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Abstract 

Remote sensing techniques are widely useful in the field of oceanography and provide a better 

understanding of the dynamics of ocean circulation, in monitoring climate change, for navigation 

and fisheries management, and also help to improve models for weather and climate predictions . 

Also, information from satellites and airborne sensors can be used to evaluate constituents of 

natural waters, their optical properties, bottom depth and type, and classification of benthic 

features in shallow coastal environments. This study addressed the combined used of imagery 

from passive and active sensors, and field optical data, in an algorithm development for bio-

optical characterization and benthic habitat mapping in La Parguera Marine Reserve. High-

resolution bathymetry from passive sensors was obtained from a Worldview 2 (WV2) image at a 

significant spatial resolution (4 meters) and was validated using bathymetric data from an active 

sensor (LiDAR). An additional analysis was done that evaluated the influence of atmospheric 

corrections in depth retrievals. The Cloud Shadow Approach (CSA), using a simple band ratio 

(Band2/Band3) provided the best atmospheric correction with a second order polynomial 

equation (r2 = 0.82). This WV2 depth model was evaluated at another site within the image 

where it successfully retrieved depth values (r2 = 0.90) proving that high-resolution bathymetry 

can be obtained when combined with a robust atmospheric correction, even in areas with 

variable bottom composition. The Airborne Visible Infrared Image Spectrometer (AVIRIS) and 

WorldView-2 (WV2) sensors were used to derive water optical properties, combined with water 

depth from LiDAR data to perform a water column correction using Lee’s semi-analytical 

algorithm, and to determine the optical bottom albedo. The values of image-derived absorption 

(p=0.05, r2=0.90) and Kd (p=0.05, r2=0.96) exhibited a strong correlation when compared with in 

situ values. A strong inverse relationship was found between distance from shore to increasing 
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values of absorption (p=0.07, r2=0.71) and this factor explained about 71% of the variation in 

absorption values for the time-series. For the AVIRIS image, bottom albedo values for sand, 

seagrass, and coral-gorgonians were in good agreement with in situ values for these substrates in 

both spectral shape and intensity, spectral absorption and reflectance features were only present 

after the water column correction. LiDAR reflectivity was highly correlated to bottom albedo 

images from AVIRIS (r2 = 0.79) and WV2 (r2 = 0.79), and this correlation was further improved 

by removing the depth influence from the LiDAR reflectivity (AVIRIS, r2 = 0.95; WV2, (r2 = 

0.94). High-resolution benthic habitat maps were created from AVIRIS and WV2 modeled 

bottom albedo products from pre-processed imagery (atmospheric and water column corrected) 

for La Parguera Reserve. An ISODATA classification was performed and the segmented images 

were classified as coral reefs, seagrass, hardbottom, mixed sand/hardbottom/coral, mud, sand, 

and sand with benthic algae. The overall accuracy (AVIRIS = 63.55%, WV2 = 64.81%), kappa 

coefficient (AVIRIS = 55 %, WV2 = 57%), and the tau coefficient (AVIRIS = 59%, WV2 = 

60%) were evaluated. No major class differences were found between the AVIRIS and WV2 

classification totals, except for coral reefs and sand, where the reduction in coral reefs class totals 

could be attributed to temporal differences in the images depicting changes in the coral reefs 

distribution within the reserve. A major contribution of this study was the creation of the first 

benthic habitat map for La Parguera Reserve that: 1) provided multi/hyperspectral information at 

this spatial scale (4 square meters), 2) covered the extent of the reserve, and 3) provided a 

baseline for future development of benthic habitat studies using an objective classification 

scheme.  
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Resumen 

La información obtenida de sensores colocados sobre satélites y aviones es utilizada en la 

oceanografía para mejorar la navegación, y el conocimiento sobre la circulación oceánica que 

redunda en una mejoría a los modelos climatológicos. Estas técnicas de teledetección también 

nos permiten evaluar los componentes de la columna de agua, las propiedades ópticas, la 

profundidad y el tipo de fondo, y la clasificación de habitáculos bénticos. Este estudio se enfoca 

en la fusión de sensores activos y pasivos, datos ópticos de campo, y el desarrollo de algoritmos 

para la caracterización bio-óptica de las aguas y el tipo de fondo de la Reserva Natural de la 

Parguera. La imagen del sensor Worldview 2 (WV2) nos permitió obtener un mapa batimétrico a 

alta resolución que fue validad a su vez con los datos obtenidos de un sensor activo (LiDAR). La 

aplicación de diferentes modelos de corrección atmosférica nos permitió evaluar cómo afecta 

esta corrección la derivación de profundidad, donde usando una razón de bandas (Banda 1/Banda 

3) con la corrección de “Cloud Shadow Approach” (CSA) pudimos obtener una excelente 

correlación (r2 = 0.82). Este modelo fue utilizado en otra sección de la imagen donde se 

obtuvieron valores de profundidad validados (r2 = 0.90) lo que indica que aun en zonas de 

habitáculos profundos y variables, se pueden obtener excelentes resultados seleccionando la 

mejor corrección atmosférica. Los sensores AVIRIS y WV2 fueron utilizados para corregir la 

influencia de la columna de agua, basados en la derivación de las propiedades ópticas y valores 

de profundidad de LiDAR. Esta corrección de columna de agua fue basado en los algoritmos 

semi-analíticos de Lee y nos permitió determinar el albedo de fondo.  Los valores de absorción 

(p=0.05, r2=0.90) y Kd (p=0.05, r2=0.96) derivados de imágenes mostraron una excelente 

correlación con los valores de campo. El factor de distancia de la costa mostro una fuerte 

relación inversa con los valores de absorción (p=0.07, r2=0.71)  para la serie de tiempo evaluada.  
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Los rasgos espectrales de arena, yerbas marinas y corales (gorgóneos) solo fueron observados 

una vez se eliminó la influencia de la columna de agua en la señal, y sus valores de albedo de 

fondo fueron muy similares a los medidos in situ para esto sustratos. La correlación entre albedo 

de fondo y reflectividad de LiDAR (AVIRIS, r2 = 0.79; WV2, r2 = 0.79) fueron mejorados 

significativamente después de haber removido la influencia de  profundidad (AVIRIS, r2 = 0.95; 

WV2, (r2 = 0.94). Se desarrollaron mapas de hábitats bénticos de alta resolución de los productos 

de albedo de fondo de las imágenes de AVIRIS y WV2 donde la técnica de ISODATA fue 

utilizada en las imágenes segmentadas para clasificar entre: arrecifes de coral, fondo duro 

“hardbottom”, mezcla de arena/ fondo duro “hardbottom”/coral, fango, arena, y área con algas 

bénticas. Los valores de certeza “overall accuracy” (AVIRIS = 63.55%, WV2 = 64.81%), 

coeficiente kappa (AVIRIS = 55 %, WV2 = 57%), y coeficiente tau (AVIRIS = 59%, WV2 = 

60%) fueron evaluados y no se encontró diferencia significativa entre la clasificación de AVIRIS 

y WV2, excepto en la clases de arrecifes de coral y arena. Esta reducción en la clase de arrecifes 

de coral se puede atribuir a las diferencia temporales de las imágenes donde se presentan los 

cambios de este tipo de fondo en la reserva. Una contribución significativa de este estudio fue el 

desarrollo un mapa béntico para la Reserva de la Parguera donde: se pudo obtener información 

multi/hiper espectral a una escala significativa (4 metros), que cubriera la extensión total de la 

reserva, y que proveyera una base objetiva de clasificación para futuros estudios bénticos de la 

reserva. 
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Chapter 1:  General Introduction 

The coral ecosystems around the world, including those in the United States and the Caribbean 

are reported to be in decline. Recent broad scale studies indicate that U.S. coral ecosystems have 

shown dramatic declines of live coral cover during the past three decades, especially those both 

close to land and in water less than 18 meters deep (Garcia-Sais et al. 2008; Gardner et al. 2003; 

Menza et al. 2008). These ecosystems are detrimentally affected by human-based and natural 

factors associated with over-fishing, diseases, bleaching, climate change, urban and tourism-

related coastal development, sedimentation, toxic chemical pollution, ship-groundings (Rohmann 

et al. 2005; Gardner et al. 2003), many of which are expected to be exacerbated by population 

growth and global warming in the future (Hoegh-Guldberg et al. 2007 and 1999). Puerto Rico 

and the US Virgin Islands (USVI) have suffered the effects of these stressors on the coral reef 

ecosystems. The majority of coral reefs around Puerto Rico, along with many other Caribbean 

reefs are among the most vulnerable in the world because of strong anthropogenic impacts in the 

area (Warne et al. 2005). A 2005 coral bleaching event and post-bleaching coral mass mortality 

during 2006 had a dramatic impact on Puerto Rican coral habitats (Garcia-Sais et al. 2005). 

The use of marine protected areas (MPAs) for mitigation against adverse effects of overfishing 

and other anthropogenic impacts is a recent alternative explored by many universities, research 

centers, government agencies, and non-government organizations (NGO) and represents an 

innovation for confronting a previous lack of conservation measures (Aguilar-Perera et al. 2006). 

La Parguera Natural Reserve is a marine protected area located in the southwest coast of Puerto 

Rico. The reserve encompasses an area of approximately 5,260.91 hectares (13,000 acres), which 

extends from east to west from Punta Jorobado in Guánica to the Punta Pitahaya in Cabo Rojo 

and 5.56 kilometers (3 nautical miles) from the coast (Figure 1). The reserve was established in 
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1979 by the Department of Natural and Environmental Resources of Puerto Rico because of its 

important marine resources that include coral reefs, seagrass beds, mangrove forest and 

bioluminescent bays. Its high biodiversity and fisheries potential makes it and important 

ecological system unique in Puerto Rico.  

 

Remote sensing is primarily concerned with collecting and interpreting information about an 

object or landscape from a remote vantage point (Purkis and Klemas 2011). Imagery data 

acquired from satellites are widely useful in the field of oceanography and provide a better 

understanding of the dynamics of ocean circulation, in monitoring climate change, for navigation 

and fisheries management, and also help to improve models for weather and climate predictions 

(Sanford et al. 2011). A more pertinent definition to our study is that of optical remote sensing, 

which is the use of optical measurements made from aircraft or satellites to obtain information 

about the constituents of natural waters, their optical properties, or the bottom depth and type 

(Mobley 2011). Optical remote sensing is also a valuable tool for classification of benthic 

features in shallow coastal environments. The sensors used can be classified as 

active or passive. Passive remote sensing utilizes the light that is naturally emitted or reflected by 

the water body. The most common example of passive remote sensing is the use of sunlight that 

has been backscattered within the water and returned to the sensor. Active remote sensing means 

that a signal of known characteristics is sent from the sensor platform--an aircraft or satellite--to 

the ocean, and the return signal is then detected after a time delay determined by the distance 

from the platform to the ocean and by the speed of light (Gao 2009). 

 

Optical remote sensing is an important tool utilized for monitoring marine environments. Light 

interacts with seawater that contains dissolved and particulate matter, with varying 
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concentrations (both spatially and temporally) throughout the water column (Mobley et al. 1993). 

As photons travel through water, they interact through scattering and absorption processes with 

the particles in the water and with the water molecules themselves (Jerlov 1976). To provide a 

better understating of these interactions, the optical properties of the water column can be 

divided into two classes: inherent optical properties (IOPs) and apparent optical properties 

(AOPs) (Preisendorfer 1976). The IOPs depend only upon the medium and are independent of 

the light field; so as light enters and interacts with the medium it is altered by scattering and 

absorption (Morel 1974; Smith and Baker 1981). These properties are the absorption coefficient 

(a), scattering coefficient (b), and the beam attenuation coefficient (c). The AOPs are dependent 

on both the medium and the directional structure of the light field (Kirk 1984; Mobley et al. 

1993). The vertical attenuation coefficient for downward irradiance (Kd) and the irradiance 

reflectance (R = Eu/Ed), are AOPs and their values depend on the composition of water (IOP) and 

vary to some extent by depth and with solar altitude. Since the AOPs are dependent on the IOPs, 

knowledge of this relationship is important in determining the optical properties of water (Kirk 

1984) and in the interpretation of the radiometric signals over shallow waters from satellite and 

airborne sensors (Maritorena, et al. 1994). The use of radiances measured from optical sensors 

allows the analytical or semi-analytical retrieval of shallow-water bathymetry, bottom albedo and 

optical properties of the water column, and the contribution of each component to the remotely 

sensed signal (Lee et al. 1999). 

 

Information about shallow water bathymetry is beneficial to scientific research and other 

activities that require knowledge of ocean depths in a particular coastal location. While most of 

the research using these optical remote sensed signals has been focused on ocean color research 
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and obtaining accurate depths, the methods developed has also been applied to determining 

benthic habitat types. All mapping that uses airborne or satellite remote sensing must account for 

atmospheric effects; however the biggest challenge for mapping the benthic environment is still 

removing the attenuation effects of the water column (Collin and Hench 2012).  

 

Several approaches and methods of benthic mapping have been attempted, including using band 

ratios (Polcyn, et al., 1970; Stumpf, et al., 2003), radiative transfer models (Bierwirth et al. 1993; 

Philpot 1989; Lyzenga 1978), neural networks (Sandidge and Holyer 1998), and look-up tables 

(Mobley 2003). Again, while these published methods were primarily focused on obtaining 

depths, they also provided information on benthic classification. More recently new techniques 

using inversion and optimization of quasi-analytical or semi-analytical algorithms have been 

used with hyperspectral imagery to determine water properties and/or depth (Albert and Gege 

2006; Brando and Dekker 2003; Morel and Maritorena 2001; Lee et al. 2001 and 1999). The 

semi-analytical model produced by Lee et al. (1999), has produced significant and accurate 

results of many constituent concentrations along with depth (Brando et al. 2009). 

 

Advancements in surveying technologies have increased the accuracy of large-scale mapping 

projects in shallow-water marine environments. Mapping marine habitats and associated species 

distributions is fundamental in determining the potential for protection, assisting in resource 

management and assessing anthropogenic impacts. For example, the knowledge of benthic 

habitats and their spatial distribution is vital for understanding complex coral reefs systems. 

Benthic habitat maps are important for assessing patterns, identifying area of habitat diversity 

and determining habitat coverage. The purpose of this study is to develop a high-resolution 
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benthic habitat map for La Parguera Reserve to provide detailed information on the areal cover 

and spatial patterns of benthic communities using data fusion from passive and active sensors. 

 
Study Area: 

La Parguera Natural Reserve is a marine protected area located in the southwest coast of Puerto 

Rico and it extends from Punta Pitahaya in the west to Punta Jorobado in the east and from the 

coastline to the shelf edge (Figure 1). The area of La Parguera is recognized for the exceptional 

value of its marine resources, which include and extensive coral reef ecosystem, seagrass beds, 

coastal mangrove fringe and mangroves islands, and two bioluminescent bays (UNESCO 1998).  

 

This section of the insular shelf of La Parguera shelf is a bedrock surface composed primarily of 

karst, where the limestone surface has been modified by reef growth and sediment deposition 

since the last glacial low stand (Morelock 1994). A karst surface developed more than 10,000 

years ago, when sea level was lower and the limestone surface of the Parguera shelf was exposed 

to sub aerial erosion (Morelock et al. 1994). The modern bathymetry and sediment patterns are 

different from east to west along the Parguera insular shelf (Morelock et al. 1977).  The shelf is 

also characterized by an irregular and complex physiography, with submerged patch reefs 

extending from 1 to 9 meters off the bottom, an emergent reef with a characteristic reef crest, and 

a well-developed coral reef formation at the border of the shelf (Morelock et al. 1977). The lack 

of significant rainfall and large rivers in the south-southwest coast, combined with the 

oligotrophic waters of the northern Caribbean contribute to the high levels of water transparency 

of the insular shelf and results in an optimization of growth rates and depth extent of coral reefs 

and seagrass (UNESCO 1998). The average annual rainfall at the Isla Magueyes Station in La 
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Parguera is 74.52 centimeters. The average water depth is 18-20 meters in the outer and middle 

shelf, while the shallow inner reef lagoon is less than 6 meter deep. 

 

Figure 1:  Study area of La Parguera Reserve, southwestern Puerto Rico. 

Description of Data sources 

AVIRIS image 

The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) is a hyperspectral sensor that has 

224 contiguous spectral bands from 380 to 2500 nm of which 32 bands are in the visible region 

(400-700 nm) with a spectral resolution of about 10 nm and a high (~1000:1) signal to noise ratio 

(Table 1). During December 12-13, 2005, AVIRIS was flown in a grid of overlapping solar 

azimuth lines over La Parguera aboard NASA’s Twin Otter aircraft at an altitude of 3.5 

kilometers producing a pixel size of approximately 3.1 meters (Armstrong et al. 2007) An image 
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was  preprocessed for subsequent benthic analysis that included suppressing impacts of the stray-

light anomaly, correction of an unexplained edge decay feature, suppression of sun glint and 

finally the application and atmospheric correction using “The Algorithm Formerly Known As 

ATREM (Atmospheric REMoval)” or TAFKAA (Lobitz et al. 2008). The final product was an 

AVIRIS remote sensing reflectance image (Rrs) with 32 bands ideal for studying shal low water 

environments and estimating water depth (Figure 2). 

 

Table 1: AVIRIS sensor details 

 

Band Wavelength (nm) Band Wavelength (nm) Band 
Wavelength 

(nm) 

1 405 12 511 23 617 

2 414 13 520 24 626 

3 424 14 530 25 636 

4 434 15 539 26 646 

5 443 16 549 27 655 

6 453 17 559 28 665 

7 462 18 568 29 672 

8 472 19 578 30 682 

9 482 20 588 31 692 

10 491 21 597 32 701 

11 501 22 607 
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Figure 2: AVIRIS image of La Parguera Reserve. 

 

LiDAR Bathymetric data 

LiDAR (Light Detection and Ranging), also known as optical radar or laser radar, is an active 

remote sensing instrument that transmits high-power pulses of laser light at short intervals over 

an area and receives the signal reflected from a detected surface (Purkis and Klemas 2011). It has 

been used extensively for terrain models and application in urban and aquatic environments. In 

the case of LiDAR for bathymetry, the instrument uses a “green” laser that penetrates the water 

column to measure the distance from the surface of the water to the bottom (Purkis and Klemas 

2011). Water depth is measured from the two-way travel time of a pulse between the water 

surface and the sea floor. After the surface-reflected and bottom-reflected pulses are identified, 

water depth is calculated from the time difference between the two pulses (Gao 2009). 
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LiDAR topographic and bathymetric data were acquired over La Parguera Reserve region 

between April and May 2006 (Figure 3) for coastal elevations of 50 m above sea level to 70 m 

water depths using a Laser Airborne Depth Sounder (LADS) Mk II Airborne System 

(Stephenson and Sinclair 2006). This airborne system uses a 900 Hz Nd: YAG (neodymium-

doped yttrium aluminum garnet) laser, which is split by an optical coupler into an infrared (1064 

nm) beam and a green (532 nm) beam. The final product (16-bit Geotiff image) produced a 4 x 4 

meters bathymetry surface where the soundings were positioned relative to the NAD83 UTM 19 

N horizontal coordinate system and to the Mean Lower Low Water (MLLW) vertical tidal 

coordinate system (Costa et al. 2009). According to Costa et al. (2009), the horizontal accuracy 

of the dataset is better than ±5 meters, and the vertical accuracy or maximum total vertical 

uncertainty (TVU) of the dataset is better than ±0.82 meters. 

  

 

Figure 3: LiDAR bathymetry image, subset of La Parguera Reserve. 
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LiDAR Reflectivity data 

Some of the most advanced LiDAR systems are calibrated to return a reflectance “image” of the 

seabed using a wavelength of (laser beam) 532 nanometers (Tuell et al. 2005). This intensity 

image can provide a mapping opportunity to characterize the seabed based on the reflectivity 

response of the substrate. 

The LiDAR reflectivity data were also acquired for the southwest insular shelf of Puerto Rico 

between April and May 2006  using the LADS Mk II Airborne System (Figure 4). A single 

reflectivity value was calculated per pulse and the data was run through a Tenix LADS 

proprietary reflectivity algorithm and the resulting data was imported and gridded at 5 meters 

(Stephenson 2007). The relative reflectivity is a measure of the reflectance of the seabed in a 

single wavelength (green/blue, 532nm) and indicates variation in reflectivity across the survey 

area where bathymetry was acquired. The numerical values for the relative reflectivity are scaled 

logarithmically to an 8-bit integer range 0 – 255 (Stephenson and Sinclair 2006). 
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Figure 4: LiDAR reflectivity image, subset of La Parguera Reserve. 

 

WorldView 2 Image 

World View 2 (WV2) is the first high-resolution 8-band multispectral commercial satellite 

operating at an altitude of 770 kilometers with a spatial resolution at nadir of 46 cm in 

panchromatic mode and 1.84 meters in multispectral mode (Table 2) at nadir. This sensor can 

collect a 16.4 kilometer swath with 11-bit radiometric resolution. The importance of this sensor 

for oceanic studies is that it includes five bands in the visible region with a purple “coastal” band 

(FWHM, 425nm) that provides better water penetration capabilities.  
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Waveband 

Number 
Wavebands Name Wavelength (nm) FWHM (nm) 

1 Purple 400-450 425 

2 Blue 450-510 480 

3 Green 510-580 545 

4 Yellow 585-625 605 

5 Red 630-690 660 

6 “Red Edge” 705-745 725 

7 Near Infrared 1 770-895 832.5 

8 Near Infrared 2 860-1040 950 

Table 2: WorldView 2 sensor details 
 

The image used in this study was acquired over La Parguera on December 4, 2011 (15:25 GMT) 

without apparent clouds nor “sun glint” present (Figure 5). 

 

Figure 5: WorldView 2 image, subset of La Parguera Reserve. 
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Objectives 

This study is divided into three efforts each covered by a corresponding chapter. The first one 

(Chapter 1) titled High-resolution Bathymetry from Passive Sensors, focuses on quantitatively 

testing the capability of a multispectral remote-sensing reflectance model for deriving bottom 

depths in a shallow water marine environment by comparing model-derived depths to high-

resolution bathymetry data. We also analyzed the importance of the atmospheric correction in 

enhancing bathymetry estimation from passive sensors. The second chapter (Chapter 2), High 

Resolution Bottom Albedo and Water Optical Characterization of La Parguera Reserve 

from Active and Passive sensors covers the development of the bottom albedo image, including 

the image preprocessing for the hyperspectral data and the active sensor data. These parameters 

were used in various bio-optical algorithms to deduce Apparent and Inherent bio-optical 

properties and bottom albedo to ultimately produce a benthic habitat map. A new baseline bio-

optical data and bottom albedo images were developed for the waters of La Parguera Reserve. 

The third chapter, Benthic Habitat Map of La Parguera Reserve using Passive and Active 

Remote Sensing Data, we developed a high resolution benthic habitat for La Parguera from 

bottom albedo using passive and active sensor fusion. These maps were focused on 

characterizing benthic habitats for the total extension of La Parguera Reserve to the shelf edge 

and in the limits of detection of imagery. Also, a detailed comparison between these benthic 

habitat maps against previously available maps with emphasis in habitat prediction and 

validation. This detailed benthic habitat map analysis includes an assessment of spatial patterns 

and distribution of coral reefs thought out the insular shelf and the optical variability of the 

waters in the reserve. 
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Chapter 2: High-resolution bathymetry from passive sensors. 

 

Abstract 

The use of satellite sensors or airborne sensors in shallow waters is complicated by the combined 

atmospheric, water, and bottom signals. Accurate determination of water depth is important both 

for the purpose of monitoring underwater topography and movement of deposited sediments, and 

for producing nautical charts in support of navigation. A Worldview 2 (WV2) image was used to 

produce a bathymetric map with a significant spatial resolution (4 meters). It was validated using 

bathymetric data from an active sensor (LiDAR). Additional analysis was conducted to evaluate 

the influence of atmospheric corrections in depth retrievals, and the Dark Substract, Fast Line-of-

Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and the Cloud Shadow 

Approach (CSA) atmospheric corrections were tested. The CSA method using a simple band 

ratio (Band2/Band3) provided the best performance. A second order polynomial equation 

explained 82% of the model values (r2 = 0.82). The WV2 depth model was evaluated in another 

site within the image, where it successfully retrieved depth values with a coefficient of 

determination (r2) of 0.90 for all the depth values sampled, and an r2 of 0.70, for depths in the 

range of 20 meters RMSE of 1.43 meters. These results confirmed that passive sensors can be 

used to retrieve high-resolution bathymetry when combined with a robust atmospheric correction 

even in areas with variable bottom composition. 
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1. Introduction 

Accurate determination of water depth is important both for the purpose of monitoring 

underwater topography and movement of deposited sediments, and for producing nautical charts 

in support of navigation (Gao 2009). Water depth information is fundamental in discriminating 

and characterizing coral reef habitats, and also allows estimation of bottom albedo, which can 

improve benthic habitat mapping (Mumby and Harborne 1999). The use of satellite sensors or 

airborne sensors in shallow waters is complicated by the combined atmospheric, water, and 

bottom signals. This includes variations due to water column scattering and absorption due to 

dissolved and suspended materials such as sediments, chlorophyll, and colored dissolved organic 

matter. Some of these limitations have been overcome by the introduction of high-resolution 

multispectral sensors that use light reflected from the seafloor to extract benthic information 

(Arnone et al. 2006; McIntyre et al. 2006). 

 

Previous researchers have mapped water depth but, in many cases, the methods that were used 

required the input of known depth values (Lyzenga 1978), or assumptions that a pair of spectral 

bands can be identified such that the ratio of the reflectance in these two bands was the same for 

all the bottom types (Philpot, 1989). The limitations and validity of obtaining water depth from 

passive sensors was demonstrated by Maritorena et al. (1994). Lyzenga et al. (2006) further 

enhanced the methodology using multiple linear regressions, which required knowing the optical 

properties of the water at the time of image acquisition.  

Stumpf et al. (2003) expanded on the strategy developed by Lyzenga (1981) of the blue/green 

spectral bands for depth estimates by reducing the number of parameters that needed to be 

estimated.  The ratio transform proposed by Stumpf et al. (2003) assumed that depth-driven 
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change is significantly larger than the corresponding benthic albedo-driven change. These 

authors used the ratio transform with two IKONOS satellite sensor wavebands, characterized by 

differential water attenuation.  

