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Regardless of the type of user, be it a computer professional or smart-phone user,

working in a small bank or at a high tech IT company, everyone is (knowingly or not)

using cloud-computing. In fact, the cloud-computing model provides various advantages

over traditional computing in terms of service availability, scalability, processing and

administration. Further, the cloud-computing framework relies on the principle of sharing

resources and underlying hardware architectures through the virtualization of various

components using software abstractions.

Increasing popularity of ARM-based boards with multi-core processors, along with

commodity hardware components with cost-effective power consumption, yet with smaller

and compact design, has exposed a wide range of opportunities to positively impact com-

puting infrastructure design such as redefining building blocks for multiple computing

paradigms such as parallel computing, virtual computing, cloud computing, high per-

formance computing, and real-time computing. With widespread availability of such

hardware it is possible for the common user to now build a specialized hardware solution

to meet requirements on application performance, cost or power consumption.

This thesis is undertaken to study and evaluate the use of virtualization to enable

the integration of ARM-based embedded boards into cloud computing infrastructure. In
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particular, this work will focus on the understanding of how effective is virtualization on

embedded boards and how this idea could be further nurtured to develop a whole cloud

based service that provides for example virtual machines (VMs) on demand. We will

discuss various techniques for setting up VMs using open source and publicly available

software and tools on ARM-based boards. Our goal is to provide a system that is capable

of running common desktop operating systems in current standard architectures, such as

MS Windows and Ubuntu Linux on x86 as well as to have the capability of supporting

native ARM-based operating systems taking advantage of the full virtualization support

using KVM/QEMU on this platform.
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Resumen de tesis presentado a la Escuela Graduada
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de Computación en la Nube

by

Pardeep Kumar

Diciembre 2016

Consejero: Dr. Emmanuel Arzuaga

Departamento: Electrical and Computer Engineering Department

Independientemente del tipo de usuario, ya sea un profesional de la computadora o

un usuario de teléfonos inteligentes, trabajando en un banco o en una empresa de alta

tecnoloǵıa, todo el mundo está usando (a sabiendas o no) tecnoloǵıa de computación en

la nube (cloud computing en inglés). De hecho, el modelo de computación en la nube

ofrece varias ventajas sobre la informática tradicional en términos de disponibilidad de

servicios, escalabilidad, procesamiento y administración de recursos. Además, el marco

de computación en la nube se basa en el principio de compartir recursos y arquitecturas

de hardware subyacentes a través de la virtualización de varios componentes utilizando

abstracciones de software.

La creciente popularidad del hardware basado en ARM con procesadores multi-núcleo

(multi-core en inglés), junto con los componentes de hardware de los productos básicos con

un consumo de enerǵıa rentable, pero con un diseño más pequeño y compacto, ha expuesto

una amplia gama de oportunidades para impactar positivamente el diseño de infraestruc-

tura computacional para múltiples paradigmas de computación como computación par-

alela, computación virtual, computación en la nube, computación de alto rendimiento y
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computación en tiempo real. Con la disponibilidad generalizada de este tipo de hardware

es posible para el usuario común construir soluciones de hardware especializado que cum-

plan con los requisitos de rendimiento de la aplicación, el costo o el consumo de enerǵıa.

Esta tesis se lleva a cabo para estudiar y evaluar el uso de la virtualización para

permitir la integración de hardware basado en la arquitectura ARM en la infraestructura

de computación en la nube. En particular, este trabajo se centrará en la comprensión

de la eficacia de la virtualización en sistemas basados en ARM y cómo esta idea podŕıa

fomentarse para desarrollar un servicio basado en la nube que proporciona por ejemplo

máquinas virtuales (VM) a petición. Discutiremos varias técnicas para configurar VMs

utilizando software libre aśı como software y herramientas disponibles públicamente en

sistemas basados en ARM. Nuestro objetivo es proporcionar una plataforma que sea capaz

de ejecutar sistemas operativos comunes en arquitecturas actuales, como MS Windows y

Ubuntu Linux en x86, aśı como tener la capacidad de ejecutar sistemas operativos basados

en ARM nativos aprovechando en pleno la disponibilidad de soporte a nivel del kernel

como KVM/QEMU en esta plataforma.
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Chapter 1

INTRODUCTION

1.1 Motivation

Increasing capacity and the reduced size of various hardware components such as pro-

cessors, RAM, GPU, etc. has contributed heavily in the development of high-end smart-

phones and other ARM-based embedded devices [1, 4]. These small devices tend to be

cheaper and yield lower power consumption than traditional x86 servers. At the same

time, the computational power of these devices has increased dramatically to the point

where they are currently capable of running full versions of complex operating systems

such as Linux [5]. Therefore, there is a potential for setting up clusters, for cloud infras-

tructure, parallel computing or even for running virtual machines on these ARM-based

embedded boards. In order to use such highly efficient hardware to its full extent and

getting the maximum out of it, one needs understand the capabilities of the hardware

platform and align it with software requirements. Instead of using multiple processors

on the same board, the increasing demands for CPU-cores are now being completed by

using single multi-core processors with on-board RAM, Ethernet and GPU. ARM pro-

cessors are playing a key role in providing low power, yet powerful CPU architecture

designs. This further leads to the development of embedded boards, which are small
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in size with comparative performance as of high-end machines for some applications [9].

For example the ODROID-XU ARM-based board [4] has a hardware configuration of a

multi-core CPU with all the peripherals required to convert it to a minicomputer running

Linux/Ubuntu(14.04 LTS).

Virtualization is a fundamental building block in cloud computing infrastructure, it is

an effective way of consolidating hardware resources and adding flexibility to the overall

system resource usage. Currently, there are many commercial as well as freely avail-

able software and tools to set up and manage VM, such as Oracle VirtualBox, VMware,

XEN, KVM [8] and they provide the capability of Desktop Virtualization. A consider-

able amount of research in virtualization has focused on enabling VM execution on x86

machines, but the same is not true for ARM-based embedded devices. This presents chal-

lenges and opportunities to learn from the available solutions for x86 machines to enable

VM execution and thus the creation of a Cloud Computing System based on ARM-based

boards.

In this work, we will use ARM-based boards to build cloud infrastructure. We have

made preliminary performance tests and have found that they can yield comparative

performance to traditional x86 hardware with a small form factor and low power con-

sumption. Combining virtualization with this commodity hardware, we have an excellent

platform to build a prototype of our proposed design of low-powered cloud computing

infrastructure.

