied on a daily basis, the wood and CB substrates did not attained stable 

weights, and deposition methods that did not depend on the weight of the substrates had 

to be used employed. 

 

2.2.2 Sample preparation 

Sample preparation is a fundamental step in this type of experiments. To obtain 

calibration models that resulted in good predictions of the validation samples, methods 

that allowed for the proper transfer of the target HEMs to the test substrates had to be 

used. This was required to achieve reliable and consistent analyte surface concentrations 

(mass/area), thereby allowing validation of the experimental methodology. Various 

deposition methods were tested, including sample smearing, spin coating, spray 

deposition, and partial immersion. Results of HEMs samples transfers to solid matrices 

have previously been reported [21]. In summary, sample smearing and spin coating 

based methodologies for sample transfer onto substrates work well for flat, non-porous 

surfaces such as polished metals, glass, silicon and others of the like. For rough, not-flat, 

highly porous substrates, such as CB, wood, and TB, partial immersion provided the 

means of devising the optimum sample transfer protocol. When using this method, the 

sample loss was negligible, a good homogeneity was attained, and no substrate 

preparation was required. A spectrophotometric (UV-Vis) methodology was used to 

validate this deposition method. 

Eleven to fourteen surface concentrations for each HEM, ranging from 0.1 to 14 μg/cm2 

were prepared, including zero concentration (substrates without HEM) and distributed as 
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follows: 11 surface concentrations each for PETN on TB, PETN on wood, TNT on CB, 

and TNT on wood; 12 surface concentrations for TNT on TB, RDX on TB, PETN on CB 

and RDX on wood; and 14 surface concentrations for RDX on CB. For PLS analysis, 4 

spectra were acquired, resulting in 424 independent measurements. For PLS-DA 

analysis, twelve additional spectra from each clean substrate (36 total QCL spectra 

without HEM) were added to the data used in PLS, totalizing 460 independent 

measurements.  

In order to characterize the spectral features of HEMs when reflection/transmission 

experiments were carried out, 2,6-DNT spectra for two optical sample thicknesses of 1 

cm (diam.) pellets of 2,6-DNT in NaF were prepared: an optically thin pellet of 1% 2,6-

DNT/NaF (~ 0.5 mm thick) and an optically thick pellet with 10% 2,6-DNT/NaF (~ 3 mm 

thick). Both reflection and transmission spectra were recorded using an evacuable bench 

FT-IR interferometer (IFS-66/S/v, Bruker Optics, Billerica, MA, USA) using 62 scans at 4 

cm-1 resolution. The reflectance spectra were measured at 80º with respect to the surface 

normal. 

 

2.2.3 Setup 

Figure 2-1 shows a diagram that illustrates the experimental setup: (a) sample 

preparation using the aerosol spray and partial immersion deposition methods; (b) non-

contact detection of the target chemicals; (c) chemometrics multivariate analyses. The 

detection of PETN, RDX and TNT deposited on non-ideal, low reflectivity substrates was 

performed using a QCL based spectroscopic system acquired from Block Engineering 

(LaserScan, 6-10 m, Marlborough, MA, USA). The specifications for the spectroscopic 



18 

 

system and laser source used were the following: nearly continuous wavenumber 

coverage; laser pulse modulation: 200 kHz; collimated elliptical beam: 4 mm x 2 mm; 

beam divergence: < 5 mrad; internal coupling to a thermoelectrically cooled Hg-Cd-Te 

(MCT) detector. The system was designed to operate in back reflection mode (at zero or 

a small angle with respect to the surface normal, as shown in Figure 2-1b. No attempt 

was made to separate the specular component from the diffusely reflected light. The solid 

angle of collection for the 2 in. diam. zinc selenide lens leading to the detector was 0.086 

sr. QCL measurements obtained in this configuration for the samples prepared as part of 

the study can be described as transflection (or double pass) mode. MIR spectra were 

recorded at a distance of 6 in. from the substrates at 4 cm-1 resolution. The acquisition 

time for one spectrum (3 acquisitions, averaged) was ~ 3 s. For the data included, two 

spectra were co-added (6 acquisitions, averaged) for a total acquisition time per co-added 

spectra of approximately 9 s. However, it was found that the signal to noise ratio increased 

only slightly with two co-adds. 
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Figure 2-1. Experimental setup. (a) Sample preparation: HEM samples deposited on 

substrates. (b) In situ QCL spectral measurements. (c) Multivariate statistical analyses. 

 

All spectra were stored in Thermo-Galactic™ SPC format (Thermo-Fisher Scientific, Inc., 

Waltham, MA, USA) and analyzed using PLS and PLS-DA chemometrics models with 

PLS Toolbox™, v. 6.5 (Eigenvector Research Inc., Wenatchee, WA, USA) for MatLab™ 

(The MathWorks, Inc., Natick, MA, USA). The reference (library) spectra were obtained 

using flat, non-porous Al substrates (31 mm x 31 mm). Surface HEMs concentrations 

were 15 g/cm2 (nominally) prepared using sample smearing protocol as deposition 

method. 
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2.3 RESULTS 

2.3.1 Spectral analysis 

MIR vibrational spectra of TNT, RDX, and PETN deposited on Al, TB, CB and wood 

substrates were obtained using a QCL spectrometer. The spectra were recorded in the 

spectral region of 1000-1600 cm-1, where the symmetric and asymmetric nitro group 

vibrations of the HEMs occur. Figure 2-2 shows the QCL reflectance mode spectra of 

TNT, PETN and RDX deposited on Al, CB, wood and TB. The spectra on Al are included 

as references to assist in identifying the obtained MIR vibrational bands of QCL spectra 

of HEMs deposited on nonmetallic substrates. As shown in Figure 2-2a, the form of the 

vibrational bands of the HEMs clearly confirm the highly reflective nature of the Al 

substrate. These spectra have the appearance of “double pass” transmission-reflection 

(transflectance) spectra. Transflection experiments are usually made by placing a thin 

analyte sample on a non-IR absorbing, reflective substrate such as a polished metal 

surface, focusing an IR beam onto a region of interest, and collecting the radiation that is 

reflected to the collection optics. The technique is termed transflection because most of 

the signal intensity collected is a transmission signal as the beam passes through the 

sample, reflects off the substrate, passing through the sample again to the detector. 

[25,26] Some of the vibrational bands that were tentatively assigned to TNT were 1024 

cm-1 (CH3– deformation), 1086 cm-1 (C–H ring in-plane bending), 1350 cm-1 (symmetric 

stretching of nitro groups) and 1551 cm-1 (asymmetric NO2 stretching) [27]. For PETN, 

some of the important signatures appeared at 1003 cm-1 (CO stretching), 1038 cm-1 (NO2 

rocking), 1272 cm-1 (ONO2 rocking), 1285 cm-1 (NO2 stretching) and 1306 cm-1 (NO2 

rocking) [28]. Finally, important markers for RDX were detected at 997 cm-1 (N-N and ring 
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stretching), 1220 cm-1 (C-N stretching), 1270 cm-1 (NO2 stretching), 1310 cm-1 (N-N 

stretching), 1420 and 1445 cm-1 (H-C-N asymmetric bending) and 1570 cm-1 (N-O 

asymmetric stretching) [29,30]. 

 

Figure 2-2. QCL spectra of HEM on substrates: (a) Al, (b) CB, (c) wood, and (d) TB. 

Surface concentrations were 15 μg/cm2. QCL spectra of substrates are included to 

establish the degree of spectral interference. 

 

Typical spectra of the HEMs deposited on CB, wood and TB are shown in Figures 2b-2d. 

In addition to the HEM signatures, vibrational bands from the substrates were also 

observed. However, providing details about the signals from the substrates that give rise 

to these infrared bands is beyond of the scope of this contribution. The focus of this work 

is the analysis of the interferences produced by the substrate contributions and the effects 

of these interferences on the ability to detect and discriminate HEMs deposited on the 



22 

 

investigated substrates. The spectral profiles of each HEM were similar when deposited 

on CB and wood (Figures 2b and 2c). The prominent MIR signatures of the HEMs on CB 

and wood were the NO2 bands at approximately 1270 cm-1 for the aliphatic explosives 

PETN and RDX and at 1350 cm-1 for the aromatic explosive TNT. The infrared bands of 

the HEMs on TB are shown in Figure 2-2d.  

QCL spectra of HEM shown in Figure 2-2 evidence the effects of sensing for explosives 

deposited on surfaces with different reflectivities. The spectra were acquired in reflection 

mode. Two different spectral profiles of HEM are shown in Figure 2-2: those when 

substrates used have high reflectivities, in this case a polished Al plate, and those where 

substrates have low reflectivities (such as CB, TB, and wood). These spectral patterns 

can be understood by taking into account that in a transflection experiment IR radiation 

reaching the detector passes through the sample and is reflected off the front surface of 

a highly reflective substrate. However, part of the intensity detected originates from IR 

light reflected from the sample itself. Consequently, the recorded transflection spectra are 

a weighted sum of the transmission and reflection characteristics of the samples and 

substrates. As demonstrated by Bassan et al. [26] in samples where the optical density 

(thickness) is low and high reflectivity substrates are used the weighting is such that the 

transmission signal dominates and the reflection signal is negligible, producing spectra 

closely resembling that of a transmission spectrum. However, if the transmission signal 

is weak or extinct, the reflection signal will dominate and a reflectance spectrum is 

obtained. As shown in Figure 2-3, the profile of a transflection spectrum for 2,6-DNT 

depends of the optical thickness of the sample. For optically thin samples, contributions 

from transmission are higher than those from reflection, producing a spectrum similar to 
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the transmission mode (Figure 2-3a). On the other hand, for optically thick samples the 

contributions by transmission are negligible or nonexistent producing a spectrum similar 

to the reflection mode as in Figure 2-3b.  

 

Figure 2-3. Comparison of MIR spectra of 2,6-DNT/NaF pellets: (a) QCL and %T FT-IR 

spectra for thin 2,6-DNT(5%)/NaF pellet; (b) QCL and FT-IR spectra for thick 2,6-

DNT(10%)/NaF pellet. 

 

Reference spectra of investigated HEM are shown in Figure 2-2a. Surface concentrations 

of 15 g/cm2 were deposited on Al reflective plates and used to measure the reference 

QCL spectra. As can be observed, the transmission component dominates the QCL 

transflection spectra, producing a spectral profile similar to that of a transmission FT-IR 

spectrum (Figure 2-3a). However, when HEM spectra were acquired from non-reflective 

substrates (Figure 2-2b to 2d) the reflectance component of the QCL transflection spectra 

stood out more prominently, producing reflectance spectra with profiles similar those with 

anomalous dispersions [31,32]. These spectral features are usually observed when 

sample refractive index decreases to the high-wavenumber side of the absorption band 

maximum, returning to the normal value at the absorption band center, then increasing to 
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the lower-wavenumber side, before returning again to the normal values [25,31]. In other 

words, these distortions usually result in asymmetric bands with negative intensity 

contributions at the high wavenumber side of the band, accompanied by a shift towards 

lower wavenumbers, and distorted band shapes and inconsistent intensities [32]. These 

spectral features are well appreciated in the nitro group vibrational bands of HEM at 1350 

and 1551 cm-1 for TNT, 1285 and 1306 cm-1 for PETN and 1270 cm-1 for RDX, in which 

the transflection spectra become significantly distorted exhibiting skewed lineshapes 

when low reflectivity materials (CB, TB, and wood) were used substrates. It is clear that 

the spectral distortions in this study are not anomalies but rather spectral profiles 

dominated by the reflectance of the HEM samples as demonstrated by Bassan and 

confirmed by the results shown in Figures 3a and 3b for 2,6-DNT [26]. 

 

2.3.2 Concentration Profiles and Difference Spectra Identification.  

Figures 4a to 4c show some of the spectra used for the surface concentration profiles 

constructed in preparation to perform quantitative multivariate analyses runs. A total of 9 

surface concentration profiles: 3-HEM x 3-substrates (plus 3 replicas of each 

combination) was assembled. QCL spectra of clean Al substrates were used as 

backgrounds. Figure 2-4a shows some of the RDX spectra recorded on wood substrates; 

Figure 2-4b shows spectra for TNT on CB at various surface concentrations; and Figure 

2-4c shows measured QCL reflectance spectra for PETN on wood. However, the QCL 

methodology used for detection of explosives on non-reflective substrates does not 

require the use of multivariate analyses for identification of HEM, but rather, as illustrated 

in Figure 2-4d, a single acquisition (3 s) of CB was subtracted from the corresponding 
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QCL spectrum of PETN on CB to obtain the difference spectrum of PETN. Comparison 

with the QCL transflectance spectrum of PETN on Al demonstrates that several of the 

aliphatic nitrate ester signature bands can be readily assigned by comparison with the 

reference QCL spectrum. The only requirement for this type of remote detection 

experiment is be able to acquire a QCL spectrum of a non-contaminated (non-dosed) 

segment of the substrate. 

 

Figure 2-4. Surface concentration profiles for: (a) RDX on wood; (b) TNT on CB; (c) PETN 

on wood; and (d) difference spectrum: PETN/CB minus CB and comparison with QCL 

transflectance spectrum PETN/Al (used as reference). 

 

2.3.3 Target Identification 

Target identification with typical routines used in portable IR and Raman systems for 

remote detection were applied for the HEMs studied on the substrates used. First, a 

spectral search was applied to each spectrum with the purpose identifying the detected 
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HEM. The simplest spectral search is based on the calculation of the hit quality index 

(HQI) values [33]. The HQI is a numerical quantity that indicates the correlation between 

two spectra and has been widely used in spectroscopy to indicate the degree of spectral 

matching in library searches [8,34-38]. In the protocol, a spectrum of an unknown sample 

is compared with all spectra of known samples in a library, and the best match is 

determined based on the calculated HQI values. Routines for calculating the HQI are 

available in most commercial portable spectrometers to facilitate the identification of 

unknown compounds in the field. HQI values can be calculated using various algorithms, 

but the two most commonly used are the Euclidean distance and spectral correlation 

algorithms. In the Euclidean distance algorithm, the HQI values are calculated from the 

square root of the sum of the squares of the difference between the vectors for the 

unknown spectrum and each library spectrum [33,38]. In contrast, the spectral correlation 

algorithm utilizes the Pearson product-moment correlation coefficient, rxy, which is a 

measure of the strength and direction of the linear relationship between two variables. 

This parameter is defined as the covariance of the variables divided by the product of 

their standard deviations. In this case, the spectral correlation algorithm is applied 

between two spectra: a reference (or library of spectra) and an unknown spectrum to be 

identified [34-37]. The rxy values were calculated using Eq. 1: 

                 𝑟𝑥𝑦 =
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where 𝑥 and 𝑦 represent the spectral responses of the reference spectrum and of an 

unknown spectrum, respectively, measured at the ith wavenumber for a set of n 

corresponding wavenumber points. In the present case, the HQI assumes values 

between +1 and -1. A HQI value of +1 is obtained when the spectral similarities are 
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maximum (the unknown spectrum is identical to a library spectrum), -1 when the spectral 

similarities are inverted (the unknown spectrum is identical to a library spectrum but with 

peaks inverted with respect to the library spectrum) and zero when there is no spectral 

similarity. Often, the values are rescaled to values between 0 and 1, where values 

between -1 and 0 are equated to zero and a value of 1 indicates maximum spectral 

similarity.8 Another possibility is to rescale the square of r (r2) to yield positive values 

between 0 and 1 [36-37]. However, in this investigation, the rescaling step was not applied 

such that the effects of the contributions of complex substrates on the transflection 

spectra (analyte + substrate) could be evaluated when HQI algorithms were used to 

identify unknown spectra from a spectral library or from reference spectra. 

Table 2-1 presents the spectral correlation coefficients for unknown spectra on the 

various types of substrates tested. Before calculating the r values, a spectral 

normalization was performed on the entire spectral range of 1000-1600 cm-1 for both the 

unknown (measured) and library spectra (measured on Al substrates). The normalization 

of a spectrum for library searching is a two-step process, as recommended by ASTM 

E2310-04 (2009): “Standard Guide for Use of Spectral Searching by Curve Matching 

Algorithms with Data Recorded Using MIR Spectroscopy” [33]. First, the minimum 

spectral response value in the selected spectral range is subtracted from the entire 

spectral response in the same range. The resulting values are then scaled by dividing by 

the maximum value in that range. The net result is a spectrum in which the minimum 

intensity value is zero (0) and the maximum value is one (1). The values of the spectral 

correlation coefficients for the HEMs shown in Table 2-1 are severely influenced by the 

type of substrate used, which can be confirmed when metal substrates such as Al were 
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used, resulting in high values of r. When non-metallic substrates were used, such as TB, 

CB and wood, low values of r were obtained. It is generally acceptable to consider a 

spectrum of an unknown compound to be similar to one of the library when the spectral 

correlation coefficient is greater than ~ 0.85. Given this restriction, spectra measured on 

only Al substrates were correctly identified when QCLS coupled with spectral correlation 

algorithms were used. All of the spectral correlation coefficients for unknown spectra of 

HEMs deposited on CB, wood and TB were well below the minimum accepted r value 

(0.85). In some cases, the r values were negative (i.e., some unknown spectra had peaks 

inverted with respect to the library spectra). These results highlight two factors. First, low 

r values were obtained when the QCL spectra of HEMs deposited on low reflectivity, 

complex substrates were measured. Second, negative r values were obtained due to the 

effect of such substrates, resulting in spectra with inverted peaks. 