 

Mishra et al. (2005) estimated water depth for each pixel based on a site-specific polynomial 

model, using high-resolution multispectral IKONOS data in a site near Roatan Island, Honduras. 

A ratio of wavebands (blue and green) were identified that were constant for all bottom types, 

and it was found that the correlation coefficient between actual depth and estimated depth was 

0.942, with an RMS error of 2.711 m. Based on this approach the model overestimates depths 

beyond 21 m. 

 

 

Conger et al. (2006) used QuickBird satellite multispectral sensor imagery and LiDAR Scanning 

Hydrographic Operational Airborne Lidar Survey (SHOALS) data to develop a simple technique 

to decorrelate remote sensing color band data from depth in optically shallow water and 

generating depth invariant bands while maintaining relative spectral information. The World 

View 2 sensor was used by Kerr (2011) to identify an optimal model for estimating bathymetry 

within a near-shore coral reef system based on six water-penetrating bands. The accuracy of the 

depth estimation models was quantified using LiDAR SHOALS data that overlapped the study 

area offshore of Key Largo in the northern Florida Keys National Marine Sanctuary. The model 

used was based on the theory by Lyzenga (1978) (using blue/green ratios) and improved with the 

model from Stumpf et al. (2003) using a ratio of the blue/green spectral bands for depth 

estimates. This study demonstrated that improving the Stumpf model by including a greater 

number of band-ratios provided by the WV2 sensor provided a better solution for optically-

derived bathymetry. 
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Collin and Hench (2012) presented other approach in which water depth was retrieved from the 

World View 2 imagery based on different band combinations from all bands (including 5 visible 

bands) provided by the sensor. This built on the Stumpf et al. (2003) method, enhanced the 

digital depth models and increased the range of depth estimation by testing different atmospheric 

corrections and spatial resolutions. 

 
Hyperspectral sensors have been used to derive properties of the water column and bottom, 

which includes bottom albedo and water depths. The AVIRIS hyperspectral sensor was used to 

obtain water depth, as well as other properties based on model-derived image optimization 

techniques (Lee et al. 1999 and 2001). The results suggested that the model and methods work 

well for extracting subsurface water properties and demonstrated that the model-derived depths 

agree with depths measured from 0–4.6 m. The AVIRIS sensor was also used in deriving bottom 

depths in a shallow water marine environment utilizing a remote sensing reflectance model and 

comparing the model-derived depths to high-resolution LiDAR bathymetry data (McIntyre et al. 

2006).  

 

A different approach was used by Mishra et al. (2007) In this study, a site-specific algorithm was 

developed for mapping high-resolution bathymetry using the remote sensing reflectance derived 

from a hyperspectral sensor corrected for atmospheric effects. The method is based on the 

assumption that the use of two bands allows separation of variations in depth from variations in 

bottom albedo. This method also compensates implicitly for variable bottom types and the per-

pixel bathymetric knowledge was used to eliminate the change in reflectance that is attributable 
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to variable depth and water column attenuation effects, while deriving bottom albedo (Mishra et 

al. 2007) 

The present work has similarities as well as differences in the methods utilized from previous 

remote sensing-derived bathymetry approaches. This study presents the first high-resolution 

large scale water depth map for La Parguera Reserve derived from passive sensors. This 

bathymetric map was developed to a significant spatial resolution (4 meters) and was validated 

using bathymetric data from an active sensor (LiDAR). The project includes an analysis of 

methods and sensors to derive optimum bathymetry values from passive sensors and the 

influence of atmospheric corrections in depth retrievals that could also be implemented 

throughout the Caribbean and elsewhere.  
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2. Methods and Materials 

2.1 Image Preprocessing  

Image data preprocessing included data resampling, radiometric corrections to transform data 

from at sensor radiance to remote sensing reflectance, and atmospheric corrections to remove the 

contribution of the atmosphere to the signal.  

 

2.1.1 LiDAR SHOALS image processing 

Data processing for the LiDAR image was done using Exelis ENVI 5.0 image-processing 

software. The LiDAR image was evaluated for data gaps and a subset of the image was made 

based on the La Parguera Reserve polygon shown in Chapter 1-Figure 1. The co-registration was 

done were the LiDAR image was the base image for the other co-registrations. A total of 40 

points were used as ground control points for the registration and the total RMSE for the co-

registration was 0.5 meters. 

 

2.1.2 WorldView 2 

The WorldView 2 (WV2) image was radiometrically corrected before any additional processing 

was performed. This radiometric correction used the WorldView Radiance calibration routine in 

ENVI 5.0, which converts relative radiance into absolute radiance in units of (μW /cm2 *nm*sr) 

based on the calibration factor for each band. The WV2 image was evaluated for data gaps and a 

subset of the image was made based on the La Parguera Reserve polygon. The original spatial 

resolution of the WV2 image was 1.84 meters, so the image was resampled to 4 meters to match 

the spatial resolution of the LiDAR image. The WV2 image was warped for the co-registration 

with the LiDAR image and both were set to the coordinate system World Geodetic Survey 84 
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(WGS-84). A total of 40 points were used as ground control points for the registration and the 

total RMSE for the co-registration was 0.5 meters.  

 

2.2 Ancillary data 

The images were corrected for fluctuations in tide readings and these were measured at the 

Magueyes Island Tide Station (Station ID 9759110) in La Parguera, Lajas, Puerto Rico (NOAA, 

Tide and Currents, 2005). The WV2 image was acquired on December 4, 2011 (15:25 GMT) 

with the tide reading for this station at 0.249 meters above mean low level water (MLLW) (15:24 

GMT) (NOAA, Tide and Currents, 2011). The LiDAR SHOALS bathymetry data was processed 

and corrected for errors in position and tidal changes (Stephenson and Sinclair 2006). 

 

2.3 Atmospheric corrections 

An important step in multispectral and hyperspectral remote sensing of ocean targets is to correct 

for atmospheric effects. To analytically derive water and/or bottom properties from any satellite 

ocean color data, the first step is to get high-quality spectral remote sensing reflectance (Rrs) that 

contains water and/or bottom information (Lee et al. 2007). There are several methods for 

atmospheric correction currently available for both multispectral and hyperspectral imagery. To 

account for some of the atmospheric variability we applied two types of corrections to our 

imagery; a simple atmospheric correction (i.e. Dark Pixel Subtraction) and two complex 

atmospheric corrections (i.e. FLAASH, CSA). With this approach we then further evaluated the 

influence of the atmospheric correction in bathymetry retrievals. 
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2.3.1 Dark Pixel Subtraction 
 

 The Dark Pixel Subtraction or Dark Subtraction Routine removes the dark noise from the 

image. It is based on the assumption that dark objects reflect no light; any value greater than zero 

must result from atmospheric scattering. The scattering is removed by subtracting this value from 

every pixel in the band by Band Minima or User Values for each band. The Band Minima 

approach was used over an area of deep oceanic pixels was selected and a dark subtraction was 

performed on the WV2 image. 

 

2.3.2 FLAASH 

 The Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) is a 

first-principles atmospheric correction tool that corrects wavelengths in the visible through near-

infrared and shortwave infrared regions and it is based on the MODTRAN4 radiation transfer 

code (Matthew et al. 2002). It can be used in multispectral and hyperspectral imagery and 

basically consist of defining the tropical atmosphere over a maritime area and solve the radiative 

transfer equation. One of the limitations of FLAASH is that requires that the image contains 

bands in appropriate wavelength positions for water vapor and aerosol retrieval corrections. For 

the WV2 image, these bands were not available for this correction to be applied with the longest 

wavelength available centered at 950nm. Still, the FLAASH atmospheric correction was 

evaluated for the WV2 image. 

 

2.3.3 Cloud-Shadow Approach (CSA) 

 

The Cloud Shadow Approach (CSA) is a practical image-driven method for correcting the 

effects of atmosphere and obtains remote sensing reflectance from the image. This technique was 
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originally developed by (Reinersman et al. 1998) and in this updated approach by Lee et al. 

(2007), the atmospheric radiance (La) is calculated from a pair of sun and shadow pixels, where 

the product of (t) transmittance and downwelling irradiance (Ed) is estimated using the reflected 

radiance from the top of clouds (Gregg and Carder 1990). One advantage of this image driven 

approach is that all radiance come from the same sensor and is collected simultaneously. 

For this application of the CSA we used a modified approach from Lee et al. (2007). Since the 

image for the selected study area had no clouds, we used the shadow of a tall building in our 

study area to obtain the sun-shadow pixels. To calculate the reflectance we collected in situ 

spectra of a homogenous area on the rooftop of the building using a field spectroradiometer 

(GER 1500) within the sun-shadow pixels selected. For the Ed sky/ Ed total ratio we used the 

EKO Tracker STR-22 Multiple Radiometers instrument at the Bio-Optical Oceanography 

Laboratory in Isla Magueyes, which collects irradiance from direct and diffuse solar radiation 

and had data for the exact image day/time acquisition. The final product is an atmospheric 

corrected WV2 image with values of remote sensing reflectance (Rrs, sr -1). 

2.4 Bathymetry Retrieval 

 

In the water column, the spectral signal undergoes selective exponential attenuation in the visible 

region as mediated by absorption and scattering processes (Kirk 2011). There have been different 

approaches to map water depth based on the use of wavebands or combinations of wavebands. 

Our approach was focused on deriving depth using band combinations (band ratios) to maximize 

the use of visible bands available from WV2. This approach used a simple blue/green band ratio 

for the WV2 image. The technique was also used to evaluate the influence of the atmospheric 

correction in bathymetry retrievals. The selected band combinations were calibrated using 

LiDAR SHOALS to derive bathymetry. 
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2.4.1 Depth estimated from Band Ratios 

The bands selected were based in visible bands in the blue/green region that provide better water 

penetration for successful bathymetry retrieval. This approach assumes that a pair of wave bands 

can be identified and that the ratio of the reflectance in these two bands was the same for all 

bottom types within a given scene (Philpot 1989). All 5 visible WV2 bands were evaluated but, 

only combinations with band 1, band 2, and band 3 were finally selected for the estimation of 

bathymetry. 

 

Once we established the best band pairs from the imagery, a simple band ratio was calculated for 

the selected pairs for each sensor (i.e. Band 1/ Band 2).  According to Mishra et al. (2007) 

wavebands (blue and green) have different water absorptions, one band will have arithmetically 

lesser values than the other while changes in bottom albedo affects both bands similarly.  Also, 

as depth increases, radiance of the band with higher absorption (green) decreased proportionally 

faster than the band with lower absorption (blue); and the radiance ratio of the blue to the green 

increased (Gordon and Brown 1974).  

 

2.4.2 Ground-truth from LiDAR SHOALS 

 To establish a relationship between bottom depth from WV2 band ratios and depth from 

LiDAR SHOALS bathymetry, a random sample was used to extract the values from both images. 

This random sample consisted of 5000 points and accounted for all bottom types and depths 

across the images. These random points were constrained to the La Parguera Reserve Boundary 

and used as ground-truth data (Figure 1). 
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Figure 1: LIDAR SHOALS random points selected for La Parguera Reserve. 
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3. Results 

3.1 Atmospheric corrections 

 After the atmospheric corrections were applied to the WV2 image, we evaluated above 

water spectra for several areas in our study site (Figure 2). Qualitative interpretation of Figure 7 

suggest that the CSA and Dark Subtract atmospheric corrections performed better in maintaining 

the spectral curves for the substrate (ex. mangroves) than the image without atmospheric 

correction and the FLAASH atmospheric correction. 

 
(a)                                                               (b) 

 
                                                      (c)                                                                (d) 

 
(e) 

Figure 2: (Top) WV2 image above water spectra for mangroves  from (a) no atmospheric 

correction, (b) dark subtract atmospheric correction, (c) FLAASH atmospheric correction, (d) 

CSA atmospheric correction. Cayo Enrique area location in La Parguera Reserve (e). 
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To evaluate the atmospheric influence in the remote sensed signal, radiance values of water over 

different bottom types were analyzed before and after the atmospheric correction. These bottom 

types include seagrass, sand, corals, mud and deepwater (Figure 3). The results after the 

atmospheric correction show that sand had the highest values when compared to other substrates 

(seagrass, mud). The atmospheric influence for all substrates was estimated at 83% and the 

“coastal blue”, blue and green bands were found to have the higher values after atmospheric 

correction, while the near infrared values were all reduced to near zero. 

 
Figure 3: Comparison of top of atmosphere (TOA) and water leaving radiances (Luw) derived from WV2 image 

over different substrates that include seagrass, sand, coral reef, mud and deep water. Notice the scale in the y-axis 
in the sand graph. 
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3.2 LiDAR depths 

LiDAR bathymetry data for the study area ranged from 0 to 46.07 meters. The inner shelf area 

can be distinguished by its complex physiography of submerged patch and emergent reefs, 

inshore cays, and mud and seagrass plains and depths ranging from 0 to 20 meters. The mid and 

outer shelfs have a wider range of depths ranging from 10 to 47 meters, with the deeper areas 

located in the southwest area of the reserve (>30 meters) near the shelf edge. This area is 

characterized by extensive coral reef development, especially near the shelf edge, where depth 

can range from approximately 12 to 35 meters. The average depth is approximately 16.06 meters 

for the selected areas (Figure 4). 

 

 

Figure 4:  LiDAR SHOALS depth histogram for the selected points in La Parguera Reserve. 

3.3 Simple Band Ratios 
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Different band ratios were developed to determine the best ratio to retrieve bathymetry from each 

sensor. The band selection was based in selecting bands in the blue/green region that provided 

the best water penetration for successful bathymetry retrieval.  

 

3.3.1 WV2 

Based on this approach 3, 2 band ratios (B1/B2, B1/B3, B2/B3) from WV2 visible bands were 

selected for six depth ranges. A Pearson-product moment relationship was developed to examine 

the performance of band ratios for different atmospheric corrections (Table 1). 

 

 WV2 2 (n=3 band ratios)  

 

No 

Atmospheric 

Correction 

Dark 

Subtract 
FLAASH 

Cloud 

Shadow 

Average 0.371 0.466 0.218 0.792 

Median 0.378 0.456 0.234 0.855 

Maximum 0.599  0.772 0.417 0.875 

Minimum 0.122 0.228 0.005 0.645 

Table 1: A Pearson-product moment relationship (r) values for the 3 best band ratio 

combination (b1/b2, b1/b3, b2/b3) for the different atmospheric corrections when compared to 

LiDAR SHOALS per pixel values. 
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WV2 Sensor 

 
No Atmospheric 

Correction 
Dark Subtract FLAASH Cloud Shadow 

Depth 
Band 

Ratio 
R R2 R R2 R R2 R R2 

25-

35m 

B1/B2 0.247 0.061 0.382 0.146 0.005 0.00002 0.269 0.073 

B1/B3 0.393 0.154 0.479 0.229 0.417 0.174 0.418 0.175 

B2/B3 0.193 0.037 0.347 0.121 0.252 0.063 0.233 0.054 

20-

30m 

B1/B2 0.122 0.015 0.310 0.096 0.087 0.008 0.142 0.020 

B1/B3 0.526 0.277 0.561 0.315 0.321 0.103 0.562 0.316 

B2/B3 0.489 0.239 0.563 0.318 0.380 0.145 0.515 0.265 

15-

25m 

B1/B2 0.175 0.031 0.315 0.099 0.046 0.002 0.182 0.033 

B1/B3 0.411 0.169 0.498 0.248 0.217 0.047 0.471 0.222 

B2/B3 0.460 0.212 0.522 0.272  0.275 0.076 0.526 0.276 

10-

20m 

B1/B2 0.204 0.042 0.228 0.052 0.088 0.008 0.209 0.044 

B1/B3 0.294 0.086 0.366 0.134 0.156 0.024 0.348 0.121 

B2/B3 0.316 0.100 0.376 0.141 0.161 0.026 0.395 0.156 

5-15m 

B1/B2 0.364 0.132 0.434 0.188 0.210 0.044 0.401 0.161 

B1/B3 0.504 0.254 0.682 0.465 0.259 0.067 0.639 0.408 

B2/B3 0.538 0.289 0.652 0.425 0.252 0.063 0.724 0.524 

0-10m 

B1/B2 0.312 0.098 0.311 0.097 0.187 0.035 0.427 0.182 

B1/B3 
0.532 0.283 0.772 0.596 0.300 0.090 0.759 0.576 

B2/B3 0.592 0.350 0.600 0.359 0.309 0.095 0.851 0.723 

Table 2: A Pearson-product moment relationship (r) values and coefficient of determination (r2) 

for six depth ranges for the different atmospheric corrections. The performance of each band 

ratio on (b1/b2, b1/b3, b2/b3) was evaluated when compared with LiDAR SHOALS per pixel 

values. 
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The data were divided in six depth ranges to evaluate the influence of depth in the band ratio 

(Table 2). The best overall correlation was from band ratio B2/B3 of WV2 with the CSA 

atmospheric correction for the depth range of 0-10 meters (r = 0.851, r2 =0.723). The best 

performance for the image with no atmospheric correction was the band ratio B2/B3 for the 0-10 

meters depth (r = 0.592, r2 =0.350). For the dark subtract atmospheric correction the band ratio 

B1/B3 provided the best performance and was for the depth range of 0-10 meters (r = 0.772, r2 

=0.596). For the atmospheric correction FLAASH, the best performance for WV2 was the band 

ratio B1/B3 for the 25-35 meters depth band (r = 0.417, r2 =0.174). 

 

The band ratios were also evaluated including all sampled points and depth ranges and the 

performance for the no atmospheric correction were B1/B2= 0.038, B1/B3=0.482, B2/B3=0.603; 

for dark subtract correction were B1/B2=0.689, B1/B3=0.863, B2/B3=0.845; for the FLAASH 

atmospheric correction were B1/B2= 0.285, B1/B3=0.454, B2/B3=0.463, and for the CSA 

atmospheric correction were B1/B2= 0.644, B1/B3=0.855, B2/B3=0.875. 

 

Based on the Pearson-product moment relationship developed to examine the performance of 

band ratio for different atmospheric corrections, we selected the best models to determine an 

equation of best fit for the relationship. For the band ratio with no atmospheric correction the 

equation of best fit was a second order polynomial (r2 =0.654), for the dark subtract atmospheric 

correction was a lineal equation (r2 =0.744), for the FLAASH atmospheric correction the best fit 

was an exponential equation (r2 =0.481), and for the CSA atmospheric correction the best fit was 

a second order polynomial (r2 =0.823) (Figure 5). 
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After the selection of the best band ratio and the best model for the relationship a site validation 

was done to evaluate the model performance in retrieving depth for other locations within the 

WV2 image. The model selected was the B2/B3 ratio from CSA with a second order polynomial 

equation (y = -0.0006x2 + 0.0359x + 1.1498). A random sample of 10,000 points was collected 

for the validation area and values of the WV2 Depth Model and LiDAR SHOALS were 

obtained. 

 

Figure 5: Coefficient of determination and best models to determine an equation of best fit for 

the relationship between the band ratios of WV2 image and LiDAR SHOALS data. The 

correlations presented are for the no atmospheric correction (top-left), the dark subtract 

atmospheric correction (top-right), the FLAASH atmospheric correction (Bottom-left), and the 

CSA atmospheric correction (bottom-right). 
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This model was applied to the image and analyzed for accuracy in depth estimation when 

compared with LiDAR depths. We also evaluated the influence of the atmospheric correction in 

the bathymetry retrievals.  

 

4. Discussion 

The water depth models tested here provided information on the importance of the atmospheric 

correction used in high resolution imagery analysis. The data followed the results supported by 

Collin et al. (2012) were the relation between modeled and actual depths varied as a function of 

the atmospheric correction. This empirical model using regression-based modelling is able to 

take into account the local set of conditions of the study area, and the atmospheric effects on the 

electromagnetic waves path in its structure (Baban 1993). 

 

4.1 WV2 depth model 

For the WV2, the cloud shadow atmospheric correction provided the best results for all models 

tested (B1/B2, B1/B3, B2/B3) including all the depth values and depth ranges that were analyzed 

(r=0.875). Both the cloud shadow and the dark subtract corrected values (r = 0.772) show an 

improvement from the values of no atmospheric correction (r = 0.592), confirming that the 

atmospheric correction is an essential radiometric step in the image analysis process  (Lyzenga et 

al. 2006). As expected with bathymetry models from passive sensors (Gordon and Morel 1983), 

the shallower values from the depth band of 0-10 meters provide the best correlation between 

modeled and actual values (Table 2). This correlation presented a gradual decrease with 

increasing depth, and for the depth range 25-35 meters, these values were significantly reduced. 

However, for this maximum depth range the correlation was improved from 0.397 from the no 
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atmospheric correction, to 0.479 and 0.418 in the dark subtract correction and cloud shadow 

corrections, respectively. 

 

For the dark subtract the best model used the combination of the “coastal” band (425 

nanometers) with the green band (B1/B3=0.863) for all depth values. The use of the “coastal” 

band in combination with the green band outperformed the traditional band combination that 

other very high resolution sensors provide (i.e., QuickBird, IKONOS) where the blue band is 

centered at 480 nanometers. For the cloud shadow atmospheric correction the best model used 

the combination of the blue and the green bands (B2/B3=0.823) for all depth values.  

 
The coefficient of determination was obtained and an equation of “best fit” was applied to our 

depth models. The model with the cloud shadow atmospheric correction provide the best 

performance with a second order polynomial equation where it explains 82% of the model values 

(r2 = 0.823). The results were also analyzed for each of the depth ranges and explains that from 

an original r2 = 0.732 at 0-10 meters, the values decrease to r2 = 0.532 at 5-15 meters, and to r2 = 

0.162 at 10-20 meters, suggesting that the model performance is reduced for values deeper than 

15 meters depth range.  

 

For the band ratio with no atmospheric correction the equation of best fit was a linear (r 2 

=0.638), and for the FLAASH atmospheric correction the best fit was an exponential equation (r2 

=0.481) (Figure 5). The scatterplot for the FLAASH atmospheric correction show the values 

dispersed from the exponential model for all depths up to the 23 meters depth band. A present 

limitation of the FLAASH model for atmospheric correction is that the WV2 imagery does not 

provide the bands for the water vapor and aerosols models (Collin and Hench 2012). 
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4.1.1 WV2 model validation 

The model from the B2/B3 ratio from CSA with a second order polynomial equation (y = -

0.0006x2 + 0.0359x + 1.1498) was applied to another location within the WV2 image (Figure 6) 

This model was applied to the image and analyzed for accuracy of the model in depth estimation 

when compared with LiDAR depths.  

 
Figure 6: Model validation site within the WV2 image off southwestern Puerto Rico. 

 

This site validation area analyzed shows an average depth of 15.69 meters with a depth range 

from 1 to 43.33 meters (Figure 7).  
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Figure 7: LiDAR SHOALS depth histogram for the selected points in the site validation area 

Southwestern Puerto Rico. 

 

 

The values collected from WV2 Depth Model and LiDAR SHOALS were linearized and then 

plotted to validate the model performance in estimating depth (Figure 8).  The coefficient of 

determination (r2) was 0.90 for all the depth values sampled. The values were also analyzed to 

determine the model performance by depth range (Table 3). The WV2 depth model successfully 

retrieved depth values with an r2 = 0.70 of the depth values to a depth range of 20 meters. Also, 

of the total values considered (n=8110), 69% of these were between the depth range of 1-20 

meters (n=5600). The aggregated Root Mean Square Error (RMSE) for the validation values of 

the WV2 depth model was 1.56 meters. These values of RMSE increase from 1.26 meters for the 

0-10 meters depth range to 1.78 meters for the 25-35 meters depth range. As a final product this 

equation was applied to the WV2 image to obtain depth for all pixels within the image (Figure 

14). 
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Figure 8: Correlation between values of the WV2 Depth Model and the LiDAR SHOALS depth 

(meters) linearized. 

 

WV2 Depth Model vs LiDAR SHOALS 

Depth range R R2 N 
Average 

Error 
RMSE 

1-10m 0.850 0.723 1921 1.58 1.26 

5-15m 0.835 0.698 3591 2.16 1.47 

10-20m 0.832 0.692 3672 2.47 1.57 

15-25m 0.665 0.443 2760 2.80 1.67 

20-30m 0.429 0.184 2180 3.00 1.73 

25-35m 0.262 0.068 1101 3.16 1.78 

All depths 
0.949 0.900 8110 2.43 1.56 

 

Table 3: A Pearson-product moment relationship (r) values, coefficient of determination (r2), 

average error and the Root Mean Square Error (RMSE) for six depth ranges for the WV2 depth 

model for validation. 
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Figure 9: (Top) Per pixel depth estimation based on WV2 depth model for validation site within 

the WV2 image off southwestern Puerto Rico. (Bottom) Depth values for WV2 Depth Model and 

LiDAR Depths with 95% confidence and prediction bands. Note values dispersion after 20 meter 

depth. 
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Previous attempts for deriving depth in the study area were mainly produced with active sensors 

(e.g. SoNAR, LiDAR) where the final product was focused in coral reef mapping using Side 

Scan SoNAR (Prada et al. 2008), comparison of active sensors (LiDAR  and multibeam SoNAR) 

for coral reef mapping (Costa et al. 2009), or to develop morphometrics from LiDAR to predict 

the diversity and abundance of fish and corals (Pittman et al. 2009).   

 

The sensible depth is affected by the wavelength of the solar radiation used and by water clarity 

(Gao 2009). Torres-Madronero et al. (2009) performed a fusion of an AISA hyperspectral 

airborne camera and LiDAR SHOALS data using Lee’s bio-optical model (Lee et al. 1999) to 

derived depths and other water and bottom optical properties from Cayo Enrique, located within 

our the study area of La Parguera Reserve. The use of Lee’s bio-optical model for the depth 

estimation only retrieved values effectively to a depth of 6 meters. This was the only study that 

uses passive sensors to derive bottom depth in our study area. Some of the differences with our 

study worth noting are that Lee’s only focused on a small offshore cay within the reserve; the use 

of Lee’s bio-optical algorithm to derive depths; and the methods did not take into account the 

influence of atmospheric corrections in depth retrievals.  

