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ABSTRACT 

 

The objective of this research is to provide a genetic algorithm to determine 

the reorder cycle time for multi-stage serial and assembly systems. Demand for end 

item is assumed to occur at a constant and continuous rate. Production is 

instantaneous and no backorders are allowed. Both setup and echelon holding costs 

are charged at each stage. The attention is on nested and stationary policies. 

Furthermore, the reorder interval for each echelon is restricted to be not only integer, 

but also a power of two times a base planning period. The performance of the genetic 

algorithm is evaluated in comparison with an optimal approach proposed by Maxwell 

and Muckstadt (1985), obtaining solutions from zero to five percent from the 

optimum for small problems. Experimentation is conducted to determine the genetic 

algorithm parameters and in addition to evaluate the robustness of the proposed 

methodology.   

 



 

 

iii

RESUMEN 

 

El objetivo de esta investigación es proveer un algoritmo que calcule el 

tiempo de reordenar productos en un sistema de múltiples etapas con estructura serial 

y de ensamblaje. La demanda del producto final es constante y continua. La 

producción es instantánea y no se permiten órdenes atrasadas. Los costos de ordenar y 

de mantener en inventario se cargan a cada etapa. El enfoque es en políticas 

jerárquicas y estáticas. Además, el tiempo de reordenar tiene la restricción de ser 

entero y la potencia de dos de un periodo base de planificación. El algoritmo genético 

es evaluado en comparación con la solución óptima desarrollada por Maxwell y 

Muckstadt (1985), obteniendo soluciones de cero a cinco por ciento por encima de la 

solución óptima para problemas pequeños. Se realizaron experimentos para 

determinar los valores óptimos de los parámetros del algoritmo genético y en adición 

para evaluar cuan robusta es la metodología propuesta.  
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CHAPTER I 

INTRODUCTION 

1. 1. Justification 

An accelerating trend toward globalization marked the latter half of the 

twentieth century and the beginning of the present one. It is common to see a 

company design, produce and distribute products through a global network to provide 

the best customer service at the lowest price. Coordination throughout the entire 

logistical system must be planned and managed, because of the impact in costs that it 

represents to the companies and their opportunity to compete in today’s global 

market. The supply chain management is defined by the Council of Logistic 

Management as: 

“The process of planning, implementing and controlling the efficient, cost 

effective flow and storage of materials, in-process inventory, finished good, and 

related information from point-of-origin to point-of-consumption for the purpose of 

conforming to customers requirements”. 

A central issue in the supply chain performance is the inventory management. 

Inventories are present at every stage of the supply chain as raw materials to finished 

goods. The inventory acts as a buffer against any uncertainty, but holding inventory is 

costly and runs the risk of product deterioration and obsolescence. The focus of 

inventory problems traditionally has been on lot size determination. Supply occurs in 

discrete batches or lots and items proceeds through a sequence of stages.  The issue of 

the lot sizing is to determine how large these lots should be trying to find the best 
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balance between fixed costs and inventory holding costs. Ford Harris in 1915 

introduced the classic Economic Lot Size Model which serves as reference for many 

other research studies.  

Therefore, the lot sizing problem can be formulated as the problem of 

determining the reorder interval time, because of a functional relationship between 

the lot size and the manufacturing cycle time. Due to the fact that this problem is 

continuous and that the reorder optimal interval can take any positive real value, is 

often impractical to implement it. This is referred to a discrete problem imposing the 

restriction that the reorder interval can take only positive integer values.  

Maxwell and Muckstadt (1985) explain the advantages of formulating the 

problem in terms of reorder intervals rather than in terms of lot sizes. They establish 

three principal reasons for this: (1) the experience that production planning is more 

naturally centered around the frequency of production because it dictates the numbers 

of set-ups, the requests for tooling and fixtures, and the demands on the material 

handling system, (2) the mathematical representation of the model is simplified, and 

(3) from a scheduling point of view it is often practical to keep reorder intervals 

constant in the face of minor changes to demand forecasts and to adjust lot sizes 

accordingly.  

 A special case is given by considering the discrete problem with the power-of-

two restrictions in which the reorder interval is constraint to be not only integer, but 

also a power of two. The power-of-two policy was developed by Roundy (1985). It 

considers the problem of determining the reorder interval instead of the reorder 
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quantity and has the advantage of an easy implementation, even if the system is very 

complex and it is known that the cost of the optimal solution for the discrete problem 

using the power-of-two solution of a continuous problem is within about 6% of the 

cost of the optimal solution of the continuous problem without those restrictions. 

Implementing power of two policies makes production scheduling easier, and ensures 

that production cycles regenerate as frequently as possible, so that inventory 

imbalances that in practice can be easily corrected. 

Although considerable research has been devoted to traditional methods of 

search, optimization using such methods is not that efficient, particularly in finding a 

solution for very complex search space. Furthermore, significant less attention has 

been paid to stochastic search and optimization techniques like genetic algorithms. 

Khouja, Michalewicz and Wilmot (1998) presented a genetic algorithm for solving the 

Economic Lot Size Scheduling Problem finding better solutions than the iterative 

dynamic programming approach. Genetic algorithms have been employed to solve 

optimization problems across all disciplines and interests, obtaining global optimal or 

near optimal solutions in complex search spaces. Their simplicity permits their use to 

solve difficult problems, showing an important reduction in the computational time. It 

would thus be of interest to learn how genetic algorithms work for the reorder cycle 

time problem with the power of two restrictions. 

The aim of this research is to present a genetic algorithm to find a solution to 

the problem of determining the reorder cycle time that minimizes the total cost in 

multi-stage serial and assembly systems. It provides a solution in costs at least eight 
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percent above optimum for small problems with a computational time of no more 

than four seconds, for large problems (2000 nodes) the solution obtained is from 6 to 

29 percent above optimum, tested in different problem instances. The cost function is 

composed by the fixed ordering cost and the holding cost. It is assumed that the cycle 

length satisfy the power of two restrictions to take the advantages of the policy 

already explained and the computational advantages of the genetic algorithms.  

 

1.2. Purpose of the study 

The principal objective of this research is to find a solution to the problem of 

determining the reorder cycle time in multi-stage serial and assembly systems using a 

genetic algorithm approach, satisfying the power of two restrictions. Some other 

secondary objectives are: 

• To determine the effectiveness of the GA approach, comparing the 

results obtained using the proposed algorithm with the Maxwell and 

Muckstadt (1985) methodology. The effectiveness of a policy is 100% 

times the ratio of the minimum of the average cost over all policies to 

the average cost of the policy in question. 

• To determine the efficiency of the genetic algorithm approach, 

considering that one of the advantages from using this approach is to 

reduce the computational time while obtaining a good near optimal 

solution. 
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• To determine the robustness of the methodology using design of 

experiments. The factors considered included: problem size, setup or 

ordering costs, and holding costs. 

 

1.3 Scope 

The genetic algorithm developed is based on the assumption of a multi-stage 

serial and assembly systems. A stage might consist of an operation such as 

procurement of raw materials, fabrication of parts or assembly. The serial structure is 

the simplest type of multi-stage structures in which materials enter the first (1) stage 

and progressively pass through a sequence of stages until final product exits at the last 

(5) stage (Figure 1.a). In the assembly structure each operation has a unique 

successor, but may have several predecessors stages (Figure 1.b). The serial structure 

is considered as a special case of the assembly, having each stage just one 

predecessor. 

 

 

 

 

 

 

 

Figure 1.1 Multi-Stage Serial and Assembly Structures 
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The structure of the systems is limited to those that could be represented by an 

acyclic directed graph. Each node in the graph represents manufacturing, assembly or 

distribution operations, and the arcs indicate the flow of materials, components, 

subassemblies, assemblies, or finished product from one stage or operation to the 

next. This research do not intend to show the interaction between the reorder cycle 

time and the principal factors that could affect it at each stage. This could be 

considered as one of the proposed future research studies in this area. 

Demand for each end item is assumed to occur at a constant and continuous 

rate, and is given for a planning horizon of n periods. Production is instantaneous and 

no backorders are allowed and unconstraint capacity at each node is assumed. The 

cost function is composed by the fixed setup cost and the holding cost. Fixed setup 

costs and echelon holding costs are changed at each stage.  

It is assumed that the cycle length should satisfy the power of two restrictions, 

which applies zero inventory ordering and stationary-nested policies. The zero 

inventory ordering occurs when each facility orders only when its inventory is zero. A 

stationary policy is one in which each facility uses a fixed order quantity and a fixed 

interval time between successive orders. In a nested policy each facility orders every 

time any of its suppliers orders. 

The organization of the document is as follows. Chapter II describes a review 

of the most important contributions in lot sizing problems for single and multi-stage 

models, for reorder cycle time models, including some approaches with the power of 

two restrictions, and the application of genetic algorithms in lot sizing problems. In 
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Chapter III, the two-phase algorithm proposed by the Maxwell and Muckstadt (1985) 

is presented and the genetic algorithm approach is described in detail. At the end of 

this chapter, two experiments are proposed, one for the determination of the optimal 

parameters for the genetic algorithm and one to measure the robustness of the 

methodology proposed. The experimental analysis is shown in Chapter IV. Finally, 

Chapter V briefly summarizes the conclusions and some recommendations for future 

works.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1. Introduction  

Inventory problems have been studied for many years. This review describes 

some of the most important contributions in this field. It includes methods used to solve 

single and multi-stage lot sizing problems. For multi-stage systems, some models are 

shown that deal with special cases like capacity constraint and joined setup costs. Finally, 

it is presented some genetic algorithms applications that can be considered as previous 

work in lot sizing problems. 

 

2.2. Lot Sizing Problems  

2.1.1. Single Stage Models 

 For many years the main focus of the inventory theory has been in the lot size 

determination. Many authors try to solve the single stage problem. The classic Economic 

Lot Size Model, introduced by Ford Harris in 1915, is a very basic model that considered 

a warehouse facing constant demand for a single item. It assumes constant fixed cost, 

instantaneous batch delivery following a deterministic lead time, all replenishment orders 

are for the same quantity and no shortages are allowed. The total cost per time TC (Q), is 

composed by ordering cost, product purchase cost and inventory holding cost.  
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toldinginventoryhtpurchasedtorderingQTC coscoscos)( ++=  
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)( hQCD

Q
ADQTC ++=  (Equation 2.1) 

 

 Based on the cycle inventory level over time, shown in Figure2.1, the inventory 

level decreased constantly from the order quantity size (Q) to zero each cycle, and 

averages Q/2. The process repeats each time Q units are sold (every T=Q/D), integrating 

over this cycle length it can be found the average inventory, Ī.  
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 To find the optimal order quantity it is necessary to differentiate Equation 2.1 

with respect to Q and set the results to zero. These yields: 
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h
ADQ 2* =  (Equation 2.4) 

 Another important issue in the EOQ model is the definition of the total cost for 

the optimal quantity (Q*). In this case, ordering and holding costs are equal, so: 

22*
ADh

h
AD

AD
Q
AD

==  (Equation 2.5) 

  

 Inventory holding cost per period is 

22

2

2
* ADhh

ADhhQ
== (Equation 2.6) 

 

 The total cost using the optimum lot size quantity is determined in Equation 2.8: 

CDADhCDADhADhCDADhQTC +=+=++= 2
2

2
22

*)(  (Equation 2.7) 

CDADhQTC += 2*)(  (Equation 2.8) 

 All this description has been provided to describe the relationship between the 

order quantity and the reorder cycle time both assumes to be constant. The Economic 

Order Quantity is used as reference point in a lot of methods proposed later. 

 Veinott (1967) showed that a broad class of problems (including deterministic 

single and multi-facility economic lot size) can be formulated as minimizing a concave 
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function over the solution set of Leontief substitution system. To understand what does 

this means it is necessary to introduce some concepts. A matrix A is called Leontief if it 

has exactly one positive element in each column and there is a nonnegative (column) 

vector x for which Ax is positive. The linear program for finding a (column) vector           

x = (xj), called optimal, is given by:  

 Objective function:   

Minimizes cx 

 Subject to:             Ax = b,      x≥0,  (Equation 2.9) 

  If A is Leontief, and b≥0, Equation 2.4 is a Leontief substitution system and has    

X (b) ∩ S as it solution set. S is the set of programs x for which xixj = 0 for all pairs (i,j) 

in a specified set. In applications it is often appropriate to impose additional restrictions 

of the form xixj = 0, for example in production problems if it is possible to produce only 

one product in each period. 

 Leontief substitution systems seem to provide a natural setting for studying 

inventory models with concave costs. Their applications are on single and multi-facility 

lot size problem, lot-size-smoothing and warehousing models. Their algorithms required 

a computational effort that increases algebraically with the size of the problem instead of 

exponentially.  

2.1.2. Multi-stage Models 

  Multi-echelon inventory systems can be used to optimize the deployment of 

inventory in a supply chain. Multi-stage manufacturing situations (raw materials, 

components, subassemblies, assemblies) are conceptually very similar to multi-echelon 
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inventory systems. Multi-echelon models examine the entire system, searching better 

solutions for the entire chain, not each stage independently. This coordination has the 

advantage of given better global solutions. In the multi-stage systems there have been a 

lot of contributions in serial, assembly, distribution, general and some special structures.   

The serial and assembly structures were explain in section 1.3. In the distribution 

structure each production stage has at most one predecessor stage but may have several 

successors. The tree structure combines the features of an assembly and distribution 

structure. Finally, the general structure shows a different relation between stages and is 

very common when multiple products share some of the same components. Each stage 

can have multiple successors and predecessors.  

Clark and Scarf (1960) introduced the echelon stock concept which permits some 

very convenient mathematical simplifications. They define the echelon stock of echelon j 

(in general multi-echelon system) as the number of units in the system that are at, or have 

passed through, echelon j but have as yet not been specifically committed to outside 

customers. They considered the problem of determining optimal purchasing quantities in 

a multi-stage serial and distribution models. Echelon j stock may often be considered to 

be the facility j value-added inventory. The Clark-Scarf model allows stochastic demand 

and convex holding costs, but setup costs are assumed to be associated with no more than 

two facilities. 

  Crowston, Wagner and Henshaw (1972) made a comparison of exact and 

heuristics routines for lot size determination in multi-stage assembly systems. They 

concluded that economic lot sizes in multi-stage assembly systems can be determined by 
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dynamic programming for problems of moderate size, while heuristic search routines 

appear to be promising for large problems. Using these results Crowston, Wagner and 

Williams (1973) present a model for multi-stage assembly systems to compute a set of 

optimal lot sizes so that the lot size at each facility is a positive integer multiple of the lot 

size at its successor facility. It is important to mention that they considered the serial 

system as a special case of the assembly system. Their model assumes constant 

continuous final demand, instantaneous production at each stage and infinite planning 

horizon.  

