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UNIVERSITY OF PUERTO RICO

Abstract

Faculty of Engineering

Electrical and Computer Engineering Department

Master of Engineering

by César Augusto Sandoval León

Efficient and fast management of complex systems requires the development of efficient

interfaces. The purpose of this document is to describe the development of a set of

interfaces to provide sensor management capabilities using grid portals. An automated

installation package was develop to deploy portlet-based management interfaces in order

to facilitate the installation, deployment and development of such management interfaces

using grid portals. Two portlet-based interfaces were developed. The first interface allows

control the features of the PR1 meteorological radar. The second interface allows the

management of Gumstix sensors pertaining to acoustic sensing applications. Also, an

application portlet was developed to manage PR1 data. Additionally, a simple rain data

detector service that allows the automated storage of raw data from the PR1 radar was

developed.
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UNIVERSIDAD DE PUERTO RICO

Resumen

Facultad de Ingenieŕıa

Departamento de Ingenieŕıa Eléctrica y Computadoras

Maestŕıa en Ingenieŕıa

por César Augusto Sandoval León

El desarrollo de interfaces permite manipular sistemas complejos de una manera rápida

y sencilla. Este reporte de proyecto describe el desarrollo de interfaces tipo portlet para

manejo de sensores dentro de portales grid. Dada la complejidad de instalación de portales

grid se construyo un paquete de instalación automática que provee un portal grid y permite

una rápida implementación de interfaces de manejo de sensores como parte de este. Se

desarrollaron dos interfaces: una para el manejo del radar meteorológico PR1 y otra para

el manejo de sensores acústicos en malla para monitoreo ambiental. También se coloco

en funcionamiento un servicio para acceder los datos meteorológicos del PR1, además de

la detección automática de sus datos entre lluvia y no lluvia.
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Chapter 1

Introduction

The National Science Foundation Engineering Research Center for Collaborative Adaptive

Sensing of the Atmosphere (CASA) is focused on developing Distributed Collaborative

Adaptive Sensing (DCAS) applications as a system technology to improve our ability to

monitor the earth’s lower atmosphere. Current approaches to sampling the first three

kilometers of atmosphere are physically limited in their ability to provide the required

resolution and coverage. For example, radar technology is currently limited by the focus

on long range sensing by single instruments. Requiring radar to view distances up to

240km, as in the case of NEXRAD, introduces the problem of the earth’s curvature

[9]. As the range increases away from the radar, the earth’s surface curves away under

the radar beam. This causes the volume of atmosphere being observed to be located

at an increasing height above the earth’s surface. The radar is unable to observe the

atmosphere close to the earth’s surface where people live. DCAS aims to radically alter

the radar paradigm. Rather than relying on single radar to provide long range (hundreds of

kilometers) coverage, DCAS proposes to mosaic the output of lower power shorter range

(tens of kilometers) radars.

The Student Test Bed (STB) is a CASA education project that is focused on constructing

a network of radars to provide detailed Quantitative Precipitation Estimation (QPE) in

the western area of Puerto Rico. The primary mission of the Puerto Rico STB is to

validate the DCAS approach in tropical areas. In the test bed a customized version of the

commercially available Raytheon MK2 marine radar [7] has been deployed.

1
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In this work we have developed a portlet-based sensor management interface that can be

used to configure and control sensor instruments. We have integrated this interface to

the STB grid portal developed at UPRM. The portlet-based interface allows user with the

appropriate authorization to control relevant functions of the radar from remote locations.

We have extended this work to develop a portlet-based interface to manage gumstix

sensors pertaining to acoustic sensing applications.

1.1 Project Contributions

The main contributions of this work are summarized as follows:

• An automated package builder to deploy portlet-based sensor management inter-

faces. The package provides Java, Ant, Tomcat, and the Gridsphere Framework.

The development of portlet interfaces was improved with the use of AJAX and Java

Scripts. This allows the portlets to be updated without refreshing the entire portal

page.

• A portlet-based remote radar controller interface that allows users with appropriate

authorization to control remotely a radar. This interface will help in the testing and

validation of the PR1 radar.

• A simple rain data detector service that allows the automated storage of raw data

from the PR1 radar. This mechanism reduces the storage of raw data. End-users can

access the raw-data acquired from the PR1 radar through the grid portal interface.

• An acoustic sensor portlet-based interface for environmental surveillance monitoring.

End-users can set the audio parameters at gumstix sensors, and manage audio files.

1.2 Project Report Organization

The remainder of this report is organized as follows: Chapter 2 presents a literature

review of the most relevant research work conducted in the integration of sensors and grid

computing. Chapter 3 discusses the implementation issues of the portlet-based sensor
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management interfaces. A summary of conclusions and future work are presented in

Chapter 4. Finally, Appendix A provides an installation and administration guide for portlet-

based sensor management interfaces, and Appendix B provides the setting up of public-key

authentication with sensors.



Chapter 2

Background Work

This chapter survey previous work related to the integration of grid computing and sensors

technologies.

2.1 Distributed Collaborative Adaptive Sensing (DCAS)

The Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is a joint project

operated by the University of Massachusetts (lead university), the University of Oklahoma,

Colorado State University, and the University of Puerto Rico at Mayagüez and in partner-

ship with the private sector. CASA was established to develop a new generation of small,

low-power, low-cost radars that could operate dynamically, adaptively, and collaboratively

to detect hazardous weather, and thereby increase detection rates and warning time in

order to save lives and properties.

The center is focused on developing Distributed Collaborative Adaptive Sensing (DCAS)

as a system technology to improve our ability to monitor the earth’s lower troposphere.

The Distributed term refers to the use of small radars, located to sense close to the

ground in spite of the Earth’s curvature and avoid resolution degradation caused by radar

beam spreading. The Collaborative operation improves the sensitivity, precision, and res-

olution with the coordination of the beams from multiple radars to view the same area.

The Adaptive allows the dynamically reconfiguration of these radars and there computing

infrastructures when changing the weather conditions.

4
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The DCAS system has five principal components: (1) sensors as radars; (2) meteorological

algorithms that detect, track, and predict hazards; (3) interfaces that enable end-users

to access the system; (4) storage servers; and (5) an underlying substrate of distributed

computation that dynamically process sensed data and manage system resources. The

DCAS system is working on with a network of X-band radars increased resolution and

volume coverage of observations in the lowest kilometers of the troposphere.

2.1.1 The NetRad System

In terms of networking, a current project under development in CASA is NetRad, a pro-

totype DCAS system. The main goal of the project is detect and track tornados within 1

minute of formation with a temporal error no greater than 1 minute.

The NetRad system architecture is shown in Figure 2.1. The system operation cycle is

divided in two parts of 30 seconds. In the first part, a set of scanning commands are

transmitted to the radars. The radars are continuously collecting and sending data in

real-time to the System Operation Control Center (SOCC) node. A data quality con-

trol mechanism is applied at the SOCC and the data is then sent to the Meteorological

Command and Control (MC&C), see Figure 2.2. The MC&C controls the system main

loop analyzing data from remote radars. Also, it identifies in the data the meteorological

features to determine the next radars scan strategy, and finally reports the features to

end-users as described in [10].

Figure 2.1: NetRad System Architecture [1]
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Figure 2.2: NetRad Data Flow [1]

An interesting feature of this module is the radar data filtering for particular hazardous

weather features with the use of existing WDSS-II software. The observed data is sum-

marized on a grid repository. In the second part of the cycle the radar network is optimized

for scanning the particular features observed after applying cluster analysis techniques to

the data.

2.2 What is Grid Computing?

Grid computing deals with the computing power that is supplied by a set of resources in

a distributed environment. More formally the Open Grid Forum [11] defines a grid as a

system concerned with the integration, virtualization, and management of services and

resources in a distributed, heterogeneous environment that supports collections of users

and resources (virtual organizations) across administrative and organizational domains

(real organizations). A grid system can be characterized by three important aspects [12]:

1. A system that coordinates resources that are not subject to centralized control :

Sharing implies direct access on behalf of virtual organizations (VOs) [13] to com-

puters, software, data, and other resources for collaborative problem-solving. VOs

associate users, their requests, and the set of interacting resources. Sharing re-

sources in a VO should be highly controlled, with resource providers and consumers
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defining clearly and carefully what is shared, who is allowed to share, and the condi-

tions under which sharing occurs.