 

Other researchers have reported various depth ranges and values using band ratios. Coastal 

bathymetry was detected by McIntyre et al. (2006) using AVIRIS and multibeam SoNAR with 

an RMSE of 7.83 meters with depth most accurate from 10–14 meters. Lyzenga et al. (2006) 

reported an aggregate RMSE of 2.3 meters from a set of IKONOS images over a variety of 

conditions with an individual RMSE that varied from 1.65 to 2.31 meters. These areas were 

shallow areas with very high water clarity which contrast significantly with our study area. 
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Bathymetric data was evaluated by Mishra et al. (2005 and 2007) on a site specific model, using 

IKONOS and AISA images in Roatan Island, Honduras. This approach was the same used for 

our WV2 depth model and the polynomial model was found to provide the best correlation (R2) 

of actual depth and estimated depth (Figure 5). The coefficient of determination for IKONOS 

image was 0.942 with an RMS error of 2.71 m. For the AISA image, the coefficient of 

determination was 0.943 with an RMS error of 2.873 m. Similar to our results, both the IKONOS 

and the AISA image the model overestimated depths beyond 20 meters.  

 

Collin and Hench (2012) used WV2 to retrieve depth using Stumpf et al. (2003) model with 

various band combinations and reported an increase in depth penetration of 10 meters for their 

study area. Their model combination of purple, green, red and NIR2 (WV2 bands: 1,3,5,7) 

provided the greatest agreement with ground-truthing at actual 39 m (r = 0.7), 30 m (r = 0.65) 

and 1 m (r = 0.85). In accordance with our results, the analytical atmospheric correction 

(FLAASH) provided poorer results than no atmospheric correction and dark subtract correction. 

 

The WV2 and tide charts depth with CSA atmospheric correction were used with a linear band 

algorithm modified from Lyzenga depth model and obtained a normalized RMSE of 0.229 

meters for the waters of Singapore (Bramante et al. 2006). However, the maximum depth 

reached was only 2 meters, while for our study area; these depths exceeded the 20 meters. A dark 

subtract and sun glint correction were performed using a blue/green model from a WV2 image 

and LiDAR SHOALS for the waters of Florida and obtained a RMSE of 1.07 meters (Kerr 

2010). As is the case with our imagery, this study presented the importance of atmospheric 

correction methods and deglinting should be applied to WV2 imagery prior to the development 
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of bathymetry maps in order to increase the accuracy of the final products. Additionally these 

methods, to an extent, reduce the errors in the data from the atmospheric influence to the 

reflectance values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

5. Conclusions 

This study presents the first broad scale bathymetry map for La Parguera Reserve derived from a 

passive sensor and validated with an active sensor. Also, it provides a comprehensive evaluation 

of the different atmospheric corrections and the influence in the water depth retrievals. This 

study confirms that atmospheric correction methods should be applied to WV2 imagery prior to 

the development of bathymetric maps in order to increase the accuracy of the final product (Gao 

2009; Kerr 2010; Collin and Hench 2012). Additionally, the selection of the atmospheric 

correction methods is extremely important in the performance of the depth model, even for 

simple blue/green ratios, and can be determinant based on the final product that will be 

developed from the imagery (i.e. benthic habitat map, depth retrievals). 

In our case the best model was the one that use the Cloud Shadow Approach with a band 2/band 

3 combination for the study area of La Parguera Reserve. This atmospheric correction proved 

successful even when it was modified due to cloud absence in the scene. Also, the use of simple 

band ratios provided the first high resolution bathymetry map for La Parguera Reserve from 

passive sensors. Using these methods, high resolution bathymetry can be obtained from passive 

sensor with minimum processing and leveraging from the information contained in the imagery. 

The dark subtract correction provided the second best results and proved to be an excellent first 

approximate for the correction of the atmospheric influence. 

The WV2 depth model was based on the LiDAR SHOALS bathymetry an assumed these values 

as certain. According to Costa et al. (2009) the pixels with the largest depth differences (that 

were greater than the maximum allowable vertical error) occurred primarily along the shelf edge 

in water deeper than 35 meters, which corresponds approximately to the maximum limit of our 

model. 
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The WV2 depth model successfully retrieved depth values with a r2 = 0.70 of the depth values to 

a depth range of 20 meters and the aggregated RMSE for that depth range was 1.43 meters. 

These results are a significant improvement when compared with other investigators using the 

same sensor, however, for depths >20 m the estimation error of the model increased noticeably 

as expected with passive sensors and a heterogeneous bottom composition. The availability of 

several WV2 bands in the visible region provides the opportunity to test different band 

combinations to retrieve bathymetry that when combined with a robust atmospheric correction 

allows meaningful depth to be retrieved even in areas with variable bottom composition. 
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Chapter 3: High-Resolution Bottom Albedo and Water Optical 

Characterization of La Parguera Reserve from Active and Passive sensors.   

Abstract: 

The information retrieved from ocean color remote sensing can provide vital information of 

biological and biogeochemical processes in the oceans, including management of marine 

resources. The use of radiances measured by these sensors allows the analytical or semi-

analytical retrieval of shallow-water bathymetry, bottom albedo and optical properties of the 

water column, and their contribution of each component to the remotely sensed signal . The 

Airborne Visible Infrared Image Spectrometer (AVIRIS) and WorldView-2 (WV2) sensors were 

used to derive water optical properties for La Parguera Reserve, southwestern Puerto Rico. These 

images were also combined with water depth from LiDAR data in order to perform a water 

column correction using Lee’s semi-analytical algorithm, and to determine the optical bottom 

albedo. Additional field data was collected for absorption, backscattering and the coefficient of 

determination of downwelling irradiance (Kd). The values of image-derived absorption (p=0.05, 

r2=0.90) and Kd (p=0.05, r2=0.96) exhibited a strong correlation when compared with in situ 

values. A strong inverse relationship was found between distance from shore to increasing values 

of absorption (p=0.07, r2=0.71) and this factor explained about 71% of the variation in 

absorption values for the time-series. For the AVIRIS image, bottom albedo values for sand, 

seagrass, and coral-gorgonians were in good agreement with in situ values for these substrates in 

both spectral shape and magnitude, and spectral absorption and reflectance features were only 

present after the water column correction. The LiDAR reflectivity was highly correlated to 

bottom albedo images from AVIRIS (r2 = 0.79) and WV2 (r2 = 0.79), and this correlation was 

further improved by removing the depth influence from the LiDAR reflectivity (AVIRIS, r2 = 
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0.95; WV2, (r2 = 0.94). This study represented the first integration of these algorithms to high 

resolution hyperspectral and multispectral imagery, correlated to a comprehensive time series of 

bio-optical properties, to develop bottom albedo images for La Parguera Reserve. 

 

1. Introduction 

The information retrieved from ocean color remote sensing can provide vital information of 

biological and biogeochemical processes in the oceans, and has many other applications 

including management of marine resources (Arnone et al. 2006). Coral reefs are one of the 

world’s most biologically diverse ecosystems and can act as biological indicators of global 

climate change (Holden and LeDrew 2000; Eakin et al. 2010; McManus and Polsenberg 2004) 

that can be leveraged using remote sensing approaches (Mumby and Harborne, 1999). In recent 

years, studies on coral ecosystems by remote sensing have increased considerably, because of a 

greater availability of orbital and airborne sensors with very high spatial resolution in both 

multispectral (IKONOS and WorldView-2) (Purkis 2005; Collin and Hench 2012; Bramante et 

al. 2006), and hyperspectral (AVIRIS, AISA, CASI, and PHILLS) (Lee et al. 2001; Hochberg et 

al.  2003; Goodman et al. 2008; Mishra et al. 2007). 

 

The signals measured by an airborne sensor represents a complex combination of absorption and 

scattering features from the atmosphere, spectral interactions at the air-water interface, 

absorption and scattering from the water column and reflectance from the benthic surface (Lobitz 

et al. 2008). The inherent optical properties (IOP) of water such as absorption and backscattering 

coefficients are the main physical agents governing the magnitude and spectral composition of 

the backscattered flux from the ocean surface (Maritorena 1996). This complexity complicates 
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retrievals of bottom depth and albedo by variations in water depth, bottom type and water 

attenuation by water column constituents (chlorophyll, suspended sediments, and color dissolved 

organic matter (Lee et al. 2001).  

 

Several approaches have been developed to retrieve both the Apparent and Inherent Optical 

Properties (AOP/IOP) from the remotely sensed signal. The water upwelling radiance depends 

physically on the IOPs and solar input and this relationship for subsurface irradiance reflectance 

was first derived from radiative transfer calculations by Gordon and Brown (1974) and Morel 

and Prieur (1977). A proportionality factor f/Q (sr-1) was included that explained how the water 

reflectance is proportional to the backscattering coefficient and inversely proportional to the 

absorption coefficient. The Rrs is the remote sensing reflectance above the surface, the 

Lu(0−)/Ed(0−) is the ratio of upwelling radiance to downwelling irradiance just below the surface, 

f/Q is the proportionality factor, and bb/a is the ratio of backscattering to absorption (Equation 3-

1). 

 

Rrs = Lu(0−)/Ed(0−) = (f/Q)(bb/a)    (3-1) 
 

 

This proportionality factor varies from 0.084 to 0.15 sr-1 for nadir-viewing radiances, and 

depends how the backscattered light relates to the backscattering coefficient (Morel and Gentili 

1993; Lee et al. 2001). The absorption and backscattering coefficients also provides 

complementary information on the water composition, since the first is affected by the presence 

of both suspended and dissolved material in water, while the later represents the concentration 

(to first order) of organic and inorganic suspended particles, and bubbles (Arnone et al. 2006). 
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The use of radiances measured by these passive sensors allows the analytical or semi-analytical 

retrieval of shallow-water bathymetry, bottom albedo and optical properties of the water column, 

and their contribution of each component to the remotely sensed signal (Lee et al., 1999). 

Algorithms have been used extensively to correct these limitations of the attenuation caused by 

water to the spectral signal (Maritorena 1996; Mumby et al. 1997; Holden and LeDrew 2000; 

Mishra et al. 2007). These models (e.g., Hydrolight) allow corrections of attenuation of light in 

seawater, by treating the benthic habitat as a lambertian surface at a known depth, but they are 

specifically designed for analysis and modeling of a single spectrum and not for full-image, per-

pixel correction of hyperspectral data (Lee et al. 2001; Hochberg et al. 2003; Goodman et al. 

2008; Mishra et al. 2007). These semi-analytical approaches are based on simple approximations 

of the remote sensing reflectance, and they use the relationship between the oceanic constituents 

and the IOPs upon which to base the inversion (Gordon 1989; Morel 1988). 

The advancement of airborne laser bathymetry technology (i.e. LiDAR) has allowed the 

transformation of reflectivity and depth derived from these sensors into classified images of 

bottom types (Collins, et al. 2007). Traditionally, LiDAR was used primarily to derived depth 

(Gao 2009), but a reflectivity product can be extracted by integrating the entire waveform 

(Collins et al. 2007). This reflectivity product can then be processed (Stephenson and Sinclair 

2006), analyzed using multivariate statistics to delineate benthic features (Collin et al.  2011), 

evaluated for shape and amplitude of the LiDAR waveforms to extract the attenuation of the 

water and the bottom reflectivity (Wang and Philpot 2007) and fused with passive hyperspectral 

data (Tuell et al. 2005). 

 

Data fusion techniques combine data from multiple sensors and related information, to achieve 

improved accuracies and more specific inferences than could be achieved by the use of a single 
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sensor alone (Hall and Llinas 1997). Active sensors like LiDAR, has been used primarily for 

high-resolution bathymetry and recently for estimation of bottom composition (Wang and 

Philpot 2007). Fusion of hyperspectral and LiDAR data has been used in land cover 

classification taking advantage of both the high resolution spectral signature captured by the 

hyperspectral spectrometer and the detailed sampling of the spatial information by the LiDAR 

system (Torres-Madronero et al.  2009).  

In marine and coastal environments, several examples present the fusion of active and passive 

sensors data and products. Lee (2003) showed the use of multiple sensors by combining 

pseudoreflectance derived from SHOALS data to classify sea bottom, which was then fused with 

an AVIRIS image classification. This fusion was done both at the pixel-level (i.e. data-level), 

and at the decision-level, combining the benthic classifications derived from the water-corrected 

AVIRIS and SHOALS datasets, using the Dempster-Shafer evidence combination approach. 

Tuell et al. (2005) described a process to invert radiative transfer model from hyperspectral 

image using the depth, reflectance and attenuation parameter derived from SHOALS data as 

initialization parameters for the inversion. 

Results presented by Torres-Madronero et al. (2009) with simulated and real hyperspectral 

imagery showed significant improvement in accuracy of bottom abundances that can be retrieved 

by the incorporation of high resolution LiDAR bathymetry, by providing an additional constraint 

on the inversion algorithms. NOAA used Exelis ENVI software to extract and fuse information 

from sonar, LiDAR and optical imagery so that sea floor depths and habitats could be determined 

(Exelis Visual Information Solutions 2011). 
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The purpose of this study was to derive water optical properties from an AVIRIS hyperspectral 

image and a WV2 multispectral image, combined with water depth from LiDAR data in order to 

determine the optical bottom albedo and ultimately to map the spatial distribution of benthic 

habitats for shallow ocean waters in southwestern Puerto Rico. These water optical properties 

were validated with in situ measurements and a correlation was established with the LiDAR 

intensity image. The LiDAR intensity image was used to determine bottom albedo. 

 

1.1 Objectives 

The purpose of this study was to develop a high-resolution bottom albedo map of La 

Parguera Reserve from active and passive sensors that includes the characterization of the 

inherent and apparent optical properties, and the application of a water column correction to the 

sensor data. 

The specific objectives are to: 

1. Analytically derive bottom albedo using AVIRIS and WV2 data, after an atmospheric 

and water column correction using high-resolution bathymetry. 

2. Validation of IOP/AOP and bottom albedo derived analytically from the AVIRIS and 

WV2 image with in situ IOP/AOP and bottom albedo. 

3. Development of a relationship between bottom albedo and LiDAR intensity data 

(reflectivity).  
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2. Methods and Materials 

2.1 Image Preprocessing  

The imagery and data were preprocessed first to enable spatial correlations before further 

analysis. These corrections included data resampling, radiometric corrections to transform data 

from at sensor radiance to remote sensing reflectance, and atmospheric corrections to determine 

the contribution of the atmosphere to the signal.  

2.1.1 AVIRIS 

Data preprocessing was done using the Exelis ENVI 5.0 computer program. The AVIRIS image 

was evaluated for data gaps and a subset of the image was made based on the La Parguera 

Reserve polygon. The original spatial resolution of the AVIRIS image was 3.1 meters, so the 

image was resampled to 4 meters to match the spatial resolution of the LiDAR bathymetry 

image. Describe the date, flying altitude, platform and other details of the AVIRIS data used. 

 

2.1.2 LiDAR SHOALS bathymetry image 

Data processing for the LiDAR image was done using Exelis ENVI 5.0 computer program. The 

LiDAR image was evaluated for data gaps and a subset of the image was made based on the La 

Parguera Reserve polygon. The co-registration was done using the LiDAR image as a base map 

for the other co-registrations. A total of 40 points were used as ground control points for the 

registration and the total RMSE for the co-registration was 0.5 meters. 

 

2.1.3 LiDAR SHOALS reflectivity image 

Data processing for the LiDAR reflectivity image was done using Exelis ENVI 5.0 computer 

program. A subset of the image was created using the La Parguera Reserve polygon. The 
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AVIRIS image was used as the base image for the co-registration with the LiDAR reflectivity 

image and both were set to the coordinate system NAD 1983 State Plane Puerto Rico USVI 

(FIPS 5200). A total of 40 points were used as ground control points for the registration and the 

LiDAR reflectivity image was warped to match the AVIRIS image. The total RMSE for the co-

registration was 0.5 meters. 

 

2.2 Ancillary data 

The images were corrected for fluctuations in tide readings and these were measured at the 

Magueyes Island Tide Station (Station ID 9759110) in La Parguera, Lajas, Puerto Rico (NOAA, 

Tide and Currents, 2005). The WV2 imagery was captured in December 4, 2011 (15:25 GMT) 

and tide reading for this station was 0.249 meters at MLLW (15:24 GMT) (NOAA, Tide and 

Currents, 2011). The LiDAR SHOALS bathymetry data was processed and corrected for errors 

in position and tidal changes (Stephenson and Sinclair 2006). 

 

2.3 Atmospheric corrections 

An essential step in multispectral and hyperspectral remote sensing of ocean water is to correct 

for atmospheric effects. To analytically derive water and/or bottom properties from any satellite 

ocean-color data, the first step is to get high-quality spectral remote-sensing reflectance (Rrs) 

that contains water and/or bottom information (Lee et al. 2007). There are several methods for 

atmospheric correction currently available for both multispectral and hyperspectral imagery. For 

the AVIRIS image the atmospheric correction, TAFKAA was used. Additional preprocessing 

was applied to the image for suppressing the impacts of the stray-light anomaly, correction of an 
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unexplained edge decay feature, suppression of sun glint (Lobitz et al. 2008). The WV2 image 

was atmospherically corrected using the Cloud Shadow Approach (CSA) (Lee et al. 2007).  

 

2.4 Bottom albedo and water column optical properties from AVIRIS and WV2 image  

The signals measured by an airborne sensor represents a complex combination of absorption and 

scattering features from the atmosphere, spectral interactions at the air-water interface, 

absorption and scattering from the water column and reflectance from the benthic surface albedo 

(Lobitz et al. 2008). Previous investigators used AVIRIS imagery and other airborne spectral 

sensors to obtain water column properties based on their spectral response (Lee et al. 1999; Lee 

et al. 2001; Lee 2003; Mishra et al. 2007). Several methods were used to derive water optical 

properties from the AVIRIS and WV2 images and water depth from the LiDAR data in order to 

determine the optical bottom albedo. The individual parameters were calculated based on various 

methods and models described below. 

 

2.4.1 Inherent Optical Properties (IOP) 

2.4.1.1 Absorption 

The absorption obtained through inversion is the total absorption coefficient, atot, namely, the 

sum (aw + ap + ay) of the absorption coefficients by water, particles, and dissolved yellow 

substance, respectively (Morel et al. 2007). 

 

The total absorption atot(λ) can be derived by modification from Mishra et al. (2007) to the 

equation from Austin and Petzold (1986) as: 
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                                        atot(λ) = M(λ)[a(485) – aw(485)] + aw(λ),      (3-2) 

 

where M is a statistically derived coefficient taken from Austin and Petzold (1986), a(485) is the 

total absorption coefficient at 485nm and aw(485) is the pure water absorption coefficient at 

485nm (Pope and Fry 1997). 

To obtain the a(485), we rewrite Equation 3-2 to: 

 

                 a(485) = [a(440) – aw(440)] / M(440) + aw(485)                               (3-3) 

The a(440) used in Equation 3-3 can be empirically determined over deep water using the 

following approximation by Lee et al. (1998): 

 

               a(440) = 10-0.619-19.69 (log
10

[Rrs(485)/Rrs(560)]) + 0.0790 (log
10

[Rrs(485)/Rrs(560)])2                     (3-4) 

 

where Rrs(485) and Rrs(560) are the remote sensing reflectance at 485 nm and 560 nm, 

respectively. 

 

2.4.1.2 Backscattering 
 

The total backscattering coefficient (bb) can be expressed as the backscattering from particles 

(bbp) plus the backscattering of the water molecules (bbw) (Morel 1974). 

 

 bb(λ) = bbp(λ) + bbw(λ)                             (3-5) 

 

The values of scattering of pure seawater were obtained from the term presented by Twardowski 

et al. (2007), where the scattering values of pure seawater from Buiteveld et al. (1994) were 
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increased by 30% to compensate for the salinity enhancement on scattering (Morel 1974). These 

values are considered the best estimates of pure seawater scattering (Twardowski et al. 2007). 

These were computed for each wavelength to obtain the backscattering coefficient (half of the 

scattering coefficient) for optically pure seawater (Morel 1974).  

 

The backscattering coefficient was expressed to approximate the backscattering produced by 

particles in the form proposed by Morel (1988), 

 

                                         bb(λ) = bbp(660) (660/ λ)η + bbw(λ)                  (3-6) 

 

where the backscattering of particle is evaluated at 660nm, and  η is a coefficient which the 

values range from 0.00 to 3.00 for ocean particles. The values selected for this coastal study was 

0.5, because we considered this a Case-1 waters (Mishra et al. 2007). 

To obtain the bbp(660) we used band 28 (664nm) of the AVIRIS image with the assumptions of 

no bottom influence’s to the upwelling signal, absorption is dominated by water molecules, and 

relatively clear deep water (Mishra et al. 2007; Morel and Gentili 1993). Based on this 

assumptions, bbp(660) can be expressed as: 

 

                                         bbp(660) ≈ (aw(660) / 0.05) Rrs (660)                           (3-7) 

 

where aw is the pure water absorption coefficient at 660nm (Pope and Fry 1997). 

 

2.4.2 Water column correction and Bottom albedo 

2.4.2.1 Bottom albedo  
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The biggest challenge for mapping the benthic environment is removing the attenuation effects 

of the water column (Lee 2003). Remote sensing reflectance (Rrs) is an apparent optical property 

that it is defined as the ratio of water leaving radiance (Lw) to downwelling irradiance (Ed), and 

it is controlled by the absorption and scattering properties of the constituents in the water column 

[Rrs
w(λ)] and the bottom albedo [Rrs

b(λ)]. 

 

                                                    Rrs (λ) = Rrs
w(λ) + Rrs

b(λ)        (3-8) 

 

These terms were approximated by Lee et al. (1994, 1998, 1999) in terms of the IOP influence in 

the Rrs; 

 

                                 Rrs
w(λ) ≈ 0.05[bb(λ) / a(λ) + bb(λ)] [1 - ℮-3.2[a(λ) + bb(λ)]Z]                           (3-9) 

 

                                                 Rrs
b(λ) ≈ 0.173 ρ(λ) ℮[-2.7a(λ) + bb(λ)]Z]       (3-10) 

 

where z is the depth of the water in meters taken from the LiDAR image and ρ(λ) is the bottom 

albedo.  

A 100 x 100 pixel window was created that represented deep water pixels (Figure 1). These deep 

water pixels values were used in the models to derive absorption and backscattering coefficients 

and represents optically deep areas with little upwelling signal in the visible bands. Modeled 

values of a(λ) and bb(λ) were derived for each AVIRIS and WV2 bands and were assumed to be 

constant for the entire scene. The bands used in the models, 485nm, 560nm, and 660nm, 

represent the AVIRIS band 9 (482nm), band 17 (559nm) and band 28 (664nm), while the WV2 
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bands used were band 2 (480nm), band 3 (555nm) and band 5 (665nm). The water optical 

parameters and water depth were used to derive the influence of the water column and the 

bottom albedo image using image processing techniques in Exelis ENVI 5.0 software. 

 

 

Figure 1: AVIRIS image of the study area of La Parguera Reserve, southwestern Puerto Rico 

that includes the 100x100 pixel window (red box). 

 

2.4.2.2 Image derived Kd 

The diffuse attenuation Kd(λ) is an important apparent optical property (AOP) that provides 

information about the attenuation of the spectral downwelling solar irradiance Ed(z,λ) with depth 

z in water (Suresh et al. 2012). In situ Kd values were obtained for different sites during the 

AVIRIS mission (Guild et al. 2008). Kd(λ) can be modeled as a function of the inherent optical 

properties, absorption and backscattering, and dependent on the solar zenith angle (Kirk 2011). 
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According to Lee et al. (2007) the Kd can be modeled using the radiative transfer equations given 

as: 

Kd = mo a(λ) + m1 [1-m2 ℮-m
3
a(λ)] bb(λ)   (3-11) 

 

Where m0, m1, m2, m3 are modeled using Hydrolight software and the values depend on depth and 

solar zenith and the values of absorption and backscattering. These imaged derived values were 

compared to the in situ values and were used to estimate bottom albedo. The solar zenith angle 

was estimated at 45 degrees based on the AVIRIS mission. The absorption and backscattering 

values were modeled from the AVIRIS and WV2 image (Equation 3-2 and 3-6, respectively), 

while the coefficients in the model were derived from Hydrolight simulations for Case-1 waters 

(m0=0.005, m1=4.18, m2=0.52) (Lee et al. 2007). 

 

2.4.2.3 Bottom albedo  

The imagery products from the water column correction were evaluated to obtain images that 

contain only information from the bottom substrate. The above water Rrs spectra in shallow 

waters contains information of the interactions of photons with the water column constituents 

and the upwelling radiance from the benthic habitats (Maritorena et al. 1994; Mishra et al. 2007). 

According to Purkis (2005), if the apparent optical properties and thickness of the water column 

are known, it is possible to retrieve values of substrate reflectance from a reflectance 

measurement made on the water surface given the water depth, the attenuation coefficient and 

the reflectance of optically deep water. The equation for bottom reflectance (Rb) is: 

 

Rb = (1/0.54 Rrs (z=a) – (1- ℮-2kz)Rw) / ℮-2kz              (3-12) 
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where z is the water depth, k is the spectral attenuation coefficient and Rw is the reflectance of 

optically deep water. The substrate reflectance (Rb) was derived using 1) the high-resolution 

depth values provided by the LiDAR bathymetry, and 2) the attenuation coefficients collected in 

situ during the AVIRIS mission for selected sites in La Parguera Reserve. Values for attenuation 

coefficients were derived from the AVIRIS image using the techniques presented in section 

2.4.2.2 (Image-derived Kd) of this document. These derived values were compared with the in 

situ values of the attenuation coefficient and used to estimate bottom reflectance for La Parguera 

Reserve using image processing techniques in Exelis ENVI 5.0 software. 

 

2.4.2.4 LiDAR Reflectivity Albedo 

The use of LiDAR have been extended from bathymetric data for nautical charting applications, 

to enhancing the data with complementary datasets, such as reflectivity (Costa et al. 2009). This 

reflectivity pulse value is a measure of the amount of energy reflected from the seabed for each 

individual laser pulse at the wavelength of the laser (532nm, green/blue).  This reflectivity value, 

is the ratio between the received energy normalized for the modeling losses through the water -

column at the water/air interface, and the transmitted energy (Collins et al. 2007). 

The LiDAR reflectivity for La Parguera Reserve was processed to create an 8-bit, 5×5 meter 

raster surface (Costa et al. 2009). Since only the raster surface was available for analysis, this 

surface was compared with bottom albedo derived from AVIRIS and WV2 images after water 

column correction, and no waveform analysis of the pulse was performed. This fusion analysis at 

the pixel level helped to determine which bands of bottom albedo from AVIRIS and WV2 were 

correlated to the LiDAR reflectivity.  
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2.4.3 In situ values of Rrs, IOP’s and Kd  

2.4.3.1 Kd 

Water column light attenuation coefficients (Kd) were calculated from the average of three to 

five spectra from a Spectralon reference panel at three depths using a GER 1500 (Spectra Vista 

Corp.) handheld spectroradiometer in an underwater housing and were collected for different 

bottom types that coincided with passing of the AVIRIS sensor over our study area (Guild et al. 