1.2 Thesis contributions

In this thesis we make the following contributions:

• Investigating current potentials of ARM-based ODROID XU4 board and its virtu-

alization capability.

– Pardeep Kumar and Emmanuel Arzuaga, Integrating ARM Devices in Cloud
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Infrastructure, CAHSI Summit at HENAAC Conference 2016 (received the

Best Graduate Research Poster Award).

• Performance evaluation of the ARM-based system prototype by running specialized

commercial workloads based on the TPC-C and TPC-H benchmark, to study and

understand the behaviour of the system for OLTP and OLAP transactions under

different scenarios.

– Performance Evaluation of Commercial Workloads on ARM-Based Virtualized

Systems, Submitted to ACM VEE 2017

• Present a novel heterogeneous cloud computing infrastructure paradigm using em-

bedded ARM hardware and x86 hosts.

– Migration of virtual machines between heterogeneous hosts (ARM-based hosts

and x86 hosts) and facilitating VMs to work seamlessly around the systems.

– Provide a prototype of such system

• Setup of a heterogeneous cloud environment using embedded ARM hardware and

x86 hosts.

• Evaluate ARM based cluster configurations that handle other Cloud Computer

Paradigms

– Apache Spark

1.3 Outline

Chapter 2 provides background of what has been done in this area and how our work

differentiates or adds to it. The step by step process of the completion of the objectives
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is explained in Chapter 3. Chapter 4 illustrate our approach of building proposed Hetero-

geneous Cloud. A study of the results for all benchmarks are given in Chapter 5. Finally,

Chapter 6 gives the conclusions and the direction for further development.



Chapter 2

Theoretical Background

2.1 Introduction

Advancement in development of powerful commodity hardware has traditionally driven

costs down along with potentially reducing their form factor, has motivated many devel-

opers and researchers around the globe and provided them the opportunity to develop

low cost platforms for education and experimentation. The ARM-based embedded boards

currently dominate the phone and tablet market, the same way Intel dominates the low

to mid range server sector, be it in power consumption or FLOPS (floating point op-

erations per second) per cost ratio. These boards are based on 32-bit ARM processors

whereas the 64-bit version of these boards are still in development/launch queue or early

adoption hardware. Most of the developers are waiting and others trying new ways of set-

ting up small/medium cloud computing environments on 32-bit versions of these powerful

machines.

2.2 Related Work

The statistics and analysis provided by the author in [1], for ten ARM-based embed-

ded boards and their comparison with the Intel Atom (an x86 implementation targeting

5
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the embedded market) and two x-86 based high end servers, could be used as underly-

ing principles for deciding the appropriate hardware for conducting experiments. They

have provided comparison tables for power consumption, FLOPS , FLOPS per watt and

FLOPS per cost for each mentioned board (refer to Table I). The author has used various

benchmarks such as HPL (High performance Linpack), which is commonly used to mea-

sure performance of supercomputers worldwide, and STREAM, which tests a machines

memory performance by performing various operations like copying bytes in memory, then

adding or scaling its values.

The work done by the author [3] for getting processor virtualization in embedded

boards using KVM/ARM on ARM based TI OMAP5432 uEVM board (Texas Instru-

ments) has also provided performance analysis of different virtualization mechanisms.

The author has preferred KVM over Xen as a hypervisor and successfully implemented

a running prototype of a Virtual Machine on top of QEMU [6] and KVM/ARM. In our

work, we have relied on QEMU to work as an emulator and virtualizer to run a virtual

machine on top of it. In, [2], the author has stated different virtualization solutions for

embedded boards in order to get platform level virtualization. The paper provided an

overview of all the solutions and issues related to full virtualization in contrast with par-

avirtualization. In this paper we have provided a QEMU based solution which comes

under Type-2 virtualization solution along with KVM. In all the solutions provided in

the paper KVM seems to be the best option for full platform virtualization, but it relies

on hardware virtualization extensions that are currently limited on embedded boards.

Thus using QEMU as a hardware emulator and virtualizer is one of the best ways on

ODROID-XU to get Type-2 full virtualization.

The comparative study done by author [9] has shown how ARM-based nodes are

much more energy efficient and are able to replace traditional x86 servers at the cost of

slightly lower throughput. ARM based ODROID-XU was the target machine for their
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experimentation and comparison to Intels Xeon servers. They have used many bench-

marks for testing the performance and power consumption of ARM boxes to run under

the hadoop cluster. They have stressed all the system components and characterized the

CPU, memory and I/O using different workloads given as part of Hadoop examples and

query processing benchmarks such as TPC-C and TPC-H. The paper, [9], discussed the

impact of big data and how ARM based boards can help in providing required compu-

tation at low power consumption and at slightly low throughput. In this work, we will

be more focused on characterising the ARM-based ODROID XU4 box which is an ad-

vanced version of the board used by author in [9]. We will be running query processing

benchmarks, such as TPC-C and TPC-H, natively on ARM boxes, as well as on virtual

machine instances (armhf and x86) running on these ARM boxes.

Researchers [10] from University of Southern California have proposed a heteroge-

neous cloud by providing an ability to user to specify more specific option for a target

architecture on demand. As heterogeneity can also be achieved among same processor ar-

chitectures but by adding new features to processor on user demand. They have provided

the GPU based accelerator support for virtual machines via Libvirt driver and support for

Tilera Linux which lacked KVM or virtualization extensions on their cloud. They build

and demonstrated the use of bare metal or Type-1 hypervisor on Tilera architecture by

developing a proxy compute node to manage and map requests from OpenStack. In this

work we proposed a heterogeneous cloud using Type-2 hypervisor on our compute nodes

running on 32 bit ARM based embedded board and x86 machines for running ARM or

x86 based virtual machines irrespective of the host’s native capabilities. We have used

Libvirt and QEMU in order to provide full platform virtualization for guest OS and to

facilitate virtual machine creation, management and migration between ARM and x86

based hosts.