2. A system using standard, open, general-purpose protocols and interfaces: To achieve

desirable communication among those heterogeneous VOs, it is very important for

both users and resources, to offer authentication, authorization, resource discovery,

and resource access through standard protocols. The Open Grid Forum contributes

to this grid computing aspect by developing such protocols. A standard protocol

allows resource-sharing arrangements to be established with any interested party

and thus creating a compatible and interoperable distributed system. A general-

purpose protocol enables the implementation of general-purpose services and tools

by means of this standardization.

3. A system to deliver nontrivial qualities of service: To supply the applications require-

ments the system must be able to coordinate the allocation of resources according

to nontrivial quality of service criteria.

2.2.1 Grid Portals

Computational science portals are emerging as useful and necessary interfaces for per-

forming operations on the Grid. A Grid Portal provides a customizable interface allowing

scientists to perform a variety of Grid operations including remote program submission,

file staging, and querying of information services from a single, secure gateway. A Grid

portal is a web based application server enhanced with the necessary software to commu-

nicate to Grid services and resources. A Grid portal provides application scientists with a

customized view of software and hardware resources specific to their particular problem

domain and provides a single point of access to Grid resources they have already been

authorized to use. A portal user is provided with a persistent, customizable profile that

contains information that is stored securely on the portal and provides details on past

jobs submitted, the set of computers they have access to, and any other information that

is of interest to a particular user [14]. Therefore, Grid portals hide cyber-infrastructure

complexity via easy-to-use interfaces, creating gateways to computing resources and data.
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2.2.1.1 GridSphere Portal Framework

The primary goal of GridSphere portal framework [15] project is to develop a standards

based portlet framework for building web portals, and a set of portlet web applications

that work seemlessly with the GridSphere framework to provide a complete Grid portal

development solution. The integration of the GridSphere portal framework with the col-

lection of gridportlets provided as an add-on module forms a cohesive grid portal end-user

environment for managing users, supporting remote job execution, and providing access

to information services. The GridSphere portal framework provides an implementation of

the JSR 168 portlet API standard. It supports the development of re-usable portlets and

portlet services. It includes a set of core portlets and portlet services that provide the

basic infrastructure required for developing and administering Web portals. A key feature

of their design is that it builds upon the web application repository (WAR) deployment

model to support third-party portlet web applications. In this way, portlet developers can

easily distribute and share their work with other portal projects that use GridSphere to

support their portal development.

2.2.2 Portlets

Portlets are a Java technology web components managed by a portlet container, which is

in charge of process requests and generate dynamic content [16]. They are used in portals

to present user interfaces. In a portal context, portlets represent the link between web

users and services. Portlets also can be user-oriented in the way that a given portlet can

present different information for different users. A portlet runs on the portal server and

allows content to be embedded into portal pages.

The Java Portlet Specification (JSR 168) [17] standard establishes a standard API for cre-

ating portlets. Portlet specification is required to achieve interoperability between portlets

and Java-based portal servers or other web applications that implement the specification.

The goal is to allow portlets to be packaged into Web Application aRchive (WAR) files

and deployed in a standard way on any server implementing the specification.

Java portlets are similar to java servlets, but in contrast, portlets can not send redirects or

errors to browsers directly, forward requests or write arbitrary markup to an output stream.
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Another difference with servlets is that portlets rely on portal specific infrastructure func-

tions such as access to user profile information, and also they depend on an environment

maintained by the portlet container.

A portlet container [16] is the server-side run-time environment. It calls the component

and provides component-specific services (such as user information and persistence). In

this environment portlets are instantiated, used and destroyed. The portlet container is

not a stand-alone container like the servlet container, instead, it is implemented on top

of it. It reuses the functionality provided by the servlet container.

2.3 Grid computing technologies

Grid computing technologies [18] involve coordination, storage and networking of resources

across dynamic and geographically dispersed organizations in a transparent way for users.

The Globus Toolkit [19] is a community-based, open-architecture, open-source set of ser-

vices and software libraries that support Grid-based applications [20]. The toolkit includes

software services and libraries for monitoring, discovery and management, of grid resources

as well as services for security and data management.

Recent developments in Grid technologies have concentrated on providing batch access to

distribute computational and storage resources, while the integration of sensor instruments

to these resources has not been discussed widely. Some interesting projects addressing

this problem include GridCC, SensorML, SensorGrid and CIMA.

2.3.1 Grid Enabled Remote Instrument with Distributed Control and

Computation (GridCC) Project

The main goal of the Grid Enabled Remote Instrument with Distributed Control and

Computation project (GridCC) [2] is to exploit grid opportunities to provide a secure

and collaborative environment, where distributed teams make use of the grid massive

memory and computing resources for storage and processing of data generated by scientific

equipment; providing also the ability to remotely control and monitor those equipments.
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The seven components of the GridCC architecture are shown in Figure 2.3: (1) Virtual

Control Room (VCR), (2) Execution Service (ES), (3) Compute and Storage Elements

(CE & SE), (4) Instrument Element (IE), (5) Global Problem Solver (GPS), (6) Informa-

tion and Monitoring Service (IMS), and (7) Security Service (SS).

Figure 2.3: GridCC Architecture [2]

The user interface of the project is the Virtual Control Room (VCR). It allows users to

control instruments in real time and submit tasks to the Execution Service (ES) complex

workflows.

Execution Service (ES) is the central component behind the GridCC. ES controls and

maintains the status of the workflows executed by the user. The VCR can access such

status information upon user request. ES also controls the quality of service (QoS) based

on the resources currently available.

The GridCC executes the computation and store data in a group of resources called the

Compute and Storage Elements (CE & SE).

Another component is the Instrument Element (IE). IE allows configure, partition, and

control the physical instrument. A Local Problem Solver (LPS) is provided in each IE.

The LPS manages and protects the instrument from harms with an automatic diagnosing.

An interested GridCC project feature is the two levels of automated problem solving: the

local and the global level. The local level, called the Local Problem Solver (LPS), solves

problems in the instrument functions. The Global Problem Solver (GPS) solves problems

related to the entire system.
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The Information and Monitoring Service (IMS) distributes the monitoring data. The ES

and VCR use the Information Service (IS) to consult the resources. The Monitoring

Service (MS) disseminates the monitoring data with a publish system.

The GridCC project is described with more details in [21].

2.3.2 Sensor Model Language (SensorML) Project

Sensor Model Language (SensorML) [22] has been developed to provide standard models

and XML encoding mechanisms for describing measurement process performed by sensors

and instruments. The processes described by SensorML are discoverable and executable.

All process must have defined their inputs, outputs and methods as well as any other

relevant metadata.

SensorML provides a functional model for sensors, supports rigorous geolocation models,

as well as mathematical models. SensorML can be applied virtually to any sensor, whether

it is a in-situ or remote, and stationary or dynamic platform mount.

A grid sensor network project with this language is available in [23].

2.3.3 SensorGrid Project

The SensorGrid [24] project was developed to improve the Geographic Information Sys-

tems (GIS) applications with computing environment for real-time data sources. Based on

Service Oriented Architecture (SOA) and High Performance Web Services principles, Sen-

sorGrid provides a set of standard interfaces for real-time data publishing with streaming

and querying archived data. SensorGrid proposes a grid architecture called the Scalable

Proxy-based aRchItecture for seNsor Grid (SPRING) [3], as shown in Figure 2.4.

