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Abstract of Thesis Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

Automatic Person Authentication Using Fewer Channel EEG
Motor Imagery

by
Orlando X. Nieves

Chair: Dr. Vidya Manian
Department: Electrical and Computer Engineering Department

In today’s world, there are different aspects of security in which appropriate com-

puting technologies play an essential role. One such aspect is person’s identification.

While there are numerous ways to identify a person, from using finger prints to using

face recognition; most of them exhibit, on one way or the other, unacceptable levels of

reliability. On the other hand, recent developments in brain computer interfaces (BCI),

using Electroencephalogram (EEG) signals have been emerging as a feasible option for

identification systems. Current EEG based authentication systems use more than 8 up

to even 60 electrodes placed on the scalp to record data. In this work, we propose and

analyze an approach in which person’s identification is achieved by measuring the EEG

signals that the person generates while imagining simple motor movements, and which

requires as few as 2 to 6 channel electrodes. The system uses the Short Time Fourier

Transform (STFT) for extraction of time-frequency features also called as spectrogram.

Energy, variance, and skewness features are computed on the spectrogram. These features

are used to train a support vector machine and a neural network classifier. The classi-

fiers are tested for person authentication with testing data using cross-validation. Results

using a different number of channels with optimum features are presented. A Graphical

User Interface is also presented for easy use of the person authentication system.
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Resumen de tesis presentado a la Escuela Graduada

de la Universidad de Puerto Rico como requisito parcial de los

requerimientos para el grado de Maestŕıa en Ciencias

Autenticación Automática de Persona que Utiliza Menos Sañals

de EEG usando Imaginaćıon Motriz

por

Orlando X. Nieves

Consejero: Dr. Vidya Manian

Departamento: Ingenieŕıa Eléctrica y Computadoras

En el mundo de hoy, hay diferentes aspectos de seguridad en los cuales la tecnoloǵıa

computacional apropiada juegan un rol esencial. Uno de estos aspectos es el identificar

una persona. Hay numerosas maneras de identificar una persona, desde el uso de huellas

dactilares a reconocimiento facial; pero la mayoŕıa exhiben, de una manera u otra, nive-

les inaceptables de confiabilidad. Por otro lado, nuevos avances en interfaces neuronales

directas (IND), usando señales de electroencefalograma (EEG en ingles), han empezado a

sonar como opciones factibles para sistemas de identificación. Sistemas de identificación

actuales que usan EEG, usan mas de 8 y hasta 60 electrodos posicionados en el cuero

cabelludo para recolectar información. En este trabajo, proponemos y analizamos un

nuevo enfoque en el cual la identificación de una persona se consigue midiendo señales

EEG que la persona genera cuando se imaginan movimientos motores simples, y lo cual

requiere tan poco como 2 a 6 electrodos. El sistema utiliza Transformada de Fourier de

Tiempo Corto (Short-time Fourier transform, STFT) para la extracción de caracteŕısticas

de tiempo y frecuencias, las cuales se grafican en un espectrograma. Caracteristicas de

enerǵıa, varianza, y asimetŕıa son computadas en el espectrograma. Estas caracteŕısticas

se usan para entrenar máquinas de soporte vectorial y un clasificador de redes neuronales.
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Los clasificadores se verifican con datos de prueba utilizando validación cruzada. Presen-

tamos resultados utilizando cantidades diferentes de canales con caractersticas óptimas.

Una interfaz gráfica de usuario (GUI, en ingles) también es presentada para el uso sencillo

del sistema identificador de personas.
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Chapter 1

INTRODUCTION

1.1 Motivation

Biometrics is the measuring and statistical analysis of people’s physical and behavioral

attributes. This technology can be used to define an individual’s unique identity, often

employed for security purposes. The traditional biometric traits are typically based on

face recognition, retina or iris scanning, fingerprints, hand geometry, palm print signature,

keystroke entry pattern, or voice recognition [1]. However, many of these traits can be

forged or stolen. Fingertips, for example, can be damaged by an injury or can be forged

by a gummy finger. Face recognition application can be tricked by disguises. Brain waves

or Electroencephalogram (EEG) is the electrical activity of an individual’s brain that is

unique and cannot be tampered with. Hence EEG is proposed as an alternative or an

additional way of securing biometric applications [2].

EEG signals are gathered from electrodes that are placed in several locations on the

scalp. Because everyone’s brain is structured differently, each EEG signal is unique for

each person. EGG uniqueness makes the biometric un-forgeable or un-duplicable. The

main disadvantage of using EEG signals is the setup for data acquisition. This setup

can take up to 15 minutes to complete. This is impractical for an identification system

that needs immediate results. There have been a few but not many papers reporting

studies on EEG signals as biometrics [2, 3, 4, 5, 6, 7, 8]. Most of them use more than

32 electrodes and have a complicated data acquisition procedure using images or other

sensory inputs to stimulate the brain. This process is time-consuming and makes it

impractical to implement a real-time biometric system based on EEG. In this thesis work,

we propose a simpler identification mechanism that reduces the number of electrodes to

3 and uses simple motor imagery features of the body without compromising the results.

1
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This involves minimal setup time and makes a more practical identification system.

1.2 Outline

The outline of this thesis is as follows. Chapter 2 gives a brief description of the methods

and algorithms presented in this document. The step by step process of the completion

of the objective is explained in Chapter 3. A study of the results using different channels

and classifiers using EEG signals to identify a person are given in Chapter 4. Chapter 5

Ilustrates a sample Graphic User Interface(GUI). Finally, Chapter 6 gives the conclusions

and the direction for further development.

1.3 Objective

1.3.1 General Objective

• To develop and implement a person authentication system using brain EEG motor

imagery.

• The system will make use of a minimal number of electrodes.

• Implement the system to run in real-time.

1.3.2 Specific Objectives

• Experiment with different numbers of nodes to get maximum identification accuracy.

• Test with SVM and NN so that the authentication system can authenticate an

unknown subject in real-time.



Chapter 2

THEORETICAL BACKGROUND

This chapter describes important concepts about EEG signals and the Brian Computer

Interface (BCI) system, including the algorithms used for its implementation in this work.

We use EEG signals as the input from the users to the system. The input signals are

then transformed to time-frequency representation using short-time Fourier transform

(STFT). A spectrogram is used as feature extraction method, and classification stage is

implemented using Support Vector Machine (SVM) and Neural Network(NN).

2.1 Biometric

Using a person’s behavioral or physiological characteristics is refered to as biometric

recognition. For a characteristic to be considered for as a barometric, it must be

• Universal: It’s a characteristic that everyone has.

• Distinct: It’s a characteristic that differs form each person

• Permanent:It’s a characteristic that is long lasting.

• Collectible: It’s a characteristic that can be measured quantitatively

2.1.1 Biometric system

A biometric system uses biometric recognition for personal recognition. For a biometric

system to use it has to consider:

• Performance: The accuracy and efficiency of a biometric system

3
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• Ethical While a biometric system might be good; it might pose ethical problems

with users.

• Circumvention It should be hard to impossible to fool the system.

2.1.2 Current Biometrics

This section describes some of the current biometric systems employed today, and their

disadvantages employed today [12].

• DNA Deoxyribonucleic acid (DNA) is blueprint for one’s individuality. Except for

twins, everyone has a different DNA. While DNA would make it a good use for

bioethics, it has some issues.

1. While it may be unique, it’s easy to get a hold of, this makes it susceptible to

being impersonated.

2. A real-time system would be impossible because DNA matching needs chemical

methods.

• Ear: Using the distance of a landmark location on an ear a salient point on the

pinna we can use biometrics to identify a person by their ear.

• Face Recognition: Since birth human beings have been able to determine people

by their face. Today systems use face recognition to identify mug-shots to identifying

a person in a cluster of people. Unfortunately, a system is not safe as a person may

change their appearance and the system may not be able to identify them.

• Facial, hand, and hand vein infrared thermogram: Using infrared camera we

capture the pattern of heat generated by the human body. This biometric system

is can be uses for cover identification. While this system does not require contact,

in an uncontrolled environments image acquisition is challenging.

• Fingerprint: Determined during the first 7 month of fetal development, each hu-

man has their own finger print. While this can be an adequate identification system

it suffers from minor errors, the first is that they require computation power to

be able to identify the person. Other factor like aging and bruises may cause the

system to have errors.

• Gait: The gait is the way a person walks, while it may not be highly discriminatory

it still discriminatory enough to be use for low level security.
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• Hand and finger geometry By taking the measurements of the human hand,

which include the shape size of palm and length and widths of the fingers. This a

geometry based verification system has been used commercially around the world.

While they are easy to use the geometry of the hand isn’t very distinctive and hand

information might have to change because of growth for children.

• Iris: Formed during fetal development, the visual appearance of the iris develops

during the first two years of life. Like fingerprints the iris is unique for each person

(not even twins have the same eyes) which makes them perfect for a biometric

system. Currently, we still trying to develop a cheap and large-scale biometric

system.

• Keystroke The way a person write on a keyboard can be considered a biometric

system. This biometric system is considered a behavioral biometric. While it may

not be unique keys stroke biometrics offer enough discriminatory information to be

used as a biometrics.

• Signature: Each person has a unique signature, how the person signs his names

varies force person to person. While signatures may be hard to forger, there are

professionals that can do it which make it not a good identification system.

• Voice: Each person’s voice is based on the shape and size of the body part that

created the voice: vocal tracts, mouth, nasal cavities and lips. While, the body

parts mention don’t change for an individual, but the person could age, medical

condition or emotional state might change the voice. Voice isn’t very distinctive,

which makes unsuitable for an large -scale identification system.

2.2 EEG Signals

Electroencephalography (EEG) is an electrical activity of an individual’s brain that can be

collected using electrodes. EGG are created by the electrical communication of millions

of neural cells. There are five different frequency band in which EEG can be divided,

called brain rhythms these are[13] :

• Delta (δ) rhythms are between (0.5Hz-3.5Hz). There are associated with deep sleep

and are common in newborns.
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• Theta (θ) rhythms are between (3.5Hz-7.5Hz)); they are most common during sleep.

This can be seen in infants and children but high θ rhythms on an awake adult it is

a sign of a brain disorder.

• Alpha (α) rhythms are between (7.5Hz-12.5Hz) under mental inactivity and relax-

ation, best seen with eyes closed.

• Beta (β) rhythms are between (12.5Hz-30.5Hz) of less amplitude than the α rhythms.

During states of tension or anticipation, β rhythms are usually enhanced.

2.3 Spectrogram

The spectral content of the EEG signals is non-stationary, which means the signal changes

over time. The Discrete Fourier Transform (DFT) is a mathematical operation that de-

composes a waveform into a sum of sinusoid components, where the coefficients represent

the correlation between the signal and the particular frequency sinusoid. But applying

the DFT, along the signal does not reveal the transitions in the spectra, it just shows

the frequencies present. Hence, applying the DFT over short periods of time (regular

intervals) known as STFT is used. The EEG signal can be considered as stationary. This

approach allows identification of the interval of time at which all frequencies are present

in the signal. The discrete STFT is computed using a window function w centered at

time n, given as:

y(n, k) =
∞∑

m=−∞

x[m]w[n−m]e
−j2nkm

N (2.1)

where x[m] is the signal to be analyzed and N is the frequency sampling factor. The

resulting STFT is represented as a matrix with time and frequency ω = 2πk / N infor-

mation. The size of the window has the effect of changing the time-frequency resolution,

with a wider window better frequency resolution but lower time resolution, and vice versa

for a narrow window are obtained.

