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The class of Z-matrices is the set of matrices whose off-diagonal entries are non

positive. Solving a linear system of the form Ax = b is possible if the coefficient matrix

A has certain characteristics such as being of full rank. Linear systems in which the

coefficient matrix A is a Z-matrix can be found in many processes used in different

applied fields from engineering to economics. For instance, they can be found when

approximating the solution of a partial differential equation (PDE) by finite difference

methods. Usually, the resulting linear systems are very large and using direct methods

is impractical. Then it is necessary to use iterative methods. The success of iterative

methods depends on the condition number of the system. The condition number is the

maximum ratio of the relative error in x divided by the relative error in b. This is a

measurement that relates the behavior of the system given small changes on its right
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hand side (RHS). If the condition number in a linear system is small then it is said

that the system is well-conditioned, otherwise it is ill-conditioned. In many cases, large

linear systems with Z-matrices as coefficient matrices have large condition numbers,

which can cause iterative methods to fail. To alleviate this problem, a technique known

as preconditioning is used. Basically, preconditioning is any form of modification of an

original linear system that produces an equivalent system that is faster to solve than

the original system.

The Gauss-Seidel is one of the most reliable and oldest iterative methods for solving

linear systems, but it tends to converge slowly for ill-conditioned systems. In 2002,

Hisashi Kotakemori [9] proposed a preconditioner for the Gauss-Seidel of the form

P = I + Smax for the particular case where the coefficient matrix is a diagonally

dominant Z-matrix, with unit diagonal elements. Then, the problem Ax = b is changed

to an equivalent one, which is PAx = Pb.

This thesis will investigate the properties of the preconditioner P = I + Smax. As

it will be shown, using this preconditioner preserves the convergence characteristics

of the problem and keeps PA as a Z-matrix. Then, based on these properties, a new

preconditioner will be proposed based on P , which can be used for diagonally dominant

Z-matrices with positive diagonal elements, not only for unit diagonal elements. In

addition, this new preconditioner can be used iteratively to improve the convergence

characteristics of the problem.
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Resumen de Tesis Presentada a Escuela Graduada
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LINEALES CON MATRICES Z MAL CONDICIONADAS

Por

Isnardo Arenas Navarro

Julio 2011

Consejero: YONG, Xuerong

Departamento: Departamento de Ciencias Matemáticas

La clase de las matrices Z es el conjunto de matrices que sus entradas fuera de la

diagonal no son positivas. Resolver un sistema lineal de la forma Ax = b es posible si la

matriz de coeficientes tiene ciertas caracteŕısticas como ser de rango completo. Sistemas

lineales en los que la matriz de coeficientes A es una matriz Z se puede encontrar en

muchos de los procesos utilizados en diferentes campos aplicados de la ingenieŕıa y la

economı́a. Por ejemplo, se puede encontrar cuando se aproxima la solución de una

ecuación diferencial parcial (PDE) por métodos de diferencias finitas. Por lo general,

los sistemas lineales resultantes son de gran tamaño lo cual hace que el uso de métodos

directos sea impráctico. Entonces es necesario el uso de métodos iterativos. El éxito

de los métodos iterativos depende del número de condición del sistema. El número de

condición es la relación máxima del error relativo de x dividido por el error relativo
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en b. Esta es una medida que relaciona el comportamiento del sistema ante cambios

pequeños en su lado derecho (RHS). Si el número de condición en un sistema lineal es

pequeño, entonces se dice que el sistema está bien acondicionado, de lo contrario es

mal condicionado. En muchos casos los sistemas lineales grandes con matrices Z como

matrices de coeficientes tienen un gran número condición, esto puede causar que los

métodos iterativos fallen. Para aliviar este problema, se utiliza una técnica conocida

como precondicionamiento. Básicamente, precondicionamiento es cualquier forma de

modificación de un sistema lineal en uno equivalente que es más rápido para resolver

que el sistema original.

El Gauss-Seidel es uno de los métodos iterativos más antiguos y confiables para

resolver sistemas lineales, pero tiende a converger lentamente. En 2002, Hisashi Ko-

takemori en [9] propuso un precondicionador de Gauss-Seidel de la forma P = I+Smax,

para el caso particular en que la matriz de coeficientes es una matriz Z diagonalmente

dominante, con una diagonal principal unitaria. Entonces, el problema Ax = b se

cambia por un equivalente, que es PAx = Pb.

En esta tesis se investigarán las propiedades del precondicionador P = I + Smax.

Como se verá, el uso de este precondicionador preserva las caracteŕısticas de con-

vergencia del problema y mantiene PA como una matriz Z. Luego, basado en estas

propiedades, se propone un nuevo precondicionador fundamentado en P , el cual se

puede utilizar para matrices Z diagonalmente dominantes con diagonal positiva, no

sólo para las de diagonal unitaria. Además, este nuevo precondicionador puede ser

utilizado de manera iterativa para mejorar las caracteristicas de convergencia del prob-

lema.
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CHAPTER 1

INTRODUCTION

Solving a linear system of the form Ax = b where A is a nonsingular square matrix

arises in many processes and in different applied fields from engineering to economics.

Also, many numerical methods rely on the solution of those systems. For example,

when the Newton method is applied to find f(x∗) = 0 where f : R
n → R

n, the

iteration can be written as

xk+1 = xk − (J(f)(xk))
−1 f(xk)

where J(f) is a n × n matrix. Then, for each Newton iteration, the expression

(J(f)(xk))
−1 f(xk) needs to be computed. This is equivalent to solving the linear

system J(f)(xk)z = f(xk), where z = xk+1 − xk.

In many applications the size of the matrix may become very large. An example of

1



CHAPTER 1. INTRODUCTION 2

this is when the domain of a partial differential equation is discretized by partitioning

it. If the domain is a cube and it is partitioned into 100 parts on each side, this will

generate a matrix of size 1000000 × 1000000. Therefore it is impractical to calculate

the inverse of the matrix or to use direct methods like Gaussian elimination. A first

aproach to solve this problem is to use iterative methods to approximate the solution

of the linear system.