A few years later, Williams (1982) proved that the well known theorem by 

Crowston, Wagner and Williams (1973) shows to be defective. The theorem establishes 

that an optimal solution to the batch size determination problem for multi-echelon 

production/inventory assembly structures is characterized by a set of lot sizes, such that 

the lot size at each stage must be an integer multiple of the lot size at its successor stage. 

The theorem proved to be defective at the point that results were extended from two level 

systems to more general assembly systems.  

Schwarz (1973) deals with a one-warehouse n-retailer deterministic inventory 

system with known demands. As a conclusion, he shows that the form of the optimal 

policy can be very complex for more than four retailers and he argues for restricting 

attention to a simpler class of strategies (where each location’s order quantity does not 

change with time) and develops an effective heuristic for finding good solutions.  

Schwarz and Schrage (1975) make use of the myopic strategy. Myopic policies 

optimize a given objective function with respect to any two stages and ignore multi-stage 
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interaction effects. Optimal and near optimal policies were proposed for multi-echelon 

production/inventory assembly systems under continuous review with constant demand 

over and infinite planning horizon. Schwarz and Schrage model was widely used as a 

standard among the multi-stage production/inventory models. 

Szendrovits (1981) presented a comment on the optimality in Schwarz and 

Schrage model, considering that their restrictions could be helpful to facilitate analytical 

tractability, but do not necessarily lead to optimal inventory policies as claimed by the 

authors. Szendrovits showed that a lower cost solution could be obtained in sample 

problems when the integrality constraint was violated. The example provided a lower 

cost solution by permitting two lots at a given stage to provide the total input for the three 

lots at its successor stages. Hence, it is not well established in the literature that the 

theorem does not characterize optimality for the case of finite production rate.  

Later, Blackburn and Millen (1985) proposed simple cost modifications to 

improve the global optimality of the Schwarz and Schrage procedure. The effectiveness 

of these alternative modifications was tested through a series of simulation experiments.  

A new formulation of the lot sizing problem in multi-stage assembly systems 

which leads to an effective optimization algorithm was proposed by Afentakis, Gavish 

and Karmarkar (1984). The problem was reformulated in terms of echelon stock which 

simplifies it decomposition by a Lagrangean relaxation method. A Branch and Bound 

algorithm which uses the bounds obtained by the relaxation was developed and tested.  

A significant amount of work in this area has focus on evaluating the performance 

of the proposed techniques. Blackburn and Millen (1985) examined seven different 
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heuristic algorithms, six combination of methods and four cost modification procedures. 

A series of simulation experiments was conducted and it was concluded that the 

combination methods when used with some of the cost modifications result in enhanced 

performance in comparison to other sequential approaches. Axsäter (1986) analyzed the 

applicability in practice of some standard lot sizing problems and the way in which some 

adjustments can be considered. Assumptions in lot sizing models and the extent to which 

these assumptions are valid in practical situations are discussed.  

 A branch-and-bound based algorithm for optimal lot sizing of products with a 

complex product structure was proposed by Afentakis and Gavish (1986). It assumed 

unconstraint production facilities and suggested that the formulation of the lot sizing 

problem in terms of its echelon stock, and the use of Lagrangean relaxation, seems to 

yield efficient algorithms. Afentakis (1987) developed an improved heuristic method for 

the dynamic lot-sizing problem in multi-stage production systems. This is a 

generalization of the single stage Wagner-Within algorithm, and attempts to optimize 

over all stages simultaneously, while building the production plans in a forward manner. 

 Billington, Blackburn, Maes, Millen, and Wassenhove (1994) examined the 

performance of heuristics found effective for the capacitated multiple-product, single 

stage problem in multi-stage settings. This study is one of the most comprehensive in 

terms of the number of methods examined and the conditions under which they were 

examined. The single-stage heuristics included in the study are: Dixon/Silver (1981), 

Lambrecht and Vanderveken (1979), the Dogramaci, Panayiotopoulos and Adam (1981), 

and different versions of the ABC heuristics of Maes and Van Wassenhove (1986). These 
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heuristics are altered in two ways: (1) they allow the inclusion of the cost modification 

procedures developed by Blackburn and Millen, and (2) the feasibility routines have been 

modified to work in multi-stage environments. Both modifications attempt to coordinate 

decisions made across stages concerning lot sizes. 

 

2.3. Reorder Cycle Time Problems 

 Based on the traditional Economic Order Quantity model showed before, the time 

between two consecutive orders, called reorder interval, is constant and proportional to 

the order quantity. The lot sizing problem can be formulated as the determination of the 

reorder cycle interval. Based on Equation 2.4 and T=Q/D, and ignoring the production 

cost (because it won’t affect for the comparison), the optimum reorder interval can be 

derived as 

hD
A

hD
AD

D
h
AD

D
QT 22

2
** 2 ====  (Equation 2.10) 

hD
AT 2* =  (Equation 2.11) 

The total cost based on the lead time can be derived based on Equation 2.1  

22
)( hTD

T
AhTD

TD
ADTTC +=+=  (Equation 2.12) 

2
)( hTD

T
ATTC +=  (Equation 2.13) 

 The total cost for the optimum reorder interval is given by 
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The multi-stage lot sizing problem can be formulated as follow 

∑
=
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i

j
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i Tg
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Minimize
1

            

Subject to: 

Ti ≥ Ti-1 Nested ness constraints (Equation 2.16) 

 

As mentioned before, this problem is continuous and the reorder optimal interval 

can take any positive real value. However, their solution presents some difficulties. This 

is the reason to solve it as a discrete problem, imposing the restriction that the reorder 

interval can take only positive integer values.  

There are several reasons to formulate the lot sizing model in terms of reorder 

intervals as described in the justification part (section 1.1). A lot of authors have been 

developing new techniques to solve the problem in terms of this point of view; some of 

the most important are mentioned here. 



18 

 

 Elmaghraby (1978) analyzed the economic lot scheduling problem (ELSP), which 

arises from the desire to accommodate the cyclical production pattern when several 

products are made on a single facility. This work reviews the contributions to the 

problem, and extends the analysis in four directions: (1) offers an improved analytical 

approach based on dynamic programming. It tries to guarantee feasibility at the outset, by 

imposing some constraints on the cycle times, then to optimize the individual cycle 

duration subject to the imposed constraint. The solution obtained in this manner is 

feasible and optimal over its set of solutions; (2) a test of feasibility of a given set of 

parameters, through an integer linear programming formulation; (3) a systematic 

procedure for escape from infeasibility, when the set of parameters were judge infeasible; 

and (4) a procedure for the determination of a basic period for a given set of multipliers 

to achieve a feasible schedule. 

Szendrovits (1975) presented the functional relationship between the production 

lot size, the manufacturing cycle time and the average process inventory in a production 

system, and illustrated the resulting effect on the conventional Economic Lot Quantity 

model. He treats the manufacturing cycle time as a function of the lot size in a multi-

stage production system. This model was called the economic production quantity (EPQ). 

This study challenges the widely accepted doctrine of the efficiency of long production 

runs. 

Roundy (1985) introduced two simple policies called q-optimal integer-ratio and 

optimal power-of-two, which are proved to be 94% and 98% effective. The effectiveness 

of a policy is 100% times the ratio of the minimum of the average cost over all policies to 
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the average cost of the policy in question. Both policies are very efficient and their most 

important advantage is the flexibility it allows in choosing the order intervals to 

correspond to easily-implemented time periods. 

The power-of-two policy is a special case of the discrete problem for determining 

the reorder cycle time, in which the reorder interval is constraint to be not only integer, 

but also a multiple of two. It allows us to obtain an extremely efficient algorithm which 

produces a policy having an average cost within 2% of the minimum possible. Mitchell 

(1987) extended Roundy’s results for the backlogging problem, obtaining a 98% effective 

policy for the backlogging problem in O (N log N) time. 

Maxwell and Muckstadt (1985) presented an algorithm that can be used to find 

consistent and realistic reorder intervals for each item in large-scale production-

distribution systems. Attention was restricted to policies that are nested, stationary, and a 

power-of-two multiple of a base planning period. The model that results from the 

assumptions is an integer nonlinear programming problem. It was showed that the 

solution to this problem is similar to that of the economic lot size problem with a 

modified echelon holding cost for an operation, to reflect the precedence constraints of 

the production-distribution system.  

Roundy (1986) studied a multi-product multi-stage production inventory system 

in continuous time. In process and finished goods were referred to as products and 

inventories of a single item held at different locations were treated as different products. 

External demand can occur for any or all of the products at a constant, product-dependent 

rate. In the new policy defined by Roundy each product uses a stationary interval of time 
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between successive orders, and the ratio of the order intervals of any two products is an 

integer power of two. The effectiveness of an optimal power-of-two policy is at least 

98%. The algorithm is efficient for very large systems.  

Askin and Goldberg (2002) shows the demonstration of the statement that says 

that the total cost using the power-of-two policy cannot be increased by more than 6% 

above the optimum. They suppose that a non optimal cycle time T = α T* is used. 

Showing the ratio of the true optimal objective value to the objective value under the non 

optimal cycle time: 

22
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DTh
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TTC
TTC (Equation 2.17) 

 

 

Restricting the cycle length of a product to L
K

i TT i2=  for some non-negative 

integer ki=0,1,2,3,…, considering that TL is defined as a convenient cycle length that may 

be a day, week or some other natural period, it is necessary to ensure that T* ≥ TL. 

Because the cost function TC(T) is convex in T, it was chosen the smallest k satisfying 

TC( L
K T12 + ) ≥ TC( L

K Ti2 ) as the optimal power-of-two policy. Combining these results 

with Equation 10, then 

( ) ( )1
22
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−− +≥+ αααα , (Equation 2.18) 
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=α   and  
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2
2 T

TL
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=α  (Equation 2.17 and 2.19) 

Substituting and rearranging terms, 
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2
*2 TTL

k ≥  Lower bound (Equation 2.22) 

 Using the same procedure 

*22 TTL
k ≤   Upper bound (Equation 2.23) 

 

 Combining equations 2.22 and 2.23, *22
2
* TTT

L
k ≤≤  for the optimal power-

of-two choice of k. Finally, the 
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TTC
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Then it is proved that using the power-of-two restrictions ensures at most 6% 

from the optimal cost solution.  

Jackson, Maxwell and Muckstadt (1988) had reviewed the Maxwell and 

Muckstadt (1985) model, proving a useful invariance property of the optimal partition of 

such systems, and used these results as the basis for algorithms to solve a capacitated 

version of the Maxwell-Muckstadt model. They suggest that the algorithm perform well 

in cases characterized by many operations per work center, however this reasoning was 
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based on limited argument and experience with practical examples. This approach can be 

effectively used to establish reorder intervals in many industrial environments. 

The power-of-two policy has been extended to solve more complex problems, 

showing that it maintains it effectiveness. One of the major complications in managing 

multi-item inventory systems stems from the fact that various components, in particular, 

setup costs, are often jointly incurred between several distinct items. It is presented two 

cases with joint setup costs were power-of-two policy were applied successfully.   

Jackson, Maxwell and Muckstadt (1985) presented an efficient procedure for the 

joint replenishment problem under the restriction that the reorder intervals must be power 

of two times a based period length.  To solve the joint replenishment problem requires 

answering two questions: (1) what is the optimal time between major setups? , and (2) 

what is the optimal reorder interval for each item. They demonstrate by analytic means 

rather than experimentation that the worst case performance is within 6% of optimality. 

The performance bound is more than adequate given the typical errors in estimates of the 

setup costs, the holding costs, and the demand rate. 

Federgruen and Zheng (1992) extended the results obtained by Roundy (1985) to 

a general joint setup cost structure. The joint cost structure often reflects economies of 

scale which invoke the need for careful coordination of the items replenishment 

strategies, and the joint replenishment problem is the most multi-item inventory model 

with joint setup costs. They derived two efficient algorithms to compute an optimal 

power-of-two policy. The problem of determining the optimal power-of-two policy can 

be formulated as a nonlinear mixed integer program.  
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Federgruen, Zheng and Queyranne (1992) generalized Roundy’s results. They 

considered a production-distribution network represented by a general directed acyclic 

network showing that the power-of-two policies are close to optimal in a general class of 

production-distribution networks with general joint setup costs.  

 

2.4. Genetic Algorithm Models   

 Traditional methods of search and optimization are not that efficient in finding a 

solution for very complex search space. Genetic algorithms are stochastic search 

techniques based on the mechanism of natural selection and natural genetics, which 

requires little information to search effectively in a large or poorly understood search 

space.  

 Some of the principal advantages of the genetic algorithms are versatility, 

flexibility, simplicity and efficiency. They have been employed to solve optimization 

problems across all disciplines and interests and their simplicity permits to solve difficult 

problems as NP-hard problems, for machine learning and also for evolving simple 

programs, and the efficiency can be seen in an important reduction in the computational 

time. Genetic algorithms explore the solution space based on random search methods. 

They can find the global optimal solution or near optimal in complex search spaces. In 

particular a genetic search, progress through a population of points in contrast to the 

single point of focus like most search algorithms.  

Because of the already mentioned advantages of using genetic algorithms, this 

technique has been widely used to solve a variety of problems in different fields of study. 
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Applications of genetic algorithms in production planning and inventory management 

include assembly line balancing, buffer size optimization, production scheduling and 

manufacturing cell design.  

 Hernández and Süer (1999) presented an application of genetic algorithms to 

obtain the order quantity for an uncapacitated, no shortages allowed, single-item, single-

level situation, lot sizing problem. Each chromosome consists of n genes. Each gene 

refers to a period. The gene i of a chromosome indicates if an order has been placed in 

period i or not. Genes might have 0 or 1 value; a value of 1 indicates that an order has 

been placed in that period, and 0 otherwise. Experimentation was conducted to evaluate 

how different aspects of genetic algorithm affect the results. The aspects analyzed were: 

selection strategies, scaling (it forces higher reproduction probabilities to those 

chromosomes that represent better solutions), order and carrying costs, and net 

requirements. It was observed how scaling has the biggest impact. 

Among the limited applications of GA to inventory problems, focusing on the 

reorder cycle time, the work of Khouja, Michalewicz and Wilmot (1998) is worth 

examining. They proposed the use of genetic algorithms to solve the Economic Lot Size 

Scheduling Problem (ELSP). The ELSP is an NP hard inventory problem which tries to 

schedule the production of several different items in the same facility on repetitive basis. 