The QCL methodology used for detection of explosives on non-reflective substrates does 

not necessarily requires the use of multivariate analyses for identification of HEM. As 

illustrated in Figure 2-4d, a single acquisition (3 s) of CB was subtracted from the 

corresponding QCL spectrum of PETN on CB (PETN/CB) to obtain the difference 

spectrum of PETN. Comparison with the QCL transflectance spectrum of PETN on Al 

demonstrates that several of the aliphatic nitrate ester signature bands can be readily 

assigned by comparison with the reference QCL spectrum. The only requirement for this 

type of remote detection experiment is be able to acquire a QCL spectrum of a neat part 

of the substrate that does not contain HEM residues. 
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Table 2-1. Values of spectral correlation coefficients (HQI) for spectra of HEM deposited 

on various substrates. 

 HQI / Spectral Correlation 

 Spectra Queried 

 HEM spectra on Al HEM spectra on CB HEM spectra on wood HEM spectra on TB 

library 
spectra 

PETN RDX TNT PETN RDX TNT PETN RDX TNT PETN RDX TNT 

PETN 0.95 0.39 0.07 0.06 0.00 -0.03 -0.39 0.13 -0.10 0.20 0.21 0.12 

RDX 0.39 0.94 0.09 0.15 0.30 0.25 -0.05 0.14 0.07 0.34 0.36 0.40 

TNT 0.10 0.14 0.96 -0.03 -0.09 -0.55 -0.22 0.22 -0.60 -0.10 0.11 0.14 

 

Because the spectral correlation coefficients were not efficient for the identification and 

classification of HEMs when they were deposited on non-ideal, low reflectivity substrates 

(such as CB, TB, and wood) for direct field detection applications, multivariate analysis 

methods, such as PLS and PLS-DA, were applied for robust spectral identification, 

classification and quantification. PLS Toolbox™ version 6.5 for MATLAB™ was used to 

analyze the data. Figure 2-1c illustrates the use of chemometrics multivariate statistical 

analysis applied to the data. PLS-DA is one of the most widely used chemometrics tools, 

particularly when the goal is to discriminate, classify and identity spectral similarities in a 

multivariate data set. PLS-DA is a supervised pattern recognition method. A detailed 

explanation on the numerous applications of PLS-DA and on how it works are not included 

in this paper. Excellent in-depth mathematical support and various applications in natural 

sciences and engineering are available in the literature [39-41]. PLS-DA is a linear 

classification method that combines the properties of PLS regression with the 

discrimination power of a classification technique. PLS-DA is based on the PLS 

regression algorithm, which searches for latent variables with a maximum covariance 



30 

 

between a descriptor matrix X and a response matrix Y (containing the membership of 

samples to the G classes expressed with a binary code: 1 or 0). The primary advantage 

of PLS-DA is that the relevant sources of data variability are modeled by the so-called 

latent variables (LVs), which are linear combinations of the original variables, and 

consequently, allowing graphical visualization and understanding of the different data 

patterns and relations by LV scores and loadings. The scores represent the coordinates 

of the samples in the LV projection hyperspace [40,41]. 

 
 

Figure 5-5. Representation of multivariate analysis (PLS-DA) on spectral data used in 

this research to identify and classify HEMs deposited on non-ideal, non-reflective 

substrates. 

The data were divided into two groups for each model: a calibration set and a prediction 

or test set. The calibration set contained approximately 70% of the data, and the 

prediction set contained the remainder of the data. PLS-DA was applied to the spectral 

data to discriminate, classify, or group all spectra by HEM type and to discriminate 

between clean substrates and the substrates with HEMs. An overview of the performance 
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of PLS-DA on the spectral data (matrix X) is presented in Figure 2-5. The first step was 

intended to arrange the spectral data in a matrix with dimensions of “n x m” (n rows and 

m columns), where n represents the number of samples used in the calibration set, and 

m represents the number of spectral variables in the study. In this work, the matrix 

dimensions were 104 x 3056 for the calibration set of each type of substrate tested. The 

second step was to apply the required preprocessing handling of the data. The purpose 

of preprocessing the data was to remove or to decrease the effect of the interferences 

from the background/substrate, thereby enhancing the vibrational signatures of the 

HEMs. PLS-DA was able to decompose the original matrix into two new matrices: one 

that has most of the relevant information containing the largest variability in the data and 

another that contains information that is not as relevant to the data, generally termed 

noise. The matrix that contains the information of interest has dimensions of “n x p”, where 

p is a new column matrix called the latent variable (LV), which is the product of the 

transformation from the original variables. LVs are orthogonal vectors that are linear 

combinations of the original data. In general, two or three LVs are sufficient to capture the 

majority of the variability in the data. In the LVs, each sample that was initially represented 

by an IR spectrum is now represented by only one value, termed the “score” of the 

sample. These scores describe how the samples are related to each other. Score plots 

are obtained by graphing LV2 vs. LV1. These plots provide important information 

regarding how different samples are related to each other. Finally, the original matrix with 

dimensions of 104 x 3056 for the calibration set of each substrate tested was reduced to 

a matrix with dimensions of 104 x 3 using three LVs. 
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In PLS-DA, the optimal number of LVs that provided the best classification for the 

calibration set was determined using cross validation procedures. The Venetian blinds 

procedure with 10 group splits was used to divide the calibration set into cross validation 

groups. Several preprocessing steps were applied to the data with the objective of 

generating multivariate models capable of discriminating and clustering the spectra based 

on chemical similarities, i.e., PETN, RDX, TNT and clean substrates (TB, CB, and wood). 

The preprocessing steps used were auto scaling (AS), mean centering (MC), standard 

normal variate (SNV), 1st / 2nd derivatives and their combinations. For all the multivariate 

models generated, the ones that performed best were those that used the full spectral 

range (1000-1600 cm-1).  

For PLS-DA, classification parameters, such as sensitivity and specificity, derived from 

the confusion matrix from the calibration, cross validation and prediction sets were used 

to evaluate the performances of the classification models. The sensitivity (SEN) describes 

the model’s ability to correctly recognize samples that belong to that class and the 

specificity () describes the model’s ability to reject samples of all other classes and can 

be calculated as follows: 

                  SEN =
TP

(TP+FN)
 ;         =

TN

(TN+FP)
                                                    (2) 

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative. 

When dealing with two classes A and B, A: positive (a specific HEM) and B: negative (the 

other HEM or the clean substrates), TP is the number of members of class A that have 

been correctly classified, FP (false positive) is the number of members of class B that 

have been incorrectly predicted as class A, TN is the number of members of class B that 

have been correctly classified and the number of members of class A that have been 
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incorrectly predicted as class B. Both SEN and  take values between 0 and 1, where 1 

is the desired result [40]. Table 2-2 presents a summary of the results obtained from 

applying PLS-DA to the QCLS spectra of the HEMs on the investigated surfaces for the 

calibration, cross validation and prediction sets. 

 

Table 2-2. Summary of results of PLS-DA of QCLS spectra of HEMs on surfaces obtained 

for calibration, cross validation (10 groups split in venetian blinds) and prediction set. 

  HEM spectra on TB HEM Spectra on CB 
HEM spectra on 

Wood 

  PETN RDX TNT PETN RDX TNT PETN RDX TNT 

SEN (Cal) 1 1 1 1 1 1 1 1 1 

 (Cal) 1 1 1 1 1 1 1 1 1 

SEN (CV) 1 1 1 1 1 1 1 1 1 

 (CV) 1 1 1 1 1 0.991 1 1 1 

SEN (Pred) 1 1 1 1 1 1 1 1 1 

 (Pred) 1 1 1 1 1 1 1 1 1 

Class. Err. (Cal) 0 0 0 0 0 0 0 0 0 

Class. Err. (CV) 0 0 0 0 0 0.005 0 0 0 

Class. Err. (Pred) 0 0 0 0 0 0 0 0 0 

RMSEC 0.136 0.137 0.123 0.086 0.101 0.124 0.112 0.151 0.072 

RMSECV 0.149 0.142 0.132 0.089 0.104 0.130 0.127 0.176 0.078 

RMSEP 0.109 0.104 0.100 0.098 0.087 0.089 0.191 0.228 0.076 

LV 4 4 4 4 4 4 5 5 5 

Variance 
Captured (%) 

87.8 87.8 87.8 91.5 91.5 91.5 92.3 92.3 92.3 

 

The score plots, which allow visualization of the clustering of the spectral data, resulting 

from the PLS-DA runs are shown in Figures 6 and 7. These plots demonstrate that the 

best results were obtained for the various generated models after the preprocessing steps 

mentioned above had been applied. For the multivariate analysis of the MIR vibrations of 

the HEMs deposited on TB and CB, taking the first derivative (15 pts.) and applying MC 
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were sufficient to obtain the best chemometrics models. Using derivatives in spectroscopy 

facilitates the identification of the wavenumber location of the maxima/minima of poorly 

resolved spectral features in complex spectra. Taking derivatives can also be used as a 

background correction technique to reduce the effect of spectral background 

interferences in quantitative analytical methods [42]. MC was used to decrease the 

dimensionality of the spectral data. 

 
 

Figure 2-6. PLS-DA model for discrimination of HEM on TB: (a) class prediction for PETN; 

(b) class prediction for RDX; (c) class prediction for TNT; (d) scores plot of LV2 vs. LV1 

for detection of PETN, RDX and TNT on TB. Preprocessing steps applied were: 1st 

derive. (15 pt.) and MC. Threshold for discrimination and 95% confidence level for 

clustering are represented with red dotted lines. 
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The PLS-DA models resulting from the discrimination of each HEM from the others and 

from the neat substrate for TB are shown in Figure 2-6. The class predictions of PETN, 

RDX, and TNT on TB from the cross validation are shown in Figures 6a-6c. Four LVs 

were required to obtain the best multivariate classification model with SEN and  equal to 

1 (see Table 2-2) for the HEMs tested from the calibration, cross validation and prediction 

data sets. The variance captured from matrix Y was 87.8%, which is sufficient for a good 

classification of the predicted spectra set on TB. For the multivariate (clustering) analysis 

of the HEMs on TB, a total of six LVs were necessary to capture 80% of the total variance 

in the spectral data. As shown in the scores plot in Figure 2-6d, two latent variables with 

60% of the spectral variance were sufficient to obtain an excellent classification according 

to the type of HEM deposited and to discriminate from the TB substrate. In this model, 

spectra from the prediction set (RDX Test, TNT Test, and PETN Test) were well grouped 

according to chemical characteristics with spectra from the calibration sets.  

Class predictions of PETN, RDX, and TNT on CB from the cross validation required four 

LVs were to obtain the best classification model allowing SEN and  to equal 1 (see Table 

2-2) for the HEMs tested for the calibration, cross validation and prediction data sets. The 

variance captured from matrix Y was 91.5%, which is sufficient for a good classification 

of the predicted spectra set on CB. In the PLS-DA clustering analysis for the QCL spectra 

of the HEMs on CB, five LVs were required to capture 80% of the total variance in the 

spectral data using the first derivative (15 pts.) and MC as prepossessing steps. Two LVs 

corresponding to 63% of the variance were sufficient to obtain excellent spectral 

classification according to the type of explosive deposited and to discriminate from the 

substrate. Using this model, spectra from the validation set (RDX Test; TNT Test; PETN 
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Test) were grouped reasonably well with spectra from the calibration set according to 

vibrational signatures. 

Class predictions of HEMs on wood from the cross validation required five LVs to obtain 

the best multivariate classification model that allowed SEN and  to equal 1 (see Table 2-

2) for the HEMs tested from the calibration, cross validation and prediction data sets. The 

variance captured from matrix Y was 92.3%, which is sufficient for a good classification 

of the prediction spectra set on wood. For the multivariate analysis of the MIR vibrations 

of the HEMs deposited on wood, preprocessing of the data using the first derivative (15 

pts.), SNV transformation and MC was necessary to obtain the best chemometrics 

results. The first derivative was used to eliminate spectral differences on the baseline and 

to smooth the spectra. SNV transformation and MC were used to normalize and center 

the data. In the PLS-DA clustering model of the HEMs on wood, six LVs were required to 

capture 80% of the total variance in the spectral data. Two LVs accounting for 61% of the 

spectral variance were sufficient to obtain a good spectral classification according to the 

type of HEM deposited and to discriminate from the wood substrate. Spectra from the 

prediction set were precisely grouped with the spectra from the calibration set according 

to chemical similarities. 

The much more challenging problem of obtaining discriminating functions for three 

spectroscopically different HEMs: a nitroaromatic explosive (TNT), an aliphatic nitramine 

(RDX) and an aliphatic nitrate ester (PETN) on three markedly different substrates: CB 

which is mainly cellulose; TB made from black polyester fabric and wood made also from 

cellulose but also containing lignin can result in a more complex problem to handle. 

Initially the problem to discriminate among the three HEMs requires addressing – 
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substitution effects: NO2– linked directly to C (TNT) vs. linked directly to O (PETN or to N 

(RDX). These different –substitutions lead to spectroscopic markers that can be used 

for spectroscopic discriminating among the HEMs. Addition of contributions of substrates 

MIR absorptions results in a formidable problem in which one clearly does not expect 

neat boundaries separating the 12 groups in a 2-dimensional space (2 LVs) or even in 3-

dimensions (or 3 LVs).  

 

 

Figure 2-7. PLS-DA model for QCL spectra of PETN, RDX, and TNT deposited on TB, 

CB, and wood substrates. Preprocessing steps applied were 2nd deriv. (17 pts.) + SNV + 

MC: (a) 2D-Score plot using LV1 and LV2; (b) 3D-Score plot using LV1, LV2 and LV3. 

95% confidence level for clustering is represented with red dotted line. 
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A more general model based on QCL spectral data for the three HEMs on the three 

substrate types was generated using PLS-DA. In the multivariate analysis, preprocessing 

of the data required applying the second derivative (17 pts.), as well as using SNV 

transformation and MC. In this analysis, twelve LVs were required to capture 80% of the 

total variance in the spectral data. Results are represented in Figure 2-7a in a 2-LV 

representation. The PLS-DA model generated using the three HEMs deposited on three 

non-ideal, low reflectivity substrates was capable of differentiating substrates without 

HEMs (Region A, Figure 2-7a) from surfaces with HEMs (Region B, Figure 2-7a). In the 

model representation, there are a few outliers: substrate spectra classified as spectra of 

substrates with HEMs, and vice versa, which is a consequence of the plot representation 

using only 2 LVs.  

In the 3-dimensional representation (3-LVs) shown in Figure 2-7b, the first three LVs 

explained 47% of the spectral variance (Figure 2-7b) according to the type of HEM. The 

general trend established for the 2-LVs representation is maintained: substrates are 

grouped close to the center of the 3-axes figure while HEMs/substrates are projected 

further out from the origin. QCL spectra for TB and TNT/TB, PETN/TB and RDX/TB have 

been neatly grouped in the octant between LV-1(-) and LV-2(+). This fact in itself can be 

attributed to the distinct spectroscopic properties of the substrate: black polyester fabric. 

Spectra for CB and PETN/CB and TNT/CB have been projected to the octants LV-

2(+)/LV-1(+) and LV-1(+)/LV-2(-); RDX/CB was projected to the LV-2(-)/LV-1(-) octant. A 

similar result was obtained for QCL spectra of wood and HEM/wood: PETN/wood and 

TNT/wood were projected to the LV-1(+)/LV-2(-) octant together with some of the neat 

wood QCL spectra. Most of the rest of the wood QCL spectra and RDX/wood spectra 
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were projected onto the LV-1(+)/LV-2(+) octant. Neater separations would have to be 

illustrated in higher dimensional LV spaces, however, in general, the ambitious task of 

grouping HEMs deposited on non-ideal substrates based on spectral similarities and 

discriminating the spectral features of the HEMs from those of the substrates was largely 

achieved. 