Another problem to be considered when solving a linear system is the condition

number of the matrix. The condition number gives the relationship between a dis-

turbance on the right hand side and the approximation of the solution. To solve this

problem, preconditioners are used ( see Chapter 2). When the condition number of

the matrix is very large, the system is called ill-conditioned. For these systems, the

convergence rate of the iterative methods tends to be slow.

A special case of a linear system Ax = b is when A is a Z-matrix. Z-matrices are

matrices whose off-diagonal entries are less than or equal to zero. The purpose of this

thesis is to study ill-conditioned systems of Z-matrices and show that iterative precon-

ditioning can be used to improve the convergence characteritics of these systems. In

that direction, the properties of the preconditioner P proposed by Hisashi Kotakemori

[9] for a nonsingular diagonally dominant Z-Matrix with unit diagonal will be studied.

The main goal of this thesis is to lay down all the theoretical background and

proof necessary to construct an iterative preconditioner based on P that can be used

for nonsingular diagonally dominant Z-Matrices with positive diagonal. This includes

extending the usage of the preconditioner P from the class of Z-matrices with unit

diagonal to a wider class with positive diagonal.
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The preconditioner proposed in Chapter 4 will be validated by using it to solve

linear systems with Laplacian matrices from the finite difference method applied in

one, two and three dimensions. The results obtained will be presented in Chapter 5.

Finally, conclusions and future work will be provided in Chapter 6.



CHAPTER 2

PRECONDITIONING

There are theoretical convergence conditions that guarantee that iterative methods

can obtain a good approximation to the solution of the problem Ax = b. These

convergence conditions are different for each iterative method. However, in practice,

iterative methods suffer from slow convergence. To reduce the number of iterations

needed for those methods to achieve a good accuracy, preconditioning is used.

The quantity

(2.1) κp(A) = ‖A‖p
∥

∥A−1
∥

∥

p

which is called the condition number of the linear system with respect to the norm

‖.‖p, p = 1, . . . ,∞ plays an important role in the solution of linear systems by iterative

methods. Preconditioning is used in systems where κp(A) is very large and its purpose

4



CHAPTER 2. PRECONDITIONING 5

is to make this value as small as possible. In that way, it can be guaranteed that

the linear system is not unstable to small changes in the RHS. Roughly speaking,

a preconditioner is any form of implicit or explicit modification of an original linear

system that produces an equivalent system that is faster to solve than the original

system. For example, scaling all the rows of a linear system to make the diagonal

elements equal to one is an explicit form of preconditioning. The resulting system can

be solved by a Krylov subspace method, shuch as Conjugate Gradient, and may require

fewer steps to converge than solving the original system.

In general, the condition number κp(A) obeys the following relation

‖r‖p = ‖b− Ax̃‖p

(2.2)
‖x− x̃‖p
‖x‖p

≤ κp(A)
‖r‖p
‖b‖p

When the condition number of a matrix is large, this could mean that even if the norm

of the residual ‖r‖p is small, the obtained approximation x̃ of the solution is not good.

When p = 2 the condition number is given by

(2.3) κ2(A) =
σmax(A)

σmin(A)

where σmax(A) and σmin(A) are the maximum and minimum singular values of A.

2.1 Some Classic Preconditioners

This section discusses some of the preconditioners that appear in classical literature

of numerical linear algebra.
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Many preconditioners are based on different decompositions or splittings of the

coefficient matrix A. In this section, some classical decompositions and how the pre-

conditioners are produced from them will be discussed.

The first idea is to build an equivalent system to Ax = b as follows

M−1Ax = M−1b.

This idea is based on decomposing the matrix into the form A = M − R where R

is a residual matrix, and M can be, for example, triangular. Instead of computing

explicitly the result of M−1 or M−1A, it is more appropiate to write the product of

M−1 and a vector as the solution of a linear system. This process is less expensive,

computationally speaking.

One easy way of defining a preconditioner is to perform an incomplete factorization

of A. This implies a decomposition of the form A = LU−R, but the incomplete factor-

ization can not always be achieved. Even when you have the incomplete factorization

there is no guarantee that either the condition number or the number of iterations can

be improved. To compute M−1x = z, where M is factored as M = LU the following

steps are used:

1. Solve Ly = x.

2. Solve Uz = y.

This returns the value of the vector z. Algorithms 2.1 and 2.2 show how to solve

upper triangular and lower triangular linear systems respectively. The upper triangular

system is solved using the fact that the last row of the system is zn = yn
An,n

. Then, this
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value can be substituted in the row before that leaving only one unknown in that row.

This value can be easily obtained and the process is repeated until all the unknowns

are determined. This process is known as back substitution. A similar approach can be

followed with lower triangular systems by beginning in the first row. In that case, the

process is known as forward substitution.

Algorithm 2.1 Solver for The Lower Triangular Part

Require: A and b

1: for i = 1 : n do

2: x(i) = b(i)

3: for k = 1 : i− 1 do

4: x(i) = x(i)− A(i, k)x(k)

5: end for

6: x(i) = x(i)/A(i, i)

7: end for

Algorithm 2.2 Solver for The Upper Triangular Part

Require: A and b

1: for i = n : −1 : 1 do

2: x(i) = b(i)

3: for k = i+ 1 : n do

4: x(i) = x(i)− A(i, k)x(k)

5: end for

6: x(i) = x(i)/A(i, i)

7: end for
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Another typical preconditioner is the Symmetric Successive Overrelaxation Method

(SSOR). Consider the splitting A = D − E − F where D is the diagonal part of A,

−E is the strict lower triangular part of A and −F is the strict upper triangular part

of A, then

MSSOR = (D − ωE)D−1(D − ωF )

with L ≡ (D − ωE)D−1 = (I − ωED−1) and U ≡ (D − ωF ), when ω = 1 this

preconditioner is called Symmetric Gauss-Seidel. These preconditioners require that

all entries of the diagonal of the matrix A are nonzero.