The SPRING architecture has five components: (1) Wireless Sensor Network (WSN), (2)

WSN Proxy, (3) User Interface, (4) Computes Nodes, and the (5) Grid Network. The

WSN Proxy, User Interface and Computes Nodes are connected to a central component

called Grid Network. Also, it uses the proxy system as an interface between the WSNs

and the grid. The SensorGrid project has delivered a prototype sensor grid testbed to
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Figure 2.4: The SPRING Architecture [3]

implement the SPRING framework. For this testbed, the WSN was based on the Crossbow

motes platform.

In this project, the principal component in the integration of WSNs with grid computing

infrastructures is the WSN Proxy. It first receives the sensor jobs through the Grid Interface

and then sends the jobs to the various Proxy Components. As shown in Figure 2.5, these

components provide important services for the sensor grid including Data Management,

Information Services, WSN Connectivity, Power Management, Security, Availability, and

Quality of Service.

The SensorGrid project and the SPRING architecture are described with more details in

[3].
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Figure 2.5: The Proxy Component Architecture [3]

2.3.4 The Common Instrument Middleware Architecture (CIMA)

Project

The Common Instrument Middleware Architecture (CIMA) [4] project was developed to

facilitate the instruments and grid integration improving the real-time data of the instru-

ments. The project leverages on grid implementation standards such as the Open Grid

Services Architecture (OGSA) and Common Component Architecture (CCA). A CIMA

goal is share instrument resources in geographically distributed Grids.

Figure 2.6 illustrates the CIMA architecture. It has two kinds of components: the instru-

ment components (dark background) and the CIMA components (light background). The

instrument components usually consist of an interface protocol (bottom) connected to the

sensor hardware to control its basic functions. The CIMA components allow interact with

the sensor or instruments through Web Services. Also, the Proteus communications library

improves the data acquisition with the most appropriate communication protocols.

The general scheme of communication between sensor and consumer in the CIMA archi-

tecture is shown in Figure 2.7. A consumer can receive data from one or more sensors.

Also, each sensor can be used for more than one consumer.
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Figure 2.6: CIMA Architecture [4]

Figure 2.7: CIMA in Context [5]

The communication has the following sequence of steps: 1) user application registers to

receive streaming data from a given sensor; 2) Channel service set up the appropriate

data stream; 3) Sensor data is acquired; 4) Sensor data is sent to the user application.

Also, the user application can make a sensor status request in any time (steps 5 and 6

in Figure 2.7). A problem with CIMA approach is that the middleware architecture might

be too complex to be implemented on simple sensor devices with low computational and

processing capability.
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A CIMA approach with sensor and instrument for Crystallography is described with details

in [25].

2.4 Review of Grid Computing and Sensor integration

The main research issues and challenges concerning the integration of conventional sensors

and grid environment, arises due to the inherent limitations of sensors devices, such as

energy management, coverage and communication, security [26–29]. Specific research

challenges include interoperation of services, interconnection and networking, coordinated

quality of service (QoS), and scalability [5, 30, 31].

A natural approach to integrate sensor nodes into the grid is to adopt the grid standards

and APIs. The Open Grid Services Architecture (OGSA) is based on established web

services standards and technologies like XML, SOAP, and WSDL. If sensor data were

available in the OGSA framework, it would be easier to exchange and process the data

on the grid. However, since sensor nodes have limited computational and processing

capabilities, it may not be feasible for sensor data to be encoded in XML format within

SOAP envelopes, and then transported using Internet protocols to applications. Grid

services are also too complex to be implemented directly on most simple sensor nodes.

The network connections in conventional grids are typically fast and reasonably reliable. On

the contrary, sensor nodes are usually connected via wireless and ad hoc networks which

are generally low-bandwidth, with high-latency, and prone to interruptions or failures.

Grid networking protocols are based on standard Internet protocols like TCP/IP, HTTP,

FTP, etc. On the other hand, in wireless sensor networks the sensor nodes access a

shared radio channel to communicate with neighbors are habitually based on proprietary

protocols, especially for the Medium Access Control (MAC) protocol and routing protocol.

Thus, techniques to interface sensor network protocols with grid networking protocols are

necessary.

Scalability is the ability to a sensor grid to increase the capacity of sensor data collec-

tion. The sensors and grid integration architecture should allow multiple wireless sensor

networks, possibly owned by different virtual organizations, to be easily integrated with

compute and data grid resources. For these reason the integration must be scalable and
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support the agglomeration of sensor resources, without substantial changes to its software

architecture.

Quality of Service (QoS) is a key issue. QoS determines whether the integration between

sensors and grid environment can provide sensor resources on demand efficiently. QoS

requirements of sensors applications must be described in a high-level manner. Mapping

higher-level requirements into lower-level QoS required the development of a good mech-

anism. This mechanism must take into consideration a set of parameters that specify the

amount of resources to be allocated, such as the amount of sensors, memory, and network

bandwidth [32–34].

2.5 Portlet-based Interfaces

Assuming that you have in place an architecture to integrate sensor and grid infrastruc-

tures, a remain question is how to provide friendly easy-to-use/easy-to-manage interfaces

to end users.

In grid environments, one approach is the usage of portlet-based interfaces. The portlet-

based interfaces allow the management of complex system in a fast and easy way. The

most important feature of this kind of interfaces is the possibility of hiding complex man-

agement processes behind the application interfaces. For example, providing file manage-

ment in a portlet-based interface allows the users access to files, collections, and metadata

for local and remote files, and also support third party file transfer. In the same way, the

job management provides mechanisms for job execution and monitoring.

Porlet-based interfaces for sensor management allow users to control the relevant functions

of the sensor from remote locations. Also, the interfaces inform users of the status of

data and functions in the sensor. All these processes run transparently to end users.

Portlet-based interfaces also can be user-oriented in the way that a given application can

present different information for different users. The interfaces establish different access

rights depending on the user roles inside the application. Also, different applications and

services can be added as components on the same portlet-based interface.

As a grid portal application, the portlet-based interfaces are accessed through a web

browser, giving mobility to users, enabling them to work from anywhere without the need
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of installing additional third-party software on their machines. Therefore, knowledge of

Linux environments or specific software are not necessary, as all the connections and

interactions with the complex systems are transparent to the users.

Examples of portlet-based interfaces for sensor management are available in [35–37].



Chapter 3

Implementation of Portlet-Based

Interfaces

This chapter presents a detailed description of the implementation of portlet-based man-

agement interfaces.

3.1 The STB Grid Architecture

The STB grid infrastructure illustrated in Figure 3.1 is an effort to integrate grid computing

with radar technologies. It has three principal components: the PR1 radar, the CASA’s

server and the PDClab Grid Testbed. The radar is accessed and manipulated from the

server, via a wireless link access point. The server is the host of the STB grid portal

at UPRM. The portal interface provides a set of services to manipulate radars and its

data, with transparent access to end-users. The STB portal allows user manipulation and

storage of raw data and a service for the remote control of the PR1. Raw data from

radars are sent to a CASA server via wireless communication. The PDCLab Grid Testbed

provides resources required for storing and processing the data generated.

18
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Figure 3.1: Mayagüez Radar Integration [6]

3.1.1 Radar Infrastructure

The first node (PR1) of the DCAS radar network was developed for CASA students of

UPRM and is currently in the top of the Electrical and Computer Engineering building.

The X-band radar has an IEEE 802.11b wireless link with the CASA server that is currently

at the Atmospheric Phenomena Laboratory (APL) at the bottom of the ECE building.

The Figure 3.2 shows the PR1 Radar System that is accessed and managed through the

STB Grid Portal.

Figure 3.2: CASA STB’s PR1 [7]
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The radar system consist primary of a customized version of the commercially available

Raytheon MK2 marine radar. Other PR1 components are the tower at the ECE building,

wireless access point, transceiver, antenna and the Data Acquisition System. Figure 3.3

shows the internal parts of the Data Acquisition System of the radar.