 

2.3.4 Quantification of HEMs Using PLS Regressions 

PLS regressions were used to analyze the spectral data and to find the best correlation 

between the multivariate spectral information and the HEM surface concentrations. The 

main concept of PLS is to obtain the most information possible concentrated in the first 

few loading vectors or latent variables (LV) [39-41]. PLS regressions were used to 

generate models for all the HEMs deposited on the investigated substrates. In addition, 

the root mean square error of cross validation (RMSECV), root mean square error of 

prediction (RMSEP), coefficient of determination from cross validation (R2-CV) and 

coefficient of determination from prediction (R2-Pred) were calculated and used as 

indications of the quality of the obtained spectral correlations. Chemometrics models 

based on PLS regressions were obtained using the complete spectral range measured 

(1000 to 1600 cm-1). The sample concentrations were the same as those in the PLS-DA 

analyses. MC was applied to each spectrum from the spectral data set as a preprocessing 

step. Figure 2-8 shows some of the PLS regression plots obtained for the predicted 

concentration vs. measured concentrations for each HEM deposited on each substrate. 

Figure 2-8a shows a PLS model for RDX on TB, Figure 2-8b displays a PLS model 

representing TNT on CB, and Figure 2-8c presents a PLS model for PETN on wood.  
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The best results for RMSECV, RMSEP, R2-CV, and R2-Pred, including the number of LVs 

required in the PLS model, are shown in Table 2-3. Eight LVs were required to obtain the 

best PLS models, resulting in determination coefficients higher than 0.99, with the 

exception of TNT on wood, in which 9 LVs were required. Higher values of RMSECV and 

RMSEP were found for TNT in the three substrates tested. These results can be attributed 

to the higher vapor pressure of the nitroaromatic HEM when compared to PETN and RDX, 

leading to mass losses via sample sublimation during the course of the experiments. 

Based on the obtained results, it can be concluded that the PLS-based models were 

highly successful in correlating the surface concentrations of HEMs on the investigated 

substrates. 

 
Figure 2-8. PLS regression plots of predicted vs. measured surface concentrations for 

HEM deposited on substrates. (a) RDX on TB, (b) TNT on CB and (c) PETN on wood. 

Spectral range used: 1000-1600 cm-1. 
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Table 2-3. Statistical parameters of PLS calibration models for spectra of HEM deposited 

on non-ideal, low reflectivity substrates using QCLS. Spectral range: 1000-1600 cm-1. 

Substrate Explosive LV 
R2 
CV 

R2 
Pred 

RMSECV 
(μg/cm2) 

RMSEP 
(μg/cm2) 

 
TB 

 

PETN  8 0.998 0.999 0.12 0.09 

RDX  8 0.996 0.998 0.17 0.13 

TNT  8 0.973 0.971 0.48 0.41 

 
CB 

 

PETN  7 0.980 0.985 0.56 0.41 

RDX 8 0.980 0.987 0.61 0.40 

TNT 8 0.945 0.993 1.06 0.47 

 
Wood 

 

PETN  5 0.989 0.996 0.43 0.29 

RDX  8 0.984 0.985 0.46 0.39 

TNT 9 0.918 0.982 1.03 0.45 

 

2.4 CONCLUSIONS 

A QCL-based spectroscopy system allowed for the detection of HEMs deposited at low 

surface concentrations on three types of non-ideal, low reflectivity substrates: travel bag 

fabric (TB), cardboard (CB) and wood. Spectral profiles of HEM on transflection 

experiments depend on the reflectivity of the substrate. For highly reflective substrates 

such as Al the transflection spectra are similar to transmission spectra. For low reflectivity 

substrates such as TB, CB, and wood the transflection spectra are similar to reflection 

spectra, where nitro group bands prevail. Spectral identification using spectral correlation 

algorithms was not sufficiently efficient for identifying the HEMs when present on non-

ideal, low reflectivity, strong mid-infrared-absorbing substrates. However, multivariate 

analyses were sufficiently efficient to attain the goals of this investigation. The 

chemometrics-based multivariate analyses used to detect the target HEMs deposited on 

TB and CB substrates only required first derivative and mean centering as preprocessing 
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steps. Generating efficient PLS-DA models for wood substrates was a greater challenge, 

and a third preprocessing step (SNV transformation) was required to achieve the desired 

discrimination on these substrates. Moreover, classifications according to the type of 

HEM were achieved. PLS-DA models for the investigated HEMs on the three substrates 

tested (general PLS-DA model) allowed for discrimination even in the presence of highly 

interfering and complex substrates, although the model required 12 LVs to account for 

80% of the variance.  

In general, QCL spectroscopy was demonstrated to be useful for developing a rapid 

screening methodology for detection and discrimination of HEMs from non-ideal, low 

reflectivity, highly interfering substrates when coupled with chemometrics tools such as 

PLS and PLS-DA analyses. When a reference spectrum of the neat substrate can be 

acquired prior to acquiring the HEM/substrate spectrum, the HEM can be readily identified 

from a single quick measurement. Multivariate analysis can be used to render the 

methodology in a more statistically robust one. Finally, PLS models demonstrated the 

capability of predicting the surface concentrations of HEMs on the substrates tested using 

a maximum of 8 LVs to obtain R2 values higher than 0.9. 
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VI. CHAPTER 3 

DETECTION OF NITROAROMATIC AND PEROXIDE 

EXPLOSIVES IN AIR USING INFRARED SPECTROSCOPY: 

QCLS AND FT-IR 

 

OVERVIEW 

 A methodology for processing spectroscopic information using a chemometrics based 

analysis was designed and implemented in the detection of highly energetic materials 

(HEMs) in the gas phase at trace levels. The presence of the nitroaromatic HEM 2,4-

dinitrotoluene (2,4-DNT) and the cyclic organic peroxide triacetone triperoxide (TATP) in 

air was detected by chemometrics enhanced vibrational spectroscopy. Several infrared 

experimental setups were tested using traditional heated sources (Globar), modulated 

and non-modulated FT-IR and quantum cascade laser (QCL)-based dispersive IR 

spectroscopy. The data obtained from the gas phase absorption experiments in the mid-

infrared (MIR) region were used for building the chemometrics models. Partial least 

squares-discriminant analysis (PLS-DA) was used to generate pattern recognition 

schemes for trace amounts of explosives in air. The QCL based methodology exhibited 

a better capacity for the discrimination for the detected presence of HEM in air compared 

to other methodologies. 
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3.1 INTRODUCTION 

The detection of highly energetic materials (HEMs) at trace levels in air remains a subject 

of great importance to national defense and security. In the past few years, most of the 

published reports have focused on the detection of these important chemical compounds. 

However, the majority of them require some type of sampling [1, 2]. Obtaining samples in 

the field is the principal disadvantage of most explosive detection devices because the 

person doing the sampling is at risk.  

Most of the analytical techniques employed for development of methodologies for HEM 

detection are based on spectroscopic and chromatographic techniques [1, 2]. Trace 

amounts of 2,4-dinitroluene (2,4-DNT) in air have been detected and discriminated by 

surface enhanced Raman spectroscopy (SERS) using a gold surface sensor [3]. These 

sensors generate a response in the presence or absence of 2,4-DNT and other volatile 

nitroaromatic HEMs in air. In this case, the sample vapor was introduced to the sensor 

with a fan. High-speed fluorescence spectroscopy is another method for detection for 

nitroaromatic HEM in the air. This method employs silica microspheres coated with a 

highly sensitive fluorescent polymer that responds by quenching the fluorescence when 

HEM molecules attach to the polymer [1,2,5-8]. 2,4-DNT can also be detected and 

quantified by measuring the IR acoustic wave in polymer coated surfaces [9]. In this 

method, the presence of 2,4-DNT generates a change in the frequency of the acoustic 

wave on the surface, and this change is used for detection and quantification. 

Air sampling with a solid-phase extraction cartridge to collect a toluene/methyl-tertbutyl 

ether analyte using a modified supercritical fluid extraction apparatus followed by 

separation and measurement of the extracted analyte by GC has also been used for the 
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analysis of nitroaromatic HEM [10]. The detection of nitroaromatic HEM in air can also be 

performed by extraction with C-18 solid-phase membranes. In this case, the analyte is 

desorbed directly in a chromatographic mobile phase [11]. The detection of triacetone 

triperoxide (TATP) in air has been reported using a gas-washing sampling technique [12]. 

HPLC with post-column UV irradiation and photometric detection following photochemical 

degradation of TATP has also been used for detection [12,13].  

The use of chemometrics (multivariate analysis) with spectroscopic data in HEM detection 

has been very valuable because it has allowed for the exploration of very complex 

ambient matrices [14,15]. Many chemometrics tools have been developed and tested. 

However, the most commonly used tools employed to identify, quantify and classify data 

sets are those that make use of principal components analysis (PCA), partial least 

squares (PLS), discriminant analysis (DA), as well as their combined usage in PLS-DA, 

and hierarchical cluster analysis (HCA). PCA transforms a set of variables into fewer 

variables (called dimensions, principal components, or components) that contain most of 

the information (variance) from the initial data set. The PCA algorithm seeks to save the 

information from a large number of variables in a small number of uncorrelated 

components with minimal loss of information. One of the main reasons for performing a 

PCA is to reduce the number of variables to a few uncorrelated dimensions that contain 

as much information as possible (used to avoid multi-collinearity in multiple regressions, 

among other things) [15]. PLS is a linear analysis routine that is used to design and build 

robust calibration models for quantitative analysis. PLS regression analysis is a 

quantitative spectral decomposition technique that is closely related to PCA regression 

[16]. PLS uses the concentration information during the decomposition process, which 
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causes the spectra containing higher constituent concentrations to be weighted more 

heavily than those with lower concentrations. The main idea of PLS is to obtain as much 

information about the concentration as possible into the first few latent variables (number 

of components) [17]. Linear discriminant analysis (LDA or DA) is a multivariate technique 

that allows for the differentiation of separate objects from distinct populations and 

allocates new objects into populations previously defined [18]. The usefulness of this 

methodology is to determine a relationship of belonging or not belonging to a previously 

defined group. 

The application of pattern recognition to infrared spectroscopy can be found in the current 

literature. PCA was used to analyze the FTIR spectra of mixtures of two monomers [19]. 

Discrimination between mayonnaise samples that contained different vegetable oils was 

achieved by PLS-DA of near infrared spectral data [20]. PLS-LDA has also been used in 

other areas of science and engineering, including biomedical studies such as the 

classification of tumors [21], early detection of diabetes related to changes in the skin [22] 

and fault diagnosis in chemical processes [23].  

Detection and discrimination of HEM are important in applications for national defense 

and security. Being able to detect and prevent a chemical/biological threat long before 

any damage to civilians, military personnel and private or public property is a goal of 

agencies in charge of public security and national defense. To a large extent, remote 

detection modalities will benefit from chemometrics enhanced spectroscopic detection.  

In this report, infrared vibrational detection of highly energetic materials, such as 2,4-DNT 

and TATP, present in the gas phase in air was performed. The detection experiments 

were performed in the active mode using two source types including a traditional globar 
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IR source for detection using FT-IR spectrometers (for both, modulated and unmodulated 

light) and a quantum cascade laser (QCL) IR source for detection with a dispersive 

spectrometer. PLS-DA was used to generate pattern recognition schemes for trace 

amounts of explosives in air from the obtained IR spectra. Classificatory capacities from 

different models based on PLS-DA were used to establish the best experimental setup 

for the detection and classification of these explosives in the gas phase. 

 

3.2 EXPERIMENTAL SETUP 

3.2.1 Materials 

The reagents used in this investigation included acetone (CH3COCH3, 98% w/w, Sigma-

Aldrich Chemical Co., Milwaukee, WI, USA), hydrogen peroxide (H2O2, 50% in water, 

Sigma-Aldrich), hydrochloric acid (HCl, 12 M, Merck, VWR, Inc., West Chester, PA, USA), 

sulfuric acid (H2SO4, 18 M, Merck) and dimethyl ether (CH3OCH3, Sigma-Aldrich). 

Standard solutions of 2,4-DNT 1000 parts per million (ppm) GC/MS primary standards 

were obtained from Restek Corp. (Bellefonte, PA) and from Chem Service, Inc. (West 

Chester, PA). Crystalline samples of 2,4-DNT were purchased from Chem Service, Inc. 

(West Chester, PA). 

 

3.2.2 Synthesis of TATP 

TATP cannot be purchased from chemical reagents suppliers. Therefore, it was prepared 

in small quantities as needed due to the high thermal instability of this powerful explosive. 

A white crystalline precipitate was obtained using a conventional synthesis method. The 
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crystals were filtered and washed using distilled water followed by re-crystallization from 

methyl ether. 

 

3.2.3 Instrumentation 

A Fourier transform IR (FT-IR) interferometer model IFS 66v/S (Bruker Optics, Billerica, 

MA, USA) was used for the experiments. This system had an evacuable bench equipped 

with several sources, detectors, beam splitters and other accessories to perform 

experiments on solid, liquid and gas samples from the far IR region (to 50 cm-1) to the 

near IR region (as high as 7500 cm-1). For the experiments described, the system was 

equipped with a deuterated triglycine sulfate (DTGS) detector and a potassium bromide 

(KBr) beam splitter. An EM-27 open path (OP) FT-IR interferometer (Bruker Optics) was 

used to obtain the IR spectral information from the TATP samples with a 

thermoelectrically (TE) cooled mercury-cadmium telluride (MCT) detector. A pre-

dispersive IR spectrometer equipped with a quantum cascade laser (QCL) source and a 

thermoelectrically (TE) cooled MCT detector (model LaserTune™; Block Engineering, 

Marlborough, MA) was employed to obtain spectral information of the TATP samples. An 

Agilent 6890 gas chromatograph (GC) coupled to an Agilent 5893 mass selective detector 

(MSD) was used for qualitative analyses. An Agilent Technologies model 6890N, Network 

GC system with micro cell, 63Ni Electron Capture Detector (μ-ECD) was also used for the 

quantitative analyses. A capillary column: HP-5 MS 5% phenyl methyl siloxane: 30 m, 

250 μm in diameter and 0.25 μm of film thickness was used. 
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3.3 MEASUREMENTS AND ANALYSES 

3.3.1 Experiment 

Figure 3-1 shows the schematic diagram of the experimental setup used in the 

investigation. Three types of experiments were performed. The setup for the first 

experiment is shown in Figure 3-1a. The HEM samples were placed on the bottom of 500 

mL Erlenmeyer flasks. A flow of dry air (1-16 mL/s) at several temperatures (0-38°C) was 

used. The temperature was regulated by either scanning in the range of temperature or 

by using point-by-point fixed temperature measurements. Trace amounts of explosives in 

the gas phase were dragged from the surface by the air flow and transported to an IR gas 

cell for detection. Spectra were recorded using the instrument at 4 cm-1 of resolution and 

25 scans. The spectral range was from 400-4000 cm-1. 

The number of spectra obtained was: 799 for 2,4-DNT/air; 120 for TATP/air; and 1881 

spectra of ambient air. Figure 3-1b shows a schematic representation of the EM-27 

interferometer setup employed to collect absorption spectra excited by a Globar source. 

All of the active mode experiments were performed at ambient temperature (25C) at 30 

scans and 4 cm-1 resolution. Sets of 100 air spectra, air with TATP and air with DNT with 

a spectral range of 650-4000 cm-1 were collected. 

A third experiment was performed using a quantum cascade laser (QCL) as the source 

with the Block Engineering LaserTune™ spectrometer. All of the active mode 

experiments were performed at the lab temperature of 20C with 1 scan at 4 cm-1 

resolution. The spectral range was from 830 to 1430 cm-1. Forty-four spectra of air with 

2,4-DNT, 25 spectra of air with TATP and 37 spectra of air were obtained. The presence 

of TATP in the air was determined by GC-MS, and the concentration of 2,4-DNT in the 
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air for different fluid conditions were calculated using a calibration curve from GC-μECD, 

which was only performed for the first experiment. 

 

 

 

Figure 3-1. Schematic diagram of the experimental setup. (a). FT-IR instrument using 

modulated light source. (b). Open path FT-IR. (c). Quantum cascade scan. 

 

3.3.2 Partial Least Squares (PLS) – Discriminant Analysis (DA) 

 PLS-DA runs were performed using the OPUS™ 6.0 software (Bruker Optics) combined 

with the Statgraphics Plus™ v. 15.2 (Statpoint Technologies, Inc., Warrenton, VA, USA) 

statistical analysis software. The models were evaluated using internal validation, 
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statistical significance (p) and the percentage of cases correctly classified (PCCC). For 

internal validation, each spectrum was successively removed from the data set and 

discriminated from a new model built from the remaining spectra. This procedure was 

performed for each of the spectra in the data set, and the predicted discrimination was 

compared with the experimental observations. The generated percentage of cases 

correctly classified is called the cross-percentage of cases correctly classified (PCCCC) 

or the leave-one-out cross-validation (LOOCV or CV) procedure. The other statistical 

indicators that were used included the Wilks' lambda and canonical correlation. 

