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ABSTRACT 

 
Ground Penetrating Radar, GPR, is a widely used tool for probing the sub-surface in such 

applications as pavement monitoring, humanitarian de-mining, and exploratory geophysics, 

among others. Its advantage lies in that it provides information about the composition of the 

sub-surface in a fast, non-invasive fashion.  

The work presented herein relies on the application of GPR to the problems of material type, 

e.g., soil types, and soil moisture determination. The task is attacked from a systems 

perspective to obtain a signature for each material at different moisture levels. This signature 

has discriminatory characteristics that are exploited with the use of a Neural Network, NN, 

which is able to distinguish between different materials and moisture levels with reasonable 

accuracy. 
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RESUMEN 

 

Ground Penetrating Radar, GPR, se ha convertido en una herramiena muy utilizada para 

investigar la estructura del sub-suelo. Aplicaciones comunes son monitoreo de pavimentos, 

detectar minas que permanecen escondidas bajo tierra desde la segunda guerra mundial, en el 

campo de la geofísica, etc. La ventaja del GPR es su naturaleza para caracterizar la estructura 

del sub-suelo de una manera rapida y no-invasiva. 

El trabajo aquí presentado, se basa en la aplicación del GPR en los problemas de 

identificación del tipo de suelo, y determinación de su contenido de humedad. El problema es 

atacado desde una perspectiva de sistemas, donde el objetivo es encontrar una caracteristica 

distinctiva del tipo de suelo, y su contenido de humedad. Esta característica es usada en un 

sistema basado en una red neural, la cual logra la discriminación deseada con una precisión 

razonable. 
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1 INTRODUCTION 
 
 

1.1 Motivation 

Knowledge of accurate soil moisture information is vital in the fields of agriculture, 

hydrology, and atmospheric sciences, civil engineering, among others. In atmospheric 

sciences, for instance, soil moisture information is an important factor that affects drastically 

climate predictions. In agriculture, soil moisture controls the scheduling of crop irrigation; 

poor moisture information is thus, in part, responsible for crop health and the success of 

precision agriculture programs. 

 

Different methods have been used over the years to measure soil moisture. These methods, 

such as, gravimetric sampling, Time Domain Reflectometry (TDR), and Theta Probes are all 

invasive methods that require the insertion of probes or the removal of soil samples for 

laboratory analysis. Satellite remote sensing has been used for this purpose, but passive 

sensors provide spatial resolution, in the microwave region, that is too low for more spatial 

accuracy requirements. Active, microwave, sensors provide much better spatial resolution 

than passive sensors, but current algorithms are aimed at scenes with little or no vegetation 

cover. The remote sensing of soil moisture via satellite requires validation and calibration. 

The validation aspect depends on large moisture data from large tracks of land. 

Current techniques to determine the soil moisture content using GPR are based on the 

calculation of the dielectric constant, which implies that a petrophysical relationship has to be 
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used to estimate the moisture given the dielectric constant. The problem with petropysical 

relationships is that they are site-specific, which means that they are only correct for the field 

and soil under which they were developed. So, there is a pending need for methods that do 

not rely on these models, and are equally applicable across any field. The word petrophysics, 

as defined by Schlumberger, refers to the study of the physical properties of rock types. 

These properties include, porosity, pressure, permeability, and saturation. With knowledge of 

these properties, the rock type can be inferred, as well as the presence of oil and gas. In the 

context of this thesis, the word petrophysical relationship is used to refer to an empirically 

derived equation that, with knowledge of certain properties of the soil, is used to infer its 

moisture content. 

 

In this research, a Ground Penetrating Radar (GPR) is used to determine the soil moisture 

over land, with no vegetation cover. A GPR can measure electromagnetic reflections 

produced by variations in dielectric properties at the interface between different propagating 

mediums. It can provide high resolution, non-invasive, continuous spatial soil moisture 

measurements consistent with invasive measuring devices. 

 

1.2 Literature Review 
 
Several researchers have delved into the problem of soil moisture determination. Using 

invasive techniques (TDR, etc.) or non-invasive techniques (GPR, Satellite), this is still an 

open problem. Literature concerning, moisture determination with GPR is scarce, as most 
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publications concern moisture determination based on TDR measurements. Soil moisture 

determination using GPR has recently become a more active area of research. 

 

 

Time Domain Reflectometry is a popular method to determine the moisture content thanks to 

the contributions of Topp, Davis, Annan, Dasberg, Dalton and others. The widespread use of 

TDR came after Topp developed a non-linear relationship between the volumetric water 

content and the dielectric constant [12]. This relationship is independent of soil type, salt 

content, density and temperature and has been used extensively to determine the moisture 

content of any field. TDR calculates the dielectric constant using the velocity of the 

electromagnetic wave through a waveguide. Soil moisture is obtained using the TDR 

calculated dielectric constant and equations such as those developed in [12].  

 

Parallel transmission lines were found to be useful to measure moisture content in [1], [2] 

and [3], resulting in accurate measurements when compared against moisture content 

obtained by gravimetric sampling in a laboratory environment. These results were validated 

in [4] with experiments in a cornfield using three different variations of parallel transmission 

lines. 

 

Chanzy, Lambot, Rubin and others have studied the use of GPR to measure soil moisture. 

The methods described in the literature are mainly: 
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o Based on reflected wave velocity 

 The velocity of the reflected wave is calculated. This velocity is used to calculate the 

dielectric constant and then the equations in [12] are used to estimate the moisture 

content. This method can be divided into single offset reflection method and multi-

offset reflection method. In the single-offset method, the distance between the 

transmitting and receiving antennas is not varied whereas in the multi-offset method, 

the distance between the antennas is varied. 

 

o Based on ground wave velocity  

The ground wave is the part of the radiated energy that travels between the transmitter 

and receiver through the top layer of the soil [6]. This method involves a multi-offset 

GPR setup, in which the distance between the transmitter and receiver is continuously 

increased. Moisture content measured in this way is presented in [8], [9], and [10].  

 

o Based on Surface Reflection 

This method relies on the amplitude of the reflected (relative to the amplitude of the 

wave reflected from a “perfect” reflector to obtain the normal incidence reflection 

coefficient. From the reflection coefficient, the dielectric constant of the soil is 

obtained. Later, dielectric constant is converted into soil moisture by means of a 

petrophysical relationship. As presented in [17], soil moisture can be adequately 

obtained using the reflection coefficient if appropriate calibration is performed. 
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o Based on electromagnetic inversion 

Model-based methods are becoming popular due to the accuracy of the estimates 

obtained. A forward model describing the physics of the problem is used to generate 

simulated responses. The forward model is subsequently inverted to get the estimates 

of the parameters, which most likely produced the observed response. This kind of 

method is more accurate because it is taking into consideration the actual physics of 

the problem in order to solve it.  Its main drawbacks are that the model used must be 

very accurate, and requires lots of computing resources. If it is desired to obtain rapid 

soil moisture information, this method quickly becomes unfeasible. Recent work 

using this method can be found in [11]. 

 

1.3 Summary of Following Chapters 
 
We first develop the necessary background theory, in Chapter 2. The third chapter presents 

the method of the Material Characteristics in Frequency Domain, MCFD. Chapter 4 gives a 

review of the basic theory of neural networks used in this thesis. The development of a 

Graphical User Interface is presented in chapter 5. The sixth chapter presents the 

experimental results and their discussion. The topic of clutter reduction is touched in chapter 

7, conclusions and future work are given in Chapter 8. 
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2 THEORETICAL BACKGROUND 
 
 
 
Abstract This chapter presents the underlying theory concerning electromagnetic wave 

propagation, and ground penetrating radar fundamentals. It also presents in some detail the 

current techniques that are used to estimate soil moisture content using GPR. We begin by 

introducing GPR concepts, and describing the equipment used in this research. We then go 

on to review the dielectric properties of materials, followed by a description, of the state of 

the art, in soil moisture determination using GPR.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 

 8 

2.1  Ground Penetrating Radar Concepts 

Surface Penetrating Radar, commonly known as Ground Penetrating Radar (GPR), refers to a 

radar system that is specifically designed to probe the subsurface [21]. GPR works by 

transmitting electromagnetic energy into the ground and recording the portion of that energy 

which is reflected by the subsurface. Reflection of the electromagnetic wave occurs when 

there are sufficiently sharp differences in the dielectric properties of the propagating medium. 