2.4 Energy

Energy defined on the STFT could characterize signal complexity with the changes in time,

and also many of the characteristics in the frequency domain, which had a good time-

frequency local capabilities. Let EHL, EHR be the energy distribution of the spectrogram
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of imagining left-hand movement and imagine right-hand movement signals yHL and yHR,

respectively. They are calculated as below

EHL =
1

n

n∑
i=1

yHLi
(2.2)

EHR =
1

n

n∑
i=1

yHRi
(2.3)

The same features are also computed on imagining left foot movement and imagine right

foot movement and are given as EFL and EFR.

They have been used widely for face recognition. For EEG signals they are calculated

as follows:

EHL =
1

n

n∑
i=1

yFLi
(2.4)

EFR =
1

n

n∑
i=1

yFRi
(2.5)

ET =
1

n

n∑
i=1

yT i (2.6)

where n is the length of the spectrogram. The same features are also computed on

imagining left-foot movement and right-foot movement and are given as EFL and EFR.

Another motor imagery task the imagination of tongue movement. The energy feature

computed on this signal is ET . The energy features are concatenated into a feature vector

E for each subject.

E = {EHL, EHR, EFL, EFR, ET} (2.7)

2.5 Standard Deviation

The standard deviation of vector L is defined as

SD =

√√√√ 1

N − 1

N∑
i=1

|Li − µ|2 (2.8)
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the µ is defined as the mean.

2.6 Skew

Skew is the measure of the asymmetry of the data around the mean level. It’s defined as

S =
E(x− µ)3

σ3
(2.9)

where µ is the mean of x, σ is the standard deviation of x defined in function 2.8 and

E(t) is the expected probability.

2.7 Support Vector Machine

The kernel machine or support vector machine (SVM) is one of the most recent and pow-

erful classifiers there is. It uses a discriminative hyperplane that maximizes the margins,

which is the distance between the closest instances to the hyperplane[14]. By maximizing

the margins, the SVM selects the accurate hyperplane.

Suppose we have two classes with labels -1/+1

min
1

2

n∑
i=1

ai −
1

2

n∑
i=1

n∑
j=1

yiyjaiajK(xj, xj) (2.10)

s.t.
n∑

i=1

yiai = 0, 0 ≤ ai ≤ C (2.11)

where C is the penalty factor which allows controlling of the trade-off between the mis-

classification and the size of the margin between classes. Because the SVM uses a hyper-

plane it would only be able to classify classes that can be separated linearly; the problem

has to be transformed to a higher dimension for non-linear problems, this is done with a

kernel function.

The SVM can use different kernel functions or kernel tricks, the most used are linear,

polynomial, radial-basis function(RBF), and sigmoid. Let x be the training vector then

the linear kernel would be:

K(xi, xj) = xtixj (2.12)
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The polynomial kernel:

K(xi, xj) = (γxtixj + r)q, γ > 0 (2.13)

The RBF kernel:

K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0) (2.14)

The sigmoid

K(xi, xj) = tanh(γxtixj + r) (2.15)

where q, r and γ are set by the user[15].

While the kernel function helps with the non-separable classes, SVM is still not a

multi-class classifier. In other words to make the SVM a muti-class classifier several

algorithms have been developed: one-versus-one and one-versus-all are the most popular.

For this research, the LIBSVM library that’s being used uses one-verseone[15]. Unlike

the one-versus-all algorithm that makes n models for n classes one-verses-one makes model

one for every pair of classes. While one-verses-one has more models it has been tested to

be better with larger problems[16, 23].

2.8 Neural Network

The Multilayer Perceptron or Neural Network(NN) were designed after studying the brain.

An abstract mathematical model representation of a neuron was design by McCulloch and

Pi tts[McChulloch]. Their model

• receives as input a finite number x1, x2, . . . , xn

• it calculates the sum s =
∑m

i=1wixi of the weights w1, . . . , wm

• uses a threshold on the result s and outputs 0 or 1 depending on the value
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Fig 2.1: The McCulloch-pit Model of the neuron

The MccCulloch model outputs 1 if

w1x1 + w2x2 + · · ·+ wmxm > T (2.16)

or 0 otherwise. The model described in figure 2.1 can be rewritten as

D = w0x0 + w1x1 + · · ·+ wmxm (2.17)

where the output will be 1 if D > 0 and output 0 if D ≤ and where w0 is the bias weight.

This new model is represented in figure 2.2

Fig 2.2: Baised weight model

Rosenblatt used the McCulloch model described in figure 2.1 to form a trainable

classifier called a perceptron. The perceptron works by giving each input a weight. Theses

weight are randomized at first but with each iteration of the data, change to get a better
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output. A simple example would be:

y =
d∑

j=1

wjxj + w0 (2.18)

where w0 is a weight that comes from a bias unit, wj is the weight for each value of the

vector.

Fig 2.3: A three-layer NN where the weight between x
(k−1)
i and x

(k)
j is w

(k)
ij

Figure 3.8 shows a three layer NN with nodes x
(0)
1 , x

(0)
2 , x

(0)
3 are the inputs layer and

x
(2)
1 , x

(2)
2 , x

(2)
3 are the output layer. The layer in between the input layer and the output

layer is called the hidden layer and this can be composed of a multitude of layer and

nodes. Having a hidden layer allows an NN to classify classes that are not convex or

separated by a hyperplane [17].

2.8.1 Back-Propagation Algorithm

While each weight in an NN starts off randomly, in each iteration of training the weights

change try to get the desired target. This change in the weights can’t be a small change

because it will usually not affect the output of the network. The output of a node would

change if the weight changed enough for the sign of that node to change. The back-

propagation algorithm changes the weights of the nodes enough for the output to change.

The back-propagation algorithm is composed of two main steps:

1. the feed-forward step
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2. back-propagation step

The feed-forward step is composed of calculating the outputs of the nodes starting at

layer 1 and working forward to the output layer. While in the back-propagation step the

weights are updated in an attempt to get better agreement between the output of the NN

and the target output.

The back-propagation algorithm contains the fallowing steps [17]:

1. Weights w
(k)
ij are randomly initialized to a small value, an a constant positive integer

is chosen for c.

2. Set x
(0)
1 , . . . , x

(0)
M0

to the features of samples 1 to N .

3. Feed-forward step. For k=0, . . . , K − 1 where K is the number of layers in an NN

compute

x
(k+1)
j = R

( Mk∑
i=1

w
(k+1)
ij x

(k)
i

)
, (2.19)

for nodes j = 1, . . . ,Mk+1. For the threshold, the sigmoid function was used

R(s) =
1

(1 + e−s)
. (2.20)

4. Back-propagation step. For the nodes in the output layer, j= 1, . . . ,MK compute

δ
(K)
j = x

(K)
j (1− x(K)

j )(x
(K)
j − dj). (2.21)

For layers k = K − 1, . . . , 1 calculate

δ
(k)
i = (1− x(k)i )

Mk+1∑
j=1

δ
(k+1)
j w

(k+1)
ij (2.22)

for i = 1, . . . ,Mk.

5. Replace w
(k)
ij by w

(k)
ij − cδ

(k)
j x

(k−1)
i for all i,j,k

6. Until w
(k)
ij cease to change significantly, repeat steps from 2 to 5.



Chapter 3

METHODOLOGY

Spectrogram
Feature extraction: 

Energy

Cross-validationClassification

EEG Signal

Train

Test

Feature Vector

Fig 3.1: Flow chart of the methodology.

The methodology consists of EEG data acquisition for the motor imagery tasks of thinking

movement in five parts of the body such as left hand, right hand, left foot, right foot and

tongue. Once sufficient trials of EEG signals for the above tasks are obtained from a

subject, the spectrogram is computed on each of these signals. The feature extraction

stage consists of computing the energy features on the spectrogram. The work flow for

the methodology is given in the Figure 3.1.

3.1 Signal acquisition

The EEG signal generated by the cerebral cortex is measured with a different number

of active electrodes (maximum 32 possibles) in the scalp surface with AgCl conductive

paste applied on the region to provide good conduction. Each subject is seated in a

comfortable chair and asked to see the monitor. On the monitor the words left, right, and

13



14

up are displayed. For the first 120 trials, the subject is told to imagine moving his left

and right hand based on the word in the monitor. The next 120 trials the subjects will be

told to imagine moving their left and the right leg based one the word in the monitor, and

for the last 60 trials the subject is told to imagine moving their tongue up. The voltage

recorded from the scalp is sampled at 500Hz.

3.1.1 Hardware

The hardware used to collect data is composed of: BrainAmp amplifier and Easycap wore

on the head. from Brain products. Easycap is an EEG recording device, the device uses

32 ring-shaped electrode to collect 32 channels of data. In Fig3.2 the electrodes can be

seen as three colors: white, blue and black. White are the 32 channels electrodes, while

blue and black are the reference electrode and black are the ground electrode.

Fig 3.2: Picture of Easycap

The data collected from the Easycap is transmitted to the BrainAmp, which amplifies

and digitize the EEG bio-signals collected by the Easycap, see Fig 3.3. The BrainAmp

can convert from a sequential 16bit to digital, with a 5 Khz sample per channel.The

specifications for the BrainAMp are in table 3.1.
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Fig 3.3: Picture of BrainAMp amplifier

Table 3.1: BrainAmps Specifications

Specification Value

Number of channels 32

Channel type One electrode as reference

Impute impedance 10MΩ

input noise ≤ 2µvpp

common-mode rejection (CMR) ≥ 90dB

low-cutoff (high-pass) 0.016 Hz/10s

High-cutoff frequency (low-pass) 1000hz

Measuring range ± 3.28mV

Sampling rate 5000 HZ per channel

DC offset tolerance ± 300mV

Resolution 0.1 µV per bit

power consumption Max. 110 ma

The electrode gel shown in fig 3.3 was used to reduce the impedance of the electrodes

in the cap to obtain more accurate data. The gel is applied to every electrode in the cap,

while the subject is wearing it.
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3.1.2 Nodes Location

To improve on former work, data was collected using a different number of channels. Using

only groups of electrodes of sizes 2, 3,4,6, and 8 was the data used fro the experiment.

The nodes that were used are listed below:

1. C3, C4

2. C3, Cz, C4

3. F3, Fz, F4

4. O1, O2, Pz

5. C3, C4, FC5, FC6

6. C3, C4, FC1, FC2, FC5, FC6

7. C3, C4, F3, F4, FC1, FC2, FC5, FC6

This group was chosen based on previous work[18], where they used 2 electrodes for each

channel. The work mention uses 8 electrodes for EEG data, where channel 1 corresponds

to FC4 and CP6, corresponds to 2 was P2 and P6, channel 3 corresponds to FC3 and

CP3, and channel 4 corresponds to P5 and P1.