Authors in paper [14] provides overview and benefits of mobile virtualization on ARM
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based devices. They have provided advantages and disadvantages of different virtu-

alization technologies such as OS level virtualization, Microkernel, Hardware-Assisted

and Para-virtualization. They used Android Containers under OS level virtualization

solution, CodeZeroOKL4 for Microkernel based virtualization solution, KVM-on-ARM

for Hardware-Assisted full virtualization and EmbeddedXEN (Xen on ARM) for Para-

virtualization solution. They used Urbetter S5PV210 board with Exynos 4412 ARM

Quad-core CPU, 2GB RAM and 8GB ROM and provided performance analysis of Con-

text Switching, Micro and Macro benchmarks, and full scalability analysis under three use

cases by running them on Microkernel, Para-virtualization and Hardware-Assisted based

virtualization solution. Under these use cases, they measured context switching time be-

tween guest OSes and host OS. Further, LMbench micro-benchmark suite is used to mea-

sure latency and bandwidth, Qtopia & WMV stream encoder/decoder macro-benchmark

for UI loading and codec benchmarking. For scalability analysis they increased the num-

ber of VMs running under each use case progressively and then captured and analysed

the system’s CPU, Memory and Storage usage. In our case, we used KVM/QEMU as

a hypervisor on ARM-based Ubuntu Host OS and collected data for CPU intensive and

query processing benchmarks on native OS as well as in virtual machines running ARM

& x86 based OS.



Chapter 3

Methodology

3.1 Introduction

In this chapter, we take proposed objectives one by one and provide steps taken for their

completion. The purpose of this work is to examine and demonstrate the ability of ARM

based embedded boards against different workload over physical or virtual environments.

The purpose of this chapter is to (1) investigate potential and virtualization capability

of ARM boards, (2) performance evaluation under CPU-intensive workloads, (3) perfor-

mance evaluation under Query processing workloads, (4) migration of virtual machine in

real time, and (5) setting up a heterogeneous cloud.

ODROID-XU has been shown to provide the best set of hardware components to

support general purpose computing environments [1]. Furthermore, the ODROID-XU4 is

a more advanced version of the ODROID-XU family, thus we have selected it as a basis

to conduct our experiments.

The ODROID-XU4 box [4] comes with an Exynos 5422 Octa Cortex, which consists of

two quad-core heterogeneous processors, i.e. one Cortex A15 and one Cortex A7, arranged

in what is commonly known as ARM Big.Little Architecture. It also has a Mali GPU,

2GB of Dual Channel Low Power DDR3 RAM, three USB ports: two USB 3.0 and one

9
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USB 2.0, eMMC 5.0 flash storage of 32GB and one Gigabit Ethernet along with a standard

HDMI port. The availability of such a hardware platform leads to rapid experimentation

and performance analysis of different technologies, e.g., running application servers or

VMs on these devices and comparing them with execution in traditional x86 machines.

Fig 3.1: ODROID-XU4 Embedded board

The idea is to couple a low power consuming and slower Cortex A7 processor with

relatively more powerful and power consuming Cortex A15. The key is to swap workloads

around them on the fly based on the application needs and requirements. For example,

if an application requires high processing only while booting up but has less demands in

rest of its life cycle then we can boot it up using the bigger cores and later switch it to

smaller cores. The intention behind big.Little is to have a such a system which can adjust

better to dynamic computing needs and save as much power as possible.

For this research we used three ODROID-XU4 boxes and two x86 machine. The idea

here is to setup Ubuntu 14.04/16.04 (LTS) on each node. ODROID-XU4 has support for

running full-fledged latest Ubuntu operating system specially released for ARM architec-
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ture by hardkernel.com (we will refer to it as Ubuntu-armhf and for x86 as Ubuntu-x86).

3.2 ODROID XU4 board and its virtualization capability.

In order to get best out of this commodity hardware we need to set goals and examine

every single feature provided to us in such small device. As we have already discussed

that Virtualization is the key for Cloud Computing hence the first step is to examine

what this board can offer us. Lets talk about the things we can expect out of the box:

• ODROID XU4 comes with preloaded Android OS, but one can easily boot it with

Ubuntu LTS 14.04 or 16.04 armhf (hf means hard float) with full support for onboard

components.

• We have onboard gigabyte Ethernet but one can easily buy WiFi module from

official website of hardkernel.

• ODROID XU4 also provides on board GPIO/I2C/I2S, serial console and UART

port.

• Other commodity hardware such as high quality video cam, pluggable display screen,

bluetooth, etc. are fully supported and works out of the box.

In order to find out virtualization capability of such hardware we have to first look at what

are the basic requirements for virtualization. Firstly, we have to decide what architecture

we are going to support for running VMs (Virtual Machine). Secondly, if we are planning

to support Type I or Type II virtualization. Thirdly, to find out if we can run Vms

with KVM extensions to get near native performance. To these ends we have decided to

support x86 and ARM based VM using Type II, full virtualization, with KVM support

for ARM Vms running on Cortex A15 (it supports KVM).

ODROID XU4 box doesn't have or support many components required by standard

operating systems such as PCI bus or VGA support. We used QEMU, Quick Emulator,
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to emulate x86 and ARM hardware for running unmodified x86 and ARM based guests.

Further, in order to support KVM we recompiled the Linux kernel to add support for

available Cortex A15 cores.

Next we started configuring, building and running our VMs on ODROID XU4 using

QEMU command line [6]. We experimented for following different configurations and

scenarios using QEMU:

• Running custom ARM based linux kernel with small initial ram disk attached to it

with total size of 3.7 MB.

• Running ARM based Ubuntu server image without KVM support.

• Running ARM based Ubuntu server images with full KVM support.

• Running standard x86 based Ubuntu server and Windows XP.

QEMU Commands used:

• For Windows:

Fig 3.2: ODROID-XU4 running Window XP
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qemu-system-i386 -hda winxp.img -m 1536

• For Ubuntu x86:

Fig 3.3: ODROID-XU4 running x86 Ubuntu

qemu-system-i386 -hda ubuntu-image.img -m 1536

• For Ubuntu ARM:
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Fig 3.4: ODROID-XU4 running ARM based Ubuntu

qemu-system-arm -M vexpress-a15 -m 1536 -cpu cortex-a15 -serial stdio -kernel

kernel/zImage -dtb kernel/rtsm-ve-cortex-a15x1.dtb -smp 2, sockets=2, cores=1,

threads=1 -drive file=ubuntu-xu4.img,id=virtio-blk,if=none -device virtio-blk-device,

drive=virtio-blk -device virtio-net-device, netdev=net0, mac=”52:54:00:12:34:55”

-netdev type=tap, id=net0, script=no, downscript=no, ifname=”tap0” -append

”earlyprintk=ttyAMA0 console=ttyAMA0 mem=1536M root=/dev/vda2 rw ip=dhcp

”

• For Ubuntu ARM (with KVM):

qemu-system-arm -enable-kvm -M vexpress-a15 -m 1536 -cpu cortex-a15 -serial

stdio -kernel kernel/zImage -dtb kernel/rtsm-ve-cortex-a15x1.dtb -smp 2, sockets=2,

cores=1, threads=1 -drive file=ubuntu-xu4.img,id=virtio-blk,if=none -device virtio-

blk-device, drive=virtio-blk -device virtio-net-device, netdev=net0, mac=”52:54:00:12:34:55”

-netdev type=tap, id=net0, script=no, downscript=no, ifname=”tap0” -append

”earlyprintk=ttyAMA0 console=ttyAMA0 mem=1536M root=/dev/vda2 rw ip=dhcp
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” With all setup and running we are good to tackle our next objective.