2.2 Preconditioner P = I + Smax

In this section the use of the preconditioner P will be considered with the Gauss-

Seidel method (see Definition 2.1). The preconditioner P is used as follows,

PAx = Pb

Definition 2.1. [15] Let Ax = b and A = M − N where M is the lower triangular

part of A then the Gauss-Seidel iteration is given by xk+1 = M−1Nxk +M−1b

Note that when M is the lower triangular part of A and N is the strictly upper

part of −A, then the splitting A = M − N is called a Regular Splitting. Now since

N = M − A, then replacing it in Definition 2.1 produces,

xk+1 = xk −M−1Axk +M−1b.

Algorithm 2.3 shows all the steps for the Gauss-Seidel method.
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Algorithm 2.3 The Gauss-Seidel Method

Require: A, x0 and b

1: Calculate M

2: r0 = b− Ax0

3: for k = 0, 1 . . . , until convergence do

4: Solve for xk+1, M(xk+1 − xk) = rk

5: rk+1 = b− Axk+1

6: end for

The convergence condition for Gauss-Seidel is given by

‖xk − x∗‖ ≤ ρ(M−1N)k ‖x0 − x∗‖

where x∗ is the solution for the system Ax = b. This method converges to a solution

for any x0 when ρ(M−1N) < 1. When ρ(M−1N) is very close to 1 the number of

iterations increases. So it is necessary to use a preconditioner P such that PA = A

and for the new splitting A = M−N , ρ(M−1N ) is smaller than ρ(M−1N).

In the following definitions the concepts of a Z-matrix and diagonal dominance are

introduced.

Definition 2.2. Let A = (aij) be a matrix, then A is called Z-Matrix if and only if

aij ≤ 0 when i 6= j

Definition 2.3. Let A = (aij) be a matrix, then A is called diagonally dominant if

and only if |aii| ≥
∑n

j=1 j 6=i |aij|, i = 1, . . . , n.

In 2002 Hisashi Kotakemori [9] proposed P = I + Smax as a preconditioner for a

nonsingular diagonally dominant Z-Matrix with unit diagonal, which is based on Gu-
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nawardena 1991 [5]. This work proposes an extension of the result in [9] by modifying

the preconditioner P = I + Smax so that it can be used iteratively. For completeness,

the construction of the preconditioner P = I + Smax as built in [9] will be presented

next.

Let A be an n × n Z-Matrix with unit diagonal, then Smax = (si,j) is an n × n

matrix such that

(2.4) si,j =















−ai,j if j > i and j = ki

0 otherwise

where

ki = min

{

j|max
k>i

|ai,k| = |ai,j|

}

Example. 2.1. Let

A =

























1 0 −1

3
−1

2
0

0 1 0 −1

2
−1

2

−1

2
0 1 0 −1

2

−1

4
−1

4
0 1 −1

2

0 −1

3
−1

2
0 1

























For the splittings A = M − N the result obtained is that ρ(M−1N) ≈

0.8582932135683774, where
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M =

























1 0 0 0 0

0 1 0 0 0

−1

2
0 1 0 0

−1

4
−1

4
0 1 0

0 −1

3
−1

2
0 1

























, N =

























0 0 1

3

1

2
0

0 0 0 1

2

1

2

0 0 0 0 1

2

0 0 0 0 1

2

0 0 0 0 0

























Now using Equation 2.4, the preconditioner is obtained as follows

Smax =

























0 0 0 1

2
0

0 0 0 1

2
0

0 0 0 0 1

2

0 0 0 0 1

2

0 0 0 0 0

























, P =

























1 0 0 1

2
0

0 1 0 1

2
0

0 0 1 0 1

2

0 0 0 1 1

2

0 0 0 0 1

























and

PA =

























7

8
−1

8
−1

3
0 −1

4

−1

8

7

8
0 0 −3

4

−1

2
−1

6

3

4
0 0

−1

4
− 5

12
−1

4
1 0

0 −1

3
−1

2
0 1

























For the splittings of PA = A where A = M−N and M is the lower triangular part

M =

























7

8
0 0 0 0

−1

8

7

8
0 0 0

−1

2
−1

6

3

4
0 0

−1

4
− 5

12
−1

4
1 0

0 −1

3
−1

2
0 1

























, N =

























0 1

8

1

3
0 1

4

0 0 0 0 3

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

























the obtained result is that ρ(M−1N ) ≈ 0.7377715884967286.
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2.3 Some Preconditioners Similar to P = I + Smax

In the review of literature made for this work, some similar preconditioners to

P = I + Smax were found. In many of these cases the preconditioners were proposed

by the same authors of [9]. But they differ from this work in the sense that they do

not use them iteratively. Some of these preconditioners are:

2.3.1 The preconditioner PC = I + C

This preconditioner is proposed by Milaszewicz [11]. It is used with the Gauss-

Seidel method and can be applied to Z-matrices with unit main diagonal. C = (ci,j) is

a matrix defined as

ci,j =















0 if j 6= 1 or i = 1

−ai,1 otherwise

.

The structure of the preconditioner PC is as follows,

(2.5) PC = I + C =

































1 0 . . . . . . 0

−a2,1 1 . . . . . . 0

... 0 1 0 . . . 0

...
. . .

...

... 0 . . . 0 1 0

−an,1 0 . . . . . . 0 1

































Example. 2.2. Using the same matrix of Example 2.1, the preconditioner PC is as

follows
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PC =

























1 0 0 0 0

0 1 0 0 0

1

2
0 1 0 0

1

4
0 0 1 0

0 0 0 0 1

























and

PCA =

























1 0 −1

3
−1

2
0

0 1 0 −1

2
−1

2

0 0 5

6
−1

4
−1

2

0 −1

4
− 1

12

7

8
−1

2

0 −1

3
−1

2
0 1

























Now the regular splitting for PCA = A, where A = M−N , is as follows

M =

























1 0 0 0 0

0 1 0 0 0

0 0 5

6
0 0

0 −1

4
− 1

12

7

8
0

0 −1

3
−1

2
0 1

























, N =

























0 0 1

3

1

2
0

0 0 0 1

2

1

2

0 0 0 1

4

1

2

0 0 0 0 1

2

0 0 0 0 0

























the obtained result is that ρ(M−1N ) ≈ 0.8348742347875103.

