

GENETIC ALGORITHM APPROACH FOR REORDER CYCLE TIME
DETERMINATION IN MULTI-STAGE SYSTEMS

by

Heidi Lízabeth Romero Encarnación

A thesis submitted in partial fulfillment
of the requirements for a degree of

MASTER IN SCIENCE

in
Industrial Engineering

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS
2003

Approved by:

________________________________ ________________
Sonia M. Bartolomei Suárez, Ph.D. Date
Member, Graduate Committee

________________________________ ________________
William Hernández Rivera, Ph.D. Date
Member, Graduate Committee

________________________________ ________________
Viviana I. Cesaní Vázquez, Ph.D. Date
President, Graduate Committee

________________________________ ________________
Miguel A. Seguí Figueroa, L.L.M. Date
Representative of Graduate Studies

________________________________ ________________
Agustín Rullán Toro, Ph.D. Date
Chairperson of the Department

ii

ABSTRACT

The objective of this research is to provide a genetic algorithm to determine

the reorder cycle time for multi-stage serial and assembly systems. Demand for end

item is assumed to occur at a constant and continuous rate. Production is

instantaneous and no backorders are allowed. Both setup and echelon holding costs

are charged at each stage. The attention is on nested and stationary policies.

Furthermore, the reorder interval for each echelon is restricted to be not only integer,

but also a power of two times a base planning period. The performance of the genetic

algorithm is evaluated in comparison with an optimal approach proposed by Maxwell

and Muckstadt (1985), obtaining solutions from zero to five percent from the

optimum for small problems. Experimentation is conducted to determine the genetic

algorithm parameters and in addition to evaluate the robustness of the proposed

methodology.

iii

RESUMEN

El objetivo de esta investigación es proveer un algoritmo que calcule el

tiempo de reordenar productos en un sistema de múltiples etapas con estructura serial

y de ensamblaje. La demanda del producto final es constante y continua. La

producción es instantánea y no se permiten órdenes atrasadas. Los costos de ordenar y

de mantener en inventario se cargan a cada etapa. El enfoque es en políticas

jerárquicas y estáticas. Además, el tiempo de reordenar tiene la restricción de ser

entero y la potencia de dos de un periodo base de planificación. El algoritmo genético

es evaluado en comparación con la solución óptima desarrollada por Maxwell y

Muckstadt (1985), obteniendo soluciones de cero a cinco por ciento por encima de la

solución óptima para problemas pequeños. Se realizaron experimentos para

determinar los valores óptimos de los parámetros del algoritmo genético y en adición

para evaluar cuan robusta es la metodología propuesta.

iv

DEDICATORY

This thesis is dedicated to my parents Marítza and José, to my sister and

brother Annie-Belle and José Francisco, and my dear nephew José Javier. A special

dedication to my fiancé Anthony

v

ACKNOWLEDGEMENTS

I am greatly indebted to my advisor professor Viviana Cesaní for her guidance

and constant support during the investigation. I wish to thank the members of my

committee Professors Sonia Bartolomei and William Hernández for valuable

discussions. I am also indebted to professor M. Fatih Tasgetiren who contributed with

the idea of the investigation focus and chromosome representation. Thanks to Zuriel

Correa for his disinterested support in learning me C++ programming language.

I appreciated the support offered by the University of Puerto Rico for the

opportunity to obtain the master degree and the Industrial Engineering Department

for their financial support.

 Thanks God for all the blessings received. Several people have been very

helpful to me during the last three years. In particular I wish to thank my new family

in Agüadilla, family Rodríguez Michel: Rosa Luz, Francisco, Rosita, Francisco

Alberto, Tito, Sairi and Victoria Isabel, thanks for been tremendously supportive, for

Rivera’s family, and all their friends who always treat me as part of their family. An

special thank to Dr. Andrés Calderón and his wife Rosa.

My profound thanks for my friends: Darwin, Betty, Carolina, Atilio, Amelia,

Omar, Julián, Alejandro, Marlene, Jeannette, Jamell, Martha, Dennys, Zuriel,

Giannina, Juan Guillermo, Catherine, Alexis, Yaleidi, Janet, Carlos Andrés, Karina,

André, Geovannie, Paola, Maria, Jesús, and all who share special moments during

these years.

vi

TABLE OF CONTENTS

TABLE OF CONTENTS... VI

LIST OF TABLES ...VIII

LIST OF FIGURES.. IX

LIST OF APPENDIXES.. XI

LIST OF APPENDIXES.. XI

CHAPTER I .. 1

INTRODUCTION .. 1

1. 1. Justification... 1

1.2. Purpose of the study... 4

1.3 Scope ... 5

CHAPTER II... 8

LITERATURE REVIEW ... 8

2.1. Introduction.. 8

2.2. Lot Sizing Problems ... 8

2.3. Reorder Cycle Time Problems ... 16

2.4. Genetic Algorithm Models ... 23

2.5. Conclusions.. 25

CHAPTER III ... 27

METHODOLOGY ... 27

3.1. Introduction.. 27

3.2. Problem Definition... 28

3.3. Maxwell and Muckstadt Approach .. 28

3.4. Genetic Algorithm Approach ... 32

3.5. Experimental Design.. 41

vii

3.7. Conclusions.. 44

CHAPTER IV.. 46

EXPERIMENTAL ANALYSIS ... 46

4.1. GA parameters results ... 46

4.2. GA robustness experiment results.. 55

4.3. Conclusions.. 58

CHAPTER V ... 60

CONCLUSIONS AND DISCUSSIONS .. 60

5.1. Conclusions.. 60

REFERENCES ... 63

viii

LIST OF TABLES

Table 4.1 Summary GA results for parameters set up .. 47

Table 4.2 Multiple regression analysis for cost .. 48

Table 4.3 Analysis of variance for cost .. 48

Table 4.4 Multiple regression analysis for cost with significant factors 50

Table 4.5 Analysis of variance for cost with significant factors................................. 50

Table 4.6 Multiple regression analysis for time.. 51

Table 4.7 Analysis of variance for time.. 51

Table 4.8 Multiple regression analysis for time with significant factors.................... 52

Table 4.9 Analysis of variance for time with significant factors................................ 53

Table 4.10 Optimization spreadsheet parameters ... 54

Table 4.11 Summary comparison of ga and maxwell and muckstadt 54

Table 4.12 Summary ga results for robustness design.. 56

ix

LIST OF FIGURES

Figure 1.1 Multi-stage serial and assembly structures.. 5

Figure 2.1 Cycle inventory level over time .. 9

Figure 3.1 General ga procedure... 33

Figure 3.2 Chromosome representation.. 34

Figure 3.3 One point mutation.. 36

Figure 3.4. Two point crossover ... 36

Figure 3.5 Example problem structure.. 38

Figure 3.6 First generation of problem example using ga .. 39

Figure 3.7 Solution to problem example... 40

Figure 3.8 Example problem solution using ga .. 41

Figure 4.1 Main effects plots for cost ... 57

Figure 4.2 Normal probability plot of the residuals for robustness experiment 57

Figure C.1 Residuals plot for cost versus the order of the data 93

Figure C.2 Mean and 95 percent intervals plot for cost versus generations 94

Figure C.3 Mean and 95 percent intervals plot for cost versus problem size............. 94

Figure C.4 Residuals plot for time versus the order of the data 95

Figure C.5 Mean and 95 percent intervals plot for time versus crossover 95

x

Figure C.6 Mean and 95 percent intervals plot for time versus generations 96

Figure C.7 Mean and 95 percent intervals plot for cost versus mutation 96

Figure C.8 Mean and 95 percent intervals plot for time versus the problem size 97

xi

LIST OF APPENDIXES

ALGORITHMS CODES .. 67

A.1 Maxwell and Muckstadt (1985) C ++ code ... 67

A.2 Genetic algorithm C++ code ... 67

PROBLEM INSTANCES... 89

B.1.Problem data generator code (Matlab 6.5).. 89

B.2 Example problem.. 89

RESIDUALS ANALYSIS.. 92

C.1 Residuals analysis for cost response in the GA parameters experiment...... 92

C.2 Residuals analysis for time response in the GA parameters experiment 92

 1

CHAPTER I

INTRODUCTION

1. 1. Justification

An accelerating trend toward globalization marked the latter half of the

twentieth century and the beginning of the present one. It is common to see a

company design, produce and distribute products through a global network to provide

the best customer service at the lowest price. Coordination throughout the entire

logistical system must be planned and managed, because of the impact in costs that it

represents to the companies and their opportunity to compete in today’s global

market. The supply chain management is defined by the Council of Logistic

Management as:

“The process of planning, implementing and controlling the efficient, cost

effective flow and storage of materials, in-process inventory, finished good, and

related information from point-of-origin to point-of-consumption for the purpose of

conforming to customers requirements”.

A central issue in the supply chain performance is the inventory management.

Inventories are present at every stage of the supply chain as raw materials to finished

goods. The inventory acts as a buffer against any uncertainty, but holding inventory is

costly and runs the risk of product deterioration and obsolescence. The focus of

inventory problems traditionally has been on lot size determination. Supply occurs in

discrete batches or lots and items proceeds through a sequence of stages. The issue of

the lot sizing is to determine how large these lots should be trying to find the best

2

balance between fixed costs and inventory holding costs. Ford Harris in 1915

introduced the classic Economic Lot Size Model which serves as reference for many

other research studies.

Therefore, the lot sizing problem can be formulated as the problem of

determining the reorder interval time, because of a functional relationship between

the lot size and the manufacturing cycle time. Due to the fact that this problem is

continuous and that the reorder optimal interval can take any positive real value, is

often impractical to implement it. This is referred to a discrete problem imposing the

restriction that the reorder interval can take only positive integer values.

Maxwell and Muckstadt (1985) explain the advantages of formulating the

problem in terms of reorder intervals rather than in terms of lot sizes. They establish

three principal reasons for this: (1) the experience that production planning is more

naturally centered around the frequency of production because it dictates the numbers

of set-ups, the requests for tooling and fixtures, and the demands on the material

handling system, (2) the mathematical representation of the model is simplified, and

(3) from a scheduling point of view it is often practical to keep reorder intervals

constant in the face of minor changes to demand forecasts and to adjust lot sizes

accordingly.

 A special case is given by considering the discrete problem with the power-of-

two restrictions in which the reorder interval is constraint to be not only integer, but

also a power of two. The power-of-two policy was developed by Roundy (1985). It

considers the problem of determining the reorder interval instead of the reorder

3

quantity and has the advantage of an easy implementation, even if the system is very

complex and it is known that the cost of the optimal solution for the discrete problem

using the power-of-two solution of a continuous problem is within about 6% of the

cost of the optimal solution of the continuous problem without those restrictions.

Implementing power of two policies makes production scheduling easier, and ensures

that production cycles regenerate as frequently as possible, so that inventory

imbalances that in practice can be easily corrected.

Although considerable research has been devoted to traditional methods of

search, optimization using such methods is not that efficient, particularly in finding a

solution for very complex search space. Furthermore, significant less attention has

been paid to stochastic search and optimization techniques like genetic algorithms.

Khouja, Michalewicz and Wilmot (1998) presented a genetic algorithm for solving the

Economic Lot Size Scheduling Problem finding better solutions than the iterative

dynamic programming approach. Genetic algorithms have been employed to solve

optimization problems across all disciplines and interests, obtaining global optimal or

near optimal solutions in complex search spaces. Their simplicity permits their use to

solve difficult problems, showing an important reduction in the computational time. It

would thus be of interest to learn how genetic algorithms work for the reorder cycle

time problem with the power of two restrictions.

The aim of this research is to present a genetic algorithm to find a solution to

the problem of determining the reorder cycle time that minimizes the total cost in

multi-stage serial and assembly systems. It provides a solution in costs at least eight

4

percent above optimum for small problems with a computational time of no more

than four seconds, for large problems (2000 nodes) the solution obtained is from 6 to

29 percent above optimum, tested in different problem instances. The cost function is

composed by the fixed ordering cost and the holding cost. It is assumed that the cycle

length satisfy the power of two restrictions to take the advantages of the policy

already explained and the computational advantages of the genetic algorithms.

1.2. Purpose of the study

The principal objective of this research is to find a solution to the problem of

determining the reorder cycle time in multi-stage serial and assembly systems using a

genetic algorithm approach, satisfying the power of two restrictions. Some other

secondary objectives are:

• To determine the effectiveness of the GA approach, comparing the

results obtained using the proposed algorithm with the Maxwell and

Muckstadt (1985) methodology. The effectiveness of a policy is 100%

times the ratio of the minimum of the average cost over all policies to

the average cost of the policy in question.

• To determine the efficiency of the genetic algorithm approach,

considering that one of the advantages from using this approach is to

reduce the computational time while obtaining a good near optimal

solution.

5

• To determine the robustness of the methodology using design of

experiments. The factors considered included: problem size, setup or

ordering costs, and holding costs.

1.3 Scope

The genetic algorithm developed is based on the assumption of a multi-stage

serial and assembly systems. A stage might consist of an operation such as

procurement of raw materials, fabrication of parts or assembly. The serial structure is

the simplest type of multi-stage structures in which materials enter the first (1) stage

and progressively pass through a sequence of stages until final product exits at the last

(5) stage (Figure 1.a). In the assembly structure each operation has a unique

successor, but may have several predecessors stages (Figure 1.b). The serial structure

is considered as a special case of the assembly, having each stage just one

predecessor.

Figure 1.1 Multi-Stage Serial and Assembly Structures

5

4 3 2 1
(a) Serial structure

4

7

6

3

1

5

2

5

4 3 2 15

4 3 2 1

4

7

6

3

1

5

24

7

6

3

1

5

2

(b) Assembly structure

6

The structure of the systems is limited to those that could be represented by an

acyclic directed graph. Each node in the graph represents manufacturing, assembly or

distribution operations, and the arcs indicate the flow of materials, components,

subassemblies, assemblies, or finished product from one stage or operation to the

next. This research do not intend to show the interaction between the reorder cycle

time and the principal factors that could affect it at each stage. This could be

considered as one of the proposed future research studies in this area.

Demand for each end item is assumed to occur at a constant and continuous

rate, and is given for a planning horizon of n periods. Production is instantaneous and

no backorders are allowed and unconstraint capacity at each node is assumed. The

cost function is composed by the fixed setup cost and the holding cost. Fixed setup

costs and echelon holding costs are changed at each stage.

It is assumed that the cycle length should satisfy the power of two restrictions,

which applies zero inventory ordering and stationary-nested policies. The zero

inventory ordering occurs when each facility orders only when its inventory is zero. A

stationary policy is one in which each facility uses a fixed order quantity and a fixed

interval time between successive orders. In a nested policy each facility orders every

time any of its suppliers orders.

The organization of the document is as follows. Chapter II describes a review

of the most important contributions in lot sizing problems for single and multi-stage

models, for reorder cycle time models, including some approaches with the power of

two restrictions, and the application of genetic algorithms in lot sizing problems. In

7

Chapter III, the two-phase algorithm proposed by the Maxwell and Muckstadt (1985)

is presented and the genetic algorithm approach is described in detail. At the end of

this chapter, two experiments are proposed, one for the determination of the optimal

parameters for the genetic algorithm and one to measure the robustness of the

methodology proposed. The experimental analysis is shown in Chapter IV. Finally,

Chapter V briefly summarizes the conclusions and some recommendations for future

works.

 8

CHAPTER II

LITERATURE REVIEW

2.1. Introduction

Inventory problems have been studied for many years. This review describes

some of the most important contributions in this field. It includes methods used to solve

single and multi-stage lot sizing problems. For multi-stage systems, some models are

shown that deal with special cases like capacity constraint and joined setup costs. Finally,

it is presented some genetic algorithms applications that can be considered as previous

work in lot sizing problems.

2.2. Lot Sizing Problems

2.1.1. Single Stage Models

 For many years the main focus of the inventory theory has been in the lot size

determination. Many authors try to solve the single stage problem. The classic Economic

Lot Size Model, introduced by Ford Harris in 1915, is a very basic model that considered

a warehouse facing constant demand for a single item. It assumes constant fixed cost,

instantaneous batch delivery following a deterministic lead time, all replenishment orders

are for the same quantity and no shortages are allowed. The total cost per time TC (Q), is

composed by ordering cost, product purchase cost and inventory holding cost.

9

toldinginventoryhtpurchasedtorderingQTC coscoscos)(++=

2
)(hQCD

Q
ADQTC ++= (Equation 2.1)

 Based on the cycle inventory level over time, shown in Figure2.1, the inventory

level decreased constantly from the order quantity size (Q) to zero each cycle, and

averages Q/2. The process repeats each time Q units are sold (every T=Q/D), integrating

over this cycle length it can be found the average inventory, Ī.