3.3 Performance evaluation using Dhrystone & Whetstone

We have made preliminary performance tests by running Dhrystone [18] and Whetstone

[19] benchmarks on these boards. Further, these benchmarks have provided us with

a vision as what we can expect in terms of running virtualized solutions on these small

boards. We further divided our work based on the placement of benchmark under different

scenarios i.e. running:

• Benchmarks natively and pinned to one Cortex-A15 core.

• Benchmarks natively and pinned to one Cortex-A7 core.

• Benchmarks in a Ubuntu-armhf VM running on top of host OS using one CPU with

KVM.

• Benchmarks in a Ubuntu-armhf VM running on top of host OS using one CPU but

without KVM extensions.

• Benchmarks in a Ubuntu-x86 VM running on top of host OS using one CPU.

We collected the Dhrystone and Whetstone benchmarks results for above mentioned cases

and detailed analysis is done and explained in chapter 5

3.4 Performance evaluation using TPC-C & TPC-H.

Now that we have overall understanding of virtualization capabilities of our embedded

board, and we have our VMs up and running on demand using QEMU command line,

provides basis for performance evaluation of such VMs under specialized benchmarks such

as TPC-C [11] and TPC-H [12].
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TPC-C simulates an OLTP (Online Transactional Processing) type order entering

environment where users executes transactions against database. It executes different

transactions on the database such as delivery, new order, order status, payment and mon-

itoring stock level at warehouses. The performance is measured in new-order transactions

per minute (tpm).

Whereas, TPC-H simulates an OLAP (Online Analytical Processing) type decision

support system against the database. It executes business oriented adhoc queries as well

issues concurrent data modification queries.

We conducted our benchmark experiments under five different use cases such as:

• Running benchmarks directly on native host system with full access to hardware

resources.

• Running benchmarks directly on native host system with only one CPU assigned.

• Running benchmarks inside a ARM based Ubuntu virtual machine using one cpu,

1.5 gigabyte of RAM without KVM support.

• Running benchmarks inside a ARM based Ubuntu virtual machine using one cpu,

1.5 gigabyte of RAM with KVM support.

• Running benchmarks inside a x86 based Ubuntu virtual machine using one cpu and

1.5 gigabyte of RAM.

We collected the TPC-C and TPC-H output for above mentioned cases, a detailed analysis

is done and explained in chapter 5.

3.5 Migration of virtual machines between hosts

Now that we have ODROID-XU4 setup and evaluated among various benchmarks running

across different scenarios, as discussed in previous section, we are ready to manage and

migrate those VMs around the system.



17

Up to now we have virtual machines running using QEMU from the command line. In

order to manage all such virtual machine we need to run them in a unified way. Libvirt

[16] is an open source library for managing platform virtualization. The idea here is to

use Libvirt as it supports QEMU and KVM out of the box and takes an XML based

approach to define VM configuration. Moreover, it also provides set of commands to

manage life cycle of VM as well as to live migrate VM across different hosts. Libvirt is

used by many virtualization programs and it also has a graphical interface, VMM (Virtual

Machine Manager), and ,virsh, a command line interface. The graphical interface [17] has

limited functionality based on the version you have installed .

Based on our need and requirements of using commands which are hard to set via

graphical console and to be consistent in our scripts to interact with Libvirt we opted to

not to use its graphical interface. For our experiments we installed Libvirt from Ubuntu

repository using apt-get command. Once installed Libvirt and its commands can be

accessed via terminal by typing virsh and the command to run. There are specific steps

one needs to follow to get virtual machines running through libvirt such as:

• Define your virtual machine or domain in XML using Libvirt XML tags or auto-

generate domain(virtual machine) XML using arguments we used to run VM using

QEMU. The command to do this is virsh domxml-from-native, it takes qemu argu-

ments and generates XML.

• Once domain is defined, run domain using: virsh start domain-name

• Check if domain started or not by listing it out using: virsh list. For example, to

define ARM based ubuntu server using virsh we can use XML given in Table 3.1

Additional options can be provided in XML which can further be conveyed to QEMU

by Libvirt such as setting VGA to NONE or adding vnc server to domain. Each mentioned

option in domain XML gets mapped to QEMU command line option by Libvirt on the
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<domain type=’qemu’ id=’1’>

<name>ubuntu14.04-arm</name>

<uuid>932bd1dd-2f43-4c7c-81d0-a3b1b5748a6c</uuid>
<memory unit=’KiB’>524288</memory>
<currentMemory unit=’KiB’>524288</currentMemory>
<vcpu placement=’static’>1</vcpu>
<resource>ubuntu14.04-arm <partition> /machine </partition>
</resource>

<os>

<type arch=’armv7l’ machine=’vexpress-a15’> hvm </type>

<kernel> zImage</kernel>
<cmdline> root=/dev/mmcblk0p2 rw </cmdline>

<dtb> rtsm ve-cortex a15x1.dtb </dtb>

<bootmenu enable=’yes’/>

</os>

<clock offset=’utc’/> </>

<on poweroff>destroy </on poweroff>

<on reboot>restart </on reboot>

<on crash> restart </on crash>

<devices> <emulator> qemu-system-arm </emulator>

<disk type=’file’ device=’disk’>

<driver name=’qemu’ type=’raw’ cache=’none’/>

<source file=’ubuntu14.img’/>

<backingStore/>

<target dev=’sda’ bus=’sd’/>

<alias name=’sd-disk0’/>

</disk>

</devices>

</domain >

Table 3.1: To start our defined VM we can issue: virsh start ubuntu14.04-arm.

fly. In particular the architecture information is used to find the right qemu system

binary to emulate the appropriate machine. For example, for arch=arm7vl, Libvirt will

pick qemu-system-arm binary then parse other options mentioned in XML and pass it

to qemu-system-arm. Libvirt also takes advantage of various optimizations available for

target architecture by default while parsing XML and automatically adds accelerator type,

clock type etc., if not mentioned in explicitly in XML.