2.3.2 The preconditioner PS = I + S

This preconditioner is proposed by Gunawardena [5] for the same method and the

same type of matrices as in Subsection 2.3.1. It focuses on eliminating the elements of
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the first upper codiagonal of A. S = (si,j) is a matrix defined as

sij ==















−ai,j if j = i+ 1

0 otherwise

.

The structure of the preconditioner PS is as follows,

(2.6) PS = I + S =

































1 −a1,2 0 . . . 0

0 1 −a2,3 0 . . . 0

... 0 1 −a3,4
. . . 0

...
. . .

...

... 0 . . . 0 1 −an−1,n

0 0 . . . . . . 0 1

































Example. 2.3. Using the same matrix of Example 2.1, the preconditioner PS is as

follows

PS =

























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

2

0 0 0 0 1

























and

PSA =

























1 0 −1

3
−1

2
0

0 1 0 −1

2
−1

2

−1

2
0 1 0 −1

2

−1

4
− 5

12
−1

4
1 0

0 −1

3
−1

2
0 1
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Now the regular splitting for PSA = A, where A = M−N , is as follows

M =

























1 0 0 0 0

0 1 0 0 0

−1

2
0 1 0 0

−1

4
− 5

12
−1

4
1 0

0 −1

3
−1

2
0 1

























, N =

























0 0 1

3

1

2
0

0 0 0 1

2

1

2

0 0 0 0 1

2

0 0 0 0 0

0 0 0 0 0

























the obtained result is that ρ(M−1N ) ≈ 0.8328351721763375.

2.3.3 The preconditioner PU = I + βU

This preconditioner is proposed by Kotakemori [10] for the same method and the

same type of matrices as in Subsection 2.3.1. For this preconditioner, U is the strict

upper triangular part of −A and β ≥ 1 is a scalar factor of U .

Example. 2.4. Using the same matrix of Example 2.1, the preconditioner PU with

β = 1 is as follows

PU =

























1 0 1

3

1

2
0

0 1 0 1

2

1

2

0 0 1 0 1

2

0 0 0 1 1

2

0 0 0 0 1
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and

PUA =

























17

24
−1

8
0 0 − 5

12

−1

8

17

24
−1

4
0 −1

4

−1

2
−1

6

3

4
0 0

−1

4
− 5

12
−1

4
1 0

0 −1

3
−1

2
0 1

























Now the regular splitting for PUA = A, where A = M−N , is as follows

M =

























17

24
0 0 0 0

−1

8

17

24
0 0 −0

−1

2
−1

6

3

4
0 0

−1

4
− 5

12
−1

4
1 0

0 −1

3
−1

2
0 1

























, N =

























0 1

8
0 0 5

12

0 0 1

4
0 1

4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

























the obtained result is that ρ(M−1N ) ≈ 0.6703795542311850.

2.3.4 The preconditioner PR = I + S +R

This preconditioner is proposed by Niki and Kohno, as described in [14], for the

same method and the same type of matrices as in Subsection 2.3.1. For this precondi-

tioner, R = (ri,j) is a matrix defined as

ri,j =















0 if i 6= n or j = n

−an,j otherwise

.
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The structure of the preconditioner PR is as follows,

(2.7) PS = I + S +R =

































1 −a1,2 0 . . . 0

0 1 −a2,3 0 . . . 0

... 0 1 −a3,4
. . . 0

...
. . .

...

... 0 . . . 0 1 −an−1,n

−an,1 −an,2 . . . . . . −an,n−1 1

































Example. 2.5. Using the same matrix of Example 2.1, the preconditioner PR is as

follows

PR =

























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

2

0 1

3

1

2
0 1

























and

PRA =

























1 0 −1

3
−1

2
0

0 1 0 −1

2
−1

2

−1

2
0 1 0 −1

2

−1

4
− 5

12
−1

4
1 0

−1

4
0 0 −1

6

7

12
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Now the regular splitting for PRA = A, where A = M−N , is as follows

M =

























1 0 0 0 0

0 1 0 0 0

−1

2
0 1 0 0

−1

4
− 5

12
−1

4
1 0

−1

4
0 0 −1

6

7

12

























, N =

























0 0 1

3

1

2
0

0 0 0 1

2

1

2

0 0 0 0 1

2

0 0 0 0 0

0 0 0 0 0

























the obtained result is that ρ(M−1N ) ≈ 0.7750459262368632.

2.3.5 The preconditioner PSM = I + S + SM

This preconditioner is proposed by Sakakihara [12] for the same method and the

same type of matrices as in Subsection 2.3.1. This preconditioner is based in the

preconditioner PS discussed in Subsection 2.3.2, where S is the first upper codiagonal

of −A. SM = (si,j) is obtained as follows,

(2.8) si,j =















−ai,j if j > i+ 1 and j = ki

0 otherwise

where

ki = min

{

j| max
k>i+1

|ai,k| = |ai,j|

}

Example. 2.6. Using the same matrix of Example 2.1, the preconditioner PSM is as

follows
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PSM =

























1 0 0 1

2
0

0 1 0 1

2
0

0 0 1 0 1

2

0 0 0 1 1

2

0 0 0 0 1

























and

PSMA =

























1 0 −1

3
−1

2
0

0 1 0 −1

2
−1

2

−1

2
0 1 0 −1

2

−1

4
− 5

12
−1

4
1 0

−1

4
0 0 −1

6

7

12

























In particular for this example, PSM = P = I + Smax, so the results are identical to

those of Example 2.1.

The following example shows that the preconditioner P = I+Smax is different from

PSM .