For example, if the signal is transmitted into a multilayer medium consisting of N layers, 

with each layer being a different material (e.g., different dielectric properties), then the signal 

that was originally transmitted will be reflected N times. This phenomenon is what allows 

GPR to be used in many different applications, ranging from buried target detection to the 

determination of the material type and moisture content; the later two being the subject of 

this thesis. 

 
2.1.1 GPR System Characteristics 

A GPR system consists of a transmitter, a receiver, a processor, and a data display. The main 

characteristics of a GPR system are its range, depth resolution, and plan resolution. Also, the 

clutter plays an important factor in the processing of GPR data. A description of these 

characteristics follows [21], 

The range of a GPR system is the distance that the electromagnetic wave travels in the 

subsurface. It depends mainly on the losses that the signal suffers when it travels from the 
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transmitter to the receiver. The most significant losses are material, spreading, and scattering 

losses [21].  

 

Depth resolution refers to the ability of the GPR system to distinguish between different 

objects, which may be close to each other (at a different depth). Depth resolution depends on 

the bandwidth of the received signal in order to discriminate between the different targets. 

Convolution between the responses of different targets occurs when these are close to one 

another. In this situation, de-convolution is employed to separate the responses, to be 

subjected to further processing. 

 

When targets are located at the same depth, and it is needed to distinguish between more than 

one, then plan resolution becomes a factor. Plan resolution depends on the antenna being 

used, as well as on the signal processing [21]. 

 

Clutter, as defined by Daniels in [21], are signals that are uncorrelated to the target scattering 

characteristics but occur in the same sample-time window and have similar spectral 

characteristics to the target wavelet. 
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2.1.2 Electromagnetic Theory  

Natural materials such as soils have certain electric and magnetic properties, which control 

the speed of electromagnetic waves that travels through the material. The ability of a material 

to move charge and store energy is dictated by these properties. A few definitions are in 

place, 

 

o Conductivity is a measure of the ability of a material to transport an electrical charge. 

Conductivity is a complex function of frequency, and is expressed as  

 

! 

"( f ) =" '
+ j" ''        2.1 

 
 
Where the frequency dependence is given by the imaginary part, σ’’, which accounts for 

conduction losses. 

 

o Permittivity describes how an applied electric field affects and is affected by the 

propagating medium. It is determined by the ability of a material to polarize when an 

electric field is applied. The reaction of a material to an applied electric field depends on 

the frequency of the applied field and hence, permittivity is expressed as a complex 

function of frequency, 

 

! 

"( f ) = "' + j"''        2.2 
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Where the real part, ε’, represents energy storage, the imaginary part, ε’’, represents energy 

loss, and j = √-1. In the limit, as the frequency tends to zero, the static permittivity is defined. 

The ratio of static permittivity to the permittivity of free space is called the dielectric constant, 

or relative permittivity, of the material. 

 

! 

"
r

=
"
s

"
0

        2.3 

 
 
Where εs is the static permittivity, and ε0 is the permittivity of free space. Water content is 

the factor that most closely affects the dielectric constant of a soil sample. A sample of dry 

soil has a dielectric constant of about four, while the dielectric constant of free water is 81, 

[30]. It has been shown that as the soil’s moisture content increases, its dielectric constant 

increases. The relationship proposed by Topp et. al., to obtain soil water content from 

dielectric constant is given by, 

 

! 

" = #5.3$10
#2

+ 2.92 $10
#2% # 5.5 $10#4%2 + 4.3$10

#6%3     2.4 
 

 

It should be noted here that since the dielectric constant is a function of frequency, soil water 

content estimates derived from dielectric constant depend on the operating frequency of the 

instrument (i.e., TDR, GPR, etc.). 
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o Permeability is the degree of magnetization of a material that responds linearly to an 

applied magnetic field. 

 

The velocity at which an electromagnetic wave propagates inside a material is given by 

 

! 

v
r

=
c

"
r

        2.5 

 
 
Where c is the speed of light in a vacuum, equal to 3 x 108 m/s. As clearly seen from 

Equation 2.4, the velocity of the radar signal traveling in a material depends on the dielectric 

constant of the material. Most of the current methods of determining the moisture content of 

the soil using GPR estimate the dielectric constant. Dielectric constant can later be converted 

to moisture content by means of a petrophysical model.  

 

2.1.3 GPR Data Description 

Data generated by GPR is formed as images of the subsurface. Each column of the image is 

referred to as an A-scan. A B-scan is an ensemble of A-scans collected while the antenna is 

in motion. A sample A-scan, taken with the antenna directed towards the air is presented in 

Figure 2.1 while Figure 2.2 shows a sample B-scan. 
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                                         Figure 2.1 Typical air A-scan 
 
 
 
 
 
 
 
 

 
                                Figure 2.2 Example of GPR B-scan 
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2.1.4 Equipment Description 

The GPR system used in this work is a GSSI SIRveyor SIR 20. It is a 2 hardware channel 

(antenna), 4 channel GPR system with a 1.5 GHz ground-coupled bowtie antenna. The 

system is shown in Figure 2.3. Antenna setup is presented in Table 2.1. The antenna setup 

given in Table 2.1 is a fixed setup given in [22] by GSSI inc. but it could be modified in any 

particular situation. 

 

 

 

                                          Figure 2.3 GSSI inc. SIR 20 GPR System 
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                                         Table 2.1  Antenna Setup 
Range 12 ns 

Samples per Scan 512 

Resolution 16 bits 

Number of gain points 2 

Vertical High Pass Filter 250 MHz 

Vertical Low Pass Filter 3050 MHz 

Scans per second 100 

Vertical IIR High Pass 100 MHz 

Transmit Rate 100 KHz 

 

  

The SIR 20 can be operated in either one of three modes, namely point mode, free run, or 

survey wheel. In point mode, no data is collected until the user chooses to by clicking the 

computer mouse. The free run mode collects continuous data until stopped by the user. The 

rate at which data is collected is given in scans per second, a parameter that is user defined 

and controls the speed of the system. In survey wheel mode, data is collected based on the 

rotation of a survey wheel. In this mode the user is able to specify the sampling rate of the 

system. The survey wheel needs to be calibrated, and it allows the user to know the distance 

that has been traveled from the starting point. 
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3 Non-Parametric Transfer Function Estimation 

 
 
Abstract Deconvolution is the processes of separating two signals that have been mixed 

by a process of convolution. Two GPR responses get convolved when the targets are not 

separated by more than one half wavelength. In this work, the signals that are convolved are 

the transmitted signal and the soil’s response. It is desired to deconvolve the soil’s response 

from the received signal. The response of the soil will be used as a signature for that 

particular soil type and moisture content. Two common methods are described in this chapter, 

namely the Empirical Transfer Function Estimate (ETFE), and one variation based on 

correlation analysis. 
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3.1 The Empirical Transfer Function Estimate (ETFE) 

Suppose that for the brief time in which a GPR measurement is taken, the soil acts as a 

Linear Time-Invariant (LTI) system. Under this assumption, the signal at the receiver of the 

GPR can be modeled as the convolution of the transmitted signal and the response of the soil. 

Mathematically this is expressed as  

 

! 

y(t) = x(t)" h(t)           3.1 
 
 
Where y(t) is the signal recorded at the receiver, x(t) is the transmitted signal, h(t) is the soil’s 

impulse response, and * is the convolution operator. Taking the Fourier Transform of 

Equation 3.1 we get, 

 

! 

Y ( f ) = X( f ) "H( f )        3.2 
Hence, 
 
 

! 

H( f ) =
Y ( f )

X( f )
         3.3 

 
 
 
In the system identification literature, Equation 3.3 is referred to as the Empirical Transfer 

Function Estimate, ETFE. The reason why it is called an empirical estimate is that the only 

assumption made on the system is that of linearity, [23]. Note that the ETFE is not defined at 

frequencies where the input is zero. If the input is zero, or close to zero at a certain frequency, 
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the ETFE is undefined at that specific frequency. The ETFE has the following properties, 

[23]: 

 

o It is an unbiased estimate of the transfer function. 

o Its variance, at a specific frequency, is given by the noise-to-signal ratio. 

o At different frequencies, the ETFE gives asymptotically uncorrelated estimates. 