To find out the detailed capacity of the host on which Libvirt is running one can issue

command, virsh capabilities and check all the supported architecture, machine types and

other details as required.
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3.6 Setup of a heterogeneous cloud environment

Heterogeneous cloud provide various benefits in terms of efficient power consumption,

scalability and optimized performance. Cloud computing provides isolated and admin-

istrative access to virtualized computing resources on demand. With availability of nu-

merous problems where the underlying architecture being used can make huge difference,

in terms of speed of execution, performance or cost, cloud computing platforms which

support heterogeneity are still not available for commercial use. We have our ODROID-

XU4 box with a capability of managing and deploying virtual machines using Libvirt on

a single host. Next step is to start configuring our heterogeneous cloud environment on

ODROID-XU4 nodes running Libvirt and using QEMU as hypervisor. There are many

big players in the market which allows anyone to configure or use their cloud services for

public or private use such as Amazon AWS, Microsoft Azure, OpenStack etc. In our case

Openstack is the best suited one as its free, open source, integrates easily with Linux

based hosts and has a huge community behind it.

Fig 3.5: Traditional Cloud Environment
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Fig 3.6: Proposed Heterogeneous Cloud Environment

Openstack works out of the box with Libvirt and QEMU on most of the hardware

platforms but do not support heterogeneity. Openstack do not have support for embedded

hardware yet but it does support some ARM based hosts with standard hardware such as

VGA or PCI bus. Whereas most of embedded hardware, such as ODROID-XU4, doesn’t

have any PCI or VGA support from hardware and Openstack doesn’t work out of the

box on such boards. Additionally, the available options for configuring a virtual machine

are very limited or in other words are not yet supported due to standardization based

on the host capabilities. However, it can easily be modified and integrated according to

the needs. This further lead us to understand the internal of how Openstack works and

what changes or modifications are required in order to deploy a heterogeneous cloud on

ODROID-XU4 nodes.

After mapping and understanding the responsibilities of each components of Open-

Stack and how it delegate requests around the system we came up with a solution of

writing custom wrappers to make it adjust to our needs and requirements. Once we
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have wrapper in place we have our heterogeneous cloud running on ODROID-XU nodes

and virtual machines can easily be managed via Openstack command line on demand.

We have successfully configured and deployed a heterogeneous cloud using OpenStack

components to manage virtual machines and system resources. Our heterogeneous cloud

is configured in such a way that it takes full advantage of high end features of Open-

Stack cloud computing system such as live migration of virtual machines across nodes,

web-based dashboard also known as Horizon [29] and others.

3.7 Other Models

3.7.1 Apache Spark

It is an open source in-memory cluster computing framework.

Apache Spark has following features.

• Speed Spark helps to run an application in Hadoop cluster, up to 100 times faster

in memory, and 10 times faster when running on disk. This is possible by reducing

number of read/write operations to disk. It stores the intermediate processing data

in memory.

• Supports multiple languages Spark provides built-in APIs in Java, Scala, or

Python. Therefore, you can write applications in different languages. Spark comes

up with 80 high-level operators for interactive querying.

• Advanced Analytics Spark not only supports Map and reduce. It also supports

SQL queries, Streaming data, Machine learning (ML), and Graph algorithms.

Figure 3.7 shows oour experimental setup for running Apache Spark using ARM nodes

with Apache hadoop.
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Fig 3.7: Experimental setup for Apache Spark and Apache Hadoop

3.7.2 Apache Spark benchmarking

We ran three benchmarks on our Apache Spark setup given below and collected their Job

Execution Time and throughput.

• Hive-SQL

• RDD Relation SQL

• KMeans
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Fig 3.8: Job Execution Time

Fig 3.9: Average Throughput



Chapter 4

Building Heterogeneous Cloud

4.1 Introduction

This chapter provides the overview of what is required to build a cloud environment and

how the idea can be extended in order to support heterogeneity in cloud. We are interested

in IaaS , Infrastructure as a Service, cloud as one can easily scale from this to other cloud

models such as PaaS, SaaS or DaaS. There are many vendors in the market providing

cloud infrastructure and cloud services such as AWS, Azure, Google Cloud, Openstack

etc.

The idea is to :

• To provide a unified cloud platform for VMs to share and take advantage of different

architecture.

• To provide on demand live migration of VMs to low power consuming ARM hosts.

• Achieve efficient power and resource consumption by migrating x86 VMs to DC

powered ARM hosts when idle or on demand and vice-versa.

As we already have our ODROID-XU4 running ARM and x86 based VMs using Libvirt

with QEMU as a hypervisor. The next step is to install Libvirt and QEMU on our x86

24
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hosts running Ubuntu and then spawn instances on demand. The idea here is to provide a

unified platform for VMs to migrate between hosts irrespective of their architecture. For

example, ability to run a x86 VM on x86 host and then migrate it to ARM based host

without interrupting the VM execution. This will result in efficient power consumption

by migrating x86 VMs to DC powered ARM hosts when idle or on demand. Additionally,

supporting heterogeneity by sharing VMs across two different set of CPU architectures

and hardware constraints.

4.2 Openstack

To carry out our proposed work, we chose to extend the OpenStack.Openstack is imple-

mented as a set of python scripts and services, and has many components which interact

with each other via message queue and database.

• It is a free and open source platform for cloud computing mostly deployed as IaaS.

• Fully distributed and modular architecture.

• Scale horizontally using commodity hardware.

• Role based access control.

• It’s a ’Linux of Cloud Computing’.

• Large community and Industry support.

Lets take a look at Openstack Cloud Architecture and its components:
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Fig 4.1: Openstack Architecture

Dashboard provides a UI , User Interface, for managing resources and handling re-

quests. Identity service provides authentication for users and services. Network manages

internal and external network interfaces. Image provides service for uploading disk im-

ages. Compute is the heart of Openstack which manages life cycle of VMs. Object Storage

provides services to Image service to store and retrieve OS images whereas Block Storage

provides volume for VMs.

In our case, all services works out of box and can be used as it is except Compute, also

known as Openstack Nova . Nova consists Nova-API, Nova-Scheduler, Nova-Conductor,

Nova-Compute and Nova-Network.
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4.2.1 Openstack Nova

In order to understand how Openstack Compute works let’s look at the figure below:

Fig 4.2: Openstack Nova Architecture

Nova-API: This is responsible for interfacing with the outside world and getting re-

quests from users.