Example. 2.7. Let

A =

























1 −1

2
0 −1

2
0

0 1 −1

3
0 −1

2

−1

2
0 1 −1

4
−1

4

−1

4
−1

4
0 1 −1

2

0 −1

3
−1

2
0 1
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Then

PSM =

























1 1

2
0 1

2
0

0 1 1

3
0 1

2

0 0 1 1

4

1

4

0 0 0 1 1

2

0 0 0 0 1

























and P = I + Smax =

























1 1

2
0 0 0

0 1 0 0 1

2

0 0 1 1

4
0

0 0 0 1 1

2

0 0 0 0 1



























CHAPTER 3

PROPERTIES OF Z-MATRICES AND

THE PRECONDITIONER

P = I + SMAX

This chapter will present a series of lemmas that will lay the background necessary

to understand the preconditioner P = I + Smax and achieve the modification. From

now on, it is assumed that A is a nonsingular and diagonally dominant Z-matrix, P is

a preconditioner with nonnegative real entries, and x and b are vectors of suitable sizes.

Lemma 3.1 is a classical result that allows to bound the spectral radius of matrices

with all entries positive. Lemma 3.2 was proven during this work and it guarantees

21
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that the product PA is still a Z-matrix. So, using this product iteratively will maintain

that property. Lemmas 3.3 and 3.4 are used to extend the usage of preconditioner P to

matrices with positive diagonal. Those lemmas show that any Z-matrix with a positive

main diagonal can be transformed to one with unitary diagonal, thus conserving the

properties of being a Z-matrix and without losing the quality of its spectral radius.

Lemmas 3.5 and 3.7 are used to extend the usage of preconditioner P to matrices

with positive diagonal iteratively. Lemma 3.5 shows that the product PA preserves

the diagonal dominant property. Therefore P can be used iteratively preserving that

property. Lemma 3.7 was proven during this study and it says that the splitting of the

product PA is bounded by the splitting of the original coefficient matrix. This last

result is of importance since it will be used to show that using P in an iterative fashion

will produce a better spectral radius.

In the following Lemma the notation A ≥ 0 is used to indicate that the matrix or

vector is nonnegative i.e. that all entries of A are greater than or equal to zero. The

notation A > 0 is used to indicate that the matrix or vector is positive i.e. that all

entries of A are greater than zero.

Lemma 3.1 ([6, Corollary 8.1.29]). Let A an n× n Matrix, x ∈ R
n, and suppose that

A ≥ 0 and x > 0. If α ≥ 0 is such that Ax ≤ αx, then ρ(A) ≤ α. From this it follows

that if Ax < αx, then ρ(A) < α.

Lemma 3.2. If A is an n× n Z-matrix with unit diagonal and P = (I + Smax), then

PA is a Z-matrix.
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Proof. Since

P =

































1 . . . −a1,k1 . . .

0 1 . . . −a2,k2 . . .

0 0 1 . . . −a3,k3 . . .

... . . .
. . .

0 0 . . . 0 1 −an−1,kn−1

0 0 . . . 0 0 1

































A is a Z-matrix and ki 6= i then ai,ki ≤ 0. Morever (PA)i,j = ai,j − ai,kiaki,j ≤ 0 when

i 6= j, so PA is a Z-matrix. �

Lemma 3.3. If A is a n×n Z-Matrix and D = diag (µ1, µ2, . . . , µn) with µi ≥ 0, then

DA is a Z-matrix.

Proof. Since

DA = (µiai,j)

when i 6= j, µi > 0 and ai,j ≤ 0 then µiai,j ≤ 0. �

Lemma 3.4. Let A an n × n Matrix, D = diag (µ1, µ2, . . . , µn) then ρ(M−1N) =

ρ(M−1

D ND) where A = M − N and DA = MD − ND are the regular Gauss-Seidel

splittings.

Proof. Note that for diagonal matrix D, the regular splittings of DA are MD = DM

and ND = DN , so ρ(M−1

D ND) = ρ((DM)−1DN) = ρ(M−1D−1DN) = ρ(M−1N). �

Note that the result used (MD = DM and ND = DN) in 3.4 is not true when D is

not diagonal, which would have a different splitting.
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Lemma 3.5. If A is an n × n Z-matrix diagonally dominant with unit diagonal and

non-singular, P = (I+Smax), then PA is a diagonally dominant Z-matrix with positive

diagonal and non-singular.

Proof. Since (PA)i,j = ai,j − ai,kiaki,j, using that 0 ≤ ai,kiaki,i < 1 for i 6= j then

(PA)i,i = 1− ai,kiaki,i > 0. Hence PA has a positive diagonal, and 1 ≥
∑n

j=1 j 6=i |ai,j|,

but A is a Z-matrix so

(3.1) 1 ≥
n

∑

j=1 j 6=i

−ai,j.

Hence
∑n

j=1
ai,j ≥ 0 for all i.

Now using the result in Lemma 3.2

|(PA)i,i| −
n

∑

j=1 j 6=i

|(PA)i,j| = 1− ai,kiaki,i −
n

∑

j=1 j 6=i

−(PA)i,j

= 1− ai,kiaki,i +
n

∑

j=1 j 6=i

ai,j − ai,kiaki,j

=
n

∑

j=1

ai,j − ai,ki

n
∑

j=1

aki,j

≥ 0(3.2)

So |(PA)i,i| ≥
∑n

j=1 j 6=i |(PA)i,j|. Hence PA is a diagonally dominant Z-matrix. �

Note that if the inequality in 3.1 is strict, then 3.2 has a strict inequality too.

The following result is classical in numerical linear algebra and is true for any

irreducibly diagonally dominant matrix. But in this case, only a short version of the

same for Z-matrices is needed.
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Lemma 3.6. Let A be an irreducibly diagonally dominant Z-matrix, then Gauss-Seidel

splitting A = M −N yields convergence and

ρ(M−1N) < 1

Proof. See the proof in [15, Theorem 4.5] �

Lemma 3.7. Let A be a diagonally dominant Z-matrix with unit diagonal, non-singular

using regular splittings A = M −N , PA = MP −NP and with ρ(M−1N) < 1 then

ρ(M−1

P NP ) ≤ ρ(M−1N)

Proof. By putting A = P−1(MP −NP ), one has that A = M −N = P−1(MP −NP ).