Q

In
ve

nt
or

y

T=D/Q 2T
Time

Q

In
ve

nt
or

y

T=D/Q 2T
Time

Figure 2.1 Cycle inventory level over time

 ()
222

1 22/

0

/
0

2 Q
D

Q
D

Q
Q
DDtQt

Q
DdttDQ

D
Q

I
DQ

DQ =







−=








−=−= ∫

−

 (Equation 2.2)

 To find the optimal order quantity it is necessary to differentiate Equation 2.1

with respect to Q and set the results to zero. These yields:

10

 0
2

)(
2 =+

−
=

h
Q
AD

dQ
QdTC (Equation 2.3)

h
ADQ 2* = (Equation 2.4)

 Another important issue in the EOQ model is the definition of the total cost for

the optimal quantity (Q*). In this case, ordering and holding costs are equal, so:

22*
ADh

h
AD

AD
Q
AD

== (Equation 2.5)

 Inventory holding cost per period is

22

2

2
* ADhh

ADhhQ
== (Equation 2.6)

 The total cost using the optimum lot size quantity is determined in Equation 2.8:

CDADhCDADhADhCDADhQTC +=+=++= 2
2

2
22

*)((Equation 2.7)

CDADhQTC += 2*)((Equation 2.8)

 All this description has been provided to describe the relationship between the

order quantity and the reorder cycle time both assumes to be constant. The Economic

Order Quantity is used as reference point in a lot of methods proposed later.

 Veinott (1967) showed that a broad class of problems (including deterministic

single and multi-facility economic lot size) can be formulated as minimizing a concave

11

function over the solution set of Leontief substitution system. To understand what does

this means it is necessary to introduce some concepts. A matrix A is called Leontief if it

has exactly one positive element in each column and there is a nonnegative (column)

vector x for which Ax is positive. The linear program for finding a (column) vector

x = (xj), called optimal, is given by:

 Objective function:

Minimizes cx

 Subject to: Ax = b, x≥0, (Equation 2.9)

 If A is Leontief, and b≥0, Equation 2.4 is a Leontief substitution system and has

X (b) ∩ S as it solution set. S is the set of programs x for which xixj = 0 for all pairs (i,j)

in a specified set. In applications it is often appropriate to impose additional restrictions

of the form xixj = 0, for example in production problems if it is possible to produce only

one product in each period.

 Leontief substitution systems seem to provide a natural setting for studying

inventory models with concave costs. Their applications are on single and multi-facility

lot size problem, lot-size-smoothing and warehousing models. Their algorithms required

a computational effort that increases algebraically with the size of the problem instead of

exponentially.

2.1.2. Multi-stage Models

 Multi-echelon inventory systems can be used to optimize the deployment of

inventory in a supply chain. Multi-stage manufacturing situations (raw materials,

components, subassemblies, assemblies) are conceptually very similar to multi-echelon

12

inventory systems. Multi-echelon models examine the entire system, searching better

solutions for the entire chain, not each stage independently. This coordination has the

advantage of given better global solutions. In the multi-stage systems there have been a

lot of contributions in serial, assembly, distribution, general and some special structures.

The serial and assembly structures were explain in section 1.3. In the distribution

structure each production stage has at most one predecessor stage but may have several

successors. The tree structure combines the features of an assembly and distribution

structure. Finally, the general structure shows a different relation between stages and is

very common when multiple products share some of the same components. Each stage

can have multiple successors and predecessors.

Clark and Scarf (1960) introduced the echelon stock concept which permits some

very convenient mathematical simplifications. They define the echelon stock of echelon j

(in general multi-echelon system) as the number of units in the system that are at, or have

passed through, echelon j but have as yet not been specifically committed to outside

customers. They considered the problem of determining optimal purchasing quantities in

a multi-stage serial and distribution models. Echelon j stock may often be considered to

be the facility j value-added inventory. The Clark-Scarf model allows stochastic demand

and convex holding costs, but setup costs are assumed to be associated with no more than

two facilities.

 Crowston, Wagner and Henshaw (1972) made a comparison of exact and

heuristics routines for lot size determination in multi-stage assembly systems. They

concluded that economic lot sizes in multi-stage assembly systems can be determined by

13

dynamic programming for problems of moderate size, while heuristic search routines

appear to be promising for large problems. Using these results Crowston, Wagner and

Williams (1973) present a model for multi-stage assembly systems to compute a set of

optimal lot sizes so that the lot size at each facility is a positive integer multiple of the lot

size at its successor facility. It is important to mention that they considered the serial

system as a special case of the assembly system. Their model assumes constant

continuous final demand, instantaneous production at each stage and infinite planning

horizon.

A few years later, Williams (1982) proved that the well known theorem by

Crowston, Wagner and Williams (1973) shows to be defective. The theorem establishes

that an optimal solution to the batch size determination problem for multi-echelon

production/inventory assembly structures is characterized by a set of lot sizes, such that

the lot size at each stage must be an integer multiple of the lot size at its successor stage.

The theorem proved to be defective at the point that results were extended from two level

systems to more general assembly systems.

Schwarz (1973) deals with a one-warehouse n-retailer deterministic inventory

system with known demands. As a conclusion, he shows that the form of the optimal

policy can be very complex for more than four retailers and he argues for restricting

attention to a simpler class of strategies (where each location’s order quantity does not

change with time) and develops an effective heuristic for finding good solutions.

Schwarz and Schrage (1975) make use of the myopic strategy. Myopic policies

optimize a given objective function with respect to any two stages and ignore multi-stage

14

interaction effects. Optimal and near optimal policies were proposed for multi-echelon

production/inventory assembly systems under continuous review with constant demand

over and infinite planning horizon. Schwarz and Schrage model was widely used as a

standard among the multi-stage production/inventory models.

Szendrovits (1981) presented a comment on the optimality in Schwarz and

Schrage model, considering that their restrictions could be helpful to facilitate analytical

tractability, but do not necessarily lead to optimal inventory policies as claimed by the

authors. Szendrovits showed that a lower cost solution could be obtained in sample

problems when the integrality constraint was violated. The example provided a lower

cost solution by permitting two lots at a given stage to provide the total input for the three

lots at its successor stages. Hence, it is not well established in the literature that the

theorem does not characterize optimality for the case of finite production rate.

Later, Blackburn and Millen (1985) proposed simple cost modifications to

improve the global optimality of the Schwarz and Schrage procedure. The effectiveness

of these alternative modifications was tested through a series of simulation experiments.

A new formulation of the lot sizing problem in multi-stage assembly systems

which leads to an effective optimization algorithm was proposed by Afentakis, Gavish

and Karmarkar (1984). The problem was reformulated in terms of echelon stock which

simplifies it decomposition by a Lagrangean relaxation method. A Branch and Bound

algorithm which uses the bounds obtained by the relaxation was developed and tested.

A significant amount of work in this area has focus on evaluating the performance

of the proposed techniques. Blackburn and Millen (1985) examined seven different

15

heuristic algorithms, six combination of methods and four cost modification procedures.

A series of simulation experiments was conducted and it was concluded that the

combination methods when used with some of the cost modifications result in enhanced

performance in comparison to other sequential approaches. Axsäter (1986) analyzed the

applicability in practice of some standard lot sizing problems and the way in which some

adjustments can be considered. Assumptions in lot sizing models and the extent to which

these assumptions are valid in practical situations are discussed.

 A branch-and-bound based algorithm for optimal lot sizing of products with a

complex product structure was proposed by Afentakis and Gavish (1986). It assumed

unconstraint production facilities and suggested that the formulation of the lot sizing

problem in terms of its echelon stock, and the use of Lagrangean relaxation, seems to

yield efficient algorithms. Afentakis (1987) developed an improved heuristic method for

the dynamic lot-sizing problem in multi-stage production systems. This is a

generalization of the single stage Wagner-Within algorithm, and attempts to optimize

over all stages simultaneously, while building the production plans in a forward manner.

 Billington, Blackburn, Maes, Millen, and Wassenhove (1994) examined the

performance of heuristics found effective for the capacitated multiple-product, single

stage problem in multi-stage settings. This study is one of the most comprehensive in

terms of the number of methods examined and the conditions under which they were

examined. The single-stage heuristics included in the study are: Dixon/Silver (1981),

Lambrecht and Vanderveken (1979), the Dogramaci, Panayiotopoulos and Adam (1981),

and different versions of the ABC heuristics of Maes and Van Wassenhove (1986). These

16

heuristics are altered in two ways: (1) they allow the inclusion of the cost modification

procedures developed by Blackburn and Millen, and (2) the feasibility routines have been

modified to work in multi-stage environments. Both modifications attempt to coordinate

decisions made across stages concerning lot sizes.

2.3. Reorder Cycle Time Problems

 Based on the traditional Economic Order Quantity model showed before, the time

between two consecutive orders, called reorder interval, is constant and proportional to

the order quantity. The lot sizing problem can be formulated as the determination of the

reorder cycle interval. Based on Equation 2.4 and T=Q/D, and ignoring the production

cost (because it won’t affect for the comparison), the optimum reorder interval can be

derived as

hD
A

hD
AD

D
h
AD

D
QT 22

2
** 2 ==== (Equation 2.10)

hD
AT 2* = (Equation 2.11)

The total cost based on the lead time can be derived based on Equation 2.1

22
)(hTD

T
AhTD

TD
ADTTC +=+= (Equation 2.12)

2
)(hTD

T
ATTC += (Equation 2.13)

 The total cost for the optimum reorder interval is given by

17

2
2

22
2

222
*

*
)*(hDAhDAhDA

hD
AhD

hD
A

ADhT
T
ATTC =+=+=+=

(Equation 2.14)

hDATTC 2)*(= (Equation 2.15)

The multi-stage lot sizing problem can be formulated as follow

∑
=

+
i

j
ii

i

i Tg
T
A

Minimize
1

Subject to:

Ti ≥ Ti-1 Nested ness constraints (Equation 2.16)

As mentioned before, this problem is continuous and the reorder optimal interval

can take any positive real value. However, their solution presents some difficulties. This

is the reason to solve it as a discrete problem, imposing the restriction that the reorder

interval can take only positive integer values.

There are several reasons to formulate the lot sizing model in terms of reorder

intervals as described in the justification part (section 1.1). A lot of authors have been

developing new techniques to solve the problem in terms of this point of view; some of

the most important are mentioned here.

18

 Elmaghraby (1978) analyzed the economic lot scheduling problem (ELSP), which

arises from the desire to accommodate the cyclical production pattern when several

products are made on a single facility. This work reviews the contributions to the

problem, and extends the analysis in four directions: (1) offers an improved analytical

approach based on dynamic programming. It tries to guarantee feasibility at the outset, by

imposing some constraints on the cycle times, then to optimize the individual cycle

duration subject to the imposed constraint. The solution obtained in this manner is

feasible and optimal over its set of solutions; (2) a test of feasibility of a given set of

parameters, through an integer linear programming formulation; (3) a systematic

procedure for escape from infeasibility, when the set of parameters were judge infeasible;

and (4) a procedure for the determination of a basic period for a given set of multipliers

to achieve a feasible schedule.

Szendrovits (1975) presented the functional relationship between the production

lot size, the manufacturing cycle time and the average process inventory in a production

system, and illustrated the resulting effect on the conventional Economic Lot Quantity

model. He treats the manufacturing cycle time as a function of the lot size in a multi-

stage production system. This model was called the economic production quantity (EPQ).

This study challenges the widely accepted doctrine of the efficiency of long production

runs.

Roundy (1985) introduced two simple policies called q-optimal integer-ratio and

optimal power-of-two, which are proved to be 94% and 98% effective. The effectiveness

of a policy is 100% times the ratio of the minimum of the average cost over all policies to

19

the average cost of the policy in question. Both policies are very efficient and their most

important advantage is the flexibility it allows in choosing the order intervals to

correspond to easily-implemented time periods.

The power-of-two policy is a special case of the discrete problem for determining

the reorder cycle time, in which the reorder interval is constraint to be not only integer,

but also a multiple of two. It allows us to obtain an extremely efficient algorithm which

produces a policy having an average cost within 2% of the minimum possible. Mitchell

(1987) extended Roundy’s results for the backlogging problem, obtaining a 98% effective

policy for the backlogging problem in O (N log N) time.

Maxwell and Muckstadt (1985) presented an algorithm that can be used to find

consistent and realistic reorder intervals for each item in large-scale production-

distribution systems. Attention was restricted to policies that are nested, stationary, and a

power-of-two multiple of a base planning period. The model that results from the

assumptions is an integer nonlinear programming problem. It was showed that the

solution to this problem is similar to that of the economic lot size problem with a

modified echelon holding cost for an operation, to reflect the precedence constraints of

the production-distribution system.

Roundy (1986) studied a multi-product multi-stage production inventory system

in continuous time. In process and finished goods were referred to as products and

inventories of a single item held at different locations were treated as different products.

External demand can occur for any or all of the products at a constant, product-dependent

rate. In the new policy defined by Roundy each product uses a stationary interval of time

20

between successive orders, and the ratio of the order intervals of any two products is an

integer power of two. The effectiveness of an optimal power-of-two policy is at least

98%. The algorithm is efficient for very large systems.

Askin and Goldberg (2002) shows the demonstration of the statement that says

that the total cost using the power-of-two policy cannot be increased by more than 6%

above the optimum. They suppose that a non optimal cycle time T = α T* is used.

Showing the ratio of the true optimal objective value to the objective value under the non

optimal cycle time:

22
2

*
*

*)(
)(1 αα

α
α +

=
+

=
−

AhD

DTh
T
A

TTC
TTC (Equation 2.17)

Restricting the cycle length of a product to L
K

i TT i2= for some non-negative

integer ki=0,1,2,3,…, considering that TL is defined as a convenient cycle length that may

be a day, week or some other natural period, it is necessary to ensure that T* ≥ TL.

Because the cost function TC(T) is convex in T, it was chosen the smallest k satisfying

TC(L
K T12 +) ≥ TC(L

K Ti2) as the optimal power-of-two policy. Combining these results

with Equation 10, then

() ()1
22

1
11

−− +≥+ αααα , (Equation 2.18)

*
2 1

1 T
TL

K+

=α and
*

2
2 T

TL
K

=α (Equation 2.17 and 2.19)

Substituting and rearranging terms,

21









+≥








+ +

+

L
K

L
K

L
K

L
K

T
T

T
T

T
T

T
T

2
*

*
2

2
*

*
2

1

1

(Equation 2.20)

()
L

K
L

Kk

T
T

T
T

1

1

2
*

*
22

+

+

≥
− (Equation 2.21)

2
*2 TTL

k ≥ Lower bound (Equation 2.22)

 Using the same procedure

*22 TTL
k ≤ Upper bound (Equation 2.23)

 Combining equations 2.22 and 2.23, *22
2
* TTT

L
k ≤≤ for the optimal power-

of-two choice of k. Finally, the
*)(
)(

TTC
TTC relation tells us that

06.1
*)(

)
2
*(

*)(
*)2(

==
TTC

TTC

TTC
TTC (Equation 2.24)

Then it is proved that using the power-of-two restrictions ensures at most 6%

from the optimal cost solution.

Jackson, Maxwell and Muckstadt (1988) had reviewed the Maxwell and

Muckstadt (1985) model, proving a useful invariance property of the optimal partition of

such systems, and used these results as the basis for algorithms to solve a capacitated

version of the Maxwell-Muckstadt model. They suggest that the algorithm perform well

in cases characterized by many operations per work center, however this reasoning was

22

based on limited argument and experience with practical examples. This approach can be

effectively used to establish reorder intervals in many industrial environments.

The power-of-two policy has been extended to solve more complex problems,

showing that it maintains it effectiveness. One of the major complications in managing

multi-item inventory systems stems from the fact that various components, in particular,

setup costs, are often jointly incurred between several distinct items. It is presented two

cases with joint setup costs were power-of-two policy were applied successfully.

Jackson, Maxwell and Muckstadt (1985) presented an efficient procedure for the

joint replenishment problem under the restriction that the reorder intervals must be power

of two times a based period length. To solve the joint replenishment problem requires

answering two questions: (1) what is the optimal time between major setups? , and (2)

what is the optimal reorder interval for each item. They demonstrate by analytic means

rather than experimentation that the worst case performance is within 6% of optimality.

The performance bound is more than adequate given the typical errors in estimates of the

setup costs, the holding costs, and the demand rate.

Federgruen and Zheng (1992) extended the results obtained by Roundy (1985) to

a general joint setup cost structure. The joint cost structure often reflects economies of

scale which invoke the need for careful coordination of the items replenishment

strategies, and the joint replenishment problem is the most multi-item inventory model

with joint setup costs. They derived two efficient algorithms to compute an optimal

power-of-two policy. The problem of determining the optimal power-of-two policy can

be formulated as a nonlinear mixed integer program.