Nova-Network: Nova network service provide IP addresses and VLANs for the requested

VM instances.

Nova-Scheduler: This is responsible for scheduling compute resources and finding valid

host to deploy VM for incoming request.

Nova-Compute: This is responsible for managing VM life cycle on compute nodes.

Queue Server: It is a message queue and works as glue between different components and

provides communication mechanism among different components.
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Nova Execution Flow

Nova-API is the interfacing module of Openstack Nova component, shown as Compute

in Openstack architecture above. It is responsible for fielding user request and delegating

it to other nova components after proper authentication using Keystone services. Once

authenticated it further delegates the task to Nova-Conductor which then ask Nova-

Scheduler to find a valid host to accommodate the incoming request. Nova-Scheduler

then find the best host based on the user requirement and provides the information back

to Nova-Conductor. Nova-Conductor then passes VM metadata to that specific host

and tells Nova-Compute running on that host to boot the VM. Nova-Compute then asks

for IP address from Nova-Network or Neutron and collects the OS image from Glance

service and VM storage device from Cinder or other services and boots up the VM. The

communication between all components are carried out using message queue or by reading

and writing to database. Following diagram provides the overall interaction of Openstack

Nova-Compute:

Fig 4.3: Openstack Nova execution flow.
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The execution flow works as follow:

• Nova-API: Receives the user request either from Dashboard or Command line.

1. Authenticates the user making the request.

2. Validate if user is allowed to access the requested Image & Storage files.

3. Validate if user is allowed to access the requested network.

4. If all is good, forward the request to Nova-conductor.

• Nova-Conductor: It is just a RPC server. Receives the request from Nova-API.

1. Request scheduler to find a valid and best compute node to serve the request.

2. Setup the requested network.

• Nova-Compute: Receives the request to setup the VM.

1. Request the IP address before booting the VM.

2. Request the required Image & Storage from Glance or Cinder services to boot

VM.

3. Forwards it to hypervisor, boot up the VM and manage its life cycle.

Openstack does not support heterogeneity i.e. one can only run host-architecture based

virtual machines. For example: Nova-Compute running on x86 host will only facilitate

x86 based VM. Openstack do support ARM based VMs but requires hosts to must have

PCI and VGA buses available and exposed to their hypervisor. In our embedded board,

ODROID-XU4, we lack such hardware as it is a very small commodity hardware and

cannot support standard hardware such as PCI bus and etc. Further, Openstack does not

support migration of VMs between two host with different ISA or if any of the hardware

mentioned or used in VM on source machine is not available in target machine.
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Table 4.1: Openstack Mitaka Configuration (for minimal setup)

Service Type Controller Node Compute Node
Identity Service Keystone NA
Image Service Glance NA
Compute Service Nova Management Nova-Compute (hypervisor)
Network Service Neutron Nova-Network or Neutron

Database MySql or MariaDB NA
Message Broker RabbitMQ NA

However, In our case we are emulating almost everything using QEMU and managing

our VMs through Libvirt and successfully migrating them by providing more details to

Libvirt and QEMU. For example: QEMU can be configured to emulate VGA or to just

ignore it when requested by the user if VGA support is not available for the target board

type.

After reading Openstack Nova source code intensively we mapped our requirements

and came up with an idea of modifying Nova-Compute at Hypervisor level to support

heterogeneity we proposed and proved earlier using Libvirt and QEMU only. This lead

us to develop fully operational Openstack cloud which can issue x86 instances on ARM

host as well facilitates live migration from ARM host to x86 host and vice versa. We used

Openstack Mitaka release [13] to build our proposed cloud, and it require one controller

and one or more compute nodes. Table 4.1 provides services required on each node type.

Openstack Mitaka :

• Controller Node :
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Fig 4.4: Controller Node running on x86 Ubuntu 16.04 LTS

• Compute Node (ODROID-XU4) :

Fig 4.5: Compute Node running on ARM based Ubuntu 16.04 LTS

• Compute Node (x86) :
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Fig 4.6: Compute Node running on x86 Ubuntu 16.04 LTS

To issue an instance we need to pick OS Image, Flavor and Network.

Fig 4.7: Available Compute Nodes, Flavor-list and Glance-Images on Controller

Once decided, we can run an instance on a specific compute Node, as shown in Figure

4.8, by using option ’–availability-zone’ with nova.
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Fig 4.8: Boot command to issue VM to a specific host

To check the status of VM, one can use ’nova list’ command as shown in Figure 4.9.

Fig 4.9: ’nova list’ command to list all the VMs and their status

’nova-show’ command can be used to see more details, as shown in figure 4.10, about

the instance such as its status, host its running on, image used etc.
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Fig 4.10: Output of ’nova-show’ command to show the details of VM.

In order to live migrate the shown VM to ARM based ODROID-XU4 node, we will

use command ’nova live-migration instance id host name’. As we showed in last image

the VM is running on Computex44, which is x86 based host, will now be migrated to

ARM based host i.e. compute33.

Fig 4.11: Initiating live-migration of VM from x86 based host to ARM based host
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Next figure shows the success of live migration as the host name changes to compute33.

Fig 4.12: Successfully migrated VM



Chapter 5

Experiments & Results

5.1 Introduction

In this chapter we present a measurement driven assessment of the proposed experiments.

In section 5.2 we evaluate the performance of CPU intensive workloads. Section 5.3

provides results for Query Processing benchmarks such as TPC-C & TPC-H

5.2 Dhrystone and Whetstone

We have made preliminary performance tests by running Dhrystone and Whetstone bench-

marks on these boards. Further, these benchmarks have provided us with a vision as to

Fig 5.1: General use cases for our performance analysis.

36
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Fig 5.2: Overview of experimental setup for benchmarking.

what we can expect in terms of running virtualized solutions on these small boards. We

further divided our work based on the placement of benchmark under different scenarios

as shown in Figure 5.1 Such as running:

• Benchmarks natively and pinned to one Cortex-A15 core.

• Benchmarks natively and pinned to one Cortex-A7 core.

• Benchmarks in a Ubuntu-armhf VM running on top of host OS using one CPU with

KVM.

• Benchmarks in a Ubuntu-armhf VM running on top of host OS using one CPU but

without KVM extensions.

• Benchmarks in a Ubuntu-x86 VM running on top of host OS using one CPU.