Since ρ(M−1N) < 1 there exists a positive vector, x, satisfying M−1Nx = ρ(M−1N)x.

Then

Ax = (M −N)x = M(I −M−1N)x =
1− ρ(M−1N)

ρ(M−1N)
Nx ≥ 0

Since M−1

P ≥ 0 and P ≥ I ≥ 0, then M−1

P P ≥ M−1

P ≥ M−1 and it follows that

(M−1

P P −M−1)Ax ≥ 0

M−1

P PAx−M−1Ax ≥ 0

M−1

P P (P−1(MP −NP ))x−M−1(M −N)x ≥ 0

(I −M−1

P NP )x− (I −M−1N)x ≥ 0

M−1Nx−M−1

P NPx ≥ 0

ρ(M−1N)x ≥ M−1

P NPx.

Finally, using Lemma 3.1, ρ(M−1

P NP ) ≤ ρ(M−1N). �



CHAPTER 4

THE PROPOSED METHOD

By the previous results, a new preconditioner can be introduced. This new pre-

conditioner is based on the preconditioner P but it can be applied iteratively for any

irreducibly diagonally dominant Z-matrix with a positive diagonal. This is an improve-

ment on the work done in [9] since the discussions there only apply for Z-matrices with

unit diagonal.

Given an irreducibly diagonally dominant Z-matrix with positive diagonal, say A, it

can be transformed into an irreducibly diagonally dominant Z-matrix with unit diago-

nal. This can be achieved by multiplying A by a matrix D = diag
(

1

a1,1
, 1

a2,2
, . . . , 1

an,n

)

,

26
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then the preconditioner P for the product DA is

P =

































1 . . . −
a1,k1
a1,1

. . .

0 1 . . . −
a2,k2
a2,2

. . .

0 0 1 . . . −
a3,k3
a3,3

. . .

... . . .
. . .

0 0 . . . 0 1 −
an−1,kn−1

an−1,n−1

0 0 . . . 0 0 1

































.

The coefficient matrix of the preconditioned system is P (DA). If the multiplication

is associated as (PD)A and P ′ = PD, one has that

P ′ =

































1

a1,1
. . . −

a1,k1
a1,1ak1,k1

. . .

0 1

a2,2
. . . −

a2,k2
a2,2ak2,k2

. . .

0 0 1

a3,3
. . . −

a3,k3
a3,3ak3,k3

. . .

... . . .
. . .

0 0 . . . 0 1

an−1,n−1
−

an−1,kn−1

an−1,n−1akn−1,kn−1

0 0 . . . 0 0 1

an,n

































.

The number of operations in P ′ can be reduced if D−1 = diag (a1,1, a2,2, . . . , an,n) is

considered. Then the obtained preconditioned system will be D−1(PDA), associating

the multiplication (D−1PD)A and letting

(4.1) P̃ = D−1PD



CHAPTER 4. THE PROPOSED METHOD 28

yields the following form

P̃ =

































1 . . . −
a1,k1
ak1,k1

. . .

0 1 . . . −
a2,k2
ak2,k2

. . .

0 0 1 . . . −
a3,k3
ak3,k3

. . .

...
. . .

0 0 . . . 0 1 −
an−1,kn−1

akn−1,kn−1

0 0 . . . 0 0 1

































P̃ is the new preconditioner proposed in this work.

The next Lemma shows that the iterative use of P̃ does not have an asymptotic

behavior. That is, if the preconditioner P̃ is applied several times, then the spectral

radius will keep decreasing until it reaches a value of zero.

Lemma 4.1. Let A be an irreducibly diagonally dominant n×n Z-matrix with positive

diagonal,then there exists t ∈ N such that At is lower triangular (where At = P̃t−1At−1

and A0 = A).

Proof. For n = 2

A =







a1,1 a1,2

a2,1 a2,2






, P̃1 =







1 −a1,2
a2,2

0 1







Hence

A1 =







a1,1 −
a1,2a2,1
a2,2

0

a2,1 a2,2







Now suppose that for some k there exists tk such that for any irreducibly diagonally

dominant A (k × k), Z-matrix with positive diagonal, Atk is lower triangular.
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It will be proved that for k + 1 there exists tk+1 such that for any irreducibly

diagonally dominant A (k + 1× k + 1) Z-matrix with positive diagonal, Atk+1
is lower

triangular.

A =

































a0,0 a0,1 a0,2 a0,3 . . . a0,k

a1,0 a1,1 a1,2 a1,3 . . . a1,k

a2,0 a2,1 a2,2 a2,3 . . . a2,k

a3,0 a3,1 a3,2 a3,3 . . . a3,k
... . . .

. . .

ak,0 ak,1 ak,2 ak,3 . . . ak,k

































Note that

P̃l =



























1 . . . 0 ∗ 0 . . .

0

P̃l

0

0

0



























where P̃l is a k × k preconditioner. By the induction hypothesis Atk has a lower

triangular block as follows,

Then

Atk =

































∗ ∗ ∗ ∗ . . . ∗

∗ ∗ 0 0 . . . 0

∗ ∗ ∗ 0 . . . 0

∗ ∗ ∗ ∗
. . . 0

... . . .
. . . 0

∗ ∗ ∗ ∗ . . . ∗

































since Atk is Z-matrix then (Atk)0,k ≤ 0
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This will be analyzed in two cases when (Atk)0,k = 0 and (Atk)0,k < 0

• Case 1

If (Atk)0,k = 0, Atk will be as follows

Atk =

































∗ ∗ ∗ ∗ . . . 0

∗ ∗ 0 0 . . . 0

∗ ∗ ∗ 0 . . . 0

∗ ∗ ∗ ∗
. . . 0

... . . .
. . . 0

∗ ∗ ∗ ∗ . . . ∗

































Thus changing the partition of Atk as follows

Atk =

































∗ ∗ ∗ . . . ∗ 0

∗ ∗ 0 . . . 0 0

∗ ∗ ∗ 0 . . . 0

∗ ∗ ∗ ∗
. . .