Figure 3.3: PR1’s Data Acquisition System [7]

Radar control and data acquisition are handled by a Linux based VIA EPIA MII mini

ITX embedded PC. It is equipped with an Adlink PCI-8554 counter/timer, PCI-9812

data acquisition card and a PCMCIA wireless card with 802.11g capabilities. Magnetron

trigger signals are generated by the counter/timer card and fed into the high voltage

modulator and calibration switch. Data from the antenna optical azimuth angle encoder

is deciphered and sent through the PCI bus using the PCI-8554, while the video signal

from the logarithmic amplifier is sampled by the PCI-9812, a Gage 12-bit data acquisition

card. On the other hand, an inclinometer measures the antenna’s elevation angle and

transfers it to the embedded PC’s serial port through a transparent Bluetooth wireless

connection.

An interface board, between the transceiver and the embedded PC, was designed to

handle all signal conditioning and provide software controllable transceiver and antenna

rotation On/Off capabilities using the digital outputs of the PCI-8554 combined with
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relays. Furthermore, to synchronize the data acquisition with the magnetron trigger, the

latter was split inside the interface board and fed into the PCI-9812. Thus, the PCI-9812

starts to acquire data every time the magnetron is triggered, [7].

3.1.2 Grid Testbed Infrastructure

The PDClab Grid Testbed, deployed at the University of Puerto Rico-Mayaguez, is an

experimental grid designed to address research issues such as the effective integration of

sensor and radar networks into grid infrastructures. The PDClab grid test-bed components

run CentOS 4.2 and the Globus Toolkit 4.0.1. Figure 3.4 shows an overview of the Grid-

Service based system structure. GridFTP can be used to improve data transport from

the data server to the PDCLab Grid Testbed. Data exchange between server and Grid

testbed is authenticated using Grid Security Infrastructure (GSI).

Figure 3.4: Grid-Service Based System Structure [6]
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3.2 Automated Package to Grid Portals Deployment

Recently grid portals have became increasingly popular for creating customizable, Web-

based interfaces to grid services and resources. The Gridsphere portal framework pro-

vides standards based portal for the easy development of modular web components, called

portlets. Portlets are defined by a standard API and provide a model for developing new

portal components that can be shared and exchanged by various portlet containers. Grid-

sphere provides both a portlet container, a collection of core portlets, and an advanced

user interface library that makes developing new portlets easier for application develop-

ers. However, the installation and implementation of management interfaces to sensing

instruments may be a very time consuming task. To overcome this problem, we have

developed an automated package builder to deploy grid portals, specifically with the Grid-

sphere framework, and the development of portlet-based interfaces. The package provides

the appropriate configuration of Java, Ant, Tomcat, and the Gridsphere Framework. The

package starts with the installation of the software dependencies and the configuration

of the Linux environment variables. The following code shows the environment variables

used:

bashrc.entries

## G r i d s p h e r e C o n f i g u r a t i o n by PDCLab

#

# G e n e r a l S e t t i n g s f o r u s e r e n v i r o n m e n t

#

JAVA HOME=/home/$USER/ G r i d s p h e r e P D C L a b / j d k 1 . 5 . 0 1 5

JRE HOME=$JAVA HOME/ j r e

export JAVA HOME

export JRE HOME

PATH=$JAVA HOME/ b i n : $JRE HOME/ b i n : $PATH :

ANT HOME=/home/$USER/ G r i d s p h e r e P D C L a b / apache−ant −1 . 7 . 0

export ANT HOME

PATH=$ANT HOME/ b i n : $PATH :

GRIDSPHERE HOME=/home/$USER/ G r i d s p h e r e P D C L a b / g r i d s p h e r e −2 . 2 . 7

export GRIDSPHERE HOME

CATALINA HOME=/home/$USER/ G r i d s p h e r e P D C L a b / apache−tomcat −5 . 5 . 1 7

export CATALINA HOME

#

## End o f G r i d s p h e r e C o n f i g u r a t i o n by PDCLab



Chapter 3. Implementation of Portlet-Based Interfaces 23

Figure 3.5 shows the automated package components. The package has five components

ready to work in a Linux distribution: (1) JDK, (2) Apache Ant, (3) Apache Tomcat, (4)

Gridsphere, and (5) Portlet Application. JDK is the Java SE development kit. Apache

Ant is used to compile and deploy the Gridsphere framework. Apache Tomcat is the

servlet/JSP container. Gridsphere is the grid portal development framework that include

the Portlet Application with the portlet-based interface.

Figure 3.5: Automated Package Components

A complete guideline for installation and administration of the STB portal is provided in

Appendix A.

3.3 Remote Radar Controller Interface

To facilitate testing and validation of the radar we have developed a portlet-based inter-

face to control the radar. It allows users to control the relevant functions of the radar

from remote locations. Therefore a user with appropriate certificates can manipulate the

parameters of the radar for a weather acquisition data in any moment.
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3.3.1 Local Radar Controller

The PR1 has a C program controller at its Linux mini ITX embedded PC. This program

was created by the UPRM students Jose Ortiz and Manuel Vega. This program allows

the user to start up or shut down the radar, enabling or disabling the trigger pulse with the

configuration settings of frequency and pulse width. The trigger pulse is the electromag-

netic pulse emitted in all directions from the radar, specifically from the magnetometer.

Data acquisition is also another setting that can be managed from this controller system;

acquisition cards can be activated and then data is processed and stored. The rotation of

the radar structure can also be controlled.

3.3.2 Portlet-Based Remote Radar Controller Interface

The principal application portlet developed was a PR1 radar controller interface. This

sensor management interface has a direct interaction with the C program controller located

at the PR1 mini embedded PC and developed by UPRM CASA students. Figure 3.6 shows

the portlet application developed.

The radar controller interface has two components “The Radar Controller Main” and the

“Radar Camera”. In the first area the users has all the controls and information about the

radar status and, in the another area can see a live camera of the PR1. In this way some

changes in the radar status can be seen in the live camera, e.g. the enable or disable of

the radar rotation.

The “The Radar Controller Main” has four elements: User Online, Expert User, Controls,

and Status Radar. User Online shows whether the radar is available or not. If busy, it

shows who is the current user and her permission. Expert User has the fields where the

users give her login and password to can control the radar, this login and password are

different of the Gridsphere portal. Controls have the four identified parameters that can

be used to control the radar. This section is only available after a successful expert user

login. Status Radar shows a detailed history of all the operation in the radar with the

date and time, user, and operation.

The radar controller interface has two access levels for users: the “Master” and the

“Expert”. When the section User Online says “Waiting User”, as shown in Figure 3.7,
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Figure 3.6: Remote Radar Controller Interface

the radar is available. After a successful login the Controls area is activated and a line is

added in the Status Radar area, as shown in Figure 3.8. When the section User Online

says that a user is online a Master user can login and take the control of the radar,

therefore when a master user is online only other master user can take the control. Also,

the Expert User area has a button to Logout. When it clicked the radar is turn off and

available for a new user.

The section of Controls has four parameters to be controlled: (1) energy, (2) trigger pulse

with its frequency and width, (3) rotation, and (4) data acquisition system. To enable

a specific parameter the user only need to select the checkmark and click the respective
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Figure 3.7: Radar Controller Main

Figure 3.8: Radar Controller Main after Login

Apply button. The Controls area also has a turn off button that can be clicked at any

moment, disabling the four parameters. When some action is clicked a line is added in

the Status Radar area, furthermore a message of successful is showed at the top of the

application. Figure 3.9 shows when some commands controls are executed.

The interaction with the local radar controller was improved forcing an initialization radar
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Figure 3.9: Executing controls command in the Radar Controller Main

sequence from the remote radar controller interface, making a better use of the radar, and

preventing possible hardware damage. A states diagram of the radar controller interface

is shown in Figure 3.10.

Figure 3.10: States Diagram of the Radar Controller Interface

The first state (S0) of the remote radar controller interface is when the user only can

enable the energy of the radar, when the energy is enabled (S1) the user can enable the

trigger pulse or disable the energy. Next, the trigger pulse can be activated (S2) but only

if the parameter of width and frequency are valid. At this point (S2), the user can disable

the trigger or enable the rotation of the radar. If the rotation is enabled (S3), the user

can enable the data acquisition system or disable the rotation that represent come back

to the before state (S2). Finally the data acquisition system can be enabled (S4) and the
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user can return to the before state (S3) disabling the data acquisition system. Also, at

any state the user can turn off the radar and return to the initial state (S0).