They used the problem proposed by Bomberger (1966) where the facility is such that 

only one item can be produced at a time, there is a setup cost and a setup time associated 

with producing each item. The demand rate for each item is known and constant over an 

infinite horizon, and no shortages are allowed. Bomberger developed a dynamic 
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programming solution. In Khouja, Michalewicz and Wilmot (1998) they proposed a 

genetic algorithm approach. In this approach the chromosome represent floating point 

fundamental cycle (T) and integer multipliers (ki’s) of the basic period for each product. 

Because of the advantages already explained of GA, in this research it is shown 

the use of a genetic algorithm to find the reorder cycle time in multi-stage serial and 

assembly systems, which minimize the cost function.  

The power-of-two policy has been used in industry for many years, and extensive 

research studies on the efficiency of this restriction have been done. Based on that, the 

present approach includes the power of two restrictions.  The new approach is compared 

with the methodology for the implementation of the power-of-two policy, presented 

Maxwell and Muckstadt (1985) as a nonlinear integer problem. One of the main 

contributions of this research is a methodology that could be easily implemented 

particularly in industrial applications, and that could be used to develop future studies 

including additional restrictions as capacity constraints. 

 

2.5. Conclusions 

 It is shown that several research studies have been done for many years focusing 

in lot size determination for single stage systems like the classic Economic Lot Size 

Model by Harry Ford, and multi-stage inventory systems as Clark and Scarf (1960), 

Afentakis and Gavish (1986) and Schwarz (1973). Some applications for multi-stage 

models make use of a myopic strategy were the objective function is optimized based on 

any two stages, as done by Schwarz and Schrage (1957).  
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 After the formulation of the lot sizing problem as the problem of determining the 

reorder cycle time, a lot of authors have been developed new techniques, like 

Elmaghraby (1978) who proposed an analytical approach based on dynamic 

programming. Moreover, Roundy (1985) introduced two policies called q-optimal 

integer-ratio and optimal power-of-two, which are proved to be 94% and 98% effective. 

The power-of-two policy is a special case of a discrete problem for determining the 

reorder cycle time, in which the reorder interval is constraint to be not only integer, but 

also a power of two. Consequently, Maxwell and Muckstadt (1985), Roundy (1986) and 

Federgruen and Zheng (1992), proved the advantages of this policy applying it to 

problems with additional restrictions. 

 All the research studies previously mentioned used traditional search methods, 

which are proven to be not very efficient in finding a solution for complex search spaces. 

Less attention has been paid to stochastic search and optimization techniques like genetic 

algorithms. Hernández and Süer (1999) apply genetic algorithm for lot sizing problem in 

a single stage situation. In addition, Khouja, Michalewicz and Wilmot (1998) presented 

genetic algorithm approaches to inventory problems focusing on the reorder cycle time. 

However, literature have not been address about genetic algorithms applications using the 

power-of-two restrictions, taking the advantages already explained of this policy.  

 The next chapter describes the first genetic algorithm developed to solve a 

problem of determining the reorder cycle time determination in multi-stage serial and 

assembly systems, considering the power-of-two restrictions.  
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CHAPTER III 

METHODOLOGY 

3.1. Introduction 

 The methodology used in the present work includes three major tasks:                

(1) development of a genetic algorithm to solve the proposed problem, (2) measurement 

of the effectiveness of the genetic algorithm, and (3) identification of its robustness using 

experimental design.  

To satisfy the objectives of this research, it is necessary to follow some steps 

described in detail next. The first part of this section is the problem definition, trying to 

clearly establish the restrictions considered. Next, two ways to solve the proposed 

problem are presented: (1) the optimal power-of-two policy formulated as a nonlinear 

integer-programming problem, proposed by Maxwell and Muckstadt (1985); and (2) the 

genetic algorithm approach using the power-of-two restrictions. These models are 

programmed using the computer programming language Borland C++, and codes are 

available in Appendix A. 

The GA approach and the optimal power-of-two methodology, Maxwell and 

Muckstadt (1985), modeled as nonlinear integer programming problems are compared to 

define the effectiveness of the genetic algorithm. The effectiveness is described as 100% 

times the ratio of the average cost over the traditional approach to the average cost of the 

GA approach. However, based on a single observation of a particular case it is not 

possible to reach conclusions about the effectiveness of the genetic approach. For that 
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purpose an experiment is conducted to explore this issue further, and is described in 

detail it section 3.5. 

 

3.2. Problem Definition  

An algorithm to determine the reorder cycle time in multi-stage serial and 

assembly systems (Figures 1.1.a, 1.1.b) is developed. The structure of the systems is 

limited to those that can be represented by an acyclic directed graph. Each node in the 

graph represents manufacturing, assembly or distribution operations, and the arcs indicate 

the flow of materials, components, subassemblies, assemblies, or finished product from 

one stage or operation to the next. 

Demand for each end item is assumed to occur at a constant and continuous rate. 

Production is instantaneous and no backorders are allowed. Fixed setup costs and echelon 

holding costs are changed at each stage. The capacity at each node is unconstraint.  

 

3.3. Maxwell and Muckstadt Approach  

 A power-of-two policy, as described by Roundy (1986), is a sequence                   

T = (Tn: n Є N) of positive numbers with the following three properties. First, orders for 

product n are placed once every Tn > 0 units of time beginning at time zero. Second,      

Tn = 2Kn β for all products n and for some 1 ≤ β < 2, where Kn is an integer. Finally, the 

Zero-Inventory Property holds that an order is placed for a product only when the 

inventory of that product is zero.  



29 

 

 Maxwell and Muckstadt (1985) presented a method for computing power-of two 

policy, based on the assumptions presented previously in the problem definition. Let G 

represents the acyclic directed graph corresponding to the production and distribution 

system. Let N (G) represents the node set and A (G) the arc set corresponding to G. The 

costs considered in the model are fixed setup costs Ai, for i Є N (G), and the echelon 

holding costs, hi, for i Є N (G).  

 Let Ti for i Є N (G), represent the reorder interval at operation i and let TL be the 

base planning period, measured in unit time (minutes, days, weeks, months, year, etc.). 

The reorder interval for each operation is expressed as a multiple of TL. Let Mi for i Є 

N(G) represent the multiple of the base planning period per reorder interval for   

operation i. Also, for all i Є N (G), let gi = hiλi/2, the average echelon holding cost per 

unit time (the same unit time used to determine the demand) for operation i when Ti = 1. 

The model can be stated as: 

Minimize ∑∈ 







+

)(GNi ii
i

i Tg
T
A

 

 Subject to: 

Ti = MiTL,  i Є N (G), 

Mi ≥ Mj,  (i, j) Є A(G), 

Mi = 2ki,  k=0,1,2,3,… 

 This formulation is called Problem P. Problem P is a large-scale, nonlinear integer 

programming problem. In practical situations, the sets N (G) and A (G) could contain 

many thousands of elements. To solve Problem P they used a two step procedure. In the 
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first step they solved the relaxed version of this problem to establish what group of 

operations must have identical reorder intervals. The mathematical formulation of the 

relaxed problem, which is called Problem RP, replaces for each i Є N (G) the integrality 

constraint on Mi with the constraint Mi ≥ 1, and replaces the requirement that Ti ≥ TL with 

Ti ≥ 0.  

Problem RP (relaxed problem) is  

Minimize ∑∈ 







+

)(GNi ii
i

i Tg
T
A

 

Subject to: 

Ti ≥ Tj  ≥ 0 (i,j) Є A(G), 

  

Jackson, Maxwell and Muckstadt (1988) showed the characterization of the optimal 

solution. They established the correspondence between the solutions of problem RP and 

ordered partitions of the graph G. Define a sub graph 'G  of the graph G to consist of a 

subset N ( 'G ) of the node set N (G) together with the associated arc set A ( 'G ) where (i,j) 

Є A ( 'G ) if and only if i Є N( 'G ), j Є N( 'G ), and (i,j) Є A (G). An ordered collection of 

sub graphs (G1, G2,…, Gn) of G is said to be ordered by precedence if for any 1≤ p< q≤ 

N there does not exist a node j Є N (Gp) and a node j Є N (Gq) such that (i,j) Є A (G). 

That is, no node in N (Gp) precedes any node in N (Gq) if q > p. The collection of sub 

graph (G1, G2,…, Gn) forms an ordered partition of the graph G if 

(a) the node subsets N (G1), N (G2),…, N (Gn) form a partition of the node set    

N (G), and 
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(b) the collection is ordered by precedence. 

A directed cut of a sub graph 'G  is simply an ordered (binary) partition ( 'G -, 'G +) 

of the sub graph 'G . Suppose that the reorder intervals share a common value: Ti = T for 

all i Є N ( 'G ). Then the optimal value of T is given by: 

2
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GNi igGg  

Then T = (A ( 'G )/ g ( 'G )) 1/2 . 

 The optimal solution of problem P can be found if the solution to problem RP is 

known. The optimal value ok Mi for i Є N (G) can be found by calculating  

 

  { } )'(/)'(log2loglog 222 GgGKTk L +−−=  (Equation 3.1) 

 

where  x  is the smallest integer greater than or equal to x. Using this ki the optimum 

Mi’s are obtained substituting k on Mi = 2ki. More details are provided in Maxwell and 

Muckstadt (1985). 
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3.4. Genetic Algorithm Approach 

The genetic algorithm is a general method for solving “search for solutions” 

problems Mitchell (1998). The idea is to efficiently find a solution to a problem in large 

space of candidate solutions.  

The algorithm started with a set of solutions called population and each candidate 

solution is represented by a chromosome. An outline of the basic genetic algorithm is 

shown in Figure 3.2 and described in detail next: 

1. Start. Generate a random population of n chromosomes. 

2. Fitness. Evaluate the fitness of each chromosome in the population. 

3. New population. Create a new population by repeating the following steps until 

the new population is complete. 

a. Select two parent chromosomes from a population according to their 

fitness (the better fitness, the higher chance to be selected). 

b. Crossover. With a crossover probability cross over the parents to form two 

new offspring. The idea is that the children should be a combination of 

their parents. 

c. Mutation. Alter the offspring at each locus (position in chromosome), 

based on the mutation probability and prevent falling into a local 

optimum. 

d. Place the resulting chromosomes in the new population. 

4. Selection. Based on their fitness, select the n chromosomes to form the current 

population. 
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5. Test. If the end condition is satisfied, stop, and return the best solution in current 

population. 

6. Loop. Go to step 2. 

 

Figure 3.1 General GA procedure 

 

The simple procedure just described is the basis for most applications of genetic 

algorithms. In the proposed GA, chromosomes represent (ki’s, 1 ≤ i ≤ n) as shown in 

Figure 3.2.  
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Figure 3.2 Chromosome representation 

 

These variables are the exponents or power of two that function as multipliers of 

the basic period length to define the reorder cycle time for each period (i). It is necessary 

to define lower and upper bounds to these variables. The lower bound is defined 

(satisfying the restriction of Ti ≥ Ti-1), as  

max {0, }LB
i jk imum k=   … j successor(i)  

To define the upper bound, consider 5kk LB
i

UB
i += . This upper bound is used in 

the generation of the initial population used by GA for the given problem. After having a 

genetic representation of potential solutions it is needed to define a way to create an 

initial population of solutions. 

 

3.4.1. Initial population 

 The initial population of individuals is generated randomly formed by n number 

of chromosomes, were n is the population size. The number of individuals in the 

population is considered one of the factors evaluated using experimentation.  

k1 k2 …k3 k4 k6 kn

Nodes
1         2         3        4         5         6         …  n

k5k1 k2 …k3 k4 k6 kn

Nodes
1         2         3        4         5         6         …  n
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The lower and upper bounds used to generate the k’s that formed each individual 

in the population are described before as LB
ik and UB

ik . The initial population generated 

for this problem is composed: half by feasible solutions and the other half infeasible.  

This infeasibility consist of a violation of the nested ness constraint which establish Ti > 

Tj, for all j that is successor of i. For each chromosome defined a fitness value is 

assigned. 

 

3.4.2. Fitness function 

  To evaluate the fitness of each individual in the population it is necessary to first 

convert the ki in reorder cycle time using Ti = 2ki TL. This application of GA is function 

optimization, where the goal is to find a set of parameter values that minimize the 

objective function. The fitness function f (m) for every member of the population is 

defined as the inverse of the objective function. 

f (m) =

∑∈ 




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 (Equation 3.6) 

 

3.4.3. Genetic operators 

There are two types of operators involved in the genetic algorithm proposed: 

mutation and crossover. 

The mutation used is one point mutation, which selects randomly one point in the 

chromosome and changes the k value with another between zero and two, as shown in 

Figure 3.3.  
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Figure 3.3 One point mutation 

The crossover selected is the two-point crossover. Two chromosomes are selected 

randomly from a range zero to population size, to determine the position of the crossover 

points. This type of crossover combines the features of the two parents to form two 

offsprings, as illustrated in Figure 3.4. 

 

Figure 3.4. Two point crossover 
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 3.4.4. Selection  

Selection in general is a consequence of competition between individuals in a 

population. It is referred as the way that the individuals are selected to form the new 

population after each generation. The selection method used in the genetic algorithm 

developed is the tournament selection. Two chromosomes are selected at random and the 

best is kept and included in the new population.  

Because crossover and mutation operations could generate infeasibility on the 

modified chromosome, a repairing technique is applied to guarantee that the nested ness 

constraints are not violated. This operation consists of an evaluation of each chromosome 

after selection to detect any violation to the previously defined restrictions. If it is 

required, changes k for a randomly generated number from the k value of the direct 

successor of the node where the violation occurs. 

 

3.3.2. Example Problem  

To illustrate the previously defined genetic algorithm, a simple example is 

presented. The example intends to show not only the step by step sequence of operations 

but also the application of the results in practice. For simplicity, only the most important 

details are provided. It is assume that the problem satisfy all the assumptions considered 

for the algorithm development. 

The problem consists of a candy production line, which requires six principal 

processes. These processes consist of: (1) packaging; (2) mixing and coxing; (3) ordering 

the candies packages; (4) the ordering of imported sugar; (5) water purification and (6) 
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ordering artificial flavors and colorants. The problem data is included in Table 3.1, and 

its assembly structure is shown in Figure 3.5. 

Table 3.1 Example problem data 

Stage
Demandi 

(units/week)
Setup/ ordering 

costi
Echelon holding 

costi
gi

1 10 20 1 5
2 20 20 2 20
3 10 20 1 5
4 40 20 1.5 30
5 20 20 1 10
6 10 45 1 5  

 

 

 

 

 

 

Figure 3.5 Example problem structure 

 

a) G.A. parameters: 

• Population Size = 4 chromosomes 

• Generations = 1 

• Probability of crossover = 50 % 

• Probability of Mutation = 25% 

 

 

4 65

32

1

4 65

32

1
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b) Generation #1: 

The genetic algorithm proposed is shown in Figure 3.6. using the parameters 

previously defined and the data in Table 3.2. In Figure 3.6, Rand represent the random 

numbers generated during the sequence. The initial population is formed by four 

chromosomes. Each one has a fitness value calculated using equation 3.6, and represents 

the inverse of the total cost function based on the objective of minimization. To apply the 

crossover operation, a random number is generated and compared with the probability of 

crossover; if the probability of crossover is bigger than the random number, then two 

chromosomes are selected to do the crossover, else continue to mutation. 