...

...
. . . 0

∗ ∗ ∗ ∗ . . . ∗

































Finally, using the hypothesis of induction, A2tk is lower triangular.

• Case 2

If (Atk)0,k < 0, and if through t̃ iterations more with t̃ < tk the entry becomes 0,
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then

Atk+t̃ =

































∗ ∗ ∗ ∗ . . . 0

∗ ∗ 0 0 . . . 0

∗ ∗ ∗ 0 . . . 0

∗ ∗ ∗ ∗
. . .

...

... . . .
. . . 0

∗ ∗ ∗ ∗ . . . ∗

































.

Hence, using the hypothesis of induction, A2tk+t̃ is lower triangular.

If (Atk)0,k < 0, and if through tk iterations more the entry never becomes 0, then

by the hypothesis of induction

A2tk =

































∗ 0 0 0 . . . ∗

∗ ∗ 0 0 . . . 0

∗ ∗ ∗ 0 . . . 0

∗ ∗ ∗ ∗
. . .

...

... . . .
. . . 0

∗ ∗ ∗ ∗ . . . ∗

































so A2tk+1 is lower triangular.

Hence, it is sufficient to take tk+1 = 3 ∗ tk and Atk+1
is lower triangular. �

Considering the construction of the preconditioner P̃ and the result in Lemma 4.1,

Theorem 4.2 is proved.

Theorem 4.2. If A is Z-matrix with positive diagonal, irreducibly diagonally dominant

and A0 = A, At = P̃t−1At−1, with Gauss-Seidel regular splittings At = Mt − Nt then
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there exists a k ∈ N such that

1 > ρ(M−1

0 N0) ≥ ρ(M−1

1 N1) ≥ ρ(M−1

2 N2) ≥ . . . ≥ ρ(M−1

k Nk) = 0

4.1 How to use the proposed preconditioner

Now that all the results have been obtained and that the new preconditioner is

contructed, the following discussion explains how to use it.

Given a linear system Ax = b, where A is a diagonally dominant Z-matrix with

positive main diagonal and irreducible, the first step is to fix a nonnegative integer t.

This t will be the amount of times that the preconditioner will be applied iteratively.

Now since t is fixed, at each step the following is calculated

At = P̃t−1At−1 and bt = P̃t−1bt−1

( where A0 = A and b0 = b)

Finally, after applying the preconditioner t times, the approximation of the solution

in the linear system should be calculated. For this, the Gauss-Seidel method (see

Algorithm 2.3) is used. The whole idea of this process is summarized in the following

algorithm.
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Algorithm 4.1 The Proposed Method

Require: A, x0, b and t

1: A0 = A and b0 = b

2: for i = 1, . . . , t do

3: Obtain preconditioner P̃i−1 for Ai−1

4: Ai = P̃i−1Ai−1, bi = P̃i−1bi−1

5: end for

6: Solving Atx = bt by Gauss-Seidel 2.3

Note that when t = 0, Algorithm 4.1 is equivalent to solving Ax = b without the

preconditioner.



CHAPTER 5

RESULTS

Many of the linear systems obtained in different applied fields are ill-conditioned.

This makes the preconditioners occupy a privileged place in the study of applied math-

ematics.

Some examples of these ill-conditioned linear systems in applied fields are:

34
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5.1 One-Dimensional Laplacian

In the problem of the One-Dimensional Laplacian, the matrix that is obtained is a

tridiagonal given by:







































2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 0 . . . 0

0
. . . . . . . . . 0

0 . . . 0 −1 2 −1 0

0 . . . 0 −1 2 −1

0 . . . 0 −1 2







































n×n

The eigenvalues of this matrix are given by

(5.1) λj = 2− 2 cos(jθ) j = 1, . . . , n,

where

θ =
π

n+ 1

Note that since 0 < jθ < π, all eigenvalues λj are positive, where λ1 is the minimum

value in the module and λn is the maximum value in the module. Hence, using the

2-norm, the condition number (see Equation 2.3) is given by

κ2 =
2− 2 cos( nπ

n+1
)

2− 2 cos( π
n+1

)

The condition number κ2 for this matrix is very large when n is big, so this matrix

is ill-conditioned. This is shown in Figure 5.1.



CHAPTER 5. RESULTS 36

50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Condition Number Laplacian Matrices n × n

κ 2

n

Figure 5.1: Condition Number κ2 for 1D Laplacian Matrices n× n

Example. 5.1. For A an n×n Laplacian matrix with x∗ = [1, 1, . . . , 1]T and b = Ax∗,

taking x0 = [0, 0 . . . , 0], a tolerance 1×10−6, 4000 as the maximum number of iterations,

and the proposed preconditioner P̃ (see Equation 4.1).

This matrix is obtained from the discretization of the equation −d2u
dx2 = f(x) using

finite differences.

Figure 5.2 shows the number of iterations versus the number of times that the

matrix was iteratively preconditioned.
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Figure 5.2: Number of iterations for 1D Laplacian matrices

# of times preconditioned

n 0 1 4 8 16 32

50 2662 923 297 130 69 26

75 4000 1934 621 273 143 53

100 4000 3268 1051 462 242 89

200 4000 4000 3731 1644 862 318

Table 5.1: Iterations For One-Dimensional Laplacian Matrices

Table 5.1 shows the size of the matrices versus number of times the matrices has

been iteratively preconditioned to a maximum of 32 times. Note that when the pre-

conditioner is applied only one time (column 3 in Table 5.1), it is equivalent to the

preconditioner proposed in [9]. Using P̃ iteratively improves the number of iterations
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needed to convergence in the Gauss-Seidel method.