 

We see that the ETFE is not a smooth estimate since its variance does not decrease with the 

length of the signal, but remains equal to the noise-to-signal ratio at that specific frequency. 

This comes from the fact that there is no relation between the different estimates (estimates at 

each frequency).  

 

A way to smoothen the ETFE is based on correlation analysis, which is discussed in the 

following section. The magnitude of the quantity in equation 3.3 is what we call the Material 

Characteristics in Frequency Domain, MCFD  

 

3.2 Correlation Analysis 
 
Another way of estimating the frequency response of a LTI system is by means of the power 

spectrum of the input signal and the cross-power spectrum of the output and input signals. 

Again, suppose that the transmitted signal is input to a LTI system. The output signal is given 

by the convolution sum, 
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! 

y[n] = h[k]x[n " k]
k="#

#

$        3.4 

 
 
 
Assume that the autocorrelation of the input signal is known. The cross-correlation of the 

input and output signals is given by, 

 

! 

Ryx[l] = y[n]x[n " l]
n="#

#

$        3.5 

 
 
Substitution of Equation 3.4 in Equation 3.5 yields, 
 
 
 

! 

Ryx[l] = h[k]x[n " k]
k="#

#

$
% 

& 
' 

( 

) 
* 

n="#

#

$ x[n " l]      3.6 

 
 
 
After some simplification we obtain, 
 
 

! 

Ryx[l] = h[k]Rxx[l " k]
k="#

#

$        3.7 

 
 
Taking the Fourier Transform of Equation 3.7, the soil’s frequency response becomes, 
 
 

! 

H( f ) =
Syx ( f )

Sxx ( f )
        3.8 
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Equation 3.8 can be seen as a smoothed version of the ETFE. Here, 

! 

Syx ( f ) ="{Ryx (l)}  is an 

estimate of the cross power spectral density of the output and input, and Sxx 

! 

Sxx ( f ) ="{Rxx (l)}  is an estimate of the power spectral density of the input. Note that, in its 

most simple case, that quantities Syx(f) and Sxx(f) are estimated using the periodogram, which 

is an averaged Fourier Transform of the cross-correlation and auto-correlation sequences, 

respectively. Averaging has the effect of smoothing; this is why Equation 3.8 is a 

smoothened version of the ETFE. It can be shown that the variance of the ETFE is halved 

when it is calculated using Equation 3.8, [23]. 

 

3.3 Example 
 
Example calculations of the MCFD of a set of loam-type and clay-type soils GPR responses 

at different moisture content levels are presented in figures 3.1 and 3.2. 

 

The example will show the differences in the characteristics of the materials with varying 

moisture levels, these differences is what makes the determination of the type of soil and its 

moisture possible.  
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Figure 3.1 MCFD calculation of clay soil type at three different moisture content 
levels using the ETFE approach. (a) 14.2% moisture, (b) 17.7% moisture, (c) 
21.8% moisture 
 

 
 
 

 
 
 
 

(a) 
(b) 

(c) 
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Figure 3.2 MCFD calculation of loam soil type at three different moisture 
content levels using the ETFE approach. (a) 13.7% moisture, (b) 17.2% 
moisture, (c) 22.6% moisture 
 

 
 
 
 

(a) (b) 

(c) 
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Figures 3.1 and 3.2 show that the MCFD, could serve as the signature (or feature) needed to 

discriminate between soil types and moisture content levels. This is demonstrated for two 

distinct soil types, namely clay and loam. Note also that, for this application, we do not 

intend to estimate the true frequency response of the soil. Our goal instead is to obtain 

distinctive signatures that could serve as feature vectors. These signatures will be used as 

training features in a Neural Network (NN) based material type and moisture content 

determination system.  

 

3.4 Summary and Conclusions 
 
In this chapter, we have presented two non-parametric ways of obtaining the frequency 

response of a linear system, the ETFE, and its smoothed version using the power spectral 

densities. An example has been presented where it was shown that the MCFD could serve as 

a signature to discriminate between soil types and moisture content.  

 

In the next chapter, the other building block of our system, NNs, will be discussed. A three-

layer feed-forward NN will take MCFD vectors, as input, Theta Probe readings as target 

values, and the result will be a soil moisture content estimate. 
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4 Neural Networks 

 

Abstract Neural Networks (NNs) are biologically inspired computational paradigms 

that seek to mimic the information processing nature of the nervous system. NNs have been 

applied in many application areas such as, buried target detection, speech recognition, stock 

market prediction, among others, with great success. In this chapter we review the 

fundamentals of NNs and the Back-Propagation learning algorithm is derived for the case of 

a 3-layer network. We review these fundamental concepts here since the work presented in 

this thesis is strongly dependent on the content of this chapter. 
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4.1 Fundamentals 

 The fundamental processing unit of a NN is the neuron. The name neuron comes from its 

resemblance to the biological counterpart. Figure 4.1 shows a typical nerve cell. Information 

processing in biological neurons is as follows [http://en.wikipedia.org/wiki/Neuron] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Information Processing in a biological neuron. From 
cwx.prenhall.com 

 

Communication between neurons occurs through the synapse, where the axon terminal of 

one cell impinges upon a dendrite or soma of another. When an action potential reaches the 
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axon terminal, the wave of changing charges opens voltage gated calcium channels, thus 

allowing calcium ions to enter the pre-synaptic terminal. Calcium causes synaptic vesicles 

filled with neurotransmitter molecules to fuse with the membrane and release their contents 

into the synaptic cleft. The neurotransmitters diffuse across the synaptic cleft and activate 

receptors on the postsynaptic neuron. This process is illustrated in figure 4.1. A synapse can 

have excitatory or inhibitory behavior, which increases or decreases activity in the 

postsynaptic neuron, respectively. 

 

McCulloch and Pitts introduced the first computational model of a neuron in 1943. They 

proposed a binary neuron model, in which the neuron was either on or off depending if the 

input exceeded a certain threshold, [12]. The work of McCulloch and Pitts fired an 

aggressive research effort by many people in order to obtain realistic neural models. 

 

 The A neuron is basically a linear combiner, which adds together the product of each 

individual input and its corresponding weight connection, see figure 4.2 below. Thus, the net 

input to the ith neuron is, 

 

! 

neti = x jwij

j=1

N

"          4.1 

 
Where N is the number of inputs to the neuron. 
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                                  Figure 4.2 Linear Combiner 
 
 
  The net input to a neuron is then passed through a, generally, nonlinear function referred to 

as the activation function. There are different nonlinear activation functions that are used, the 

most popular being the sigmoid function given by, 

 

! 

f (x) =
1

1+ e
"x

       4.2 

 

A plot of the function in Equation 4.2 is shown in figure 4.3. 
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Figure 4.3 Plot of the sigmoidal activation function 
 

 

There are many different topologies or architectures, which NNs can take. The most popular 

architecture is the multilayer perceptron (MLP), which consists of an input layer, one or more 

hidden (computational) layers, and an output layer. In the MLP, information is processed in 

the forward direction, from one layer to the next with no feedback connections. This type of 

network architecture is known as a feed-forward network. Figure 4.4 shows a graphical 

representation of this type of network with four input neurons, five neurons in the hidden 

layer, and one output neuron. 
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Figure 4.4 MLP Neural Network architecture 
 

NNs work by learning an input-output mapping between a set of training features and desired 

outputs, or target values. They are called universal approximators since they can approximate 

any nonlinear mapping, by virtue of the universal approximation theorem [18]. 

 

In order for the NN to recognize an unknown pattern, it must be trained first. With training, it 

is sought to find the weight values that will minimize the difference between the actual 

output and the desired output. When the optimal weight value is found, the network would 

have learned the training patterns, and would be able to recognize patterns that were not 

present in the training phase. A popular NN training algorithm is the back-propagation 

algorithm, to be discussed next.  
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4.2 NN Training via Back-Propagation 

The back-propagation algorithm is a learning law based on the steepest descent algorithm. Its 

name stems from that fact that in order to compute the weight change of a hidden layer, the 

error of the next layer must be computed first, thus this algorithm effectively back-propagates 

the errors, and is also known as back-propagation of errors. Next, the back-propagation 

algorithm is derived for a three-layer network. 

 
The net input to a neuron in the hidden layer is the weighted sum of the input times the 

corresponding weight value plus a bias term, which is often treated as an additional weight. 