2008). These values were compared with the water column corrected spectra (Rrs) obtained from 

the AVIRIS and WV2 image.  

 

2.4.3.2 IOP’s 

The in situ values of the IOP’s were obtained during various bio-optical missions that include 

some sites in our study area collected monthly from October 2007 to September 2009. These 

data were collected throughout different seasons to account for temporal variability (Armstrong 

et al. 2012). The absorption coefficients were obtained using an AC-9 (WetLabs) that measure 

the beam attenuation coefficient, c (λ), and absorption coefficient, a (λ), in nine wavelengths. 

The backscattering (bb) was measured at six wavelengths using the Hydroscat 6 (Hobi Labs) 

instrument. These measurements were compared with values derived from the AVIRIS and WV2 

images. 

 

2.4.3.3 Additional Field Data 

Bottom albedo values and benthic habitats of the study area were also identified in various field 

campaigns in 2013 and 2014. The data collected included upwelling radiance and downwelling 

irradiance obtained using the OCR-507 submersible radiometers (Satlantic), surface remote 
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sensing reflectance (GER 1500), inherent optical properties (absorption, scattering and beam 

attenuation) by AC-9 (WetLabs) and HydroScat-6 (Hobi Labs), and a CTD sensor (Seabird). 

Benthic habitats were identified using a high resolution Delta Vision HD underwater camera 

with DVR Additional drop camera samplings were used for accuracy assessment and ground 

validation of the benthic habitats maps. 
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3. Results 

3.1 Image preprocessing  

The original images were pre-processed and the final products consisted of AVIRIS and WV2 

atmospherically corrected and co-registered images. 

3.2 Bottom albedo and water column optical properties. 

3.2.1 Absorption and Backscattering 

Absorption and backscattering were derived using the equation described in sections 2.4.1.1 and 

2.4.1.2 using equations 3-2 and 3-5, respectively. The deep-water pixels previously selected from 

the AVIRIS and WV2 images were used in the models to derive these coefficients (Table 1). 

 

(a) World View 2 

Band λ, m-1 a (λ), m-1 aw (λ), m-1 bb (λ), m-1 bbw (λ), m-1 M (λ) 

1 425 0.3011 0.0048 0.0057 0.0053 1.6550 

2 480 0.2088 0.0127 0.0034 0.0033 1.0955 

3 545 0.1602 0.0511 0.0028 0.0020 0.6094 

4 605 0.0347 0.2577 0.0024 0.0013 0.4983 

5 660 0.0541 0.4100 0.0021 0.0009 0.7301 

 

(b) AVIRIS 

Band λ, m-1 a (λ), m-1 aw (λ), m-1 bb (λ), m-1 bbw (λ), m-1 M (λ) 

1 405 0.3506 0.00530 0.0049 0.0033 1.7463 

2 414 0.3628 0.00444 0.0045 0.0029 1.7312 

3 424 0.3474 0.00478 0.0043 0.0027 1.6550 

4 434 0.3292 0.00530 0.0040 0.0024 1.5648 

5 443 0.3107 0.00696 0.0038 0.0022 1.4673 

6 453 0.2918 0.00969 0.0036 0.0020 1.3627 

7 462 0.2808 0.01005 0.0036 0.0020 1.3077 

8 472 0.2589 0.0109 0.0034 0.0018 1.1982 

9 482 0.2399 0.0131 0.0032 0.0016 1.0955 

10 491 0.2220 0.0150 0.0031 0.0015 1.00 

11 501 0.2092 0.0204 0.0030 0.0014 0.9118 

12 511 0.2045 0.0325 0.0028 0.0012 0.8310 

13 520 0.1978 0.0409 0.0028 0.0012 0.7578 

14 530 0.1867 0.0434 0.0027 0.0011 0.6924 
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15 539 0.1789 0.0474 0.0026 0.0010 0.6350 

16 549 0.1778 0.0565 0.0025 0.0009 0.5860 

17 559 0.1749 0.0619 0.0024 0.0008 0.5457 

18 568 0.1737 0.0672 0.0023 0.0007 0.5146 

19 578 0.1858 0.0836 0.0023 0.0007 0.4935 

20 588 0.2222 0.1220 0.0023 0.0007 0.4840 

21 597 0.2940 0.1925 0.0023 0.0007 0.4903 

22 607 0.3660 0.2629 0.0022 0.0006 0.4983 

23 617 0.3788 0.2707 0.0021 0.0005 0.5223 

24 626 0.4005 0.2834 0.0021 0.0005 0.5659 

25 636 0.4395 0.3012 0.0021 0.0005 0.6683 

26 646 0.4740 0.325 0.0021 0.0005 0.7201 

27 655 0.5226 0.371 0.0020 0.0004 0.7323 

28 665 0.5781 0.429 0.0004 0.0004 0.7205 

29 672 0.5931 0.448 0.0004 0.0004 0.7008 

30 682 0.6073 0.478 0.0004 0.0004 0.6245 

31 692 0.6395 0.538 0.0004 0.0004 0.4901 

32 701 0.6838 0.624 0.0004 0.0004 0.2891 

 

Table 1: Absorption and backscattering coefficients derived from the WV2 (a) and the AVIRIS 

image (b) (100x100 pixel window). Absorption of pure water [aw (λ)] derived from Pope and Fry 

(1997); the backscattering coefficient of pure seawater [bbw (λ)] is half the scattering coefficient. 

The scattering coefficients for optically pure seawater were the values proposed by Buiteveld et 

al. (1994), increased by a factor of 1.30 to account for the presence of salt (Morel et al. 2007; 

Twardowski et al. 2007). M is a statistically derived coefficient taken from Austin and Petzold 

(1986). 

 

Apparent Optical Properties were collected during a monthly field campaigns from May 2007 to 

August 2009 for selected sites in La Parguera Reserve (Figure 2). These values were obtained 

from the ac-9 and the HydroScat-6 sensors using the bio-optical package and compared to the 

values obtained from the AVIRIS image. The stations have variable bottom types with depth 

ranging from 1.5 to 18 meters (Figure 2, derived from Armstrong et al. 2012).  
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Station Reef Bottom Type Depth (m) Distance from shore (km) 

1 Media Luna Sand/Coral 3.0 3.9 

2 Laurel Seagrass 2.0 3.3 

3 Mario Shallow Sand/Coral 4.5 2.3 

4 Mario Deep Mud 18.0 2.3 

5 Enrique West Seagrass 2.0 2.1 

6 Enrique East Sand 1.5 2.1 

 

Figure 2: Selected sites for field campaign to collect IOP/AOP in La Parguera Reserve. The sites 

location (red star) and the ICON CREWS station (triangle) is included for reference. The 

associated table presents site description parameters. 
 

Figure 3 shows the values of (a) absorption and (c) attenuation that were obtained from the ac-9 

instrument for the selected stations, the values of (b) scattering were derived from b = c-a, and 

the values of backscattering (bb) were obtained from the HydroScat-6 sensor for the selected 

stations.   
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Figure 3: Median values of absorption (a), scattering (b) and attenuation (c) collected using the 

ac-9 instrument. The median values of backscattering (d) were collected using the hydroscat-

6.The x-axis shows the different wavelengths collected (nanometers) by the instruments.  
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These in situ values were compared to the modeled derived values obtained from the AVIRIS 

and WV2 images. Only values of (a) absorption and (bb) backscattering were derived from the 

image. The values were matched to the nearest AVIRIS and WV2 spectral channels (Figure 4). 

 

 
 Figure 4: Comparison of absorption (λ) values (Top), and backscattering bb (λ) values (Bottom) 

modeled from AVIRIS image (red-solid line) and WV2 image (blue-dash line). These modeled 

values were compared with in situ values for selected sites in La Parguera Reserve during bio-

optical sampling campaign. In situ values are median monthly values obtained from May 2007 to 

August 2009 bio-optical sampling. 
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Another factor that influences the backscattering value is the presence of inorganic particles and 

CDOM from re-suspension of bottom sediments, nutrient input and wave action (Morel 1974; 

Twardowski et al. 2007). The Hydroscat-6 provided both (bbp) and (bbw) so each component was 

evaluated individually to quantify the contribution of particles for each station based on depth, 

substrate and distance from shore (Figure 5). 
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Figure 5: Evaluation of total backscattering (bb) and backscattering of particles (bbp) for 

distance from shore, depth of stations and substrate. For distance from shoreline (a), the farthest 

(Station 1: Media Luna = 3.9 km) and closest (Station 6: Enrique East = 2.1 km). For the depth 

of stations (b) the deepest (Station 4: Mario Deep = 18 m) and the shallower (Station 6: Enrique 

East = 1.5 m). For the stations with the benthic cover of seagrass (c), Station 2: Laurel and 

Station 5: Enrique West. For the stations with the benthic cover of sand/coral (d), Station 1: 

Media Luna and Station 3: Mario Shallow. 
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3.2.2 Precipitation Data 

The precipitation data were collected from the Integrated Coral Observing Network /Coral Reef 

Early Warning System (ICON/CREWS) located in the Media Luna cay in La Parguera Reserve. 

The data includes the monthly summaries of precipitation during the field campaigns (Table 2). 

 

Precipitation Data ICON CREWS 

Month Precipitation (mm) Month Precipitation (mm) 

May-07 77.31 Aug-08 220.31 

Jun-07 63.91 Sep-08 529.16 

Jul-07 47.2 Oct-08 128.55 

Aug-07 161.59 Nov-08 149.24 

Sep-07 42.63 Dec-08 62.50 

Oct-07 128.55 Jan-09 94.87 

Nov-07 0.99 Feb-09 64.65 

Dec-07 0.95 Mar-09 58.29 

Jan-08 N/A Apr-09 96.42 

Feb-08 N/A May-09 152.88 

Mar-08 N/A Jun-09 86.94 

Apr-08 0.23 Jul-09 250.92 

May-08 0.41 Aug-09 90.06 

Jun-08 0.93 Sep-09 134.93 

Jul-08 0.26 
  

 

Table 2: Monthly summary of precipitation from the ICON/CREWS Station located at Media 
Luna cay in La Parguera Reserve. Note that values in bold are not reliable due to missing 

values, malfunctions or data not available. 

 

3.2.3 Attenuation Coefficients (Kd) 

The values of Kd were derived from the AVIRIS image using the methods described by Lee et al. 

(2007) (Section 2.4.3.3 Image derived Kd) and compared with the in situ values (Figure 6). The 

absorption and backscattering values were obtained from Table 1 and derived from the AVIRIS 

image, while the coefficients in the model were derived from Hydrolight simulations (Lee et al. 

2007). The image-derived Kd was also evaluated with the deepest station sampled (Figure 7). 
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Figure 6: (Top) Comparison of Kd (λ) values derived from AVIRIS image (red-dash line) with in 

situ values for selected sites in La Parguera Reserve. The r2 is only for AVIRIS image derived 

Kd. (Bottom) Comparison of Kd (λ) values derived from AVIRIS image (red-dash line) and WV2 

image (blue- dash-point line). 
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Figure 7: (Top) Comparison of Kd (λ) values derived from AVIRIS image (red-dash line) with 

Mario 2 (18m deepest station) in La Parguera Reserve. (Bottom) Correlation between Kd (λ) 

values derived from AVIRIS image and Kd (λ) in situ values from Mario Deep Station (18 meters 

depth) that coincided with the sensor image collection.  
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A maximum depth exists for which a submerged bottom can be detected by optical remote 

sensing, which according to Gordon and McCluney (1975), in optically deep waters is called 

Z90. This Z90 (first optical depth) is the effective penetration depth of imagery which 90% of 

the total radiance originates, or depth is approximately: Z90=~ 2.3/Kd (Kirk 2011). 

The Kd values were derived from the imagery, so Z90 provided the effective penetration depth 

of the signal spectrally for each band in the AVIRIS image. This also provided the limits of the 

water column corrections depending on the depth of the substrate. The first optical depth was 

calculated for the AVIRIS image and the WV2 image (Figure 8). 

 

 
Figure 8: Spectral first optical depth (Z90=2.3/Kd) as calculated by Kirk (1994), for the AVIRIS 

image (top) and the WV2 images (bottom). 
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3.2.4 Bottom reflectance (albedo)  

The values of bottom reflectance were estimated based on the methods described by Purkis 

(2005). The values for the reflectance for optically deep water (Rw) were estimated from the 

AVIRIS and WV2 images using the 100 x 100 pixel window that represented deep water pixels 

(Figure 9); the values for absorption (λ) and backscattering (λ) were obtained from Table 1, and 

the values for Kd (λ) were modeled from the AVIRIS image for the scene (3.2.2 Kd). The results 

of the water column correction was evaluated for different bottom substrates (i.e. sand, seagrass, 

coral) and compared with above water Rrs before the correction of the water column for the 

AVIRIS image (Figure 9) and WV2 image (Figure 10). 
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Figure 9: Water column correction of AVIRIS for sand (top), seagrass (middle), and 

coral/gorgonians (bottom). The spectral curve for each site was evaluated for above water 

remote sensing reflectance (Rrs) (before water column correction) and bottom reflectance 

(albedo) (after the water column correction). Colored lines represent different  sites. Depth 

ranges for Sand (1.8-2.2 meters), Seagrass (5.6-14.3 meters), and Coral-Gorgonians (2.5-4.7 

meters). 

 

 

Sand Sand/Gorgonians Seagrass 

Before Water Column Correction After Water Column Correction 
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Figure 10: Water column correction of WV2 for sand (top), seagrass (middle), and 

coral/gorgonians (bottom). The spectral curve for each site was evaluated for above water 

remote sensing reflectance (Rrs) (before water column correction)and bottom reflectance 

(albedo) (after the water column correction). Colored lines represent different sites. Images of 

sites representative of each bottom type (sand, seagrass, sand/gorgonians). Depth ranges for 

Sand (1.8-2.2 meters), Seagrass (5.6-14.3 meters), and Coral-Gorgonians (2.5-4.7 meters). 

 

Sand Sand/Gorgonians Seagrass 

After Water Column Correction Before Water Column Correction 



82 

 

The bottom albedo images were obtained from both the AVIRIS and WV2 sensors after the 

water column correction (Figure 11). 

 

 
 

Figure 11: Bottom albedo images for AVIRIS Band 17 (559nm) (top) and WV2 Band 3 (bottom). 

Lighter blue areas depicts areas of high albedo and dark blue areas depicts areas of lower 

albedo. Land area have been masked (white).  
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The LiDAR reflectivity was analyzed with AVIRIS and WV2 bottom albedo images to 

determine the bands that better correlated after a water column correction (Figure 12).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Correlation between bottom albedo bands from AVIRIS (band 16, 549nm) and WV2 

(band 3, 545nm) (top). These bottom albedo bands from AVIRIS (middle) and WV2 (bottom) 

were highly correlated to the LiDAR reflectivity band. This correlation was based on random 

points (n=4694) selected for La Parguera Reserve. 
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Since the values of LiDAR reflectivity can be influenced by depth, it was normalized by depth 

and compared again with the bottom albedo values from AVIRIS and WV2 (Figure 13). 

 

 

Figure 13: Correlation of bottom albedo bands from AVIRIS (top) and WV2 (bottom) with the 

LiDAR reflectivity band after the removal of the influence of depth. This correlation was based 

on random points (n=4694) selected for La Parguera Reserve. 
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4. Discussion 

The images were evaluated after an atmospheric correction to extract values of IOP and AOP 

using different models. Values of absorption, scattering, backscattering and attenuation were 

measured, correlated with image derived values and used in the water column corrections. 

 

4.1 Image derived AOP/IOP 

4.1.1 Absorption (a) 

The absorption and backscattering parameters were derived from both the WV2 image and the 

AVIRIS image (Table 1). The values of absorption present a significant increase when compared 

with values of absorption of pure water (Pope and Fry 1997) indicating that the waters of La 

Parguera are dominated by absorption. This absorption is related to the presence of chlorophyll 

present in the phytoplankton cells, which absorbs in the blue and red region, with very little 

absorption in the green, characteristic of Case 1 waters (Mishra, et al. 2007 and 2005; Kirk 

2011). The waters around La Parguera Reserve show a concentration of chlorophyll-a that can 

range from 0.171 to 1.122 µg/L (Otero and Carbery 2005). Also, as noted by Armstrong et al. 

(2012) these median absorption values increase as distance from shore decreases, and the total 

absorption (a) at 443 nm ranged from 0.26 to 0.32 m-1 (Figure 3 and Figure 4). This gradient can 

also be related to the presence of phytoplankton in La Parguera Reserve, where Otero and 

Carbery (2005) found that a general land-ocean gradient of chlorophyll-a concentration exists 

due to the closer coupling of terrestrial, coastal, and bottom-derived materials in the water 

column in shallower regions, and the presence of anthropogenic input sources very near the 

coast.  
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These image-derived values were also within the range of the in situ values of absorption 

measured from the field campaign using the ac-9 instrument (Figure 4). These values of 

absorption measured in situ were compared with absorption values derived from the AVIRIS and 

WV2 images and a good correlation was found between the values (r2=0.90). The values of 

absorption were selected from the nearest spectral channel of AVIRIS and WV2 to match the ac-

9 instrument. This supports the efficiency of the models by Lee et al. (1999) to obtain total 

absorption values from imagery, even when in situ values and imagery were not collected 

simultaneously. The values of total absorption at 443 nm for AVIRIS and WV2 were 0.3107 m-1 

and 0.3011 m-1 respectively, and these values are within the range of 0.2251 m-1 to 0.3475 m-1 

for all stations and dates sampled. Cardona-Maldonado (2008) found that the average absorption 

at 443 nm for various sites in La Parguera Reserve ranged from 0.04 to 0.10 m-1 which are 

relatively low when compared with our sites. These low values can be related to the majority of 

the stations being farther away from the coastline than our stations. CARICOOS (pers.comm.) 

sampled absorption using an ac-9 instrument in La Parguera Reserve for various dates in 2011 

and the median values at 443 nm were 0.2380 m-1 for Station 6, an intermediate station from our 

stations and Cardona-Maldonado (2008) stations. 

 
4.1.2 Backscattering (bb) 

The backscattering values also present a significant increase when compared with values of 

backscattering of pure water (Morel 1974; Buiteveld et al. 1994; Twardowski et al. 2007) (Table 

1). However, the image-derived values were lower when compared with in situ values of 

backscattering measured from the field campaign using the HydroScat-6 instrument. The 

backscattering at 442 nm for all stations ranged from 0.041 m-1 at Station 1 (Media Luna) to 

0.064 m-1 at Station 6 (Enrique East) (Figures 3 and 4). Rodriguez-Guzman (2009) reported 
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similar total backscattering values from approximately 0.007 to 0.060 m-1 for the Mayaguez Bay 

from offshore waters to inshore waters, respectively. The backscattering values evaluated by 

Kutser et al.  (2003, 2009) from the Great Barrier Reef (0.01 to 0.18 m-1) in Australia and from 

the Baltic Sea (0.005 to 0.2 m-1) are within the range of the in situ values collected for La 

Parguera.  

The backscattering coefficient is generally inversely proportional to wavelength (Mishra et al. 

2007), were higher values are observed in the blue region continuously decreasing with longer 

wavelengths (Morel et al. 2007) In all the stations evaluated, higher values were observed in the 

blue region (425 nm), and remained in a narrow range of values though the 470, 510 589 and 620 

spectral channels, and were higher again in red region (675nm) (Figure 4). Assuming the 

instrument was performing correctly, the higher values can be likely attributed to chlorophyll-a 

fluorescence excited at 676 nm and emitted at 681-nm from the Hydroscat-6 spectral channel 

(Boss et al. 2003).  

The difference in the backscattering values between the stations sampled can be attributed 

mainly to the distance from shoreline and bottom substrate. The lower values of backscattering 

were present in Station 1 (Media Luna) at 3.9 kilometers from the shore, while the higher values 

of backscattering were present at Station 6 (Enrique East) at 2.1 kilometers. This 

offshore/inshore variation in the values of total backscattering has been reported by Rodriguez-

Guzman (2008) in Mayaguez Bay, Puerto Rico and by D’Sa and Miller (2003) in the Mississippi 

River.  

 

Another factor that influences the backscattering value is the presence of inorganic particles and 

CDOM from re-suspension of bottom sediments, nutrient input and wave action (Morel 1974; 
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Boss et al. 2003; Twardowski et. al. 2007). The total backscattering is a summary of the 

backscattering by particles (bbp) and pure water (bbw) (Equation 2-4) (Morel, 1974). The 

Hydroscat-6 provided both (bbp) and (bbw) so each component was evaluated individually to 

quantify the contribution of particles for each station based on distance from shore, depth and 

bottom type (Figure 5). Conversely to what can be found in turbid waters, where high values bbp 

values can be found in inshore waters (Rodríguez-Guzman 2008), the contribution of the 

backscattering particles for our stations was always within a range of 50% ±5% of the total 

backscattering for the distance from shoreline, depth of stations, and similar benthic cover. Also, 

the relative constant contribution of particles to the backscattered signal indicated that the 

molecular contribution (backscattering of seawater) is the dominant term in the total 

backscattering signal, especially at low chlorophyll concentrations (Twardowski et al. 2007)  

  

For the stations analysis in distance from shoreline, for the farthest station (Station 1: Media 

Luna = 3.9 km) and the closest station (Station 6: Enrique East = 2.1 km), the median difference 

was 60% in the total backscattering. This indicates the importance of the distance from shoreline 

to the total backscattering signal, considering that the depth range for these stations was very 

close (1 meter) and the substrate for both stations was mainly sand. For the analysis of depth of 

stations, the median difference was 49% from the deepest station (Station 4: Mario Deep = 18 

m), and the shallower station (Station 6: Enrique East = 1.5 m). For the stations with the benthic 

cover of seagrass (Station 2: Laurel and Station 5: Enrique West), the median difference was 

26%, which indicated that even with the same bottom type, differences in the backscattering 

values were present. An important factor was that the depths for these stations was very similar 

(2.0 meters), but the distance from shoreline was 1 kilometer between stations, indicating that 
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this later factor can contribute to the median difference value. Also, the presence of sand in the 

seagrass habitat could be re-suspended affecting the backscattering signal. The lowest median 

difference values were found for the stations with the benthic cover of sand/coral (Station 1: 

Media Luna and Station 3: Mario Shallow), with 22%. The difference in depths for these stations 

was 1.5 meters, while the difference in distance from shoreline was 1.6 kilometers; again, the 

later can contribute to median difference value. 

 

Some additional factors can also influence the difference of the image and in situ backscattering 

values: no IOP’s were collected at the time of the imagery collection so water column conditions 

can be only inferred from the in situ values collected from the field campaign from other dates, 

the waters of La Parguera can be considered Case-1 waters, dominated by absorption of 

phytoplankton, so most of the photons are absorbed and there is less backscatter signal (Kirk, 

2011), and the modeled backscattering values from WV2 and AVIRIS were derived from deep 

water pixels where no influence from the bottom is present in the backscattered signal while the 

in situ values were influenced by the bottom type via re-suspension since values were obtained 

close to the bottom (Armstrong et al. 2012). 

 

4.1.3 Attenuation (c) 

The values of beam attenuation coefficient were measured in situ using the ac-9 instrument and 

ranged at 443 nm from 0.56 to 0.35 m-1 (Figure 3). These values presented a more defined trend 

of increasing values as distance from shore decreases (Armstrong et al. 2012). Cardona-

Maldonado (2008) reported the highest average attenuation values of ~0.60 m-1 at Enrique Reef, 

and the lowest value of ~0.25 m-1 at El Palo for sites in La Parguera Reserve. Also values of 
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beam attenuation include the contribution of the absorption and backscattering (a + b = c), so it 

can related to the attenuation coefficient at a discrete wavelengths (Kirk 2011).  

 

4.1.4 Scattering (b) 

Scattering is caused in natural waters by molecular scattering of water itself (inversely with the 

fourth power of wavelength) and particles, including phytoplankton and suspended sediments 

(Kirk 2011). Phytoplankton can also make a significant contribution to the scattering of light but 

due to their low refractive index relative to water, phytoplankton cells are weak backward 

scatters compared to inorganic particles (Kirk 2011). The values of scattering were not measured 

directly but were derived using the established relationship b = c-a, where b is the scattering 

coefficient, c is the beam attenuation coefficient, and a is the attenuation coefficient (Kirk 2011) 

(Figure 3). These scattering values followed the same trend as the absorption values where they 

increased as distance from shore decreased. 

 

4.1.5 Statistical significance 

 

Several statistical tests were conducted to evaluate the variation of IOP’s in La Parguera and 

their environmental drivers. An ordination analysis, such as non-metric multidimensional scaling 

(nMDS) procedure was run to examine the difference and similarities in the optical properties 

(absorption, attenuation, backscattering) between the sites (Figure 14). The farther away the 

points were, the more different they are, where in this case all sites were the same from each 

other except Station 5 (Enrique East) and Station 6 (Enrique West). These two sites were very 

similar to each other and very different from the other sites. 
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Figure 14: An Ordination analysis-non metric multidimensional scaling (nMDS) for the sites of 

the bio-optical field campaign to evaluate the difference and similarities in the optical 

properties. 

 

To test these differences between sites we ran a one-way repeated measure ANOVAs. All values 

for absorption, attenuation and backscattering were log-transformed (log based 10) to agree with 

the assumptions of normality. The fixed variable for these analyses was site and the repeated 

random variables were years and months.  

Absorption varied significantly between sites in La Parguera Reserve (Table 3). A post hoc test 

was done to establish the significant variability between sites (Appendix A). As confirmed with 

nMDS test, the sites significantly differed from each other in absorption values. The sites 

Enrique West and Enrique East were very different from the other sites (Appendix A). This 

difference could be attributed to factors like distance from shoreline, depth of stations or 

precipitation. 

 

Resemblance: D1 Euclidean distance

Distance (m)
3.9

3.3

2.3

2.1

Media Luna

Laurel

Mario shallow

Mario deep

Enrique west

Enrique east

2D Stress: 0
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Factor numDF denDF F-value p-value 

Intercept 1 105 567.69 <0.0001 

Site 5 105 20.62 <0.0001 

Table 3: One way ANOVA for absorption for sites in La Parguera Reserve. 