The locations of the channel are displayed in Figure 3.4. The first two channels,

channels C3 and C4 were selected to try and improve the time required to set up the

biometric system without compromising too much on the results. Channels C3, Cz, and

C4 were selected to improve results on the first channels selected without compromising

too much on time. Because of their proximity to the reference node channels F3, Fz, and

F4 were selected. Channels O1, O2, Pz were selected because of the visual part of the

brain is located in the same area. To improve on results [18] channels C3, C4, FC5, and

FC6 were selected. Channels C3, C4, FC1, FC2, FC5, and FC6 were selected to try to

improve the
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Fig 3.4: Position of electrodes in Easycap illustration
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3.1.3 Software

(a) Software right display (b) Software left display

(c) Software up Image

Fig 3.5: Images of the software that each subject saw.

A graphic user interface(GUI) was created using labview to display the commands to

the subject. The GUI displays the words: Right, Left and Up to the subject. Fig 3.5 is

what the subject sees in the computer monitor. This work is similar to the work done

in[19], where the electrodes used are C3,C4

Besides showing the words, the GUI also sets the time stamps for each label in the

EEG data that was being collected. The software that was used to collect EEG data was

the BrainVision Recorder (BR). The BR is a flexible recorder that records and shows in

real time, the EEG signal being collected by the Easycap. The data recorded by the BR

is stored in the computer as raw digitized data. An example of the EEG data can be seen

in Figure 3.6.
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Fig 3.6: BR display where the leters and symbols on the left hand side are the 32 channels
and the read line in the buttom are the time tags.

After recording the data with BR, an application called BrainVision Analyzer is used

to create generic data out of the data recorded.
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3.2 Feature extraction

(a) Spectrogram of right hand data (b) Spectrogram of left hand data

(c) Spectrogram of right leg data (d) Spectrogram of left leg data

(e) Spectrogram of tongue data

Fig 3.7: Spectrogram for data of first subject .

After the data is collected and the generic data has been acquired, the spectrogram

function of matlab is used to get the STFT of each of the EEG sample. Figure 3.7 shows

the spectrogram of the first subject. STFT is done similar to [20] where the window

function is being multiplied by the Fourier Transform of the EEG. After getting STFT of
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each feature, the STFT multiplied by 10log10, this is done to get the decibel value which

the first 5 observations. The next 2 observation are the skew and the variance of the

STFT of each EEG sample. This makes 15 observations for each channel.

3.3 Feature Selection

To quantify the separation between classes, this research used the same procedure in [21].

Let M be the normalized matrix of the features and Ŷ is the feature matrix for each

subject. We then can get the sum of the distance:

DL =
∑
J

|Ŷi,j −Mi| (3.1)

where i is the feature index , L is the number of the feature’s, j is the class index, and J

is the total number of matrix imagery class. We also calculate the standard deviation for

each feature :

σL =

√√√√ 1

J

J∑
j=i

(Yi,j −Mi)
2 (3.2)

Sorting the results of equation (3.1)-(3.2), the first 60 features were selected. Those were

the features that are used for classification.

3.4 Cross-validation

After selecting the best features from the selected channels, the data was split using 10

Kfold partitions, this done for cross-validation. Cross-validation is use to get accurate

accuracy for the classifier C. Accuracy is defined here as: Acc = Pr(C(v) = y) for

a randomly selected instance 〈v, y〉 ∈ X, where the probability distribution over the

instance space is the same as the distribution that was used to select instance for the

inducer’s training set. Where the inducer builds a classifier from a given dataset. One

accuracy doesn’t give many details about the classified data,that’s why cross-validation

is used.

The function used in this experiment is the k -fold cross validation. In k -fold cross-

validation (the folds) D1, D2, . . . Dk are randomly split k subset of approximately equal
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size o f data set D. For each of the k subset, the inducer is trained and tested k times,

where each t ∈ /1, 2, . . . , k/, it is trained on D \Dt. Let the instance xi = 〈v, y〉 be a test

set in D(i) then the cross-validation estimate of accuracy:

acccv =
1

n

∑
〈vi,yi〉∈D

δ(I(D \D(i), vi), yi) (3.3)

where δ(i, j) = 1 if i = j and 0 otherwise and I is the inducer. Then a complete cross-

validation is used where the average of all
(

m
m\k

)
possibilities for choosing m \ k instance

out of m[22].

3.5 Classification

After using the 10 KFold partition to divide the data into training and testing set,the

data was run through two different classifiers, the (SVM) and the (NN).

3.5.1 Support Vector Machine

As discussed in section 2.7 this experiment used LIBsvm code for the SVM. The kernel

that was used is the Polynomial kernel, because the Polynomial maps the input to a

higher dimensional space and with more subject it’s easier to classify. The SVM uses a

one versus one system in this case its makes a model for each class and compares with

each and gives a point to the class that won, whichever class has the most points the data

is assigned that label.

3.5.2 Neural Network

For this experiment matlab, NN toolbox was used. The toolbox uses different types of

training function, for this experiment trainscg function was used to train the NN . The

trainscg The NN that was used in this experiment had 2 hidden layers one with 41 nodes

and the second with 22 nodes. Fig 3.8 is an illustration of the NN that was used in this

experiment, where the input layer has 60 nodes and the output layer were 20 nodes.
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Fig 3.8: Matlab Image of NN

3.6 Experiment

Each subject was told to sit in a chair and to think of moving either their hands, feet or

tongue based on the software described in section 3.1.3. The first 60 trials the subject

was asked to think about moving his or her hands while the display showed left and right.

The next 60 trials were the same except that the subject had to think that he or she was

moving their legs. For the final 60 trials, the subject was asked to think they were moving

their tongue up. The experiment is composed of 20 different subjects between the ages

of 18-28 both female and male. After the data collection was complete, time-frequency

representation and features were extracted from SFTF. After the data was randomly

partitioned the classifiers were trained. Using different channels to compare the results

of each of the classifiers. After 6 month data was collected and classfied, from 3 subjects

from the 20 subjects to show that the data is constent.

3.7 Time Consumption

Table 3.2: Time Table

Operation Time Consumed
Data Separation 9:21min

Feature Extraction 6:30min
Feature Selection 1.5s

SVM Training Time 20s
SVM Predicting time 1.4s

NN Training Time 5:40in
NN Predicting Time 1.5 s

As mentioned on section 2.1.1, a biometric system has to be both accurate and efficient,

this is why efficiency has to be considered as much accuracy. Table 3.2 shows the time

consumption for each of the procedures mentioned in last sections. The table shows that



24

Data Separation is 9:21min. This time is how long the system took to load all 20 subjects’

raw data into the system. Feature Extraction takes 6:30 min because of all the data that

has to be used. These two high times only happen once, the first time is ran. The table

also shows that the SVM classifier is faster than the NN. The computer that was used

had a Intel Xeon 2.6 Ghz dual core and a 32 GB RAM
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RESULTS

In this chapter, classification accuracy for different subjects is presented. The accuracy

include the use of 2, 3, 4, 6, and 8 channels and SVM, NN classifiers. The data was

divided, and 1/10 of the trials were selected for testing. In other words, 6 trials were

randomly chosen out of the 60 trials, ten times. After the feature extraction and the

feature selection, the data was left with a feature matrix of 60 rows with 132 columns,

for each subject. Multiplying the 132 columns by the ten folds that were done, there are

1320 observations for each subject. The results for these instances are recorded in the

confusion matrices and the receiver operating characteristic (ROC) curve. These results

are from pre-recorded data and not real time data.

The confusion matrix shows the results for each subject by showing how many of

the 1300 observations were correctly classified. The last column of the confusion matrix

shows the percent of all observations that were correct; this gives the accuracy of the

classifier. The final row in the confusion matrix shows the parentage of observation that

was classified correctly out of all the observation that were classified as the subject.

The ROC curve is a plot that shows all the pairs of true-positives and true-negatives,

varying the decision threshold over all the results observed. In ROC curve the y-axis is

defined as (number of true-positive test results)/(number of number of true positives +

number of false-negative test results), while x - axis is defined as (number of false-positives

test results)/(number of number of true-negative + number of false positive test results).

The area under the ROC is usually used to compare classifiers, the closer to 1 the area,

the better the classifier. [33]. Because the ROC curve is supposed to be done for binary

classification a one-vs-all method was used.

25
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4.1 Channels: C3, C4

Table 4.1 shows the confusion matrix of the SVM classifier for the channels C3 and C4.

While most of the accuracy in the matrix are above 80%, subject S6 and S10 accuracy

are below 80%. S1 has a total of 91.21% positives, of all the data classified as S1 only

85.57% were accurate. 66 of S18’s data got classified as S1 which decreased the accuracy

of S1. The data of S6 wasn’t classified well and got 78.11% accuracy, while many of the

other data were classified as S6 and lowered the outputs average to 68.14%. The table

shows that the average for all the data is 91.41%.

Table 4.1: SVM Confusion Matrix for Channels C3, C4

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1204 0 0 0 0 5 13 5 0 10 0 4 0 27 4 0 0 48 0 0 91.21%

S2 0 1268 0 0 0 13 0 0 0 13 0 24 0 0 0 0 0 2 0 0 96.06%

S3 0 0 1313 0 0 0 0 0 1 0 4 0 0 0 1 1 0 0 0 0 99.47%

S4 1 0 0 1315 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 99.62%

S5 2 0 0 0 1303 3 0 0 4 0 7 0 0 0 0 1 0 0 0 0 98.71%

S6 2 26 1 0 2 1031 0 35 0 77 34 66 26 0 15 0 3 1 0 1 78.11%

S7 16 0 0 0 0 0 1297 1 0 5 0 0 0 0 0 0 1 0 0 0 98.26%

S8 5 0 0 0 0 61 1 1133 0 17 26 3 8 1 41 6 4 6 0 8 85.83%

S9 0 0 4 0 0 0 0 0 1313 0 0 0 0 0 0 3 0 0 0 0 99.47%

S10 19 19 0 0 0 142 4 40 0 1013 4 17 15 0 3 0 26 18 0 0 76.74%

S11 0 0 4 0 12 52 0 10 0 1 1234 1 6 0 0 0 0 0 0 0 93.48%

S12 10 6 0 0 0 99 0 9 0 19 22 1060 11 0 66 0 1 13 0 4 80.3%

S13 12 0 0 0 0 36 0 22 0 17 2 21 1177 0 0 0 2 19 0 12 89.17%

S14 62 0 0 0 0 0 6 0 0 0 0 0 0 1251 0 0 0 1 0 0 94.77%

S15 6 1 4 0 1 38 0 33 0 0 1 85 2 1 1125 0 0 1 0 22 85.23%

S16 0 1 0 0 0 0 0 6 0 0 11 4 0 0 0 1281 0 0 17 0 97.05%

S17 0 0 0 0 0 8 4 21 0 69 0 0 2 1 0 0 1212 0 0 3 91.82%

S18 66 9 0 6 0 10 0 21 0 25 0 20 21 2 0 0 1 1138 0 1 86.21%

S19 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1319 0 99.92%

S20 2 0 0 0 0 15 1 32 0 1 3 5 68 0 43 0 5 1 0 1144 86.67%

85.57% 95.34% 99.02% 99.55% 98.86% 68.14% 97.81% 82.82% 99.55% 79.95% 91.54% 80.92% 88.1% 97.51% 86.67% 99.15% 96.57% 90.89% 98.73% 95.73% 91.41%

Fig 4.1 shows the ROC curve for the data of channels C3, C4. The ROC table shows

that most of the subject have a high true positive rate. S6 has the lowest true positive

rate, followed by S10, S12 and S19 have the highest true positive rate, while S19 has the

highest true positive rate.