 
 

! 

net
h
pj = w

h
ji

i

" # xpi + $ j

h      4.3 

 
 
Where xpi  is the ith input to that specific neuron, and wij is the weight value connecting the 

ith input to the jth hidden neuron, θj
h is the bias term, and the superscript “h” refers to 

connections on the hidden layer. The output of a neuron is given by,  

 

! 

ipj = f
h
j (netpj )      4.4 

 
 
Where fj is the activation function of the jth neuron, and neth

pj is the net input to that neuron. 

As stated earlier, the activation function can take different forms, depending on the 

application. Similarly, for the output layer we have,  
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! 

netpk
o

= w
o
kj " ipj + # o

k

j=1

L

$         4.5 

 
 
Where ipj  is the ith input to that specific neuron, and wkj is the weight value connecting the 

kth output to the jth hidden neuron, θo
k is the bias term mentioned earlier, and the superscript 

“o”  indicates connection to the output layer . The output of the network is then given by, 

 

! 

opk = f
o
k (net

o
pk )          4.6 

 
 
In the back-propagation algorithm we wish to minimize the sum of squared errors with 

respect to the weights. This is done first for the output layer, and then for the hidden layer. 

The function to be minimized is, 

 

! 

Ep =
1

2
(ypk " opk

k=1

M

# )
2          4.7 

 
 
Where ypk is the desired output of the network. Differentiating Equation 4.7 with respect to 

the output weight, we obtain the following update equation [12], 

 

 
 

! 

wkj

o
(t +1) = wkj

o
(t) +"(ypk # opk ) fk

o'
(net

o
pk )ipj      4.8 
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Where η is the learning rate parameter, which controls the size of the steps taken toward the 

minimum of equation 4.7. Following the same procedure, the weight update equation for the 

hidden weights becomes, 

 
 

! 

w
h
ji(t +1) = w

h
ji(t) +" (ypk # opk ) fk
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(net

o
pk
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* f j
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/ 
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     4.9 

 
 

 

The ground truth data to be used as target value in NN training is obtained with a Theta Probe, 

which gives actual soil moisture up to a depth of about 10 cm. For a neural network to be 

able to obtain the desired mapping, it must be trained with data that captures the essence of 

the general population since NNs are not able to extrapolate out of the training set. This fact 

makes NNs, as well as all other “black-box” models just as good as the training data.  

 

It is of importance to discuss the relationship between the training sample size and the 

number of features when training the NN. It is shown in [31] that when the number of 

features increases linearly with the dimensionality, the error in the testing set does not 

depend on the dimensionality. Furthermore, it is also shown in [31] that features that carry 

little or no discriminatory information do not contribute much to the overall performance of 

NNs.  
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4.3 Summary and Conclusions 

This chapter has presented the underlying NN background needed to understand the problem 

at hand. A review of NNs was presented making the analogy with the nervous system to 

make the transition into the computational framework. The basic elements of a NN were 

presented; finally, the popular back-propagation training algorithm was derived.  

In the next chapter, we present the development of a Graphical User Interface (GUI) to 

facilitate user interaction, for the purpose of this project. 
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5 Graphical User Interface Development 

 
Abstract Radar Remote Sensing using a Ground Penetrating Radar (GPR) has proved 

to be a useful method for determining soil moisture content. A software product that 

implements the proposed methodology to soil type and soil moisture determination has been 

developed in the C-language. Previously, the software was being used as a console 

application with little thought about future users. This chapter presents the development of a 

Graphical User Interface, GUI, which was written on top of the previously developed C-code. 

 This improvement uses the Tool Command Language and its graphical Toolkit (TCL-

TK). It implements the proposed MCFD/NN method. First, it allows the user to process GPR 

images into MCFD data sets, which are used either for training the NN or as unknown 

moisture samples. Second, NNs can be created and trained from the MCFD data sets. Third, 

options to save and plot the results are provided. These capabilities make the MCFD/NN-GUI 

an easy to use interface for soil type and soil moisture determination using GPR. 
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5.1 Description 

5.1.1 Create Data Sets 
 
Once the GPR images are retrieved from the radar equipment, particular wavelets are 

selected, processed, and analyzed for soil moisture content. The first step is to calculate the 

wavelet's MCFD, returning a vector. Different collections of MCFD vectors are used for 

training, testing, and validation; which are called Data Sets. For each of the Data Sets, 

particular information about each wavelet is needed, for example: Filename, Scan Number, 

Target Value, etc. A spreadsheet-like window is used to enter and save the information for 

each Data Set. See Figures 5.1 and 5.2 for details.  

 

 

 

 

 

 

 

 

 

Figure 5.1 Create data sets window 
 
 
 
 
 



 
 
 

 
 

 36 

 
 
 

 

 

 

 

 

 

 

 

Figure 5.2 Enter data set information 
  

 

The user has to enter the number of vectors he/she wants to create and then push the Create 

button for the Data Set Information window to display. There, all the necessary information 

should be entered. Afterwards, it may be stored, and the MCFD calculation may take place 

by clicking on the Create MCFD Data Set button. The output of this phase is a file containing 

the Data Set Information and also the files containing the MCFDs of the selected wavelets 

(in .txt and binary format). 
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5.1.2 Create and Train Neural Network 

To obtain soil type or soil moisture, a neural network needs to be constructed and trained. 

The GUI allows the user to create a two-layer feed-forward network. After all fields have 

been entered, the Train NN button is pressed to begin the training phase. A progress bar 

appears indicating how training is progressing. When training ends, a binary output file is 

produced which contains the trained network parameters (weights). This window is shown in 

figure 5.3. 

 

 

 

 

 

 

 

 Figure 5.3 Create and train NN  
 
 
5.1.3 Generate Results 
 
Browsing for the files containing the testing set, and the trained NN is necessary to generate 

the results. The Analyze button is clicked to perform this task. The results are organized in a 

table and stored in a text file. Also, if desired, results may be viewed in form of a scatter plot 

of GPR moisture Vs. Theta Probe readings.  See figures 5.4 & 5.5. 
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Figure 5.4 Test NN window 
 

 

 

 

 

 

 

 

 

 

Figure 5.5 View results 
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5.2 Summary and Conclusions 

The development of a GUI, which was designed to run on top of the C-language written 

software, has been presented and its capabilities described. This GUI represents an advantage 

for general users since it provides an easy to use, intuitive interface for soil type/moisture 

determination using GPR and the proposed MCFD/NN method. 

 

In particular, the GUI provides options to create the necessary data sets, construct, train, and 

test a 2-layer feed-forward neural network. Finally, results can be viewed in tabular form or 

in the form of a scatter plot. The software is written in the C and TCL/TK languages, as such, 

the GUI is easily extendible, and platform independent. 

 

In the following chapter, application of these methods to laboratory and field data will be 

presented. Of particular interest are the results obtained from a field campaign conducted at 

the baseball field located on the UPRM campus. Results show the performance of the MCFD 

approach for soil type/moisture determination in open field environment.  
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6 Experimental Description and Results 
 
 
Abstract In this chapter, description of the experiments that were performed is 

presented and the results are discussed. First, experiments were performed in controlled 

laboratory conditions. For these experiments, three different soil types were used, namely, 

sand, loam, and clay. The MCFD/NN algorithm was employed as to determine the type of 

soil and its moisture content. Results show that soil type determination is possible using the 

proposed approach, and moisture content determination is successfully achieved, consistent 

with readings obtained using a Theta Probe. 

 

The algorithm was then tested in uncontrolled, field conditions. A four-day campaign was 

conducted, during the months of February-March of 2005, and during the month of 

September of 2005. The NN was trained on individual days, and combined data. Acceptable 

results when the NN was trained on data from the first two days, and tested with data from 

the last two days (six months later) confirm the validity of the MCFD/NN approach. 
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6.1 Laboratory Experiments 

 

6.1.1 Description 

Experiments in controlled conditions helps us to analyze the strengths and weaknesses of the 

proposed approach, as well as determining its feasibility before testing it in more challenging 

scenarios. Material type and soil moisture experiments were performed using three different 

soil types, namely, sand, loam, and clay. The soils used in this work are the same as those 

used in [30]. As mentioned by Harmsen et al., the soils were analyzed as for their physical 

and chemical properties by Soilcon Laboratories, Ltd. of British Columbia, Canada, and are 

reproduced in Table 6.1. Specifically, construction sand, San Antón Loam, from Juana Díaz, 

PR, and Daguey Clay, from Finca Alzamora on the University of Puerto Rico, Mayaüez 

Campus were the types of soil that were used. A reasonably large amount of soil was put in a 

plastic bag, and placed inside a plastic container, which was then hung from a support about 

5 feet above the ground, as depicted in figure 6.1.  