  

The attenuation significantly varied between sites (Table 4). The post-hoc test confirmed that 

attenuation at Enrique East and Enrique West was unique and varied from the other the sites. 

Also, attenuation at Media Luna was different from Laurel and Mario deep (Appendix A).  

Factor numDF denDF F-value p-value 

(Intercept) 1 101 406.0301 <.0001 

Site 5 101 18.5579 <.0001 

Table 4: One way ANOVA for attenuation for sites in La Parguera Reserve. 

 

The backscattering variations were significantly between sites (Table 5). As confirmed with the 

post-hoc test, the backscattering at Enrique East and Enrique West sites were unique and varied 

significantly from the other the sites (Appendix A). All the other sites had similar backscattering. 

Factor numDF denDF F-value p-value 

(Intercept) 1 98 39.31877 <.0001 

Site 5 98 13.61564 <.0001 

Table 5: One way ANOVA for attenuation for sites in La Parguera Reserve. 

 

A multiple regression test analysis was completed to evaluate the relationships between 

depth/distance of sites and the optical properties. The values of absorption were positively 

associated with distance to shoreline (p=0.07, r2=0.7148) and this factor explained close to 72% 

of the variation in absorption values sampled in La Parguera Reserve (Table 6). There was no 

association found between absorption and depth of the sites.  
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For the values of attenuation a positively weak relationship was found between attenuation 

values and distance from shoreline (p=0.16, r2=0.51). There was no association found between 

attenuation and depth of the sites (Table 6).  

For the values of backscattering a positively weak relationship was found between backscattering 

values and distance from shoreline (p=0.19, r2=0.45). There was no association found between 

backscattering and depth of the sites (Table 6). 

Absorption 

 Estimate Std. Error t-value p-value 
 

(Intercept) -0.39368 0.039819 -9.887 0.0022 * 

Depth -0.00309 0.001599 -1.933 0.1487 
 

Distance -0.04915 0.013542 -3.63 0.036 * 

Attenuation 

 
Estimate Std. Error t-value p-value 

(Intercept) -0.16202 0.094279 -1.718 0.1842 

Depth -0.00193 0.003785 -0.51 0.6453 

Distance -0.08621 0.032063 -2.689 0.0745 

Backscattering 

 
Estimate Std. Error t-value p-value 

(Intercept) -1.07002 0.112183 -9.538 0.00244 * 

Depth -0.00842 0.004504 -1.869 0.15844 

Distance -0.0753 0.038151 -1.974 0.14293 

Table 6: Multiple regressions for absorption, attenuation and backscattering for sites in La 

Parguera Reserve to evaluate the relationships between depth/distance of sites and the optical 

properties. Asterisks show significance of relationship. 

 

A multiple regression tests analysis was completed to evaluate the relationships between rainfall 

amounts and the optical properties (Appendix B). Since the sites were different, they were 

grouped into Laurel, Mario Shallow, Mario Deep and Media Luna (Group 1), and another group 

with Enrique West and Enrique East sites (Group 2). For the Group 1, absorption was positively 

influence by rainfall but this only explained close to 20% variability (r2=0.20). For the Group 2, 

absorption was also positively influenced by rainfall, but only explained 41% of the variability 

(r2=0.41). For both Group1 and Group 2, the rainfall did not influence the attenuation of the sites 
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during the study. For Group 1, backscattering was positively influence by rainfall but only 

explained the 26% of the variance at these sites (r2=0.26). For the Group 2, backscattering was 

also positively influenced by rainfall, but only explained 31% of the variability (r2=0.31). The 

rainfall better explained the variance in backscattering and absorption, mainly at the closest site 

from shore at Enrique West and Enrique East (Group 2). 

Overall, the absorption was positively associated with distance to shoreline (p=0.07, r2=0.71) and 

rainfall also explained the variation in absorption values sampled in La Parguera Reserve, 

especially in stations closest to shore. This relationships could be associated to the runoff and 

input of terrestrial, coastal, and bottom-derived materials enhancing phytoplankton biomass 

production (Otero and Carbery 2005). 

 

4.2 Attenuation coefficient of downwelling irradiance (Kd) 

The values for the attenuation coefficient were compared between modeled Kd (Lee et al. 2005) 

from the AVIRIS image and the in situ values of Kd measured at the time of the image collection 

from various sites in La Parguera Reserve. The correlation between these values was explained 

by a second order polynomial (r2= 0.96) and provides further validation that Kd values can be 

derived efficiently from imagery. Additional values of Kd were derived from the WV2 image and 

these presented higher values when compared with the in situ values and AVIRIS (Figure 6). The 

disagreement of WV2 Kd values was expected, because Kd, being an apparent optical property 

(AOP) (Kirk 2011), can be affected by changes in the light field. Also, no in situ Kd values were 

collected during the WV2 image collection for comparison. Additionally, the derivation of Kd 

using Lee’s Model requires the values of absorption and backscattering. These values were 

derived using Lee’s semi-analytical model (Equation 3-3 and 3-6) and required specific spectral 
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channels that were not available for WV2 multispectral sensor, they were matched to the nearest 

spectral channel.  

 

A strong relationship (r2= 0.96) was found between the AVIRIS-derived Kd and the deepest 

station (Mario 2, 18m deepest station). These results were important, since the absorption and 

backscattering required for the image-derived Kd was based on deep pixels (Figure 7). 

  

Cardona-Maldonado (2008) calculated Kd values for various sites in the south-southwest Puerto 

Rico including La Parguera Reserve. The averaged Kd values for the study sites after averaging 

all the visits between December 2000 and February 2006 ranged from an average maximum of 

0.319 m-1 for Boya Verde at Guayanilla to an average minimum of 0.142 m-1 for Turrumote III. 

The maximum Kd value for La Parguera was El Corral station with 0.22 m-1 and the minimum 

Kd value was Turrumote III with 0.142 m-1. Additional experiments were conducted in La 

Parguera but only evaluated Kd (PAR) (Bejarano Rodríguez 2006; Torres et al. 2007) or 

measured turbidity (Otero and Carbery 2005) on various sites. The values from Kd derived from 

imagery and collected in situ were within the range of expected values without extreme weather 

events. 

 

The Z90 factor was analyzed to establish the limits of detection for the imagery. The Kd values 

were derived from the imagery, so Z90 provided the effective penetration depth of the signal 

spectrally for each band in the AVIRIS image (Figure 8). This also provided the limits of the 

water column corrections depending on the depth of the substrate. The maximum depth at which 

a substrate can be detected increases as Kd decreases (Kirk 2011). Only in the narrow spectral 
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range of 500 nm to 578 nm does the maximum depth exceed 20 meters. This limitation is 

relevant in the identification of substrates considering that 38% of the benthic habi tats of La 

Parguera Reserve are deeper than 20 meters depth. In the blue bands the depth limit ranges from 

8-15 meters, while the red band depth limits ranges from 4-8 meters. For the WV2 the maximum 

depth decreased from 11.98 meters in the blue region, to 3.35 meters in the red region.  

According to Gordon and McClunney (1975), these limitations in the optical depth impose limits 

in the detection of a target that is below the Z90 limit, thus impairing the efficiency of the water 

column corrections. 

 

4.3 Water Column Correction 

 

The above water Rrs spectra in shallow waters contains information of the interactions of 

photons with the water column constituents and the bottom (Maritorena 1994; Mishra et al. 

2007). The imagery products were evaluated to obtain images that contain only information from 

the bottom substrate, after a water column correction for both AVIRIS and WV2. 

 

4.3.1 AVIRIS 

 The above water Rrs spectral signal for submerged sand had the maximum Rrs values, while the 

coral-gorgonians substrate had lower Rrs values, and seagrass had the lowest Rrs values (Figure 

11). However, the spectral shape of above water Rrs was very similar for all evaluated substrates 

with no specific absorption features of different benthic bottom types identified because of the 

water column attenuation on the bottom reflectance spectra.  

The bottom reflectance was also evaluated for different bottom substrates (Figure 9). For 

submerged sand the spectra presented a narrow range of values with a gradual increase in 

reflectance with increasing wavelength, which is a typical sand reflectance characteristic. The 
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reflectance values for sand were also the highest observed and when compared with similar sand 

spectra measured in situ by other researchers, it is within the range of magnitude and spectral 

shape (Hochberg et al. 2003). The seagrass spectra exhibited a very low reflectance values at 

blue region characteristics of both chlorophyll and carotenoid absorption in blue band, a 

reflectance peak at around 550 nm, and chlorophyll absorption features at 675 nm (Kirk 2011). 

Also the maximum reflectance peak was at approximately 32% (550 nm) and again this 

corresponded with similar spectra presented by Hochberg et al. (2003) in both shape and 

magnitude of seagrass spectra. The broad range of bottom reflectance at the reflectance peak (5-

35%) could be related to different percent of coverage and composition of seagrass habitats and 

was not evaluated in this study. Also, seagrass appear as dark features with low reflectance 

values, which can affect the retrieve signal due to low signal/noise ratio after an atmospheric and 

water column correction (Mishra et al. 2005 and 2007).  For the coral/gorgonian substrate, the 

bottom albedos ranged from 18% to 45% with very low reflectance between 400 to 500 nm, a 

peak of reflectance around 550 nm, and a narrow chlorophyll absorption feature at 675 nm. This 

presented a higher range of reflectance values when compared with values for soft 

corals/gorgonians presented by Hochberg et al. (2003) (approximately 5% to 28% at 550 nm) 

that can be attributed to the presence of sand and other high reflectance substrates present in the 

bottom signal from the image-derived albedo (Lee et al. 2001; Purkis 2005; Mishra et al. 2007).  

The similarity of the spectral shape of albedo for corals/gorgonians with seagrass, indicated the 

presence of pigments determined by spectral absorption properties of each substrate. Additional 

similarities in the spectral shape can be attributed to the limitations of the water column 

correction to differentiate between dark objects with low albedo due to low signal/noise ratio.  
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However, these bottom albedos are important in developing a benthic habitat map without the 

influence of the water column in the spectral signal. 

 

4.3.2 WV2 

Bottom albedo images were also generated from the WV2 image (Figure 10). The limitations of 

WV2 being a multispectral sensor did not provided the required spectral resolution to compare 

with benthic spectra based from field measurements (i.e. Ocean Optics S2000 portable 

spectrometer, Hochberg et al. 2003). However, bottom albedo values were used to compare if the 

reflectance were within the range of values for that substrate and some general reflectance 

features could be evaluated. The evaluated sites were the same ones used in the AVIRIS 

reflectance image. 

 

The above water Rrs spectral signal for submerged sand had the maximum Rrs values, while the 

coral-gorgonians substrate had lower Rrs values, and seagrass had the lowest Rrs values. The 

spectral shape of above water Rrs was very similar for the sand and the coral-gorgonian 

substrates, while the seagrass sites presented a close spectral range. However, no specific 

absorption features of different benthic bottom types identified because of the water column 

attenuation on the bottom reflectance spectra.  

The bottom reflectance was also evaluated for different bottom substrates. For submerged sand, 

the spectra presented a higher range of values with a gradual increase in reflectance with a 

gradual decrease with increasing wavelength, which is not representative of sand reflectance. 

The spectral shapes were very different when compared with AVIRIS bottom albedo. The 

seagrass spectra exhibited low reflectance values at blue region characteristics of both 
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chlorophyll and carotenoid absorption in blue band, a reflectance peak at around 545 nm, but 

chlorophyll absorption features at 675 nm was not identified because the WV2 red band is 

centered at 660 nm (Kirk 2011). The maximum reflectance peak was at approximately 4.5% (550 

nm), which was very low when compared with AVIRIS image bottom albedo. All the seagrass 

bottom albedo was very low (<4.5%) which were related to the model limitation application in 

WV2 in extracting values from dark objects. Also, seagrass appear as dark features with low 

reflectance values, which can affect the retrieve signal due to low signal/noise ratio after an 

atmospheric and water column correction (Mishra et al. 2005 and 2007).   

 

For the coral/gorgonian substrate, the bottom albedos ranged from 1% to 43% with low 

reflectance between 400 to 500 nm, and a peak of reflectance around 550 nm. This presented a 

similar range of reflectance values when compared with AVIRIS reflectance values for soft 

corals/gorgonians, which again, can be attributed to the presence of sand and other high 

reflectance substrates present in the bottom signal from the image-derived albedo (Lee et al. 

2001; Purkis 2005; Mishra et al. 2007).  The similarity of the spectral shape of albedo for 

corals/gorgonians with seagrass, indicated by the presence of a reflectance peak at approximately 

550 nm, which is dominated by the presence of pigments determined by spectral absorption 

properties of each substrate. Additional similarities in the spectral shape can be attributed to the  

limitations of the water column correction to differentiate among dark objects with low albedo 

due to low signal/noise ratio.   

 

Additional limitations of the water column correction can be attributed to the first optical depth 

(Z90) imposed by the attenuation coefficient. The limitations of the retrieval of bottom albedo 
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were more apparent in the WV2 image than in the AVIRIS image (Figure 11) since deeper 

features were still visible in this image after the removal of the water column. All the substrates 

evaluated were within the maximum extent of the Z90 for the AVIRIS image, so the spectral 

identification of these substrates were available after the water column correction (Figure 11). 

For the WV2 image, the Z90 limits were shallower, but all the substrates were within this depth 

range. However, bright features that were present in the AVIRIS image in deeper areas were not 

identified in the WV2 image. Even with the limitations presented, a bottom albedo map for La 

Parguera Reserve was developed after a water column correction that can increase the accuracy 

of the mapping of benthic habitats. 

 

4.3.3 LiDAR Reflectivity 

The LiDAR reflectivity image was analyzed with bottom albedo bands from AVIRIS (32 bands) 

and WV2 (5 bands). The bands with the highest correlation from AVIRIS was band 16 at 549 nm 

(r2 =0.79), and for the WV2 band 3 at 545 nm (r2 =0.79) (Figure 12). An inverse relationship was 

found between the bottom reflectance and the LiDAR reflectivity. These bands also correspond 

to the highest penetration bands for the Z90 (first optical depth). Although the values between 

these bands differ, the bands were highly correlated in terms of bottom reflectance for AVIRIS 

and WV2 (Figure 12). 

 

According to Costa et al. (2009) the LiDAR intensity surface was highly correlated with the 

LiDAR bathymetric surface at a broad spatial scale (r=0.84; p≤0.001) that can be attributed to 

the fact that the Tenix LADS intensity algorithm has not sufficiently decorrelated the geometric 

and radiometric influence of LiDAR targets. To further evaluate the correlation between LiDAR 



101 

 

reflectivity and bottom albedo, the influence of depth was removed. The correlation of the 

LiDAR reflectance with bottom albedo improved significantly for both AVIRIS (r2 =0.95) and 

WV2 (r2 =0.95) after the removal of the depth influence (Figure 13). An exponential positive 

relationship between LiDAR reflectivity values and bottom reflectance was found between both 

passive and active reflectivity values. 

Other projects have focused on comparing LiDAR reflectivity to other active sensors (i.e. 

multibeam) but no results were found that correlated LiDAR reflectivity to bottom albedo 

derived from a passive sensor. 

The LiDAR reflectivity is a relative value rather than an absolute value for each point, the entire 

dataset is scaled to ensure the full dynamic range is used over it (Collins et al. 2007). Treating 

the values as relative allowed the removal of the depth influence and further correlation with 

passive bottom albedo, but the values and relationships established are unique for the study area. 

Nevertheless, this approach provides a multisensor highly correlated reflectivity product that can 

further enhance a classification of the benthic habitats. 
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5. Conclusions 

 
The combinations of semi-analytical models and bio-optical data collection provided an effective 

methodology to analyze the bottom albedo and water optical parameters. These semi-analytical 

models are based on simple approximations of the remote sensing reflectance, where they use the 

relationship between the oceanic constituents and the IOP’s upon which to base the inversion 

(Gordon 1989; Morel 1988). This study represented the first integration of these algorithms to 

high resolution hyperspectral and multispectral imagery, correlated to a comprehensive time 

series of bio-optical properties for La Parguera Reserve. The values of absorption and 

backscattering were retrieved successfully using semi analytical models and this information was 

also used to derive attenuation coefficient of downwelling irradiance. A baseline data for the 

inherent optical properties was established for La Parguera Reserve and the distance to shore was 

the most significant variable in the variation of these parameters. A strong inverse relationship 

was found between distances from shore to increasing values of absorption. The values of 

absorption were positively associated with distance to shoreline (p=0.07, r2=0.71) and this factor 

explained about 71% of the variation in absorption values sampled in La Parguera Reserve. The 

values of image-derived absorption exhibited a strong correlation when compared with in situ 

values. The modeled values of Kd were also highly correlated to in situ values. These efforts of a 

time series in situ collection of AOP/IOP and validation are align with NASA's Pre-Aerosol, 

Clouds, and Ecosystem (PACE) satellite mission that were intended to create a high quality, 

diverse and extensive database of existing multi- and hyperspectral inherent and apparent optical 

properties (IOP/AOP) for the validation of remote sensing products and the development of 

algorithms (PACE, http://decadal.gsfc.nasa.gov/PACE.html). 

 

http://decadal.gsfc.nasa.gov/PACE.html
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The water column correction techniques were successfully applied to the AVIRIS and WV2 

imagery. A baseline image of bottom albedo from passive sensors was developed for La 

Parguera Reserve. For the AVIRIS image, bottom albedo values for sand, seagrass, and coral -

gorgonians were in good agreement with in situ values for these substrates in both spectral shape 

and magnitude. Additionally, spectral absorption and reflectance features were identified, and 

these features where absent in the above water remote sensing reflectance spectra, and only 

present after the water column correction. The limitations of the water column correction 

attributed to the first optical depth (Z90) were more apparent in the WV2 image than in the 

AVIRIS image, since deeper features were still visible in this image after the removal of the 

water column. According to Wang et al. (2005) semi-analytical algorithms are based on the 

assumptions that the absorption and backscattering coefficients with their spectral shapes are 

known, and the relationship of these factors to the Rrs is known. All of these three assumptions 

were completed, which allow the applicability of semi-analytical models to regional and local 

waters. 

 

The LiDAR reflectivity was highly correlated to bottom albedo images from AVIRIS (r2 = 0.79) 

and WV2 (r2 = 0.79), and this correlation was further improved by removing the depth influence 

from the LiDAR reflectivity (AVIRIS, r2 = 0.95; WV2, (r2 = 0.94). This relationship between 

LiDAR reflectivity values and bottom reflectance could be used to enhance the development of 

benthic habitat maps by coupling the benefits of the active sensor to the passive sensors. 

 

 
Even when the water column correction was successful in retrieving bottom albedo for selected 

benthic habitats, some spectral shapes and features were not distinguishable due to the spectral 
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resolution of AVIRIS (10 nm) when compared with underwater in situ measurements using a 

portable spectrometer (1.3 nm) (Hochberg et al. 2003).  

Some limitations were related to the resampling of the images. The image resampling was 

necessary due to the different spatial resolutions of passive imagery and LiDAR, and the 

importance of bathymetry in the semi-analytical models that were used. These processes can 

alter the information contained in the pixels, and consequently the final derived products 

However, these effects were not evaluated in this study (Purkis and Klemas 2011).   

Another source for discrepancies in the final remote sensing signal was the errors introduced by 

the atmospheric corrections. Since the product of obtaining bottom albedo from an 

airborne/satellite-derived reflectance is a subtractive process (modeled atmosphere and water 

column), final data may have excess or missing data, which can affect the final results. 

The water column for this study was considered a well-mixed layer to the maximum penetration 

depth of imagery and the IOP and AOP were assumed constant though the water column. The 

known variations in the optical parameters variations though the water column were not 

considered in this study. Additionally, the measurements derived from imagery represent a water 

column weighted average (Gordon and Clark 1980; Zaneveld et al. 2005), while in situ 

measurements usually come from discrete depths and this mismatch in spatial scales introduces 

an uncertainty that is often hard to quantify.  

 

Even considering all these limitations, the application of an appropriate algorithm for correcting 

the water column effects and accurately deriving important results increases the accuracy of 

mapping benthic habitats, including reef ecosystems. 
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Appendix A. Tukey HSD post hoc test for Absorption, Attenuation and Backscattering 

 Tukey HSD post hoc test were the bold values indicate the stations that are significant 

different from each other. 

 

Tukey HSD post hoc test for Absorption 

Site1 Site2 Estimate Std. Error z value p-value 

 Enrique west Enrique east 0.01 0.01 0.76 1 

 Laurel Enrique east -0.08 0.01 -5.79 1.05E-07 * 

Mario deep Enrique east -0.08 0.01 -6.13 1.36E-08 * 

Mario shallow Enrique east -0.07 0.01 -5.26 2.13E-06 * 

Media Luna Enrique east -0.08 0.01 -6.01 2.81E-08 * 

Laurel Enrique west -0.09 0.01 -6.55 8.88E-10 * 

Mario deep Enrique west -0.09 0.01 -6.88 8.92E-11 * 

Mario shallow Enrique west -0.08 0.01 -6.02 2.64E-08 * 

Media Luna Enrique west -0.09 0.01 -6.76 2.02E-10 * 

Mario deep Laurel 0.00 0.01 -0.34 1 

 Mario shallow Laurel 0.01 0.01 0.53 1 

 Media Luna Laurel 0.00 0.01 -0.22 1 

 Mario shallow Mario deep 0.01 0.01 0.86 1 

 Media Luna Mario deep 0.00 0.01 0.12 1 

 Media Luna Mario shallow -0.01 0.01 -0.75 1 

  

Tukey HSD post hoc test for Attenuation 

Site1 Site2 Estimate Std. Error z value p-value 

 Enrique west Enrique east 0.00 0.02 0.13 1 

 Laurel Enrique east -0.09 0.02 -4.00 0.000938 * 

Mario deep Enrique east -0.08 0.02 -3.50 0.006922 * 

Mario shallow Enrique east -0.12 0.02 -5.18 3.42E-06 * 

Media Luna Enrique east -0.18 0.02 -7.81 8.66E-14 * 

Laurel Enrique west -0.10 0.02 -4.08 0.000691 * 

Mario deep Enrique west -0.09 0.02 -3.58 0.005188 * 

Mario shallow Enrique west -0.13 0.02 -5.23 2.54E-06 * 

Media Luna Enrique west -0.18 0.02 -7.83 7.33E-14 * 

Mario deep Laurel 0.01 0.02 0.39 1 

 Mario shallow Laurel -0.03 0.02 -1.23 1 

 Media Luna Laurel -0.09 0.02 -3.80 0.002132 * 

Mario shallow Mario deep -0.04 0.02 -1.58 1 

 Media Luna Mario deep -0.10 0.02 -4.09 0.000658 * 

Media Luna Mario shallow -0.06 0.02 -2.53 0.17325 
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Tukey HSD post hoc test for Backscattering 

Site1 Site2 Estimate Std. Error z value p-value 

 Enrique west Enrique east -0.06 0.03 -1.66 1 

 Laurel Enrique east -0.18 0.03 -5.28 1.96E-06 * 

Mario deep Enrique east -0.18 0.03 -5.36 1.24E-06 * 

Mario shallow Enrique east -0.19 0.03 -5.46 7.28E-07 * 

Media Luna Enrique east -0.23 0.03 -6.60 6.15E-10 * 

Laurel Enrique west -0.13 0.03 -3.64 0.00405 * 

Mario deep Enrique west -0.13 0.03 -3.70 0.00322 * 

Mario shallow Enrique west -0.13 0.03 -3.82 0.00199 * 

Media Luna Enrique west -0.17 0.03 -4.94 1.17E-05 * 

Mario deep Laurel 0.00 0.03 0.00 1 

 Mario shallow Laurel -0.01 0.04 -0.18 1 

 Media Luna Laurel -0.04 0.03 -1.23 1 

 Mario shallow Mario deep -0.01 0.03 -0.17 1 

 Media Luna Mario deep -0.04 0.03 -1.24 1 

 Media Luna Mario shallow -0.04 0.03 -1.05 1 
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Appendix B. Multiple regressions for attenuation, attenuation and backscattering for sites 

in La Parguera Reserve to evaluate the relationships between rainfall of sites and the 

optical properties. Group 1 includes stations of Laurel, Mario Shallow, Mario Deep and Media 

Luna, and Group 2 includes Enrique West and Enrique East sites. Asterisk show significance of 

relationship. 

Absorption 

Group 1 
 

Estimate Std. Error t-value p-value 
 

(Intercept) -0.59595 0.01933 -30.831 2.31E-16 
 

Rain 0.000516 0.000219 2.357 0.0307 * 

Group 2 
 

Estimate Std. Error t-value p-value 
 

(Intercept) -0.52692 0.016574 -31.793 < 2.00E-16 
 

Rain 0.000683 0.000188 3.642 0.00201 * 

Attenuation 

Group 1 
 

Estimate Std. Error t-value p-value 

(Intercept) -0.42325 0.034186 -12.381 6.23E-10 

Rain -0.00019 0.000387 -0.479 0.638 

Group 2 
 

Estimate Std. Error t-value p-value 

(Intercept) -0.33633 0.032624 -10.309 9.89E-09 

Rain 0.000135 0.000369 0.367 0.718 

Backscattering 

Group 1 
 

Estimate Std. Error t-value p-value 
 

(Intercept) -1.06261 0.134498 -7.901 6.52E-07 
 

Rain -0.0042 0.001582 -2.652 0.0174 * 

Group 2 
 

Estimate Std. Error t-value p-value 
 

(Intercept) -0.91725 0.114207 -8.031 5.27E-07 
 

Rain -0.00393 0.001343 -2.923 0.00996 * 
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Chapter 4: Benthic Habitat Map of La Parguera Reserve using Passive and Active Remote 

Sensing Data 

Abstract 

Knowledge of benthic habitats and their spatial distribution is vital for understanding complex 

coral reefs systems. The complexity and heterogeneity of shallow coastal waters over small 

spatial scales provides a challenging environment for mapping and monitoring benthic habitats 

using remote sensing imagery. High-resolution benthic habitat maps were developed from 

AVIRIS and WV2 modeled bottom albedo products from pre-processed imagery (atmospheric 

and water column corrected) for La Parguera Reserve. An ISODATA classification was 

performed with an initial high clustering that was gradually reduced to 10 clusters. The 

segmented images were converted to polygons and exported to ESRI ArcMap 10.3 where Spatial 

Join was performed with ground validation points to classify the polygons. The classes were: 

coral reefs, seagrass, hardbottom, mixed sand/hardbottom/coral, mud, sand, and sand with 

benthic algae. An accuracy assessment was performed were the overall accuracy (AVIRIS = 

63.55%, WV2 = 64.81%), kappa coefficient (AVIRIS = 55 %, WV2 = 57%), and the tau 

coefficient (AVIRIS = 59%, WV2 = 60%) were evaluated. No major class differences were 

found between the AVIRIS and WV2 classification totals, except for coral reefs and sand 

classes’ totals. The reduction in coral reefs class totals could be attributed to temporal differences 

of the images depicting changes in the coral reefs distribution within the reserve. The overall 

accuracies were lower when compared with other studies using similar object based methods. 