 

3.4 RESULTS AND DISCUSSION 

Figure 3-2 shows the frequency distribution for the CV of air with TATP and DNT. The 

solid line represents the data for air with the analyte of interest, and the dotted line 

represents the data for clean air and air with other analytes. Good discrimination was 

obtained in all of the statistical experiments. The evaluation is shown in Table 3-1. The 

PCCC for all of the models was 100.0%, and complete classification is observed. 

However, the cross-validation PCCCC was not 100.0% for DNT samples. 

In the FT-IR model with a modulated Globar source, the PCCCC for TATP was 100% but 

was lower for 2,4-DNT. This result can be attributed to the fact that pure air was only 

analyzed at 25C whereas 2,4-DNT was analyzed from 0C to 38C. In this model for 2,4-

DNT, 0.25% of the sample was not correctly classified. These data missed the detection 

of or indicated a false negative for air with 2,4-DNT at low temperatures where the 

sublimation of DNT is very small. For this model of 2,4-DNT, the sensitivity was 100.00%, 

the specificity was 99.75% and the false alarm rate was 0.00%.  
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Figure 3-2. (a). Histogram for discrimination using modulated source FT-IR. (b). 

Histogram for discrimination using non-modulated source FT-IR. (c). Histogram for 

discrimination using QCL. 

 

In the second model (unmodulated FT-IR), the PCCC for all of the models constructed 

were also 100.0%, but the PCCCC for 2,4-DNT was 99.67%. In these cases, the false 

alarm rates were 0.50%, and the sensitivities were 99.50%. This result is an indication 
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that samples of air or air with TATP were discriminated better than air with 2,4-DNT. In 

these cases, one of the air samples was poorly discriminated because this experiment 

was open to the surroundings resulting in possible contamination in the lab. In this setup 

interferences from ambient water vapor and CO2 were high. Therefore, in the model using 

the entire IR spectral region measured (600-4000 cm-1), it was necessary to eliminate the 

sub-spectral regions of 4000-3541, 2384-2295 and 1758-1490 cm-1, resulting in 

improvement of the model, as summarized in Table 3-1.  

In the third model (QCL scan), all of the samples were correctly classified. However, the 

number of samples analyzed must be considered, and the number of variables in this 

experiment is lower compared to the other experiments. The experimental conditions are 

not fully comparable because the intensity of this source is much higher than those of the 

other experiments and the sampling path is smaller for this system.  

For the models to have highly significant statistical merit according to the canonical 

correlation coefficient (p < 0.0001), the functions must have an excellent ability to 

determine the group differences. Wilks’ Lambda value indicates how many times the 

variance is not explained by group differences. Because these values were small, highly 

correlated differences were established.  

 

 

Table 3-1. Validation parameters for the various models constructed. 

  

modulated FTIR 

(model 1) 

unmodulated FTIR 

(model 2) 

QCL scan 

(model 3) 

Parameter TATP DNT TATP DNT TATP DNT 

Wilks' lambda 0.12 0.03 0.09 0.11 0.05 0.06 
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Canonical correlation 0.94 0.98 0.96 0.94 0.98 0.97 

PCCC 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

PCCCC 100.00% 99.94% 100.00% 99.97% 100.00% 100.00% 

Sensibility 100.00% 100.00% 100.00% 99.50% 100.00% 100.00% 

Specificity 100.00% 99.75% 100.00% 100.00% 100.00% 100.00% 

False alarm 0.00% 0.00% 0.00% 0.50% 0.00% 0.00% 

Missed detection 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 

Loadings 7 7 10 10 5 5 

Samples (N) 3079 3079 300 300 106 106 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 <0.0001 

 

Other models were generated using only the region of 873-1400 cm-1 or the region of 

emission of the QCL to compare the technique with the FT-IR based experiments. The 

QCL-based experiments were better than the modulated source FT-IR setup, which, in 

turn, were better that the non-modulated source FT-IR setup. The validation information 

is shown in Table 3-2. A high significance (p < 0.0001, equivalent to > 99.99% confidence 

level) for all of the models were found, indicating that the resulting parameters are highly 

reliable and the comparison between techniques is highly dependable. The high power 

QCL scan produces a high sensitivity for trace level detection in air but the modulated 

source FT-IR is close in performance to the QCL-based methodology. This result 

indicates that the modulation of light (using an interferometer) before reaching the sample 

increases the sensitivity [24] compared to a non-modulated source FT-IR where the light 

first interacts with the sample prior to entering the interferometer.  



61 

 

Table 3-2.Validation parameters for models in the sub-spectral range: 850-1400 cm-1 

  

modulated FTIR 

(model 1) 

unmodulated FTIR 

(model 2) 

QCL scan 

(model 3) 

Parameter TATP DNT TATP DNT TATP DNT 

Wilks' lambda 0.15 0.04 0.55 0.54 0.05 0.06 

Canonical 

correlation 
0.92 0.98 0.67 0.65 0.98 0.97 

PCCC 99.74% 99.98% 92.00% 93.33% 100.00% 100.00% 

PCCCC 99.73% 99.97% 82.00% 78.33% 100.00% 100.00% 

Sensibility 100.00% 100.00% 81.00% 77.00% 100.00% 100.00% 

Specificity 93.33% 99.87% 84.00% 81.00% 100.00% 100.00% 

False alarm 0.00% 0.00% 16.00% 19.00% 0.00% 0.00% 

Missed detection 6.67% 0.13% 19.00% 23.00% 0.00% 0.00% 

Loadings 10 10 10 10 5 5 

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

 

The loading for models of the region (870-1400 cm-1) are shown in Figure 3-3. The band 

observed for TATP at 1200 cm-1 that was tentatively assigned to C-O stretching [25, 26] 

is the largest contributor to the loadings calculated by the models for modulated source 

FT-IR and QCL source. However, in the unmodulated source FT-IR experiments, the 

same result was not found: the first loading has the spectral information shifted. Other 

bands that contribute occur at 890 cm-1 and 939 cm-1 which are tentatively assigned to 

O-O stretching [25, 26]. The same analysis applies for all of the other loadings (data not 



62 

 

shown). This indicates that the discrimination is generated by a combination of all of the 

loadings. The QCL model requires only 5 loadings; FT-IR based models require 7 (full 

spectrum) or 10 (spectral width) loadings. 

 

 

Figure 3-3. (a). First loadings for TATP models for the region (873-1400 cm-1). (b). First 

loadings for DNT models for the region (873-1400 cm-1). Reference gas phase spectra 

included. 

 

3.4.1 Proof of presence of 2,4-DNT and TATP in air at trace levels 

The concentration of 2,4-DNT in air for different flow conditions and temperatures was 

calculated via a calibration curve obtained by GC-μECD (Table 3-3). The presence of 

TATP was also established using GC-MS. To demonstrate the presence of the infrared 

signal in air, a small amount of TATP or 2,4-DNT (0.1 g) was deposited on a plate and 

introduced into a gas cell of 38.7 cm3 at a pressure of 0.0001 mBar. This procedure 

generated a density of 2538 pg/mL (in the worst case) when all of the explosive material 
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sublimed and negligible amounts were suctioned by the vacuum pump. This suggests 

that the concentration in the cell for the gas was << 2538 pg/mL. Spectra for the trace 

amounts of explosive were recorded to confirm that the detector was able to detect at this 

concentration level (Figure 3-4). This experiment was performed using the modulated 

source FT-IR system. 

 

Table 3-3. Mass of 2,4-DNT determined by GC-μECD for 2 mL of injected gas. 

T (oC) F (mL/s) Peak Area Mass (pg) pg/mL (g/m3) 

20 1.6 7.564.E+03 98 49 

20 7.8 3.314.E+03 48 25 

20 15.7 3.078.E+03 46 23 

26 1.6 1.030.E+05 1202 601 

26 7.8 6.650.E+04 779 390 

26 15.7 5.720.E+04 672 336 

38 1.6 3.800.E+05 4407 2203 

15 15.7 2.793.E+03 42 21 
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Figure 3-4. Low pressure spectra in the gas phase with baseline correction of: (a) TATP; 

(b) DNT. 

 

3.4.2 Limits of Detection 

The low limits of detection (LOD) have been estimated for the two better performing 

techniques and their corresponding models: modulated source FT-IR and mid IR (QC) 

laser source. In the case of the homemade explosive, TATP, LOD vales were estimated 

as 800 pg/m3 and 300 pg/m3 for modulated FT-IR and QCL based detection, respectively. 

For the nitroaromatic military explosive 2,4-DNT LOD values were even lower: 31 pg/m3 

and 0.7 pg/m3 for modulated source FT-IR and QCL source, respectively. 
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3.5 CONCLUSIONS 

The results obtained in this research show that it is possible to determine the presence 

of peroxide-based explosives, such as TATP, and high sublimation pressure nitro 

compounds when they are in the gas phase mixed with air using PLS-DA regression 

analysis of infrared spectral data. The QCL-based results exhibited a better capacity for 

discrimination or detection of the presence of explosives in air compared to other 

techniques. This result is due to the high power and collimation of the laser source 

increasing the sensitivity at trace level in air. It was also demonstrated that when the light 

is modulated an increase of sensitivity is obtained. Possible synergies between QCL 

sources, which are inherently modulated, and detection schemes could generate higher 

sensitivity techniques for gas phase sensing of hazardous chemicals. However, technical 

problems related to QCL scanning generated high noise levels. This resulted in 

unsuccessful efforts to modulate this source. A possible solution is to stop the QCL in a 

wavenumber range corresponding to emission bands within the target chemicals and then 

modulate the source and acquire the spectra at this position; next move the QCL to 

another wavenumber central position close to the previous band and acquire the 

spectrum, and so on until the whole range of the QCL is scanned. This would provide the 

required sensitivity for the analysis at trace level. 
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VII. CHAPTER 4 

SEPARATION, IDENTIFICATION AND QUANTIFICATION OF 

EXPLOSIVES USING THIN LAYER CHROMATOGRAPHY 

COUPLED TO QUANTUM CASCADE LASER SPECTROSCOPY 

 

OVERVIEW 

The need for instrumentation and methods for rapid detection and identification of 

chemical and biological threat agents in military and homeland defense settings has 

become an ever more important issue in modern society. Many of the samples collected 

for the sensing of explosives are contained in soil matrices. Other common substrates 

that can be targets for detection of explosives are metals, plastic, wood, cardboard, 

fabrics, debris, etc. This study focuses on chemical analysis of explosives, such as TNT, 

2,4-DNT and PETN present in soils and other real world complex media using thin layer 

chromatography (TLC) coupled to mid-infrared (MIR) quantum cascade laser 

spectroscopy (QCLS) that allows rapid, reproducible, separation and identification of 

explosives in the field in short time. 

The retention factor (Rf) values for TNT and PETN were determined for different solvents 

or solvent mixtures, using silica plates as stationary phase. The position and spot 

diameter of the sample on the plate of silica before and after the chromatographic run 

were measured and compared. The best mobile phase to separate TNT (Rf = 0.75 ± 0.05) 

and PETN (Rf = 0.63 ± 0.06) was the mixture 1:4 hexane:toluene. The spot diameters 
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before and after the chromatographic run, in most cases the change in size was 

approximately 0.5 cm. 

 

4.1 INTRODUCTION 

Modern society faces an ever increasing need for rapid methods and instrumentation for 

detection and identification of chemical and biological threat agents. From security anti-

terrorist personnel, to first responders and law enforcement employees, such as forensic 

science, police officers, airport screeners, and border patrol personnel, to the Navy, Army, 

Air Force, and National Guard workforces, the threat of coming in contact with explosive 

agents is highly pervasive. 

Many of the samples collected for sensing of explosives come from complex matrices 

containing dirt and soil. Soils can be contaminated with explosives in a number of different 

human activities, such as: use of explosives in training ranges, impact areas and firing 

ranges, explosives syntheses sites, as result of wars between nations, from used waters 

and wastes in clandestine laboratories, as result of terrorist events, controlled 

demolitions, mining, and others. These types of explosives containing samples display a 

broad spectrum of compounds, which are heterogeneously distributed in their matrices. 

Other common substrates that can be targets for detection of explosives are debris, 

metals, plastic, wood, cardboard, fabric, etc. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) 

is the primary explosive found in training ranges, but other munitions constituents such 

as 2,4,6-trinitrotoluene (TNT),  2,6-dinitrotoluene (2,4-DNT) and pentaerythritol 

tetranitrate (PETN) are also present in soils of military ranges. 
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Most of the studies that have been published on detection of explosives are based on 

spectroscopic and chromatographic methodologies [1-6], obtaining very low limits of 

detection. However, the use of chromatographic techniques in field applications has been 

very limited, mainly because of the lack of portability of the instrumentation. On the other 

hand, spectroscopic techniques have the advantage of being tested in field applications, 

facilitating the acquisition of data and information very fast, leading to prompt decisions 

based on the results obtained, thus saving numerous lives and reducing casualties. 

Vibrational spectroscopy has demonstrated to be valuable for detection of high 

explosives, homemade explosive and toxic industrial compounds [2, 8-16]. In particular, 

infrared spectroscopy (IRS), in various modalities, has played unique roles in detection 

of threat compounds [9-16]. IRS is commonly employed for detection explosives and 

chemical warfare agents, as well as other chemical and biological threats in military 

environments, in government buildings and other public safety places. The MIR spectral 

region comprises the spectral window from approximately 350 to 4000 cm-1. In this range, 

all molecules have characteristic vibrational signals that can be excited upon interaction 

with photons from the excitation source, enabling the detection of trace amounts of 

compounds [17]. Fourier transform infrared (FT-IR) spectroscopy has been extensively 

used in both active and passive modalities for explosives detection. Active mode FT-IR 

spectroscopy has been used for post-blast detection of energetic materials using both 

globar and synchrotron infrared radiation, validating FT-IR spectroscopy as a useful tool 

for forensic applications [10, 12]. Emission (passive mode) and absorption MIR 

spectroscopy have been used recently as vibrational techniques for the standoff detection 

of explosives and other chemical agents deposited on metallic substrates [9, 11, 13-16]. 
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On the other end, TLC provides a streamlined sampling and testing protocol that allows 

rapid, reproducible, separation and identification of drugs, explosives and precursors, with 

extended use to a wide range of hazardous materials obtained from substrates, liquids 

and solids for laboratory and field operations. The use of IRS as a detection/identification 

technique arises from the need to identify, in a reliable way, the components separated 

by TLC. IRS has a high discrimination capability and therefore in principle is a powerful 

identification method. If reference spectra are available, almost all analytes, including 

structural isomers, can nearly be unambiguously identified based on their IR spectrum. 

Thus TLC-IRS technique changes from a presumptive analysis (when TLC alone is used) 

to a confirmatory analysis when hyphenated to IRS. When reference spectra are absent, 

valuable information about the molecular structure of the analyzed compounds may still 

be obtained by spectral interpretation.  

Up to now, the combination of TLC and IRS has been approached in two ways. In the first 

approach FT-IR measurement is performed in situ, that is, the separated compounds are 

analyzed directly on the TLC plate upon transferring to the sample compartment of a FT-

IR. Using this method, spectral interferences can be expected as almost all TLC 

stationary phases have intense absorption bands in the MIR region. The second 

approach is usually more laborious and involves the transfer of analyte from the TLC plate 

to an IR-transparent substrate prior to FT-IR measurements. Over the years, research 

has shown that in situ as well as transfer methods can be effective and useful, each 

having specific advantages and limitations [18]. 

The first in situ FT-IR detection of spots on a plate was demonstrated by Percival and 

Griffiths [19]. A thin layer (depth: 100 μm) of adsorbent on an IR transparent support 
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(AgCl) allowed IR transmission measurements of dyes and amino acids at the 1-10 μg 

levels. In later studies, detection limits were improved by application of mulling oil to TLC 

plates to reduce IR scattering [20, 21]. In 1978 Fuller and Griffiths [22] demonstrated the 

viability of diffuse reflectance IRS (DRIRS) in measurements of methylene blue on a silica 

plate. Since then, DRIRS has become the most commonly used method for performing 

in situ TLC detection with FT-IR. Several studies have been performed to explore the 

potential of TLC-DRIRS analysis [23-26]. These studies, extensively reviewed by Brown 

and Beauchemin [27], revealed that various conventional TLC phases, such as silica, 

alumina, cellulose and reversed-phase materials can be used in combination with DRIRS 

yielding minimum identifiable quantities (identification limits) down to about 1 μg. The 

main difficulty encountered in using DRIRS as an in situ detection method for TLC is the 

strong absorption background of the adsorbent material, which causes serious 

interferences in particular spectral regions. For example, silica gel absorbs strongly in the 

regions from 3100 to 3700 cm-1 and from 1600 to 800 cm-1, obscuring possible analyte 

absorptions at these frequencies. Consequently, the DRIRS spectrum of a TLC spot is 

divided into main parts: spectral areas where sensitivity is high and appropriate to obtain 

analyte information and spectral regions where the signal-to-noise ratio is poor and only 

minimal information can be extracted. 