Our experimental setup is showed in Figure 5.2. As Dhrystone’s small size allows it to

easily fit inside processor caches but after adding few thousand loops the score remains
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Fig 5.3: Dhrystone benchmark results.

Fig 5.4: Whetstone benchmark results.
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constant and scales linearly for clock speed. We collected Dhrystone and Whetstone

output by running it multiple time and progressively increasing the number of loops and

loop count respectively. Results are shown for Dhrystone in Figure 5.3 and for Whetstone

in Figure 5.4. These data suggests that the near native performance can be achieved in

virtualized environment on such a specialized embedded hardware using KVM whereas

standard x86 operating systems can also take advantage of performance to power trade-off

and performance to cost trade-off for CPU-intensive applications.

5.3 Query Processing

Now that we have overall understanding of virtualization capabilities of our embedded

board, and we have our VMs up and running on demand using QEMU command line,

now its time to evaluate the performance of such VMs under specialized query processing

benchmarks such as TPC-C and TPC-H.

5.3.1 MySQL

To show the performance of our query processing benchmarks we run TPC-C (OLTP) and

TPC-H (OLAP) benchmarks on ODROID-XU4 on MySQL (ver 5.0.23) with mysql++

(ver 2.0.7). We compiled and installed MySQl on native Host OS as well as in our virtual

machines (ARM & x86 based) from source using default configuration. Table 1 provides

more information about input datasets used.

5.3.2 TPC-C & TPC-H Benchmark

TPC-C simulates an OLTP (Online Transactional Processing) type order entering envi-

ronment where users executes transactions against database. It executes different trans-

actions on the database such as delivery, new order, order status, payment and monitoring

stock level at warehouses. The performance is measured in new-order transactions per
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minute (tpm). TPC-C tends to measure maximum sustained system performance. For

example, a system with 40 tpm is generating 40 New-Order transaction per minute while

fulfilling the rest of TPC-C transaction mix workload.

TPC-H simulates an OLAP (Online Analytical Processing) type decision support sys-

tem against the database. It executes business oriented ad hoc queries as well issues

concurrent data modification queries. It generates 8 database tables all in 3rd Normal

Form. It can be run with pre-determined database sizes also referred to as ”scale factors”.

Scale factor of 1 represent 1 Gigabyte of raw data size of data warehouse. 22 queries are

available under TPC-H benchmark which can be further divided into scan-based, random-

access and long running queries. For scan-based queries we used Q1, Q6, Q12, Q14, Q15,

Q21. For random-access queries we used Q3, Q5, Q7, Q8, Q11, Q16, Q19, Q22. We

conducted our query processing benchmark experiments for TPC-C and TPC-H (using

scan-based and random-access queries) under five different use cases such as:

For TPC-C :

I Running benchmarks directly on native host system with full access to hardware

resources.

II Running benchmarks directly on native host system with only one Cortex-A15 core

assigned.

Fig 5.5: Use cases for TPC-C benchmark.
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III Running benchmarks in a ARM based virtual machine running as guest OS using

one CPU, 1.5GB RAM on top of host OS and KVM.

IV Running benchmarks in a ARM based virtual machine running as guest OS using

one CPU, 1.5GB RAM on top of host OS but without KVM.

V Running benchmarks in a x86 based virtual machine running as guest OS using one

CPU and 1.5GB RAM on top of host OS.

For TPC-H scan-based queries:

I Running benchmarks directly on native host system with full access to hardware

resources.

II Running benchmarks directly on native host system with only one Cortex-A15 core

assigned.

III Running benchmarks in a ARM based virtual machine running as guest OS using

one CPU, 1GB RAM on top of host OS and KVM.

Fig 5.6: TPC-C benchmark results.
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Fig 5.7: Use cases for TPC-H benchmark.

Fig 5.8: TPC-H benchmark results.
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IV Running benchmarks in a ARM based virtual machine running as guest OS using

one CPU, 1GB RAM on top of host OS but without KVM.

V Running benchmarks in a x86 based virtual machine running as guest OS using one

CPU and 1GB RAM on top of host OS.

For TPC-H random-access based queries:

Fig 5.9: TPC-H benchmark results.

I Running benchmarks directly on native host system with full access to hardware

resources.

Table 5.1: TPC-C & TPC-H dataset

Use Case TPC-C(GB) TPC-H Scan-based TPC-H Random-access
(scale factor) (scale factor)

I 2,4,6 0.5 0.5
II 2,4,6 0.5 0.5
III 2,4,6 0.5 0.5
IV 2,4,6 0.5 -
V 2,4,6 0.5 -
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II Running benchmarks directly on native host system with only one Cortex-A15 core

assigned.

III Running benchmarks in a ARM based virtual machine running as guest OS using

one CPU, 1GB RAM on top of host OS and KVM.

We collected the TPC-C and TPC-H output for above mentioned cases. TPC-C results

are shown in Figure 5.6. We ran scan based and random access queries in the mentioned

use cases. Results for TPC-H workload, scan based queries is shown in Figure 5.8 and for

random access based queries in Figure 5.9.



Chapter 6

Conclusion & Future Work

6.1 Introduction

The purpose of this chapter is to summarize the thesis research and provide research

recommendations for further analysis. The first section of this chapter presents the con-

clusion. The second section will discuss some of the future scope of our work.

6.2 Conclusion

In this work, we have presented

• A novel heterogeneous cloud computing infrastructure paradigm using embedded

ARM hardware and x86 hosts.

• A successful integration of our heterogeneous cloud with latest version of Open-

Stack Mitaka and run virtual machines via OpenStack command line. This further

provides foundation to researchers to do more experimentation.

• A performance evaluation using MIPS, MFLOPS and tpM of well known Dhryh-

stone, Whetstone, TPC-C and TPC-H benchmarks .
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• A comparison of the behavior of the system under different use cases. The results

show that near native performance can be achieved for CPU intensive applications

running in virtual environment.

• For Query processing TPC-C benchmark we achieved competitive results with KVM

for 4 & 6 GB datasets and near native tpM with 2GB dataset.

Further, the data provides a strong ground to use these boards as a foundation for building

more complex ARM based virtual infrastructure.

6.3 Future Work

This work has proved the feasibility of running virtual machine on the ARM based em-

bedded boards using QEMU, thus incorporating high computation power at low cost and

low power consumption rate.

• Our heterogeneous cloud could serve as a platform for setting up a cloud infras-

tructure for running on-demand virtual machine instances, application servers, or

web-servers.