23

Federgruen, Zheng and Queyranne (1992) generalized Roundy’s results. They

considered a production-distribution network represented by a general directed acyclic

network showing that the power-of-two policies are close to optimal in a general class of

production-distribution networks with general joint setup costs.

2.4. Genetic Algorithm Models

 Traditional methods of search and optimization are not that efficient in finding a

solution for very complex search space. Genetic algorithms are stochastic search

techniques based on the mechanism of natural selection and natural genetics, which

requires little information to search effectively in a large or poorly understood search

space.

 Some of the principal advantages of the genetic algorithms are versatility,

flexibility, simplicity and efficiency. They have been employed to solve optimization

problems across all disciplines and interests and their simplicity permits to solve difficult

problems as NP-hard problems, for machine learning and also for evolving simple

programs, and the efficiency can be seen in an important reduction in the computational

time. Genetic algorithms explore the solution space based on random search methods.

They can find the global optimal solution or near optimal in complex search spaces. In

particular a genetic search, progress through a population of points in contrast to the

single point of focus like most search algorithms.

Because of the already mentioned advantages of using genetic algorithms, this

technique has been widely used to solve a variety of problems in different fields of study.

24

Applications of genetic algorithms in production planning and inventory management

include assembly line balancing, buffer size optimization, production scheduling and

manufacturing cell design.

 Hernández and Süer (1999) presented an application of genetic algorithms to

obtain the order quantity for an uncapacitated, no shortages allowed, single-item, single-

level situation, lot sizing problem. Each chromosome consists of n genes. Each gene

refers to a period. The gene i of a chromosome indicates if an order has been placed in

period i or not. Genes might have 0 or 1 value; a value of 1 indicates that an order has

been placed in that period, and 0 otherwise. Experimentation was conducted to evaluate

how different aspects of genetic algorithm affect the results. The aspects analyzed were:

selection strategies, scaling (it forces higher reproduction probabilities to those

chromosomes that represent better solutions), order and carrying costs, and net

requirements. It was observed how scaling has the biggest impact.

Among the limited applications of GA to inventory problems, focusing on the

reorder cycle time, the work of Khouja, Michalewicz and Wilmot (1998) is worth

examining. They proposed the use of genetic algorithms to solve the Economic Lot Size

Scheduling Problem (ELSP). The ELSP is an NP hard inventory problem which tries to

schedule the production of several different items in the same facility on repetitive basis.

They used the problem proposed by Bomberger (1966) where the facility is such that

only one item can be produced at a time, there is a setup cost and a setup time associated

with producing each item. The demand rate for each item is known and constant over an

infinite horizon, and no shortages are allowed. Bomberger developed a dynamic

25

programming solution. In Khouja, Michalewicz and Wilmot (1998) they proposed a

genetic algorithm approach. In this approach the chromosome represent floating point

fundamental cycle (T) and integer multipliers (ki’s) of the basic period for each product.

Because of the advantages already explained of GA, in this research it is shown

the use of a genetic algorithm to find the reorder cycle time in multi-stage serial and

assembly systems, which minimize the cost function.

The power-of-two policy has been used in industry for many years, and extensive

research studies on the efficiency of this restriction have been done. Based on that, the

present approach includes the power of two restrictions. The new approach is compared

with the methodology for the implementation of the power-of-two policy, presented

Maxwell and Muckstadt (1985) as a nonlinear integer problem. One of the main

contributions of this research is a methodology that could be easily implemented

particularly in industrial applications, and that could be used to develop future studies

including additional restrictions as capacity constraints.

2.5. Conclusions

 It is shown that several research studies have been done for many years focusing

in lot size determination for single stage systems like the classic Economic Lot Size

Model by Harry Ford, and multi-stage inventory systems as Clark and Scarf (1960),

Afentakis and Gavish (1986) and Schwarz (1973). Some applications for multi-stage

models make use of a myopic strategy were the objective function is optimized based on

any two stages, as done by Schwarz and Schrage (1957).

26

 After the formulation of the lot sizing problem as the problem of determining the

reorder cycle time, a lot of authors have been developed new techniques, like

Elmaghraby (1978) who proposed an analytical approach based on dynamic

programming. Moreover, Roundy (1985) introduced two policies called q-optimal

integer-ratio and optimal power-of-two, which are proved to be 94% and 98% effective.

The power-of-two policy is a special case of a discrete problem for determining the

reorder cycle time, in which the reorder interval is constraint to be not only integer, but

also a power of two. Consequently, Maxwell and Muckstadt (1985), Roundy (1986) and

Federgruen and Zheng (1992), proved the advantages of this policy applying it to

problems with additional restrictions.

 All the research studies previously mentioned used traditional search methods,

which are proven to be not very efficient in finding a solution for complex search spaces.

Less attention has been paid to stochastic search and optimization techniques like genetic

algorithms. Hernández and Süer (1999) apply genetic algorithm for lot sizing problem in

a single stage situation. In addition, Khouja, Michalewicz and Wilmot (1998) presented

genetic algorithm approaches to inventory problems focusing on the reorder cycle time.

However, literature have not been address about genetic algorithms applications using the

power-of-two restrictions, taking the advantages already explained of this policy.

 The next chapter describes the first genetic algorithm developed to solve a

problem of determining the reorder cycle time determination in multi-stage serial and

assembly systems, considering the power-of-two restrictions.

 27

CHAPTER III

METHODOLOGY

3.1. Introduction

 The methodology used in the present work includes three major tasks:

(1) development of a genetic algorithm to solve the proposed problem, (2) measurement

of the effectiveness of the genetic algorithm, and (3) identification of its robustness using

experimental design.

To satisfy the objectives of this research, it is necessary to follow some steps

described in detail next. The first part of this section is the problem definition, trying to

clearly establish the restrictions considered. Next, two ways to solve the proposed

problem are presented: (1) the optimal power-of-two policy formulated as a nonlinear

integer-programming problem, proposed by Maxwell and Muckstadt (1985); and (2) the

genetic algorithm approach using the power-of-two restrictions. These models are

programmed using the computer programming language Borland C++, and codes are

available in Appendix A.

The GA approach and the optimal power-of-two methodology, Maxwell and

Muckstadt (1985), modeled as nonlinear integer programming problems are compared to

define the effectiveness of the genetic algorithm. The effectiveness is described as 100%

times the ratio of the average cost over the traditional approach to the average cost of the

GA approach. However, based on a single observation of a particular case it is not

possible to reach conclusions about the effectiveness of the genetic approach. For that

28

purpose an experiment is conducted to explore this issue further, and is described in

detail it section 3.5.

3.2. Problem Definition

An algorithm to determine the reorder cycle time in multi-stage serial and

assembly systems (Figures 1.1.a, 1.1.b) is developed. The structure of the systems is

limited to those that can be represented by an acyclic directed graph. Each node in the

graph represents manufacturing, assembly or distribution operations, and the arcs indicate

the flow of materials, components, subassemblies, assemblies, or finished product from

one stage or operation to the next.

Demand for each end item is assumed to occur at a constant and continuous rate.

Production is instantaneous and no backorders are allowed. Fixed setup costs and echelon

holding costs are changed at each stage. The capacity at each node is unconstraint.

3.3. Maxwell and Muckstadt Approach

 A power-of-two policy, as described by Roundy (1986), is a sequence

T = (Tn: n Є N) of positive numbers with the following three properties. First, orders for

product n are placed once every Tn > 0 units of time beginning at time zero. Second,

Tn = 2Kn β for all products n and for some 1 ≤ β < 2, where Kn is an integer. Finally, the

Zero-Inventory Property holds that an order is placed for a product only when the

inventory of that product is zero.

29

 Maxwell and Muckstadt (1985) presented a method for computing power-of two

policy, based on the assumptions presented previously in the problem definition. Let G

represents the acyclic directed graph corresponding to the production and distribution

system. Let N (G) represents the node set and A (G) the arc set corresponding to G. The

costs considered in the model are fixed setup costs Ai, for i Є N (G), and the echelon

holding costs, hi, for i Є N (G).

 Let Ti for i Є N (G), represent the reorder interval at operation i and let TL be the

base planning period, measured in unit time (minutes, days, weeks, months, year, etc.).

The reorder interval for each operation is expressed as a multiple of TL. Let Mi for i Є

N(G) represent the multiple of the base planning period per reorder interval for

operation i. Also, for all i Є N (G), let gi = hiλi/2, the average echelon holding cost per

unit time (the same unit time used to determine the demand) for operation i when Ti = 1.

The model can be stated as:

Minimize ∑∈ 







+

)(GNi ii
i

i Tg
T
A

 Subject to:

Ti = MiTL, i Є N (G),

Mi ≥ Mj, (i, j) Є A(G),

Mi = 2ki, k=0,1,2,3,…

 This formulation is called Problem P. Problem P is a large-scale, nonlinear integer

programming problem. In practical situations, the sets N (G) and A (G) could contain

many thousands of elements. To solve Problem P they used a two step procedure. In the

30

first step they solved the relaxed version of this problem to establish what group of

operations must have identical reorder intervals. The mathematical formulation of the

relaxed problem, which is called Problem RP, replaces for each i Є N (G) the integrality

constraint on Mi with the constraint Mi ≥ 1, and replaces the requirement that Ti ≥ TL with

Ti ≥ 0.

Problem RP (relaxed problem) is

Minimize ∑∈ 







+

)(GNi ii
i

i Tg
T
A

Subject to:

Ti ≥ Tj ≥ 0 (i,j) Є A(G),

Jackson, Maxwell and Muckstadt (1988) showed the characterization of the optimal

solution. They established the correspondence between the solutions of problem RP and

ordered partitions of the graph G. Define a sub graph 'G of the graph G to consist of a

subset N ('G) of the node set N (G) together with the associated arc set A ('G) where (i,j)

Є A ('G) if and only if i Є N('G), j Є N('G), and (i,j) Є A (G). An ordered collection of

sub graphs (G1, G2,…, Gn) of G is said to be ordered by precedence if for any 1≤ p< q≤

N there does not exist a node j Є N (Gp) and a node j Є N (Gq) such that (i,j) Є A (G).

That is, no node in N (Gp) precedes any node in N (Gq) if q > p. The collection of sub

graph (G1, G2,…, Gn) forms an ordered partition of the graph G if

(a) the node subsets N (G1), N (G2),…, N (Gn) form a partition of the node set

N (G), and

31

(b) the collection is ordered by precedence.

A directed cut of a sub graph 'G is simply an ordered (binary) partition ('G -, 'G +)

of the sub graph 'G . Suppose that the reorder intervals share a common value: Ti = T for

all i Є N ('G). Then the optimal value of T is given by:

2
1

)(

)(












=
∑
∑

∈

∈

GNi i

GNi i

g

A
T

Letting

 ∑∈
=

)(
)'(

GNi iAGA and

 ∑∈
=

)(
)'(

GNi igGg

Then T = (A ('G)/ g ('G)) 1/2 .

 The optimal solution of problem P can be found if the solution to problem RP is

known. The optimal value ok Mi for i Є N (G) can be found by calculating

 { } )'(/)'(log2loglog 222 GgGKTk L +−−= (Equation 3.1)

where  x is the smallest integer greater than or equal to x. Using this ki the optimum

Mi’s are obtained substituting k on Mi = 2ki. More details are provided in Maxwell and

Muckstadt (1985).

32

3.4. Genetic Algorithm Approach

The genetic algorithm is a general method for solving “search for solutions”

problems Mitchell (1998). The idea is to efficiently find a solution to a problem in large

space of candidate solutions.

The algorithm started with a set of solutions called population and each candidate

solution is represented by a chromosome. An outline of the basic genetic algorithm is

shown in Figure 3.2 and described in detail next:

1. Start. Generate a random population of n chromosomes.

2. Fitness. Evaluate the fitness of each chromosome in the population.

3. New population. Create a new population by repeating the following steps until

the new population is complete.

a. Select two parent chromosomes from a population according to their

fitness (the better fitness, the higher chance to be selected).

b. Crossover. With a crossover probability cross over the parents to form two

new offspring. The idea is that the children should be a combination of

their parents.

c. Mutation. Alter the offspring at each locus (position in chromosome),

based on the mutation probability and prevent falling into a local

optimum.

d. Place the resulting chromosomes in the new population.

4. Selection. Based on their fitness, select the n chromosomes to form the current

population.

33

x1

x2

…

x λ
y1
y2
…
ym

New population
(n+ Pc*) chromosomes

(based on fitness)
(n chromosomes)

Initial population
(n chromosomes)

Select two
chromosomes

x1

…

x λ
Crossover
(Pc)

Mutation
(Pm)

yi

yj

children

parents

x1

x2

…

x λ
y1
y2
…
ym

(+ c

Selection

Current population
(n chromosomes)

…
x

x2

xj

xi

x4

x1
x2
x3

x1

x2

…

x λ
y1
y2
…
ym

New population
(+ Pc* n) chromosomes

(based on fitness)
(

Initial population
Select two

chromosomes

x1

…

x λ
Crossover
(Pc)

Mutation
(Pm)

yi

yj

children

parents

x1

x2

…

x λ
y1
y2
…
ym

(+ c

Selection

Current population
(

…
x

x2

xj

xi

x4

x1
x2
x3

x1

x2

…

x λ
y1
y2
…
ym

New population
(n+ Pc*) chromosomes

(based on fitness)
(n chromosomes)

Initial population
(n chromosomes)

Select two
chromosomes

x1

…

x λ
Crossover
(Pc)

Mutation
(Pm)

yi

yj

children

parents

x1

x2

…

x λ
y1
y2
…
ym

(+ c

Selection

Current population
(n chromosomes)

…
x

x2

xj

xi

x4

x1
x2
x3

x1

x2

…

x λ
y1
y2
…
ym

New population

x1

x2

…

x λ
y1
y2
…
ym

New population
(n+ Pc*) chromosomes

(based on fitness)
(n chromosomes)

Initial population
(n chromosomes)

Select two
chromosomes

x1

…

x λ
Crossover
(Pc)

Mutation
(Pm)

yi

yj

children

parents

x1

x2

…

x λ
y1
y2
…
ym

(+ c

Selection

Current population
(n chromosomes)

…
x

x2

xj

xi

x4

x1
x2
x3

x1

x2

…

x λ
y1
y2
…
ym

New population
(+ Pc* n) chromosomes

(based on fitness)
(

Initial population
Select two

chromosomes

x1

…

x λ
Crossover
(Pc)

Mutation
(Pm)

yi

yj

children

parents

x1

x2

…

x λ
y1
y2
…
ym

(+ c

Selection

Current population
(

…
x

x2

xj

xi

x4

x1
x2
x3

5. Test. If the end condition is satisfied, stop, and return the best solution in current

population.

6. Loop. Go to step 2.

Figure 3.1 General GA procedure

The simple procedure just described is the basis for most applications of genetic

algorithms. In the proposed GA, chromosomes represent (ki’s, 1 ≤ i ≤ n) as shown in

Figure 3.2.

34

Figure 3.2 Chromosome representation

These variables are the exponents or power of two that function as multipliers of

the basic period length to define the reorder cycle time for each period (i). It is necessary

to define lower and upper bounds to these variables. The lower bound is defined

(satisfying the restriction of Ti ≥ Ti-1), as

max {0, }LB
i jk imum k= … j successor(i)

To define the upper bound, consider 5kk LB
i

UB
i += . This upper bound is used in

the generation of the initial population used by GA for the given problem. After having a

genetic representation of potential solutions it is needed to define a way to create an

initial population of solutions.

3.4.1. Initial population

 The initial population of individuals is generated randomly formed by n number

of chromosomes, were n is the population size. The number of individuals in the

population is considered one of the factors evaluated using experimentation.

k1 k2 …k3 k4 k6 kn

Nodes
1 2 3 4 5 6 … n

k5k1 k2 …k3 k4 k6 kn

Nodes
1 2 3 4 5 6 … n

k5

35

The lower and upper bounds used to generate the k’s that formed each individual

in the population are described before as LB
ik and UB

ik . The initial population generated

for this problem is composed: half by feasible solutions and the other half infeasible.

This infeasibility consist of a violation of the nested ness constraint which establish Ti >

Tj, for all j that is successor of i. For each chromosome defined a fitness value is

assigned.