Figure 3.6 First generation of problem example using GA 
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population and cross by chromosomes 4 and 6. After the crossover is completed, 
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mutation is executed as described in Section 3.4.3. Finally, the new population is formed 

by all chromosomes of the current population plus the children generated. This example 

defined as a terminal condition, the completion of one generation, and thus making the 

chromosome with the best fitness generated as our solution. The best solution is 

represented by the chromosome shown in Figure 3.7. 

 

2 2 4 3 4 2  

Total cost = US$ 269.17 

Fitness = 0.0037 

Figure 3.7 Solution to problem example 

 

 Once this solution is obtained, it can be applied as shown in Figure 3.8, using a 

timescale to help visualize the nested ness and stationary policies. First, transform the 

previous results as reorder cycle time (Ti) using ik
i 2T = , were ki‘s are the output of G.A. 

For this problem the Ti’s are: T1 = 4, T2 = 4, T3 = 16, T4 = 8, T5 = 16, and T6 = 4.  In this 

example TL is one week.  For each operation the order size is equal to the demand, 

because the objective is to satisfy the demand requirements. 

 Every time one order is placed or a setup operation is done, it also has to be 

placed by all its predecessors. This is the practical meaning of the nested ness policy 

which established that the reorder cycle time for an operation have to be at least as large 

as it successor.  The stationary policy is also satisfy because the order is placed in the 

same interval time and the quantity is always the same. 
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Figure 3.8 Example problem solution using GA 

 

The previous example intends to demonstrate the real application of the 

methodology proposed. In the next section, the experimentation to compare both 

methodologies, Maxwell and Muckstadt and the genetic algorithm, is defined. 

 

3.5. Experimental Design 

Experimental design is a critically important tool in engineering world for 

improving the performance of manufacturing processes. Experimentation should be 

viewed as part of the scientific process and as one of the ways to learn how the systems 
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work. An experiment is conducted to: (1) to determine the best GA parameters settings; 

and (2) to determine the robustness of the proposed algorithm.  

 

3.6.1. GA parameters in the experimental design 

Response surface methodology is a collection of mathematical and statistical 

techniques that are useful for the modeling and analysis of problems in which a response 

of interest is influenced by several variables and the objective is to optimize this 

response. Central composite design (CCD) is a response surface method that allows one 

to keep the size and complexity of the design low and simultaneously obtain some 

protection against curvature, as described by Montgomery (2001).   

One important decision to make when implementing a genetic algorithm is how to 

set the parameters values. In order to satisfy this condition a central composite design is 

selected which consists of a 25-1 design augmented with two center points in each block, 

ten axial and one center axial point, to obtain an indication of curvature and fit a second-

order model if it is required.  

Axial points have all of the factors set to the midpoint, except one factor, which 

has the value +/- alpha. The value for alpha is calculated in each design for both 

rotatability and orthogonality of blocks.  In this design alpha is set to one, because some 

factor cannot assume values bigger than their upper bound, this is commonly referred to 

as a face-centered central composite design. This design only requires three levels for 

each factor. Center points, as implied by the name, are points with all levels set to the 
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midpoint of each factor range. Center points are usually repeated four to six times to get a 

good estimate of experimental error (pure error).   

The parameters to be tested and their respective levels are: (1) Problem size, 10, 

505 and 1000 nodes; (2) Probability of crossover, 0.5, 0.75 and 1.0; (3) Probability of 

mutation, 0.01, 0.255 and 0.50; (4) Population size, 30, 515 and 1000 chromosomes and 

(5) Number of generations, 50, 475 and 1000 generations. The demand, setup costs and 

holding costs were generated using a uniform distribution with the following upper and 

lower parameters 1-200, 5-500, 0.1-2, respectively (See Appendix B1). The levels of the 

factors evaluated are considered based on the typical values used in previous work done 

in similar applications and trying to include an extensive region of experimentation. 

From this experiment is expected to obtain two responses: cost (measure in $/unit 

time) and time (measure in unit time). To optimize both responses is used an approach 

presented by Artiles (1996), using standardize loss functions integrated with specification 

limits define for each factor. This method is easily implemented using a spreadsheet. 

 

3.6.2. Robustness experimental design 

After having the GA parameters that provides the best results, a 23 experiment is 

conducted to determine the robustness of the methodology proposed. The importance of 

the robustness of a methodology is that measures its ability to give the expected results in 

a variety of problems that can be implemented. In this research, the problem instances are 

changed by: (1) Setup or ordering costs, uniformly distributed (5-500) (low) and 
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uniformly distributed (500-1000) (high); (2) Holding costs, uniformly distributed (0.5-2) 

(low) and uniformly distributed (2-5) (high); and (3) Problem size, 10 and 2000.  

As it was described in the GA parameters experiment, the responses were cost and 

time, and the demand generated is uniformly distributed between 1 and 200. 

 

3.7. Conclusions 

 This chapter describes the characteristics of the problem solved and the two 

approaches compared: Maxwell and Muckstadt (1985) and the genetic algorithm 

developed.  

Maxwell and Muckstadt define the problem as a large-scale nonlinear integer 

programming, and define a two step procedure to solve a relaxed version of the problem 

which identifies the operations that share the reorder interval. Having the solution to the 

relaxed problem, is evaluated the value of the reorder interval for each operation using 

Equation 3.1 (See Appendix A.1).  

The genetic algorithm is a general procedure that could be applied to a variety of 

problems, combining some strategies to find the best solution in very complex search 

spaces. The genetic algorithm developed starts from a population were half of the 

solutions are infeasible trying to enrich the search space. The infeasibility consists of a 

violation of a nested ness constraint. The operators used are: a two-point crossover, one-

point mutation and a repairing procedure to make bring an infeasible solution to the 

feasible region. The last technique shows to work very well in problems with similar 
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restrictions. The selection apply is the tournament selection which compares between two 

chromosomes.  

Two experiments are designed. The first is a central composite deign to find the 

settings of the probability of crossover, probability of mutation, number of generations 

and population that optimize the solutions found with the genetic algorithm. The output 

of this experiment are cost and time express in percentages of the difference between the 

genetic algorithm proposed and Maxwell and Muckstadt. This optimization is done using 

the loss function combined with the specification limits proposed by Artiles (1996).  

Once the settings that optimize the genetic algorithm are found, a factorial 

experiment is used to evaluate how changes in the setup cost, holding cost and problem 

size change the genetic algorithm output. This is defined as the robustness of the 

methodology.  

The next chapter presents the experiments and identify the more important 

characteristic of the solutions obtained.  
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CHAPTER IV 

EXPERIMENTAL ANALYSIS 

 

4.1. GA parameters results 

 To evaluate the GA parameters three different problem instances of size 10, 505 

and 1000 nodes are generated, using the code shown in Appendix B.1. Setup costs, 

holding costs and demand are uniformly distributed between 5 and 500, 0.1 and 2, and 1 

to 200, respectively, changing the problem size.  

The summary results for the GA parameters determination experiment are shown 

in Table 4.1.  The first two columns of Table 4.1 presents the standard and run order of 

the central composite design experiment conducted, while the third column shows at 

which block correspond each run. The next five columns identify the level of each factor 

considered in the experimentation part. The columns named cost and time show the 

results obtained during the experiment.  

 Cost and time are considered for determining the parameters of GA that give the 

best solution, considering important that GA gives a solution not only effective (near 

optimal) but also efficient (in less computational time).  
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Table 4.1 Summary GA results for parameters set up 

Std. 
Order

Run 
Order Blocks

A: 
Problem 

Size

B: 
Pcross

C: 
Pmut

D: 
PopSize

E: 
Generations

 Cost    
(US$) 

 Time    
(secs.) 

9 1 1 10 0.5 0.01 1000 50 2,927.39 0.37
22 2 1 505 0.75 0.255 515 475 187,296.91 109.31

3 3 1 10 1 0.01 30 50 3,067.84 0.03
2 4 1 1000 0.5 0.01 30 50 414,409.64 0.91

16 5 1 1000 1 0.5 1000 1000 382,567.75 1,134.22
8 6 1 1000 1 0.5 30 50 413,437.20 1.54

14 7 1 1000 0.5 0.5 1000 50 413,437.20 1.56
10 8 1 1000 0.5 0.01 1000 1000 407,315.30 660.58

1 9 1 10 0.5 0.01 30 1000 3,022.10 0.67
13 10 1 10 0.5 0.5 1000 1000 2786.50 8.56
17 11 1 505 0.75 0.255 515 475 187296.91 109.43

6 12 1 1000 0.5 0.5 30 1000 394700.86 24.01
21 13 1 505 0.75 0.255 515 475 187296.91 109.48

5 14 1 10 0.5 0.5 30 50 2925.15 0.03
15 15 1 10 1 0.5 1000 50 2792.50 0.60
20 16 1 505 0.75 0.255 515 475 187296.91 109.38
18 17 1 505 0.75 0.255 515 475 187296.91 109.35
11 18 1 10 1 0.01 1000 1000 2867.33 9.95

4 19 1 1000 1 0.01 30 1000 415136.76 28.36
19 20 1 505 0.75 0.255 515 475 187296.91 109.43
12 21 1 1000 1 0.01 1000 50 407365.63 46.09

7 22 1 10 1 0.5 30 1000 2786.50 0.76
32 23 2 505 0.75 0.255 515 1000 181568.90 229.71
26 24 2 505 1 0.255 515 475 188367.08 127.87
31 25 2 505 0.75 0.255 515 50 192915.93 11.41
24 26 2 1000 0.75 0.255 515 475 401511.99 217.32
27 27 2 505 0.75 0.01 515 475 193831.75 99.00
28 28 2 505 0.75 0.5 515 475 182171.38 118.17
25 29 2 505 0.5 0.255 515 475 187076.06 90.22
30 30 2 505 0.75 0.255 1000 475 193334.11 212.13
33 31 2 505 0.75 0.255 515 475 187296.91 108.91
29 32 2 505 0.75 0.255 30 475 191473.62 6.31
23 33 2 10 0.75 0.255 515 475 2649.00 2.25  

 

In order to fit the data to a regression model, an independent analysis for each 

response, cost and computational time, is required. The first step is to identify significant 

factors in the model, for that purpose a multiple regression analysis and an analysis of 
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variance (ANOVA) are developed for both responses. The analysis of variance is a 

partition of the total variability into its component parts.   

 

Table 4.2 Multiple regression analysis for cost 

Dependent variable: Cost
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                 6747.05        28813.0       0.234167         0.8170
Crossover                7644.11        86028.1       0.088856         0.9300
Generations             -4.54615        17.1844      -0.264551         0.7938
Mutation                -10737.6        30874.0      -0.347789         0.7313
Population              -21.6226        15.9019       -1.35975         0.1877
Problem                  349.255        14.9878        23.3027         0.0000
Crossover^2              -6608.9        57243.4      -0.115453         0.9091
Generations^2        -0.00241235      0.0160467      -0.150333         0.8819
Mutation^2              -2216.77        59603.7     -0.0371918         0.9707
Population^2           0.0181496      0.0152097        1.19329         0.2455
Problem^2              0.0569161      0.0146014        3.89799         0.0008
-----------------------------------------------------------------------------

 

    Table 4.3 Analysis of variance for cost 

-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                  7.32221E11     10   7.32221E10    2322.95       0.0000
Residual                6.93465E8     22    3.15211E7
-----------------------------------------------------------------------------
Total (Corr.)          7.32914E11     32

R-squared = 99.9054 percent
R-squared (adjusted for d.f.) = 99.8624 percent
Standard Error of Est. = 5614.37
Mean absolute error = 3264.4
Durbin-Watson statistic = 2.14129 (P=0.2962)
Lag 1 residual autocorrelation = -0.0976557
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The output shows the results of fitting a model to describe the relationship 

between cost and the independent variables. The equation of the fitted model is as 

follows: 

2^oblemSizePr*0569.02^PopSize*018.0
2^Pmut*77.22162^Gens*002412.02^Pcross*9.6608oblemSizePr*26.349

Population*62.21Pmut*6.10737Gens*55.4Pcross*11.764405.6747Cost

++
−−−+
−−−+=

 

Since the P-value in table 4.3 is less than 0.01, there is a statistically significant 

relationship between the variables at the 99% confidence level.  The R-Squared statistic 

indicates that the model as fitted explains 99.91% of the variability in cost. The adjusted 

R-squared statistic, which is suitable for comparing models with different numbers of 

independent variables, is 99.86%.  The standard error of the estimates shows the standard 

deviation of the residuals to be 5,614.37. This value can be used to construct limits for 

new observations.  

The mean absolute error (MAE) of 3,264.4 is the average value of the residuals. 

The Durbin-Watson (DW) statistic tests the residuals to determine if there is any 

significant correlation based on the order in which they occur. Since the P-value is 

greater than 0.05 there is no indication of significant autocorrelation in the residuals. 

In determining whether the model can be simplified, notice that the highest         

P-value on the independent variables is 0.9707, belonging to mutation2. Since the P-value 

is greater or equal to 0.10, that term is not statistically significant at the 90% or higher 

confidence level. Consequently, some factors are removed from the model. The final 

model is stated as:  
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Regression model for Cost: 

2oblemSizePr*0667298.0
oblemSizePr*343.339Pmut*2.11868Gens*03322.702.6149Cost

+

+−−=
 

(Equation 4.1) 

 

To define the fit of the current equation including only the terms considered 

important, a multiple regression analysis and ANOVA are presented in Tables 4.4 and 

4.5. A residuals analysis is included in Appendix C1. 

    Table 4.4 Multiple regression analysis for cost with significant factors 

-----------------------------------------------------------------------------
Dependent variable: Cost
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                 6149.02        2626.27        2.34135         0.0266
Generations             -7.03322        2.63007       -2.67416         0.0124
Mutation                -11868.2        5104.63       -2.32499         0.0275
Problem                  339.343        8.06333        42.0848         0.0000
Problem^2              0.0667298     0.00758146        8.80171         0.0000
-----------------------------------------------------------------------------

  

Table 4.5 Analysis of variance for cost with significant factors 

-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                  7.32126E11      4   1.83031E11    6501.19       0.0000
Residual                7.88298E8     28    2.81535E7
-----------------------------------------------------------------------------
Total (Corr.)          7.32914E11     32

R-squared = 99.8924 percent
R-squared (adjusted for d.f.) = 99.8771 percent
Standard Error of Est. = 5305.99
Mean absolute error = 3433.97
Durbin-Watson statistic = 2.40324 (P=0.0949)
Lag 1 residual autocorrelation = -0.225803
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 Tables 4.4 and 4.5, show the statistical significance of each variable as added to 

the model. For the response variable time, the same analysis is done and is presented in 

Tables 4.6 and 4.7. 