5.2 Two-Dimensional Laplacian

In the problem of the Two-Dimensional Laplacian, the linear system that is obtained

has the following structure. Figure 5.3 shows the position of the entries of the coefficient

matrix of the Two-Dimensional Laplacian using Matlab’s function spy(A).
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Figure 5.3: 2D Laplacian Matrix Structure

Figure 5.4 shows the condition number estimate of the matrix. Those values are

obtained using the function “condest()” in Matlab. The value of the condition number

estimate is very large for these matrices and increases with the value of n. Hence this

matrix is ill-conditioned.
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Figure 5.4: Condition Number Estimate for 2D Laplacian Matrices n× n

Example. 5.2. For n × n matrices that are from the Two-Dimensional Laplacian

using a k× k grid with n = k2 x∗ = [1, 1, . . . , 1]T and b = Ax∗, taking x0 = [0, 0 . . . , 0],

a tolerance 1 × 10−6, 4000 as the maximum number of iterations, and the proposed

preconditioner P̃ (see Equation 4.1).

A =

























Bk −Ik 0 . . . 0

−Ik Bk −Ik 0

0
. . . . . . . . . 0

0 −Ik Bk −Ik

0 . . . 0 −Ik Bk

























n×n

This matrix is obtained from the discretization of the equation −
(

∂2u
∂x2

1

+ ∂2u
∂x2

2

)

=
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f(x1, x2) using finite differences, where the block Bk is as follows

Bk =

























4 −1 0 . . . 0

−1 4 −1 0

0
. . . . . . . . . 0

0 −1 4 −1

0 . . . 0 −1 4

























k×k

and Ik is the k × k identity matrix.

Figure 5.5 shows the number of iterations versus the number of times that the

matrix was iteratively preconditioned.
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Figure 5.5: Number of iterations for 2D Laplacian matrices
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# of times preconditioned

k 0 1 4 8 16 32

5 53 32 17 10 7 5

10 173 106 56 32 24 16

15 357 218 116 66 49 33

20 604 369 196 110 82 55

25 912 557 295 166 124 83

30 1280 782 414 233 174 116

Table 5.2: Iterations For Two-Dimensional Laplacian Matrices

As in the case of Example 5.1, using P̃ iteratively makes the Gauss-Seidel method

need less iterations to converge, as shown in Table 5.2.

5.3 Three-Dimensional Laplacian

In the problem of the Three-Dimensional Laplacian, the linear system that is ob-

tained has the following structure. As in Figure 5.3, Figure 5.6 shows the position of

the entries of the coefficient matrix of the Three-Dimensional Laplacian using Matlab’s

function spy(A).
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Figure 5.6: 3D Laplacian Matrix Structure

Figure 5.7 shows the condition number estimate of the matrix. Those values are

obtained using the function “condest()” in Matlab. The value of the condition number

estimate is very large for these matrices and increases with the value of n. Hence this

matrix is ill-conditioned.
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Figure 5.7: Condition Number Estimate for 3D Laplacian Matrices n× n

Example. 5.3. For n × n matrices that are from the Three-Dimensional Laplacian

using a k × k × k grid with n = k3 x∗ = [1, 1, . . . , 1]T and b = Ax∗, taking x0 =

[0, 0 . . . , 0], a tolerance 1 × 10−6, 4000 as the maximum number of iterations, and the

proposed preconditioner P̃ (see Equation 4.1).

A =

























Bkk −Ikk 0 . . . 0

−Ikk Bkk −Ikk 0

0
. . . . . . . . . 0

0 −Ikk Bkk −Ikk

0 . . . 0 −Ikk Bkk

























n×n

This matrix is obtained from the discretization of the equation −
(

∂2u
∂x2

1

+ ∂2u
∂x2

2

+ ∂2u
∂x2

3

)

=
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f(x1, x2, x3) using finite differences, where the block Bkk is as follows

Bkk =

























Bk −Ik 0 . . . 0

−Ik Bk −Ik 0

0
. . . . . . . . . 0

0 −Ik Bk −Ik

0 . . . 0 −Ik Bk

























k2×k2

,

the block Bk is as follows

Bk =

























6 −1 0 . . . 0

−1 6 −1 0

0
. . . . . . . . . 0

0 −1 6 −1

0 . . . 0 −1 6

























k×k

,

the block Ik is the k×k identity matrix and the block Ikk is the k
2×k2 identity matrix.

Figure 5.8 shows the number of iterations versus the number of times that the

matrix was iteratively preconditioned.
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Figure 5.8: Number of iterations for 3D Laplacian matrices

# of times preconditioned

k 0 1 4 8 16

5 57 41 23 20 13

8 128 93 51 44 28

10 191 138 76 66 41

20 685 495 272 235 142

30 1476 1066 586 506 305

Table 5.3: Iterations For Three-Dimensional Laplacian Matrices

As in the case of example 5.1 using P̃ iteratively makes the Gauss-Seidel method

need less iterations to converge, as shown in Table 5.3.
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CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

• With the properties shown in Chapter 3 for the preconditioner P , an extension

P̃ was built. This new preconditioner works for a diagonally dominant Z-matrix

with positive diagonal.

• At the beginning of this thesis, it was thought that the spectral radius would have

a nonzero limit as the number of times the preconditioner were applied would go

to infinity. However, it was shown that this limit is zero and is reached in a finite

46
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number of steps.

• The preconditioner P̃ shows a significant reduction in the number of iterations

of the Gauss-Seidel method once it is used iteratively.

6.2 Future Work

• The proposed preconditioner inherits the problem of fill-in of the preconditioner

P , this problem could be minimized by preprocessing the array with some per-

mutations, and comparing the results of convergence.

• If the matrix A is symmetric, PA is not symmetric. Thus, for future work, one

could try to obtain a preconditioner derived from P that keeps the symmetry,

and test these results with methods for symmetric matrices, such as Conjugate

Gradient.

• Numerical comparisons of the preconditioner obtained in this thesis with other

preconditioners for Z-matrices.
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