3.4.2. Fitness function

 To evaluate the fitness of each individual in the population it is necessary to first

convert the ki in reorder cycle time using Ti = 2ki TL. This application of GA is function

optimization, where the goal is to find a set of parameter values that minimize the

objective function. The fitness function f (m) for every member of the population is

defined as the inverse of the objective function.

f (m) =

∑∈ 







+

)(

1

GNi ii
i

i Tg
T
A

 (Equation 3.6)

3.4.3. Genetic operators

There are two types of operators involved in the genetic algorithm proposed:

mutation and crossover.

The mutation used is one point mutation, which selects randomly one point in the

chromosome and changes the k value with another between zero and two, as shown in

Figure 3.3.

36

Figure 3.3 One point mutation

The crossover selected is the two-point crossover. Two chromosomes are selected

randomly from a range zero to population size, to determine the position of the crossover

points. This type of crossover combines the features of the two parents to form two

offsprings, as illustrated in Figure 3.4.

Figure 3.4. Two point crossover

6
Random number

1 1 6 2 2 3 4 7

1 1 6 2 2 3 1 7

Problem Size
8

1 2 72 3 3 4 8

0 1 31 2 2 2 9

2 and 7 Random numbers

Parent 1

Parent 2

1 1 71 2 2 2 8

0 2 32 3 3 4 9

Child 1

Child 2

8 Problem Size

37

 3.4.4. Selection

Selection in general is a consequence of competition between individuals in a

population. It is referred as the way that the individuals are selected to form the new

population after each generation. The selection method used in the genetic algorithm

developed is the tournament selection. Two chromosomes are selected at random and the

best is kept and included in the new population.

Because crossover and mutation operations could generate infeasibility on the

modified chromosome, a repairing technique is applied to guarantee that the nested ness

constraints are not violated. This operation consists of an evaluation of each chromosome

after selection to detect any violation to the previously defined restrictions. If it is

required, changes k for a randomly generated number from the k value of the direct

successor of the node where the violation occurs.

3.3.2. Example Problem

To illustrate the previously defined genetic algorithm, a simple example is

presented. The example intends to show not only the step by step sequence of operations

but also the application of the results in practice. For simplicity, only the most important

details are provided. It is assume that the problem satisfy all the assumptions considered

for the algorithm development.

The problem consists of a candy production line, which requires six principal

processes. These processes consist of: (1) packaging; (2) mixing and coxing; (3) ordering

the candies packages; (4) the ordering of imported sugar; (5) water purification and (6)

38

ordering artificial flavors and colorants. The problem data is included in Table 3.1, and

its assembly structure is shown in Figure 3.5.

Table 3.1 Example problem data

Stage
Demandi

(units/week)
Setup/ ordering

costi
Echelon holding

costi
gi

1 10 20 1 5
2 20 20 2 20
3 10 20 1 5
4 40 20 1.5 30
5 20 20 1 10
6 10 45 1 5

Figure 3.5 Example problem structure

a) G.A. parameters:

• Population Size = 4 chromosomes

• Generations = 1

• Probability of crossover = 50 %

• Probability of Mutation = 25%

4 65

32

1

4 65

32

1

39

b) Generation #1:

The genetic algorithm proposed is shown in Figure 3.6. using the parameters

previously defined and the data in Table 3.2. In Figure 3.6, Rand represent the random

numbers generated during the sequence. The initial population is formed by four

chromosomes. Each one has a fitness value calculated using equation 3.6, and represents

the inverse of the total cost function based on the objective of minimization. To apply the

crossover operation, a random number is generated and compared with the probability of

crossover; if the probability of crossover is bigger than the random number, then two

chromosomes are selected to do the crossover, else continue to mutation.

Figure 3.6 First generation of problem example using GA

In the present example, chromosomes 1 and 4 are selected randomly from the

population and cross by chromosomes 4 and 6. After the crossover is completed,

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

Initial population Current population

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

Rand = 1, 4 x1 2 2 4 5 2 2

x4 2 3 3 3 4 4

Rand = 4, 6

Parent 1
Parent 2

Child 1

Child 2

2 2 4 3 4 2

2 3 3 5 2 4Crossover

Rand = 45%

Rand =69% , 9%

2 3 3 3 2 4

Rand = 4

Child 3Mutation

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

child 1 2 2 4 3 4 2 fch1 0.0037
child 2 2 3 3 5 2 4 fch2 0.0031
child 3 2 3 3 3 2 4 fch3 0.0038

Best = child 1

Generation = 1FINISHED
CONDITION

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

Initial population Current population

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

Rand = 1, 4 x1 2 2 4 5 2 2

x4 2 3 3 3 4 4

Rand = 4, 6

Parent 1
Parent 2

Child 1

Child 2

2 2 4 3 4 2

2 3 3 5 2 4Crossover

Rand = 45%

Rand =69% , 9%

2 3 3 3 2 4

Rand = 4

Child 3Mutation

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

child 1 2 2 4 3 4 2 fch1 0.0037
child 2 2 3 3 5 2 4 fch2 0.0031
child 3 2 3 3 3 2 4 fch3 0.0038

Best = child 1

Generation = 1FINISHED
CONDITION

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

Initial population Current population

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

Rand = 1, 4 x1 2 2 4 5 2 2

x4 2 3 3 3 4 4

Rand = 4, 6

Parent 1
Parent 2

Child 1

Child 2

2 2 4 3 4 2

2 3 3 5 2 4Crossover

Rand = 45%

Rand =69% , 9%

2 3 3 3 2 4

Rand = 4

Child 3Mutation

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

child 1 2 2 4 3 4 2 fch1 0.0037
child 2 2 3 3 5 2 4 fch2 0.0031
child 3 2 3 3 3 2 4 fch3 0.0038

Best = child 1

Generation = 1FINISHED
CONDITION

Initial population Current population

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

Rand = 1, 4 x1 2 2 4 5 2 2

x4 2 3 3 3 4 4

Rand = 4, 6

Parent 1
Parent 2

Child 1

Child 2

2 2 4 3 4 2

2 3 3 5 2 4Crossover

Rand = 45%

Rand =69% , 9%

2 3 3 3 2 4

Rand = 4

Child 3Mutation

x1 2 2 4 5 2 2 f1 0.0032
x2 2 4 5 4 5 4 f2 0.0029
x3 4 4 4 5 5 4 f3 0.0027
x4 2 3 3 3 4 4 f4 0.0036

child 1 2 2 4 3 4 2 fch1 0.0037
child 2 2 3 3 5 2 4 fch2 0.0031
child 3 2 3 3 3 2 4 fch3 0.0038

Best = child 1

Generation = 1FINISHED
CONDITION

40

mutation is executed as described in Section 3.4.3. Finally, the new population is formed

by all chromosomes of the current population plus the children generated. This example

defined as a terminal condition, the completion of one generation, and thus making the

chromosome with the best fitness generated as our solution. The best solution is

represented by the chromosome shown in Figure 3.7.

2 2 4 3 4 2

Total cost = US$ 269.17

Fitness = 0.0037

Figure 3.7 Solution to problem example

 Once this solution is obtained, it can be applied as shown in Figure 3.8, using a

timescale to help visualize the nested ness and stationary policies. First, transform the

previous results as reorder cycle time (Ti) using ik
i 2T = , were ki‘s are the output of G.A.

For this problem the Ti’s are: T1 = 4, T2 = 4, T3 = 16, T4 = 8, T5 = 16, and T6 = 4. In this

example TL is one week. For each operation the order size is equal to the demand,

because the objective is to satisfy the demand requirements.

 Every time one order is placed or a setup operation is done, it also has to be

placed by all its predecessors. This is the practical meaning of the nested ness policy

which established that the reorder cycle time for an operation have to be at least as large

as it successor. The stationary policy is also satisfy because the order is placed in the

same interval time and the quantity is always the same.

41

Figure 3.8 Example problem solution using GA

The previous example intends to demonstrate the real application of the

methodology proposed. In the next section, the experimentation to compare both

methodologies, Maxwell and Muckstadt and the genetic algorithm, is defined.

3.5. Experimental Design

Experimental design is a critically important tool in engineering world for

improving the performance of manufacturing processes. Experimentation should be

viewed as part of the scientific process and as one of the ways to learn how the systems

Operation Description

1 Packaging

4 8 12 16 20 24 28 32 36 40 44 48

2 Mixing and cooking

4 8 12 16 20 24 28 32 36 40 44 48

3 Ordering candies
packages

12 24 36 48

4 Ordering imported
sugar

8 16 24 32 40 48

5 Water purification

16 32 48

6 Ordering colorants
and artificial flavors

4 8 12 16 20 24 28 32 36 40 44 48

Note: TL is one week, which means that all time units are express in weeks

Operation Description

1 Packaging

4 8 12 16 20 24 28 32 36 40 44 48

2 Mixing and cooking

4 8 12 16 20 24 28 32 36 40 44 48

3 Ordering candies
packages

12 24 36 48

4 Ordering imported
sugar

8 16 24 32 40 48

5 Water purification

16 32 48

6 Ordering colorants
and artificial flavors

4 8 12 16 20 24 28 32 36 40 44 48

Operation Description

1 Packaging

4 8 12 16 20 24 28 32 36 40 44 48

2 Mixing and cooking

4 8 12 16 20 24 28 32 36 40 44 48

3 Ordering candies
packages

12 24 36 48

4 Ordering imported
sugar

8 16 24 32 40 48

5 Water purification

16 32 48

6 Ordering colorants
and artificial flavors

4 8 12 16 20 24 28 32 36 40 44 48

Note: TL is one week, which means that all time units are express in weeks

42

work. An experiment is conducted to: (1) to determine the best GA parameters settings;

and (2) to determine the robustness of the proposed algorithm.

3.6.1. GA parameters in the experimental design

Response surface methodology is a collection of mathematical and statistical

techniques that are useful for the modeling and analysis of problems in which a response

of interest is influenced by several variables and the objective is to optimize this

response. Central composite design (CCD) is a response surface method that allows one

to keep the size and complexity of the design low and simultaneously obtain some

protection against curvature, as described by Montgomery (2001).

One important decision to make when implementing a genetic algorithm is how to

set the parameters values. In order to satisfy this condition a central composite design is

selected which consists of a 25-1 design augmented with two center points in each block,

ten axial and one center axial point, to obtain an indication of curvature and fit a second-

order model if it is required.

Axial points have all of the factors set to the midpoint, except one factor, which

has the value +/- alpha. The value for alpha is calculated in each design for both

rotatability and orthogonality of blocks. In this design alpha is set to one, because some

factor cannot assume values bigger than their upper bound, this is commonly referred to

as a face-centered central composite design. This design only requires three levels for

each factor. Center points, as implied by the name, are points with all levels set to the

43

midpoint of each factor range. Center points are usually repeated four to six times to get a

good estimate of experimental error (pure error).

The parameters to be tested and their respective levels are: (1) Problem size, 10,

505 and 1000 nodes; (2) Probability of crossover, 0.5, 0.75 and 1.0; (3) Probability of

mutation, 0.01, 0.255 and 0.50; (4) Population size, 30, 515 and 1000 chromosomes and

(5) Number of generations, 50, 475 and 1000 generations. The demand, setup costs and

holding costs were generated using a uniform distribution with the following upper and

lower parameters 1-200, 5-500, 0.1-2, respectively (See Appendix B1). The levels of the

factors evaluated are considered based on the typical values used in previous work done

in similar applications and trying to include an extensive region of experimentation.

From this experiment is expected to obtain two responses: cost (measure in $/unit

time) and time (measure in unit time). To optimize both responses is used an approach

presented by Artiles (1996), using standardize loss functions integrated with specification

limits define for each factor. This method is easily implemented using a spreadsheet.

3.6.2. Robustness experimental design

After having the GA parameters that provides the best results, a 23 experiment is

conducted to determine the robustness of the methodology proposed. The importance of

the robustness of a methodology is that measures its ability to give the expected results in

a variety of problems that can be implemented. In this research, the problem instances are

changed by: (1) Setup or ordering costs, uniformly distributed (5-500) (low) and

44

uniformly distributed (500-1000) (high); (2) Holding costs, uniformly distributed (0.5-2)

(low) and uniformly distributed (2-5) (high); and (3) Problem size, 10 and 2000.

As it was described in the GA parameters experiment, the responses were cost and

time, and the demand generated is uniformly distributed between 1 and 200.

3.7. Conclusions

 This chapter describes the characteristics of the problem solved and the two

approaches compared: Maxwell and Muckstadt (1985) and the genetic algorithm

developed.

Maxwell and Muckstadt define the problem as a large-scale nonlinear integer

programming, and define a two step procedure to solve a relaxed version of the problem

which identifies the operations that share the reorder interval. Having the solution to the

relaxed problem, is evaluated the value of the reorder interval for each operation using

Equation 3.1 (See Appendix A.1).

The genetic algorithm is a general procedure that could be applied to a variety of

problems, combining some strategies to find the best solution in very complex search

spaces. The genetic algorithm developed starts from a population were half of the

solutions are infeasible trying to enrich the search space. The infeasibility consists of a

violation of a nested ness constraint. The operators used are: a two-point crossover, one-

point mutation and a repairing procedure to make bring an infeasible solution to the

feasible region. The last technique shows to work very well in problems with similar

45

restrictions. The selection apply is the tournament selection which compares between two

chromosomes.

Two experiments are designed. The first is a central composite deign to find the

settings of the probability of crossover, probability of mutation, number of generations

and population that optimize the solutions found with the genetic algorithm. The output

of this experiment are cost and time express in percentages of the difference between the

genetic algorithm proposed and Maxwell and Muckstadt. This optimization is done using

the loss function combined with the specification limits proposed by Artiles (1996).

Once the settings that optimize the genetic algorithm are found, a factorial

experiment is used to evaluate how changes in the setup cost, holding cost and problem

size change the genetic algorithm output. This is defined as the robustness of the

methodology.

The next chapter presents the experiments and identify the more important

characteristic of the solutions obtained.

 46

CHAPTER IV

EXPERIMENTAL ANALYSIS

4.1. GA parameters results

 To evaluate the GA parameters three different problem instances of size 10, 505

and 1000 nodes are generated, using the code shown in Appendix B.1. Setup costs,

holding costs and demand are uniformly distributed between 5 and 500, 0.1 and 2, and 1

to 200, respectively, changing the problem size.

The summary results for the GA parameters determination experiment are shown

in Table 4.1. The first two columns of Table 4.1 presents the standard and run order of

the central composite design experiment conducted, while the third column shows at

which block correspond each run. The next five columns identify the level of each factor

considered in the experimentation part. The columns named cost and time show the

results obtained during the experiment.

 Cost and time are considered for determining the parameters of GA that give the

best solution, considering important that GA gives a solution not only effective (near

optimal) but also efficient (in less computational time).

47

Table 4.1 Summary GA results for parameters set up

Std.
Order

Run
Order Blocks

A:
Problem

Size

B:
Pcross

C:
Pmut

D:
PopSize

E:
Generations

 Cost
(US$)

 Time
(secs.)

9 1 1 10 0.5 0.01 1000 50 2,927.39 0.37
22 2 1 505 0.75 0.255 515 475 187,296.91 109.31

3 3 1 10 1 0.01 30 50 3,067.84 0.03
2 4 1 1000 0.5 0.01 30 50 414,409.64 0.91

16 5 1 1000 1 0.5 1000 1000 382,567.75 1,134.22
8 6 1 1000 1 0.5 30 50 413,437.20 1.54

14 7 1 1000 0.5 0.5 1000 50 413,437.20 1.56
10 8 1 1000 0.5 0.01 1000 1000 407,315.30 660.58

1 9 1 10 0.5 0.01 30 1000 3,022.10 0.67
13 10 1 10 0.5 0.5 1000 1000 2786.50 8.56
17 11 1 505 0.75 0.255 515 475 187296.91 109.43

6 12 1 1000 0.5 0.5 30 1000 394700.86 24.01
21 13 1 505 0.75 0.255 515 475 187296.91 109.48

5 14 1 10 0.5 0.5 30 50 2925.15 0.03
15 15 1 10 1 0.5 1000 50 2792.50 0.60
20 16 1 505 0.75 0.255 515 475 187296.91 109.38
18 17 1 505 0.75 0.255 515 475 187296.91 109.35
11 18 1 10 1 0.01 1000 1000 2867.33 9.95

4 19 1 1000 1 0.01 30 1000 415136.76 28.36
19 20 1 505 0.75 0.255 515 475 187296.91 109.43
12 21 1 1000 1 0.01 1000 50 407365.63 46.09

7 22 1 10 1 0.5 30 1000 2786.50 0.76
32 23 2 505 0.75 0.255 515 1000 181568.90 229.71
26 24 2 505 1 0.255 515 475 188367.08 127.87
31 25 2 505 0.75 0.255 515 50 192915.93 11.41
24 26 2 1000 0.75 0.255 515 475 401511.99 217.32
27 27 2 505 0.75 0.01 515 475 193831.75 99.00
28 28 2 505 0.75 0.5 515 475 182171.38 118.17
25 29 2 505 0.5 0.255 515 475 187076.06 90.22
30 30 2 505 0.75 0.255 1000 475 193334.11 212.13
33 31 2 505 0.75 0.255 515 475 187296.91 108.91
29 32 2 505 0.75 0.255 30 475 191473.62 6.31
23 33 2 10 0.75 0.255 515 475 2649.00 2.25

In order to fit the data to a regression model, an independent analysis for each

response, cost and computational time, is required. The first step is to identify significant

factors in the model, for that purpose a multiple regression analysis and an analysis of

48

variance (ANOVA) are developed for both responses. The analysis of variance is a

partition of the total variability into its component parts.