Table 4.2 shows the area under the ROC curve. The highest area under the ROC

curve is off subject S19, while the lowest was S6.
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Fig 4.1: ROC figure for SVM for Channels C3 and C4

Table 4.2: ROC Area Under Curve for SVM for Channels C3 and C4

Subject Area Subject Area

S1 0.952 S11 0.965

S2 0.979 S12 0.897

S3 0.997 S13 0.943

S4 0.998 S14 0.973

S5 0.993 S15 0.923

S6 0.881 S16 0.985

S7 0.991 S17 0.958

S8 0.924 S18 0.929

S9 0.997 S19 0.999

S10 0.879 S20 0.932

Average 0.95475

The NN classifier results are shown in Table 4.3, with the average accuracy being

85.91%. The subject with the lowest accuracy was subjec S5 with an accuracy of 10.0%,

while the subject with the highest accuracy was subject S19 with an accuracy of 99.39%.

Many of the subjects data got miss-classified as S6, which explains why only 68.24%

of all the data classified as S6 was correctly classified. S8 is another example of miss-

classification, were all the data miss-classified as S8 with an accuracy of 79.41%.

The ROC curve is shown in Figure 4.2, while the area of this ROC curve is on Table

4.4. The highest area for all the subject would be S19, while the lowest area under the

curve was off subject S16.
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Comparing the results of S5 in Table 4.3 with Table 4.1, on the latter S5 received

98.94%, while on the former S5 only got a 57.5 %. The same outcome appears on S16

where the accuracy in Table 4.1 is 98.18% while in Table 4.3 it is 48.18%. S16 has the

lowest accuracy in Table 4.1 while S6 has the lowest accuracy on Table 4.3. The average

accuracy of Table 4.3 is 85.19% which is lower than the accuracy of 4.1. The comparison

between 4.2 and 4.1 shows the difference between the two classifiers. Comparing the

results of the subjects in Table 4.2 with Table 4.4, it can be seen that S19 was the highest

area in both tables, while the lowest area changed in both table. Based on the average in

both table, SVM classifier was better with an accuracy 0.95475, than NN for this group

of channels with a 0.9258.

Table 4.3: NN Confusion Matrix for Channels C3, C4

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1225 1 0 1 0 0 9 7 0 5 0 11 2 14 2 0 2 40 0 1 92.8%

S2 0 1265 0 0 0 13 0 0 0 7 4 13 1 0 3 0 1 13 0 0 95.83%

S3 0 0 1298 0 0 0 0 1 8 1 7 0 0 0 4 0 1 0 0 0 98.33%

S4 1 0 0 1308 0 0 0 0 0 1 0 0 0 0 0 0 0 10 0 0 99.09%

S5 0 80 151 0 132 57 91 79 196 71 101 64 0 87 46 67 0 0 96 2 10.0%

S6 0 36 3 1 0 956 0 31 0 71 45 114 25 0 28 0 5 0 0 5 72.42%

S7 11 0 0 0 0 0 1293 0 0 5 0 0 1 6 0 0 2 1 0 1 97.95%

S8 6 0 3 0 1 26 6 1116 0 23 10 3 31 0 56 11 7 3 0 18 84.55%

S9 0 1 4 0 0 0 0 1 1299 0 1 1 0 0 2 5 0 0 6 0 98.41%

S10 9 11 2 0 0 106 6 11 0 1024 4 24 38 0 5 0 53 27 0 0 77.58%

S11 0 0 4 0 0 61 0 13 4 4 1216 6 5 0 0 5 0 0 0 2 92.12%

S12 8 5 1 0 0 71 0 0 0 23 15 1069 11 0 94 7 1 12 0 3 80.98%

S13 9 1 0 0 0 21 0 9 0 35 1 38 1155 1 2 0 5 14 0 29 87.5%

S14 42 1 0 0 0 0 2 0 0 0 0 0 0 1262 10 0 0 3 0 0 95.61%

S15 5 2 10 0 0 33 0 17 1 2 0 72 3 0 1164 0 0 0 0 11 88.18%

S16 0 0 2 0 0 2 0 7 12 0 12 2 0 0 2 1277 0 0 2 2 96.74%

S17 0 0 0 0 0 11 2 1 0 52 0 2 6 1 0 0 1235 7 0 3 93.56%

S18 83 20 0 62 6 4 20 16 0 34 6 47 60 8 12 0 1 934 0 7 70.76%

S19 0 0 0 0 0 2 0 0 2 0 0 1 2 0 1 0 0 0 1312 0 99.39%

S20 5 4 0 0 0 13 0 31 0 1 1 9 71 0 27 1 10 8 0 1139 86.29%

82.24% 83.1% 82.31% 88.89% 55.49% 66.2% 84.69% 78.44% 80.11% 71.16% 80.29% 68.66% 77.05% 85.47% 75.36% 86.74% 87.0% 80.32% 86.62% 86.37% 85.91%

Fig 4.2: ROC figure for NN for channels C3, C4
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Table 4.4: ROC Area Under Curve for NN for channels C3 and C4

Subject Area Subject Area

S1 0.96 S11 0.956

S2 0.976 S12 0.897

S3 0.988 S13 0.932

S4 0.994 S14 0.976

S5 0.55 S15 0.935

S6 0.854 S16 0.982

S7 0.987 S17 0.966

S8 0.918 S18 0.851

S9 0.988 S19 0.995

S10 0.881 S20 0.93

Average 0.9258

4.2 Channels: C3, Cz, C4

Channels C3, Cz, and C4 were used to get the results in Table 4.5. S19 had the highest

true positive results, while S12 had the lowest. The overall accuracy was 96.19%, most of

the accuracy were above 80% except for S19. The confusion matrix also shows that many

of the data on S12 got classified as S6, which increased the the false positive percentage

of S6.

The ROC curve in Fig 4.3 shows how close the results are for channels: C3, Cz, and

C4. The areas of the ROC curve for the SVM classifier are in Table 4.6. The highest area

in the table is from subject S19, while the lowest is subject S12. The average Area for

the SVM classifier was 0.9799.
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Table 4.5: SVM Confusion Matrix for Channels: C3, C4, and Cz

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 P20

T
ar

ge
ts

S1 1245 0 0 1 0 1 27 2 0 0 0 2 0 0 2 0 0 39 0 1 94.32%

S2 0 1315 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 0 99.62%

S3 0 0 1315 0 0 0 0 0 0 0 1 0 3 0 0 1 0 0 0 0 99.62%

S4 1 0 0 1317 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 99.77%

S5 0 0 0 0 1310 7 0 0 0 0 1 1 0 0 0 0 0 0 1 0 99.24%

S6 2 1 0 0 1 1199 0 21 0 0 11 57 0 0 19 0 4 5 0 0 90.83%

S7 31 0 0 0 0 1 1286 0 0 0 0 0 0 0 0 0 0 2 0 0 97.42%

S8 1 0 0 0 1 37 2 1235 0 0 15 6 0 0 13 0 0 8 0 2 93.56%

S9 0 0 0 0 0 0 0 0 1318 0 0 0 0 0 0 0 0 0 2 0 99.85%

S10 0 9 0 0 0 2 0 0 0 1305 0 0 0 0 0 0 4 0 0 0 98.86%

S11 0 0 0 0 3 10 0 19 0 0 1286 0 0 0 0 0 0 0 0 2 97.42%

S12 4 2 0 0 1 68 0 19 0 1 1 1128 0 0 81 0 13 2 0 0 85.45%

S13 0 0 1 0 0 0 0 0 0 0 0 0 1319 0 0 0 0 0 0 0 99.92%

S14 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 0 0 0 0 0 100.0%

S15 0 1 0 0 1 36 0 5 0 0 0 119 0 0 1158 0 0 0 0 0 87.73%

S16 0 0 10 0 0 0 0 0 0 0 2 0 0 0 0 1303 0 0 5 0 98.71%

S17 1 0 0 0 0 19 0 1 0 4 0 13 0 0 3 0 1279 0 0 0 96.89%

S18 49 0 0 3 0 32 5 17 0 0 0 12 0 0 3 0 0 1195 0 4 90.53%

S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 100.0%

S20 8 0 0 0 0 23 0 15 0 3 6 9 4 0 7 0 0 4 0 1241 94.02%

92.77% 99.02% 99.17% 99.7% 99.47% 83.55% 97.42% 92.58% 100.0% 99.39% 97.2% 83.62% 99.47% 100.0% 89.84% 99.92% 98.38% 95.07% 99.4% 99.28% 96.19%

Fig 4.3: ROC figure for SVM for channels C3, C4, and Cz
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Table 4.6: ROC Area Under Curve for SVM for Channels C3, Cz, and C4

Subject Area Subject Area

S1 0.97 S11 0.986

S2 0.998 S12 0.923

S3 0.998 S13 0.999

S4 0.999 S14 1.0

S5 0.996 S15 0.936

S6 0.949 S16 0.994

S7 0.986 S17 0.984

S8 0.966 S18 0.951

S9 0.999 S19 1.0

S10 0.994 S20 0.97

Average 0.9799

Table 4.7 shows the results of channels: C3, Cz, and C4 using the NN classifier.

The table demostrates that S16 has the lowest true positive while S9 has the highest

true positive. The overall average accuracy was 94.87%. While S16 got the lowest true

positives, and one of the lowest false positive percentage of all the data.

The results can be seen in the ROC curve in Fig 4.4, where S16 is close to the half line,

while the rest of the subject are way above the line. The areas on Table 4.8 show that

subject S19 has the highest area under the ROC curve than all the other subjects, while

S16 had the lowest ROC curve of all subjects. The average Area for the NN classifier

was 0.97305. Comparing the averages of Table 4.6 with Table 4.8 the SVM classifier is a

better classifier, than NN classifier.
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Table 4.7: NN Confusion Matrix for Channels C3, C4, and Cz

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1268 0 0 0 0 0 16 1 0 0 0 3 0 2 8 0 0 20 0 2 96.06%