However, these areas were relatively small, with shallow clear waters, and not as optically 

complex as our study area. A major contribution of this study was the creation of the first benthic 

habitat map for La Parguera Reserve that: 1) provided multi/hyperspectral information at this 
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spatial scale (4 square meters), 2) covered the extent of the reserve, and 3) provided a baseline 

for future development of benthic habitat studies using an objective classification scheme.  

 

1. Introduction 

Coastal zones face significant threats from many factors, including sea level rise, increased 

hurricane intensity, coastal erosion, urbanization, loss of coastal wetlands and biodiversity, and 

marine pollution (UNEP 2006). Airborne and satellite remote sensing techniques have been 

employed by many researchers to map general benthic habitat types (e.g., sand, seagrass, coral 

reefs, hard substrate) in coral reef environments. Knowledge of benthic habitats and their spatial 

distribution is vital for understanding complex coral reefs systems. Benthic habitat maps are 

important for assessing patterns, identifying area of habitat diversity and determining habitat 

coverage. Also, coral reef habitat maps based on remotely sensed data are a fundamental tool for 

management because they summarize ecologically meaningful information across extensive 

geographic scales in a cost-effective manner (Mumby and Harborne 1999).   

 

The complexity and heterogeneity of shallow coastal waters over small spatial scales provides a 

challenging environment for mapping and monitoring benthic habitats using remote sensing 

imagery (Lesser and Mobley 2007). Coral reef habitat maps, derived from remotely sensed data, 

play a role in decision-making, and is imperative for these maps to be produced both as 

accurately and cost effectively as possible (Bejarano et al. 2010). 

 

Reef studies using satellite imagery have typically discerned several types of benthic cover in the 

shallow water marine environment in clear water conditions: corals and hard bottom, 
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unconsolidated sediments such as sand and mud, and submerged aquatic vegetation (SAV) 

(Green et al. 2000; Roelfsema et al. 2002; Hochberg et al. 2003). These habitats comprise the 

complex coral reef ecosystem. Habitat mapping efforts reported in the scientific literature have 

employed very similar methodological strategies overall; where the maps are produced by 

interpreting continuous coverage, environmental data layers, often derived from remote sensing 

data, and using biological information about habitats obtained from in situ sampling and 

observation of the seabed (ground-thruthing) (Brown et al. 2011). These approaches assumes that 

the final map is a prediction of the distribution of seabed habitats, with the complete coverage 

environmental data acting as a proxy for the habitat data (MESH 2008).  

 

The use of classifications from digital imagery are generally divided into photo interpretation 

and approaches or object-oriented classification approaches, the latter consisting of supervised or 

unsupervised classifications (Green et al. 2000). Lillesand et al. (2004) stated that a supervised 

approach uses samples of known information classes (training sets) as a guide to automatically 

classify pixels of unknown identity. Jensen (1996) emphasized that the accuracy of a supervised 

classification depends largely on the quality of the training data. Sugumaran et al. (2003) 

discouraged using a supervised classification approach because this high spectral heterogeneity 

would increase the number of errors and the high heterogeneity would require a large number of 

training sets for a complete classification. The unsupervised classification approach is founded 

on the natural inherent grouping of spectral values within an image (Lillesand et al. 2004), where 

the image is segmented in spectral clusters, and then labeling of the clusters based on ground 

truth data or other sources. Lang (2007) stated that the classification accuracy dramatically 
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improved with higher numbers of initial cluster classes for an unsupervised classification 

approach on high-resolution imagery.  

Several approaches and sensors have been used for developing benthic habitat maps or bottom 

composition. Kautsky et al. (2010) summarized some prevailing technologies in the developing 

of this habitat maps using: medium to very high spectral resolution satellite and airborne passive 

sensor, multispectral and hyperspectral sensors, active sensors, and fusion and of active and 

passive sensors. Brown et al. (2011) also presents that although the specific methods used to 

derive habitat maps vary considerably, these can be generally categorized into: abiotic surrogate 

mapping, assemble first, predict later (unsupervised classification), and predict first, assemble 

later (supervised classification).  

 

Nevertheless, benthic habitat maps provide baseline data to effectively measure the results of 

restoration efforts and management and evaluate potential future changes, especially in MPA and 

other natural reserves (Bauer et al. 2012).  

 

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery for eastern 

Puerto Rico, collected January of 1985 and March of 2000, was used to perform a multi-

temporal classification technique to identify and quantify the dynamics of submerged aquatic 

vegetation (seagrass and macroalgae) in a study area located in Vieques Sound, off the east coast 

of Puerto Rico (Shapiro and Rohman 2006).  

The use of high-resolution imagery (AVIRIS and WV2) provides more visual information for 

interpretation and assessment than previously possible with lower resolution imagery such as 

Landsat (Sawaya et al. 2003). Mumby et al. (1998) reported an overall accuracy for CASI sensor 
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(81%) and Landsat TM (31%) for the thematic maps of reef habitats (nine classes) in South 

Caicos, Turks and Caicos. An overall accuracy of coarse-level habitat maps was achieved by 

Mumby and Edwards (2002) in the Turks and Caicos for IKONOS (75%), Landsat TM (73%), 

and SPOT XS (67%). Mishra et al. (2007) reported an overall accuracy of 83.6% for a 

hyperspectral AISA image and 80.6% for an IKONOS image in Roatan Islands, Honduras. The 

map classification produced an overall accuracy of 69% for seven classes for an IKONOS image 

for an area of approximately 10.5 Km2 in the Arabian Gulf (Purkis 2005). Additionally, Bejarano 

et al. (2010) summarized overall accuracies obtained by other studies on coral reef areas using 

object base classification techniques. 

 

These benthic habitat classification maps have been developed for areas within La Parguera 

Reserve, which included small cays and islands, but only some studies have covered the entire 

reserve. The most notable being the benthic habitat map for Puerto Rico and the US Virgin 

Islands developed by NOAA/NOS/Bio-geography Team, (Kendall et al. 2001). Unfortunately, 

these maps lacked information of important areas of the shelf that cover our study area and the 

development of these maps can be time consuming (aerial photo interpretation) and the accuracy 

of the map scale used (1 acre minimum map unit) limits the information that can be evaluated for 

habitat distribution.  

An update to this benthic habitat was performed for some areas in southwestern of Puerto Rico. 

This mapping effort refined the existing NOAA benthic habitat maps for the study area where 

the two major improvements were: reduce the minimum mapping unit from one acre to 1000 

square meters (~1/4 acre), and increased coverage into areas formerly classified as unknown 
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(Bauer et al. 2012). A new classification scheme was used where digital satellite imagery was 

visually interpreted and habitats were then delineated in a hierarchical classification scheme. 

 

(Arce Arce 2005) developed a benthic habitat map for La Parguera insular shelf based on a 

comparison of two sensors with different spatial and spectral resolution, IKONOS (1 m, 4 bands) 

and Hyperion (30 m, 220 bands). The classification on the bottom types was limited to seagrass, 

sand and corals and presented some limitations in the overall accuracy of identifying areas of 

corals. Also this project was focused in the inner shelf area of La Parguera Reserve and does not 

include deeper areas were benthic habitat discrimination is using passive sensors is more 

complex. 

 

Further improvements on the map scale and spatial resolution were achieved by (Prada, et al. 

2008) when a map scale of 400 square meters and 4 square meters were achieved for areas on La 

Parguera shelf. These employed the use of an active sensor (Side Scan Sonar) to determine the 

benthic habitat based on visual interpretation and ground truth data. However, this approach did 

not provide important information of the optical properties of the water column or bottom 

albedo, and the maps product was based on image (photo) interpretation. 

 

Bioptical models were used by (Torres-Madronero et al. 2009) in conjunction with hyperspectral 

imaging in inversion procedures for mapping benthic habitats. The results presented an 

improvement in obtaining accurate bottom abundances by fusing high-resolution bathymetry 

with both simulated hyperspectral and AVIRIS hyperspectral imagery. This improvement 

allowed bottom abundance estimates to be obtained from 5-10 meters beyond what can be 
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obtained from hyperspectral imaging alone in clear waters. This study was limited to some 

offshore cays around La Parguera Reserve. 

 

(Zayas-Santiago 2011) developed two benthic habitat maps from an IKONOS image for two 

offshore cays within La Parguera Reserve (Cayo Enrique and Cayo Laurel). These maps were 

generated with seven classes using a supervised classification after applying a water column 

correction using depth-invariant bands (Lyzenga 1981).  

A new approach was presented were Exelis ENVI software was used to extract and fuse 

information from sonar, LiDAR and optical imagery so that sea floor depths and habitats (Exelis 

Visual Information Solutions 2011). The data were used to calculate slope, rugosity and 

curvature in ArcGIS, which emphasize the differences between habitats on the sea floor. As part 

of their preprocessing work, Principle Component Analysis (PCA) was used to reduce 

redundancy in the data and to better understand the complexity on the sea floor. This 

information, along with ancillary data such as intensity information, was loaded into ENVI, 

allowing the researchers to draw distinctions between softer and harder sediments in flatter areas 

of the sea floor. 

The purpose of this project was to present how methods and technology from passive sensors can 

be used to develop a high-resolution benthic habitat map. These benthic maps were derived from 

two sources: AVIRIS modeled bottom albedo and the WV2 modeled bottom albedo. Additional 

products based from the analysis of these benthic habitat maps included the quantification of 

changes in the coral reef and seagrass distribution in La Parguera Reserve.  
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1.2 Objectives 

The specific objectives were: 

 Development of benthic habitat maps based on:  

o AVIRIS-modeled bottom albedo 

o WV2-modeled bottom albedo  

 Identify ecologically important habitats and changes in distribution of these habitats in La 

Parguera when compared to similar map products for the area. Additional identification 

of other areas of unconsolidated sediments (sand, mud) to be used for management and 

other recreational activities within the reserve.  

 Quantify changes in the distribution of coral reefs in the reserve. 

 Improve the methods for developing objective-based classifications from high-resolution 

satellite imagery products after applying corrections for the water and atmosphere. 
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2. Methods and Materials 

2.1 Image Preprocessing  

The imagery and data were preprocessed first to enable spatial correlations before further 

analysis. These corrections included data resampling, radiometric corrections to transform data 

from at sensor radiance to remote sensing reflectance, and atmospheric corrections to determine 

the contribution of the atmosphere to the signal.  

 

2.1.1 AVIRIS 

Data preprocessing was done using the Exelis ENVI 5.0 computer program. The AVIRIS image 

was evaluated for data gaps and a subset of the image was made based on the La Parguera 

Reserve polygon. The original spatial resolution of the AVIRIS image was 3.1 meters. The 

image was resampled to 4 meters to match the spatial resolution of the LiDAR bathymetry 

image. Data from the AVIRIS image was atmospherically corrected using TAFKAA (Lobitz, et 

al. 2008) and a water column correction was applied (Lee et al. 1999; Mishra et al. 2007). The 

final product used was an image of remote sensing reflectance of the bottom (Rrsb).  

 

2.1.1 WV2 

The WorldView 2 (WV2) image was radiometrically corrected before any additional processing 

was performed. The radiometric correction used was the WorldView Radiance calibration 

routine in ENVI 5.0, which converts relative radiance into absolute radiance in units of (μW /cm2 

*nm*sr) based on the calibration factor for each band. The WV2 image was evaluated for data 

gaps and a subset of the image was made based on the La Parguera Reserve polygon. The 

original spatial resolution of the WV2 image was 1.86 meters, but the image was resampled to 4 
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meters to match the spatial resolution of the LiDAR image. The WV2 image was warped for the 

co-registration with the LiDAR image and both were set to the coordinate system World 

Geodetic Survey 84 (WGS-84). A total of 40 points were used as ground control points for the 

registration and the total RMSE for the co-registration was 0.5 meters. Data from the WV2 

image was atmospherically corrected using Cloud Shadow Approach (CSA) (Lee et al. 2007) 

and a water column correction was applied (Lee et al. 1999; Mishra et al. 2007). The final 

product used was image of remote sensing reflectance of the bottom (Rrsb). 

 

2.1.3 LiDAR SHOALS reflectivity image 

Data processing for the LiDAR reflectivity image was done using Exelis ENVI 5.0 computer 

program. A subset of the image was created using the La Parguera Reserve polygon. The 

AVIRIS image was used as the base image for the co-registration with the LiDAR reflectivity 

image and both were set to the coordinate system NAD 1983 State Plane Puerto Rico USVI 

(FIPS 5200). A total of 40 points were used as ground control points for the registration and the 

LiDAR reflectivity image was warped to match the AVIRIS image. The total RMSE for the co-

registration was 0.5 meters. A final LiDAR reflectivity image was obtained and was used in the 

development of the benthic map from the active sensor. 

 

2.2 Ancillary data 

The images were corrected for fluctuations in tide readings and these were measured at the 

Magueyes Island Tide Station (Station ID 9759110) in La Parguera, Lajas, Puerto Rico (NOAA, 

Tide and Currents 2005). The WV2 imagery was acquired in December 4, 2011 (15:25 GMT) 

and tide reading for this station was 0.249 meters at MLLW (15:24 GMT) (NOAA Tide and 
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Currents 2011). The LiDAR SHOALS bathymetry data was processed and corrected for errors in 

position and tidal changes (Stephenson and Sinclair 2006). 

 

2.3 Benthic Habitat Mapping 

The process of producing seafloor habitat maps cuts across the disciplines of marine biology,  

ecology, geology, hydrography, oceanography and geophysics, and involves the combining of 

disparate datasets from these disciplines to produce simplified spatial representations of the  

seafloor relating to the distribution of biological characteristics (Brown et al. 2011).  

 

2.3.1 Benthic Habitat Classification 

A classification scheme was developed prior to implementing any image segmentation or 

classification. These nine aquatic feature classes were selected on the basis of the availability of 

sufficient replication of ground control data to verify feature locations The following categories 

were included: (1) Coral Reefs, (2) Seagrass, (3) Hardbottom, (4) Mix: Sand/Hardbottom/Coral, 

(5) Mud, (6) Sand, (7) Sand with Benthic Algae. This classification was based on the sites that 

could be obtained by field data, and limitations presented by other research in obtaining benthic 

classification from passive and active sensors (Tulldahl 2013; Cedeira-Estrada, 2011; Mishra et 

al. 2007 and 2005; Mumby and Edwards 2002). A detailed description of the categories for 

classification is included in Appendix A. 

 

The Iterative Self Organizing Data (ISODATA) algorithm is an unsupervised classification and 

was used on the AVIRIS-modeled bottom albedo (passive sensor), WV2-modeled bottom albedo 

(passive sensor), and the LiDAR reflectivity image to derive spectral clusters or classes (Purkis 
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and Klemas 2011; Jensen 2006). According to Lang (2007), an increase in the number of clusters, 

increases the accuracy in an ISODATA classification in high-resolution imagery. Various iterations 

and combinations of maximum clusters were evaluated. All bands from the AVIRIS albedo 

image (32 bands) and the WV2 image (5 bands) were used in the ISODATA classification 

process. A total of 150 clusters with 5 iterations were selected as the maximum for the 

ISODATA classification to evaluate a complete distribution of the pixels in the image. This 

approach accounted for the considerable spectral heterogeneity of the classes from the 

ISODATA and effectively identified the heterogeneous pixels belonging within each specific 

class / benthic habitat. Some spectral clusters that appeared to belong to multiple class / benthic 

habitat (confused pixels) were also identified. Additionally, the ISODATA classifier was 

performed to the AVIRIS image and WV2 images without the water column correction. An 

evaluation of the images was done to compare the influence of the water column correction in 

the classification of the images. 

 

2.3.2 Field Data for Ground Validation and Accuracy Assessment 

A total of 550 points were used for the ground validation and accuracy assessment of the images. 

This point data was obtained from different sources that included insitu data collected by (Bauer 

et al. 2012) for this area during 2011 and included 207 ground validation sites and 223 accuracy 

assessment sites for La Parguera Reserve. The points were mainly collected using dropcamera 

techniques and the recorded video or images were analyzed for our classification in terms of 

accuracy of our classes. Additional sites were collected in 2014 and some previous sites were 

revisited to evaluate any temporal changes in the original data. A total of 135 new sites were 

sampled and the surveying techniques included drop camera (Delta Vision HD camera with 
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digital video recorder (DVR) and visual inspection from boat for very shallow sites. A Trimble 

Juno 3D GPS receiver was used to collect the locations of the drop camera sites. The GPS was 

set to record a 10 second average point that coincided with the 10 second high definition video 

recorded for each site. A total of 225 sites were selected for the ground validation and 325 sites  

were selected for the accuracy assessment. 

 

2.3.3 Ground Validation 

Once the images were divided into clusters from the ISODATA classification, the images were 

converted to polygons and processed in ESRI ArcMap 10.3. These clusters were assigned to a 

class using a Spatial Join Tool were the polygon acquired the class attribute from the point data 

collected for ground validation. The Spatial Join Tool based the joining of classes on spatial 

location, that is, that the polygon obtains the class attribute from the point within that polygon. 

Additionally, if no point data is available within the polygon, the attribute of the nearest point is 

collected and a distance value is recorded. This procedure ensured that all polygons were 

aggregated and assigned to a specific benthic habitat category, even when ground validation 

point data was limited. The final polygon layer were aggregated based on the benthic class using 

the Dissolve Tool from ESRI ArcMap 10.3. 

 

2.3.4 Accuracy Assessment 

An accuracy assessment was performed to the classified polygon data using the point data 

selected for the accuracy assessment. A Spatial Join Tool was used where the point data 

extracted the class attribute from the polygon layer data based on location. 
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To verify the accuracy of the benthic map an error matrix was made to ensure the reliability of 

the results. This matrix was calculated by the comparison of the location and class of each 

ground truth point with the corresponding location and class in the classified image and provided 

metrics of overall accuracy, producer accuracy and user accuracy for each class, and the kappa 

coefficient. The overall accuracy is calculated by the sum of the number of polygons classified 

correctly divided by the sum of all the polygons in the entire ground truth classes. Producer 

accuracy is the probability that a pixel in the classification image is put into class x given the 

ground truth class is x. User Accuracy is the probability that the ground truth class is x given a 

pixel is put into class x in the classification image (Jensen 1996). The kappa coefficient is a 

measure of the proportional (or percentage) improvement by the classifier over a purely random 

assignment to classes and defines the extent to which the correct values of an error matrix are 

due to “true” versus “chance” agreement. This coefficient can also account for the proportionate 

reduction in error generated by a classification process, compared with a completely random 

classification (Sim and Wright 2005).  

 

A final benthic habitat classification maps were produced for the AVIRIS-modeled bottom 

albedo (passive sensor) and WV2-modeled bottom albedo (passive sensor). These products were 

evaluated for accuracy and also compared with other benthic maps produced for the study area. 

A summary of the methods used for the development of the benthic habitat map is included in 

Figure 1. 
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Figure 1: Flow chart of the processing (blue) and data (orange) used in the development of the 

benthic habitat map for la Parguera Reserve.  
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3. Results 

3.1 ISODATA 

The images were evaluated with the unsupervised ISODATA classifier. For the AVIRIS and the 

WV2 a total of 150 clusters were determined from the ISODATA classifier (Figure 2). 

Additionally, the ISODATA classifier was applied to the AVIRIS and WV2 images without the 

water column correction (Figure 3). The raster images were transformed to polygons in ESRI 

ArcMap to be classified and verified using the field data points (Figure 4).  
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Figure 2: ISODATA unsupervised classification for AVIRIS (top) and WV2 (bottom) bottom 

albedo images after water column correction. The colors only represent different clusters. 
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Figure 3: ISODATA unsupervised classification for AVIRIS (top) and WV2 (bottom) above water 

remote sensing reflectance. The colors only represent different clusters. 
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Figure 4: Polygon clusters transformed from the ISODATA for AVIRIS (top) and WV2 (bottom).  
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A total of 550 field points were available that included 225 for ground validation and 325 for 

accuracy assessment (Figure 5). For a complete list of ground validation and accuracy 

assessment points with coordinates and habitat description see Appendix B. 

 

 

Figure 5: Field ground validation (yellow-box) and accuracy assessment (green-circle) points. 

 

The polygons were classified using the Spatial Join Tool using the ground validation data and 

classes selected (Figure 6). 
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Figure 6: Image classification for AVIRIS (top) and WV2 (bottom) for 7 classes. 
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These polygons were classified to produce a benthic class map. A summary of the class 

distribution and coverage was included for each classified image (Table 1). 

 

AVIRIS Image 

Benthic Class 
Total 

polygons 

Total Area 

(Km2) 

Percentage 

Class 

Average Depth of 

Class (m) 

Ground 

Validation 

Points 

Coral Reefs 10,822 50.32 30% 18.73 (min. 0, max. 45) 68 

Seagrass 2,169 15.44 9% 7.14 (min. 0, max. 22) 40 

Hardbottom 883 4.95 3% 21.29 (min. 0, max. 43) 14 

Mix: 

Sand/Hardbottom/Coral 
5,153 33.92 20% 15.52 (min. 0, max. 41) 42 

Mud 917 3.50 2% 9.26 (min. 0, max. 22) 11 

Sand 1,539 53.50 32% 16.19 (min. 0, max. 46) 27 

Sand with  

Benthic Algae 
1,885 6.61 4% 12.86 (min. 0, max. 34) 23 

TOTAL 23,368 168.24 100% 14.42 225 

 

WV2 Image 

Benthic Class 
Total 

polygons 

Total Area 

(Km2) 

Percentage 

Class 

Average Depth of Class 

(m) 

Ground 

Validation 

Points 

Coral Reefs 11,652 22.89 14% 17.02 (min. 0, max. 43) 68 

Seagrass 2,268 18.24 11% 6.91 (min. 0, max. 22) 40 

Hardbottom 1,226 6.28 4% 21.27 (min. 0, max. 43) 14 

Mix: 

Sand/Hardbottom/Coral 
4,447 30.95 18% 16.91 (min. 0, max. 40) 42 

Mud 864 10.56 6% 8.76 (min. 0, max. 23) 11 

Sand 1,452 67.27 40% 18.56 (min. 0, max. 46) 27 

Sand with  

Benthic Algae 
1,953 12.20 7% 13.21 (min. 0, max. 34) 23 

TOTAL 23,862 168.39 100% 14.66 225 

Table 1: A summary of the classification for AVIRIS and WV2 images. These include the total 

polygons, total area, percentage of class, average of class, and ground validation points. 

 

 

An accuracy assessment was performed to the classified images using the Spatial Join Tool with 

the field validation data selected for accuracy assessment. An error matrix was developed to 

provide metrics of overall accuracy, producer accuracy and user accuracy for each class, and the 

kappa coefficient (Table 2). 
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AVIRIS Image Classification 
  

Truth Data 
     

Classified Data Coral Reefs Seagrass Hardbottom 
Mix:  

Sand/Hardbottom/Coral 
Mud Sand 

Sand  
with Benthic Algae 

TOTAL 
PRODUCER  

ACCURACY 

Coral Reefs 62 5 6 13 0 0 6 92 67.39% 

Seagrass 4 33 1 4 0 0 2 44 75.00% 

Hard Bottom 2 0 12 1 0 0 1 16 75.00% 

Mix:  
Sand/Hardbottom/Coral 

13 13 2 40 0 0 7 75 53.33% 

Mud 0 4 0 0 13 0 1 18 72.22% 

Sand 11 4 0 4 7 25 1 52 48.08% 

Sand  
with Benthic Algae 

0 2 0 0 0 3 19 24 79.17% 

TOTAL 92 61 21 62 20 28 37 321 
 

USER  

ACCURACY 
67.39% 54.10% 57.14% 64.52% 65.00% 89.29% 51.35% 

  

   
Overall Accuracy Kappa Coefficient Tau Coefficient 

  

   
63.55% 0.55 0.59 

  

WV2 Image Classification 
  

Truth Data 
     

Classified Data Coral Reefs Seagrass Hardbottom 
Mix:  

Sand/Hardbottom/Coral 
Mud Sand 

Sand 
 with Benthic Algae 

TOTAL 
PRODUCER  

ACCURACY 

Coral Reefs 65 5 2 13 0 2 2 89 73.03% 

Seagrass 6 36 0 2 0 1 5 50 72.00% 

Hard Bottom 1 0 12 1 0 2 0 16 75.00% 

Mix:  
Sand/Hardbottom/Coral 

9 7 2 40 0 0 5 63 63.49% 

Mud 0 5 0 0 15 0 2 22 68.18% 

Sand 9 5 5 6 5 23 4 57 40.35% 

Sand  

with Benthic Algae 
1 7 0 0 0 0 19 27 70.37% 

TOTAL 91 65 21 62 20 28 37 324 
 

USER  

ACCURACY 
71.43% 55.38% 57.14% 64.52% 75.00% 82.14% 51.35% 

  

   
Overall Accuracy Kappa Coefficient Tau Coefficient 

  

   
64.81% 0.57 0.60 

  

Table 2: An accuracy assessment for the image classification of the AVIRIS and WV2 bottom albedo images. This summary includes 

an error matrix, user and producer accuracy, overall, accuracy, kappa coefficient and tau coefficients for the selected classes.  
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4. Discussion 

 

4.1 ISODATA 

 

The selected bottom albedo images from the AVIRIS and WV2 data provided the required 

information for a benthic habitat classification. The ISODATA classification was selected, 

because this approach accounted for the considerable spectral heterogeneity in the images (Lang 

et al. 2007). An initial 150 clusters and 5 iterations were used, where the spectral clusters that 

appeared to belong to multiple class / benthic habitat (confused pixels) were also identified and 

removed, the homogenous segmented pixels were preserved. These confused clusters were 

reprocessed and combined until a final image of 10 clusters was produced. This method reduced 

the processing time of confused pixels and provided a manageable classification of clusters.  