Table 4.2 Multiple regression analysis for cost

Dependent variable: Cost

 Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT 6747.05 28813.0 0.234167 0.8170
Crossover 7644.11 86028.1 0.088856 0.9300
Generations -4.54615 17.1844 -0.264551 0.7938
Mutation -10737.6 30874.0 -0.347789 0.7313
Population -21.6226 15.9019 -1.35975 0.1877
Problem 349.255 14.9878 23.3027 0.0000
Crossover^2 -6608.9 57243.4 -0.115453 0.9091
Generations^2 -0.00241235 0.0160467 -0.150333 0.8819
Mutation^2 -2216.77 59603.7 -0.0371918 0.9707
Population^2 0.0181496 0.0152097 1.19329 0.2455
Problem^2 0.0569161 0.0146014 3.89799 0.0008

 Table 4.3 Analysis of variance for cost

Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 7.32221E11 10 7.32221E10 2322.95 0.0000
Residual 6.93465E8 22 3.15211E7

Total (Corr.) 7.32914E11 32

R-squared = 99.9054 percent
R-squared (adjusted for d.f.) = 99.8624 percent
Standard Error of Est. = 5614.37
Mean absolute error = 3264.4
Durbin-Watson statistic = 2.14129 (P=0.2962)
Lag 1 residual autocorrelation = -0.0976557

49

The output shows the results of fitting a model to describe the relationship

between cost and the independent variables. The equation of the fitted model is as

follows:

2^oblemSizePr*0569.02^PopSize*018.0
2^Pmut*77.22162^Gens*002412.02^Pcross*9.6608oblemSizePr*26.349

Population*62.21Pmut*6.10737Gens*55.4Pcross*11.764405.6747Cost

++
−−−+
−−−+=

Since the P-value in table 4.3 is less than 0.01, there is a statistically significant

relationship between the variables at the 99% confidence level. The R-Squared statistic

indicates that the model as fitted explains 99.91% of the variability in cost. The adjusted

R-squared statistic, which is suitable for comparing models with different numbers of

independent variables, is 99.86%. The standard error of the estimates shows the standard

deviation of the residuals to be 5,614.37. This value can be used to construct limits for

new observations.

The mean absolute error (MAE) of 3,264.4 is the average value of the residuals.

The Durbin-Watson (DW) statistic tests the residuals to determine if there is any

significant correlation based on the order in which they occur. Since the P-value is

greater than 0.05 there is no indication of significant autocorrelation in the residuals.

In determining whether the model can be simplified, notice that the highest

P-value on the independent variables is 0.9707, belonging to mutation2. Since the P-value

is greater or equal to 0.10, that term is not statistically significant at the 90% or higher

confidence level. Consequently, some factors are removed from the model. The final

model is stated as:

50

Regression model for Cost:

2oblemSizePr*0667298.0
oblemSizePr*343.339Pmut*2.11868Gens*03322.702.6149Cost

+

+−−=

(Equation 4.1)

To define the fit of the current equation including only the terms considered

important, a multiple regression analysis and ANOVA are presented in Tables 4.4 and

4.5. A residuals analysis is included in Appendix C1.

 Table 4.4 Multiple regression analysis for cost with significant factors

Dependent variable: Cost

 Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT 6149.02 2626.27 2.34135 0.0266
Generations -7.03322 2.63007 -2.67416 0.0124
Mutation -11868.2 5104.63 -2.32499 0.0275
Problem 339.343 8.06333 42.0848 0.0000
Problem^2 0.0667298 0.00758146 8.80171 0.0000

Table 4.5 Analysis of variance for cost with significant factors

Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 7.32126E11 4 1.83031E11 6501.19 0.0000
Residual 7.88298E8 28 2.81535E7

Total (Corr.) 7.32914E11 32

R-squared = 99.8924 percent
R-squared (adjusted for d.f.) = 99.8771 percent
Standard Error of Est. = 5305.99
Mean absolute error = 3433.97
Durbin-Watson statistic = 2.40324 (P=0.0949)
Lag 1 residual autocorrelation = -0.225803

51

 Tables 4.4 and 4.5, show the statistical significance of each variable as added to

the model. For the response variable time, the same analysis is done and is presented in

Tables 4.6 and 4.7.

Table 4.6 Multiple regression analysis for time

Dependent variable: Time

 Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT 598.642 664.366 0.901073 0.3839
Crossover -694.539 1900.73 -0.365407 0.7207
Generations -0.479544 0.438935 -1.09252 0.2944
Mutation -1551.0 806.882 -1.92222 0.0768
Population -0.267428 0.407918 -0.655592 0.5235
Problem -0.2662 0.388665 -0.684908 0.5054
Crossover*Mutatio 1715.37 501.581 3.41992 0.0046
Crossover^2 -4.50166 1252.94 -0.00359286 0.9972
Mutation^2 -12.3507 1304.61 -0.00946703 0.9926
Problem^2 0.00000187184 0.000319596 0.00585688 0.9954
Population^2 -4.52136E-7 0.000332911 -0.00135813 0.9989
Generations^2 -0.00000297021 0.000351231 -0.00845658 0.9934
Problem*Crossover 0.263354 0.248257 1.06081 0.3081
Crossover*Populat 0.26532 0.253376 1.04714 0.3141
Crossover*Generat 0.229557 0.258551 0.88786 0.3907
Mutation*Generati 0.276153 0.263828 1.04672 0.3143
Mutation*Populati 0.227004 0.258547 0.877999 0.3959
Mutation*Problem 0.219779 0.253324 0.867583 0.4014
Generations*Probl 0.000472566 0.000130581 3.61894 0.0031
Generations*Popul 0.000464772 0.000133274 3.48735 0.0040

Table 4.7 Analysis of variance for time

Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 1.37018E6 19 72114.9 4.78 0.0031
Residual 196317.0 13 15101.3

Total (Corr.) 1.5665E6 32

R-squared = 87.4678 percent
R-squared (adjusted for d.f.) = 69.1515 percent
Standard Error of Est. = 122.887
Mean absolute error = 55.392
Durbin-Watson statistic = 2.19784 (P=0.2396)
Lag 1 residual autocorrelation = -0.13205

52

 For the multiple regression analysis of time response, originally all interactions

are included as a result of previous experimentation that shows an R-Squared not bigger

than 66% when the model only considered linear and quadratic terms. Including

interactions terms the R-Squared statistic indicates that the model as fitted explains

87.46% of the variability in the response time.

The standard error of the estimate shows the standard deviation of the residual to

be 122.887. The absolute value of the residuals is equal to the absolute value (55.39).

There is no indication of serial autocorrelation in the residuals. The model requires a

simplification, notice in the highest P-values belonging to some independent parameters.

The simplified model is presented as follows with its statistical justification. A residuals

analysis is included in Appendix C2.

Regression model for Time:

PopSize*Gens*00045.0oblemSizePr*Gens*0004607.0Pmut*Pcross*37.1715
Pmut*96.1118Gens*2279.0Pcross*416.312311.204Time

+++
−−−=

(Equation 4.2)

Table 4.8 Multiple regression analysis for time with significant factors

Dependent variable: Time

 Standard T
Parameter Estimate Error Statistic P-Value

CONSTANT 204.311 116.933 1.74726 0.0924
Crossover -312.416 146.198 -2.13695 0.0422
Generations -0.227938 0.0736832 -3.09349 0.0047
Mutation -1185.96 334.052 -3.55023 0.0015
Crossover*Mutatio 1715.37 424.913 4.03698 0.0004
Generations*Probl 0.000460701 0.0000722582 6.37575 0.0000
Generations*Popul 0.000452612 0.0000737481 6.13727 0.0000

53

Table 4.9 Analysis of variance for time with significant factors

Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 1.28472E6 6 214120.0 19.76 0.0000
Residual 281777.0 26 10837.6

Total (Corr.) 1.5665E6 32

R-squared = 82.0123 percent
R-squared (adjusted for d.f.) = 77.8613 percent
Standard Error of Est. = 104.104
Mean absolute error = 60.0485
Durbin-Watson statistic = 2.86107 (P=0.0048)
Lag 1 residual autocorrelation = -0.436087

The numerical optimization technique used was proposed by Artiles (1996), using

standardized loss functions integrated with specification limits defined for each factor.

The results obtained are presented in Table 4.10.

 In Table 4.10 the columns “min” and “max” represents the lower and upper

specifications limits for each factor. The column called “Optimal Values” shows the

optimal settings proposed by this optimization technique for multiple responses. Factors

represented the factor included in the model. In this table factor A represent Problem

Size, B is the probability of crossover, C is the probability of mutation, D the population

size and D the number of generations. In columns Cost and Time, for each factor is

necessary to define the coefficient calculated by the regression. As a result, the loss

function is evaluated in the cell under “Objective function”. The objective is to minimize

the loss function.

54

Table 4.10 Optimization spreadsheet parameters

Min Values Max Factors Cost Time
10 10 1000 ProblemSize 339.34 0
0.5 1 1 Pcross 0 -312.42
0.01 0.5 0.5 Pmut -11868.2 -1185.96
30 30 1000 PopSize 0 0
50 425.135 1000 Generations -7.03 -0.23

100 ProblemSize^2 0.07 0
0.5 Pcross*Pmut 0 1715.37

4251.35 Gen*ProblemSize 0 0.00046
12754.05 Gen*PopSize 0 0.00045

1 constante 6149.02 204.31

Value 626.621 66.55019
LSL 615 75

Target 625 80
USL 635 85 Objective Function
Loss 0.026276 7.235898 7.262173278

The optimal settings for the GA parameters values obtained from the optimization

technique applied are: 1.0 for the crossover probability, 0.50 for mutation probability, 30

chromosomes in the population size, and 425 generations. These parameters are used as

settings for the genetic algorithm to be analyzed further. With those parameters the GA is

run and their results compared with the ones offered by Maxwell and Muckstadt (1985) as

shown in Table 4.11.

Table 4.11 Summary comparison of GA and Maxwell and Muckstadt

 M&M GA Comparison

Problem
Size Cost Time Cost Time % Cost % Time

10

2,667.77

0.09

2,786.50

0.46

4.45

412.22

505

163,381.47

14.32

190,979.58

6.61

16.89

(53.84)

1000

333,607.70

26.99

407,474.88 13.06

22.14

(51.62)

55

The comparison columns show the difference percentage wise between GA and

Maxwell and Muckstadt results. This relationship is defined as shown in equations 4.3

and 4.4.

()
tcos

tcostcos

M&M
M&MGA

tcos%
−

= (Equation 4.3)

()
time

timetime

M&M
M&MGA

time%
−

= (Equation 4.4)

Results show that GA offered solutions 4.45 percent above optimum in a

computational time of 0.46 seconds. The difference in percentages from GA and Maxwell

and Muckstadt results in cost increase as the problem size, but this relationship is not

necessarily linear. For large problems, these differences are on average 22 percent. The

negative values in the time column indicate that GA work faster than the Maxwell and

Muckstadt algorithm for medium (505 nodes) and large (1000 nodes) problems.

4.2. GA robustness experiment results

To evaluate the robustness of the results obtained from the GA algorithm a 23

factorial experiment is conducted and the summary results are shown in Table 4.8. This

experiment intends to define the distance in cost of GA from the optimal solution

changing some aspects of the original environment under the algorithm was tested.

56

Table 4.12 Summary GA results for robustness design

Blocks Setup cost Holding Cost Problem
Size GA cost M&M cost %

difference

1 -1 1 1 1,117,191.94 782,943.15 29.92
1 -1 -1 1 430,565.28 314,350.41 26.99
1 1 -1 1 646,809.34 500,868.38 22.56
1 -1 -1 -1 2,528.28 2,440.14 3.49
1 -1 1 -1 3,609.23 3,609.23 0.00
1 1 1 1 1,292,768.45 927,083.72 28.29
1 1 -1 1 649,632.37 503,724.26 22.46
1 -1 -1 1 451,589.18 312,267.80 30.85
1 1 1 1 1,328,031.11 931,729.15 29.84
1 1 1 -1 6,528.01 6,528.01 0.00
1 -1 1 1 1,082,920.22 744,381.48 31.26
1 1 -1 -1 5,330.89 5,330.89 0.00
1 -1 -1 -1 2,447.68 2,447.68 0.00
1 -1 1 -1 4,903.39 4,645.94 5.25
1 1 1 -1 7,531.10 7,531.10 0.00
1 1 -1 -1 3,940.45 3,940.45 0.00

From the previous table can be derived some conclusions about the consistent

difference in percentages in cost between both methodologies, which appears to be

greater for larger problem size (around 22 and 31 percent), while the optimum solution is

achieve in the 75% of the times for small problems.

The main effects plots which define the relation between cost and, setup cost,

holding cost and the problem size are shown in Figure 4.1. The problem size is the factor

that most affect cost response as shown graphically in Figure 4.1.

57

Setup cost Holding Cost Problem Size

-1 1 -1 1 -1 1
0.00

0.06

0.12

0.18

0.24
%

 d
iff

er
en

ce

Main Effects Plot - Data Means for % difference

Figure 4.1 Main effects plots for cost

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

-2

-1

0

1

2

N
or

m
al

 S
co

re

Residual

Normal Probabil ity Plot of the Residuals
(response is % differ)

Figure 4.2 Normal probability plot of the residuals for robustness experiment

58

4.3. Conclusions

 The first experiment conducted tried to set the values of some of the principal

factor traditionally studied in GA that affects directly the results obtained. These factors

are: probability of crossover, probability of mutation, population size and number of

generations. The idea of this experiment is to define the parameters that offered the best

cost or nearest optimal cost in little computational time. For that purpose, a multiple

regression analysis and analysis of variance are developed to fit the data to an equation,

considering only the factors that affect directly each response. These analyses are done

independently for each response: cost and computational time and the regression models

obtained are represented in Equations 4.1 and 4.2.

 To optimize both responses an approach proposed by Artiles (1996) is used, as

explained in section 3.6.1., and the results are:

• Probability of crossover: 100%

• Probability of mutation: 50 %

• Population size: 30 chromosomes

• Number of generations: 425 generations

 To compare the outputs from GA and Maxwell and Muckastadt, the GA is

evaluated for each problem size (small: 10 nodes and large: 1000 nodes), using the

settings previously obtained. For the cost response, in the small problem size solutions

four percent greater than the optimum are obtained, 17 percent for medium and 22

percent for large problems. For the computational time response, GA gives solutions

more than 50% faster than Maxwell and Muckstadt for medium and large problems. For

59

small problems, Maxwell and Muckstadt gives solutions faster than GA, but this

percentage is insignificant, only a difference of 0.28 seconds.

 The second experiment identifies the robustness of the methodology proposed,

based on its consistency in giving solutions with the same percentage differences from

the optimal in difference problem instances. The parameters tested are setup and holding

cost for each problem size. The experiment gives from zero to five percent near optimal

solutions for small problems, and from 22 to 31% near optimal solutions for large

problems. The optimal solutions in small problems are obtained 75% of the time.

 60

CHAPTER V

CONCLUSIONS AND DISCUSSIONS

5.1. Conclusions

The main contribution of this research is the development of the first genetic

algorithm approach to determine the reorder cycle time in multi-stage serial and assembly

systems, considering the power of two restrictions. A genetic algorithm has not been

addressed before in the literature to solve this problem.

Once the work is done, several questions have to be answered about the genetic

algorithms which were formulated as secondary objectives of this research, and are

related to its effectiveness, efficiency and robustness. The genetic algorithm developed

shows to be effective, because it provides solutions in costs from zero to five percent

above optimum for small problems and from 22 to 31 percent for large problems (1000

nodes). Optimal solutions are obtained 75 percent of the time for small problems.

The genetic algorithm is an efficient tool to find a near optimal solution in little

time. The algorithm programmed in C++ and using a Pentium 4, provides solutions in

less than one second for small problems, and less than 40 seconds for larger problems

(1000 nodes).