Table 4.6 Multiple regression analysis for time 
-----------------------------------------------------------------------------
Dependent variable: Time
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                 598.642        664.366       0.901073         0.3839
Crossover               -694.539        1900.73      -0.365407         0.7207
Generations            -0.479544       0.438935       -1.09252         0.2944
Mutation                 -1551.0        806.882       -1.92222         0.0768
Population             -0.267428       0.407918      -0.655592         0.5235
Problem                  -0.2662       0.388665      -0.684908         0.5054
Crossover*Mutatio        1715.37        501.581        3.41992         0.0046
Crossover^2             -4.50166        1252.94    -0.00359286         0.9972
Mutation^2              -12.3507        1304.61    -0.00946703         0.9926
Problem^2          0.00000187184    0.000319596     0.00585688         0.9954
Population^2         -4.52136E-7    0.000332911    -0.00135813         0.9989
Generations^2     -0.00000297021    0.000351231    -0.00845658         0.9934
Problem*Crossover       0.263354       0.248257        1.06081         0.3081
Crossover*Populat        0.26532       0.253376        1.04714         0.3141
Crossover*Generat       0.229557       0.258551        0.88786         0.3907
Mutation*Generati       0.276153       0.263828        1.04672         0.3143
Mutation*Populati       0.227004       0.258547       0.877999         0.3959
Mutation*Problem        0.219779       0.253324       0.867583         0.4014
Generations*Probl    0.000472566    0.000130581        3.61894         0.0031
Generations*Popul    0.000464772    0.000133274        3.48735         0.0040
-----------------------------------------------------------------------------

  
Table 4.7 Analysis of variance for time 

-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                   1.37018E6     19      72114.9       4.78       0.0031
Residual                 196317.0     13      15101.3
-----------------------------------------------------------------------------
Total (Corr.)            1.5665E6     32

R-squared = 87.4678 percent
R-squared (adjusted for d.f.) = 69.1515 percent
Standard Error of Est. = 122.887
Mean absolute error = 55.392
Durbin-Watson statistic = 2.19784 (P=0.2396)
Lag 1 residual autocorrelation = -0.13205
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 For the multiple regression analysis of time response, originally all interactions 

are included as a result of previous experimentation that shows an R-Squared not bigger 

than 66% when the model only considered linear and quadratic terms. Including 

interactions terms the R-Squared statistic indicates that the model as fitted explains 

87.46% of the variability in the response time.  

The standard error of the estimate shows the standard deviation of the residual to 

be 122.887. The absolute value of the residuals is equal to the absolute value (55.39).   

There is no indication of serial autocorrelation in the residuals. The model requires a 

simplification, notice in the highest P-values belonging to some independent parameters.  

The simplified model is presented as follows with its statistical justification. A residuals 

analysis is included in Appendix C2. 

Regression model for Time: 

PopSize*Gens*00045.0oblemSizePr*Gens*0004607.0Pmut*Pcross*37.1715
Pmut*96.1118Gens*2279.0Pcross*416.312311.204Time

+++
−−−=

(Equation 4.2) 

Table 4.8 Multiple regression analysis for time with significant factors 

Dependent variable: Time
-----------------------------------------------------------------------------
                                       Standard          T
Parameter               Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
CONSTANT                 204.311        116.933        1.74726         0.0924
Crossover               -312.416        146.198       -2.13695         0.0422
Generations            -0.227938      0.0736832       -3.09349         0.0047
Mutation                -1185.96        334.052       -3.55023         0.0015
Crossover*Mutatio        1715.37        424.913        4.03698         0.0004
Generations*Probl    0.000460701   0.0000722582        6.37575         0.0000
Generations*Popul    0.000452612   0.0000737481        6.13727         0.0000
-----------------------------------------------------------------------------
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Table 4.9 Analysis of variance for time with significant factors 

-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                   1.28472E6      6     214120.0      19.76       0.0000
Residual                 281777.0     26      10837.6
-----------------------------------------------------------------------------
Total (Corr.)            1.5665E6     32

R-squared = 82.0123 percent
R-squared (adjusted for d.f.) = 77.8613 percent
Standard Error of Est. = 104.104
Mean absolute error = 60.0485
Durbin-Watson statistic = 2.86107 (P=0.0048)
Lag 1 residual autocorrelation = -0.436087

 

 

The numerical optimization technique used was proposed by Artiles (1996), using 

standardized loss functions integrated with specification limits defined for each factor.  

The results obtained are presented in Table 4.10. 

 In Table 4.10 the columns “min” and “max” represents the lower and upper 

specifications limits for each factor. The column called “Optimal Values” shows the 

optimal settings proposed by this optimization technique for multiple responses. Factors 

represented the factor included in the model. In this table factor A represent Problem 

Size, B is the probability of crossover, C is the probability of mutation, D the population 

size and D the number of generations. In columns Cost and Time, for each factor is 

necessary to define the coefficient calculated by the regression. As a result, the loss 

function is evaluated in the cell under “Objective function”. The objective is to minimize 

the loss function. 
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Table 4.10 Optimization spreadsheet parameters 

Min Values Max Factors Cost Time
10 10 1000 ProblemSize 339.34 0
0.5 1 1 Pcross 0 -312.42
0.01 0.5 0.5 Pmut -11868.2 -1185.96
30 30 1000 PopSize 0 0
50 425.135 1000 Generations -7.03 -0.23

100 ProblemSize^2 0.07 0
0.5 Pcross*Pmut 0 1715.37

4251.35 Gen*ProblemSize 0 0.00046
12754.05 Gen*PopSize 0 0.00045

1 constante 6149.02 204.31

Value 626.621 66.55019
LSL 615 75

Target 625 80
USL 635 85 Objective Function
Loss 0.026276 7.235898 7.262173278  

The optimal settings for the GA parameters values obtained from the optimization 

technique applied are: 1.0 for the crossover probability, 0.50 for mutation probability, 30 

chromosomes in the population size, and 425 generations. These parameters are used as 

settings for the genetic algorithm to be analyzed further. With those parameters the GA is 

run and their results compared with the ones offered by Maxwell and Muckstadt (1985) as 

shown in Table 4.11. 

Table 4.11 Summary comparison of GA and Maxwell and Muckstadt 

 M&M GA Comparison 

Problem 
Size  Cost  Time  Cost  Time  % Cost  % Time 

10 
      

2,667.77  
        

0.09  
      

2,786.50  
         

0.46  
         

4.45  
       

412.22  

505 
  

163,381.47  
        

14.32  
  

190,979.58 
         

6.61  
         

16.89  
        

(53.84) 

1000 
  

333,607.70  
        

26.99  
  

407,474.88 13.06 
         

22.14  
        

(51.62) 
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The comparison columns show the difference percentage wise between GA and 

Maxwell and Muckstadt results. This relationship is defined as shown in equations 4.3 

and 4.4.  

( )
tcos

tcostcos

M&M
M&MGA

tcos%
−

=   (Equation 4.3) 

 

( )
time

timetime

M&M
M&MGA

time%
−

=    (Equation 4.4) 

 

Results show that GA offered solutions 4.45 percent above optimum in a 

computational time of 0.46 seconds. The difference in percentages from GA and Maxwell 

and Muckstadt results in cost increase as the problem size, but this relationship is not 

necessarily linear. For large problems, these differences are on average 22 percent. The 

negative values in the time column indicate that GA work faster than the Maxwell and 

Muckstadt algorithm for medium (505 nodes) and large (1000 nodes) problems.  

 

4.2. GA robustness experiment results 

To evaluate the robustness of the results obtained from the GA algorithm a 23 

factorial experiment is conducted and the summary results are shown in Table 4.8. This 

experiment intends to define the distance in cost of GA from the optimal solution 

changing some aspects of the original environment under the algorithm was tested.   
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Table 4.12 Summary GA results for robustness design 

Blocks Setup cost Holding Cost Problem 
Size  GA cost  M&M cost   % 

difference 

1 -1 1 1 1,117,191.94 782,943.15 29.92
1 -1 -1 1 430,565.28  314,350.41 26.99
1 1 -1 1 646,809.34  500,868.38 22.56
1 -1 -1 -1 2,528.28      2,440.14     3.49
1 -1 1 -1 3,609.23      3,609.23     0.00
1 1 1 1 1,292,768.45 927,083.72 28.29
1 1 -1 1 649,632.37  503,724.26 22.46
1 -1 -1 1 451,589.18  312,267.80 30.85
1 1 1 1 1,328,031.11 931,729.15 29.84
1 1 1 -1 6,528.01      6,528.01     0.00
1 -1 1 1 1,082,920.22 744,381.48 31.26
1 1 -1 -1 5,330.89      5,330.89     0.00
1 -1 -1 -1 2,447.68        2,447.68       0.00
1 -1 1 -1 4,903.39      4,645.94     5.25
1 1 1 -1 7,531.10      7,531.10     0.00
1 1 -1 -1 3,940.45      3,940.45     0.00  

   

From the previous table can be derived some conclusions about the consistent 

difference in percentages in cost between both methodologies, which appears to be 

greater for larger problem size (around 22 and 31 percent), while the optimum solution is 

achieve in the 75% of the times for small problems.  

The main effects plots which define the relation between cost and, setup cost, 

holding cost and the problem size are shown in Figure 4.1. The problem size is the factor 

that most affect cost response as shown graphically in Figure 4.1.  
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Figure 4.1 Main effects plots for cost 
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Figure 4.2 Normal probability plot of the residuals for robustness experiment 
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4.3. Conclusions 

 The first experiment conducted tried to set the values of some of the principal 

factor traditionally studied in GA that affects directly the results obtained. These factors 

are: probability of crossover, probability of mutation, population size and number of 

generations. The idea of this experiment is to define the parameters that offered the best 

cost or nearest optimal cost in little computational time.  For that purpose, a multiple 

regression analysis and analysis of variance are developed to fit the data to an equation, 

considering only the factors that affect directly each response. These analyses are done 

independently for each response: cost and computational time and the regression models 

obtained are represented in Equations 4.1 and 4.2. 

 To optimize both responses an approach proposed by Artiles (1996) is used, as 

explained in section 3.6.1., and the results are:  

• Probability of crossover:  100% 

• Probability of mutation: 50 % 

• Population size: 30 chromosomes 

• Number of generations: 425 generations 

 To compare the outputs from GA and Maxwell and Muckastadt, the GA is 

evaluated for each problem size (small: 10 nodes and large: 1000 nodes), using the 

settings previously obtained. For the cost response, in the small problem size solutions 

four percent greater than the optimum are obtained, 17 percent for medium and 22 

percent for large problems. For the computational time response, GA gives solutions 

more than 50% faster than Maxwell and Muckstadt for medium and large problems. For 
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small problems, Maxwell and Muckstadt gives solutions faster than GA, but this 

percentage is insignificant, only a difference of 0.28 seconds. 

 The second experiment identifies the robustness of the methodology proposed, 

based on its consistency in giving solutions with the same percentage differences from 

the optimal in difference problem instances. The parameters tested are setup and holding 

cost for each problem size. The experiment gives from zero to five percent near optimal 

solutions for small problems, and from 22 to 31% near optimal solutions for large 

problems. The optimal solutions in small problems are obtained 75% of the time. 
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CHAPTER V 

CONCLUSIONS AND DISCUSSIONS 

5.1. Conclusions 

The main contribution of this research is the development of the first genetic 

algorithm approach to determine the reorder cycle time in multi-stage serial and assembly 

systems, considering the power of two restrictions.  A genetic algorithm has not been 

addressed before in the literature to solve this problem.  

Once the work is done, several questions have to be answered about the genetic 

algorithms which were formulated as secondary objectives of this research, and are 

related to its effectiveness, efficiency and robustness.  The genetic algorithm developed 

shows to be effective, because it provides solutions in costs from zero to five percent 

above optimum for small problems and from 22 to 31 percent for large problems (1000 

nodes).  Optimal solutions are obtained 75 percent of the time for small problems. 

The genetic algorithm is an efficient tool to find a near optimal solution in little 

time. The algorithm programmed in C++ and using a Pentium 4, provides solutions in 

less than one second for small problems, and less than 40 seconds for larger problems 

(1000 nodes).  

An experiment is conducted to measure the ability of the genetic algorithm to 

provide solutions of the same quality in different problems instances. The experiment 

shows that GA gives very accurate solutions, comparing the results obtained in the first 

experiment after the optimization part with the ones in the robustness experiment. Using 

the optimal GA parameters, the result for small problems is four percent above optimal, 
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and from zero to five percent near optimal. For large problems, the results are 22.14 

percent near optimal solution, while the robustness experiment shows an interval of 22 to 

31 percent above optimal. It can be seen that for small problems the methodology is more 

accurate.  

The flexibility is a very important characteristic of the genetic algorithm, making 

this methodology attractive to find a solution when the problem at hand does not satisfy 

all the assumptions stated in Maxwell and Muckstadt (1985).  It can even be extended to 

solve a different application with similar restrictions, like the one of finding the reorder 

cycle time for multi-stage serial and assembly systems without considering the power of 

two restrictions.  

The GA developed can be easily extended to applications like the previously 

defined and for project planning and scheduling problems, because of the similarities in 

the chain structure and the precedence restrictions. The changes required will only 

include considering that each gene of the chromosome structure represent the reorder 

cycle time (Ti) of the corresponding period instead of the power of two, and eliminate the 

required transformation of the exponents in reorder cycle time. This is an advantage that 

cannot be obtained using the Maxwell and Muckstadt approach. 