Danielson et al. reported on the use of a zirconium oxide as TLC stationary phase in 

combination with DRIRS analysis [28, 29]. Zirconia showed significantly higher IR 

reflectivity than silica or alumina resulting in only moderate background interferences. 

Zirconia has relatively much lower absorption over the range 4000 – 1100 cm-1 than either 

silica or alumina, and thus larger coverage of the MIR region is available for observing 
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adsorbate bands. When TLC was performed in zirconia-packed microchannels, small 

analyte spots were obtained and subsequent use of microscopic DRIRS analysis yielded 

detection limits in the 1 to 10 ng range for several dyes [29]. 

The development of more powerful IR sources gave rise to collimated, coherent and 

polarized sources. These sources were first developed at Bells Labs in 1994 with the 

invention of quantum cascade lasers (QCLs) [30, 31]. QCLs are commercially available 

and portable setup allowing detection of chemical and biological threat compounds in the 

field like explosives such as TATP, PENT, RDX, and TNT [32-36]. Coupling with 

chromatographic techniques, such as thin layer chromatography (TLC) with QCL 

spectroscopy to sense for explosives in the field has not been reported before. This 

justifies the usefulness of coupling thin layer chromatography (TLC) techniques with QCL 

spectroscopy (QCLS) to sense for explosives in the field.  

TLC-QCLS, as a portable hyphenated technique for explosives analysis, will be most 

commonly used in two situations: (1) post-blast examination, (2) identification of 

suspected explosive material (pre-blast analyses on bulk material). In a post-blast 

situation, preliminary results can lend support to the link between multiple incidents or 

between a terrorist incident and the organization potentially responsible for the incident. 

This portable hyphenated technique can provide critical information in the identification of 

suspected explosive material. In these situations, portable instrumentation has a two-fold 

advantage: (1) the speed with which results can be obtained and (2) removing the need 

to transport potentially dangerous materials back to a central laboratory. Identification at 

a scene enables informed decisions to be made concerning render-safe procedures and 

the transportation of materials. This is of particular importance when extremely sensitive 
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explosives, such as organic peroxides, are suspected. When portable instruments are 

utilized at searches authorized by search warrants, preliminary results can be used to 

indicate areas where more efforts should be directed. Preliminary results can also give 

advanced warning of which types of explosives may be encountered at a scene and 

hence enable searchers to be better informed about the safety risks at a particular scene. 

In this study, a methodology that allows explosives detection, such as TNT present in real 

world soils and in complex substrates using TLC-QCLS is used. The methodology tested 

allow rapid and reproducible separation and identification of targeted explosives at near 

trace level (~ng) in the field in short time. The results show to TLC-QCLS as a hyphenated 

technique for chemical analysis. 

 

4.2 EXPERIMENTAL 

4.2.1 Materials and reagents 

Reagents used were explosive materials known as PETN, RDX, and TNT. PETN was 

prepared in the laboratory. Methanol (99.9%, HPLC grade), dichloromethane (CH2Cl2, 

HPLC grade), acetone (99.5%, GC grade) were purchased from Sigma-Aldrich 

(Milwaukee, WI, USA) and were used as solvents to prepare standard solutions of 

explosive. All solvent used as mobile phase (reactive grade) like acetone, hexane, 

cyclohexene, ethyl acetate, toluene, methanol, petroleum ether, dichloromethane used 

were purchased from Sigma-Aldrich (Milwaukee, WI, USA). Silica gel plates Aluminum 

TLC plates (Merck, TLC Silica gel 60 F254) was used for chromatographic runs. ZrO2 and 

CaF2, used as stationary phases, were purchased from Sigma-Aldrich. 
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4.2.2 Sample Preparation: TLC  

The developing chamber for TLC was a jar with a lid, to which the solvent (or mix solvents, 

5 mL) was added to a depth of just less than 0.5 cm. The jar was allow to stand for the 

saturation of the TLC chamber with solvent vapors while the silica gel plate was prepared. 

TLC plates used were cut to a convenient size of 2 cm width x 9 cm tall and were carefully 

managed to avoid damage or contamination of the adsorbent layer. Then a line was 

drawn across the plate TLC plate 1.5 cm from the bottom using a graphite pencil. Then 

10 µL of the explosive material dissolved in methanol were place at the center of the 

marked line by then gently touching the TLC plate and the methanol was allowed to 

evaporate. The prepared TLC plate was placed in the developing chamber and covered. 

The TLC plate was allowed to develop until the solvent was about 0.5 cm centimeter 

below the top of the plate. Then the plate was immediately removed from the developing 

chamber, and the solvent front was marked with the graphite pencil and allowed dry. If 

there were any colored spots, these were circled lightly with the graphite pencil. If the 

samples are not colored (target explosives) these were visualized using a UV lamp (λ = 

254 nm) and then marked with circles. The distances traveled by the solvent and the 

explosive materials (spots) were measured and Rf values determined. The spot diameter 

of the sample on the plate of silica before and after the chromatographic run were 

measured and compared. 

ZrO2 and CaF2 powder were deposited on metal supports. TLC using ZrO2 and CaF2 

transferred to mini channels (w = 5 mm; d = 0.2 mm; l = 700 mm) made on aluminum 

plates of dimensions 250 mm x 5 mm x 700 mm on which stationary phases were 
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deposited using aqueous/organic suspensions. Then, a similar approach as used silica 

gel TLC was employed to prepare the ZrO2 and CaF2 plates. 

 

4.2.3 Experimental Setup 

Explosives solutions containing from 0.39 µg to 100 µg were transferred as already 

discussed using micropipettes to perform their respective chromatographic runs, and 

spots were identified using the UV lamp. Finally, each spot was interrogated using QCLS 

to obtain diffuse reflectance MIR spectra and to identify its characteristic vibrational 

signatures. Figure 4-1 shows an overview of the experiment setup used. Taking into 

consideration the setup illustrated in Figure 4-1b, the configuration used to record 

vibrational spectra was operated in transflectance mode, since the matrix that contains 

the samples (separated explosives) is a dielectric material with lower reflectivity than 

metals. 
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Figure 4-1. Experimental setup: (a) sample preparation, extraction, and separation from 

matrices; (b) in situ QCLS spectral measurements; (c) spectroscopic analysis. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Preparation of ZrO2 TLC 

For the preparation of ZrO2, different amount ZrO2 wer added to 1 mL of solvent. The 

solvents used were water and methanol. The amount of ZrO2 were varied from 0.1 to 0.3 

g by mL of solvent. When methanol was used, non-homogeneous layers of ZrO2 were 

obtained. When water was used, segregated layers of the materials were obtained. 

However when a water/methanol mix of solvents was used, homogeneous ZrO2 layers 

were obtained. Figure 4-2 shows some results of preparation of ZrO2 using different 

solvents. 

 

 

 

Figure 4-2. Preparation of ZrO2 TLC using different solvents. 
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4.3.2 TLC: TNT and PETN  

The best mobile phase to separate TNT (Rf = 0.75 ± 0.05) and PETN (Rf = 0.63 ± 0.06) 

was the mixture hexane:toluene (1:4). Toluene demonstrated to be a good mobile phase 

to separate both explosives: TNT (Rf = 0.9) and PETN (Rf = 0.76). The mobile phases 

dichloromethane, hexane:toluene (2:3), methanol:toluene (4:1), hexane:acetone (2:3), 

hexane:acetone (1:4), toluene:acetone (1:1), hexane:ethyl acetate (1:1) and 

hexane:acetone (1:1) showed the same affinity for both explosives (TNT and PETN), so 

they are not suitable as mobile phases for separation of these compounds by TLC. Table 

4-1 shows the results for Rf values for TNT and PETN in some mobile phases used.  

Table 4-1. Rf values of TNT and PENT mixture on different solvent systems. 

 

TNT PETN

Dichoromethane 0.87 0.87

Toluene 0.90 0.76

Hexane:Toluene (1:1) 0.45 0.30

Hexane:Toluene (1:4) (n=6) 0.81 – 0.81 0.68 – 0.72 

0.72 – 0.73   0.61 – 0.61

0.70 – 0.70 0.58 – 0.58

Hexane:Toluene (2:3) 0.50 0.50

Methanol:Toluene (1:1) 0.66 0.70

Methanol:Toluene (4:1) 0.83 0.83

Hexane:Acetone (4:1) 0.26 0.16

Hexane:Acetone (2:3) 0.96 0.96

Hexane:Acetone (1:4) 1.00 1.00

Toluene:Acetone (1:1) 0.98 0.98

Hexane:Acetone (1:1) 0.63 0.63

Hexane:Ethyl acetate (1:1) 0.85 0.85

Solvents (Mobile phase)

Rf  value
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4.3.3 Spectral profiles of high explosives on various stationary phase 

Figure 4-3a shows the infrared spectra of the substrates used as stationary phases (BaF2, 

CaF2, ZrO2 and silica gel) using a bench FT-IR (IFS/66v, Bruker Optics, Billerica, MA) 

and KBr pellet. Silica gel is the most used stationary phase in TLC separations. However 

when infrared measurements are made directly on the stationary phase, silica gel has a 

strong absorption in the range 900-1400 cm-1 spectral range where explosives have 

strong bands. When QCLS spectra of explosives deposited and on silica gel, many of the 

vibrational bands of the explosives were masked by the strong MIR absorption of silica. 

Figure 4-3b show the effect of the silica gel on the vibrational bands of PETN and DNT 

present around 1300 cm-1 for PETN and 1350 cm-1 for DNT when KBr is used as 

background.  
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Figure 4-3. (a) Spectra form different stationary phases (BaF2, CaF2, ZrO2 and silica gel) 

used to TLC. (b) Spectra of DNT and PETN on silica gel-TLC. 

 

The spectra shown in Figures 4-4 to 4-6 demonstrate that TLC-QCLS method can be 

applied successfully for the identification of explosives. Spectra of 2,4-DNT and TNT on 

silica gel TLC  are illustrated in Figure 4-4, in which characteristic bands at ~ 1350 cm-1 

and ~ 1530 cm-1 can be clearly observed. 
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Figure 4-4. Explosives spectra on Silica Gel-TLC. (a) 2,4 DNT spectrum, (b) TNT 

spectrum. Silica gel was used as background. 

 

Taking into account the disadvantages of silica gel due to its strong IR absorption in the 

spectral range of interest, other substrates were explored as stationary phases. The 

candidates selected were CaF2 and ZrO2. These compounds do not show IR interfering 

vibrational bands in the spectral region where explosives materials have strong IR 

absorption bands. Figure 4-3a shows the spectra for CaF2 and ZrO2 which have no IR 

vibrational information in spectral range of analytical interest. 
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Figures 4-5 shows the IR spectra of TNT, DNT PETN and urea nitrate (UN) after these 

were analyzed using ZrO2 as stationary phase. Figure 4-6 shows the IR spectra of PETN 

and 2,4-DNT when these were analyzed using CaF2 as stationary phase. In both cases 

the stationary phases did not present highly interfering IR bands from the inorganic 

substrates. 

 

Figure 4-5. Explosives spectra on ZrO2-TLC. Baseline correction was applied to each 

spectrum. 
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Figure 4-6. Explosive spectra on CaF2-TLC. Baseline correction was applied to each 

spectrum. 

 

4.3.4 TNT quantification profiles using TLC 

The spectra shown in Figure 4-7 demonstrate that TLC-QCLS can serve as an excellent 

platform to devise analytical methods useful for identification and quantification of 

chemical targets. QCL spectra of TLC runs of TNT at various concentrations (0.39 to 12.5   

µg / spot) were very similar TNT reference spectrum obtained from the literature. 

Characteristic bands of TNT at 1350 cm-1 and 1530 cm-1 were tentatively assigned. Even 

at low concentrations as 0.39 µg (390 ng), TNT prominent IR bands at 1350 cm-1 can be 

clearly appreciated. 
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Figure 4-7. TNT spectra in different concentrations on silica gel-TLC. Baseline correction 

and smoothing (25 pt.) was applied to each spectrum. 

 

4.4 CONCLUSIONS  

TLC can be employed for rapid separation and identification of low levels of explosive 

materials complex samples. It can be utilized with various explosive materials, including 

home-made explosive materials, military explosives, and propellant stabilizers. The best 

mobile phase to separate TNT (Rf = 0.75 ± 0.05) and PETN (Rf = 0.63 ± 0.06) was the 

mixture hexane:toluene (1:4). The spot diameters before and after the chromatographic 

run, in most cases were approximately ~ 0.5 cm. The results show that TLC-QCLS is a 

useful tool to detect trace concentrations of explosives as low as 0.39 µg (390 ng). 
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VIII. CHAPTER 5 

ACTIVE MODE REMOTE INFRARED SPECTROSCOPY 

DETECTION OF TRINITROTOLUENE AND 

PENTAERYTHRITOL TETRANITRATE ON ALUMINUM 

SUBSTRATES 

 

OVERVIEW  

Two remote infrared spectroscopy (RIRS) detection systems were assembled using an 

infrared telescope coupled to a Fourier transform infrared spectrometer, a cryo-cooled 

MCT detector, and a telescope-coupled mid-infrared excitation source. Samples of 2,4,6-

trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN) deposited on aluminum 

plates were detected at several source-target distances by performing remote infrared 

detection measurements on the aluminum substrates in active mode. The samples tested 

were placed at various distances (1-30 m) for the standoff IR detection experiments. The 

effect of angle of collection of the reflected IR beams on S/N and vibrational band 

intensities were evaluated. All experiments were performed at ambient temperature. 

Several TNT and PETN surface concentrations were investigated. Partial least squares 

regression analysis was applied to spectra obtained. Overall, active mode RIRS detection 

was successful for quantifying highly energetic materials deposited on the aluminum 

plates with high confidence level up to source-target distances of 1-25 m. 
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5.1 INTRODUCTION 

The detection and identification of high energetic material (HEM), commonly called 

explosives, is a subject that has become a heightened priority in recent years for 

homeland security and counter-terrorism applications [1-3]. Law-enforcement and 

forensic agencies have continued interest in promoting research and development 

activities for efficient sensing systems than help to detect explosives at a distance at 

public places such as airports, maritime facilities, railway and bus stations, large 

auditoriums, and stadiums. This way it is expected that damage from terrorists activities 

can be minimized or prevented in most cases [3].  

Researches on development of sensors than to allow analytical procedures to enable 

faster, more sensitive, less expensive, and simpler means to detect trace detection of 

explosives has increased in recent years [4]. Modern detection systems are routinely 

used to prevent these events. These are based on ionization techniques accompanied 

with separation schemes, pyrolysis, gas phase reactions, interaction of highly HEM with 

radiation, colorimetric tests, immunochemical reactions between HEM and specific 

antibodies, etc. The techniques have shown be useful for explosive detection in different 

phases (solid, liquid and gas) on different substrates or complex matrixes (as soil, water, 

and air) [4-9]. However, in the greater part of the cases, they require some sort of sample 

preparation for subsequent chemical analysis. 

Taking advantage that each chemical substance has its own distinctive fingerprint 

spectrum, vibrational techniques such as Raman spectroscopy (RS) and Fourier 

transform infrared spectroscopy (FT-IRS) have several advantages over other analytical 

techniques that make them ideal for the identification of a wide range of explosives and 
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related compounds. Some of these advantages are: the possibility analyzing samples in 

various physical states and mixtures, both techniques can be utilized with no or minimal 

sample preparation, minute explosive particulates can be readily analyzed if 

spectrometers include microscope-based systems, remote detection systems or portable 

spectrometers can be built, and sample analysis can be achieved in a short time 

(seconds) [3,7]. These techniques have been used to characterize, detect, quantify and 

discriminate HEM, biological and chemical agents (or their simulants), toxic industrial 

compounds, and other threat substances [10-13]. These techniques have the added 

advantage that they can be used in point detection and in hyperspectral imaging mode. 