3.3.3 Behind the Portlet-Based Interface

The portlet applications have two parts: the Java file and the JavaServer Pages (jsp) file.

The jsp file includes the code to build the aspect graphics of the application, for example:

buttons, text areas, check boxs, etc. The java file has the code to the initialization of the

portlet and the components necessary to interact with the visual components at the jsp.

The JSPs are interpreted by the Gridsphere container on-the-fly reducing the time taken

to reload changes. With this features the development of portlet interfaces was improved

with the use of AJAX and Java Scripts making more interactive the applications.

The following code shows a part of a jsp file in a Gridsphere environment with the use

of AJAX and Java Scripts. The example code is a part of the remote radar controller

interface.

RadarControllerMain.jsp

<%@ t a g l i b u r i =”/ p o r t l e t U I ” p r e f i x =” u i ” %>

<%@ t a g l i b u r i =” h t t p : / / j a v a . s u n . com/ p o r t l e t ” p r e f i x =” p o r t l e t ” %>

<%@ t a g l i b u r i =”/ p o r t l e t A P I ” p r e f i x =” p o r t l e t A P I ” %>

<p o r t l e t A P I : i n i t />

<p o r t l e t : d e f i n e O b j e c t s />

<u i : m e s s a g e b o x b e a n I d=” messageBox ”/>

.

.

.

<u i : t a b l e r o w>

<u i : t a b l e c e l l width=” 10 ”>

<u i : c h e c k b o x b e a n I d=” c h e c k b o x 2 ” d i s ab l e d=” t r u e ”/>

</ u i : t a b l e c e l l>

<u i : t a b l e c e l l width=” 330 ”>

<a h r e f=”#”

on c l i c k=” showHide ( ’ f r e q P a r a m s ’ ) ”>E n a b l e T r i g g e r P u l s e . . .</a>

</ u i : t a b l e c e l l>

<u i : t a b l e c e l l width=” 60 ”>
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<u i : a c t i o n s u b m i t b e a n I d=” a p p l y 2 ” ac t i on=” a p p l y 2 ” k e y=” A p p l y ”/>

</ u i : t a b l e c e l l>

<u i : t a b l e c e l l />

</ u i : t a b l e r o w>

<u i : t a b l e r o w>

<u i : t a b l e c e l l width=” 10 ”>

<u i : t ex t va lue=”” s t y l e=” s t a t u s ”/>

</ u i : t a b l e c e l l>

<u i : t a b l e c e l l width=” 330 ”>

<d i v i d=” f r e q P a r a m s ” width=” 330 ”

name=” f r e q P a r a m s ” s t y l e=” d i s p l a y : none ” >

<FONT COLOR=”#000080”>&r a q u o ; P u l s e Width (& lambda ; )

&n b s p ; i n &m i c r o ; s : </FONT>

<u i : t e x t f i e l d b e a n I d=” W i d t h T r i g u e r ” va lue=” 1 . 0 0 ”

s i z e=”5” maxlength=” 30 ”/><br>

<FONT COLOR=”#000080”>&r a q u o ; P u l s e Rep . F r e q . i n kHz : </FONT>

<u i : t e x t f i e l d b e a n I d=” P RFTr igue r ” va lue=” 1 . 0 0 ”

s i z e=”5” maxlength=” 30 ”/>

</ d i v>

</ u i : t a b l e c e l l>

</ u i : t a b l e r o w>

.

.

.

< s c r i p t l a n g u a g e=” J a v a S c r i p t ” type=” t e x t / j a v a s c r i p t ”>

f u n c t i o n showHide ( w h i c h L a y e r ) {
v a r elem , v i s ;

i f ( document . g e t E l e m e n t B y I d ) // s t a n d a r d s work

e lem = document . g e t E l e m e n t B y I d ( w h i c h L a y e r ) ;

e l s e i f ( document . a l l ) // o l d v e r s i o n s work

e lem = document . a l l [ w h i c h L a y e r ] ;

e l s e i f ( document . l a y e r s ) // nn4 w o r k s

e lem = document . l a y e r s [ w h i c h L a y e r ] ;

v i s = elem . s t y l e ;

i f ( v i s . d i s p l a y ==’’&& elem . o f f s e t W i d t h !=

u n d e f i n e d&&elem . o f f s e t H e i g h t != u n d e f i n e d )

v i s . d i s p l a y =

( e lem . o f f s e t W i d t h !=0&&elem . o f f s e t H e i g h t !=0) ? ’ b l o c k ’ : ’ none ’ ;

v i s . d i s p l a y =
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( v i s . d i s p l a y = = ’ ’ | | v i s . d i s p l a y ==’ b l o c k ’ ) ? ’ none ’ : ’ b l o c k ’ ;

}

</ s c r i p t>

The Gridsphere framework has user interface (UI) tag and visual bean library to develop

portlets. The previous code shows the libraries imported and the initialization tags. After

that, we can start adding visual components. In order to have an accurate organization of

the elements, these are positioned in a grid with the use of columns and rows. Next, check

boxes, buttons and text fields elements are added with the UI tags ¡ui:checkbox ¿,

¡ui:actionsubmit ¿, and ¡ui:textfield ¿, respectively. Between these visual ele-

ments we can see components of HTML code allowing the AJAX calls. Finally the jsp

file has the functions used in JavaScript code, these are inserted between the commands

¡script language=”JavaScript” type=”text/javascript”¿ and ¡/script¿.

As said at the beginning of the section, the jsp file has a java file partner. The following

code shows a java file partner for our jsp example file.

RadarControllerMain.java

package edu . uprm . r a d a r c o n t r o l l e r . p o r t l e t s ;

import j a v a x . p o r t l e t . ∗ ;

.

.

.

import o r g . g r i d l a b . g r i d s p h e r e . p r o v i d e r . p o r t l e t u i . b e a n s . A c t i o n S u b m i t B e a n ;

import o r g . g r i d l a b . g r i d s p h e r e . p r o v i d e r . p o r t l e t u i . b e a n s . CheckBoxBean ;

.

.

.

/∗∗
∗ @ a u t h o r C e s a r S a n d o v a l P a r a l l e l and D i s t r i b u t e d Computing L a b o r a t o r y

∗ U n i v e r s i t y o f P u e r t o R i c o a t Mayaguez 2008

∗/

pub l i c c l a s s R a d a r C o n t r o l l e r M a i n extends A c t i o n P o r t l e t {

p r i v a t e f i n a l s t a t i c S t r i n g DISPLAY PAGE =
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” r a d a r c o n t r o l l e r / R a d a r C o n t r o l l e r M a i n . j s p ” ;

.

.

.

pub l i c vo id i n i t ( P o r t l e t C o n f i g c o n f i g ) throws P o r t l e t E x c e p t i o n {
super . i n i t ( c o n f i g ) ;

DEFAULT VIEW PAGE = ” p r e p a r e ” ;

DEFAULT HELP PAGE =

” r a d a r c o n t r o l l e r / R a d a r C o n t r o l l e r M a i n H e l p . j s p ” ;

.

.

.

}

pub l i c vo id p r e p a r e ( RenderFormEvent e v e n t ) throws P o r t l e t E x c e p t i o n {
.

.

.

s e t N e x t S t a t e ( e v e n t . g e t R e n d e r R e q u e s t ( ) , DISPLAY PAGE ) ;

}

pub l i c vo id a p p l y 2 ( A c t i o n F o r m E v e n t e v e n t ) throws P o r t l e t E x c e p t i o n {
.

.

.