The removal of the atmospheric and water column influence improved the retrieval and 

segmentation of clusters. The AVIRIS image without the water column correction (Figure 3) 

presented very poor discrimination of bottom features, especially in deeper areas when compared 

to the AVIRIS bottom albedo image (Figure 2). Also, cross-track illumination and water column 

constituents (ie. CDOM, phytoplankton) were present and separated in the uncorrected image. 

The bottom features were not distinguishable in deeper areas of the WV2 image without the 

water column correction (Figure 3), compared to the WV2 bottom albedo image (Figure 2). 

Shallow water features in the offshore cays were identified and segmented and a “dark water” 

area was also segmented from the ISODATA routine. The application of water column 

correction improved the retrieval of bottom features in both high-resolution images (Green et al. 

2000). 
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4.2 Ground Validation 

The images were converted from raster to polygons and later classified using the ground 

validation points (Figure 4). A total of 225 points were used for the ground validation. The 

Spatial Join allowed for all points to be classified regardless of distance from the ground 

validation point (Figure 5). Also, this technique allowed an objective identification of the closest 

ground validation point, removing the classification bias from the supervised classification and 

maintaining the objective based approach in the image segmentation of the unsupervised 

classification. The image classification was completed to the AVIRIS and WV2 bottom albedo 

images with 7 benthic classes (Figure 6) 

The classified images cover an area from 168.24 square kilometers (AVIRIS) to 168.39 (WV2) 

square kilometers. These minor discrepancies in the total area were due to the different land 

masked areas in both images. When comparing the total area for individual classes, most of the 

classes were relatively close in terms of total area per class. The seagrass class in AVIRIS was 

9%, while the WV2 was 11%; the hardbottom class in AVIRIS was 3%, while the WV2 was 4%; 

the mix:sand/hardbottom/coral class in AVIRIS was 20%, while the WV2 was 18%; the mud 

class in AVIRIS was 2%, while the WV2 was 6%; the sand with benthic algae class in AVIRIS 

was 4%, while the WV2 was 7% (Table 1).  

The most predominant classes exhibited major difference in the total area of coverage for class 

for each sensor. The coral reefs class total area for AVIRIS was 30%, while for the WV2 was 

only 14%. Also, the sand class total area exhibited a major difference from the AVIRIS (32%) to 

the WV2 sand class (40%).  These differences were attributes to the segmentation process of the 

ISODATA clusters. Although the total area for both images (all classes) were very similar, the 



139 

 

total area for the coral class decrease significantly from the AVIRIS image (50.32 km2) to the 

WV2 image (22.89 km2). However, there was an increase in the total polygons from the AVIRIS 

image (10,822) to the WV2 image (11,652), indicating that the size of the polygons for this class 

were larger in the AVIRIS image (Table 1). A different process occurred with the sand class, 

were the total area was increase from 53.50 km2 in the AVIRIS classification to 67.27 km2 in the 

WV2, but the total polygons decreased from 1,539 in the AVIRIS classification to 1,452 in the 

WV2. Also, the availability of ground validation points did not affect the distribution of the total 

areas for each class, since the total areas do not correlated to the quantity of points available.  

Higher values were expected from the mix: sand/hardbottom/coral class, since this class had 

features from sand, hardbottom, coral or a combination that could not be separated into different 

classes. However, this class total area of coverage was very similar in both images (AVIRIS = 

20%; WV2 = 18%) indicating that both images were equally effective in detecting this mix class, 

and also indicated similarities in the bottom albedo image. This high value in this mix class was 

attributed to this class containing features of both coral reefs and sand, the two highest classes 

obtained from the classifications. 

4.3 Accuracy Assessment 

4.3.1 Overall Accuracy 

To verify the accuracy of the classification of the benthic maps, an error matrix was developed. 

This matrix provided information of overall accuracy, producer accuracy and user accuracy for 

each class, and the kappa coefficient (Table 2).  

The overall accuracy for the AVIRIS classification was 63.55%, whereas for the WV2 image 

was 64.81%. Mumby et al. (1998) reported an overall accuracy of for CASI sensor (81%) and 

Landsat TM (31%) for the thematic maps of reef habitats (nine classes). An overall accuracy of 
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coarse-level habitat maps was achieved by Mumby and Edwards (2002) in the Turks and Caicos 

for IKONOS (75%), Landsat TM (73%), and SPOT XS (67%). Mishra et al. (2007) reported an 

overall accuracy of 83.6% for a hyperspectral AISA image and 80.6% from IKONOS image in 

Roatan Islands, Honduras. The map classification produced an overall accuracy of 69% for seven 

classes for an IKONOS image for an area of approximately 10.5 Km2 in the Arabian Gulf (Purkis 

2005). Our reported overall accuracy coincides with the overall accuracy found by Purkis (2005), 

but was lower than the studies cited. The most comprehensive study that covered our study area 

was done by Bauer et al. (2012), but used photo interpretation for the classification with an 

overall accuracy of 95.4% for southwestern Puerto Rico, including La Parguera.  

However, the cited areas that applied water column corrections were relatively smaller areas 

(Roatan Islands = 1.6 km2, Mishra et al. 2007; South Caicos = 60 km2 Mumby et al. 1998) or 

shallow clear waters (Mumby and Edwards 2002). Our study area was approximately 168 Km2 

with a depth range from 0-36 meters (average depth = ~18 meters). These physical factors limit 

the retrieval of bottom albedo signal from deeper areas that are required for the ISODATA 

segmentation process. The variations in the optical parameters in La Parguera Reserve were also 

relevant since the Kd and turbidity values can be higher that the compared areas due to the runoff 

and input of terrestrial, coastal, and bottom-derived materials (Otero and Carbery 2005). Also, 

the extent of the study are enhances these limitations by combining segments of similarly low 

signal from deeper areas, thus resulting in a reduced accuracy in the overall classification. 

Because of these limitations, other studies in La Parguera Reserve area that used similar 

objective-based approaches have only focused in shallow small offshore cays within the reserve, 

like Cayo Enrique and Cayo Laurel (Zayas-Santiago 2011, Torres-Madronero et al. 2009), San 
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Cristobal cay (Guild et al. 2008), and the inner shelf with relatively shallow waters (< 6 

meters)(Arce Arce 2005).  

 

4.3.2 Producer Accuracy 

The producer accuracy for AVIRIS classification was higher for the class sand with benthic 

algae with 79.17%, followed by 75% for seagrass and hardbottom classes, with lowest class 

being the sand class with 48.08%. The producer accuracy for WV2 classification was higher for 

the hardbottom class with 75.0%, followed by 73.03% for coral reefs and 72.0% for seagrass 

class, with lowest class being the sand class with 40.35% (Table 2). The producer’s accuracy is 

important for the technician carrying out the classification, because it indicates that for that 

percent of the time, that benthic type was classified as such. The major differences between 

producer’s accuracy from the classified images were in the mix:sand/harbottom/coral class (diff. 

10.16%) and the sand with benthic algae (diff. 8.80%). Major differences in total area covered 

for the two dominant classes (ie. coral reefs and sand) did not had an effect in the producer’s 

accuracy for this class. Mishra et al. (2007) reported producer’s accuracy higher than 80% for all 

major classes except for the mixed sand/hardbottom/coral class (63.67%) and the sand with 

benthic algae (65.00%). Arce Arce (2005) reported a maximum producer’s accuracy for the 

classification of the depth invariant bands from the IKONOS image of 72.73% for seagrass, 

15.15% coral , and 100% for sand. 

 

4.3.3 User Accuracy 

The user accuracy for AVIRIS classification was higher for the sand class with 89.29%, followed 

by 67.39% for coral reefs and 65.00% for mud class, with lowest class being the sand class with 
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benthic algae with 51.35%. The user accuracy for WV2 classification was higher for the sand 

class with 82.14%, followed by 71.43% for coral reefs and 75.00% for mud class, with lowest 

class being the sand class with benthic algae with 51.35%. The user’s accuracy is relevant in a 

management context, because for example, each time an area labelled as a sand on the map is 

visited, there is a 89.29% probability that it is actually sand. The user’s accuracies were very 

similar for the AVIRIS and WV2 classifications, with the major differences being only the mud 

class (diff. 10.00%). Also, major differences in total area covered for the two dominant classes 

(ie. coral reefs and sand) did not had an effect in the user’s accuracies for these classes. 

 

Mishra et al. (2007) reported producer’s accuracy higher than 80% for all major classes except 

for the mixed sand/hardbottom/coral class (63.67%) and the sand with benthic algae (65.0%). 

Arce Arce (2005) reported a maximum producer’s accuracy for the classification of the depth 

invariant bands from the IKONOS image of 72.73% for seagrass, for 15.15% coral , and  100% 

for sand. Mumby and Edwards (2002) found that IKONOS data allowed seagrass beds to be 

mapped very accurately (89%), coral and sand habitats to be mapped with good accuracy (79% 

and 72%, respectively), but that the user accuracy for macroalgal habitats was lower at 60%. 

Mishra et al. (2007) reported user’s accuracy higher than 80% for all major classes except for the 

hardbottom (76.62%) and the coral reefs (73.59%). Arce Arce (2005) reported a maximum 

producer’s accuracy for the classification of the depth invariant bands from the IKONOS image 

of 60.61% for seagrass, 16.67% for coral, and 100% for sand. The higher user accuracies 

obtained in the sand class were very important, because they are comparable with the results 

found by other researchers for shallower and smaller areas and indicate that the model can 

correctly discriminate sand at various depth ranges. Additionally, the shallow and deep coral 
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reefs return high user’s accuracies (i.e., there is a high probability that an area predicted to be 

dominated by these classes in the imagery would also be so within the reference data) and also 

obtained a high producer’s accuracy, indicating that pixels of this class are equally well 

identified in the imagery (Purkis 2005). 

 

4.3.4 Kappa Coefficient 

 

The kappa coefficient was calculated for the AVIRIS classification image (55%) and the WV2 

classification image (57%). The kappa coefficient also provides a basis for determining the 

statistical significance of any given classification matrix. Kappa can be thought of as the chance 

corrected proportional agreement, and possible values range from +1 (perfect agreement) via 0 

(no agreement above that expected by chance) to -1 (complete disagreement) (Nichols 2012). 

Landis and Koch (1977) developed guidelines for interpretation of the kappa coefficient as a 

statistic “strength of agreement” where; <0 = Poor; 0.01 – 0.20 = Slight; 0.21 – 0.40 = Fair; 0.41 

– 0.60 = Moderate; 0.61 – 0.80 = Substantial; 0.81 – 1.00 = Almost Perfect. Our results fall 

within the moderate category results. Mishra et al. (2005) obtained an overall kappa statistic of 

77.4% for the IKONOS imagery and for the AISA Eagle hyperspectral imagery an overall kappa 

statistic 80.8% (Mishra et al. 2007) for seven classes. Arce Arce (2005) reported a kappa 

coefficient of 66.67% for IKONOS in La Parguera Reserve for 6 classes. A kappa coefficient of 

55.30% in the Enrique Reef and a kappa coefficient of 66.62% was found for the Laurel Reef 

(Zayas-Santiago 2011) for seven classes. These cited study areas presented the ideal 

characteristics to apply these classifications (ie. shallow water, uniform bottom) when compared 

to the physical limitations and extent of our study area.  After taking into account these factors, 
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the kappa coefficient obtained provides a moderate classification over the chance-corrected 

proportional agreement. 

 

4.3.5 Tau Coefficient 

The Tau coefficient was calculated and represents a measure of the improvement of 

classification accuracy over a random assignment of map categories (Greene et al. 2000). 

According to Ma and Redmond (2000), the main advantage of Tau is that the coefficient is 

readily interpretable, indicating that the percentage of polygons were classified correctly than 

would be expected by chance alone. The tau coefficient was calculated for the AVIRIS 

classification image (59%) and the WV2 classification image (60%). Bejarano et al. (2010) 

summarized overall accuracies obtained by other studies on coral reef areas using the tau 

coefficient. Purkis (2005), calculated a Tau coefficient of 65% for seven classes for an IKONOS 

image. Mumby and Edwards 2002 evaluated the tau coefficients at different classification levels 

for various sensors and found that the tau coefficient is reduced in IKONOS (67% to 47%) and 

Landsat TM (61% to 24%) when classification was increased from 4 classes to 13 classes. Also, 

this reduction in tau coefficient was less evident in the CASI hyperspectral image (85%-78%) for 

a classification increase of four to nine classes. In our case, the tau coefficients were similar for 

both AVIRIS and IKONOS image indicating that both images attained comparative 

classification accuracy for the classes selected from the studies cited, even when the physical 

limitations of our study site further limits these accuracies. 
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4.4 Overall Image Classification Comparison 

The AVIRIS and WV2 images performed very similar for the image classification and benthic 

classes selected (Figure 6). The images collected by these sensors were mainly the spectral 

resolution of available visible bands (AVIRIS = 32; WV2 = 5) and the dynamic range (AVIRIS 

= 16-bit; WV2 =11-bit). However, after applying the Lee’s (1999) algorithm to retrieve bottom 

albedo, only AVIRIS provided the spectral bands needed for the water column correction. To our 

surprise, the WV2 performed similarly to the AVIRIS when the classification scheme was 

applied. As noted by Mumby and Edwards (2002) the hyperspectral sensor should have 

performed better in the classification for the same study area and spectral resolution, due to the 

discriminating ability of having 32 bands in the visible range. Another explanation in that these 

advantages were balanced by; errors arising from the different atmospheric corrections (Collin 

and Hench 2012), different water column conditions when images were acquired (i.e. high 

CDOM or chlorophyll concentrations), water column corrections, or that the sensors indeed have 

a similar capacity to resolve benthic habitats and the optical model used to correct for 

submergence effects, performs equally well in deep and shallow environments. 

 

There were some disparities in the image acquisition dates and field surveys, and these effects 

may have accounted for some differences in the classification of the image. Even considering 

that the habitats surveyed do not move tens of meters in 5 years (Mumby and Edwards 2002), the 

timespan between the AVIRIS image and the field data was from 6 to 9 years, while the 

difference from the WV2 image was 1 to 3 years. Also, a massive bleaching event occurred 

during the AVIRIS image acquisition followed by a coral reef mass-mortality (Eakin et al. 2010) 

This event was particularly detrimental to Montastraea (Orbicella) annularis complex resulting 
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in mortalities in the order of 50% (Garcia-Sais et al. 2008). These factors may explain the 

difference in the total area covered of the coral reef class between the AVIRIS image (50.32 

km2) and the WV2 (22.89 Km2). Additionally, this indicated that although there were differences 

in the total area for coral reefs class, sufficient ground validation points were collected for the 

classification due to the similarity and high accuracy of the user’s and producer’s accuracy 

between both images. 

 

The average depth for each of the classes was obtained (Table 1) but no major differences were 

found in average depth class, except for the sand class (diff. 2.37 meters). This difference, 

although small, indicated that deeper sand areas were identified in the WV2 classification when 

compared to the AVIRIS classification. Also, this could account for the increase of 8% in the 

sand class found in the WV2 classification.  

Additional limitations of both sensors in separating clusters in very shallow areas, could be 

explained by estimation of the down-welling attenuation coefficient (Kd) used in the water 

column corrections (Purkis 2005). These estimates may be susceptible to error in optically 

shallow water where seafloor reflection, the propagation of diffuse incoming radiation may not 

follow a negative exponential with respect to depth (Maritorena et al. 1994). Also, Purkis (2005) 

found using IKONOS that a RMS error in bathymetry of 1.4 meters for a sandy bottom under 2 

meters of water could be translated to an absolute error in retrieved albedo of 10% and 26% in 

bands 1 and 2,  respectively.  

The additive factor of such errors do not limit the production of a benthic habitat, but would 

drastically reduce the separability of the eight classes, and therefore map accuracy, unless errors 

are minimized or a reduction in the number of benthic classes was applied (Purkis 2005). 
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4.5 Object Based Classification vs. Photo-Interpretation 

According to Green et al (2000), photo-interpretation is a method by which the user visually 

inspects an image and identifies habitats and object based classification is a computer-based 

method by which a number of wavebands are input to a statistical clustering algorithm, which 

organizes individual pixels into distinctive groups (classes) which are assumed to represent 

specific habitat types. Our data was processed using the object based approach were the bottom 

albedo image was classified from the AVIRIS and WV2 images after an atmospheric and water 

column correction.  

The most comparable study that covered our study area was done by Bauer et al. (2012) and used 

photo interpretation for the classification with an overall accuracy of 95.4% for the southwest 

Puerto Rico area, including La Parguera. This study was also an improvement over the original 

benthic habitat map for La Parguera Reserve area by Kendall (2001) in terms of classification 

scheme, mapping accuracy, and extent covered. This overall accuracy was significantly higher 

that our results, however some limitations arise from using these methods. These methods are 

very subjective, time consuming and required highly skilled personnel. Additionally, there are 

difficulties comparing classified products at different dates (i.e. change detection) due to the 

subjectivity of the interpretation (Green et al. 2000). Our methods utilized the full spectral range 

of the imagery while providing comparable results that could be extrapolated to other study areas 

(Purkis 2005; Lesser and Mobley 2007), and provided a superior spatial resolution (4 m2) to this 

study (1,000 m2). The total area for coral reefs in La Parguera Reserve identified by this study 

was 44.07 km2 (662 polygons) including aggregated reefs, aggregated patch reefs, patch reefs 

and spur and groove. The total area for AVIRIS was 50.32 km2 and WV2 was 22.89 km2 with 

over 10,000 polygons identified. These differences in the amount of polygons identify the 



148 

 

generalization produced by the photo interpretation and the limitation of a large mapping unit. 

The total overlapped areas between the study by Bauer et al. (2012) and AVIRIS was 19.10 km2 

(38%), and for WV2 was 12.40 km2 (54%). This indicated a better correlation of the 

classification for coral reefs of the WV2 imagery with the photo interpretation study, even when 

the latter nearly doubled the amount of area reported. Also, as discussed earlier, the temporal 

difference between images may contribute to the difference in the coral reef class totals and may 

indicate that the spatial resolution was an important factor in identifying coral reefs, especially 

patch reefs areas when compared with this study. 
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5. Conclusions 

The benthic habitat maps were developed successfully from the bottom albedo images of both 

AVIRIS and WV2 sensors. No major class differences were found between the AVIRIS and 

WV2 classification totals, except for coral reefs and sand classes’ totals. The reduction in the 

coral reefs class total could be attributed to temporal differences of the images depicting the 

changes in the coral reefs distribution within the reserve. The overall accuracies were very 

similar for both images, but were lower when compared with other studies using similar object 

based methods. However, the cited areas were relatively smaller areas, with shallow clear waters,  

and optically simpler than our study area, so our results could be evaluated as acceptable based 

on these physical factors. An extensive comparison was done with the study of the reserve that 

used photo interpretation for the classification (Bauer et al. 2012) and important limitations were 

evaluated. These methods are very subjective, time consuming and required highly skilled 

personnel. Additionally, there are difficulties comparing classified products at different dates 

(i.e. change detection) due to the subjectivity of the interpretation (Green et al. 2000). Our 

methods utilized the full spectral range of the imagery while providing comparable results that 

could be extrapolated to other study areas (Purkis 2005; Lesser and Mobley 2007), and provided 

a superior spatial resolution (4 m2) to this study (1,000 m2). The total area for coral reefs in La 

Parguera Reserve identified by this study was 44.07 km2 (662 polygons) including aggregated 

reefs, aggregated patch reefs, patch reefs and spur and groove. The total area for AVIRIS was 

50.32 km2 and WV2 was 22.89 km2 with over 10,000 polygons identified. These differences in 

the amount of polygons identify the generalization produced by the photo interpretation and the 

limitation of a large mapping unit. The total overlapped areas between the study by Bauer et al. 

(2012) and AVIRIS was 19.10 km2 (38%), and for WV2 was 12.40 km2 (54%). 
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Previous studies in La Parguera Reserve area that used similar objective-based approaches have 

only focused in shallow small offshore cays within the reserve, like Cayo Enrique and Cayo 

Laurel (Zayas-Santiago 2011, Torres-Madronero et al. 2009), San Cristobal cay (Guild et al. 

2008), and the inner shelf with relatively shallow waters (< 6 meters)(Arce Arce 2005). A major 

contribution of this study was that no previous benthic habitat map was available for La Parguera 

Reserve that provided: multi/hyper spectral information at this spatial scale (4 square meters), 

covered the extent of the reserve, and provided the baseline for future development of benthic 

habitat studies using an objective classification scheme.  

 

This top-down approach, where the environmental data and in situ biological/geological data are 

organized before they are combined (unsupervised classification)(Brown et a., 2011) and later 

merging with data based on distance, provides a new approach into classifying information, 

while maintaining the objectivity in the classification.  This analysis has also demonstrated the 

efficacy of using satellite and airborne imagery for benthic habitat mapping in identifying the 

baseline trends and anomalies, stratify ecosystems to focus on areas of particular concern for 

conservation of coral reef ecosystems (Rohman and Shapiro 2006). These techniques are a very 

effective tool for monitoring the spatial dynamics of habitats in Marine Protected Areas (Mumby 

and Edwards 2002). According to Green et al. (2000), the photo-interpretation and object based 

classification should be thought of as complementing each other, and a good classification can be 

achieved using a combination of approaches. Further improvements to this project could be 

attained by resolving data gaps or fine-tuned the classifier with additional ancillary information 

from photo-interpretation or contextual editing.  
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Appendix A:  Benthic Classification Classes and Description 

Seven classes were mapped that refers to the predominant physical composition of features that 

could be resolve using bottom albedo derived at different depths. 

Class 1: Coral Reefs 

A high relief coral formation of variable shapes in both shallow and deep-water that typically 

lack a thick sediment covering the seafloor. May include patch reefs and spur and groove coral, 

if spatial resolution is not sufficient to separate other bottom types. Includes both solid and soft 

corals. No percentage of cover was calculated. 

  
 

Class 2: Seagrass 

Primarily sand or mud bottom dominated by any single species of seagrass (e.g., Syringodium 

sp., Thalassia sp. and Halophila sp.) or a combination of several species. Substrate may be sand, 

mud or hardbottom cover. No percentage of cover was calculated. 

  
Class 3: Hardbottom  
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Consolidated materials that consist of solid structure (mainly carbonate) that may contain coral 

rubble or a thin veneer of sand. This class includes hardbottom with no additional coverage 

biological cover (algae, seagrass).  

 

Class 4: Mix: Sand/Hardbottom/Coral  

A mixture of unconsolidated sediments (mainly sand) in combination with solid structures or 

coral that cannot be separated by due to spatial resolution by image classification or field 

validation methods. No percentage of cover was calculated. 

  

Class 5: Mud  

Fine unconsolidated sediment associated with river discharge, land discharge and build-up of 

organic material in sheltered areas.  This class includes mud with no additional coverage. 
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Class 6: Sand  

Coarse unconsolidated sediment typically found in areas exposed to currents or wave energy. 

This class includes sand with no additional coverage. 