Remote detection is the operational capability in which the instrumentation and operator 

remain separated from the sample by some distance (range) while measuring some 

property of the target [14]. Remote IR spectroscopy (RIRS) is an analytical method able 

to detect and to identify explosives at long distances are in great demand by security 

agencies in order to be able to anticipate the threat from a safe distance and to guarantee 

personal safety. In RIRS detection, infrared vibrational signatures can be obtained at 

distances of a few meters to several tens of meters between the target and operator. This 

modality of detection provides a way of performing real-time analysis, in which no sample 

preparation or operator contact is required, rapid cycle times are typical and enough 

chemical information of each HEM can be obtained to either identity, quantify or 

discriminate from interfering signals from other substances. These capabilities make 

RIRS a useful technique for sensing for HEM, and they further prevent or minimize the 

possible damage caused by terrorist action in the case that the energetic material sets off 

[13]. 
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RIRS detection using FT-IR is the most versatile of the spectroscopy-based technologies 

because it can measure the presence of many chemicals deposited on substrates at trace 

level at a distance [15]. Important contributions to the development application are briefly 

discussed. Pacheco-Londoño et al. built an active IR standoff detection system by 

coupling a bench FT-IR interferometer to a gold mirror and detector assembly for 

detection of trace amounts of TNT and RDX explosives on reflective surfaces in the range 

of 1.0–3.7 m [16]. Suter et al. studied the spectral and angular dependence of scattered 

MIR light from surfaces coated with explosives residues (TNT, RDX, and Tetryl) at a 2 m 

distance [17]. An external cavity quantum cascade laser provided tunable illumination 

between 1250 and 1428 cm-1 was used. Kumar and collaborators measured the diffuse 

reflection spectrum of solid samples such as explosives (TNT, RDX, PETN), fertilizers 

(ammonium nitrate, urea), and paints (automotive and military grade) at a distance of 5 

m using a mid-infrared supercontinuum light source with 3.9 W average output power 

[18]. 

In this report, FT-IR standoff detection experiments were performed. RIRS experiments 

were carried out in active mode using telescope-coupled MIR source. Effect of detector-

target angle on IR the spectrum of PETN was evaluated. Analyses of data was based on 

multivariate partial least squares (PLS) regression calibrations. Statistical parameters 

such as the root mean square errors of cross-validations (RMSEVC) and coefficients of 

determination (R2) were used as criteria to judge the quality of the data obtained in the IR 

detection methodology. 
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5.2 EXPERIMENTAL 

5.2.1 Reagents 

The reagents used included HEM and solvents. 2,4,6-Trinitrotoluene (TNT) was acquired 

from ChemService, Inc. (West Chester, PA) as crystalline solid (99%, min. purity; 30% 

water content). PETN was synthesized and purified in the laboratory according to the 

methods described by Ledgard [19]. Methanol (99.9%, HPLC grade), dichloromethane 

(CH2Cl2, HPLC grade) and acetone (99.5%, GC grade) were purchased from Sigma-

Aldrich Chemical Co. (Milwaukee, WI) and were used to deposit the explosives samples 

at different surface concentrations onto the aluminum (Al) plates used as substrates. 

 

5.2.2 Sample Preparation  

Sample preparation is an important step in remote detection experiments for detection of 

analytes present as trace residues deposited as contaminants on substrates. A sample-

smearing technique was used to deposit HEM samples onto the metal substrates [13]. 

Aluminum plates of dimensions 1.0 ft. x 1.0 ft. (930 cm2) were used as sample holders for 

the HEM targets. Acetone was used to clean the aluminum substrates. After cleaning, 

plates were allowed to dry before depositing the desired target HEM. A small amount of 

dichloromethane or methanol was used to dissolve the HEM samples to be deposited on 

the test substrates. Then, a Teflon stub 3 cm  15 cm was used to smear the samples on 

the Al plates. The amount of HEM that remained on the Teflon stub after sample smearing 

was negligible. The nominal surface concentrations obtained by the smearing technique 

used were: 50, 100, 200, 300 and 400 µg/cm2. 
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5.2.3 Experimental Setup 

After dosing the Al plates with the desired nominal surface concentration, these were 

located at the target positions. Ambient temperature, plate temperature, and relative 

humidity were continuously monitored during the course of the experiments. Finally, RIRS 

detection experiments in active mode were carried out using two optical systems as is 

illustrated in Figure 5-1a and 5-1c. In the first system, a heated oxide source (globar) was 

coupled to a commercial MIR reflective telescope (Bruker Optics) as illustrated in Figure 

5-1a. In the second optical system, the globar source was coupled to a home built a MIR 

refractive telescope as is shown in Figure 5-1c. 

 

 

Figure 5-1. FT-IR interferometer configuration; (a) active mode setup for standoff 

measurements using reflective telescope: 1. IR source; 2. Al plate. (b) Plate mount; 3. 

Tilting mount. (c) Active mode setup for standoff measurements using refractive 

telescope. 

In the remote sensing experiments, the IR beam from globar source was not modulated 

by the interferometer before interacting with the target and sat side-by-side to the MIR 
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1a). The experiments were done in back-reflection mode. The FT-IR spectrometer used 

(Figure 5-1a and 5-1c) was an open path interferometer, model EM27 (Bruker Optics, 

Billerica, MA). The optical bench consisted of a compact, enclosed, and desiccated 

Michelson type interferometer equipped with ZnSe windows, an internal blackbody 

calibration source, a KBr beamsplitter, a very fast native focal ratio of f/0.9 and a field of 

view (FOV) of 30 mrad (1.7). For optical system shown in Figure 5-1a, the transmitter 

source telescope had a diameter of 6 in., a focal ratio of f/4, and gold-coated mirrors with 

a FOV  7.5 mrad (0.43). The receiver telescope was also 6 in. diam. and had an f/3 

focal ratio and gold-coated mirrors with a FOV of 10 mrad (0.57). In the second optical 

system (Figure 5-1c), the transmitter source telescope consisted of a set of three lenses 

of ZnSe. Lenses had a diameter of 4 in., a focal length (f) of 100 mm for bi-convex lens, f 

of -1000 mm for a plano-concave lens, and f of 1000 mm for plano-convex lens. The 

receiver telescope was the same as in the optical system 1. In these experimental setups, 

the targets were carefully aligned with the source and collector. To accomplish this, the 

metal plate was placed on a mount that allowed millimeter translations both 

horizontally and vertically, as illustrated in Figure 5-1b. The target-collector distances 

studied were 1, 4, 8, 12, 16, 20, 25 and 30 m. Ten spectra were acquired for each sample 

at 20 scans/spectrum and 4 cm-1 resolution. Spectra were recorded in the spectral range 

from 1400 to 750 cm-1. The experiments were performed at ambient temperature (~ 25 

C). 

IR signals were detected using a MIR closed cycle (Stirling cooled) photoconductive MCT 

detector with D*max ~ 4x1010 cmHz½/W. Background spectra of Al plates with no HEM 

deposited on them were run for every remote distance studied. Data analyses were based 
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on chemometrics multivariate analyses. In particular, PLS regression analysis was used 

to perform quantification studies of the HEM surface concentrations at all remote 

distances studied. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 HEM Standoff Detection 

Signal to noise ratios (S/N) plotted as a function of the distance for active mode spectral 

measurements of TNT are shown in Figure 5-2, using optical system 1. Results for 

surface concentrations of 400 µg/cm2 deposited on Al plates are shown. The S/N initially 

decreased linearly with range (see Figure 5-2, black circles; slope: -0.95 ± 0.02 m-1). 

However, when the remote detection distance was larger than 12 m the signal decreased 

at an even steeper slope (-2.3 ± 0.5 m-1) reaching a S/N of ~ 3 at a distance of 24 m. The 

decrease of collected signal did not allow measuring the S/N for the entire distance range 

planned (to 60 m), making the measurements accurate up to 25-30 m. The two linear 

decreases in collected signal were calculated from fitting of the data and are shown as 

black and gray dotted lines in Figure 5-2. The difference in slope in the regions I: 4-12 m 

and II: 12-25 m suggested a fundamental reason for the behavior and led to 

measurements of the spot size of the MIR beam at the target plane. As shown in the 

graph, the spot diameter is smaller than the target size in region I; it is exactly equal to 

the target at 12 m; and is larger than the target in region II. A linear dependence of the 

spot diameter with the remote distance is also shown in Figure 5-2. When a MIR thermal 

source (globar) was used to accomplish these transflectance measurements in active 

mode the peak intensities decreased as the distances increased. At distances larger than 
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25 m, it was not possible to visually detect some of the TNT vibrational signatures. This 

result was expected since as shown in Figure 5-2, the distance for the threshold S/N of 3 

is 24 m in active mode. Furthermore, the density of infrared radiation that is transferred 

to the Al plates from the MIR source diminishes as a function of distance, leading to a 

smaller number of excited molecules at the target. Therefore, the detector could not 

register the transflection of the low-intensity vibrational signals.  

The active mode MIR spectra for TNT deposited on Al plates at several distances and 

surface concentrations are shown in Figure 5(a), using experimental configuration 

illustrated in Figure 5-1(a). A reference spectrum for TNT is also included. The latter was 

obtained by preparing a pellet of 1 mg microcrystalline TNT in 100 mg KBr and measuring 

the absorption spectrum at the macro sample chamber of a bench top interferometer (IFS-

66v, Bruker Optics, Billerica, MA). Solid black line labeled “Reference”. Upon inspection 

of these spectra, it is evident that the most significant TNT vibrational signatures were 

detected in the remote sensed measurements. In particular, an intense vibrational band 

at about 908 cm-1 was tentatively assigned to the C-N stretching, a vibrational band at 

938 cm-1 was assigned to the C–H out-of plane bend (ring) and the symmetric stretch 

band of the nitro groups appeared at 1350 cm-1. These results are all due to conjugation 

of the nitro groups with the aromatic ring, which agree with result from Pacheco-Londoño 

et al. [16], Clarkson et al. [20] and Castro-Suarez et al. [21].  
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Figure 5-2. Ratio signal to noise (P-P; principal “y” axis) at various distances for active 

mode. IR beam spot size (secondary “y” axis) vs. range. Noise levels were measured at 

830-870 cm-1 and peak heights were measured for signal at 790 cm-1. 

 

These spectra were not subjected to any pre-processing routine, such as offset 

correction, baseline correction, smoothing, or water vapor rotational lines removal. In 

other words, there was no common baseline for these spectra, and some spectra 

exhibited positive intensity ramps to higher wavenumber values. However, an increase in 

signal intensity as a function of the surface concentrations was also clearly shown without 

the use of chemometrics routines. 
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The spectral band shapes observed in remote detection mode, shown in Figure 5-3a, are 

superimposed on a ramp-shaped background, and the bands themselves exhibit strong 

reflective band profiles. Since these measurements were done on a reflective metal 

substrate, the distortion of the band profiles is expected; similar effects have been 

reported in DRIFT (diffuse reflection infrared Fourier Transform) spectroscopy [22] and in 

microscopically acquired infrared spectra of microspheres [23]. In both cases, the 

distortion of the absorptive line shapes is because within an absorption peak, the 

reflective index undergoes anomalous dispersion. In spectroscopic experiments carried 

out in reflectance mode, a mixing of the absorptive and dispersive line shapes can occur, 

resulting in bands that have a negative dips at the high wavenumber side of the peak. 

This will shift the peak maximum by up to 15 cm-1 toward lower values [24]. Moreover, 

mixing of absorptive and reflective line shapes can also be mediated by scattering effects, 

which could also produce significant band distortions [23]. A paper on line shape distortion 

effects in infrared spectroscopy by M. Miljković and et al. addresses the conditions under 

which mixing of reflective and absorptive band shapes will occur, and discusses the 

methods that have been developed to correct the spectral distortions [25]. In a recent 

paper by Castro-Suarez and et al. demonstrated that these spectra shown in Figure 5-3a 

have the appearance of “double pass” transmission-reflection (transflectance) spectra 

[21]. Transflection experiments are usually made by placing a thin target sample on a 

non-IR absorbing, reflective substrate such as a polished metal surface, focusing an IR 

beam onto a region of interest, and collecting the radiation that is reflected to the collection 

optics. The technique is termed transflection because most of the signal intensity 



104 

 

collected is a transmission signal as the beam passes through the sample, reflects off the 

substrate, passing through the sample again to the detector [24, 26]. 

 

 

Figure 5-3. (a) Active mode standoff FT-IR spectra of TNT deposited on an Al plate 

measured at several distances: 8, 20, 30 m and surface concentrations: 400 g/cm2 and 

50 g/cm2; (b) active mode standoff FT-IR spectra of PETN deposited on an Al plate and 

black painted Al measured at 4 m. 
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The active mode MIR spectra for PETN deposited on Al plates at several remote 

distances and surface concentrations are shown in Figure 5-3b, using the experimental 

setup illustrated in Figure 5-1c. This optical system was designed to overcome the 

limitations of the optical system illustrated in Figure 5-1a. Among the limitations of the 

telescope system previously used was the inability to focus at a certain distance, which 

did not allow having control of the size of the image that illuminates the target at the 

variable distance, as is shown in Figure 5-2. The size of the image increases as the 

distance increases when optical detection system shown Figure 5-1a is used, since it was 

designed for open path measurements. A reference spectrum for PETN is also included 

in Figure 5-3. These spectra contains the most significant vibrational bands detected in 

the remote sensed measurements. For PETN in Figure 5-3b, some of the important 

signatures have been tentatively assigned according to reported values. These 

correspond to 703 cm-1 (ON stretching + NO2 rocking), 753 cm-1 (ONO2 umbrella), 869 

cm-1 (ON stretching), 939 cm-1 (CH2 torsion), 1003 cm-1 (CO stretching), 1038 cm-1 (NO2 

rocking), 1272 cm-1 (ONO2 rocking), 1285 cm-1 (NO2 stretching) and 1306 cm-1 (NO2 

rocking) [27]. These spectra were not submitted to any pre-processing routines, such as 

offset correction, smoothing or water vapor rotational lines removal. In other words, there 

was no common baseline for these spectra, and some spectra exhibited positive intensity 

ramps to higher wavenumber values. However, an increase in signal intensity as a 

function of the surface concentrations showed clearly without the use of chemometrics 

routines. 

Remote detection of PETN deposited on piece of black painted metal car chassis (Nissan 

Sentra 1985) is shown is Figure 5-3b (green spectrum). This spectrum has inverted peaks 
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when compared with spectrum taken from Al (black spectrum). Although both spectra 

were recorded in transflection mode, this shows the effect of the nature of substrate on 

the spectral profile of target, when active mode IRS is used for the remote measurements. 

In transflection experiments, as described above, the recorded spectra are a weighted 

sum of the transmission and reflection characteristics of the samples and substrates. in 

samples with high reflectivity substrates the weighting is such that the transmission signal 

dominates and the reflection signal is negligible, producing spectra closely resembling 

that of a transmission spectrum, as is the case for PETN on Al (black spectrum). However, 

if the transmission signal is weak or inexistent, the reflection signal will dominate, and a 

reflectance spectrum is obtained, this can be visualized in Figure 5-3b, green spectrum. 

Castro-Suarez, et al. discuss further the spectral profile of target on non-reflective 

substrates [21]. 

 

 

Figure 5-4. Vibrational bands intensity and S/N in different angle of collection for PETN 

(200 µg/cm-2). 
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In active mode RIRS detection of targets deposited on metal surfaces, the signal strength 

is highly dependent on the alignment between IR source-target-detector. Therefore, a 

study of the effect that had the angle of collection (ϴ) of the IR beams on the intensity of 

the vibrational signal was necessary. In this setup, ϴ is the angle between source/target 

and target/detector. The influence of the angle of collection on the signal to noise ratio 

(S/N) of two vibrational bands of PETN deposited on Al metal (at 200 µg/cm2) is shown 

in Figure 5-4. The optical system illustrated in Figure 5-1c, detection was used at 1 m. 

Bands analyzed were those about 970-1025 cm-1 and 1025-1080 cm-1. The band intensity 

was taken as the average height of 5 spectra. The noise intensity was taken as the 

average height of 5 spectra, both represented in units of –Log(R/Ro) in the spectral range 

1105-1130 cm-1. The S/N was calculated as the peak-to-peak ratios (P-P) between band 

intensities and noise. The intensities of the bands and S/N were calculated by varying the 

angle of collection from 1 to 80, as is illustrated in the Figure 5-4. The intensities of the 

two bands decreased to about 50% and 25%, when the collection was angle changed 

from 1 to 2, and from 1 to 5, respectively. For collection angles larger than or equal to 

10 the intensity decreased drastically compared to that of 1. For this angle, the decrease 

in intensity depended on the spectral band selected. For 1038 cm-1 band, reduces the 

intensity of 0.05 (ϴ = 1) to ~ 0.004 (ϴ > 10), the intensity decreases to 8% when 

compared to ϴ = 1. However, for the 1003 cm-1 band intensity decreases of 0.056 (ϴ = 

1) to ~0.008 (ϴ > 10), the intensity decreases to 14% when compared to ϴ = 1. As 

shown in Figure 5-4, in collection angles 35 to 50 degree, both spectral bands showed an 

increase in intensity, this result is not yet well understood, despite that was reproducible 

in all experiments. The graph S/N vs. angle of collection, inserted into the Figure 5-4 has 
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a similar behavior to graph of intensity vs. angle of collection. At small angles (ϴ = 2 or 

5), the S/N decreases drastically. However, even in ϴ = 80, the values for the S/N is 

equal to eight, so the target characteristic spectral bands can still be detected, because it 

is five units higher that limit of detection S/N = 3. 