 

Figure 6.1 Laboratory setup for data acquisition 
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Table 6.1 Chemical and Physical Properties of the three soil types used in the experiments 
Analysis  Parameter Units Sand Loam Clay 

 
  pH pH units  7.27 6.44 4.65 
  EC (dS/m) 0.17 0.39 0.18 

Total Carbon  TC % 0.22 1.59 1.75 
AmmoniumNitrogen NH4 mg/kg <1 5.31 2.31 

Nitrate & Nitrite Nitrogen mg/kg 1.35 28.98 12.73 
Total Nitrogen TKN % 0.12 0.14 0.30 

Available P Bray P mg/kg <0.6 11.73 7.02 
Sulphate  S  mg/kg 7.90 18.00 21.00 

Available Boron  B mg/kg <0.1 0.40 0.30 
  Ca mg/kg 2930.00 3150.00 869.57 

Available Nutrients  
(NH4OAc Extractable) K mg/kg <2 134.42 150.31 

  Mg mg/kg 160.64 450.72 263.58 
  Na mg/kg 8.85 64.64 15.71 
  Cu mg/kg <0.03 3.61 3.42 

Available Metals (0.1N HCl 
Extractable) Fe mg/kg 4.60 58.06 30.21 

  Mn mg/kg 23.79 76.59 19.88 
  Zn mg/kg 0.11 2.78 1.20 

Cation Exchange Capacity  meq/100g 4.15 12.61 12.84 
Exchangeable Cations           

  Ca meq/100g 2.80 13.37 3.58 
  Mg meq/100g 0.50 3.55 2.55 
  K meq/100g 0.16 1.04 0.59 

Total Organic Carbon  TOC % 0.05 1.54 1.67 
Texture Sand % 96.00 35.99 3.61 

  Silt % 1.56 39.53 29.06 
  Clay % 1.62 23.87 67.27 

USDA Classification   Sand Loam Clay 
Soil Characteristic Data 5 J/kg % by vol 9.31 46.94 47.83 

(Pressure vs. % Vol.) 10 J/kg % by vol 6.86 39.52 46.12 
  33 J/kg % by vol 5.32 29.68 43.23 
  70 J/kg % by vol 4.77 26.41 41.56 
  100 J/kg % by vol 4.54 24.91 40.60 
  300 J/kg % by vol 3.95 20.92 37.20 
  500 J/kg % by vol 3.60 19.27 35.65 
  800 J/kg % by vol 3.27 17.90 34.14 
  1200 J/kg % by vol 2.93 16.73 32.52 
  1500 J/kg % by vol 2.71 15.80 31.43 

Bulk Density  kg/m3 1387.80 1350.97 1092.38 
Particle Density  kg/m3 2673.17 2533.14 2537.36 

Total Porosity  % vol 48.08 46.66 56.95 
Air Entry Tension  J/kg 0.00 3.87 0.72 

Saturated Hydraulic 
Conductivity  cm/hr 65.70 0.24 2.77 

Aeration Porosity  5 J/kg % by vol 38.77 -0.27 9.12 
Aeration Porosity  10 J/kg % by vol 41.23 7.15 10.83 

Available H20 Storage Capacity  % by vol 2.61 13.88 11.79 
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The experiments began with dry soil, and then water was added gradually. Every time that 

water was added, the soil was mixed as to obtain a homogeneous mixture. The GPR was 

placed on top of the soil and several scans were taken, then the actual moisture content was 

measured with a Theta Probe. This process was repeated until the soil was fully saturated. 

 

To quantify the error between the actual soil moisture, measured by Theta Probe, and the soil 

moisture obtained using our approach, the absolute error is used. 

 

! 

E = T.Probe "GPR        6.1 
 
 

Where T.Probe is the moisture content measured by the Theta Probe, GPR is the moisture 

content obtained using the MCFD/NN method.  

 

6.1.2 Results and Discussions 
 
The method was first tested with the purpose of soil type determination. Training, validation 

and testing sets were created. The validation set is required in order to see how well the 

model obtained by the NN fits data that was not present in the training set. Towards this goal, 

the training procedure shown in Figure 6.2 was implemented. Assume that the training has 

converged to the desired threshold. Present the validation set and let α be the MSE on this set, 

and β the desired validation threshold. If  α ≥ β then a neuron is added to the hidden layer. 



 
 
 

 
 

 44 

All the weights in the network are re-initialized and training is resumed with this new 

configuration.  

 
 

Figure 6.2 Neural Network training procedure 
 
 
When α < β, β is recomputed as 

! 

"
new

= "
old
#$ , where δ is an arbitrarily chosen positive 

constant, and 0 < δ ≤ 1. The network is saved as the best so far in the training. With this 
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training procedure it is assured that when training has finished, the best possible network 

would have been saved.   

Results of soil type determination are presented in Figure 6.3.  

 

 

                            Figure 6.3 Soil Type determination 

 
 

As it is shown in the figure, there is one sample of clay, and two samples each of loam and 

sand. Clearly soil type of each of the five soil samples in the testing set was determined with 

good accuracy. The samples used in this experiment ranged from dry to wet, so the moisture 

that was being introduced may have become a source of error. Nevertheless, the proposed 

approach seems effective, and its usefulness will be reinforced with laboratory experiments 
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for soil moisture determination, and later with more challenging experiments in uncontrolled 

environments. 

 

Now, we turn our attention to soil moisture determination. There were three different NNs 

trained in this case, one for each of the three distinct soil types. Results show good accuracy 

as presented in figures 6.4 through 6.6. 

Figure 6.4 shows the results for the clay experiment. The training samples are presented in 

red, and the testing samples are in green. Although the amount of data is not very large, a 

constraint that became inevitable due to the nature of the experiments, good results were 

obtained. As seen in figure 6.4, only one of the samples fell way off the line. This may be 

due in part to a small training set, and in part due to the soil not being homogeneously mixed 

to obtain a uniform moisture distribution, which may have caused the Theta Probe to give 

inaccurate readings. 
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Figure 6.4 Results of soil  % moisture determination for clay soil 
 
 
 
Results for the loam are shown in Figure 6.5. We can see that in this case, greater accuracy 

was obtained, with all testing samples falling close to the line. The loam soil is easier to 

manage than the clay, so the errors due to poor mixing were reduced. 
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Figure 6.5 Results of soil % moisture determination for loam soil 
 
 
 
Figure 6.6 depicts the results when the soil being used was sand. Again, better results were 

obtained as compared to Figure 6.4. Table 6.3 shows the same results in tabular form, with 

the relative error specified for each case. 
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Figure 6.6 Results of soil moisture determination for sand soil 
 

 

Table 6.2  Error calculation for soil moisture laboratory experiments 
 Theta 

Probe 

reading (%) 

GPR soil 

moisture 

(%) 

E (%) 

Clay 15.10 16.73 1.63 

 18.40 19.56 1.16 

 19.10 18.17 0.93 

 23.18 17.87 5.31 
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Loam 13.70 15.38 1.68 

 19.80 20.88 1.08 

 24.40 24.21 0.19 

Sand 4.60 2.67 1.93 

 13.30 13.18 0.12 

 20.30 23.82 3.52 

 

 

6.2 Field Experiments 

 

6.2.1 Description 

A four-day field campaign extending over a period of six months (two mini-campaigns, two 

days each and six months apart) was conducted at the baseball field inside the University of 

Puerto Rico Mayagüez campus with the objective of obtaining open-field soil moisture 

information. 

 

Soil moisture determination in true open field conditions with GPR is a difficult task that has 

not been tackled by many due to the fact that an open field is full of hardships that are 

beyond the control of the researcher, such as inhomogeneities, the field being cluttered with 
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grass, rocks, and other non-soil items, field saturation due to extreme precipitation, etc. These 

conditions constantly change the characteristics of the field. The effect of some of these 

factors can be reduced with efficient signal processing techniques. Some work can be found 

in [7] using ground wave techniques, and more recently in [24] based on electromagnetic 

inversion. 