An experiment is conducted to measure the ability of the genetic algorithm to

provide solutions of the same quality in different problems instances. The experiment

shows that GA gives very accurate solutions, comparing the results obtained in the first

experiment after the optimization part with the ones in the robustness experiment. Using

the optimal GA parameters, the result for small problems is four percent above optimal,

61

and from zero to five percent near optimal. For large problems, the results are 22.14

percent near optimal solution, while the robustness experiment shows an interval of 22 to

31 percent above optimal. It can be seen that for small problems the methodology is more

accurate.

The flexibility is a very important characteristic of the genetic algorithm, making

this methodology attractive to find a solution when the problem at hand does not satisfy

all the assumptions stated in Maxwell and Muckstadt (1985). It can even be extended to

solve a different application with similar restrictions, like the one of finding the reorder

cycle time for multi-stage serial and assembly systems without considering the power of

two restrictions.

The GA developed can be easily extended to applications like the previously

defined and for project planning and scheduling problems, because of the similarities in

the chain structure and the precedence restrictions. The changes required will only

include considering that each gene of the chromosome structure represent the reorder

cycle time (Ti) of the corresponding period instead of the power of two, and eliminate the

required transformation of the exponents in reorder cycle time. This is an advantage that

cannot be obtained using the Maxwell and Muckstadt approach.

 Another modification that can be done in the genetic algorithm is the inclusion of

precedence restrictions to extend the methodology to solve problems with more general

structures. The only modification required is to allow each stage to have more than one

successor, including the successor’s length in the structure defined as an structure called

individual in the program.

62

The current problem can be extended considering capacity restrictions or joint

cost. Some mathematical models have been developed considering these restrictions,

facilitating a comparison between the genetic algorithm and their performance. A

comparison between GA and another heuristics developed in this area, such as tabu

search or simulated annealing, can be done to compare their performance.

 63

REFERENCES

• Afentakis, Panayotis. “A Parallel Heuristic Algorithm for Lot-Sizing in Multi-
stage Production Systems”. IIE Transactions, 19 (1), 34-42. March 1987.

• Afentakis, Panayotis and Gavish, Bezalel. “Optimal Lot-Sizing Algorithms for

Complex Product Structures”. Operations Research, 34 (2), March-April 1986.

• Afentakis, Panayotis; Gavish, Bezalel and Karmarkar, Uday. “Computationally
Efficient Optimal Solutions to the Lot-Sizing Problem in Multi-stage Assembly
Systems”. Management Science, 30 (2), 222-239. February 1984.

• Artiles Leon, Noel. “A Pragmatic Approach to Multi-Response Problems Using

Loss Functions”. Quality Engineering, 9(2), 213-220. 1996.

• Askin, Ronald G. and Goldberg, Jeffrey B. Design and Analysis of Lean
Production Systems. John Wiley & Sons, Inc. New York, 2002.

• Axsäter, Sven. “Evaluation of Lot-Sizing Techniques”. International Journal Of

Production Research, 24 (1), 51-57. 1986

• Billington, Peter; Blackburn, Joseph; Maes, Johan; Millen, Robert and
Wassenhove, Luk N. Van. “Multi-Item Lotsizing in Capacitated Multi-stage
Serial Systems”. IIE Transactions, 26 (2), 12-17. March 1994.

• Blackburn, Joseph D. and Millen, Robert A. “An Evaluation of Heuristic

Performance in Multi-stage Lot-Sizing Systems”. International Journal Of
Production Research, 23 (5), 857-866. 1985.

• Blackburn, Joseph D. and Millen, Robert A. “Improved Heuristics for Multi-stage

Requirements Planning Systems”. Management Science, 28 (1), 44-56. January
1982.

• Bomberger, Earl E. “A Dynamic Programming Approach to a Lot Size

Scheduling Problem”. Management Science, 12 (11), 778-784, July 1966.

• Clark, Andrew J. and Scarf, Herbert. “Optimal Policies for a Multi-Echelon
Inventory Problem”. Management Science, 23, 475-490. 1960.

• Crowston, Wallace B.; Wagner, Michael and Williams, Jack F. “Economic Lot

Size Determination in Multi-stage Assembly Systems”. Management Science, 19
(5), 517-527. January 1973.

64

• Dixon, P. S. and Silver, E. A. “A Heuristic Solution Procedure for the Multi-item
Single-level, Limited Capacity, Lot Sizing Problem”. Journal of Operations
Management, 2 (1), 23-29. October 1981.

• Dogramaci, A. Panayiotopoulos, J. E. and Adam N. R. “The Dynamic Lotsizing

Problem for Multiple items under Limited Capacity”. AIIE Transactions, 13 (4),
294-303. December 1981.

• Elmaghraby, Salah E. “The Economic Lot Scheduling Problem (ELSP): Review

and Extensions”. Management Science, 24 (6), 587-598. February 1978.

• Federgruen, Awi; Wagner, M. H. and Henshaw, A. “A Comparison of Exact and
Heuristic Routines for Lot-Size Determination in Multi-stage Assembly
Systems”. AIIE Transactions, 4, 313-317. December 1972.

• Federgruen, Awi and Zheng, Yu-Sheng. “The Joint Replenishment Problem with

General Joint Cost Structures”. Operations Research, 40 (2), 384-403. March-
April 1992.

• Federgruen, Awi; Queyranne, M. and Zheng, Yu-Sheng. “Simple Power-of-two

Policies are Close to Optimal in a General Class of Production/ Distribution
Networks with General Joint Setup Costs”. Mathematics of Operations Research,
17 (4), 951-963. November 1992.

• Gen, Mitsuo and Cheng, Runwei. Genetic Algorithms & Engineering Design.

Wiley Interscience Publication. Canada, 1997.

• Hernández, W. and Süer, Gürsel A. “Genetic Algorithms in Lot Sizing
Decisions”. Proceeding of the Congress on Evolutionary Computation.
Washington, D.C. 1999.

• Jackson, Peter L.; Maxwell, William L. and Muckstadt, John A. “Determining

Optimal Reorder Intervals in Capacitated Production/ Distribution Systems”.
Management Science, 34 (8), 938-958. August 1988.

• Jackson, Peter L.; Maxwell, William L. and Muckstadt, John A. “The Joint

Replenishment Problem with Power-of-two Restrictions”. AIIE Transactions, 17
(1), 25-32. March 1985.

• Khouja, Moutaz; Michalewicz, Zbigniew and Wilmot, Michael. “The Use of

Genetic Algorithms to Solve the Economic Lot Size Scheduling Problem”.
European Journal Of Operational Research, 110 (1), 509-524, 1998.

65

• Lambrecht, M.R. and Vanderveken, H. “Heuristic Procedure for the Single
Operation Multi-item Loading Problem”. AIIE Transactions, 11 (4), 319-326.
DECEMBER 1979.

• Maes, J. and Van Wassenhove, L.N. “A Simple Heuristic for the Multi-item

Single-level Capacitated Lotsizing Problem”. Operations Research Letter, 4 (6),
265-274. April 1986.

• Maxwell, William L. and Muckstadt, John A. “Establishing Consistent and

Realistic reorder Intervals in Production/ Distribution Systems”. Operations
Research, 33 (6), 1316-1341. November-December 1985.

• Mitchell, Joseph S. B. “A 98% Effective Lot-Sizing for One-Warehouse, Multi-

retailer Inventory Systems with Backlogging”. Operations Research, 35 (3), 399-
404. May-June 1987.

• Mitchell, Melanie. An Introduction to Genetic Algorithms. The MIT Press.

Massachusetts, 1998.

• Montgomery, Douglas C. Design and Analysis of Experiments. Fifth Edition. John
Wiley & Sons, Inc. New York, 2001.

• Roundy, Robin. “A 98% Effective Lot Sizing Rule for a Multi-product, Multi-

stage Production/ Inventory System”. Mathematics of Operations Research, 11
(4), 699-727. November 1986.

• Roundy, Robin. “A 98% Effective Integer-Ratio Lot Sizing for One-Warehouse

Multi-Retailer Systems”. Management Science, 31 (11), 1416-1430. November
1985.

• Schönsleben, Paul. Integral Logistics Management. Planning ε Control of

Comprehensive Business Processes. The St. Lucie Press. Florida, 2000.

• Schwarz, Leroy B. “A Simple Continuous Review Deterministic One-Warehouse
N-Retailer Inventory Problem”. Management Science, 19 (5), 555-565. January,
1973.

• Schwarz, Leroy B. and Schrage, Linus. “Optimal and System Myopic Policies for

Multi-Echelon Production/ Inventory Assembly Systems”. Management Science,
21 (11), 1285-1294. July 1975.

66

• Silver, Edward A.; Pyke, David F. and Peterson, Rein. Inventory Management
and Production Planning and Scheduling. John Wiley & Sons. New York, 1998,
Third Edition.

• Simchi-Levi, David; Kaminsky, Philip and Simchi-Levi Edith. Designing and

Managing the Supply Chain. Concepts, Strategies, and Case Studies. Irwin
McGraw-Hill. United States of America, 2000.

• `Szendrovits, Andrew Z. “Comments on the Optimality in Optimal and System

Myopic Policies for Multi-Echelon Production/ Inventory Assembly Systems”.
Management Science, 27 (9), 1081-1087. September 1981.

• Szendrovits, Andrew Z. “Manufacturing Cycle Time Determination for a Multi-

stage Economic Production Quantity Model”. Management Science, 22 (3), 298-
308. November 1975.

• Veinott, Arthur F. Jr. “Minimum Concave-Cost Solution of Leontief Substitution

Models of Multi-Facility Inventory Systems”. Operations Research, 17 (2), 262-
291. 1967.

• Williams, Jack F. “On the Optimality of Integer Lot Size Ratios in “Economic Lot

Size Determination in Multi-stage Assembly Systems”. Management Science, 28
(11), 1341-1349. November 1982.

• Zipkin, Paul H. Foundations of Inventory Management. McGraw-Hill. United

States of America, 2000.

 67

APPENDIX A

ALGORITHMS CODES

A.1 Maxwell and Muckstadt (1985) C ++ code

A.2 Genetic algorithm C++ code

68

A.1. Maxwell and Muckstadt (1985) C ++ code

#include <stdio.h>
#include <conio.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>

#define InputFile "Problem_1005.txt"
#define OUTPUTFILE "Output_1005.xls"
define ArrayBuffer 1005 //nodes ArrayBuffer = n

int TL = 1;

typedef struct CArray
{
 int Elements[ArrayBuffer];
 //each element is a Node... it is an array of nodes or a group of nodes
 int Length;
 int CannotCut;
} CuttedArray;

CuttedArray aG[ArrayBuffer]; //contains x CuttedArray elements

typedef struct NArray
{
 int DirectPredecessors[ArrayBuffer];
 int DirectPredLength;
 int Predecessors[ArrayBuffer];
 int PredLength;

} NodeArray;

NodeArray Nodes[ArrayBuffer]; //contains x CuttedArray elements

 //function prototyping
void ReadData();
double getColumnSum(int Col,CuttedArray aGroup);
int isDone();
void VG(CuttedArray *aVG);
float log2(double x);

//end function prototyping

float Log2TL = log2(TL);
float Log2Sqrt2 = log2(sqrt(2));

double Total_g=0;
int Length_aG=0;

CuttedArray OutputArray[2];
int Length_OutputArray;

float Matrix[ArrayBuffer][ArrayBuffer+4];
int n;
int minvalue;
int change;
int reference;

69

float TimeElapsed, PrintDelay, OperationTime;

void main()
{
 printf("\nPrograma corriendo...");
 clock_t TimeStart1, TimeEnd1, TimeStart2, TimeEnd2;
 float PrintDelay = 0;
 float OperationTime = 0;
 TimeStart1 = clock();

 CuttedArray nullArray;
 int i,j,kk,h;
 CuttedArray TempArray[ArrayBuffer];
 int Length_TempArray = 0;

 for(i=0;i<=ArrayBuffer;i++){nullArray.Elements[i] = 0;}
 //initialize nullArray
 nullArray.CannotCut = 0;
 nullArray.Length = 0;

 TimeEnd1 = clock(); //computing this time
 OperationTime += (float(TimeEnd1)-float(TimeStart1));

 //------------------------Data-------------------------------
 //read the data and put it in Matrix[][]
 ReadData();

 //we already calculate g - it was on ReadData function

 //---------------------Partition-----------------------------
 TimeStart2 = clock();

 for(i=0;i<=n;i++)
 {
 Nodes[i].DirectPredLength = 0;
 Nodes[i].PredLength = 1;
 }

 for(i=0;i<=n;i++)
 {
 aG[0].Elements[i] = n-i;
 //set the first element of the aG array to be : n, n-1,n-2...1

 for (j=0;j<=n;j++)
 {
 if (Matrix[i][j+4] > 0)
 {
 Nodes[j].DirectPredLength += 1;
 Nodes[j].DirectPredecessors[Nodes[j].DirectPredLength - 1] = i;
 break;
 }
 }
 }

 aG[0].Length = n+1;
 aG[0].CannotCut = 0;

70

 Length_aG = 1; //lenghts are on base 1... 1 means one element

 for (i=0;i<=n;i++)
 {
 // in this part it is included the reference node in its predecessors
 Nodes[i].Predecessors[0] = i;

if (Nodes[i].DirectPredLength > 0)
 {
 for (j = 1; j <= Nodes[i].DirectPredLength; j++)
 {
 Nodes[i].PredLength += 1;
 Nodes[i].Predecessors[j] = Nodes[i].DirectPredecessors[j-1];
 }
 }
 j = 1;

 while (Nodes[i].Predecessors[j] > 0)
 {
 for (kk = 0; kk < Nodes[Nodes[i].Predecessors[j]].DirectPredLength;
kk++)
 {
 Nodes[i].PredLength += 1;
 Nodes[i].Predecessors[Nodes[i].PredLength - 1] =
Nodes[Nodes[i].Predecessors[j]].DirectPredecessors[kk];
 }
 j++;

 }

 }//end for i

 //iterate to partitionate the array aG

 while(isDone() == 0)
 {
 //clean up the TempArray vector
 for(i=0;i<Length_TempArray;i++){TempArray[i] = nullArray;}

 Length_TempArray = 0;
 //this means the number of elements in the array-1

 for(i=0;i<Length_aG;i++)
 {
 if(aG[i].CannotCut == 0)
 {
 VG(&aG[i]); //gives an array with 1 or 2 elements in
OutputArray

 for(j=0;j<Length_OutputArray;j++)
 {
 TempArray[Length_TempArray] = OutputArray[j];
 Length_TempArray += 1;
 }

 //clean up OutputArray
 for(h=0;h<Length_OutputArray;h++){OutputArray[h] = nullArray;}

71

 }else{

 //we cannot cut the array so we can pass it directly to the temp array
 TempArray[Length_TempArray] = aG[i];
 Length_TempArray += 1;
 }//end if

 } //end for i

 //assigning the temp array to our aG vector
 for(i=0;i<Length_TempArray;i++){aG[i] = TempArray[i];}
 Length_aG = Length_TempArray;

 }//end while

 double TotalSetup[ArrayBuffer],Totalg[ArrayBuffer];
 float T[ArrayBuffer], MiTL, k[ArrayBuffer], M[ArrayBuffer];
 double Cost[ArrayBuffer], TotalCost = 0;

 for(i=0;i<Length_aG;i++) //for each partition
 {
 TotalSetup[i] = 0;
 Totalg[i] = 0;

 for(j=0;j<aG[i].Length;j++) //for each node in partition
 {
 TotalSetup[i] += Matrix[aG[i].Elements[j]][1];
 Totalg[i] += Matrix[aG[i].Elements[j]][3];
 }

 k[i] = ceil(log2(TotalSetup[i] / Totalg[i]) - Log2Sqrt2 - Log2TL);

 if (k[i] < 0)
 {
 k[i] = 0;
 }

 M[i] = pow(2,k[i]);
 //calculate the Ti
 MiTL = M[i]*TL;
 for(j=0;j<aG[i].Length;j++)
 {
 T[aG[i].Elements[j]] = MiTL;
 Cost[aG[i].Elements[j]] = (Matrix[aG[i].Elements[j]][1] / MiTL) +
(Matrix[aG[i].Elements[j]][3] * MiTL);
 TotalCost += Cost[aG[i].Elements[j]];
 }
 }

 TimeEnd2 = clock();

 OperationTime += (float(TimeEnd2)-float(TimeStart2));

 //print the results
 FILE *Fout;
 Fout = fopen(OUTPUTFILE,"w+");//open the file for output
 fprintf(Fout,"<html><head><title>Results</title><style>td{text-
align:center;}</style></head><body>\n");