S2 0 1305 0 0 0 2 0 0 0 1 0 9 0 0 3 0 0 0 0 0 98.86%

S3 0 0 1315 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 2 99.62%

S4 0 0 0 1314 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 99.55%

S5 0 0 0 0 1295 10 0 1 10 0 0 3 0 0 0 0 1 0 0 0 98.11%

S6 1 0 0 0 11 1182 0 17 0 0 10 67 0 0 18 0 9 4 0 1 89.55%

S7 20 0 0 0 0 0 1291 3 0 0 0 0 0 0 0 0 0 6 0 0 97.8%

S8 0 0 0 0 9 67 9 1123 0 0 19 13 2 0 23 6 9 14 11 15 85.08%

S9 0 0 0 0 1 0 0 0 1303 0 0 0 0 0 0 0 0 0 16 0 98.71%

S10 0 3 0 0 0 0 0 0 1 1303 0 7 0 0 4 0 2 0 0 0 98.71%

S11 0 0 0 0 4 8 0 5 0 0 1291 2 0 0 0 0 0 0 0 10 97.8%

S12 1 8 0 0 4 46 0 4 0 3 3 1128 0 0 103 0 13 3 0 4 85.45%

S13 0 0 2 0 0 0 0 0 0 0 2 0 1311 0 0 5 0 0 0 0 99.32%

S14 1 0 0 0 0 0 0 0 0 0 0 0 0 1319 0 0 0 0 0 0 99.92%

S15 1 1 0 0 1 13 0 4 0 1 0 111 0 0 1187 0 0 1 0 0 89.92%

S16 0 131 13 0 15 0 40 27 0 0 28 0 27 0 0 1035 0 0 0 4 78.41%

S17 0 0 0 0 0 21 1 0 0 5 0 2 0 0 1 0 1290 0 0 0 97.73%

S18 46 0 0 4 0 12 3 14 0 0 0 8 0 0 3 0 1 1226 0 3 92.88%

S19 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1310 0 99.24%

S20 0 1 1 0 0 5 0 10 0 0 20 4 3 0 5 1 1 14 6 1249 94.62%

88.62% 84.3% 91.95% 92.69% 89.96% 81.54% 88.58% 86.28% 91.5% 92.25% 87.81% 78.3% 90.76% 92.82% 82.15% 90.16% 90.57% 88.26% 90.82% 89.9% 94.87%

Fig 4.4: ROC figure for NN for channels C3, C4, and Cz
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Table 4.8: ROC Area Under Curve for NN for Channels C3, Cz, and C4

Subject Area Subject Area

S1 0.979 S11 0.987

S2 0.991 S12 0.923

S3 0.998 S13 0.996

S4 0.998 S14 1.0

S5 0.99 S15 0.946

S6 0.944 S16 0.892

S7 0.988 S17 0.988

S8 0.924 S18 0.963

S9 0.993 S19 0.996

S10 0.993 S20 0.972

Average 0.97305

4.3 Channels F3, Fz, F4

The confusion matrix on Table 4.9 shows S13 and S19 have the highest overall accuracy,

while the lowest accuracy is for S1. The table shows that the average accuracy using

the channels F3, Fz and F4 for all the partitions was 95.15%. While S1 has the lowest

accuracy it also has the highest false positive rate than the other subjects. Many of S14

data got classified as S1 which increased S1 false positive percentage.

The ROC curve in Figure 4.5 shows that most of the data have similar true positive

rates. The areas in Table 4.10 shows that the highest area of the ROC curves for each

subject was S13 and S16. The lowest area was off subject S1. The average for all the

areas was 0.9744

S5 and S13 have the highest overall accuracy for the NN classifier with a 99.85%

accuracy shown in Table 4.11. The lowest accuracy shown in Table 4.11 is 70.38% for

subject S10. The overall accuracy in the confusion matrix is 94.18%. Many of the data of

S10 got misclassified as S2, which decreased the overall accuracy to 82.99%. While S10

has the lowest overall accuracy it isn’t the subject with the highest false positive rate,

which is S1, with only a 78.32% of true positives. The table shows us that many of S16

are classified as S3 which decreases the true positive. The ROC curve shown in Figure

4.6 illustrates the data for the classifier NN, S10 is the lowest one. The areas in Table

4.12 shows that the highest area of the ROC curves for each subject was of S13 and S5.

The lowest area was off subject S10. The average for all the areas was 0.96945.
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Comparing the results from Table 4.9 and Table 4.11, the results for S13 didn’t change

while the one for S16 did. While the lowest percentage that the SVM classier got was

85.0% the lowest that the NN classier got was 70.38%. The SVM classifer also got a

better Overall average than the NN classifier. Comparing the averages of Table 4.10 with

Table 4.12, it is shown that the SVM classifier classified better the data for the group of

channels considered.

Table 4.9: SVM Confusion Matrix for Channels F3, Fz, and F4

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1122 3 0 0 0 3 0 5 0 10 19 0 0 109 0 0 2 46 0 1 85.0%

S2 4 1193 0 0 0 1 0 0 0 96 0 15 0 0 0 0 5 6 0 0 90.38%

S3 0 0 1318 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 99.85%

S4 0 0 0 1319 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 99.92%

S5 0 0 0 0 1316 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 99.7%

S6 1 17 0 0 0 1218 0 0 0 2 10 71 0 0 0 0 0 0 1 0 92.27%

S7 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S8 5 0 0 0 0 0 0 1300 0 0 14 0 0 1 0 0 0 0 0 0 98.48%

S9 0 0 0 0 0 1 0 0 1318 0 0 0 0 0 0 0 0 0 1 0 99.85%

S10 7 112 0 0 0 9 0 0 0 1166 0 12 0 0 0 0 10 4 0 0 88.33%

S11 22 0 0 0 0 6 0 23 0 0 1261 0 0 0 0 0 0 4 0 4 95.53%

S12 0 23 0 0 0 78 0 0 0 11 0 1208 0 0 0 0 0 0 0 0 91.52%

S13 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 100.0%

S14 135 0 0 0 0 0 0 1 0 1 0 0 0 1146 0 0 2 35 0 0 86.82%

S15 0 1 0 0 0 3 0 0 0 0 0 6 0 0 1310 0 0 0 0 0 99.24%

S16 0 0 0 0 7 0 0 0 0 0 0 0 4 0 0 1309 0 0 0 0 99.17%

S17 15 21 0 0 0 0 0 0 0 35 0 2 0 4 0 0 1216 27 0 0 92.12%

S18 56 4 3 1 0 2 0 0 0 11 17 0 0 38 0 0 19 1169 0 0 88.56%

S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 100.0%

S20 0 1 0 0 0 7 0 0 0 0 38 2 0 0 0 0 0 1 0 1271 96.29%

82.08% 86.76% 99.77% 99.92% 99.47% 91.72% 99.92% 97.74% 100.0% 87.54% 92.79% 91.79% 99.4% 88.22% 100.0% 100.0% 96.97% 90.48% 99.85% 99.61% 95.15%

Fig 4.5: ROC figure for SVM for Channels F3, Fz, and F4
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Table 4.10: ROC Area Under Curve for SVM for Channels F3, Fz, and F4

Subject Area Subject Area

S1 0.92 S11 0.976

S2 0.948 S12 0.955

S3 0.999 S13 1.0

S4 1.0 S14 0.931

S5 0.998 S15 0.996

S6 0.959 S16 0.996

S7 1.0 S17 0.96

S8 0.992 S18 0.94

S9 0.999 S19 1.0

S10 0.938 S20 0.981

Average 0.9744

Table 4.11: NN Confusion Matrixr for channels F3, Fz, and F4

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1142 2 0 2 0 4 0 1 0 9 21 1 0 93 0 0 7 37 0 1 86.52%

S2 4 1223 0 0 0 6 0 1 0 57 0 10 0 0 0 0 8 11 0 0 92.65%

S3 0 0 1314 0 0 0 0 0 0 0 1 0 0 2 0 0 0 3 0 0 99.55%

S4 0 0 0 1316 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 99.7%

S5 0 0 0 0 1318 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 99.85%

S6 5 10 0 0 0 1232 3 0 4 7 6 47 0 0 1 0 0 4 1 0 93.33%

S7 0 0 3 0 3 0 1298 0 0 0 0 0 0 0 0 14 0 0 0 2 98.33%

S8 2 0 0 4 1 0 0 1287 0 0 21 0 0 1 0 0 2 1 0 1 97.5%

S9 0 1 0 0 0 2 0 0 1317 0 0 0 0 0 0 0 0 0 0 0 99.77%

S10 8 108 2 0 0 27 82 30 1 929 38 29 0 11 1 0 25 19 10 0 70.38%

S11 15 1 0 0 0 10 0 12 0 1 1257 1 0 0 0 0 0 12 0 11 95.23%

S12 47 14 0 0 0 60 7 0 15 25 2 1101 0 0 28 0 9 11 0 1 83.41%

S13 0 0 0 0 0 0 0 0 0 0 0 0 1318 0 0 1 0 0 0 1 99.85%

S14 111 4 1 1 0 0 1 0 0 2 1 0 0 1158 0 0 3 38 0 0 87.73%

S15 0 0 0 0 0 0 0 0 0 0 0 14 0 0 1305 0 1 0 0 0 98.86%

S16 0 0 14 0 0 0 0 0 0 0 0 0 2 0 0 1304 0 0 0 0 98.79%

S17 13 17 0 0 0 0 1 0 0 15 0 2 0 3 1 0 1236 32 0 0 93.64%

S18 29 6 1 0 0 3 0 0 0 4 9 2 0 36 0 0 12 1218 0 0 92.27%

S19 0 0 1 0 0 0 0 0 2 0 0 4 0 0 0 0 1 0 1312 0 99.39%

S20 0 1 0 0 0 3 7 3 0 0 27 0 0 0 0 0 0 0 0 1279 96.89%

78.32% 82.99% 91.52% 92.49% 92.72% 85.63% 86.6% 89.7% 91.52% 81.74% 85.17% 84.51% 92.73% 83.12% 90.88% 91.9% 88.22% 82.49% 92.21% 91.64% 94.18%
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Fig 4.6: ROC figure for NN for channels F3, Fz, and F4

Table 4.12: ROC Area Under Curve for NN for Channels F3, Fz, and F4

Subject Area Subject Area

S1 0.928 S11 0.974

S2 0.96 S12 0.915

S3 0.997 S13 0.999

S4 0.998 S14 0.936

S5 0.999 S15 0.994

S6 0.964 S16 0.994

S7 0.99 S17 0.967

S8 0.987 S18 0.958

S9 0.998 S19 0.997

S10 0.85 S20 0.984

Average 0.96945

4.4 Channels O1, O2, Pz

The overall accuracy for all subjects is 94.84% and it is shown in the confusion matrix in

Table 4.13. The table shows that the subject with the highest accuracy for channels O1,

O2, and Pz is S19 that has a 100% accuracy with all partitions, while S20 has a 20.80%

which makes it the lowest accuracy. The confusion matrix also shows that many of the

data of S20 got misclassified as S8 and S11, which increased false positive percentage.

While S20 had the highest accuracy some of the data of S9 and S13 are misclassified as

S20.
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Figure 4.7 shows how the ROC curve for O1, O2 and Pz and the areas under curves

are in Table 4.14. The highest area under the curve is off subject S19, while the lowest is

of subject S20. The average off all the area was 96.6235%.

The highest accuracy in the confusion matrix in Table 4.15 is 99.55% for S19 , while

the lowest is 29.92% for S16. The average accuracy for all the data classified with NN is

90.42%. The subject with the highest false positive is S8 that has 23.31% of false positive,

most of those false positive, were misclassification from S16.

The ROC curve in Figure 4.8 shows the difference between S16 results and the rest

of the subjects. The areas in Table 4.16 are of the ROC curves. The subject with the

highest area was S15, while the lowest area was off subject S16 with the NN classifier.

The average area was 87.13%.

Comparing the results from Table 4.13 and Table 4.11, S16 in the former has an

accuracy of 99.32%, while in the later S16 had an accuracy of 29.92%. S14 in Table

4.13 has an accuracy of 79.62%, while on Table 4.13 S14 has an accuracy 85.38% The

overall accuracy for SVM classifier was higher than that for NN classifier. Comparing the

averages of the ROCs curves the SVM classifier is a better classifier using the Channels

O1, O2, and Pz.