 

The first part of the campaign dates back to February-March of 2005 while the second part 

took place during the month of September of 2005. Field conditions were subjected to 

noticeable changes in the time between March and September, going from having no grass to 

an almost outgrown field that showed scattered wetness due to the continuous precipitation 

characteristic of the area. These changes in field conditions produced soil moisture data in 

the range of 6% to 37%, as measured by a Theta Probe. The exact distribution is shown in 

Table 6.3. 

 

Table 6.3 Distribution of Measurements 
Moisture Percent range Measurements 

5% - 9% 15 

10% - 15% 20 

16% - 20% 7 

21% - 25% 0 

26% - 30% 2 
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31% - 35% 5 

36% - 40% 1 

 

Due to the inhomogeneous (even at the scale of the antenna footprint) nature of the soil in an 

uncontrolled environment, there can be sharp dielectric contrasts within a small area. Such 

contrast is observed as variations in the readings obtained by the Theta meter when probing 

the area under the footprint of the GPR. In order to measure true soil moisture that is to be 

used as target values in the NN training. To reduce the effect of soil inhomogeneity, three 

Theta Probe readings were obtained at each measurement point along the main diagonal of 

the antenna footprint. The median value was used as target value for NN training. Several 

scans were taken in order to select the best available scan by visual inspection. 

 

To measure the accuracy to which soil moisture is obtained, as compared to actual soil 

moisture, absolute errors are used. The definition of the absolute error given in equation 6.1 

is modified here to take into account the variations in the Theta Probe readings at the 

footprint of the GPR, as described above. The absolute error is given by, 

 

! 

E
D

=
T.Probe "GPR

D
       6.2 
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Where T.Probe is the actual soil moisture as obtained by the Theta meter, GPR is the soil 

moisture obtained using the MCFD/NN method, and D is defined as the range of the 

variations in the Theta Probe readings, 

 

 

! 

D =
T.Probe

max

T.Probe
min

         6.3 

 

 

6.2.2 Results and Discussion 

The data collected following the procedure given in section 6.2.1 was analyzed, and data 

points where the three Theta Probe readings differed by less than 3% were kept, otherwise it 

was rejected. The remaining data points were divided in training, validation, and testing sets. 

The training set consisted of data points that showed more consistency in the Theta Probe 

readings. 

 

Training of the NN was done following the procedure presented in Figure 6.2.  Four NNs 

were created. The first NN was trained and tested on data taken from the first day of 

measurements, back in February 2005. The second NN was trained and tested on data taken 

from the second day (March). Combined data from the first two days was used to train and 

test the third NN. Finally, a fourth NN was created. Training data was taken from the first two 

days (February-March); this NN was tested on data taken from the September leg of the 
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campaign, six months later. With this test, we will be able to assess the capabilities of the 

MCFD/NN approach to obtain accurate soil moisture information, over time. 

 

The results are shown in figures 6.7 through 6.10, along with relative error calculations for 

the testing set in each of the four cases. 

As the results show, soil moisture was determined in an open field, uncontrolled, 

environment with good accuracy. The obtained accuracy can be seen from tables 6.4 through 

6.7. Specially, table 6.7 presents the results when the NN was trained and tested on data taken 

six months apart. Average errors are presented in table 6.8 for each of the four NNs. The 

smallest error, on average, resulted when the NN was trained on data from the first two days 

of the campaign, and tested on data from the last two days; a six month difference.  

 

An average error of 1.63% is not a prohibitive large price to pay when determining soil 

moisture over large tracks of land. The proposed approach is well suited for on-line 

implementation, allowing the user to obtain soil moisture maps for a given field. Also, the 

method has an important application when it is sought to obtain data for satellite validation. 
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Figure 6.7 Soil moisture determination. Day one data 
 

 
 
 
 
 

 
 

Table 6.4 Error calculation for data in figure 6.7 
T.Probe 
reading 

(%) 

GPR 
moisture 

(%) 

D  ED (%) 

6.77 8.20 1.09 1.31 
7.40 7.43 1.11 0.03 
14.88 15.60 1.11 0.65 
16.0 14.96 1.06 0.98 
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Figure 6.8 Soil moisture determination. Day two data 
 
 
 
 
 
 
 
 

Table 6.5 Error calculation for data in figure 6.8 
T.Probe 
reading 

(%) 

GPR 
moisture 

(%) 

D ED (%) 

9.10 8.80 1.07 0.28 
10.43 12.78 1.02 2.30 
12.56 14.82 1.10 2.05 
17.16 17.10 1.13 0.05 
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Figure 6.9 Soil moisture determination. 4-day combined data 
 
 
 
 
 
 
 

 
Table 6.6 Error calculation for data in figure 6.9 
T.Probe 

reading 

(%) 

GPR 

moisture 

(%) 

D  ED (%) 

11.6 10.7 1.28 0.70 

17.8 20.4 1.18 2.20 

32.5 29.4 1.12 2.77 
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17.3 11.1 1.26 4.92 

15.7 10.0 1.21 4.71 

33.3 36.0 1.08 2.5 

19.9 15.6 1.19 3.61 

14.2 13.1 1.19 0.92 

9.40 8.44 1.40 0.69 

7.40 8.72 1.11 1.19 

6.70 8.74 1.09 1.87 

9.40 9.63 1.32 0.17 

20.2 12.9 1.22 5.98 

14.8 15.9 1.11 0.99 

10.1 13.4 1.14 2.89 

15.6 14.4 1.17 1.03 

12.6 11.5 1.08 1.02 

9.4 10.0 1.33 0.45 

19.6 25.8 1.17 5.30 

10.5 9.87 1.02 0.62 
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Figure 6.10 Soil moisture determination. Trained day 1 and day 2. Tested day 3 
and day 4 

 
 

 

 

Table 6.7 Error calculation for data in figure 6.10 
T.Probe 

reading (%) 

GPR 

moisture (%) 

D ED (%) 

11.6 14.4 2.70 1.03 

14.2 15.9 1.19 1.43 

9.4 7.76 1.40 1.17 

15.0 14.9 1.07 0.09 

14.0 10.3 1.03 3.59 
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10.8 12.9 1.17 1.79 

11.3 15.7 1.13 3.89 

9.80 10.3 1.17 0.43 

9.40 8.67 1.11 0.66 

15.5 11.9 1.13 3.19 

10.7 8.15 1.12 2.28 

9.90 9.94 1.12 0.03 

 

 

Table 6.8 Average Errors of the four NNs for the open field experiment 
Data Average ED (%) ED Standard 

Deviation 

Trained and Tested from 

day 1 

0.74 0.54 

Trained and Tested from 

day 2 

1.17 1.17 

Trained and Tested from 

all 4 days 

2.23 1.80 

Trained from days 1 & 2 

Tested from days 3 & 4 

1.63 1.34 
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6.3 Summary and Conclusions 
 
Soil type and soil moisture determination has been successfully accomplished with good 

accuracy, as has been reported. The soil type has been determined for sand, loam, and clay 

types of soil in laboratory conditions. In the case of soil moisture, laboratory experiments 

were performed on the previously mentioned soil types. Also, results of experiments in open 

field conditions have been presented showing the effectiveness of the MCFD/NN approach. It 

was shown that the method of MCFD was able to capture the relevant characteristics of the 

field under study under varying moisture conditions, allowing the NN to obtain an adequate 

mapping for the field as shown in figure 6.10. The average moisture difference obtained was 

1.63 %. 

 

 It is concluded from this result that after a suitable model has been obtained using the 

MCFD/NN approach, that model is valid over an undetermined period of time. This is 

particularly useful in the area of agriculture where fast, accurate soil moisture needs to be 

obtained at a low cost.  

 

In the following chapter, a methodology to reduce the effects of clutter (non-soil items) will 

be presented. The method is based on the fuzzy c-means clustering algorithm and it is 

intended to be employed when continuous measurements are to be taken with the GPR 

connected at the back of a moving vehicle.  
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7 Clutter Reduction using Fuzzy C-Means 
Clustering 

 

 

Abstract The acquired Ground Penetrating Radar (GPR) signal is a combined reflection 

of the soil and clutter responses. In this research, the interest is to capture the actual soil 

response, reducing the clutter contribution within the soil, such as rocks, grass, roots, etc. 