72

 //print the time
 TimeElapsed = (OperationTime - PrintDelay)/ CLOCKS_PER_SEC;

fprintf(Fout,"<p>Time for completion:%.3f
TotalCost:%.2f
\n",
TimeElapsed,double(TotalCost));

 fprintf(Fout,"<table border=1 cellpadding=2 cellspacing=0>\n");
 fprintf(Fout,"<tr><td colspan=6 style='font-weight:bold;text-
align:center;background:#C0C0C0;'>Results</td>\n");
 fprintf(Fout,"<tr style='text-align:center;'><td> </td>");
 fprintf(Fout,"<td>k_i</td>");
 fprintf(Fout,"<td>T_i</td>");
 fprintf(Fout,"<td>Setup Cost_i</td>");
 fprintf(Fout,"<td>g_i</td>");
 fprintf(Fout,"<td>Cost_i</td>");
 fprintf(Fout,"\n</tr>\n");
 for(i=0;i<=n;i++)
{ i ki Ti Ai gi Costi

fprintf(Fout,"<tr><td>%d</td><td>%.0f</td><td>%.0f</td><td>%.2f</td><td>%.2f</t
d><td>%.2f</td></tr>\n",i+1,(log(T[i])/log(2)),T[i],float(Matrix[i][1]),float(M
atrix[i][3]),float(Cost[i]));

 fprintf(Fout,"<tr><td colspan=5 style'text-align:right;'><p
align=right>Total Cost:</td><td>%f</td></tr>\n",TotalCost);
 fprintf(Fout,"<tr><td colspan=5 style'text-align:right;'><p
align=right>Total Time:</td><td>%f</td></tr>\n",TimeElapsed);
 fprintf(Fout,"</table>\n");
 fprintf(Fout,"</body>");

 fclose(Fout); //close the file

 printf("\nFin del programa...");
}

/**********************************end main********************************/

double getColumnSum(int Col, CuttedArray aGroup)
{
 double TotalSum=0;
 for(int i=0;i<aGroup.Length;i++)
 {
 TotalSum += Matrix[aGroup.Elements[i]][Col];
 }
 return TotalSum;
}

void ReadData()
{
 int i=0;
 int j;
 FILE *fin;
 clock_t TimeStart3, TimeEnd3;

 if ((fin=fopen(InputFile,"r"))==NULL)
 {
 printf("Warning! %s No data available..\n",fin);
 //getch();
 exit(1);
 }
 Total_g = 0;

73

 while(! feof(fin))
 {
 fscanf(fin,"%f\t%f\t%f",&Matrix[i][0], &Matrix[i][1], &Matrix[i][2]);

 TimeStart3 = clock();
 Matrix[i][3]=Matrix[i][0] * Matrix[i][2] / 2; //reserver the space for g
 Total_g += Matrix[i][3];

 TimeEnd3 = clock();
 OperationTime += (float(TimeEnd3)-float(TimeStart3));

 for(j=1;j<=ArrayBuffer;j++)
 {
 fscanf(fin,"%f",&Matrix[i][j+3]);
 }
 i++;
 }
 n=i-1;

 fclose(fin);
}

int isDone()
{
 for(int i=0;i<Length_aG;i++)
 { //if we cannot cut any of the arrays we already finish ,so the loop
is done.
 //if we find one that can be cut then we are not done so we return isDone =
false which is = 0
 if(aG[i].CannotCut == 0){return 0;}
 }

 //if we are here we didnt find an array that can be cutted, so we are done...
return isDone = true which is = 1
 return 1;
}

void VG(CuttedArray *aVG)
{
 double TotalSum;
 int Cutpoint, wasfound;
 float DG = getColumnSum(1,*aVG) /
 getColumnSum(3,*aVG);
 int i,j,i1;
 float MaxVG = -10000;
 int minvalue = n+1;
 int reference;
 int change;
 clock_t TimeStart4, TimeEnd4, TimeStart5, TimeEnd5, TimeStart6,
TimeEnd6;

 /*******************start debugging*******************/
 TimeStart4 = clock();
 printf("\nEntering in VG. Elements:\n");
 for(i=0;i<aVG->Length;i++){printf(" # %d # ",aVG->Elements[i]);}
 TimeEnd4 = clock();

 /*********************end debugging*******************/
 PrintDelay += (float(TimeEnd4) - float(TimeStart4));

74

 for(i=0;i<aVG->Length;i++)
 {
 if(minvalue > aVG->Elements[i])
 {
 minvalue = aVG->Elements[i];
 }
 }

 //iterate to get the MaxVG... if MaxVG is positive we can cut...else we
can't

 Length_OutputArray = 2;

 for(i=0;i<aVG->Length;i++)
 {
 OutputArray[0].Length = 0;
 OutputArray[1].Length = 0;

 change = 1;
 reference = 0;

 for(i1=0;i1<Nodes[aVG->Elements[i]].PredLength;i1++)
 {
 if(Nodes[aVG->Elements[i]].Predecessors[i1] == minvalue)
 {
 change = 0;
 reference = 1;
 break;
 }
 }

 for(j=0; j<aVG->Length;j++)
 {
 for(i1=0; i1 < Nodes[aVG->Elements[i]].PredLength;i1++)
 {

 if(Nodes[aVG->Elements[i]].Predecessors[i1] == aVG->Elements[j])
 {

OutputArray[change].Elements[OutputArray[change].Length] = aVG-
>Elements[j];

 OutputArray[change].Length++;
 }
 }
 }

 for(i1=0;i1<aVG->Length;i1++)
 {
 wasfound = 0;
 for(j=0;j<OutputArray[change].Length;j++)
 {
 if(aVG->Elements[i1]==OutputArray[change].Elements[j])
 {
 wasfound = 1;
 break;
 }
 }

75

 //if the element wasn't found on the aVG array then we writeit on
OutputArray[1]
 if(wasfound==0)
 {

OutputArray[reference].Elements[OutputArray[reference].Length]=
aVG->Elements[i1] ;

 OutputArray[reference].Length++;
 }
 }

 TotalSum = 0;

 for(j=0;j<OutputArray[1].Length;j++)
 {

TotalSum += (Matrix[OutputArray[1].Elements[j]][1] / DG) -
Matrix[OutputArray[1].Elements[j]][3];

 }

 if(TotalSum > MaxVG)
 {
 MaxVG = TotalSum;
 Cutpoint = aVG->Elements[i];
 }

 TimeStart5 = clock();
 printf("\nCurrent MaxVg=%f",MaxVG);
 TimeEnd5 = clock();
 PrintDelay += (float(TimeEnd5) - float(TimeStart5));
 }

 if(MaxVG > 0)
 {
 //cut the array
 Length_OutputArray = 2; //because we cut it in 2
 OutputArray[0].Length = 0;
 OutputArray[1].Length = 0;

 change = 1;
 reference = 0;

 //cutpoint is the mark of where im going to cut the array, that is where
MaxVG occured
 for(i1=0;i1<Nodes[Cutpoint].PredLength;i1++)
 {
 if(Nodes[Cutpoint].Predecessors[i1] == minvalue)
 {
 change = 0;
 reference = 1;
 break;
 }
 }

 for(j=0; j<aVG->Length; j++)
 {
 for(i1=0; i1 < Nodes[Cutpoint].PredLength;i1++)
 {
 if(Nodes[Cutpoint].Predecessors[i1] == aVG->Elements[j])
 {

76

OutputArray[change].Elements[OutputArray[change].Length] = aVG-
>Elements[j];

 OutputArray[change].Length++;
 }
 }
 }

 OutputArray[0].CannotCut = 0;

 for(i=0;i<aVG->Length;i++)
 {
 wasfound = 0;
 for(j=0;j<OutputArray[change].Length;j++)
 {
 if(aVG->Elements[i]==OutputArray[change].Elements[j])
 {
 wasfound = 1;
 break;
 }
 }

 if(wasfound==0) //if the element wasnt found on the aVG array then we
writeit on OutputArray[1]
 {

OutputArray[reference].Elements[OutputArray[reference].Length]=
aVG->Elements[i] ;

 OutputArray[reference].Length++;
 }
 }

 TimeStart6 = clock();
 printf("\nHubo corte!");
 TimeEnd6 = clock();

 PrintDelay = (float(TimeEnd6)-float(TimeStart6));

 }else{
 //no cut needed
 Length_OutputArray = 1;
 OutputArray[0].Length = 0;

 for(i=0;i<aVG->Length;i++)
 {
 OutputArray[0].Elements[OutputArray[0].Length] = aVG->Elements[i];
 OutputArray[0].Length++;
 }
 OutputArray[0].CannotCut = 1;
 printf("\nNO Hubo corte!");

 } // end if

// we return OutputArray and Length_OutputArray but they were included in this
function...
// as pointer parameters(variables by reference)
}

float log2(double x)
{

77

 return (log10(x) / log10(2));
}

78

A.2 Genetic algorithm C++ code

#include <stdlib.h>
#include <conio.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <iostream.h>

#define DATAINPUTFILE "Problem_10.txt" // to read on ReadData() function
#define INSTANCESINPUTFILE "Instances_33.txt" //to read the on Readinstances()
#define OUTPUTFILE "Output_33.xls" //format: Output_GA_InstanceNumber
#define NUMBEROFINSTANCES 1
#define NUMBEROFREPLICATIONS 1 // Number of replications
#define MAXPOP 515
#define MAXNODE 10
#define MAXGENERATIONS 1050
#define INFINITY 1000000000000.0

//typedef int chromosome[MAXNODE];
typedef struct ind{
int chrom[MAXNODE];
double fitness;
double totalcost;
float ProbSelection;
 }individual;

typedef struct node{
int DirectSuccesor; //succesors[MAXNODE];
 }nodes;

nodes Node[MAXNODE];

float urand(float low, float upper);
void readinstdata();
void readdata();
void CreateInitialPopulation();
void PrintPopulation(individual Population[], int popStart, int popEnd);
void crossover_default(individual *child1, individual *child2);

int TL = 1;
void mutation_fixed(individual *child3);
void Repairing(individual *child);
int NumOfNodes;
int PopSize;
int NumberOfChildren;
int ReplicationCounter;
int InstanceCounter;

void computefitness(individual *ActualIndividual);
individual tournamentselect();

float pcrossover;
float pmutation;

float MaxiPop[NUMBEROFINSTANCES+1];

79

float MaxiNode[NUMBEROFINSTANCES+1];
float Probcrossover[NUMBEROFINSTANCES+1];
float Probmutation[NUMBEROFINSTANCES+1];
int LastChange_GenNumber;
int CurrentGeneration;

float setupcost[MAXNODE];
float demand[MAXNODE];
float holdingcost[MAXNODE];
float MATRIX[MAXNODE][MAXNODE];
float avecheloncost[MAXNODE];
float pcycletime;
float rcycletime[MAXNODE];
float OperationTime;
float PrintDelay;
float InitialTime;
float TimeElapsed;

FILE *fin, *finstances, *fout;

individual oldpop[MAXPOP+MAXPOP+MAXPOP]; //initial population (mu)
individual newpop[MAXPOP]; //population after selection (lambda)
individual Best, Best_Feasible; //

int main()
{
 clock_t TimeStart1, TimeEnd1, TimeStart2, TimeEnd2;

 InitialTime = 0;

 int i,i1;
 double besttotalcost;
 double bestfeasibletotalcost;
 float randomvalue;
 int iCurrentRow; //used to format the excel output
 individual child, child1, child2, child3;

 //randomize();
 //srand(21637913); //introduce a seed to replicate the same results

 readinstdata(); // for each instance read MaxiPop, MaxiNode, Probcrossover,
Probmutation,

 for(InstanceCounter = 1; InstanceCounter <= NUMBEROFINSTANCES;
InstanceCounter++)
 {
 PopSize = MaxiPop[InstanceCounter];
 NumOfNodes = MaxiNode[InstanceCounter];
 pcrossover = Probcrossover[InstanceCounter];
 pmutation = Probmutation[InstanceCounter];

 // open the output file and print instance information
 fout = fopen(OUTPUTFILE,"a");

 //row just for formatting
 if(InstanceCounter == 1)
 {
 fprintf(fout,"<table><tr><td style='background:#c0c0c0;font-
size:medium;'>Output file : GA</td></tr></table>\n");
 }

80

 //table that holds the whole page
 fprintf(fout,"<table border=2 cellpadding=0 cellspacing=1
style='border:2px outset black;'><tr><td>");

 fprintf(fout,"<table border=1 cellpadding=0 cellspacing=0>");
 fprintf(fout,"<tr><td style='text-align:center;font-
size:medium;background:#c0c0c0;;'>");
 fprintf(fout,"Instance %d of
%d",InstanceCounter,NUMBEROFINSTANCES);
 fprintf(fout," Pcross=%3f",pcrossover);
 fprintf(fout," Pmutation=%3f",pmutation);
 fprintf(fout," Max Gen=%d",MAXGENERATIONS);
 fprintf(fout,"</td></tr>");

 // 1) Get costs and relationship data
 readdata(); //demand, setupcost, holdingcost, MATRIX[i][j] showing
relationship between nodes

 for(ReplicationCounter = 1; ReplicationCounter <= NUMBEROFREPLICATIONS;
ReplicationCounter++)
 {

 TimeStart1 = clock();
 OperationTime = 0;
 PrintDelay = 0;
 TimeElapsed = 0;
 CurrentGeneration = 0;
 LastChange_GenNumber = 0;

 Best.totalcost = 0;
 Best_Feasible.totalcost = 0;
 Best.fitness = 0;
 Best_Feasible.fitness = 0;

 //set default of Best
 for(i=0;i<NumOfNodes;i++)
 {
 Best.chrom[i] = 10;
 Best_Feasible.chrom[i] = 10;

 besttotalcost = double(double(setupcost[i]/(TL*pow(2,Best.chrom[i])))
 + double(avecheloncost[i]*pow(2,Best.chrom[i])));
 bestfeasibletotalcost =
double(double(setupcost[i]/(TL*pow(2,Best_Feasible.chrom[i])))
 +
double(avecheloncost[i]*pow(2,Best_Feasible.chrom[i])));
 Best.totalcost += besttotalcost;
 Best_Feasible.totalcost += bestfeasibletotalcost;

 Best.fitness += 1/besttotalcost;
 Best_Feasible.fitness += 1/bestfeasibletotalcost;

 }

 // 2) Create the initial population. Evaluation is included.
 CreateInitialPopulation();

 // Syntax: PrintPopulation(individual Population[], int popStart, int
popEnd). Debugging.