CheckBoxBean c h e c k b o x 2 = e v e n t . getCheckBoxBean ( ” c h e c k b o x 2 ” ) ;

c h e c k b o x 2 . s e t D i s a b l e d ( f a l s e ) ;

A c t i o n S u b m i t B e a n a p p l y 2 = e v e n t . g e t A c t i o n S u b m i t B e a n ( ” a p p l y 2 ” ) ;

a p p l y 2 . s e t D i s a b l e d ( f a l s e ) ;

.

.

.

}
.

.

.

}

This java file begin with the imports of the classes used in the application, the most
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important are the Gridsphere classes of the visual component used in the jsp file. Next, we

have the main class called RadarControllerMain that extends the class of the Gridsphere

portlets (ActionPortlet). The next lines have the global variables, as DISPLAY˙PAGE

that has the location of the jsp file partner. The Gridsphere portlet application always

has the functions init() and prepare(). In the first function the initial parameter are

defined and the second function has the commands that are executed every time that

the portlet is refreshed. prepare() have the call to the jsp file. Finally, we can add

the functions of the visual components calls. The previous java file shows as example

the function apply2() that is called when the second button “Apply” is clicked. In this

function we can call the bean libraries of the visual elements in order to interact with

these.

An important feature in the development of sensor management interfaces is to allow the

interface interact with the sensors. To achieve this we need to create a confidence among

them. This confidence allows the interface execute remote instructions directly in the

sensor. Therefore, because the communication between the elements are via secure shell

(SSH) protocol, we need set up a SSH Public Key Authentication.

An SSH “key” is actually a matched pair of keys stored in two files. The private or secret

key remains on the client machine, encrypted with a passphrase. The public key is copied

to the remote machine (or sensor). When establishing a connection, the SSH client and

server perform a complex negotiation based on the private and public key, and if they

match (in a cryptographic sense), your identity is proven and the connection succeeds.

To set up a public-key authentication: first create an SSH key pair, next copy the public

key to the sensor, and finally log into the sensor and install the public key. All this process

is showed with more details in the Appendix B.

3.3.4 PR1 Live Radar Camera

To monitor the PR1, a camera was installed near to the radar. The camera needed have

the featured of outdoor with weather proof and night vision. The camera acquired is

shown in Figure 3.11.

The camera specifications are as follows:
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Figure 3.11: Weatherproof High Resolution Night vision IP Network Color Camera [8]

• Resolution: 720x480 pixels

• Video Coded: M-JPEG4, 32 bit RSIC Embedded Processor

• Audio: External Audio Capable

• Lens Type: Sony 1/3” CCD, 8 mm fixed lens

• Night Vision: IR LED up to 100ft

• Dimensions: 143(w) x 78(h) x 56(d) mm

• Case: Weatherproof IP66 Casing

• Power Source: 12 VDC

• Interface: Lan or RS485 connection

• Browser Compatibility: Only Internet Explorer

• Number of Client: 5

Figure 3.12 shows a screenshots of the camera application.
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Figure 3.12: Day, Sunset and Night of the PR1 Live Camera

3.4 Rain Detector and Storage Services

The STB focuses on constructing a network of radars to provide precipitation estimations

in the western area of Puerto Rico.

3.4.1 PR1 Data Storage

When the data acquisition is enabled, the information of each radar spin is saved in a .dat

file, this file is sent to the CASA Server via wireless connection. The data is stored in a

folder and the name has the date and time of the capture, the file 032808˙132339˙PR1.dat,

for instance, contains data captured on March 28, 2008 at 13:23:39.

The size of each file of radar data is around 5.31Mb. Table 3.1 shows the PR1 data storage

operating 24/7/365. The average of data generated get the PR1 is 2 TB per year. This

amount of raw data storage can be reduced using mechanism for data detection.

Table 3.1: PR1 Data Storage
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3.4.2 Rain Data Detector and Automated Storage Services

To determine if the data acquired represents rain or not, and save storage in the process,

a data detector has been developed. The simple rain data detector service allows the

automated storage of raw data from the PR1 radar. The data is stored in CASA‘s server

and automatically processed to determine if there was rain. If there was no rain the data

can be deleted or moved to a trash folder, otherwise data is moved to an only rain data

folder.

The algorithm was developed in bash code and has been tested and validated with PR1

radar data obtained from July 2007 until April 2008. We use 20 files to test and 100 files

to validate, where the 50% was rain. Figure 3.13 and Figure 3.14 shows an examples of

PR1 reflectivity plots with rain and without it, respectively.

Figure 3.13: PR1 Reflectivity Plot with Rain

The pattern used to detect the rain was the power measurement. The files of the PR1

radar have two columns: one with the power measurement and other with the counter

value of the radar angle position. The algorithm compute the average of the power values

of each radar angle position and this average is compared with a power threshold. If the

power average value of each radar angle position in a file is bigger that the power threshold

we say that the data file is rain.

To found the appropriate threshold we analyze the data training. In the no rain data we

found that the maximum power average was 0.418483 V although the rain data has a
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Figure 3.14: PR1 Reflectivity Plot without Rain

maximum power average around 0.6 V of even more, therefore we fix the threshold equal

to 0.43 V. By using this threshold the detection with the training data was perfect. The

detector was probed with this threshold in the validation data and the result is shown in

Table 3.2. It shows a detection performance of 96% in rain data and 82% in no rain data.

The data exhibit noise in the first kilometer range, that is produced for the near building

to the radar (See Figure 3.14).

Table 3.2: Confusion Matrix for Rain Detection

3.4.3 PR1 Data Management

Users can access raw-data from PR1 radar through the grid portal. Currently, the files

containing the raw-data are stored like text in a “dat” file. The data management portlets

permit end-users to download the data.
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Figure 3.15 shows the PR1 data request portlets. Once the user has been logged into

the portal, the raw data request portlet is made available. The initial portlet shows a

single selection form that permits the selection of the date of interest. Then, the data set

selected can be downloaded as a compressed file. An important feature is that the user

can download a data set of different days in a compressed file. This portlet is based on a

replication data portlet proposed in [6].

Figure 3.15: PR1 Raw Data Request

3.5 Acoustic Sensor Grid Interface

Another application portlet developed in this project was an acoustic sensor grid interface.

This sensor manager interface controls gumstix sensors pertained to the environmental

surveillance monitoring research of the WALSAIP (Wide Area Large Scale Automated

Information Processing) team.

The particular application that the WALSAIP team is working on is to help biologists detect

the endangered Puerto Rican Crested Toad Peltophryne lemur. The WALSAIP team has

proposed an off-the-shelf distributed sensing infrastructure for the acoustic environmental

surveillance monitoring problem based on the WALSAIP Sensor Grid (WSG). The acoustic-

based WSG relies on a centralized architecture, i.e. a central or master node interacts

with the lower nodes and is responsible for collecting, processing, and communicating the

information observed to an end user or to a server.
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For the problem of detecting the existence of Peltophryne lemur the WALSAIP team

choose as the Master Sensor Node (MSN) module an embedded PC in mini-ITX, and

as the Sensor Node modules Gumstix boards. The specifications of each module are

described in detail in [38].

Currently the WALSAIP team is working on recording audio on the gumstix boards and

managing the gumstix from the MSN. From this previous knowledge, the acoustic sensor

grid interface was developed. First, a Gridsphere portal with the WALSAIP theme was

developed and deployed on this MSN, as shown in the Figure 3.16. For this step, we

use the automated package builder to deploy grid portals and development portlet-based

interfaces previously described in Section 3.2. The automated package allowed us the

development and deployment of the WALSAIP portal in an easy and fast way.