Table 4.13: SVM Confusion Matrix for Channels O1, O2, and Pz

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1270 0 0 0 0 0 0 8 0 0 12 0 0 6 0 0 6 0 0 18 96.21%

S2 0 1314 0 0 0 3 0 1 0 0 1 0 0 0 0 0 0 0 0 1 99.55%

S3 0 0 1317 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 99.77%

S4 0 0 0 1302 0 0 0 0 0 3 0 0 14 0 0 0 0 1 0 0 98.64%

S5 0 0 0 1 1313 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 99.47%

S6 0 0 1 0 0 1318 0 0 0 1 0 0 0 0 0 0 0 0 0 0 99.85%

S7 0 3 0 0 0 0 1317 0 0 0 0 0 0 0 0 0 0 0 0 0 99.77%

S8 5 5 1 0 0 0 0 1172 0 0 52 6 0 14 0 0 3 0 0 62 88.79%

S9 0 0 0 0 0 0 0 0 1319 0 0 0 0 0 0 0 0 1 0 0 99.92%

S10 0 0 5 7 0 8 0 0 0 1293 0 0 7 0 0 0 0 0 0 0 97.95%

S11 6 2 1 0 0 4 0 88 0 0 1125 18 7 16 0 0 1 0 0 52 85.23%

S12 0 0 8 0 0 21 1 39 0 0 40 1147 1 35 0 0 23 0 0 5 86.89%

S13 0 0 1 37 0 4 1 1 1 5 1 0 1263 2 0 0 1 0 0 3 95.68%

S14 3 0 0 0 0 1 0 41 0 0 24 57 5 1133 0 0 38 0 0 18 85.83%

S15 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1318 0 0 0 0 0 99.85%

S16 5 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1302 0 0 0 0 98.64%

S17 6 0 0 0 0 0 0 3 0 0 11 30 0 48 0 0 1220 0 0 2 92.42%

S18 0 0 0 0 0 5 0 0 1 0 0 0 0 0 1 0 0 1313 0 0 99.47%

S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 100.0%

S20 40 4 0 1 0 4 0 153 0 2 101 10 24 16 0 0 4 0 0 961 72.8%

95.13% 97.99% 98.65% 96.59% 100.0% 96.35% 99.85% 77.82% 99.85% 98.93% 82.3% 90.46% 95.11% 89.21% 99.92% 100.0% 94.14% 99.85% 100.0% 85.65% 94.84%
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Fig 4.7: ROC figure for NN for channels O1, O2, and Pz

Table 4.14: ROC Area Under Curve for SVM for Channels O1, O2, and Pz

Subject Area Subject Area

S1 0.98 S11 0.921

S2 0.997 S12 0.932

S3 0.999 S13 0.977

S4 0.992 S14 0.926

S5 0.997 S15 0.999

S6 0.998 S16 0.993

S7 0.999 S17 0.961

S8 0.937 S18 0.997

S9 1.0 S19 1.0

S10 0.989 S20 0.861

Average 0.97275
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Table 4.15: SVM Confusion Matrix for Channels O1, O2, and Pz

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1255 1 0 0 0 0 0 9 0 0 15 0 0 8 0 2 5 0 0 25 95.08%

S2 1 1303 0 0 0 3 0 2 0 0 0 0 0 0 0 1 0 0 0 10 98.71%

S3 0 0 1310 0 0 0 0 0 0 3 0 1 0 0 6 0 0 0 0 0 99.24%

S4 0 0 0 1303 0 0 0 0 0 5 0 0 10 1 0 0 0 0 0 1 98.71%

S5 0 0 0 0 1313 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0 99.47%

S6 0 1 3 0 0 1290 0 0 0 5 1 3 0 0 0 0 0 11 3 3 97.73%

S7 0 10 0 0 0 2 1276 9 0 0 3 0 0 0 0 0 0 16 0 4 96.67%

S8 6 5 0 0 0 2 0 1149 0 0 53 13 1 20 0 0 10 0 0 61 87.05%

S9 0 0 0 0 0 0 0 0 1319 0 0 0 0 0 0 0 0 0 1 0 99.92%

S10 0 2 9 4 0 118 1 0 0 1156 0 7 16 0 5 0 0 1 0 1 87.58%

S11 0 6 0 0 0 1 0 54 0 1 1162 25 5 14 0 0 3 0 0 49 88.03%

S12 0 0 0 0 0 9 0 17 0 0 31 1192 6 31 0 0 30 0 0 4 90.3%

S13 0 0 0 23 2 6 0 3 0 8 5 10 1241 6 0 0 3 0 0 13 94.02%

S14 3 0 0 0 0 0 1 18 0 0 21 62 9 1163 0 0 29 0 0 14 88.11%

S15 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1318 0 0 0 0 0 99.85%

S16 62 34 0 0 0 5 0 98 0 71 136 86 0 0 64 634 0 104 0 26 48.03%

S17 2 0 0 0 0 0 0 1 0 0 6 14 0 52 0 0 1241 0 0 4 94.02%

S18 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 1316 0 0 99.7%

S19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1319 0 99.92%

S20 24 6 0 2 0 8 0 95 0 3 97 30 20 17 0 0 5 0 0 1013 76.74%

86.66% 88.88% 92.21% 91.21% 92.79% 83.53% 92.61% 74.96% 92.9% 85.51% 72.07% 77.73% 88.13% 82.82% 88.28% 86.02% 87.39% 85.02% 92.69% 77.11% 91.94%

Fig 4.8: ROC figure for NN for channels O1, O2, and Pz
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Table 4.16: ROC Area Under Curve for NN for Channels O1, O2, and Pz

Subject Area Subject Area

S1 0.973 S11 0.933

S2 0.992 S12 0.947

S3 0.996 S13 0.969

S4 0.993 S14 0.938

S5 0.997 S15 0.998

S6 0.985 S16 0.74

S7 0.983 S17 0.968

S8 0.929 S18 0.996

S9 1.0 S19 1.0

S10 0.936 S20 0.879

Average 0.9576

4.5 Channels: C3, C4, FC5, FC6

The confusion matrix in Table 4.17 shows the results for channels C3, C4, FC5, and FC6

using the SVM classifier. Subjects S3, S7, S9, S11, and S19 have the highest accuracy

with a percentage of 100.0% for all data, while subject S14 has the lowest accuracy with

88.70%. The table shows that the average accuracy of the SVM classifier using channels

C3, C4, FC5, and FC6 is 98.02%. The confusion matrix also shows that the lowest

percentage 89.33% belongs to S1, while subject S4, S16, and S19 have the highest true

positive percentage with 100%.

The ROC curve displayed in Figure 4.9 shows how the data is close together, while

the areas under those curves are shown in Table 4.18. The highest area under the curve

was for subjects S3, S9, S19, while the lowest area belongs to subject S18. The average

for the ROC cuves was for .98075.

The confusion matrix in Table 4.19 shows the result for the NN classifier with channels

C3, C4, FC5, and FC6. The highest accuracy results for the classifier was for subject S19

with an accuracy of 99.92%, while the lowest is for subject S4 with an accuracy of 49.82%

percent. The average accuracy for the NN classifier is 93.22%, while the lowest true

positive percentage is for S1.

The ROC curve shown in Figure 4.10 shows how low S4 is compared to the rest of the

data. Table 4.20 shows that the highest area for the ROC curve using NN classifier was

S19 and the lowest area was for S4. The average area for the NN classifier was 0.96435.
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The results of Table 4.17 compared with Table 4.19 show that S4 has a higher accuracy

with the SVM classifier than with the NN classifier. It also shows that subject S14 does

better with the NN classifier where it gets a 95.08% and with SVM classifier it gets

89.17%. Comparing the confusion matrices also shows that the SVM classifier has an

average accuracy of 96.34%, while the NN classifier has 93.22% accuracy. Comparing the

SVM classifier ROC curves with the NN classifier ROC curves, it is shown that the SVM

classifier is better.

Table 4.17: SVM Confusion Matrix for channels C3, C4, FC5, and FC6

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1184 0 0 0 0 14 0 0 0 3 0 0 1 54 0 0 0 64 0 0 89.7%

S2 0 1286 0 0 0 4 0 0 0 5 0 24 0 0 0 0 0 1 0 0 97.42%

S3 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S4 0 0 0 1318 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 99.85%

S5 0 0 0 0 1309 4 0 0 5 0 0 0 0 0 0 1 1 0 0 0 99.17%

S6 1 4 2 0 3 1280 0 21 0 1 1 1 4 0 0 0 0 1 0 1 96.97%

S7 1 0 0 0 0 0 1319 0 0 0 0 0 0 0 0 0 0 0 0 0 99.92%

S8 5 0 0 0 0 30 1 1262 0 1 0 1 17 0 0 0 0 3 0 0 95.61%

S9 0 0 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 100.0%

S10 10 21 0 0 0 1 0 9 0 1215 2 50 0 0 3 0 3 4 0 2 92.05%

S11 0 0 0 0 0 0 0 0 0 1 1316 0 0 0 0 1 0 0 0 2 99.7%

S12 0 14 0 0 0 29 0 8 0 35 3 1207 3 1 4 2 0 10 0 4 91.44%

S13 2 0 0 0 0 14 3 26 0 1 0 3 1258 0 0 0 0 1 0 12 95.3%

S14 87 0 0 1 0 0 0 0 0 6 0 0 0 1224 1 0 0 1 0 0 92.73%

S15 0 3 0 0 0 0 0 0 0 0 4 4 0 0 1309 0 0 0 0 0 99.17%

S16 0 0 0 0 1 0 0 0 20 1 9 2 0 0 0 1287 0 0 0 0 97.5%

S17 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1316 0 0 1 99.7%

S18 66 3 0 3 0 1 0 17 0 24 0 19 6 2 0 0 2 1177 0 0 89.17%

S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 100.0%

S20 0 0 0 0 0 11 1 28 0 15 6 6 37 0 0 0 4 5 0 1207 91.44%

87.32% 96.62% 99.85% 99.7% 99.7% 92.22% 99.62% 92.05% 98.14% 92.68% 98.14% 91.65% 94.87% 95.55% 99.39% 99.69% 99.25% 92.75% 100.0% 98.21% 96.34%

Fig 4.9: ROC figure for SVM for channels C3, C4, FC5, and FC6
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Table 4.18: ROC Area Under Curve for SVM for Channels: C3, C4, FC5 and FC6

Subject Area Subject Area

S1 0.945 S11 0.998

S2 0.986 S12 0.955

S3 1.0 S13 0.975

S4 0.999 S14 0.962

S5 0.996 S15 0.996

S6 0.983 S16 0.987

S7 1.0 S17 0.998

S8 0.976 S18 0.944

S9 1.0 S19 1.0

S10 0.958 S20 0.957

Average 0.98075

Table 4.19: NN Confusion Matrix for Channels C3, C4, FC5, and FC6

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1202 0 0 2 0 6 3 3 0 4 0 3 6 50 0 0 0 39 0 2 91.06%