This separation is accomplished using Fuzzy C-Means clustering method. 

The proposed clutter reduction algorithm works by creating clusters of the many 

backscattered wavelets over an area of land, size adjustable by the user. From this pool of 

signals, a predetermined number of clusters are produced, out of which only one is selected 

as a clean signal, based on its shape characteristics. The remaining clusters are considered to 

be clutter clusters. The centroid of the cluster containing the clean signal is used as a 

benchmark to extract the clutter signal from other centroids. The result is a clutter 

characteristic response (CCR). The CCR is used to clean the received signal. This algorithm 

makes no prior assumptions on the clutter or soil response. The computation of the clusters, 

centroids, and CCRs are renewed as often as the user deems necessary, based on the nature of 

the field whose moisture is to be determined.  
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7.1 Review of Fuzzy Logic 

In this section, a review of the fundamentals of fuzzy logic is given. Although this material 

can be found in the literature, such as [26], it is reproduced here to make the chapter self-

contained. Fuzzy logic grows from the fact that when making decisions, we rarely have hard-

limited decisions. Instead there’s a certain degree of imprecision or smooth transitions when 

deciding between two options. Fuzzy logic tries to mathematically describe reasoning by 

accounting for that imprecision with the use of fuzzy rules, which are a combination of fuzzy 

sets. Fuzzy sets are described next. 

 

7.1.1 Fuzzy Sets   

A set is defined as a collection of objects which can be treated as a whole, such that an item 

from a given universe is either a member or not [26]. A set is completely characterized by its 

members. A fuzzy set is a modification of an ordinary set that allows partial membership. A 

grade of membership is specified such that the transition between membership and non-

membership is gradual, not abrupt. The degree of membership of all the elements is what 

describes a fuzzy set. 

 

Mathematically, a fuzzy set S of a set X is a mapping 

! 

S : X " [0,1]. Thus, x belongs to S with 

S(x) degree of membership. The function S(x) is referred to as the membership function. The 

region of support of the function 

! 

S : X " [0,1] is given by the set 

! 

R(S) = x " X | S(x) # 0{ }. 

A normal fuzzy set is a set 

! 

S : X " [0,1] where there is an 

! 

x " X  such that 

! 

S(x) =1. A 
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convex fuzzy set is a set 

! 

S :"# [0,1] where it happens that given 

! 

x " y " z  it must be true 

that 

! 

f (y) " f (x)# f (z) . A fuzzy number is a fuzzy set 

! 

S : X " [0,1] that is normal and 

convex, with finite support. 

 

7.1.2 Membership Functions 

The membership function of a fuzzy set is a function 

! 

S : X " [0,1]. The membership function 

gives a number from zero to one to every element in X, indicating to what extent that element 

belongs to S. Some common membership functions are the triangular, trapezoidal, Gaussian, 

and sigmoidal Z- and S- functions. 

 

The triangular function with endpoints (a,0) and (b,0), and high point (c,α) is given by, 

 

! 

S(x) =

" x#a
c#a( ) if a $ x $ c

" x#b
c#b( ) if c $ x $ b

0          otherwise

% 

& 
' 

( 
' 

        7.1 

 

 

The trapezoidal function with endpoints (a,0) and (b,0), and high points (c,α) and (d,α) is 

given by, 
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! 

S(x) =

" x#a
c#a( ) if a $ x $ c

"         if c $ x $ d

" x#b
d#b( ) if d $ x $ b

0          otherwise

% 

& 

' 
' 

( 

' 
' 

        7.2 

 

The Gaussian function with mean c and variance σ2 is given by, 

 

! 

S(x) = e
"
( x"c )

2

2# 2           7.3 

 
 
The sigmoidal functions (S- and Z-) are of the following form, 
 
 

! 

S(x) =
1

1+ e
"(x"m )#

         7.4 

 
 
 
An increasing or decreasing function is determined by the parameter σ, the parameter m 

determines if the curve is shifted to the right or to the left. 
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7.1.3 Fuzzy Partitions 

Suppose we want to divide de set X into n mutually exclusive partitions 

! 

S
1
,S

2
,...,S

n
{ }. Then 

the following conditions must hold, 

 

o 
  

! 

S
1

S
2

... S
n

= XUUU  

o 
  

! 

Si S j = 0 if i " jI  

 

In words, the union of all n partitions must be equal to the original set that was partitioned. 

Also, as mentioned before, partitions must be mutually exclusive. Complying with the above 

two conditions gives us crisp partitions, meaning that an element of X either belongs to 

partition Si or it does not belong. Now, when we talk about fuzzy partitions, we are allowing 

all elements of the set X to belong to all partitions with a certain degree of membership. A 

fuzzy partition is defined as follows, 

Definition A finite set of normal fuzzy subsets 

! 

S
1
,S

2
,...,S

n
{ } is a fuzzy partition of a set X 

if 

o 

! 

S
i
(x) =1 " x # X

i=1

n

$  

o Each Si is normal; that is, for each i, Si(xi) = 1 for some xi 
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The first condition assures that the degree of membership, across all partitions, of each 

element of X does not exceed unity. The second condition states that in every partition there 

must be an element of X with full membership to that partition. 

 

Having reviewed the necessary fuzzy logic background, we now move on to discuss the 

fuzzy c-means clustering algorithm, which is the backbone of the proposed technique for 

clutter identification and reduction from open field GPR images of land. 

 

7.1.4 Fuzzy C-Means Clustering 

The fuzzy c-means (FCM) algorithm has its roots in the work of Dunn and Bezdeck  It is a 

fuzzy version of the popular k-means clustering algorithm. In FCM clustering each data point 

is allowed to belong to all clusters with a certain degree of membership, this is accomplished 

by minimizing the following fuzzy objective function, 

 

! 

Jm = uij
m
xi " c j

j=1

C

#
2

i=1

N

# ,  1$ m <%       7.5 

 

Where 

! 

m " # and m > 1, xi is the ith data vector of dimension d, uij is the degree of 

membership of xi in the jth cluster, cj is the center of cluster j and it is of dimension d, and 

! 

"  

is any vector norm. The goal is to find the cluster centers and membership grades, which 

minimize Jm. It can be shown that the update equation for the cluster centers is given by [26],  
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! 

c j =

uij
m
xi

i=1

N

"

uij
m

i=1

N

"
          7.6 

 

and for the membership grades the update equation becomes, 

 

! 

uij =
1

xi " c j

xi " ck

# 

$ 
% 
% 

& 

' 
( 
( 

k=1

C

)

2

m"1

          7.7 

 

 

The FCM algorithm goes as follows,  

 

FCM Algorithm 

 

 

 

 

 

 

 

o Initialize the membership matrix M with random numbers in the range [0,1]. 
 
o Calculate the cluster centers according to Equation 7.6. 

o Compute the value of the objective function in Equation 7.5. Stop if the objective 

function is below a threshold, ε, or if its improvement over the previous iteration is 

below a tolerance, δ. 

o Update the membership matrix, M, according to Equation 7.7. 

o Go to step 2. 
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7.2 Fuzzy Clutter reduction Method 

Obtaining soil moisture content information in uncontrolled, open field conditions is very 

important in the fields of agriculture, where soil moisture is critical in order to schedule crop 

irrigation. Also, the growing enthusiasm, and need for precision agriculture demands soil 

moisture information to be obtained in a fast, accurate fashion. GPR has emerged as a 

leading technology for this application due to its potential to give accurate soil moisture 

estimates in a non-invasive manner, thus saving lots of time and manual labor typical of 

commonly used techniques such as TDR. 

 

Inherent in all open field scenarios is the presence of undesired signals, referred to as clutter. 

In the problem of determining the moisture content of the soil using GPR, clutter is identified 

as all non-soil reflections, such as reflections coming from patches of grass, its roots, rocks 

lying on top of the ground as well as underground, and any other such items. Since our 

interest is in obtaining the moisture content from the top layer of the soil, our signal of 

interest is the so-called ground bounce signal. Note how clutter is application specific, for 

example, in the problem of land-mine detection, the ground-bounce signal would be 

considered as clutter. 

 

Consider the scenario where the GPR is connected to the back of a moving vehicle, 

collecting data as the vehicle moves over a track of land, as shown in figure 7.1 
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Figure 7.1 Vehicle mounted GPR unit scanning a track of land 

 

As the vehicle moves forward, the GPR scans the field and receives data both from 

uncluttered (clean), and cluttered soil.  Our goal is to identify and remove the clutter 

contribution. 