Figure 3.16: WALSAIP Grid Portal

Next, we set up an SSH Public Key Authentication between the MSN and the gumstix

nodes. The SSH authentication process allows the acoustic sensor grid interface to execute

remote instructions directly in the sensor. To set up a public-key authentication: first we

create an SSH key pair in the MSN, next we copy the public key to the gumstixs sensor,

and finally we log into the gumstixs and installed the public key. The gumstixs sensor

has an embedded Linux kernel version, therefore the installation of the SSH Public Key

change compared to a non-embedded Linux kernel version such as the Radar Controller

Interface case (See Section 3.3.3). The gumstixs authentication is described with more

details in the Appendix B.
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The portlet-based implementation was similar to the Radar Controller Interface described

in Section 3.3.3. The users of this application can set the audio parameters of the gumstix

sensors, and manage the audio files. Users that would like to use this gumstix interface only

need a web browser. Knowledge of Linux environments or specific software are therefore

not necessary, as all the connections and interactions with the gumstixs are transparent to

the users. The developed Gumstix Controller Interface Portlet is illustrated in the Figure

3.17.

The interface developed allows the Gumstix setup in remote settings. Specifically the

interface allows the user to set the Gumstix audio modules and its parameters. Therefore,

each Gumstix can be activated to record audio data by setting the volume, sampling

rate, duration of recording, bit resolution, and file format. Finally, the audio data can be

displayed and transferred from each Gumstix to the MSN and stored in a local database.

Two examples of the audio code executed directly in the gumstix sensor are shown below:

aumix -v100 -b0 -t100 -m100 -i100 -o100

brec -w -S s48000 b16 t15 audiofilename

The first line allows set the gumstix audio modules. The second line allows record an

audio file for a sampling rate of 48000 Hz, 16 bit of resolution, recording length of 16 s,

and the name of the audio file is audiofilename. Note that to execute this command

first we need to provide a SSH connection between the MSN and the gumstix sensor.

Therefore, the before commands can be executed for a user with a simple click on the

portlet-based interface eliminating the knowledge of Linux commands.
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Figure 3.17: Gumstix Controller Interface Portlet



Chapter 4

Conclusions and Future Work

In this project report, we have presented the development of portlet-based sensor man-

agement interfaces that can be used to configure and control sensor instruments.

An automated package builder to deploy portlet-based sensor management interfaces was

developed providing Java, Ant, Tomcat, and the Gridsphere Framework. The develop-

ment of portlet interfaces was improved with the use of AJAX and Java Scripts. The

components in the package can be used as a template to develop new grid portals and

portlet-based interfaces.

Two portlet-based interfaces were developed. The first interface allows control the fea-

tures of the PR1 radar. The second interface allows the management of Gumstix sensors

pertaining to acoustic sensing applications.

A PR1 data detector was also develop with a 96% performance in rain data and 82%

in no rain data. Also, an application portlet was developed to management PR1 data.

End-users can access the raw-data acquired from the PR1 radar through the grid portal

interface.

4.1 Future Work

The automated package builder to deploy sensor management interface can be improved

with the develop of other interesting features to work on portlet-based interface with AJAX

41
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or Java Scripts as drag and drop features or request datasets from web services without

refreshing the page. Furthermore, portlet applications can be developed and added to the

grid portal to allow for example image manipulation, audio manipulation or maps location.

Also, the portlet-based interface can be developed to manage other sensors as weather

station or disdrometers.

The remote radar controller interface can be improved with the working on features of

PR1 as the continuous acquisition data or with validation and calibration parameters.

The rain detector can be improved with others rain classes or by using other classificators

such as neural networks, fuzzy classifier, nearest-neighbor classifiers or support vector

machines.

The acoustic sensor grid interface can be improved with the management and control of

the solar power supplies.



Appendix A

STB Installation and Administration

Guide

A.1 Introduction

This guide shows how to use the GridSphere auto package builder and how administrate

the STB Grid Portal developed under the PDC Lab at the University of Puerto Rico at

Mayaguez. The package provides Java, Ant, Tomcat, and Gridsphere Framework. The

current version of the STB portal is available at http://stb.ece.uprm.edu.

A.2 Software Dependencies

This auto-install package has the necessary software dependencies for the Gridsphere

framework:

• JDK 1.5.0.15: The Java SE Development Kit.

• Apache Ant 1.7.0: Ant is used to compile and deploy the GridSphere framework.

• Apache Tomcat 5.5.17: The Servlet/JSP Container.

• Gridshere 2.2.7-Release PDCLab: The grid portal development framework that

includes the STB service portlets.
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A.3 Requirements

A Linux distribution. We recommend CentOS or Fedora.

A.4 Installation of GridSphere Auto Package Builder

1. Download the package GridspherePDCLab.tar.gz.

2. Extract the package at your home folder, e.g. /home/myuser. It needs to be installed

only at this location.

3. Run the command AutoInstallGridsphere.sh at /home/myuser/ GridspherePDCLab,

with the following syntax:

./GridspherePDCLab.sh

4. Then, read the Java License. The script will automatically make the installation of

Java, Ant, and Tomcat, with their environment variables in the user system.

5. After a few minutes the installation completes and you will see the message “Grid-

sphere Auto Installation Complete :)”. After this message close your terminal

and open a new one, in order to reload the new settings.

6. In the new terminal run the command deployGridsphereAndPortlets.sh at /home

/myuser/GridspherePDCLab, with the following syntax:

./deployGridsphereAndPortlets.sh

This script will automatically deploy the Gridsphere Framework and the provided

Portlets at the Tomcat Container, and start up the Tomcat container.

7. Finally, the script will open your Web browser (deafault: Firefox) at the url http:

//localhost:8080/gridsphere or http://127.0.0.1:8080/gridsphere. For

the first time, you will see the Gridsphere Setup page as illustrated in Figure A.1.

Review all required fields: user name, full name, email, organization (optional) and

the password (the password must have at least 5 characters). Remember the entries

for user and password because they will be assigned to the Gridsphere Admin user.

Finally click at “save” and you will see the Gridsphere Portal Home Page, see Figure

A.2.

http://localhost:8080/gridsphere
http://localhost:8080/gridsphere
http://127.0.0.1:8080/gridsphere
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Figure A.1: STB Gridsphere Setup Page

Figure A.2: A part of the STB Gridsphere Portal Home Page

8. If the Gridsphere Portal is running, you can log in with your Admin user name, see

Figure A.3.

Figure A.3: A part of the STB Gridsphere Welcome Login Page
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After logged in as the admin user, you can click the administration tab to access

the administration portlet where you can configure the Gridsphere Framework, see

Figure A.4.

Figure A.4: A part of the STB Gridsphere Administration Login Page

9. To access the portal from another computer in your web browser open the following

URL: http://¡host-name¿:8080/gridsphere, where ¡host-name¿ is the host-

name of the computer running the tomcat server. If any problem arises, first check

your firewall configuration before debugging any further.

10. Starting and Stopping Tomcat Container

• To start up the Tomcat (we provide a script at GridspherePDCLab) execute

the following command:
./tomcat˙start.sh

• To stop Tomcat (we provide a script at GridspherePDCLab) execute the fol-

lowing command:
./tomcat˙shutdown.sh

11. If you have any errors during the execution, please take a look at the Tomcat log

messages at $CATALINA˙HOME/logs/.

A.5 Starting and Stopping Tomcat Container at STB

The Tomcat container by default comes configured to run an HTTP server on port 8080.

This means that every application in the container has the link http://¡host-name¿:

http://<host-name>:8080/gridsphere
http://<host-name>:8080/my-application
http://<host-name>:8080/my-application
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8080/my-application. In UNIX all the ports under 1024 are privileged ports and only

the root may open these ports. For this reason the STB Grid Portal provide a script to

startup and shutdown the tomcat container in the port 80, and thus removing the need

for specifying the port in the URL. The script jtomcat.sh is located at opt/tomcat/bin.

This script must be run as the root user in order to open port 80 and next spawn the

tomcat container as the tomcat user.

• To start up the Tomcat in the STB Portal execute the following command:

./jtomcat.sh start

• To stop Tomcat in the STB Portal execute the following command:

./jtomcat.sh stop

A.6 STB Portal

After starting the Tomcat container, you will be able to access the STB url of your

container as http://¡host-name¿, see Figure A.5.