S2 0 1294 0 0 0 1 0 0 0 2 1 15 0 2 0 0 0 4 0 1 98.03%

S3 0 0 1313 0 2 0 0 0 0 0 0 0 0 0 0 1 2 0 0 2 99.47%

S4 144 0 0 659 0 0 118 95 0 45 0 0 0 153 0 0 5 88 0 13 49.92%

S5 0 0 3 0 1172 6 4 1 1 8 0 13 0 3 0 6 5 0 1 97 88.79%

S6 2 0 8 0 6 1266 0 11 0 1 0 11 4 2 0 0 0 1 0 8 95.91%

S7 0 0 0 0 0 0 1316 2 0 0 0 0 0 1 0 0 0 0 0 1 99.7%

S8 4 3 0 0 0 14 6 1234 1 5 0 3 36 1 0 0 0 7 0 6 93.48%

S9 0 0 0 0 0 1 0 0 1312 0 1 0 2 0 0 3 0 0 1 0 99.39%

S10 9 8 1 0 1 2 0 8 0 1177 5 48 5 6 11 2 20 10 0 7 89.17%

S11 0 1 0 0 0 0 0 0 2 3 1302 2 3 0 0 7 0 0 0 0 98.64%

S12 0 14 1 0 0 10 0 4 0 39 3 1213 4 0 16 3 0 5 0 8 91.89%

S13 3 0 1 0 0 7 0 30 1 0 0 3 1265 0 1 0 0 2 0 7 95.83%

S14 49 4 0 0 0 0 0 0 0 0 0 3 0 1255 2 0 0 7 0 0 95.08%

S15 0 5 0 0 0 0 0 0 0 6 2 5 0 0 1300 1 0 1 0 0 98.48%

S16 0 0 1 0 1 0 0 0 1 0 32 0 0 0 0 1285 0 0 0 0 97.35%

S17 3 0 0 0 2 0 0 0 0 10 0 0 0 1 0 2 1298 0 0 4 98.33%

S18 34 2 0 1 0 2 0 12 0 6 0 11 0 5 0 2 0 1245 0 0 94.32%

S19 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1319 0 99.92%

S20 2 2 0 0 1 8 1 14 1 19 6 17 58 0 0 0 4 4 0 1183 89.62%

78.09% 90.51% 91.96% 86.52% 91.23% 89.46% 85.03% 81.94% 92.52% 83.02% 89.78% 84.32% 85.6% 79.71% 90.95% 91.03% 90.56% 82.68% 92.82% 82.31% 93.22%
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Fig 4.10: ROC figure for NN for channels C3, C4, FC5, and FC6

Table 4.20: ROC Area Under Curve for NN for Channels: C3, C4, FC5 and FC6

Subject Area Subject Area

S1 0.95 S11 0.992

S2 0.989 S12 0.957

S3 0.997 S13 0.977

S4 0.75 S14 0.971

S5 0.944 S15 0.992

S6 0.978 S16 0.986

S7 0.996 S17 0.991

S8 0.964 S18 0.968

S9 0.997 S19 1.0

S10 0.943 S20 0.945

Average 0.96435

4.6 Channels:C3, C4, FC1, FC2, FC5, FC6

The confusion matrix on Table 4.21 shows the results for channels C3, C4, FC1, FC2,

FC5, and FC6 using the SVM classifier. The subjects with the highest accuracys are S11,

S16, and S19, while the subject with the lowest accuracy is for S14. The average accuracy

for the SVM classifier with channels C3, C4, FC1, FC2, FC5, and FC6 is 97.76%, it also

shows that the lowest true positive percentage was for subject S1 with 88.24%.

The ROC curve for the SVM classifier is shown in Figure 4.11 and the area under the

ROC curve is shown in Table 4.22. The highest area under the curve was from subject
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S3, S7, S9, S11, and S19, while the lowest was from S14. The average for all the ROC

curves with the SVM classifier was 0.9896

Table 4.21: SVM Confusion Matrix for Channels C3, C4, FC1, FC2, FC5, and FC6

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1180 0 0 0 0 9 0 0 0 0 0 1 1 122 0 0 1 6 0 0 89.39%

S2 0 1317 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 99.77%

S3 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S4 2 0 0 1317 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 99.77%

S5 0 0 0 0 1306 5 0 0 1 0 0 0 0 0 0 0 8 0 0 0 98.94%

S6 0 2 0 0 2 1309 0 2 2 1 0 2 0 0 0 0 0 0 0 0 99.17%

S7 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S8 0 0 0 0 0 4 0 1306 0 0 0 0 6 0 0 0 0 4 0 0 98.94%

S9 0 0 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 100.0%

S10 0 11 0 0 0 0 0 0 0 1309 0 0 0 0 0 0 0 0 0 0 99.17%

S11 0 0 0 0 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 0 0 100.0%

S12 0 0 0 0 2 14 0 11 5 0 0 1268 6 6 7 0 0 1 0 0 96.06%

S13 0 0 0 0 0 13 2 13 6 1 0 3 1282 0 0 0 0 0 0 0 97.12%

S14 128 2 0 0 0 0 0 1 0 1 0 13 0 1172 0 0 0 3 0 0 88.79%

S15 0 15 0 0 0 0 0 0 0 6 4 4 0 0 1291 0 0 0 0 0 97.8%

S16 0 0 6 0 0 0 0 0 4 0 0 0 0 0 0 1310 0 0 0 0 99.24%

S17 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 1309 0 0 0 99.17%

S18 11 0 0 0 0 1 0 5 0 0 0 6 1 2 0 0 0 1294 0 0 98.03%

S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 100.0%

S20 0 0 4 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 1307 99.02%

89.33% 97.77% 99.25% 100.0% 98.86% 96.53% 99.85% 96.96% 98.65% 99.32% 99.7% 97.76% 98.92% 90.02% 99.31% 100.0% 99.32% 98.85% 100.0% 100.0% 98.02%

Fig 4.11: ROC figure for NN for channels C3, C4, FC1, FC2, FC5, and FC6
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Table 4.22: ROC Area Under Curve for SVM for channels C3, C4, FC1, FC2, FC5 and
FC6

Subject Area Subject Area

S1 0.944 S11 1.0

S2 0.998 S12 0.98

S3 1.0 S13 0.985

S4 0.999 S14 0.941

S5 0.994 S15 0.989

S6 0.995 S16 0.996

S7 1.0 S17 0.996

S8 0.994 S18 0.99

S9 1.0 S19 1.0

S10 0.996 S20 0.995

Average 0.9896
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The confusion matrix in Table 4.23 shows the average for the NN classifier and the

subjects with the highest accuracy were S4, S7, and S19 with 100%, while the subject with

the lowest accuracy is S18 with 86.59 %. The confusion matrix shows that the average

accuracy is 9726%, while the lowest true positive percentage is S14.

The ROC curve for the NN classifier accuracy is on Figure 4.12, and the area of those

curves are displayed in Table 4.24. The highest area on the table is from subject S4, while

the lowest area was from subject S1. The average area for NN classifier was 0.98565.

The results of Table 4.21 compared with Table 4.23 show that S4 has a higher accuracy

with the NN classifier than with the SVM classifier, while S16 has a higher accuracy with

the SVM classifier than with the NN classifier. Comparing the confusion matrix in Table

4.21 with the confusion matrix in Table 4.23, the SVM classifier has an average accuracy

of 98.02%, while the NN classifier has a 97.26% accuracy, which makes the NN classifier

good for the channels: C3, C4, FC1, FC2, FC5 and FC6. Based on the averages of the

areas under the ROC curve tables the SVM classifier did better compared with the NN

classifier.

Table 4.23: NN Confusion Matrix for Channels C3, C4, FC1, FC2, FC5, and FC6

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1175 0 0 0 0 7 1 0 0 0 0 1 8 122 0 0 2 4 0 0 89.02%

S2 3 1303 0 0 0 1 0 0 1 3 1 2 0 0 5 0 1 0 0 0 98.71%

S3 0 0 1312 0 0 0 0 0 0 2 0 0 0 0 6 0 0 0 0 0 99.39%

S4 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S5 0 0 0 0 1302 2 0 1 2 0 0 2 0 0 0 0 11 0 0 0 98.64%

S6 5 2 0 0 4 1295 0 4 1 3 1 0 5 0 0 0 0 0 0 0 98.11%

S7 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S8 0 0 0 0 0 2 2 1299 0 0 1 3 10 0 0 0 0 3 0 0 98.41%

S9 0 0 0 0 0 1 0 0 1303 0 0 0 8 0 0 0 0 0 8 0 98.71%

S10 1 8 0 0 2 2 0 0 1 1304 0 0 2 0 0 0 0 0 0 0 98.79%

S11 0 0 0 0 0 0 0 1 0 0 1317 0 0 0 1 0 1 0 0 0 99.77%

S12 0 0 0 0 2 5 0 5 7 1 7 1275 7 6 3 0 1 1 0 0 96.59%

S13 2 2 0 0 0 7 0 10 2 5 0 19 1270 0 0 0 0 3 0 0 96.21%

S14 88 2 0 0 0 0 0 0 0 2 0 13 1 1212 0 0 0 2 0 0 91.82%

S15 0 9 0 0 0 0 0 0 0 2 0 4 0 0 1305 0 0 0 0 0 98.86%

S16 0 2 23 0 0 0 0 0 0 0 0 0 0 0 0 1295 0 0 0 0 98.11%

S17 1 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 1315 0 0 0 99.62%

S18 20 0 0 12 0 0 46 24 0 0 0 52 0 15 2 0 0 1143 0 6 86.59%

S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 100.0%

S20 0 3 0 0 0 0 0 7 0 0 0 3 7 0 0 2 0 6 0 1292 97.88%

84.88% 91.2% 91.48% 92.18% 92.22% 91.23% 89.87% 89.71% 92.04% 91.75% 92.31% 86.63% 89.63% 83.87% 91.82% 92.7% 91.94% 90.65% 92.44% 92.42% 97.26%
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Fig 4.12: ROC figure for NN for channels C3, C4, FC1, FC2, FC5, and FC6

Table 4.24: ROC Area Under Curve for NN for channels C3, C4, FC1, FC2, FC5 and
FC6

Subject Area Subject Area

S1 0.943 S11 0.999

S2 0.993 S12 0.981

S3 0.997 S13 0.98

S4 1.0 S14 0.956

S5 0.993 S15 0.994

S6 0.99 S16 0.99

S7 0.999 S17 0.998

S8 0.991 S18 0.933

S9 0.993 S19 1.0

S10 0.994 S20 0.989

Average 0.98565

4.7 Channels:C3, C4, F3, F4, FC1, FC2, FC5, FC6

The confusion matrix in Table 4.25 shows that the subjects with the highest accuracy

for the SVM classifier were S4, S7, and S19 with and accuracy 100%, while the lowest

accuracy is for subject S18 with 86.56%. The confusion matrix shows that the average

accuracy was 97.26%.

The ROC curve for the SVM classifier accuracy is shown in Figure 4.13, with the area

under the ROC curve shown in Table 4.26. The subjects with the highest area were S4,
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S7, S17, and S19, while the lowest S1. The average area on the table was .0.9852.

The confusion matrix in Table 4.27 shows that the subjects with the highest accuracy

for the NN classifier was S19 with an accuracy of 100.00% while the lowest accuracy is

of subject S1 with 82.95%. The confusion matrix shows that the average accuracy was

96.76%.