 

5.3.2 HEM Quantification using PLS Regression 

The partial least squares-1 (PLS-1) regression algorithm from Quant2™ software of 

OPUS™ (v. 6.0, Bruker Optics) was used to find the best correlation function between 

the spectral information and the surface concentrations [28]. Calibrations were performed 

using PLS-1 in which only one component can be analyzed separately, instead of 

simultaneously analyzing multiple components, as in the PLS-2 routine of chemometrics. 

PLS-1 regressions were used to generate chemometrics models for all of the remote 

distances studied. In addition, CV were made, and the root mean square errors of cross-

validations (RMSECV) and coefficient of determination (R2) were used as measures of 

the quality of the correlations obtained at the various remote distances studied. 

Statistical parameters for the regression models based on PLS-1 were performed using 

the whole spectral region (from 700 to 1400 cm-1), where the nitro symmetric stretch and 

aromatic C-H vibrations occur in these compounds. Ten replica spectra were used for 

each tested sample. In the models obtained, it was not necessary eliminate any spectrum. 

The method of leave-one-out cross-validation (LOOCV) was used, where each of the “n” 

calibration samples is left out, one at a time, and the resulting calibration models were 

used to evaluate the sample left out, which acts as an independent validation sample and 
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provides an independent prediction of each dependent variable. This process of leaving 

a sample out was repeated until all of the calibration samples had been left out. 

Data preprocessing is an important step in performing chemometrics calibrations. To 

ensure reproducibility on the calibration samples, ten spectra of each sample (fixed 

surface concentration and remote distance) were acquired. The following data 

preprocessing steps were tested: vector normalization, first derivative, and second 

derivative. However, no preprocessing routine or combination of preprocessing routines 

of the data worked best. Therefore, data preprocessing steps were not applied for 

achieving the best possible values for RMSECV and R2 in the spectral region from 700 

to 1400 cm-1 other than applying mean centering to each spectrum [28]. Overall, the 

results indicate that the experimental setup used had good management of the external 

variables, such as humidity, temperature changes, and concentration of the samples 

deposited on the aluminum plates. 

Figure 5-5a shows the results obtained for the CV carried out for TNT spectra measured 

using experimental setup shown in Figure 5-1a at distances of 20 m and for 25 m of in 

active mode, represented as black dots and unfilled squares, respectively. Table 5-1 

shows the results of RMSECV and R2 obtained in the PLS models generated. In these 

correlation charts, each point represents ten spectra with a fixed surface concentration 

(0, 50, 100, 200, 300, or 400 µg/cm2). All the correlation charts of predicted surface 

concentration values vs. true surface concentration values for 4, 8, 12 and 16 m were 

similar to the correlation chart for 20 m remote distance (Figure 5-5a, black dots). 

However, as the remote distance increased beyond 20 m some of the spectral information 

fell below the quantification level causing the spectra for each sample to not to be identical 
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with each other (within experimental error) and making it difficult to predict the surface 

concentration (Figure 5-5a unfilled squares). 

 

 

Figure 5-5. (a) Predicted vs. true coverage for TNT explosives on Al plates at different 

standoff distances: 20 m and 25 m. (b) Predicted vs. true coverage for PETN explosives 

on Al plates at different angle of collection: 1 and 60. 
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Table 5-1. PLS calibration parameters for the different analyzed standoff distance. 

Distance 
(m) 

R2 RMSECV Rank Spectral range (cm-1) Preprocessing 

4 1 0.457 8 1400-700 Mean centering 

8 1 0.434 7 1400-700 Mean centering 

12 1 0.676 8 1400-700 Mean centering 

16 1 0.736 9 1400-700 Mean centering 

20 0.9999 1.08 9 1400-700 Mean centering 

25 0.9367 34.6 5 1400-700 Mean centering 

30 0.8553 53.5 9 1400-700 Mean centering 

 

Figure 5-5b shows the results obtained of cross-validations carried out for PETN spectra 

measured at SO distances of 1m in active mode for two angle of collection 1 and 60 grade 

(represented as black circles and empty squares respectively) using experimental setup 

shown in Figure 5-1c. Table 5-2 shows the results of RMSECV and R2 obtained in the 

PLS models generated for angle of collection 1, 20, 40 and 60. In these correlation 

charts, each point represents ten spectra with a fixed surface concentration (0, 10, 50, 

100 or 200 µg/cm2). However, as the collection angle increased the IR vibrational bands 

intensity decrease drastically (as show above) causing the spectra for each sample to not 

to be identical with each other and making it difficult to predict the surface concentration 

(Figure 5-5b unfilled squares). 

Table 5-2. PLS calibration parameters for the different analyzed angle of collection. 

Collection 
Angle (ϴ) R2 RMSECV Rank Spectral range (cm-1) Preprocessing 

1 0.9963 4.26 7 1400-700 Mean centering 

20 0.9628 14.10 7 1400-700 Mean centering 

40 0.9802 10.30 7 1400-700 Mean centering 

60 0.9237 20.40 7 1400-700 Mean centering 
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Figure 5-6b shows the regression coefficient and loading (LV1) plot for the PLS model of 

PETN explosives detection and quantification on Al plates at 1 m standoff distance and 

angle of collection 1. This regression coefficient spectrum in the spectral range from 750-

1375 cm-1 contains the characteristic vibrational bands of PETN that are significant for 

predicting the detection/quantification of the HEM deposited at trace level on the Al 

substrates. Figure 5-6b also shows that the first loadings used in the PLS model, the 

variables with the largest statistical weighs correspond to PETN characteristic bands 

illustrated in Figure 5-3b. The values obtained of RMSECV and R2 for angle of collection 

1, 20, 40 and 60 are as expected. As is shown in table 5-2, when ϴ is equal to 40 is 

improved values RMSECV and R2, which is expected from the results shown in Figure 5-

4. Taking into account the low values of RMSECV and high values of R2, high values S/N, 

these models are useful tools for determining the surface concentration of PETN in 

unknown samples. 
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Figure 5-6. (a) Regression coefficient and loading plot for PLS model of detection of TNT 

explosives on Al plates at a remote distance 8 m; (b) Regression coefficient and loading 

plot for PLS model of detection of PETN explosives on Al plates at 1 m standoff distance 

and angle of collection 1. 

 

5.4 CONCLUSIONS 

A remote detection technique based on an FT-IR spectrometer has been demonstrated 

and used to obtain spectral information of HEM samples deposited on Al plates. High 

spectral quality measurements were achieved by using MIR reflective and refractive 

telescopes coupled remote detection system. Detection in active mode proved to be 

useful for detecting TNT vibrational signatures in the range of 4-30 m (active mode). The 

remote detection system worked better for distances smaller than 24 m due to the 
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transmitter telescope characteristics in sensing de TNT. At 24 m the MIR beam size was 

as large as the target (30 cm) and S/N was 3, falling rapidly above 25 m using MIR 

reflective telescopes. However, it was necessary to align carefully the target with the 

detector to be able to measure with high accuracy at standoff distances of 25 – 30 m in 

TNT detection experiments. The optical system designed for detecting PETN vibrational 

bands in the range of 1 – 4 m by varying angle of collection from 1 to 80 performed as 

designed. Furthermore, excellent results for RMSECV and R2 were obtained for models 

generated based on PLS CV for the active mode experiments.  
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IX. CHAPTER 6 

DEVELOPMENT OF GC-MS ANALYSIS METHODS FOR 

EMERGENT GROUPS OF SYNTHETIC CANNABINOIDS FOUND 

IN VEGETATIVE SAMPLES 

 

OVERVIEW 

Three GC-MS analytical methods were developed and tested, using abuse-drugs 

standards, for synthetic cannabinoids (SC), THC, cocaine and heroin. Analytical 

procedure for extract synthetic cannabinoides form herbal mix seized in the black market 

by the Police Department of Puerto Rico, USA is shown. Different organic solvents were 

used for the extraction. Instrumental technique like GC was used for separation and 

purification of SC. Additional, electron impact-mass spectrometry was utilized as 

confirmatory method to identify the Synthetic Cannabinoides on the herbal sample. Two 

Synthetic Cannabinoids were found in real-world sample. The results show that analytical 

methods developed can be useful to identify Synthetic Cannabinoides rarely used such 

as PB-22 and 5F-PB-22 when are present in herbal mixture. 

 

6.1 INTRODUCTION 

Modern society has an urgent need to develop accurate and rapid methods necessary 

for chemical analysis of drugs of abuse. From the staff that combat drug trafficking and 

employees in charge of law enforcement, such as forensic science laboratories, police 
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officers, airport security officials, Drug Enforcing Agency (DEA) officers, and other 

government employees have implemented strategies to minimize the consumption and 

distribution of these illegal drugs. 

The chemical analysis of street drugs has always been a topic of particular interest to 

forensic laboratories. These drugs have evolved over the past 30 years. From their 

original form of natural products with little or no chemical manipulation in their preparation, 

such as marijuana, opium, khat (cathinone), morphine, cocaine, etc. drugs of abuse 

developed into those where medium or high chemical skill are required for synthesis, such 

as heroin, amphetamines (and their derivatives), bath salts (such as synthetic 

cathinones), synthetic cannabinoids, etc. The latter, called designer drugs, or synthetic 

drugs, are easy to acquire by drug users, either because they can be camouflaged in 

complex matrices or because they are difficult to detect in the field. These drugs are often 

not identified by forensic science laboratories due to the absence of specific analytical 

procedures, probably due to the constant change in the chemical structure of these 

designer drugs [1,2]. 

Cannabinoids fall into three categories. The first one is natural cannabinoids: as the ones 

contained in cannabis plants, such as THC (Δ9-tetrahydrocannabinoid). The second 

group includes the natural cannabinoid, such as endogenous cannabinoid (EC), which is 

produced by the body itself and plays important physiological roles in regulating blood 

pleasure, memory, thinking, concentration, movement, coordination, sensory and time 

perception, appetite, and pain. The last category is composed of the synthetic 

cannabinoids (SC), which are compounds produced in the laboratory, with the intention 
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to investigate endogenous cannabinoids, to create new alternatives for medical use, in a 

way to separate the desired analgesic effects from unwanted psychotropic effects [3,4]. 

An increasingly popular trend of recreational drug users is smoking blends of herbal 

products or incense mixed with one or more of the SC functionally, but not necessarily 

structurally related to THC [4,5]. The academic and / or pharmaceutical origin of these 

compounds is often reflected in the product name. The best-known class of these 

compounds is known as JWH-compounds, in honor of the organic chemistry professor 

John W. Huffman of Clemson University, South Carolina, who first synthesized these 

products in the 1990s. In a similar way AM (e.g. AM-630) refers to professor Alexandros 

Makriyannis from Northeastern University, Boston, MA and HU (e.g. HU-210) from the 

Hebrew University by Professor R. Mechoulam [6]. 

In general, these compounds are lipid soluble, non-polar molecules, which contain 20 to 

26 atoms carbon [7]. Based on this chemical structure, SC can be divided into different 

classes [8]: 

1. classical cannabinoids: structurally related to THC from Cannabis sativa, e.g. HU-

210 

2. non-classical cannabinoids: cyclohexylphenols or 3-arylcyclohexanols, e.g. CP-

47.497) 

3. hybrid cannabinoids: structural combinations of both classical and non-classical 

cannabinoids 

4. aminoalkylindoles: 

a. naphthoylindoles, e.g. JWH-018,  and AM-1220 

b. phenylacetylindoles, e.g. JWH-203,  and RCS-8 
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c. benzoylindoles, e.g. AM-694, WIN 48.098, and RCS-4 

d. cyclopropoylindoles, e.g. UR-144, and XLR-11 

e. naphthylmethylindoles, e.g. JWH-184) 

f. adamantoylindoles, e.g. AB-001, and AM-1248 

g. Indole carboxamides, e.g. APICA, STS-135;  

5. Eicosanoids: endocannabinoids and synthetic analogs, e.g. AM-356;   

6. Others: 

a. diarylpyrazoles, 

b. naphthoylpyrroles, e.g. JWH-307 

c. naphthylmethylindenes, e.g. JWH-176 

d. indazole carboxamides, e.g. APINACA)  

SC bind to the same cannabinoid receptors (CB) in brain and peripheral organs [9]. Unlike 

THC, which binds with almost equal affinity to CB1 and CB2 receptors, some of the new 

synthetic compounds exhibit more preference for CB1 receptors, which may produce 

more potent effects [4]. 

Little is known about the exact composition and properties of the plants used and in many 

cases the ingredients found in the lists of contents of packages of products do not include 

the whole content thereof [6]. Manufacturers of these mixtures make users believe that 

the mixture of plant material used causes the effects experienced. However, researches 

on plant materials have shown that most species of plants do not have psychoactive 

properties and therefore are only used to dilute added cannabinoids [10]. In addition, 

producers try to present their products as natural and safe to circumvent marijuana 

policies of governments. The United Nations Office on Drugs and Crime (UNODC) 
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concluded that producers respond very quickly to changes in legislation, making small 

changes to the new products launched at the markets [8]. 

SC products for sale on head shops, gas stations or via internet shops go through a 

variety of names. The most common in the United States are known as K2. Other 

common names are in the U.S. are: K2 Pink, K2 Strawberry, K2 Blueberry, K2 Sex, K2 

Sex on the Mountain, K2 Blonde, K2 Ultra, K2 Citron, K2 Blue, Space, Spike, Mr. Blend 

Nice Guy (MNGB), Banana Cream Nuke, pep pourri, Pep spice, Voo Doo Remix, C4, and 

K1, K3, K4 and K20. other names are found, Gold, Yucatan Fire, Bonzai, Jamaika, 

Jamaican Gold Supreme, Aroma, Blaze, Blueberry Haze, Dank, Demon Passion Smoke, 

Genie, Hawaiian Hybrid, Magma, Ninja, Nitro, Ono Budz, Panama Red Ball, Puff, Sativah 

Herbal Smoke, Skunk, Spice, Ultra Chronic, Voodoo Spice and others. More than 140 

different synthetic marihuana products have been identified to date [5, 11]. The materials 

are normally sold in metallic bags 2.5 in. x 2.5 in., with a zipper lock. The contents are 

typically 1.3 g of a mixture of dried and ground plant material (flowers, stems, leaves, etc.) 

often perfumed, aromatic odor [5]. 

In the last four years, there has been a steady increase in scientific publications of well-

established research groups have invested efforts in the identification and quantification 

of SC. Some of the studies that have had great impact on the forensic community are 

highlighted next. In 2010, Uchiyama, et al. found several SC in 44 of 46 different types of 

herbal products that are currently distributed in the market for illegal drugs in Japan [12]; 

GC-MS analysis and liquid chromatography coupled to mass spectrometry (LC-MS) 

indicated that most of the herbal product contained two major SCs: (1RS, 3SR) 3-[2-

hydroxy-4-(2-metilnonan-2-yl)-phenyl] cyclohexane-1-ol, commonly known as 
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cannabicyclohexanol, by Pfizer, Inc. and / or 1-naphthalenyl (1-pentyl-1H-indol-3-yl) 

methanone, called JWH-018. JWH-018 and cannabicyclohexanol Concentrations in the 

herbal products ranged from 1.1 to 16.9 mg/g and 2.0 to 35.9 mg/g, respectively, and 

showed considerable variation. 

Furthermore, in 2012 Logan, et al. [5], used thin layer chromatography, GC-MS, high 

performance liquid chromatography (HPLC) to time of flight-mass spectrometry (HPLC-

TOF-MS) for identification and quantification of these substances pharmacologically 

active in the forms of drugs of abuse. Using methods based on the instrumentation 

mentioned, they identified synthetic cannabinoids: JWH-018, JWH-019, JWH-073, JWH-

081, JWH-200, JWH-210, JWH-250, CP47, 497 (C = 8) (cannabicyclohexanol) RCS-4, 

RCS-8 AM-2201 and AM-694 in several commercially available products. Other non-

cannabinoids drugs including mitragyna, were also detected. Typical concentrations of 

drugs in the materials were in the range of 5-20 mg/g, or 0.5 to 2% by weight for each 

compound, although many products containing more than one drug. 

In a recent paper, 2014, Veress and Nagy utilized several solvents (acetone, chloroform, 

methanol and n-hexane) for extraction of target compounds [13]. Subsequent IRS-

attenuated total reflectance (ATR) analysis of evaporative residues of extracts were 

studied. The applicability of the elaborated procedure was demonstrated via analysis of 

real samples and has been found useful for the analysis of herbal mixtures containing 

AKB48, AB-PINACA, AB-FUBINACA, PB-22, AB-CHMINACA, 5F-PB-22, AM-2201. 