• It will open a whole new area to experiment and implement various freely and

publicly available open source software such as OpenStack, Apache Hadoop or Spark

and serve these ODROID-XU4 clusters as huge file servers or application servers.

• Our low power-consuming yet powerful hardware will be highly beneficial for com-

munities/small to mid-sized organizations/institutions/research centers that do not

have enough funds to deploy high grade cloud services at their own place.

• Our heterogeneous cloud provide benefit of on demand power and resource manage-

ment which could easily be leveraged and used as a building block for fog computing

i.e. providing on demand computing on the edge of network or in modern IoT ar-

chitectures.



Bibliography

[1] Michael F. Cloutier, Chad Paradis and Vincent M. Weaver, Design and Analysis of a

32-bit Embedded High-Performance Cluster Optimized for Energy and Performance

2014 Hardware-Software Co-Design for High Performance Computing,doi:10.1109/Co-

HPC.2014.7.

[2] Zonghua Gu, Qingling Zhao, A State-of-the-Art Survey on Real-Time Issues in Em-

bedded Systems Virtualization, Journal of Software Engineering and Applications,

2012, 5, 277-290, http://dx.doi.org/10.4236/jsea.2012.54033 Published Online April

2012.

[3] Geoffrey Papaux, Daniel Gachet, and Wolfram Luithardt, Processor Virtualization on

Embedded Linux Systems,IEEE doi: 10.1109/EDERC.2014.6924360.

[4] Online Technical/Hardware reference for ODROID-XU Board, Retrieved Dec 12, 2016

from http://www.hardkernel.com/main/products/prdt info.php?g code=G137510300620

[5] Ubuntu fork, ubuntu-14.04lts, for ODROID - XU, Retrieved Dec 12, 2016 from

http://odroid.com/dokuwiki/doku.php?id=en:xu3 release linux ubuntu

[6] QEMU download link, Retrieved Jan 18, 2016 from

https://en.wikibooks.org/wiki/QEMU

[7] QEMU user documentation and commands, Retrieved Jan 18, 2016 from

http://wiki.qemu.org/Download.

47



48

[8] Yasunori Goto, ”KVM-Kernel-based Virtual Machine Technology”.

[9] Zhang, Yong, Beng, Dumitrel, Bogdan, A Performance Study of Big Data on Small

Nodes,Department of CS, National University of Singapore.

[10] Steve Crago,Kyle Dunn, Patrick Eads, Lorin Hochstein, Dong-In Kang,Mikyung

Kang, Devendra Modium, Karandeep Singh, Jinwoo Suh, John Paul Walters, ”Hetero-

geneous cloud computing”,University of Southern California / Information Sciences

Institute

[11] T. P. P. Council, TPC-C benchmark specification, http://www.tpc.org/tpcc/

[12] T. P. P. Council, TPC-H benchmark specification, http://www.tpc.org/tpch/

[13] Openstack Mitaka installation, Retrieved Sep 03, 2016 from

http://docs.openstack.org/mitaka/install-guide-ubuntu/

[14] Lei Xu, ZonghuiWang, andWenzhi Chen, ”The Study and Evaluation of ARM-Based

Mobile Virtualization”,College of Computer Science and Technology, Zhejiang Univer-

sity, Hangzhou 310000, China, International Journal of Distributed Sensor Networks

[15] Libvirt, Retrieved Dec 12, 2016 from https://en.wikipedia.org/wiki/Libvirt

[16] Libvirt documentation, Retrieved Dec 12, 2016 from https://libvirt.org/docs.html

[17] Virt-Manager: Source and Documentation, Retrieved Dec 12, 2016 from https://virt-

manager.org/

[18] Dhrystone Benchmark, Retrieved Oct 18, 2016 from

https://en.wikipedia.org/wiki/Dhrystone

[19] Whetstone Benchmark, Retrieved Oct 18, 2016 from

https://en.wikipedia.org/wiki/Whetstone benchmark



49

[20] Sami Yanguiy, Pradeep Ravindrany, Ons Bibanizx, Roch H. Glithoy, Nejib Ben Hadj-

Alouanex,Monique J. Morrow , Paul A. Polakos, ”A Platform as-a-Service for Hybrid

Cloud/Fog Environments”

[21] Loai A. Tawalbeh,Waseem Bakhader ”A Mobile Cloud System for Different Useful

Applications”

[22] Thinh Le Vinh1, Reddy Pallavali2, Fatiha Houacine1 & Samia Bouzefrane1

1CEDRIC Lab, CNAM, 292 rue Saint Martin, Paris, France 2Dept. of computer sci-

ence, Andhra Pradesh, India ”Energy efficiency in Mobile Cloud Computing Archi-

tectures”

[23] OpenStack, Retrieved Sep 16 2016 from http://www.openstack.org

[24] Xen hypervisor, Retrieved Sep 16, 2016 from http://xen.org/

[25] Openstack Nova Developer documentation, Retrieved Dec 12, 2016 from

http://docs.openstack.org/developer/nova/

[26] Openstack Nova Architecture documentation, Retrieved Dec 12, 2016 from

http://docs.openstack.org/developer/nova/architecture.html

[27] Openstack api, Retrieved Sep 16, 2016 from http://developer.openstack.org/api-

guide/quick-start/

[28] Libvirt migration, Retrieved Dec 12, 2016 from https://libvirt.org/migration.html

[29] OpenStack Dashboard: Horizon, Retrieved Sep 16, 2016 from

http://docs.openstack.org/mitaka/install-guide-ubuntu/horizon.html


	Title Page
	Abstract
	Resumen
	List of Figures
	List of Tables
	INTRODUCTION
	Motivation
	Thesis contributions
	Outline

	Theoretical Background
	Introduction
	Related Work

	Methodology
	Introduction
	ODROID XU4 board and its virtualization capability.
	Performance evaluation using Dhrystone & Whetstone
	Performance evaluation using TPC-C & TPC-H.
	Migration of virtual machines between hosts
	Setup of a heterogeneous cloud environment
	Other Models
	Apache Spark
	Apache Spark benchmarking


	 Building Heterogeneous Cloud 
	Introduction
	Openstack 
	Openstack Nova 


	Experiments & Results 
	Introduction
	Dhrystone and Whetstone
	Query Processing
	MySQL
	TPC-C & TPC-H Benchmark


	Conclusion & Future Work
	Introduction
	Conclusion
	Future Work

	Bibliography