The ROC curve for the SVM classifier accuracy is in Figure 4.14, with the area under

the ROC curve in Table 4.28. The subject with the highest area was S19, while the lowest

was for S14. The average area in the table is 0.98295.

Comparing the results of Table 4.25 with Table 4.27 it is shown that in the former

table, 3 subjects had an accuracy of 100.0%, while 1 of the subjects using the NN classifier

had a 100.00%. The SVM classifier had better results overall with an average accuracy

is 97.18%, while NN classifier average accuracy is 96.76%. Comparing the results for the

area, SVM was a better classifier for this group of channels than NN.

Table 4.25: SVM results for channels C3, C4, F3, F4, FC1, FC2, FC5, and FC6

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1088 0 0 0 0 18 1 0 0 0 0 13 10 187 0 0 0 3 0 0 82.42%

S2 1 1313 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 99.47%

S3 0 0 1318 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 99.85%

S4 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S5 0 0 0 0 1314 0 0 0 3 0 0 0 0 0 0 0 2 0 1 0 99.55%

S6 12 0 0 0 0 1293 0 0 2 0 1 9 3 0 0 0 0 0 0 0 97.95%

S7 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S8 0 0 0 0 0 0 0 1314 0 0 0 0 0 0 0 0 0 6 0 0 99.55%

S9 0 0 0 0 0 1 0 0 1314 0 0 0 5 0 0 0 0 0 0 0 99.55%

S10 0 4 0 0 1 0 0 0 1 1313 0 0 0 0 1 0 0 0 0 0 99.47%

S11 0 0 0 0 2 0 0 0 2 0 1316 0 0 0 0 0 0 0 0 0 99.7%

S12 11 0 0 0 0 18 0 2 2 1 1 1261 1 7 9 0 0 7 0 0 95.53%

S13 1 0 1 0 0 9 1 1 26 0 1 4 1276 0 0 0 0 0 0 0 96.67%

S14 184 1 0 0 0 1 0 3 0 1 0 20 0 1107 0 0 0 3 0 0 83.86%

S15 0 5 0 0 0 2 0 0 0 5 12 20 0 0 1276 0 0 0 0 0 96.67%

S16 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 1296 0 0 1 0 98.18%

S17 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1319 0 0 0 99.92%

S18 13 0 0 0 0 1 0 10 0 0 0 6 0 4 0 0 0 1286 0 0 97.42%

S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 100.0%

S20 0 0 2 0 0 4 0 0 0 0 0 12 11 0 0 0 0 0 0 1291 97.8%

83.05% 99.24% 98.07% 100.0% 99.7% 95.99% 99.85% 98.8% 97.19% 99.02% 98.87% 93.75% 97.7% 84.83% 99.22% 100.0% 99.85% 98.54% 99.85% 100.0% 97.18%
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Fig 4.13: ROC figure for NN for channel C3, C4, F3, F4, FC1, FC2, FC5, and FC6

Table 4.26: ROC Area Under Curve for SVM for Channels:C3, C4, F3, F4, FC1, FC2,
FC5, and FC6

Subject Area Subject Area

S1 0.908 S11 0.998

S2 0.997 S12 0.976

S3 0.999 S13 0.983

S4 1.0 S14 0.915

S5 0.998 S15 0.983

S6 0.989 S16 0.991

S7 1.0 S17 1.0

S8 0.997 S18 0.987

S9 0.997 S19 1.0

S10 0.997 S20 0.989

Average 0.9852
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Table 4.27: NN Confusion Matrix for Channels C3, C4, F3, F4, FC1, FC2, FC5, and FC6

Outputs

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

T
ar

ge
ts

S1 1095 0 0 0 0 19 0 0 0 0 0 20 10 169 1 0 0 6 0 0 82.95%

S2 2 1310 0 0 0 0 0 0 0 3 0 0 0 1 3 0 1 0 0 0 99.24%

S3 0 0 1318 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 99.85%

S4 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0%

S5 0 0 0 0 1304 2 0 3 1 2 2 0 0 0 0 0 6 0 0 0 98.79%

S6 21 0 0 0 0 1292 0 0 2 0 0 4 1 0 0 0 0 0 0 0 97.88%

S7 0 0 0 0 0 0 1318 0 0 1 0 0 1 0 0 0 0 0 0 0 99.85%

S8 0 2 0 0 1 0 0 1302 0 0 1 3 0 2 0 0 0 9 0 0 98.64%

S9 0 0 0 0 0 0 0 0 1304 1 0 0 13 0 0 0 0 0 2 0 98.79%

S10 1 3 0 0 2 0 0 0 1 1296 0 1 0 12 4 0 0 0 0 0 98.18%

S11 0 0 0 0 0 0 0 3 8 0 1298 11 0 0 0 0 0 0 0 0 98.33%

S12 5 0 0 0 1 12 0 5 1 3 6 1257 5 9 8 0 0 8 0 0 95.23%

S13 1 0 0 0 0 2 1 0 13 0 0 2 1295 0 0 0 0 0 6 0 98.11%

S14 136 1 0 1 0 0 0 0 0 1 0 20 0 1153 4 0 0 4 0 0 87.35%

S15 0 1 0 0 0 2 0 0 0 0 13 9 0 1 1294 0 0 0 0 0 98.03%

S16 0 8 21 38 0 0 0 2 0 0 0 0 3 41 10 1176 0 16 0 5 89.09%

S17 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 1316 0 0 0 99.7%

S18 5 0 0 0 4 0 0 5 0 0 0 14 0 10 0 0 0 1282 0 0 97.12%

S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1320 0 100.0%

S20 0 0 0 0 0 0 0 0 0 0 0 15 6 0 0 5 0 0 0 1294 98.03%

81.17% 91.98% 91.71% 90.47% 92.31% 90.67% 92.89% 91.77% 91.37% 91.91% 91.48% 86.7% 90.45% 77.76% 90.92% 91.73% 92.49% 90.06% 92.45% 92.49% 96.76%

Fig 4.14: ROC figure for NN for channels C3, C4, F3, F4, FC1, FC2, FC5, and FC6
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Table 4.28: ROC Area Under Curve for NN for Channels C3, C4, F3, F4, FC1, FC2,
FC5, and FC6

Subject Area Subject Area

S1 0.911 S11 0.991

S2 0.996 S12 0.974

S3 0.999 S13 0.99

S4 0.999 S14 0.932

S5 0.994 S15 0.99

S6 0.989 S16 0.945

S7 0.999 S17 0.998

S8 0.993 S18 0.985

S9 0.993 S19 1.0

S10 0.991 S20 0.99

Average 0.98295

4.8 Re-testing Data

Table 4.29: Data After 6 Months

Subject SVM NN

S2 93% 80%

S7 95% 85%

S10 72% 67%

Table 4.29 shows the accuracy of the system after 6 months. It shows that the system

doesn’t change over time; it also shows that NN still gets lower results than the SVM

classifier. The data was tested against former data to get the accuracies and uses only 2

channels. S10 got the worst data of all 3, but it’s data is still on the average. Meanwhile

S7 has the highest accuracy of being right.

4.9 Discussion

Comparing all the averages for the area under the ROC curves for all the different channels,

It is seen that the best results overall were for channels C3, C4, FC1, FC2, FC5, and FC6
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using the SVM classifier. Also, the NN classifier is prone to have overfitting problems,

while the SVM classifier does not.

For some subjects, the SVM presented better accuracy than NN which gave reduced

accuracy. This is due to the fact that, the SVM maps the features to a higher dimensional

space and fits linear decision boundaries in the high dimensional space. The NN classifier

is unreliable as it changes weights from session to session. If a subject has lower accuracy

for authentication with both classifiers, this implies that the subject needs more training

in performing the motor imagery tasks.

Also, it can be seen that the overall performance was high with an accuracy of 97% with

just using 3 electrodes for 20 subject authentication problem. Using only 2 electrodes also

gives a good accuracy of 91%. These results indicate that the algorithm can be optimized

to work with fewer electrodes by better subject training, improving the feature extraction

and feature selection processes.

While the SVM classifier might not be prone to overfitting, it does have a problem

with scalability, while it is not in the scope of this project to test that, in theory, is still

a problem. Because the SVM uses one-vs-one algorithms to classify, the time to classify

would become exponential, while the NN wouldn’t. For small systems, SVM is used with

2 channel EEG for authentications in real-time. Next, the chapter presents some results

using a GUI and timing results for offline person verification. An authentication system

can use only two channels because results weren’t that different from the best results, and

with the SVM classifier for a limit number of people or using the NN classifier with less

sampling.



Chapter 5

OFFLINE GUI

This chapter shows an implemented off-line GUI that can train the NN classifier and

the SVM classifier. The GUI is made using a combination of the python and Matlab

programming languages. The python code uses the Tkinter library to create the interface

and uses a Matlab engine to communicate to be able to use Matlab functions.

Fig 5.1 shows what the user sees when he starts the GUI. The first button is the

classifiy button, which allows a user to authenticate aperson data. The Button of Train

allows a user to train the NN and the SVM classifier with data preiviously recorded.

Fig 5.1: ROC figure for NN for channel C3, C4, F3, F4, FC1, FC2, FC5, and FC6

After prassing the Train button, the user sees the image in Fig 5.2 and can select one

of the the classifiers to train. Once the slected classifier is trained the GUI shows the word

finish as displayed in Fig 5.3, to tell the user that the GUI finished training the selected

classifier.
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Fig 5.2: Display of Buttons in the GUI

t

Fig 5.3: Images of GUI displayig the Word Finish after Finishing Classifing

After the user has train the classifier at least once the user can be classified a subject

data even if the user closes the app. If the user presses the classify button a pop up similar

to Fig 5.2 shows the option of which classifier to choose. After choosing a classifier a popup

with a file browser is displayed show in Fig 5.4 after selecting the folder that with the data

the user wants to classify, the software classifies it and displays it. Fig 5.5 demostrates

the example of using subject 1 data and being classified

Fig 5.4: Image of file browser for the software.
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Fig 5.5: Image of data being authenticated as subject 1



Chapter 6

CONCLUSION

6.0.1 Contributions

The spectrogram was used to extract features from EEG signals in experiments based

on motor imagery and different channels were tested to see which ones would be more

beneficial for person authentication. Because of the methods used here, better results

were acquired than previous work for all group of channels tested.

The Support Vector Machine was compared with the Neural Network classifier, the

Support Vector Machine has better results for all of the channels. The SVM is more

reliable because it doesn’t have the overfitting problem which lowered the results for the

other channels.

The 2 best EEG channels were C3 and C4, their results were very close to the result

with 6 channel. This will decrease the time for set up. While using an SVM classifier

might be more reliable for a small authentication system an NN with less training would

be a better classifier for a larger neural classification.

6.0.2 Future Work

The EEG based person authentication system presented here could be used to develop an

automatic way for person identification, by implementing the system in a smart device,

where it would show the outcome of the authentication on the said device[32].

To improve the peresnted methods to classyfiy a person’s EEG some sugestions are

given below:

• Improving the SVM classifier to allow scalability would allow the system to target

a larger population.
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• Another option to improve person authentication accuracy will be to explore spec-

trotemporal and positive matrix factorization methods for feature extraction.

• Using texture desciptros on the EEG data as another feature can improve the ac-

curacy of the system.

• Improve classifier performance by combining SVM and NN classifiers.
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