In Puerto Rico, on August 4, 2012 the Articles 102 and 202 of Act No. 4 of June 23, 1971 

known as the "Controlled Substances Act", were amended to define terms cannabinoids 

and SC and classify them as controlled substances. In this amendments, the sale of any 
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product or chemicals that contains cannabinoids or SC  is prohibited, including AM-2201, 

AM-694, CB-25, CB-52, CP47-497, CP55-940, HU-210, HU-211, HU-308, HU-331, JWH-

015, JWH-018, WIN55-212-3, JWH-019, JWH-073, JWH-081, JWH-133, JWH-200, JWH 

-203, JWH-210, JWH-250, JWH-251, JWH-398, RCS-4, RCS-8 and WIN55, 212-2 [14]. 

In this report, GC-MS analytical methodologies were developed using standards of SC. 

In addition, an analytical procedure for extracting, separating, and identifying 5F-PB-22 

and PB-22 SC form herbal mixes seized in the black market by Police Department of PR, 

USA was developed. GC was used for the separation and purification of the SCs. Electron 

impact-mass spectrometry (EI-MS) was used to develop the confirming methodologies to 

identify the SCs in the herbal samples. The results show that analytical methods 

developed can be useful to identify SC rarely used, such as PB-22 and 5F-PB-22 when 

present in herbal mixture. 

 

6.2  MATERIALS AND METHODS 

6.2.1 Reagents and materials  

The reagents and materials used in this study included SCs, and solvents. 5F-PB-22 and 

PB-22 were used as SC and were extracted from herbal blend donated by the Forensic 

Sciences Institute of Puerto Rico (FSI-PR), San Juan, PR, USA. Herbal mixtures with new 

psychoactive materials were seized in the black market of Puerto Rico by the Police 

Department and passed onto the FSI-PR. Standards of SCs donated by FSI-PR Ponce, 

PR, including compounds such as JWH-018, AM-2201, CP-47,497, WIN 55,212-2, and 

XLR-11 were used to develop chromatographic methods of analysis. THC, cocaine, and 

heroin donated by FSI-PR San Juan, PR also were used for developing the extraction, 
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GC analyses, and GC-MS analyses. Table 6-1 shows the chemical structures and IUPAC 

names of the different abuse drugs used in this research. Methanol (99.9%, HPLC grade), 

dichloromethane (CH2Cl2, HPLC grade), acetone (99.5%, GC grade) were purchased 

from Sigma-Aldrich (Milwaukee, WI, USA) and were used as solvents to extract the SCs 

from vegetal sample.  
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Table 6-1. Chemical structures and IUPAC name of abuse drugs used 

Abuse drugs 

standards and IUPAC 

name 

 

Chemical structure 

Abuse drugs 

standards and 

IUPAC name 

 

Chemical structure 

THC 

(Tetrahydrocannabinol) 

or 

(−)-(6aR,10aR)-6,6,9-

Trimethyl-3-pentyl-

6a,7,8,10a-tetrahydro-

6H-benzo[c]chromen-1-ol 

 

 

WIN55,212-2 

(R)-(+)-[2,3-Dihydro-5-

methyl-3-(4-

morpholinylmethyl) 

pyrrolo 

[1,2,3-de]-1,4-

benzoxazin-6-yl]-1-

napthalenylmethanone 

 

 

JWH-018 

Naphthalen-1-yl-(1-

pentylindol-3-

yl)methanone 

 

Cocaine 

methyl (1R,2R,3S,5S)-

3- (benzoyloxy)-8-

methyl-8-

azabicyclo[3.2.1] 

octane-2-carboxylate 

 

AM-2201 

1-[(5-Fluoropentyl)-1H-

indol-3-yl]-(naphthalen-1-

yl)methanone 

 

Heroine 

(5α,6α)-7,8-didehydro-

4,5-epoxy-17-

methylmorphinan-3,6-

diol diacetate  

CP-47,497 

2-[(1R,3S)-3-

hydroxycyclohexyl]- 5-(2-

methyloctan-2-yl)phenol 

 

 

PB-22 

1-Pentyl-1H-indole-3-

carboxylic acid 8-

quinolinyl ester 

 

XLR-11 

(1-(5-fluoropentyl)-1H-

indol- 

3-yl)(2,2,3,3-

tetramethylcyclopropyl)m

ethanone  

5F-PB-22 

1-pentyfluoro-1H-

indole-3-carboxylic 

acid 8-quinolinyl ester 
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6.2.2 Sample preparation 

The extraction of the target compounds in complex herbal matrices is a fundamental step 

in the analysis of SCs. This step allowed obtaining calibration models that provided good 

predictions for the validation samples. For extraction of SCs, a small amount (about 1 mg) 

of herbal mixture was placed in a test tube and 1 mL of organic solvent (such as acetone, 

dichloromethane, or methanol) was added to the test tube containing herbal mixture. This 

was followed a by stirring step. The stir was done in two ways: manually for 30 s using 

the routine analytical procedure; and sonicated by 30-60 min using an ultrasonic bath. 

The supernatant was placed in a GC-MS vial and the organic solvent was evaporated (if 

methanol was not used for extraction) using a dry air flow. Finally, 0.5 mL of methanol 

was added to the vial and analyzed using GC-MS. Figure 6-1 shows an overview of the 

steps carried out for extraction, and GC-MS analysis of SCs. 

 

 

Figure 6-1. Experimental Setup for extraction and instrumental analysis of SCs present 

in vegetal blend. 

Stir manually

Clarus 500 
GCMS

Or Sonicated
Extraction
supernatant

GC/MS Analysis

Chromatogram

Sample

Library

MS Spectrum
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6.2.3 GC-MS Analysis 

Sample extracts and standards in methanol were analyzed by GC-MS using a Perkin-

Elmer model Clarus 500™ GC/MS. The GC-MS analyses were carried out using one of 

the three methods developed and described in Table 6-2. Each MS spectrum of the 

chromatographic peaks was compared with those from NIST and Cayman libraries.  

Table 6-2. GC-MS methods parameter used for analysis of SC present in blend vegetal 

 Method 1 Method 2 Method 3 

GC parameters    

Oven T
initial

: 180 C for 1 

min  

Ramp1: 30 C/min 
to 250 oC,  
hold 1min 

Ramp2: 40 C/min 

to 290 C, hold 
9.67 min 

Tinitial: 140 C for 
0.2 min 

Ramp1: 45 C/min 

to 295 C,  
hold 5.36 min 

 

Tinitial: 150 C for  
0.2 min 

Ramp1: 45 C /min 

to 295 C, hold 
16.58 min 

Column J&W Scientific DB-

5 MS, 15mx250µm 

J&W Scientific DB-

5 MS, 15mx250µm 

J&W Scientific DB-

5 MS, 15mx250µm 

Injection Temp. 250
 
C 250

 
C 250

 
C 

Injection Vol. 0.5 µL 0.5 µL 0.5 µL 

Split 50:1 50:1 50:1 

Carrier Gas He, 1 mL/min He, 1 mL/min He, 1 mL/min 

MS parameters    

Ionization Mode EI, 70 eV EI, 70 eV EI, 70 eV 

Solvent Delay 1.00 min 0.5 min 0.5 min 

Transfer Temp. 220 C 220C  220 C 

Source Temp 200 C 200 C 200 C 

Scan Mode 50 to 500 Da 50 to 500Da 50 to 500Da 
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6.3 RESULTS AND DISCUSSION 

6.3.1 GC-MS Method Development 

GC-MS based methods of fast and reliable chemical analysis of SCs present in herbal 

blends, obtained from the Puerto Rico black market were developed and tested. These 

methods are able to separate, identify, and quantify SCs and natural-abuse drugs 

commonly used such, as THC, cocaine and heroin in real samples. The methods were 

developed by taking into consideration that often the target substances are added in small 

amounts to the herbal mixes. Standards were chosen so as to have a wide variety of 

retention times (Rt; low to high) in the GC analysis, allowing to obtain a more robust 

methodology for future SCs in herbal blends not included in our analytical methods. 

Figure 6-2 and 6-3 show chromatograms of SCs and THC standards using methods 1 

and 2, respectively. Table 6-3 includes the Rf values obtained for SC and natural-abuse 

drugs standards, using analytical chromatographic method shown in Table 6-2. In 

general, the range of Rt values for the standards used employing methods 1 and 2 were 

between 3.61 min to 5.02 min, excluding WIN55,212-2 standard in both cases. When this 

standard for was analyzed using method 1 (a method routinely used by the FSI-PR lab 

for cannabinoids) no elution was observed. WIN55,212-2 was eluted in the next 

chromatographic run with an Rt = 6.85 min when running a blank sample consisting of 

methanol (see WIN55,212-2_b in Figure 6-2). Due to the high molecular weight of this 

compound and high Rt value for this suggested to modify method 1. The modification was 

done by adjusting the oven temperature parameters (see Table 6-2) and this new method 

was termed method 2. Since no elution was observed when analyzing for WIN55,212-2 
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using method 2, a further modification of the method was applied and designated as 

method 3. 

All the standards used were analyzed with MS using the parameters shown in Table 6-2 

for each analytical method. Mass spectra recorded agree with those from libraries of the 

instrument. Figure 6-5 and 6-6 shows mass spectra of standards used to develop the 

analytical methods. These MS spectra present fragmentation patterns characteristic of 

abuse drugs utilized. MS spectra showed no variability when the GC-MS analytical 

method was changed. 

 

Table 6-3. Retention time for SC standards and other drugs standards using analytical 

methods shown in Table 6-2 

Abuse 

drugs 

standards 

Method 1 

Retention Time 

(min) 

Method 2 

Retention Time 

(min) 

Method 3 

Retention Time 

(min) 

THC 4.62 3.61 3.38 

JWH-018 7.56 5.89  

AM-2201 8.39 6.56  

CP-47,497 5.01 3.80  

XLR-11 5.02 3.81  

WIN55,212-

2 

6.85a 8.11a 13.66 

cocaine - - 2.84 

heroine - - 3.68 
a This SC was eluted in the next chromatographic run, corresponding to blank sample (methanol). 
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Figure 6-2. Chromatograms using method 1. 
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Figure 6-3. Chromatograms using method 2 described in Table 6-2. 
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Figure 6-4. Chromatograms using method 3. 

 

6.3.2 Vegetal samples analyses using GC-MS 

Herbal blends containing psychoactive material, seized from the black market by the 

Police Department were analyzed using GC-MS methods. Real-world sample extracts 

were obtained using the procedures described in sample preparation section. Extracts 

were analyzed with methods presented in Table 6-2. Two samples of vegetal origin 

containing SCs were tested. Sample # 1 was analyzed using analytical methods 1, 2, and 

3. Sample # 2 was analyzed using method 3 only. Figure 6-7 shows the GC-MS analysis 

from Sample # 1 using two organic solvents for the extraction, analyzed with analytical 

method 1. Figure 6-7a show chromatogram for acetone extract and Figure 6-7b show 

chromatogram for dichloromethane extract. Both samples were sonicated for 30 min. The 

mass spectra of each chromatographic peak in both samples (# 1 and # 2) were searched 

in the instrument-MS library in order to find substances of abuse such as SCs. When 

chromatographic peaks of acetone extract were explored (in MS library) a CS was 

detected in Rt equal to 8.04 min (see Figure 6-7a), according to mass spectrum from 
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library this CS corresponding to PB-22 (1-pentyl-8-quinolinyl ester-1H-indole-3-carboxylic 

acid). Comparing Rt of PB-22 with Rt of the standards using analytical method 1, we can 

infer that the structure of PB-22 should be similar to JWH-018 (Rt = 7.56) and MA-2201 

(Rt = 8.39), PB-22 chemical structure is show in Table 6-1. Mass spectrum of PB-22 from 

vegetal sample-acetone extract compared with that from MS library is shown in Figure 6-

7c. in the GC-MS analysis for dichloromethane extract, SCs no were detected (see Figure 

6-7b), this suggest that the selection of a organic solvent adequate play a role important 

in the extraction process. 

Figure 6-8 shows the GC-MS analysis from sample # 1 using acetone-organic solvents 

for the extraction with sonicated by 30-60min, and analyzed with analytical method 2. 

Figure 6-8a show chromatogram for acetone extract in which PB-22 with Rt equal to 6.98 

min was detected and confirmed by MS library. It is expected the decrease of Rt for PB-

22, and are in agreement with the results obtained when drug abuse standards are 

analyzed with the analytical method 2 compared to method 1. Mass spectrum of PB-22 

from vegetal sample-acetone extract compared with that from MS library is shown in 

Figure 6-8b. 

Figure 6-9 shows the GC chromatograms for Samples # 1and # 2 analyzed with method 

3, using two organic solvents for the extraction: methanol and acetone. Figure 6-9a shows 

the chromatogram for methanol extraction and Figure 6-9b shows the corresponding 

chromatogram for acetone extraction of Sample # 1. Figure 6-9c shows chromatogram 

for methanol extract and Figure 6-9d shows chromatogram for acetone extract of Sample 

# 2. All extracts were sonicated for 1 min.  
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The mass spectra of each chromatographic peak in the four chromatograms of Figure 6-

9 were searched in the instrument-MS library in order to find substances of abuse like 

SCs. Two SCs were detected when chromatographic peaks were explored (in MS library). 

Peaks at Rt = 6.32 min were present in four chromatograms (see Figure 6-9), according 

to mass spectrum from library this CS corresponds to PB-22. The second SC was present 

in Sample #2 only. Peak at Rt = 7.15 min was present in Figure 6-9c and 9.D, according 

to mass spectrum from MS library corresponding to 5F-PB-22. 5F-PB-22 chemical 

structure is shown in Table 6-1. 5F- PB-22 and PB-22 mass spectra from vegetal sample 

extracts compared with that from MS library are shown in Figures 6-10a and 6-10b, 

respectively. It is important to note that methanol was used as solvent of extraction initially 

at IFS-PR lab using analytical method 1 with manual stirring (i.e. sonication was not 

carried out) and SCs were not detected. Thus it is suggested that the process of 

sonication plays an role important in the extraction process of SCs present in vegetal 

blends. 
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Figure 6-5. Mass spectra of THC, heroin, cocaine, and JHW-018 standards using method 

1. 
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Figure 6-6. Mass Spectra of AM-2201, CP-47,797, XLR-11, MDPV and WIN55,212-2 

standards using method 1.. 
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Figure 6-7. MS spectra and GC chromatograms from extract of Sample #1 using method 

1. (a) Chromatogram of acetone extract; (b) chromatogram of dichloromethane extract; 

c) mass spectrum of peak with Rt = 8.04 min. 
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Figure 6-8. MS spectrum and GC Chromatograms from extract of sample #1 method 2. 

a) Chromatogram of acetone extract; (b) mass spectrum of peak with Rt = 6.98 min. 
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Figure 6-9. GC Chromatograms from extract of Samples 1 and 2 using method 3. Sample 

# 1: (a) methanol extract; (b) acetone extract. Sample # 2: (c) methanol extract; (d) 

acetone extract. 
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Figure 6-10. MS spectrum of SCs present in extracts of Samples 1 and 2 using analytical 

method 3. (a) Mass spectrum of characteristic peak with Rt = 6.32 min shown in Figures 

6-9a to 6-9d; (b) Mass spectrum of characteristic peak with Rt = 7.15 min shown in Figure 

6-9c to 6-9d. 
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6.4 CONCLUSIONS 

GC-MS analytical methods for separation and detection of abuse drugs were developed. 

Three analytical methods were tested. However, GC-MS analytical method 3, proved to 

be the most appropriate to analyze the abuse drug standards available on this project, 

which were SCs like JWH-018, AM-2201, CP-47,497, WIN 55,212-2 and XLR-1, other 

standards include THC, Cocaine and Heroin. Using GC-MS method 3, lowest Rt was 2.84 

min corresponding to cocaine and highest Rt was 13.66 min corresponding to WIN55, 

212-2. Regarding the analysis of real-world samples, the following generalizations can be 

highlighted: 

1. Real samples analyzed could have a co-eluting SC mixtures according to NIST and 

Cayman libraries.  

2. These samples could contain co-elution of JWH-200, JWH-203, JWH-300, PB-22 and 

5F-PB-22.  

3. These samples could contain cocaine traces that can be confirmed by extraction of 

more samples. 

4. At least four different SC and internal standard should be acquired to be validated with 

the GC/MS method developed.  

5. Sample preparation process plays an important role in synthetic cannabinoid 

extraction for accurate detection. 

 Sonication process is  necessary 

 Different  organic solvent should be tested, according to herbal material 

 These recommendations shall be included in the analysis procedures to allow 

accurate detection of different drugs. 
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6. The developed GC/MS methods will assist the FSI-PR to pursue their mission as 

described in the organic agency law, tempering the analysis to account for new 

tendencies in drug abuse market. 

 

6.5 FUTURE WORK 

• Analyze standards of JWH-200, JWH-203, JWH-300, PB-22 and  5F-PB-22, with 

internal standard as SWGDRUG guides indicate. 

• Re-analyze samples extracts with Cannabinoids standards to confirm their 

identities, as identified by NIST and Cayman library.  

• Perform a publication of these findings in a scientific journal. 
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