 Another modification that can be done in the genetic algorithm is the inclusion of 

precedence restrictions to extend the methodology to solve problems with more general 

structures. The only modification required is to allow each stage to have more than one 

successor, including the successor’s length in the structure defined as an structure called 

individual in the program. 
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The current problem can be extended considering capacity restrictions or joint 

cost. Some mathematical models have been developed considering these restrictions, 

facilitating a comparison between the genetic algorithm and their performance. A 

comparison between GA and another heuristics developed in this area, such as tabu 

search or simulated annealing, can be done to compare their performance.  
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APPENDIX A 

 

ALGORITHMS CODES 

 

A.1 Maxwell and Muckstadt (1985) C ++ code 

 

A.2 Genetic algorithm C++ code 
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A.1. Maxwell and Muckstadt (1985) C ++ code 

 
#include <stdio.h> 
#include <conio.h> 
#include <time.h> 
#include <stdlib.h> 
#include <math.h> 
 
#define InputFile "Problem_1005.txt" 
#define OUTPUTFILE "Output_1005.xls" 
# define ArrayBuffer 1005  //nodes ArrayBuffer = n 
 
int TL = 1; 
 
typedef struct CArray 
{ 
  int Elements[ArrayBuffer];  
  //each element is a Node... it is an array of nodes or a group of nodes 
  int Length; 
  int CannotCut; 
}               CuttedArray; 
 
CuttedArray aG[ArrayBuffer]; //contains x CuttedArray elements 
 
typedef struct NArray 
{ 
  int DirectPredecessors[ArrayBuffer]; 
  int DirectPredLength; 
  int Predecessors[ArrayBuffer]; 
  int PredLength; 
 
}               NodeArray; 
 
NodeArray Nodes[ArrayBuffer]; //contains x CuttedArray elements 
 
  //function prototyping 
void ReadData(); 
double getColumnSum(int Col,CuttedArray aGroup); 
int isDone(); 
void VG(CuttedArray *aVG); 
float log2(double x); 
 
//end function prototyping 
 
float Log2TL = log2(TL); 
float Log2Sqrt2 = log2(sqrt(2)); 
 
double Total_g=0; 
int Length_aG=0; 
 
CuttedArray OutputArray[2]; 
int Length_OutputArray; 
 
float Matrix[ArrayBuffer][ArrayBuffer+4]; 
int n; 
int minvalue; 
int change; 
int reference; 
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float TimeElapsed, PrintDelay, OperationTime; 
 
 
 
 
void main() 
{ 
  printf("\nPrograma corriendo..."); 
  clock_t TimeStart1, TimeEnd1, TimeStart2, TimeEnd2; 
  float PrintDelay = 0; 
  float OperationTime = 0; 
  TimeStart1 = clock(); 
 
  CuttedArray nullArray; 
  int i,j,kk,h; 
  CuttedArray TempArray[ArrayBuffer]; 
  int Length_TempArray = 0; 
 
  for(i=0;i<=ArrayBuffer;i++){nullArray.Elements[i] = 0;}  
  //initialize nullArray 
  nullArray.CannotCut = 0; 
  nullArray.Length = 0; 
 
  TimeEnd1 = clock(); //computing this time 
  OperationTime += (float(TimeEnd1)-float(TimeStart1)); 
 
  //------------------------Data------------------------------- 
  //read the data and put it in Matrix[][] 
        ReadData(); 
 
  //we already calculate g - it was on ReadData function 
 
 
  //---------------------Partition----------------------------- 
   TimeStart2 = clock();  
 
   for(i=0;i<=n;i++) 
   { 
        Nodes[i].DirectPredLength = 0; 
      Nodes[i].PredLength = 1; 
   } 
 
   for(i=0;i<=n;i++) 
   { 
      aG[0].Elements[i] = n-i; 
      //set the first element of the aG array to be : n, n-1,n-2...1 
 
      for (j=0;j<=n;j++) 
      { 
        if (Matrix[i][j+4] > 0) 
         { 
                Nodes[j].DirectPredLength += 1; 
            Nodes[j].DirectPredecessors[Nodes[j].DirectPredLength - 1] = i; 
            break; 
         } 
      } 
   } 
 
   aG[0].Length    = n+1; 
   aG[0].CannotCut = 0; 
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   Length_aG = 1; //lenghts are on base 1... 1 means one element 
 
   for (i=0;i<=n;i++) 
   { 
        // in this part it is included the reference node in its predecessors 
      Nodes[i].Predecessors[0] = i; 
 
       

if ( Nodes[i].DirectPredLength > 0) 
      { 
        for (j = 1; j <= Nodes[i].DirectPredLength; j++) 
                { 
                Nodes[i].PredLength += 1; 
            Nodes[i].Predecessors[j] = Nodes[i].DirectPredecessors[j-1]; 
         } 
      } 
      j = 1; 
 
      while ( Nodes[i].Predecessors[j] > 0 ) 
      { 
        for (kk = 0; kk < Nodes[Nodes[i].Predecessors[j]].DirectPredLength; 
kk++) 
         { 
                Nodes[i].PredLength += 1; 
            Nodes[i].Predecessors[Nodes[i].PredLength - 1] = 
Nodes[Nodes[i].Predecessors[j]].DirectPredecessors[kk]; 
         } 
         j++; 
 
      } 
 
 
   }//end for i 
 
        //iterate to partitionate the array aG 
 
   while(isDone() == 0) 
   { 
        //clean up the TempArray vector 
      for(i=0;i<Length_TempArray;i++){TempArray[i] = nullArray;} 
 
      Length_TempArray = 0; 
      //this means the number of elements in the array-1 
 
      for(i=0;i<Length_aG;i++) 
      { 
        if(aG[i].CannotCut == 0) 
         { 
                VG(&aG[i]); //gives an array with 1 or 2 elements in 
OutputArray 
 
            for(j=0;j<Length_OutputArray;j++) 
            { 
                TempArray[Length_TempArray] = OutputArray[j]; 
                                   Length_TempArray += 1; 
            } 
 
                //clean up OutputArray 
            for(h=0;h<Length_OutputArray;h++){OutputArray[h] = nullArray;} 
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         }else{ 
 
         //we cannot cut the array so we can pass it directly to the temp array 
                TempArray[Length_TempArray] = aG[i]; 
                Length_TempArray += 1; 
         }//end if 
 
 
        } //end for i 
 
      //assigning the temp array to our aG vector 
      for(i=0;i<Length_TempArray;i++){aG[i] = TempArray[i];} 
      Length_aG = Length_TempArray; 
 
   }//end while 
 
   double TotalSetup[ArrayBuffer],Totalg[ArrayBuffer]; 
   float T[ArrayBuffer], MiTL, k[ArrayBuffer], M[ArrayBuffer]; 
   double Cost[ArrayBuffer], TotalCost = 0; 
 
   for(i=0;i<Length_aG;i++) //for each partition 
   { 
        TotalSetup[i] = 0; 
      Totalg[i] = 0; 
 
      for(j=0;j<aG[i].Length;j++) //for each node in partition 
      { 
        TotalSetup[i] += Matrix[aG[i].Elements[j]][1]; 
         Totalg[i] += Matrix[aG[i].Elements[j]][3]; 
      } 
 
      k[i] = ceil(log2(TotalSetup[i] / Totalg[i]) - Log2Sqrt2 - Log2TL); 
 
      if ( k[i] < 0 ) 
      { 
        k[i] = 0; 
      } 
       
      M[i] = pow(2,k[i]); 
      //calculate the Ti 
      MiTL = M[i]*TL; 
      for(j=0;j<aG[i].Length;j++) 
      { 
         T[aG[i].Elements[j]] = MiTL; 
         Cost[aG[i].Elements[j]] = (Matrix[aG[i].Elements[j]][1] / MiTL) + 
(Matrix[aG[i].Elements[j]][3] * MiTL); 
         TotalCost += Cost[aG[i].Elements[j]]; 
      } 
   } 
 
   TimeEnd2 = clock(); 
 
   OperationTime += (float(TimeEnd2)-float(TimeStart2)); 
 
   //print the results 
   FILE *Fout; 
   Fout = fopen(OUTPUTFILE,"w+");//open the file for output 
   fprintf(Fout,"<html><head><title>Results</title><style>td{text-
align:center;}</style></head><body>\n"); 
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   //print the time 
   TimeElapsed = (OperationTime - PrintDelay)/ CLOCKS_PER_SEC; 

fprintf(Fout,"<p>Time for completion:%.3f<br>TotalCost:%.2f<br>\n", 
TimeElapsed,double(TotalCost)); 

   fprintf(Fout,"<table border=1 cellpadding=2 cellspacing=0>\n"); 
   fprintf(Fout,"<tr><td colspan=6 style='font-weight:bold;text-    
align:center;background:#C0C0C0;'>Results</td>\n"); 
   fprintf(Fout,"<tr style='text-align:center;'><td><b>&nbsp;</b></td>"); 
   fprintf(Fout,"<td><b>k<sub>i</sub></b></td>"); 
   fprintf(Fout,"<td><b>T<sub>i</sub></b></td>"); 
   fprintf(Fout,"<td><b>Setup Cost<sub>i</sub></b></td>"); 
   fprintf(Fout,"<td><b>g<sub>i</sub></b></td>"); 
   fprintf(Fout,"<td><b>Cost<sub>i</sub></b></td>"); 
   fprintf(Fout,"\n</tr>\n"); 
   for(i=0;i<=n;i++) 
{               i         ki          Ti         Ai            gi         Costi 
        
fprintf(Fout,"<tr><td>%d</td><td>%.0f</td><td>%.0f</td><td>%.2f</td><td>%.2f</t
d><td>%.2f</td></tr>\n",i+1,(log(T[i])/log(2)),T[i],float(Matrix[i][1]),float(M
atrix[i][3]),float(Cost[i])); 
       
   fprintf(Fout,"<tr><td colspan=5 style'text-align:right;'><p 
align=right><b>Total Cost:</b></td><td>%f</td></tr>\n",TotalCost); 
   fprintf(Fout,"<tr><td colspan=5 style'text-align:right;'><p 
align=right><b>Total Time:</b></td><td>%f</td></tr>\n",TimeElapsed); 
   fprintf(Fout,"</table>\n"); 
   fprintf(Fout,"</body>"); 
 
   fclose(Fout); //close the file 
 
        printf("\nFin del programa..."); 
} 
 
/**********************************end main********************************/ 
 
double getColumnSum(int Col, CuttedArray aGroup) 
{ 
        double TotalSum=0; 
        for(int i=0;i<aGroup.Length;i++) 
   { 
        TotalSum += Matrix[aGroup.Elements[i]][Col]; 
   } 
        return TotalSum; 
} 
 
void ReadData() 
{ 
        int i=0; 
   int j; 
   FILE *fin; 
   clock_t TimeStart3, TimeEnd3; 
 
   if ((fin=fopen(InputFile,"r"))==NULL) 
   { 
        printf("Warning! %s No data available..\n",fin); 
      //getch(); 
      exit(1); 
   } 
   Total_g = 0; 
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   while(! feof(fin)) 
   { 
        fscanf(fin,"%f\t%f\t%f",&Matrix[i][0], &Matrix[i][1], &Matrix[i][2]); 
 
      TimeStart3 = clock(); 
      Matrix[i][3]=Matrix[i][0] * Matrix[i][2] / 2; //reserver the space for g 
      Total_g += Matrix[i][3]; 
 
      TimeEnd3 = clock(); 
      OperationTime += (float(TimeEnd3)-float(TimeStart3)); 
 
 
      for(j=1;j<=ArrayBuffer;j++) 
      { 
        fscanf(fin,"%f",&Matrix[i][j+3]); 
      } 
      i++; 
   } 
   n=i-1; 
 
   fclose(fin); 
} 
 
int isDone() 
{ 
        for(int i=0;i<Length_aG;i++) 
        { //if we cannot cut any of the arrays we already finish ,so the loop 
is done. 
    //if we find one that can be cut then we are not done so we return isDone = 
false which is = 0 
                if(aG[i].CannotCut == 0){return 0;} 
        } 
 
  //if we are here we didnt find an array that can be cutted, so we are done...    
return isDone = true which is = 1 
  return 1; 
} 
 
void VG(CuttedArray *aVG) 
{ 
        double TotalSum; 
        int Cutpoint, wasfound; 
        float DG = getColumnSum(1,*aVG) / 
             getColumnSum(3,*aVG); 
        int i,j,i1; 
        float MaxVG = -10000; 
        int minvalue = n+1; 
        int reference; 
        int change; 
        clock_t TimeStart4, TimeEnd4, TimeStart5, TimeEnd5, TimeStart6, 
TimeEnd6; 
 
        /*******************start debugging*******************/ 
        TimeStart4 = clock(); 
   printf("\nEntering in VG. Elements:\n"); 
        for(i=0;i<aVG->Length;i++){printf(" # %d # ",aVG->Elements[i]);} 
   TimeEnd4 = clock(); 
 
        /*********************end debugging*******************/ 
        PrintDelay += (float(TimeEnd4) - float(TimeStart4)); 
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        for(i=0;i<aVG->Length;i++) 
        { 
        if(minvalue > aVG->Elements[i]) 
      { 
        minvalue = aVG->Elements[i]; 
      } 
        } 
 
        //iterate to get the MaxVG... if MaxVG is positive we can cut...else we 
can't 
 
 
 
 
        Length_OutputArray = 2; 
 
   for(i=0;i<aVG->Length;i++) 
   { 
        OutputArray[0].Length = 0; 
      OutputArray[1].Length = 0; 
 
      change = 1; 
      reference = 0; 
 
      for(i1=0;i1<Nodes[aVG->Elements[i]].PredLength;i1++) 
      { 
        if(Nodes[aVG->Elements[i]].Predecessors[i1] == minvalue ) 
         { 
                change = 0; 
            reference = 1; 
            break; 
         } 
      } 
 
      for(j=0; j<aVG->Length;j++) 
      { 
        for(i1=0; i1 < Nodes[aVG->Elements[i]].PredLength;i1++) 
         { 

      if(Nodes[aVG->Elements[i]].Predecessors[i1] == aVG->Elements[j]) 
            { 

OutputArray[change].Elements[OutputArray[change].Length] = aVG-
>Elements[j]; 

     OutputArray[change].Length++; 
            } 
         } 
      } 
 
      for(i1=0;i1<aVG->Length;i1++) 
      { 
        wasfound = 0; 
         for(j=0;j<OutputArray[change].Length;j++) 
         { 
                if(aVG->Elements[i1]==OutputArray[change].Elements[j]) 
            { 
                wasfound = 1; 
               break; 
            } 
         } 
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         //if the element wasn't found on the aVG array then we writeit on 
OutputArray[1] 
         if(wasfound==0) 
         { 

OutputArray[reference].Elements[OutputArray[reference].Length]= 
aVG->Elements[i1] ; 

             OutputArray[reference].Length++; 
         } 
        } 
 
      TotalSum = 0; 
 
      for(j=0;j<OutputArray[1].Length;j++) 
      { 

TotalSum += (Matrix[OutputArray[1].Elements[j]][1] / DG) - 
Matrix[OutputArray[1].Elements[j]][3]; 

      } 
 
      if(TotalSum > MaxVG) 
      { 
        MaxVG = TotalSum; 
                Cutpoint = aVG->Elements[i]; 
      } 
 