81

 TimeStart2 = clock();

 //PrintPopulation(oldpop, 0, PopSize);

 TimeEnd2 = clock();
 PrintDelay = (float(TimeEnd2)-float(TimeStart2));

 //Iterate until terminal condition(s) is(are) reached.

 while(CurrentGeneration < MAXGENERATIONS)
 {
 NumberOfChildren = 0;

 // 3) Crossover
 for(i1=0; i1 < PopSize; i1++)
 {
 randomvalue = urand(0,1);
 if(randomvalue <= pcrossover)
 {
 //syntax: void crossover_default(individual &child1,
individual &child2)
 crossover_default(&child1, &child2);
 NumberOfChildren = NumberOfChildren + 1;
 oldpop[PopSize+NumberOfChildren]=child1;
 Repairing(&oldpop[PopSize+NumberOfChildren]);
 computefitness(&oldpop[PopSize+NumberOfChildren]);

 NumberOfChildren = NumberOfChildren + 1;
 oldpop[PopSize+NumberOfChildren]=child2;
 Repairing(&oldpop[PopSize+NumberOfChildren]);
 computefitness(&oldpop[PopSize+NumberOfChildren]);
 }

 // 4) Mutation
 randomvalue = urand(0,1);
 if(randomvalue <= pmutation)
 {
 //syntax: mutation_default(individual &child3)
 mutation_fixed(&child3);
 NumberOfChildren = NumberOfChildren + 1;
 oldpop[PopSize+NumberOfChildren]=child3;
 Repairing(&oldpop[PopSize+NumberOfChildren]);
 computefitness(&oldpop[PopSize+NumberOfChildren]);
 }
 }//end for i1

 // 5) Select individuals (new population) Tourselect();

 newpop[0] = Best_Feasible;

 for(i=1;i<PopSize;i++)
 {
 newpop[i] = tournamentselect();
 }

 for(i=0;i<PopSize;i++)
 {
 oldpop[i] = newpop[i];
 }

82

 // 6) Display current status on screen

 TimeStart2 = clock();
 clrscr();
 printf("\nInstance %d of %d",InstanceCounter, NUMBEROFINSTANCES);
 printf("\nGen %d of %d", CurrentGeneration, MAXGENERATIONS);
 printf("\nRep %d of %d", ReplicationCounter, NUMBEROFREPLICATIONS);
 printf("\nPopSize=%d PCross=%f PMut=%f",PopSize, pcrossover,
pmutation);
 printf("\nLast Gen changed: %d",LastChange_GenNumber);
 printf("\nBest_Feasible cost= %f", Best_Feasible.totalcost);
 //printf("\nBest cost= %f", Best.totalcost);

 TimeEnd2 = clock();
 PrintDelay = (float(TimeEnd2)-float(TimeStart2));

 //add generation
 CurrentGeneration++;

 }//end while

 // 7) Print results to file

 TimeEnd1 = clock();
 OperationTime +=(float(TimeEnd1) - float(TimeStart1));

 //TimeElapsed = (OperationTime + InitialTime - PrintDelay)/
CLOCKS_PER_SEC;
 TimeElapsed = (InitialTime + OperationTime - PrintDelay) / CLK_TCK;

 fprintf(fout,"<tr><td>");
 fprintf(fout,"Replication %d of %d", ReplicationCounter,
NUMBEROFREPLICATIONS);
 fprintf(fout," Gen=%d",CurrentGeneration);
 fprintf(fout," Last Gen changed=%d",LastChange_GenNumber);
 fprintf(fout,"<Table border=0 cellpadding=2 cellspacing=0>");
 fprintf(fout,"<tr><td>Total Cost=</td><td>%2f</td>",
Best_Feasible.totalcost);
 fprintf(fout,"<td rowspan=2>Chrom = ");

 for(i1=0;i1<NumOfNodes;i1++)
 {
 fprintf(fout,"%d ",Best_Feasible.chrom[i1]);
 }

 fprintf(fout,"</td></tr>");
 fprintf(fout,"<tr><td>Total
Time=</td><td>%6f</td></tr></table>", TimeElapsed);
 fprintf(fout,"</td></tr>");

 } //end for ReplicationCounter

 //close the table of the replications
 fprintf(fout,"</table>");

 //write the summary
 fprintf(fout,"</td><td><table border=1 cellpadding=0 cellspacing=0
style='border-style:2px outset #c0c0c0;'>");
 fprintf(fout,"<tr><td colspan=2 style='text-align:center;font-
size:medium;background:#c0c0c0;'>Data</td></tr>");

83

 iCurrentRow = (InstanceCounter-1) * (4 + 3*(NUMBEROFREPLICATIONS-1)) + 4;
 fprintf(fout,"<tr style='font-
weigth:bold;background:#c0c0c0'><td>Cost</td><td>Time</td></tr>");

 for(i1=1; i1 <= NUMBEROFREPLICATIONS;i1++)
 {
 fprintf(fout,"<tr><td>=B%d</td><td>=B%d</td></tr>", iCurrentRow,
iCurrentRow+1);
 iCurrentRow = iCurrentRow + 3;
 }

 fprintf(fout,"</table>");//closes the data table

 //summary table
 fprintf(fout,"</td><td><table border=2 cellpadding=0 cellspacing=0
style='border-style:2px outset #c0c0c0;'>");
 fprintf(fout,"<tr><td colspan=5 style='text-align:center;font-
size:medium;background:#c0c0c0;'>Summary for Instance
%d</td></tr>",InstanceCounter);
 fprintf(fout,"<tr
style='background:#c0c0c0;'><td> </td><td>Mean</td><td>Std</td><td>Max</td
><td>Min</td></tr>");

 iCurrentRow = (InstanceCounter - 1) * (4 + 3*(NUMBEROFREPLICATIONS-1)) + 4;
 fprintf(fout,"<tr><td style='background:#c0c0c0;'>Total
Cost</td><td>=average(D%d:D%d)</td>", iCurrentRow, iCurrentRow +
NUMBEROFREPLICATIONS - 1);
 fprintf(fout,"<td>=stdev(D%d:D%d)</td>", iCurrentRow, iCurrentRow +
NUMBEROFREPLICATIONS - 1);
 fprintf(fout,"<td>=max(D%d:D%d)</td>", iCurrentRow, iCurrentRow +
NUMBEROFREPLICATIONS - 1);
 fprintf(fout,"<td>=Min(D%d:D%d)</td></tr>", iCurrentRow, iCurrentRow +
NUMBEROFREPLICATIONS - 1);

 fprintf(fout,"<tr><td style='background:#c0c0c0;'>Total
Time</td><td>=average(E%d:E%d)</td>", iCurrentRow, iCurrentRow +
NUMBEROFREPLICATIONS - 1);
 fprintf(fout,"<td>=stdev(E%d:E%d)</td>", iCurrentRow, iCurrentRow +
NUMBEROFREPLICATIONS - 1);
 fprintf(fout,"<td>=max(E%d:E%d)</td>", iCurrentRow, iCurrentRow +
NUMBEROFREPLICATIONS - 1);
 fprintf(fout,"<td>=Min(E%d:E%d)</td></tr>", iCurrentRow, iCurrentRow +
NUMBEROFREPLICATIONS - 1);
 fprintf(fout,"</table>");//closes the summary table

 //close the table that holds the page
 fprintf(fout,"</td></tr></table>");

 //close the output file
 fclose(fout);

 } //end for InstanceCounter

 printf("\n\nDone :D");
 getch();
} //end main function

/***** FINISH *****************/

void readinstdata()

84

{
 int i=1;
 if((finstances=fopen(INSTANCESINPUTFILE,"r"))==NULL)
 {
 printf("Warning! %s No instances data available..\n",finstances);
 getch();
 exit(1);
 }

 while(! feof(finstances))
 {
 fscanf(finstances,"%f\t%f\t%f\t%f",&MaxiPop[i], &MaxiNode[i],
&Probcrossover[i],&Probmutation[i]);
 i++;
 }

 fclose(finstances);
}

void readdata()
{
 int i=0;
 int j;
 clock_t TimeStart2, TimeEnd2;

 if ((fin=fopen(DATAINPUTFILE,"r"))==NULL)
 {
 printf("Warning! %s No input data available..\n",fin);
 getch();
 exit(1);
 }

 while(! feof(fin))
 {
 fscanf(fin,"%f\t%f\t%f",&demand[i], &setupcost[i], &holdingcost[i]);

 TimeStart2 = clock();

 avecheloncost[i] = 0.5 * demand[i] * holdingcost[i];

 TimeEnd2 = clock();

 InitialTime += (float(TimeEnd2)-float(TimeStart2));

 for(j=0;j<NumOfNodes;j++)
 {
 fscanf(fin,"%f",&MATRIX[i][j]);
 }
 i++;
 }

 fclose(fin);

 //predecesors calculation wa

 TimeStart2= clock();

 for(i=0;i<NumOfNodes;i++)
 {

85

 for (j=0;j<NumOfNodes;j++)
 {
 if (MATRIX[i][j]>0)
 {
 Node[i].DirectSuccesor = j;
 break;
 }
 }
 }

 Node[0].DirectSuccesor = 0;

 TimeEnd2 = clock();
 InitialTime += (float(TimeEnd2)-float(TimeStart2));
}

void CreateInitialPopulation()
{
 int i,j,end;
 float Lowk;

 end = (int)(PopSize /2);

 for(j=0;j<end;j++)
 {
 for(i=0;i<NumOfNodes;i++)
 {
 if (i == 0)
 {
 oldpop[j].chrom[i] = urand(0, 5);
 }else{
 Lowk = oldpop[j].chrom[Node[i].DirectSuccesor];
 oldpop[j].chrom[i] = (int)(urand(Lowk ,Lowk + 5));
 }
 }

 computefitness(&oldpop[j]);

 }

 for (j=end;j<PopSize;j++)
 {
 for(i=0;i<NumOfNodes;i++)
 {
 oldpop[j].chrom[i] = urand(0 , 5);
 }
 computefitness(&oldpop[j]);
 }
}

void PrintPopulation(individual Population[], int popStart, int popEnd)
{
 int i,j;
 FILE *fout_pop;

 fout_pop=fopen("initpop.html","a");
 fprintf(fout_pop,"\n<hr><hr><hr>\n"); //write a separation line

 for(i=popStart;i<popEnd;i++)

86

 {
 fprintf(fout_pop,"
%d) Chrom = ",i);
 for(j=0;j<NumOfNodes;j++)
 {
 fprintf(fout_pop,"%d %s",Population[i].chrom[j],",");
 }
 fprintf(fout_pop,"Fitness = %f \n",Population[i].fitness);
 }
 fclose(fout_pop);
}

void computefitness(individual *ActualIndividual)
{
 int i;
 float po2;
 double totalcost = 0;
 double currentcost;
 double fitness = 0;

 for(i=0;i<NumOfNodes;i++)
 {
 po2 = pow(2,ActualIndividual->chrom[i]);
 pcycletime = TL*po2;
 currentcost = double(double(setupcost[i]) / pcycletime
 + double(avecheloncost[i]) * pcycletime);
 totalcost += currentcost;
 fitness += 1 / currentcost;
 }

 ActualIndividual->totalcost = totalcost;
 ActualIndividual->fitness = fitness;

 //Best_Feasible
 if(totalcost < Best_Feasible.totalcost)
 {
 for(i=0;i<NumOfNodes;i++)
 {
 Best_Feasible.chrom[i] = ActualIndividual->chrom[i];
 }
 Best_Feasible.totalcost = totalcost;
 Best_Feasible.fitness = fitness;

 //store when was last change of the feasible Best
 LastChange_GenNumber = CurrentGeneration;
 }
}

void crossover_default(individual *child1, individual *child2)
{
 int i, sd, jcross1;
 individual parent1,parent2;

 sd=(int)urand(0,PopSize);
 parent1 = oldpop[sd];
 parent2 = tournamentselect();

 jcross1=(int)urand(1,(int)NumOfNodes);

 for (i=0;i<NumOfNodes;i++)
 {

87

 if(i>=0 && i<jcross1)
 {
 child1->chrom[i]=parent2.chrom[i];
 child2->chrom[i]=parent1.chrom[i];
 }else{
 child1->chrom[i]=parent1.chrom[i];
 child2->chrom[i]=parent2.chrom[i];
 }
 }
}

void mutation_fixed(individual *child3)
{
 int i;
 int Ksubs, Lowsubs;
 int RandomIndividual = (int)urand(0,PopSize);
 int cutpoint;

 cutpoint = (int)urand(0,NumOfNodes);

 if(cutpoint == 0)
 {
 Ksubs = urand(0 , 2);
 }else{
 Lowsubs =
oldpop[RandomIndividual].chrom[Node[cutpoint].DirectSuccesor];
 Ksubs = (int)urand(Lowsubs, Lowsubs + 2);
 }

 oldpop[RandomIndividual].chrom[cutpoint] = Ksubs;

 for(i=0;i<NumOfNodes;i++)
 {
 child3->chrom[i]= oldpop[RandomIndividual].chrom[i];
 }
}

void Repairing(individual *child)
{
 int i , Low;

 for(i=1;i<NumOfNodes;i++)
 {
 if(child->chrom[i]<child->chrom[Node[i].DirectSuccesor])
 {
 Low = child->chrom[Node[i].DirectSuccesor];
 child->chrom[i] = urand(Low,Low + 5);
 }
 }
}

individual tournamentselect()
{
 int i,j;
 individual selected;
 selected.fitness = INFINITY;

 for(i=0;i<2;i++)
 {
 j = (int) urand(0,PopSize);

88

 if(oldpop[j].fitness < selected.fitness)
 {
 selected = oldpop[j];
 }
 }
 return selected;
}

float urand(float lower, float upper)
{
 float u;
 u=(float)(lower+(upper-lower)*((float) rand()/(float) RAND_MAX));
 if (u==lower || u==upper)
 {
 u=urand(lower,upper);
 }
 return u;
}

 89

APPENDIX B

PROBLEM INSTANCES

B.1.Problem data generator code (Matlab 6.5)

B.2 Example problem

90

B.1 Problem Data Generator code (Matlab 6.5)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DATA INPUTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Problem Size
%ProblemSize = input('Problem Size: ');
ProblemSize = 5000;

%Demand parameters
%min_demand = input('Minimum demand parameter: ');
min_demand = 1;

%max_demand = input('Maximum demand parameter: ');
max_demand = 200;

%Setup cost parameters
%min_setup = input('Minimum Setup costs parameter: ');
min_setup = 5;

%max_setup = input('Maximum Setup costs parameter: ');
max_setup = 500;

%Holding cost parameters
%min_holding = input('Minimum Holding costs parameter: ');
min_holding = 1;

%max_holding = input('Maximum Holding costs parameter: ');
max_holding = 2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

filename = ['Problem_' num2str(ProblemSize) '.txt'];

demand = min_demand + rand(ProblemSize,1)*(max_demand - min_demand);
SetupCost = min_setup + rand(ProblemSize,1)*(max_setup - min_setup);
HoldingCost = min_holding + rand(ProblemSize,1)*(max_holding - min_holding);

% Relationship Matrix
Matrix = zeros(ProblemSize);

% i represent the row number and j the column number
p = rand(ProblemSize,1);
for i=1:ProblemSize
 Probability = 1/(i-1);
 for j=1:ProblemSize
 if j < i
 if p(i,1) < Probability*j %&& sum(Matrix(i,:),1) == 0
 Matrix(i,j) = 1;
 break; %sale del for j
 end %if
 end %if
 end %for j
 r=i
end %for i

%%%%%%%%%%%%%%%%%%%%%%%%%% write to a file %%%%%%%%%%%%%%%%%%%%%%%%%%%
output = fopen(filename,'w');

for i=1:ProblemSize

91

 fprintf (output, '%.0f\t %.0f\t %.2f\t', demand(i,1), SetupCost(i,1),
HoldingCost(i,1));

 for j=1:ProblemSize
 if j < ProblemSize
 fprintf (output, '%.0f\t' , Matrix(i,j));
 elseif i == ProblemSize
 fprintf (output, '%.0f' , Matrix(i,j));
 else
 fprintf (output, '%.0f\n' , Matrix(i,j));
 end
 end
end

fclose (output);
disp('Fin del proceso')

B.2. Example Problem
Problem Size: 10

Demand Setup cost Holding cost

176 360 1.13
168 411 1.15
133 285 1.78
46 233 1.13
118 420 1.23
110 224 1.18
62 249 1.91
136 432 1.51
2 36 1.50
9 89 1.75

Relationship Matrix

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

It is not possible to show the data of problem examples with 1005 and 2000 nodes,
because of the limitations on space, but they can be generated using the problem data
generator code shown in Appendix B1.

92

APPENDIX C

RESIDUALS ANALYSIS

C.1 Residuals analysis for cost response in the GA parameters experiment

C.2 Residuals analysis for time response in the GA parameters experiment

93

C.1 Residuals analysis for cost response in the GA parameters experiment

To verify randomness is presented a plot of residuals versus the order of the data

in Figures C.1. It does not show a tendency in the data, considering that this condition is

satisfied.

Residual Plot for Costo

re
si

du
al

row number

-2

-1

0

1

2
(X 1000)

0 10 20 30 40

Figure C.1 Residuals plot for cost versus the order of the data

Another assumption is the equal variance. Only the most important factors

considered in the regression model are included.

94

Means and 95.0 Percent LSD Intervals

Generations

C
os

to

50 475 1000
317

317.5

318

318.5

319

319.5

320
(X 1000)

Figure C.2 Mean and 95 percent intervals plot for cost versus generations

Means and 95.0 Percent LSD Intervals

Problem

C
os

to

10 505 1000
0

2

4

6

8
(X 100000)

Figure C.3 Mean and 95 percent intervals plot for cost versus problem size

95

C.2 Residuals analysis for time response in the GA parameters experiment

 The same analysis done for cost response is shown for time response.

5 10 15 20 25 30

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Observation Order

R
es

id
ua

l

Residuals Versus the Order of the Data
(response is time)

Figure C.4 Residuals plot for time versus the order of the data

Means and 95.0 Percent LSD Intervals

Crossover

Ti
m

e

0.5 0.75 1
-20

180

380

580

780

980

Figure C.5 Mean and 95 percent intervals plot for time versus crossover

96

Means and 95.0 Percent LSD Intervals

Generations

Ti
m

e

50 475 1000
-300

0

300

600

900

1200

Figure C.6 Mean and 95 percent intervals plot for time versus generations

Means and 95.0 Percent LSD Intervals

Mutation

Ti
m

e

0.01 0.255 0.5
0

200

400

600

800

Figure C.7 Mean and 95 percent intervals plot for cost versus mutation

97

Means and 95.0 Percent LSD Intervals

Problem

Ti
m

e

10 505 1000
-300

0

300

600

900

1200

Figure C.8 Mean and 95 percent intervals plot for time versus the problem size