Figure A.5: STB Gridsphere Portal Home Page

http://<host-name>:8080/my-application
http://<host-name>:8080/my-application
http://<host-name>
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A.7 STB Welcome Tab

When logged in with your user name and password you start in the “Welcome” tab. This

provides three sub tabs: home, settings and, layout.

A.7.1 Home Sub tab

In this portlet we provide an abstract of the CASA project and show the last news about

the portal, see Figure A.6.

Figure A.6: STB Home Welcome portlet

A.7.2 Settings Subtab

The setting sub tab has a profile manager portlet. The Profile Manager portlet allows

users to customize their settings including profile information, language preferred, time

zone, and group membership. The view mode displays the existing user profile information

that can be edited. The password of the user can be changed in this portlet. The configure

group membership section show all the application portlets available, the user can select

which applications would like for his profile, see Figure A.7.
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Figure A.7: STB Home Settings portlet

A.7.3 Layout Subtab

The layout sub tab is a layout manager portlet. The Layout Manager portlet allows users

to customize their profile theme and tabs. Various options are provided to allow for

renaming, creating, and deleting portlet tab titles, see Figure A.8.

Figure A.8: STB Swamp Layout
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A.8 STB Administration Tab

After login as admin user, you can click the administration tab to configure the Gridsphere

Framework features. The Administration tab provides six sub tabs: portlets, users, groups,

roles, layouts and, messaging.

A.8.1 Portlets Subtab

The Portlets sub tab has four sections: configure login, portlet application manager,

session manager and, tracker statistics, see Figure A.9.

Figure A.9: STB Administration Portlets
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The configure login section allows for creating new accounts, changing password, setting

the number of user login in the portal. The Portlet Application Manager allows a portal

administrator to stop, start and deploy portlet web applications to GridSphere. Once a

portlet has been stopped it is no longer accessible. A new portlet web application may

be deployed but it assumes that the web application archive (WAR) has already been

placed into the Tomcat webapps directory. The session manager portlet shows all the

information of current log users. Finally, the tracker statistics portlet allows for tracking

the application portlets.

A.8.2 Users Subtab

The Users portlet is used for managing portal users. The portlet displays all the information

of the portal users and allows editing this information, see Figure A.10.

Figure A.10: STB Administration Users

The portlet also allows the creation of new users. Figure A.11 shows the form for a

new user. Username, full name, email and password (must have at least 5 characters) are

required fields, organization is optional. Admin must also select the roles for the new user.

Once an account is created the new portal user may login with the provided password.

Leave password field blank to keep existing password if editing an existing user.
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Figure A.11: STB Administration New User Account

A.8.3 Groups Subtab

The Groups portlet displays all the groups available, see figure A.12. It is also used for

adding and removing portal users to groups. A group is defined by a deployed portlet web

application. New users are initially in the core GridSphere group but may be added to

existing groups. Simply select the group to add or remove users from and then confirm

changes, as shown in Figure A.13. Remember that the user can select in her profile the

public applications (like DCAS Network) but the private application (like Radar Controller)

only can be added by the administrator in this portlet. In this portlet the admin can create

new groups with the portlet applications available in others groups.
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Figure A.12: STB Administration Groups

Figure A.13: STB Administration Users in Groups

A.8.4 Roles Subtab

The Roles portlet is used for managing roles in the portal. Roles can be added, modified

and deleted except for the core GridSphere roles, USER, ADMIN and SUPER that also
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match the core role priority levels supported by the portal. A User role priority is used

for any logged user, Admin is generally used for some kind of administrator functionality

and super essentially has no access restrictions. Roles can also be defined by an individual

webapp by specifying them in the role descriptor file at WEB-INF/roles.xml. Figure A.14

shows the administration roles portlet.

Figure A.14: STB Administration Roles

A.8.5 Layouts Subtab

The Layouts portlet allows customizing the theme and entire portal layout. Various options

are provided to allow rename, create and delete portlet tab titles and sub tab titles. Portlets

within a subtab can be arranged into table layouts with the desired columns and rows.

Figure A.15 shows the layout manager portlet.

The layout manager portlet allows editting the banner and footer sections. It also provides

a section to choose the default theme of the outside of the grid portal and edit the

GuestUserLayout.xml file which has the configuration of the outside tabs, as shown in

figure A.16.
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Figure A.15: STB Administration Layouts

A.8.6 Messaging Subtab

Messaging is the last sub tab of the administration option and allows the configuration of

messaging services. This portlet allows editting server, port, and address of the mailing

service. The information here concerning to grid portal alerts, for example when you

forgot your password. Figure A.17 shows the configure messaging services portlet.
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Figure A.16: STB Administration GuestUserLayout

Figure A.17: STB Administration Messaging



Appendix B

Setting Up Public Key Authentication

over SSH

This appendix shows how to use public-key authentication to prove your identity to a

remote server instead of login and password.

1. Generate key on local machine

To set up public-key authentication, first create an SSH key pair, executing the

following command at /home/myuser/.ssh:

ssh-keygen -b 1024 -t dsa

After executing this command, make the passphrase empty in order to connect to

the server instead password.

This created two files in .ssh folder: id˙dsa and id˙dsa.pub. An example of a

cryptographic key is following showed:

id dsa.pub

s s h−d s s AAAAB3NzaC1kc3MAAACBAJQte1m+ztwwQGk12J7Ud27JHw2gFC+8

q J B C l g H C y i i L o n v K /Uxjfd7sV272WDVgQ2BtB1KFZwLuZamdxXGVHj420oXQ

6 JWA69yYuoSLqskiVKjRpwJdt82uatGoxoIRsyc7+teksUNXqR9Ceds / wgBI

unH+D5Df0v7Dto5zDJX7AAAAFQDCNjk2u+Vf90SPdzv9Gt+BzwrPiQAAAIAR

5eWJWgiWOeBD5Z38v2nXmOP9jj+cYNLXBLSzHx6giUUeaF5bszy6168c0j71

G2G+QJuop5pnu96JtcfIlM7RKxAVgmKUcSF / qGgvUlsC3eq4PzBPZy+I7ZW8

jD2h23rsQZfzyKrJtL9gZHTLuiUFS+1NlBKPmu0bW9c4qrAjtwAAAIB1KQxi

57
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0wmLAWy9WNOOBPerQOlmsV8F7d/AvHCOfS17R/8 UXUnk04y6GVaTMrTSxBVj

ALWuXewfSxojD1j6AlSIPWHof1zwh6yNdySOrYcgqO+gV gp 5f Dpf Js 6h 6N 0r

j22cPBr9lhPCrP45v9GfO27tBcAf62S50ir9QVYfsH9uUg

== myuser@<HOST−NAME>

2. Copy the public key to the remote server

Copy the local public key to the remote server using password authentication exe-

cuting the following command:

scp id˙dsa.pub remoteuser@remoteserver:

3. Log into the remote server and install the public key

Log into the remote server using password authentication executing the following

command:

ssh remoteuser@remoteserver

On the remote server, create the /home/remoteuser/.ssh directory if it does not

already exist and set its mode appropriately, as follow:

mkdir -p ˜/.ssh

chmod 700 ˜/.ssh

Then append the contents of id˙dsa.pub to ˜/.ssh/authorized˙keys2 executing

the following command:

cat id˙dsa.pub ¿¿ ˜/.ssh/authorized˙keys2 (Appending)

chmod 600 ˜/.ssh/authorized˙keys2

Note: Always append the public key into authorized˙keys2, because multiple

people can be access the server. Each line in the authorized˙keys2 file on the

server corresponds to a user who can get into the account from a remote host.

Note: SSH public keys go into the file ˜/.ssh/authorized˙keys2. Other versions

of SSH, however, require SSH-1 protocol keys to be in ˜/.ssh/authorized˙keys,

like the gumstix boards.

Log out of the remote server and log back in.

4. Now ssh to the remote server

Now you can ssh to the remote server without entering your password.
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[7] M. A. Vega, Student Developed Meteorological Radar Network for the Western Part

of Puerto Rico: First Node. M.S. Thesis - University of Puerto Rico, Mayagüez,
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