      TimeStart5 = clock(); 
      printf("\nCurrent MaxVg=%f",MaxVG); 
      TimeEnd5 = clock(); 
      PrintDelay += (float(TimeEnd5) - float(TimeStart5)); 
   } 
 
        if(MaxVG > 0) 
        { 
        //cut the array 
      Length_OutputArray = 2; //because we cut it in 2 
      OutputArray[0].Length = 0; 
      OutputArray[1].Length = 0; 
 
      change = 1; 
      reference = 0; 
 
      //cutpoint is the mark of where im going to cut the array, that is where   
MaxVG occured 
      for(i1=0;i1<Nodes[Cutpoint].PredLength;i1++) 
      { 
        if(Nodes[Cutpoint].Predecessors[i1] == minvalue ) 
         { 
                change = 0; 
            reference = 1; 
            break; 
         } 
      } 
 
      for(j=0; j<aVG->Length; j++) 
      { 
        for(i1=0; i1 < Nodes[Cutpoint].PredLength;i1++) 
        { 
         if(Nodes[Cutpoint].Predecessors[i1] == aVG->Elements[j]) 
             { 



76 

 

                        
OutputArray[change].Elements[OutputArray[change].Length] = aVG-
>Elements[j]; 

             OutputArray[change].Length++; 
             } 
        } 
    } 
 
        OutputArray[0].CannotCut = 0; 
 
        for(i=0;i<aVG->Length;i++) 
        { 
         wasfound = 0; 
         for(j=0;j<OutputArray[change].Length;j++) 
         { 
                if(aVG->Elements[i]==OutputArray[change].Elements[j]) 
                { 
               wasfound = 1; 
                break; 
                } 
        } 
 
        if(wasfound==0) //if the element wasnt found on the aVG array then we 
writeit on OutputArray[1] 
        { 

                
OutputArray[reference].Elements[OutputArray[reference].Length]= 
aVG->Elements[i] ; 

             OutputArray[reference].Length++; 
        } 
      } 
 
        TimeStart6 = clock(); 
        printf("\nHubo corte!"); 
        TimeEnd6 = clock(); 
 
        PrintDelay = (float(TimeEnd6)-float(TimeStart6)); 
 
        }else{ 
      //no cut needed 
        Length_OutputArray = 1; 
      OutputArray[0].Length = 0; 
 
      for(i=0;i<aVG->Length;i++) 
      { 
        OutputArray[0].Elements[OutputArray[0].Length] = aVG->Elements[i]; 
         OutputArray[0].Length++; 
      } 
      OutputArray[0].CannotCut = 1; 
      printf("\nNO Hubo corte!"); 
 
   } // end if 
 
// we return OutputArray and Length_OutputArray but they were included in this 
function... 
// as pointer parameters(variables by reference) 
} 
 
float log2(double x) 
{ 
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        return (log10(x) / log10(2)); 
} 
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A.2 Genetic algorithm C++ code 

 
#include <stdlib.h> 
#include <conio.h> 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include <iostream.h> 
 
#define DATAINPUTFILE "Problem_10.txt" // to read on ReadData() function 
#define INSTANCESINPUTFILE "Instances_33.txt" //to read the on Readinstances() 
#define OUTPUTFILE "Output_33.xls" //format: Output_GA_InstanceNumber 
#define NUMBEROFINSTANCES 1 
#define NUMBEROFREPLICATIONS 1 // Number of replications 
#define MAXPOP 515 
#define MAXNODE 10 
#define MAXGENERATIONS 1050 
#define INFINITY 1000000000000.0 
 
//typedef int chromosome[MAXNODE]; 
typedef struct ind{ 
int chrom[MAXNODE]; 
double fitness; 
double totalcost; 
float ProbSelection; 
        }individual; 
 
typedef struct node{ 
int DirectSuccesor;  //succesors[MAXNODE]; 
    }nodes; 
 
nodes Node[MAXNODE]; 
     
float urand(float low, float upper); 
void readinstdata(); 
void readdata(); 
void CreateInitialPopulation(); 
void PrintPopulation(individual Population[], int popStart, int popEnd); 
void crossover_default(individual *child1, individual *child2); 
 
int TL = 1; 
void mutation_fixed(individual *child3); 
void Repairing(individual *child); 
int NumOfNodes; 
int PopSize; 
int NumberOfChildren; 
int ReplicationCounter; 
int InstanceCounter; 
 
void computefitness(individual *ActualIndividual); 
individual tournamentselect(); 
 
float  pcrossover; 
float  pmutation; 
 
float MaxiPop[NUMBEROFINSTANCES+1]; 
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float MaxiNode[NUMBEROFINSTANCES+1]; 
float Probcrossover[NUMBEROFINSTANCES+1]; 
float Probmutation[NUMBEROFINSTANCES+1]; 
int LastChange_GenNumber; 
int CurrentGeneration; 
 
float setupcost[MAXNODE]; 
float demand[MAXNODE]; 
float holdingcost[MAXNODE]; 
float MATRIX[MAXNODE][MAXNODE]; 
float avecheloncost[MAXNODE]; 
float pcycletime; 
float rcycletime[MAXNODE]; 
float OperationTime; 
float PrintDelay; 
float InitialTime; 
float TimeElapsed; 
 
FILE *fin, *finstances, *fout; 
 
individual oldpop[MAXPOP+MAXPOP+MAXPOP]; //initial population (mu) 
individual newpop[MAXPOP]; //population after selection (lambda) 
individual Best, Best_Feasible; // 
 
int main() 
{ 
   clock_t TimeStart1, TimeEnd1, TimeStart2, TimeEnd2; 
   
   InitialTime = 0; 
 
   int i,i1; 
   double besttotalcost; 
   double bestfeasibletotalcost; 
   float randomvalue; 
   int iCurrentRow; //used to format the excel output 
   individual child, child1, child2, child3; 
 
   //randomize(); 
   //srand(21637913); //introduce a seed to replicate the same results 
 
   readinstdata(); // for each instance read MaxiPop, MaxiNode, Probcrossover, 
Probmutation, 
 
   for(InstanceCounter = 1; InstanceCounter <= NUMBEROFINSTANCES; 
InstanceCounter++) 
   { 
      PopSize    = MaxiPop[InstanceCounter]; 
      NumOfNodes = MaxiNode[InstanceCounter]; 
      pcrossover = Probcrossover[InstanceCounter]; 
      pmutation  = Probmutation[InstanceCounter]; 
 
      // open the output file and print instance information 
      fout = fopen(OUTPUTFILE,"a"); 
 
      //row just for formatting 
      if(InstanceCounter == 1) 
      { 
        fprintf(fout,"<table><tr><td style='background:#c0c0c0;font-
size:medium;'>Output file : GA</td></tr></table>\n"); 
      } 
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      //table that holds the whole page 
      fprintf(fout,"<table border=2 cellpadding=0 cellspacing=1 
style='border:2px outset black;'><tr><td>"); 
 
      fprintf(fout,"<table border=1 cellpadding=0 cellspacing=0>"); 
      fprintf(fout,"<tr><td style='text-align:center;font-
size:medium;background:#c0c0c0;;'>"); 
      fprintf(fout,"Instance <b>%d</b> of 
<b>%d</b>",InstanceCounter,NUMBEROFINSTANCES); 
      fprintf(fout,"&nbsp; &nbsp; &nbsp;Pcross=%3f",pcrossover); 
      fprintf(fout,"&nbsp; &nbsp; &nbsp;Pmutation=%3f",pmutation); 
      fprintf(fout,"&nbsp; &nbsp; &nbsp;Max Gen=%d",MAXGENERATIONS); 
      fprintf(fout,"</td></tr>"); 
 
      // 1) Get costs and relationship data 
      readdata(); //demand, setupcost, holdingcost, MATRIX[i][j] showing 
relationship between nodes 
 
      for(ReplicationCounter = 1; ReplicationCounter <= NUMBEROFREPLICATIONS; 
ReplicationCounter++) 
      { 
 
         TimeStart1 = clock(); 
         OperationTime = 0; 
         PrintDelay = 0; 
         TimeElapsed = 0; 
         CurrentGeneration = 0; 
         LastChange_GenNumber = 0; 
 
         Best.totalcost = 0; 
         Best_Feasible.totalcost = 0; 
         Best.fitness = 0; 
         Best_Feasible.fitness = 0; 
 
        //set default of Best 
        for(i=0;i<NumOfNodes;i++) 
        { 
         Best.chrom[i] = 10; 
         Best_Feasible.chrom[i] = 10; 
 
         besttotalcost = double(double(setupcost[i]/(TL*pow(2,Best.chrom[i]))) 
                       + double(avecheloncost[i]*pow(2,Best.chrom[i]))); 
         bestfeasibletotalcost = 
double(double(setupcost[i]/(TL*pow(2,Best_Feasible.chrom[i]))) 
                               + 
double(avecheloncost[i]*pow(2,Best_Feasible.chrom[i]))); 
                        Best.totalcost += besttotalcost; 
         Best_Feasible.totalcost += bestfeasibletotalcost; 
 
         Best.fitness += 1/besttotalcost; 
         Best_Feasible.fitness += 1/bestfeasibletotalcost; 
 
        } 
 
        // 2) Create the initial population. Evaluation is included. 
        CreateInitialPopulation(); 
 
        // Syntax: PrintPopulation(individual Population[], int popStart, int 
popEnd). Debugging. 
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        TimeStart2 = clock(); 
 
        //PrintPopulation(oldpop, 0, PopSize); 
 
        TimeEnd2 = clock(); 
        PrintDelay = (float(TimeEnd2)-float(TimeStart2)); 
 
        //Iterate until terminal condition(s) is(are) reached. 
 
        while(CurrentGeneration < MAXGENERATIONS) 
        { 
          NumberOfChildren = 0; 
 
            // 3) Crossover 
            for(i1=0; i1 < PopSize; i1++) 
            { 
               randomvalue = urand(0,1); 
             if(randomvalue <= pcrossover) 
               { 
                  //syntax: void crossover_default(individual &child1, 
individual &child2) 
                  crossover_default(&child1, &child2); 
                  NumberOfChildren = NumberOfChildren + 1; 
                  oldpop[PopSize+NumberOfChildren]=child1; 
                  Repairing(&oldpop[PopSize+NumberOfChildren]); 
                  computefitness(&oldpop[PopSize+NumberOfChildren]); 
 
                  NumberOfChildren = NumberOfChildren + 1; 
                  oldpop[PopSize+NumberOfChildren]=child2; 
                  Repairing(&oldpop[PopSize+NumberOfChildren]); 
                  computefitness(&oldpop[PopSize+NumberOfChildren]); 
               } 
 
               // 4) Mutation 
               randomvalue = urand(0,1); 
               if(randomvalue <= pmutation) 
               { 
                  //syntax: mutation_default(individual &child3) 
                  mutation_fixed(&child3); 
                  NumberOfChildren = NumberOfChildren + 1; 
                  oldpop[PopSize+NumberOfChildren]=child3; 
                  Repairing(&oldpop[PopSize+NumberOfChildren]); 
                  computefitness(&oldpop[PopSize+NumberOfChildren]); 
               } 
            }//end for i1 
 
            // 5) Select individuals (new population) Tourselect(); 
 
            newpop[0] = Best_Feasible; 
 
            for(i=1;i<PopSize;i++) 
            { 
                newpop[i] = tournamentselect(); 
            } 
 
            for(i=0;i<PopSize;i++) 
            { 
                oldpop[i] = newpop[i]; 
            } 
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            // 6) Display current status on screen 
 
            TimeStart2 = clock(); 
            clrscr(); 
            printf("\nInstance %d of %d",InstanceCounter, NUMBEROFINSTANCES); 
            printf("\nGen %d of %d", CurrentGeneration, MAXGENERATIONS); 
            printf("\nRep %d of %d", ReplicationCounter, NUMBEROFREPLICATIONS); 
            printf("\nPopSize=%d  PCross=%f  PMut=%f",PopSize, pcrossover, 
pmutation); 
            printf("\nLast Gen changed: %d",LastChange_GenNumber); 
            printf("\nBest_Feasible cost= %f", Best_Feasible.totalcost); 
            //printf("\nBest cost= %f", Best.totalcost); 
 
            TimeEnd2 = clock(); 
            PrintDelay = (float(TimeEnd2)-float(TimeStart2)); 
 
            //add generation 
            CurrentGeneration++; 
 
        }//end while 
 
        // 7) Print results to file 
 
        TimeEnd1 = clock(); 
        OperationTime +=(float(TimeEnd1) - float(TimeStart1)); 
 
        //TimeElapsed = (OperationTime + InitialTime - PrintDelay)/ 
CLOCKS_PER_SEC; 
        TimeElapsed = (InitialTime + OperationTime - PrintDelay) / CLK_TCK; 
 
        fprintf(fout,"<tr><td>"); 
        fprintf(fout,"Replication %d of %d", ReplicationCounter, 
NUMBEROFREPLICATIONS); 
        fprintf(fout," &nbsp; &nbsp; Gen=%d",CurrentGeneration); 
        fprintf(fout,"&nbsp; &nbsp; Last Gen changed=%d",LastChange_GenNumber); 
        fprintf(fout,"<Table border=0 cellpadding=2 cellspacing=0>"); 
        fprintf(fout,"<tr><td><b>Total Cost=</b></td><td><b>%2f</b></td>", 
Best_Feasible.totalcost); 
        fprintf(fout,"<td rowspan=2>Chrom = "); 
 
      for(i1=0;i1<NumOfNodes;i1++) 
      { 
        fprintf(fout,"%d &nbsp; ",Best_Feasible.chrom[i1]); 
      } 
 
      fprintf(fout,"</td></tr>"); 
      fprintf(fout,"<tr><td><b>Total 
Time=</b></td><td><b>%6f</b></td></tr></table>", TimeElapsed); 
      fprintf(fout,"</td></tr>"); 
 
   } //end for ReplicationCounter 
 
   //close the table of the replications 
   fprintf(fout,"</table>"); 
 