 

The proposed approach uses FCM to create clusters of the many backscattered signals over 

an area of land, size adjustable by the user. From this pool of signals, a predetermined 

number of clusters are produced, out of which only one is selected as clean signal, based on 

its shape characteristics. The remaining clusters are considered to be clutter clusters. The 

centroid of the cluster containing the clean signal is used as a benchmark to extract the clutter 

signal from other centroids. The result is a clutter characteristic response (CCR). The CCR is 

used to clean the received signal. This method makes no assumptions on the clutter signal. 

Note that as the vehicle travels along the field, the clutter will change randomly, so this 

procedure is renewed as often as necessary, genuine CCRs representative of the area that is 

being scanned.  

 

GPR 
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The received GPR signal can be expressed as 

 

! 

y(t) = x(t)" hs(t) + hc (t)( )         7.8 

 

Where x(t) is the input signal, hs(t) is the soil response, and hc(t) is the clutter response, * 

represents a convolution operation. A clean signal is written as

! 

s(t) = x(t)" h
s
(t); hence the 

CCR is found by subtraction,  

 

! 

CCR = y(t) " s(t)          7.9 

 

The proposed algorithm is as follows, 

Fuzzy Clutter Reduction Algorithm 

 

 

 

 

 

 

 

 
 
 
 

o Collect data by scanning the field for a specified distance. This distance 

should be small enough so that it has approximately constant moisture 

content. 

o Use FCM to compute a feasible number of clusters 

o Choose the cluster center, which has the highest correlation (positive or 

negative) with the reflection obtained from the air, as the clean signal. 

o For each cluster center, except the “clean” cluster center, calculate the CCR 

using Equation 7.9 

o For each cluster, use the CCR calculated in step 4 to remove the clutter 

subtracting the corresponding CCR from each signal in the cluster. 
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7.3 Results 

An experiment was performed at the UPRM baseball field to make preliminary tests of the 

proposed algorithm. Measurements were taken at adjacent locations ranging from clean to 

cluttered conditions. This test was done manually moving the antenna from one location to 

the next at discrete steps. One GPR scan was taken at each location.  

 

Figure 7.2 presents three wavelets collected during the experiment. The signals shown in 

figure 7.2 are representative of the type of signals observed during the experiment. Notice 

that cluttered signals are not just cluttered, they can be slightly cluttered, as in (c), moderately 

cluttered, as in (b), all the way to very cluttered, as in (d). This is the reason why the FCM 

algorithm is employed. A total of twenty signals were used in this test. As an example, two 

clusters were specified and the proposed algorithm was run. The decision to select only two 

clusters was based on the partition coefficient, which is a cluster validity index proposed by 

Bezdeck [25], 

! 

PC =

u
ik

2

i=1

c

"
k=1

n

"

n
. Where n is the number of vectors and c is the number of 

clusters. This validity index measures the amount of overlap between clusters. A valid 

number of clusters is found by solving 

! 

max
c

max{F}
"
c

# 
$ 
% 

& 
' 
( 
,  c = 2,3,...,n )1. In essence, this index 

measures the amount of fuzziness. 
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Figure 7.2 Representative wavelets. (a) clean wavelet. (b) cluttered wavelet. (c) 
semi-clean wavelet. (d) cluttered wavelet 

 
 
Applying the proposed methodology to the data that was collected during the experiment 

resulted in the two cluster centers depicted in figure 7.3. The plot to the right represents the 

center of the clean cluster, while the plot on the right represents the center of the cluttered 

cluster. As shown, we were able to separate clean signals from cluttered signals. Next, we 

present the extracted CCR, computed using Equation 7.9, along with the signal obtained after 

eliminating the CCR. These are shown in figure 7.4. 
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Figure 7.3 Cluster centers. (a) “Clean” cluster center. (b) “Cluttered” cluster 
center. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.4  (a) CCR. (b) Signal after eliminating the CCR. 
 

(a) (b) 

(a) (b) 
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Comparing figure 7.3.a with figure 7.4.b we see that the proposed method was able to 

successfully identify and eliminate the clutter contribution from the signal shown in figure 

7.3.b. Note that this algorithm is renewed as often as necessary to account for clutter 

variations, i.e. amount of clutter, and the type of clutter that is present in the area that’s being 

surveyed. 

 

7.4 Summary and Conclusions 

In this chapter we have reviewed some necessary background on fuzzy logic, en route to 

presenting a methodology for clutter extraction and removal from open field GPR images of 

land with the purpose of obtaining soil moisture content information. The proposed algorithm 

is based on FCM clustering. Albeit the proposed algorithm has only been preliminary tested, 

it shows promise to obtain genuine clutter characteristics. Further tests must be performed 

before making conclusions on the feasibility of the algorithm, such as surveying a small 

portion of open land with the GPR actually connected to the back of a vehicle, and 

employing the MCFD/NN method to obtain the soil moisture content. 
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8 Conclusions and Future Work 

 

8.1 Conclusions 

This thesis has presented an approach to determine the soil type and moisture content using 

GPR. The approach, MCFD/NN, differs of typical methods in that it does not assume a prior 

model for the data, rather, we employ a neural network to obtain the desired information. 

Also, we operate the GPR in monostatic mode, thus reducing the time needed for data 

acquisition as compared to common methods such as the multi-offset method presented in [6]. 

 

It has been shown that a distinctive signature obtained from the ETFE can be used as feature 

vector for the NN to determine its soil type or moisture content. Some of the advantages of 

the new approach over traditional methods are, 

o After a NN has been trained, the output to a given testing set is obtained almost 

immediately. Since NNs can be trained off-line, this type of system is well suited 

for on-line implementations. This fact is advantageous for agricultural 

applications since the user would be able to obtain a near real-time moisture map 

of the desired field. Physical approaches, in contrast, are more computationally 

demanding. 

o It is a well-known fact that NNs are less sensitive to noise than other methods, 

since they learn the underlying pattern in the data. This is an advantage over 



 
 
 

 
 

 77 

model-based methods, which requires accurate forward modeling to obtain the 

improved estimates that they are known for. For rapid soil moisture determination 

in open field conditions, these model-based methods have not been proven. Even 

with the state of computing power, they require much computation time. Some 

work is being done by Lambot, [24], in this area.  

 

Some disadvantages of NN based systems include: 

o Since NNs are “black-box” models their performance depends on the quality, and 

completeness of the training data. A NN cannot extrapolate out of the training set. 

This becomes a disadvantage when compared with physical approaches, since the 

latter are mathematical equations specifically derived to solve the problem at hand.  

o If greater accuracy is demanded, NNs may fall behind the physical approach. This 

stems from the fact that, as the word implies, a physical model tries to mimic, as 

closely as possible, the actual physical phenomena that’s taking place. If the 

model is realistic enough, then the results are surely to be good. 

 

Our results can be summarized as follows, in the area of soil type determination it was shown 

that the MCFD/NN is able to discriminate between soil types. Experiments were done in 

laboratory conditions to distinguish between sand, loam, and clay type of soils.  
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In the area of soil moisture content determination, laboratory, and open field experiments 

were presented and discussed. Results show good agreement between the MCFD/NN 

moisture and Theta Probe readings. In particular, the most interesting results were obtained 

from the open field experiment, when the NN was trained and then tested with data taken six 

months later. The results showed acceptable consistency with the Theta meter, with an 

average moisture difference of 1.34%.  This gives us a clue on the validity of the MCFD/NN 

method to obtain soil moisture information with good temporal accuracy. 

The last chapter of this thesis presented a preliminary methodology to obtain the genuinely 

clutter signal that’s inevitable in uncontrolled environments. The method based on the FCM 

algorithm shows potential, but needs to be tested in a real situation with moisture content 

estimates based on the output signals of this algorithm. 

 

8.2 Future Work 

Future work in the area of soil moisture determination based on the MCFD/NN approach 

needs to concentrate on the following, 

o Clutter identification and suppression. 

o Further evaluation of its open field performance i.e., more testing data for an 

already trained NN. 

o Extension to a vehicle-mounted, off-ground, experimental setup. 

o The creation, and validation of a moisture map for a chosen field. 
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