  

Class 7: Sand with Benthic Algae  

Primarily sand bottom with distribution of any combination of species of red, green or brown 

algae that can be turf, fleshy, coralline or filamentous species. No percentage of cover was 

calculated. 
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Appendix B: Ground Validation and Accuracy Assessment Points 

 

Ground Validation Points 

ID Longitude Latitude Class Description 

1 -67.01 17.94 Sand 

2 -67.04 17.95 Coral Reefs 

3 -67.08 17.94 Coral Reefs 

4 -67.08 17.94 Sand 

5 -67.08 17.94 Sand with Benthic Algae 

6 -67.08 17.94 Sand with Benthic Algae 

7 -67.08 17.94 Mix:Sand/Hardbottom/Coral 

8 -67.08 17.94 Coral Reefs 

9 -67.08 17.94 Coral Reefs 

10 -67.08 17.94 Coral Reefs 

11 -67.08 17.94 Coral Reefs 

12 -67.08 17.94 Coral Reefs 

13 -67.08 17.95 Mud 

14 -67.07 17.96 Dense Seagrass 

15 -67.05 17.96 Mud 

16 -67.01 17.93 Mix:Sand/Hardbottom/Coral 

17 -67.01 17.93 Mud 

18 -67.03 17.93 Sand 

19 -67.03 17.94 Mud 

20 -67.05 17.94 Coral Reefs 

21 -67.05 17.94 Hardbottom 

22 -67.05 17.94 Hardbottom 

23 -67.07 17.94 Mix:Sand/Hardbottom/Coral 

24 -67.07 17.94 Coral Reefs 

25 -67.07 17.94 Mix:Sand/Hardbottom/Coral 

26 -67.08 17.94 Mix:Sand/Hardbottom/Coral 

27 -67.10 17.94 Seagrass with Sand 

28 -67.07 17.95 Mud 

29 -67.00 17.93 Sand 

30 -67.06 17.91 Sand 

31 -67.07 17.91 Sand with Benthic Algae 

32 -67.07 17.91 Sand 

33 -67.09 17.92 Mix:Sand/Hardbottom/Coral 

34 -67.10 17.92 Coral Reefs 

35 -67.10 17.93 Sand with Benthic Algae 

36 -67.11 17.93 Coral Reefs with Sand 

37 -67.11 17.93 Coral Reefs with Sand 

38 -67.13 17.92 Dense Seagrass 

39 -67.13 17.92 Mix:Sand/Hardbottom/Coral 

40 -67.06 17.92 Coral Reefs 

41 -67.02 17.91 Coral Reefs 

42 -66.99 17.95 Coral Reefs 

43 -67.07 17.93 Coral Reefs 

44 -67.03 17.92 Coral Reefs 

45 -67.08 17.94 Coral Reefs 

46 -67.07 17.93 Coral Reefs 

47 -67.03 17.95 Coral Reefs 

48 -67.00 17.92 Coral Reefs 

49 -66.99 17.93 Coral Reefs 

50 -67.13 17.94 Coral Reefs 

51 -67.12 17.94 Coral Reefs 

52 -66.99 17.92 Coral Reefs 

53 -67.06 17.93 Coral Reefs 

54 -67.05 17.93 Coral Reefs 

55 -67.13 17.92 Coral Reefs 

56 -67.04 17.93 Seagrass with Sand 

57 -67.09 17.93 Sand with Benthic Algae 

58 -67.13 17.88 Mix:Sand/Hardbottom/Coral 

59 -67.03 17.90 Coral Reefs 

60 -67.05 17.87 Hardbottom 

61 -67.05 17.88 Mix:Sand/Hardbottom/Coral 

62 -67.05 17.90 Mix:Sand/Hardbottom/Coral 

63 -67.06 17.93 Sand 

64 -67.06 17.93 Coral Reefs 

65 -66.99 17.93 Sand 

66 -67.00 17.91 Sand 

67 -66.99 17.94 Sand 

68 -67.02 17.96 Mud 

69 -67.08 17.90 Coral Reefs 

70 -67.06 17.90 Coral Reefs 

71 -67.06 17.89 Coral Reefs with Sand 

72 -67.08 17.87 Mix:Sand/Hardbottom/Coral 

73 -67.10 17.87 Coral Reefs 

74 -67.10 17.90 Hardbottom 



159 

 

75 -67.11 17.89 Sand with Benthic Algae 

76 -67.11 17.88 Coral Reefs 

77 -67.11 17.86 Coral Reefs 

78 -67.13 17.87 Coral Reefs with Sand 

79 -67.13 17.87 Coral Reefs 

80 -67.12 17.93 Coral Reefs 

81 -67.11 17.93 Coral Reefs 

82 -67.13 17.90 Sand with Benthic Algae 

83 -67.00 17.95 Mud 

84 -67.01 17.91 Coral Reefs with Sand 

85 -66.98 17.93 Coral Reefs with Sand 

86 -67.02 17.91 Coral Reefs with Sand 

87 -67.02 17.90 Coral Reefs 

88 -66.99 17.90 Sand with Benthic Algae 

89 -67.02 17.89 Coral Reefs with Sand 

90 -67.00 17.90 Coral Reefs 

91 -67.00 17.89 Coral Reefs with Sand 

92 -67.01 17.96 Coral Reefs with Sand 

93 -67.06 17.88 Hardbottom 

94 -67.08 17.87 Hardbottom 

95 -67.09 17.89 Coral Reefs with Sand 

96 -67.11 17.86 Hardbottom 

97 -67.08 17.96 Dense Seagrass 

98 -67.06 17.96 Dense Seagrass 

99 -67.07 17.96 Sand with Benthic Algae 

100 -67.06 17.96 Seagrass with Sand 

101 -67.06 17.97 Seagrass with Sand 

102 -67.06 17.97 Seagrass with Sand 

103 -67.05 17.96 Mud 

104 -67.03 17.97 Dense Seagrass 

105 -66.99 17.95 Mud 

106 -67.00 17.95 Seagrass with Sand 

107 -67.01 17.95 Seagrass with Sand 

108 -67.01 17.95 Sand 

109 -67.01 17.95 Sand 

110 -67.02 17.95 Sand 

111 -67.02 17.95 Mix:Sand/Hardbottom/Coral 

112 -67.06 17.94 Sand 

113 -67.06 17.94 Seagrass with Sand 

114 -67.06 17.94 Seagrass with Sand 

115 -67.09 17.94 Mix:Sand/Hardbottom/Coral 

116 -67.09 17.94 Seagrass with Sand 

117 -67.09 17.95 Sand with Benthic Algae 

118 -67.10 17.94 Seagrass with Sand 

119 -67.10 17.95 Dense Seagrass 

120 -67.09 17.95 Dense Seagrass 

121 -67.06 17.96 Coral Reefs 

122 -67.06 17.96 Mix:Sand/Hardbottom/Coral 

123 -67.00 17.96 Dense Seagrass 

124 -67.12 17.94 Dense Seagrass 

125 -67.13 17.95 Seagrass with Sand 

126 -67.08 17.96 Dense Seagrass 

127 -67.05 17.96 Sand 

128 -67.05 17.96 Sand with Benthic Algae 

129 -67.05 17.96 Sand with Benthic Algae 

130 -67.04 17.96 Seagrass with Sand 

131 -67.09 17.94 Sand 

132 -67.05 17.91 Sand with Benthic Algae 

133 -66.98 17.90 Hardbottom 

134 -67.05 17.87 Hardbottom 

135 -66.99 17.90 Hardbottom 

136 -66.97 17.91 Hardbottom 

137 -67.12 17.92 Hardbottom 

138 -67.04 17.94 Seagrass with Sand 

139 -67.05 17.94 Sand with Benthic Algae 

140 -67.05 17.94 Mix:Sand/Hardbottom/Coral 

141 -67.04 17.94 Mix:Sand/Hardbottom/Coral 

142 -67.06 17.95 Mix:Sand/Hardbottom/Coral 

143 -67.06 17.94 Mix:Sand/Hardbottom/Coral 

144 -67.06 17.94 Sand 

145 -67.10 17.94 Dense Seagrass 

146 -67.05 17.96 Seagrass with Sand 

147 -67.00 17.93 Sand with Benthic Algae 

148 -67.03 17.92 Mix:Sand/Hardbottom/Coral 

149 -67.04 17.92 Mix:Sand/Hardbottom/Coral 

150 -67.04 17.91 Mix:Sand/Hardbottom/Coral 

151 -67.09 17.91 Coral Reefs 

152 -67.09 17.92 Coral Reefs 

153 -67.03 17.96 Mix:Sand/Hardbottom/Coral 

154 -67.06 17.91 Mix:Sand/Hardbottom/Coral 
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155 -67.03 17.89 Mix:Sand/Hardbottom/Coral 

156 -67.06 17.90 Mix:Sand/Hardbottom/Coral 

157 -67.08 17.90 Sand with Benthic Algae 

158 -66.97 17.90 Mix:Sand/Hardbottom/Coral 

159 -67.03 17.88 Mix:Sand/Hardbottom/Coral 

160 -67.05 17.90 Mix:Sand/Hardbottom/Coral 

161 -67.03 17.96 Mix:Sand/Hardbottom/Coral 

162 -67.00 17.94 Mix:Sand/Hardbottom/Coral 

163 -67.09 17.87 Mix:Sand/Hardbottom/Coral 

164 -67.11 17.94 Mix:Sand/Hardbottom/Coral 

165 -67.00 17.95 Seagrass with Sand 

166 -67.05 17.94 Mix:Sand/Hardbottom/Coral 

167 -67.05 17.94 Sand 

168 -66.99 17.96 Mud 

169 -67.00 17.95 Mud 

170 -67.00 17.95 Seagrass with Sand 

171 -66.99 17.95 Seagrass with Sand 

172 -67.06 17.94 Mix:Sand/Hardbottom/Coral 

173 -66.97 17.94 Sand 

174 -66.98 17.95 Dense Seagrass 

175 -67.07 17.95 Sand with Benthic Algae 

176 -67.07 17.96 Mix:Sand/Hardbottom/Coral 

177 -67.03 17.96 Coral Reefs 

178 -67.04 17.94 Coral Reefs 

179 -67.04 17.94 Sand 

180 -67.04 17.94 Sand 

181 -67.04 17.94 Coral Reefs 

182 -67.04 17.94 Coral Reefs with Sand 

183 -67.05 17.94 Mix:Sand/Hardbottom/Coral 

184 -67.05 17.94 Coral Reefs with Sand 

185 -67.05 17.94 Hardbottom 

186 -67.05 17.94 Coral Reefs 

187 -67.05 17.94 Mix:Sand/Hardbottom/Coral 

188 -67.04 17.94 Sand 

189 -67.06 17.94 Sand 

190 -67.06 17.94 Seagrass with Sand 

191 -67.06 17.94 Sand with Benthic Algae 

192 -67.06 17.94 Sand with Benthic Algae 

193 -67.11 17.87 Mix:Sand/Hardbottom/Coral 

194 -67.04 17.97 Sand with Benthic Algae 

195 -67.09 17.87 Hardbottom 

196 -67.11 17.87 Sand with Benthic Algae 

197 -67.05 17.96 Seagrass with Sand 

198 -67.05 17.95 Seagrass with Sand 

199 -67.05 17.96 Sand with Benthic Algae 

200 -67.05 17.96 Seagrass with Sand 

201 -67.04 17.96 Sand 

202 -67.04 17.96 Coral Reefs 

203 -67.04 17.96 Coral Reefs with Sand 

204 -67.04 17.95 Coral Reefs 

205 -67.05 17.95 Coral Reefs 

206 -67.05 17.95 Coral Reefs 

207 -67.05 17.95 Coral Reefs with Sand 

208 -67.06 17.95 Coral Reefs 

209 -67.05 17.95 Coral Reefs 

210 -67.06 17.95 Mix:Sand/Hardbottom/Coral 

211 -67.06 17.95 Mix:Sand/Hardbottom/Coral 

212 -67.06 17.95 Coral Reefs with Sand 

213 -67.07 17.96 Seagrass with Sand 

214 -67.06 17.97 Dense Seagrass 

215 -67.04 17.96 Sand 

216 -66.98 17.95 Mix:Sand/Hardbottom/Coral 

217 -67.02 17.93 Mix:Sand/Hardbottom/Coral 

218 -66.99 17.92 Sand with Benthic Algae 

219 -67.02 17.92 Coral Reefs 

220 -67.11 17.92 Sand 

221 -67.12 17.92 Sand 

222 -67.02 17.97 Seagrass with Sand 

223 -66.99 17.96 Seagrass with Sand 

224 -67.10 17.92 Dense Seagrass 

225 -66.99 17.96 Seagrass with Sand 

 
Accuracy Assessment Points 

ID Longitude Latitude Class Description 

1 -67.01 17.89 Coral Reefs 

2 -67.01 17.89 Hardbottom 

3 -67.00 17.89 Hardbottom 

4 -67.00 17.89 Mix:Sand/Hardbottom/Coral 

5 -66.98 17.92 Coral Reefs 

6 -67.06 17.93 Coral Reefs 
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7 -67.08 17.93 Coral Reefs 

8 -67.03 17.92 Mix:Sand/Hardbottom/Coral 

9 -67.02 17.91 Coral Reefs 

10 -66.99 17.92 Coral Reefs 

11 -67.08 17.93 Mix:Sand/Hardbottom/Coral 

12 -66.99 17.92 Coral Reefs 

13 -67.05 17.93 Coral Reefs 

14 -67.13 17.93 Coral Reefs 

15 -67.04 17.94 Coral Reefs 

16 -67.11 17.94 Coral Reefs 

17 -67.07 17.93 Coral Reefs 

18 -66.99 17.94 Coral Reefs 

19 -67.07 17.93 Coral Reefs 

20 -67.10 17.92 Coral Reefs 

21 -67.05 17.91 Mix:Sand/Hardbottom/Coral 

22 -67.05 17.91 Hardbottom 

23 -67.04 17.91 Coral Reefs 

24 -67.04 17.89 Coral Reefs 

25 -67.05 17.91 Sand with Benthic Algae 

26 -67.05 17.91 Sand with Benthic Algae 

27 -67.06 17.91 Mix:Sand/Hardbottom/Coral 

28 -67.06 17.92 Coral Reefs 

29 -67.06 17.92 Coral Reefs 

30 -67.08 17.93 Coral Reefs 

31 -67.00 17.89 Coral Reefs 

32 -67.12 17.92 Coral Reefs 

33 -67.09 17.92 Mix:Sand/Hardbottom/Coral 

34 -67.09 17.93 Coral Reefs 

35 -67.12 17.93 Mix:Sand/Hardbottom/Coral 

36 -67.13 17.93 Seagrass 

37 -67.06 17.92 Coral Reefs 

38 -67.06 17.95 Sand 

39 -67.06 17.94 Sand 

40 -67.03 17.93 Coral Reefs 

41 -66.99 17.93 Sand 

42 -66.99 17.93 Sand 

43 -67.06 17.92 Coral Reefs 

44 -67.07 17.93 Coral Reefs 

45 -67.03 17.95 Sand 

46 -67.04 17.96 Sand 

47 -67.04 17.95 Mud 

48 -67.06 17.95 Mud 

49 -67.06 17.94 Sand 

50 -67.06 17.95 Mud 

51 -67.05 17.94 Mud 

52 -66.99 17.92 Seagrass 

53 -67.01 17.90 Coral Reefs 

54 -67.06 17.94 Sand 

55 -66.98 17.91 Sand 

56 -67.00 17.94 Sand 

57 -67.01 17.91 Mix:Sand/Hardbottom/Coral 

58 -66.97 17.92 Sand 

59 -66.98 17.92 Sand 

60 -67.04 17.90 Mix:Sand/Hardbottom/Coral 

61 -66.97 17.90 Mix:Sand/Hardbottom/Coral 

62 -67.02 17.89 Sand with Benthic Algae 

63 -67.06 17.91 Sand with Benthic Algae 

64 -67.05 17.96 Sand 

65 -67.05 17.95 Seagrass 

66 -67.04 17.95 Mud 

67 -67.06 17.92 Sand with Benthic Algae 

68 -67.04 17.92 Sand with Benthic Algae 

69 -67.07 17.94 Sand 

70 -67.06 17.95 Sand 

71 -67.03 17.96 Sand 

72 -67.00 17.90 Mix:Sand/Hardbottom/Coral 

73 -66.99 17.92 Seagrass 

74 -66.98 17.91 Sand with Benthic Algae 

75 -67.01 17.95 Mud 

76 -67.03 17.95 Mud 

77 -67.06 17.92 Sand 

78 -67.07 17.91 Sand 

79 -67.07 17.91 Sand 

80 -67.11 17.91 Sand 

81 -67.09 17.93 Mix:Sand/Hardbottom/Coral 

82 -66.97 17.92 Mix:Sand/Hardbottom/Coral 

83 -67.06 17.90 Mix:Sand/Hardbottom/Coral 

84 -67.07 17.92 Mix:Sand/Hardbottom/Coral 

85 -67.03 17.92 Mix:Sand/Hardbottom/Coral 

86 -67.03 17.92 Mix:Sand/Hardbottom/Coral 
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87 -67.07 17.90 Mix:Sand/Hardbottom/Coral 

88 -67.01 17.91 Mix:Sand/Hardbottom/Coral 

89 -67.05 17.90 Mix:Sand/Hardbottom/Coral 

90 -67.03 17.92 Mix:Sand/Hardbottom/Coral 

91 -67.03 17.92 Mix:Sand/Hardbottom/Coral 

92 -67.03 17.89 Mix:Sand/Hardbottom/Coral 

93 -67.03 17.89 Mix:Sand/Hardbottom/Coral 

94 -67.06 17.90 Sand with Benthic Algae 

95 -67.09 17.91 Mix:Sand/Hardbottom/Coral 

96 -67.09 17.93 Coral Reefs 

97 -67.05 17.92 Sand 

98 -67.07 17.95 Sand with Benthic Algae 

99 -67.07 17.95 Mud 

100 -67.06 17.96 Mud 

101 -67.06 17.96 Mud 

102 -67.06 17.96 Mud 

103 -67.00 17.95 Mud 

104 -67.01 17.96 Mud 

105 -67.02 17.91 Coral Reefs 

106 -67.09 17.93 Hardbottom 

107 -67.02 17.89 Mix:Sand/Hardbottom/Coral 

108 -67.10 17.94 Mix:Sand/Hardbottom/Coral 

109 -67.08 17.89 Coral Reefs 

110 -67.06 17.89 Coral Reefs 

111 -67.00 17.89 Mix:Sand/Hardbottom/Coral 

112 -67.07 17.88 Coral Reefs 

113 -67.13 17.86 Hardbottom 

114 -67.08 17.93 Coral Reefs 

115 -67.06 17.89 Coral Reefs 

116 -67.11 17.94 Seagrass 

117 -67.09 17.93 Coral Reefs 

118 -67.10 17.93 Sand with Benthic Algae 

119 -67.07 17.89 Mix:Sand/Hardbottom/Coral 

120 -67.09 17.88 Mix:Sand/Hardbottom/Coral 

121 -67.01 17.91 Mix:Sand/Hardbottom/Coral 

122 -67.05 17.94 Coral Reefs 

123 -67.05 17.94 Coral Reefs 

124 -67.01 17.95 Seagrass 

125 -67.08 17.97 Seagrass 

126 -67.01 17.95 Seagrass 

128 -67.09 17.94 Hardbottom 

129 -67.08 17.96 Seagrass 

130 -67.06 17.96 Seagrass 

131 -67.08 17.95 Coral Reefs 

132 -67.06 17.96 Seagrass 

133 -67.06 17.96 Mix:Sand/Hardbottom/Coral 

134 -67.10 17.94 Mix:Sand/Hardbottom/Coral 

135 -67.10 17.94 Mix:Sand/Hardbottom/Coral 

136 -67.07 17.96 Seagrass 

137 -67.07 17.96 Seagrass 

138 -67.12 17.95 Seagrass 

139 -67.06 17.96 Mix:Sand/Hardbottom/Coral 

140 -67.00 17.97 Mud 

141 -67.08 17.87 Sand with Benthic Algae 

142 -67.05 17.88 Hardbottom 

143 -67.00 17.90 Hardbottom 

144 -66.98 17.90 Hardbottom 

145 -66.98 17.89 Coral Reefs 

146 -67.07 17.88 Hardbottom 

147 -67.06 17.88 Hardbottom 

148 -67.09 17.87 Hardbottom 

149 -66.98 17.91 Mix:Sand/Hardbottom/Coral 

150 -66.97 17.91 Hardbottom 

151 -67.08 17.90 Seagrass 

152 -67.13 17.89 Coral Reefs 

153 -67.10 17.90 Hardbottom 

154 -67.05 17.89 Sand with Benthic Algae 

155 -66.97 17.90 Hardbottom 

156 -66.99 17.95 Coral Reefs 

157 -67.11 17.93 Coral Reefs 

158 -67.10 17.93 Coral Reefs 

159 -66.99 17.95 Coral Reefs 

160 -67.08 17.93 Coral Reefs 

161 -67.10 17.92 Seagrass 

162 -67.03 17.97 Sand with Benthic Algae 

163 -67.11 17.92 Coral Reefs 

164 -67.07 17.96 Seagrass 

165 -67.08 17.96 Seagrass 

166 -67.03 17.96 Seagrass 

167 -67.03 17.97 Seagrass 
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168 -67.13 17.92 Coral Reefs 

169 -67.09 17.94 Seagrass 

170 -67.08 17.94 Mix:Sand/Hardbottom/Coral 

171 -67.06 17.94 Coral Reefs 

172 -67.08 17.93 Mix:Sand/Hardbottom/Coral 

173 -67.01 17.95 Seagrass 

174 -67.10 17.93 Coral Reefs 

175 -67.12 17.92 Seagrass 

176 -67.11 17.93 Seagrass 

177 -67.12 17.93 Mix:Sand/Hardbottom/Coral 

178 -67.05 17.95 Seagrass 

179 -67.10 17.92 Mix:Sand/Hardbottom/Coral 

180 -67.04 17.96 Hardbottom 

181 -67.03 17.92 Mix:Sand/Hardbottom/Coral 

182 -67.03 17.93 Mix:Sand/Hardbottom/Coral 

183 -67.08 17.88 Mix:Sand/Hardbottom/Coral 

184 -67.03 17.93 Mix:Sand/Hardbottom/Coral 

185 -67.04 17.92 Mix:Sand/Hardbottom/Coral 

186 -67.03 17.89 Mix:Sand/Hardbottom/Coral 

187 -67.06 17.94 Coral Reefs 

188 -67.07 17.94 Coral Reefs 

189 -67.07 17.92 Mix:Sand/Hardbottom/Coral 

190 -67.09 17.87 Sand with Benthic Algae 

191 -67.09 17.88 Mix:Sand/Hardbottom/Coral 

192 -67.11 17.87 Sand with Benthic Algae 

193 -67.13 17.87 Mix:Sand/Hardbottom/Coral 

194 -67.13 17.88 Coral Reefs 

195 -67.13 17.88 Mix:Sand/Hardbottom/Coral 

196 -67.13 17.88 Mix:Sand/Hardbottom/Coral 

197 -67.08 17.92 Mix:Sand/Hardbottom/Coral 

198 -67.08 17.94 Coral Reefs 

199 -67.12 17.92 Seagrass 

200 -67.12 17.92 Sand with Benthic Algae 

201 -67.06 17.97 Mud 

202 -67.06 17.96 Sand with Benthic Algae 

203 -67.00 17.95 Seagrass 

204 -67.00 17.95 Sand with Benthic Algae 

205 -67.00 17.95 Sand with Benthic Algae 

206 -66.99 17.96 Seagrass 

207 -67.00 17.95 Seagrass 

208 -66.98 17.96 Seagrass 

209 -66.99 17.96 Seagrass 

210 -67.00 17.96 Seagrass 

211 -67.00 17.96 Mud 

212 -67.02 17.95 Mud 

213 -67.01 17.94 Coral Reefs 

214 -67.08 17.89 Coral Reefs 

215 -67.06 17.89 Coral Reefs 

216 -67.00 17.91 Coral Reefs 

217 -67.12 17.86 Coral Reefs 

218 -67.09 17.89 Coral Reefs 

219 -67.11 17.89 Coral Reefs 

220 -67.07 17.90 Coral Reefs 

221 -67.03 17.88 Hardbottom 

222 -67.05 17.90 Coral Reefs 

223 -67.09 17.87 Mix:Sand/Hardbottom/Coral 

224 -67.09 17.89 Coral Reefs 

225 -67.12 17.91 Sand with Benthic Algae 

226 -67.11 17.89 Coral Reefs 

227 -67.11 17.87 Hardbottom 

228 -67.11 17.86 Mix:Sand/Hardbottom/Coral 

229 -67.13 17.86 Coral Reefs 

230 -67.13 17.91 Sand with Benthic Algae 

231 -67.05 17.88 Hardbottom 

232 -67.09 17.88 Hardbottom 

233 -66.99 17.93 Coral Reefs 

234 -67.10 17.88 Coral Reefs 

235 -67.05 17.93 Coral Reefs 

236 -67.02 17.92 Seagrass 

237 -67.00 17.91 Seagrass 

238 -67.00 17.92 Sand with Benthic Algae 

239 -67.03 17.91 Coral Reefs 

240 -66.99 17.93 Coral Reefs 

241 -67.10 17.87 Coral Reefs 

242 -67.03 17.90 Coral Reefs 

243 -67.05 17.92 Coral Reefs 

244 -67.05 17.92 Coral Reefs 

245 -67.11 17.88 Mix:Sand/Hardbottom/Coral 

246 -67.05 17.92 Coral Reefs 

247 -66.99 17.92 Sand 



164 

 

248 -67.11 17.88 Coral Reefs 

249 -67.00 17.93 Sand 

250 -67.02 17.92 Coral Reefs 

251 -67.05 17.94 Sand with Benthic Algae 

252 -67.05 17.96 Sand with Benthic Algae 

253 -66.98 17.93 Coral Reefs 

254 -67.05 17.93 Sand with Benthic Algae 

255 -67.06 17.93 Coral Reefs 

256 -67.06 17.93 Coral Reefs 

257 -67.07 17.93 Sand with Benthic Algae 

258 -67.05 17.94 Sand with Benthic Algae 

259 -67.03 17.93 Seagrass 

260 -67.06 17.93 Coral Reefs 

261 -67.06 17.93 Sand 

262 -67.07 17.93 Seagrass 

263 -67.06 17.94 Sand 

264 -67.01 17.93 Sand 

265 -66.98 17.94 Sand 

266 -67.02 17.94 Coral Reefs 

267 -67.04 17.94 Mix:Sand/Hardbottom/Coral 

268 -67.06 17.95 Mix:Sand/Hardbottom/Coral 

269 -67.10 17.89 Mix:Sand/Hardbottom/Coral 

270 -67.07 17.89 Mix:Sand/Hardbottom/Coral 

271 -67.12 17.87 Sand with Benthic Algae 

272 -67.09 17.87 Coral Reefs 

273 -67.05 17.94 Sand with Benthic Algae 

274 -67.04 17.94 Sand with Benthic Algae 

275 -67.05 17.94 Sand with Benthic Algae 

276 -67.04 17.94 Sand with Benthic Algae 

277 -67.05 17.94 Sand with Benthic Algae 

278 -67.01 17.96 Mud 

279 -67.11 17.93 Coral Reefs 

280 -67.00 17.93 Mix:Sand/Hardbottom/Coral 

281 -67.11 17.93 Seagrass 

282 -66.99 17.90 Hardbottom 

283 -67.11 17.93 Seagrass 

284 -67.04 17.96 Seagrass 

285 -67.07 17.97 Seagrass 

286 -67.06 17.97 Seagrass 

287 -67.08 17.95 Seagrass 

288 -67.11 17.94 Seagrass 

289 -67.01 17.93 Sand with Benthic Algae 

290 -67.08 17.95 Sand with Benthic Algae 

291 -67.10 17.95 Seagrass 

292 -67.07 17.97 Mud 

293 -67.12 17.92 Coral Reefs 

294 -67.11 17.94 Coral Reefs 

295 -66.99 17.96 Seagrass 

296 -67.04 17.96 Seagrass 

297 -66.99 17.95 Sand 

298 -67.01 17.94 Seagrass 

299 -67.01 17.94 Seagrass 

300 -67.13 17.94 Seagrass 

301 -67.07 17.94 Coral Reefs 

302 -67.06 17.96 Seagrass 

303 -67.10 17.94 Seagrass 

304 -67.06 17.94 Seagrass 

305 -67.05 17.96 Mix:Sand/Hardbottom/Coral 

306 -66.98 17.95 Seagrass 

307 -67.13 17.93 Seagrass 

308 -67.07 17.94 Coral Reefs 

309 -67.06 17.97 Seagrass 

310 -67.04 17.97 Seagrass 

311 -67.05 17.96 Seagrass 

312 -67.05 17.97 Seagrass 

313 -67.05 17.97 Seagrass 

314 -67.06 17.94 Mix:Sand/Hardbottom/Coral 

315 -67.01 17.94 Coral Reefs 

316 -66.99 17.97 Sand with Benthic Algae 

317 -66.99 17.97 Seagrass 

318 -67.07 17.94 Coral Reefs 

319 -67.07 17.94 Coral Reefs 

320 -67.06 17.94 Seagrass 

321 -67.06 17.94 Seagrass 

322 -67.04 17.97 Seagrass 

323 -67.02 17.97 Mud 

324 -67.03 17.97 Seagrass 

325 -67.02 17.97 Sand with Benthic Algae 

 