   //write the summary 
   fprintf(fout,"</td><td><table border=1 cellpadding=0 cellspacing=0 
style='border-style:2px outset #c0c0c0;'>"); 
   fprintf(fout,"<tr><td colspan=2 style='text-align:center;font-
size:medium;background:#c0c0c0;'>Data</td></tr>"); 
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   iCurrentRow = (InstanceCounter-1) * (4 + 3*(NUMBEROFREPLICATIONS-1)) + 4; 
   fprintf(fout,"<tr style='font-
weigth:bold;background:#c0c0c0'><td>Cost</td><td>Time</td></tr>"); 
 
   for(i1=1; i1 <= NUMBEROFREPLICATIONS;i1++) 
   { 
    fprintf(fout,"<tr><td>=B%d</td><td>=B%d</td></tr>", iCurrentRow, 
iCurrentRow+1); 
      iCurrentRow = iCurrentRow + 3; 
   } 
 
   fprintf(fout,"</table>");//closes the data table 
 
   //summary table 
   fprintf(fout,"</td><td><table border=2 cellpadding=0 cellspacing=0 
style='border-style:2px outset #c0c0c0;'>"); 
   fprintf(fout,"<tr><td colspan=5 style='text-align:center;font-
size:medium;background:#c0c0c0;'>Summary for Instance 
%d</td></tr>",InstanceCounter); 
   fprintf(fout,"<tr 
style='background:#c0c0c0;'><td>&nbsp;</td><td>Mean</td><td>Std</td><td>Max</td
><td>Min</td></tr>"); 
 
   iCurrentRow = (InstanceCounter - 1) * (4 + 3*(NUMBEROFREPLICATIONS-1)) + 4; 
   fprintf(fout,"<tr><td style='background:#c0c0c0;'><b>Total 
Cost</td><td>=average(D%d:D%d)</td>", iCurrentRow,  iCurrentRow + 
NUMBEROFREPLICATIONS - 1); 
   fprintf(fout,"<td>=stdev(D%d:D%d)</td>",  iCurrentRow,  iCurrentRow + 
NUMBEROFREPLICATIONS - 1); 
   fprintf(fout,"<td>=max(D%d:D%d)</td>",  iCurrentRow,  iCurrentRow + 
NUMBEROFREPLICATIONS - 1); 
   fprintf(fout,"<td>=Min(D%d:D%d)</td></tr>",  iCurrentRow,  iCurrentRow + 
NUMBEROFREPLICATIONS - 1); 
 
   fprintf(fout,"<tr><td style='background:#c0c0c0;'><b>Total 
Time</td><td>=average(E%d:E%d)</td>",  iCurrentRow,  iCurrentRow + 
NUMBEROFREPLICATIONS - 1); 
   fprintf(fout,"<td>=stdev(E%d:E%d)</td>",  iCurrentRow,  iCurrentRow + 
NUMBEROFREPLICATIONS - 1); 
   fprintf(fout,"<td>=max(E%d:E%d)</td>",  iCurrentRow,  iCurrentRow + 
NUMBEROFREPLICATIONS - 1); 
   fprintf(fout,"<td>=Min(E%d:E%d)</td></tr>",  iCurrentRow,  iCurrentRow + 
NUMBEROFREPLICATIONS - 1); 
   fprintf(fout,"</table>");//closes the summary table 
 
   //close the table that holds the page 
   fprintf(fout,"</td></tr></table>"); 
 
   //close the output file 
   fclose(fout); 
 
   } //end for InstanceCounter 
 
   printf("\n\nDone :D"); 
   getch(); 
} //end main function 
 
/***** FINISH *****************/ 
 
void readinstdata() 
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{ 
   int i=1; 
   if((finstances=fopen(INSTANCESINPUTFILE,"r"))==NULL) 
   { 
      printf("Warning! %s No instances data available..\n",finstances); 
      getch(); 
      exit(1); 
   } 
 
   while(! feof(finstances)) 
   { 
      fscanf(finstances,"%f\t%f\t%f\t%f",&MaxiPop[i], &MaxiNode[i], 
&Probcrossover[i],&Probmutation[i]); 
      i++; 
   } 
 
   fclose(finstances); 
} 
 
 
void readdata() 
{ 
   int i=0; 
   int j; 
   clock_t TimeStart2, TimeEnd2; 
 
   if ((fin=fopen(DATAINPUTFILE,"r"))==NULL) 
   { 
      printf("Warning! %s No input data available..\n",fin); 
      getch(); 
      exit(1); 
   } 
 
   while(! feof(fin)) 
   { 
      fscanf(fin,"%f\t%f\t%f",&demand[i], &setupcost[i], &holdingcost[i]); 
 
      TimeStart2 = clock(); 
 
      avecheloncost[i] = 0.5 * demand[i] * holdingcost[i]; 
 
      TimeEnd2 = clock(); 
 
      InitialTime += (float(TimeEnd2)-float(TimeStart2)); 
 
      for(j=0;j<NumOfNodes;j++) 
      { 
        fscanf(fin,"%f",&MATRIX[i][j]); 
      } 
      i++; 
   } 
 
   fclose(fin); 
 
   //predecesors calculation wa 
 
   TimeStart2= clock(); 
 
   for(i=0;i<NumOfNodes;i++) 
   { 
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        for (j=0;j<NumOfNodes;j++) 
      { 
        if (MATRIX[i][j]>0) 
         { 
            Node[i].DirectSuccesor = j; 
            break; 
         } 
      } 
   } 
 
   Node[0].DirectSuccesor = 0; 
 
   TimeEnd2 = clock(); 
   InitialTime += (float(TimeEnd2)-float(TimeStart2)); 
} 
 
 
void CreateInitialPopulation() 
{ 
   int i,j,end; 
   float Lowk; 
 
   end = (int)(PopSize /2); 
 
   for(j=0;j<end;j++) 
   { 
      for(i=0;i<NumOfNodes;i++) 
      { 
        if (i == 0) 
         { 
          oldpop[j].chrom[i] = urand(0, 5); 
         }else{ 
          Lowk = oldpop[j].chrom[Node[i].DirectSuccesor]; 
            oldpop[j].chrom[i] = (int)(urand(Lowk ,Lowk + 5)); 
         } 
      } 
 
      computefitness(&oldpop[j]); 
 
   } 
 
 for (j=end;j<PopSize;j++) 
   { 
        for(i=0;i<NumOfNodes;i++) 
        { 
                oldpop[j].chrom[i] = urand(0 , 5); 
        } 
        computefitness(&oldpop[j]); 
   }  
} 
 
void PrintPopulation(individual Population[], int popStart, int popEnd) 
{ 
   int i,j; 
   FILE *fout_pop; 
 
   fout_pop=fopen("initpop.html","a"); 
   fprintf(fout_pop,"\n<hr><hr><hr>\n"); //write a separation line 
 
   for(i=popStart;i<popEnd;i++) 
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   { 
      fprintf(fout_pop,"<br>%d) Chrom = ",i); 
      for(j=0;j<NumOfNodes;j++) 
      { 
        fprintf(fout_pop,"%d %s",Population[i].chrom[j],","); 
      } 
      fprintf(fout_pop,"Fitness = %f \n",Population[i].fitness); 
   } 
   fclose(fout_pop); 
} 
 
void computefitness(individual *ActualIndividual) 
{ 
   int i; 
   float po2; 
   double totalcost = 0; 
   double currentcost; 
   double fitness = 0; 
 
   for(i=0;i<NumOfNodes;i++) 
   { 
      po2 = pow(2,ActualIndividual->chrom[i]); 
      pcycletime = TL*po2; 
      currentcost = double(double(setupcost[i]) / pcycletime 
                           + double(avecheloncost[i]) * pcycletime); 
      totalcost += currentcost; 
      fitness += 1 / currentcost; 
   } 
 
   ActualIndividual->totalcost = totalcost; 
   ActualIndividual->fitness = fitness; 
 
   //Best_Feasible 
   if(totalcost < Best_Feasible.totalcost) 
   { 
      for(i=0;i<NumOfNodes;i++) 
      { 
        Best_Feasible.chrom[i] = ActualIndividual->chrom[i]; 
      } 
      Best_Feasible.totalcost = totalcost; 
      Best_Feasible.fitness = fitness; 
 
   //store when was last change of the feasible Best 
   LastChange_GenNumber = CurrentGeneration; 
   } 
} 
 
void crossover_default(individual *child1, individual *child2) 
{ 
   int i, sd, jcross1; 
   individual parent1,parent2; 
 
   sd=(int)urand(0,PopSize); 
   parent1 = oldpop[sd]; 
   parent2 = tournamentselect(); 
 
   jcross1=(int)urand(1,(int)NumOfNodes); 
 
   for (i=0;i<NumOfNodes;i++) 
   { 
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      if(i>=0 && i<jcross1) 
      { 
        child1->chrom[i]=parent2.chrom[i]; 
        child2->chrom[i]=parent1.chrom[i]; 
      }else{ 
        child1->chrom[i]=parent1.chrom[i]; 
        child2->chrom[i]=parent2.chrom[i]; 
      } 
   } 
} 
 
void mutation_fixed(individual *child3) 
{ 
   int i; 
   int Ksubs, Lowsubs; 
   int RandomIndividual = (int)urand(0,PopSize); 
   int cutpoint; 
 
   cutpoint = (int)urand(0,NumOfNodes); 
 
      if(cutpoint == 0) 
      { 
        Ksubs = urand(0 , 2); 
      }else{ 
        Lowsubs = 
oldpop[RandomIndividual].chrom[Node[cutpoint].DirectSuccesor]; 
        Ksubs = (int)urand(Lowsubs, Lowsubs + 2); 
      } 
       
      oldpop[RandomIndividual].chrom[cutpoint] = Ksubs; 
 
   for(i=0;i<NumOfNodes;i++) 
   { 
      child3->chrom[i]= oldpop[RandomIndividual].chrom[i]; 
   } 
} 
 
void Repairing(individual *child) 
{ 
   int i , Low; 
 
   for(i=1;i<NumOfNodes;i++) 
   { 
    if(child->chrom[i]<child->chrom[Node[i].DirectSuccesor]) 
      { 
         Low = child->chrom[Node[i].DirectSuccesor]; 
       child->chrom[i] = urand(Low,Low + 5); 
      } 
   } 
} 
 
individual tournamentselect() 
{ 
   int i,j; 
   individual selected; 
   selected.fitness = INFINITY; 
 
   for(i=0;i<2;i++) 
   { 
      j = (int) urand(0,PopSize); 
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      if(oldpop[j].fitness < selected.fitness) 
      { 
        selected = oldpop[j]; 
      } 
   } 
   return selected; 
} 
 
float urand(float lower, float upper) 
{ 
   float u; 
   u=(float)(lower+(upper-lower)*( (float) rand()/(float) RAND_MAX) ); 
   if (u==lower || u==upper) 
   { 
        u=urand(lower,upper); 
   } 
   return u; 
} 
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APPENDIX B 

 

PROBLEM INSTANCES 

 

B.1.Problem data generator code (Matlab 6.5) 

 

B.2 Example problem 
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B.1 Problem Data Generator code (Matlab 6.5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DATA INPUTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Problem Size 
%ProblemSize = input('Problem Size: '); 
ProblemSize = 5000; 
 
%Demand parameters 
%min_demand = input('Minimum demand parameter: '); 
min_demand = 1; 
 
%max_demand = input('Maximum demand parameter: '); 
max_demand = 200; 
 
%Setup cost parameters 
%min_setup = input('Minimum Setup costs parameter: '); 
min_setup = 5; 
 
%max_setup = input('Maximum Setup costs parameter: '); 
max_setup = 500; 
 
%Holding cost parameters 
%min_holding = input('Minimum Holding costs parameter: '); 
min_holding = 1; 
 
%max_holding = input('Maximum Holding costs parameter: '); 
max_holding = 2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
filename = ['Problem_' num2str(ProblemSize) '.txt']; 
 
demand = min_demand + rand(ProblemSize,1)*(max_demand - min_demand); 
SetupCost = min_setup + rand(ProblemSize,1)*(max_setup - min_setup); 
HoldingCost = min_holding + rand(ProblemSize,1)*(max_holding - min_holding); 
 
% Relationship Matrix 
Matrix = zeros(ProblemSize); 
 
% i represent the row number and j the column number 
p = rand(ProblemSize,1); 
for i=1:ProblemSize 
     Probability = 1/(i-1); 
    for j=1:ProblemSize 
        if j < i                                         
            if  p(i,1) < Probability*j %&& sum(Matrix(i,:),1) == 0   
                Matrix(i,j) = 1; 
                break; %sale del for j 
            end %if    
        end %if 
    end %for j 
    r=i 
end %for i 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%   write to a file %%%%%%%%%%%%%%%%%%%%%%%%%%% 
output = fopen(filename,'w'); 
 
for i=1:ProblemSize 
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    fprintf (output, '%.0f\t %.0f\t %.2f\t', demand(i,1), SetupCost(i,1), 
HoldingCost(i,1));  
     
    for j=1:ProblemSize 
        if j < ProblemSize 
            fprintf (output, '%.0f\t' , Matrix(i,j));         
        elseif i == ProblemSize 
            fprintf (output, '%.0f' , Matrix(i,j));  
        else 
            fprintf (output, '%.0f\n' , Matrix(i,j));      
        end     
    end 
end 
 
fclose (output); 
disp('Fin del proceso') 
 
 
 

B.2. Example Problem 
Problem Size: 10 
 
Demand  Setup cost Holding cost 
 
176   360   1.13  
168   411   1.15  
133   285   1.78  
46   233   1.13  
118   420   1.23  
110   224   1.18  
62   249   1.91  
136   432   1.51  
2   36   1.50  
9   89   1.75  
 
 
Relationship Matrix 
 
0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
 
 

It is not possible to show the data of problem examples with 1005 and 2000 nodes, 
because of the limitations on space, but they can be generated using the problem data 
generator code shown in Appendix B1. 
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APPENDIX C 

 

RESIDUALS ANALYSIS 

 

C.1 Residuals analysis for cost response in the GA parameters experiment  

 

C.2 Residuals analysis for time response in the GA parameters experiment 
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C.1 Residuals analysis for cost response in the GA parameters experiment  

To verify randomness is presented a plot of residuals versus the order of the data 

in Figures C.1. It does not show a tendency in the data, considering that this condition is 

satisfied. 
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Figure C.1 Residuals plot for cost versus the order of the data 

 

Another assumption is the equal variance. Only the most important factors 

considered in the regression model are included.   
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Figure C.2 Mean and 95 percent intervals plot for cost versus generations 
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Figure C.3 Mean and 95 percent intervals plot for cost versus problem size 
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C.2 Residuals analysis for time response in the GA parameters experiment 

 

 The same analysis done for cost response is shown for time response.  
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Figure C.4 Residuals plot for time versus the order of the data 

 

Means and 95.0 Percent LSD Intervals

Crossover

Ti
m

e

0.5 0.75 1
-20

180

380

580

780

980

 

Figure C.5 Mean and 95 percent intervals plot for time versus crossover 
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Figure C.6 Mean and 95 percent intervals plot for time versus generations 
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Figure C.7 Mean and 95 percent intervals plot for cost versus mutation 
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Figure C.8 Mean and 95 percent intervals plot for time versus the problem size 

 


