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Major Department: Electrical and Computer Engineering

Target detection is an essential component in defense, security and medical

applications of hyperspectral imagery. Structured and unstructured models are used

to model variability of spectral signatures for the design of information extraction

algorithms. In structured models, spectral variability is modeled using different

geometric representations. In linear approaches, the spectral signatures are assumed

to be generated by the linear combination of basis vectors. The nature of the

basis vectors and its allowable linear combinations define different structured models

such as linear subspaces, convex polyhedral cones, and convex hulls. This research

investigates the use of these models to describe the background of hyperspectral

images, and study the performance of target detection algorithms based on these

models. We also study training methods and estimation of the model order for each

approach. The results show that the model order is a critical parameter and that

when good background target contrast exist, all models perform well.
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Departamento: Ingenieŕıa Eléctrica y Computadoras

Detección de objetivos es un componente esencial en aplicaciones de imágenes

hiperespectrales en defensa, seguridad y medicina. Para modelar la variabilidad de

las firmas espectrales en el diseño de algoritmos de extracción de información, se

usan modelos estructurados y no estructurados. En modelos estructurados, la varia-

bilidad espectral es modelada usando diferentes representaciones geométricas. En

el enfoque lineal, se asume que las firmas espectrales son generadas por una combi-

nación lineal de vectores de la base de la imagen. La naturaleza de estos vectores, y

sus respectivas combinaciones lineales definen diferentes modelos estructurados tales

como los sub-espacios lineales, los conos poliédricos, y las envolturas convexas. En

esta investigación se estudia el uso de modelos para describir el fondo de las imágenes

hiperespectrales y se evalúa el desempeño de los algoritmos de detección de objetivos

basados en estos modelos. Además, se estudian los métodos de entrenamiento y de

estimación del orden del modelo para cada enfoque. Los resultados muestran que el

orden del modelo es un parámetro cŕıtico y que cuando hay buen contraste entre el

objetivo y el fondo, todos los modelos se desempeñan satisfactoriamente.
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Chapter 1

Introduction

1.1 Motivation

Hyperspectral imagery (HSI) may be defined as an image data collected simul-

taneously in dozens or hundreds of narrow, adjacent spectral bands. These measure-

ments make it possible to derive a continuous spectrum for each image cell, as shown

in Figure 2–1. With this continuous spectrum or spectral signatures, it is possible

to discriminate between materials or identify different objects. Hyperspectral tech-

nologies have been developed to add information content of the spectral dimension.

While few materials can be distinguished in a panchromatic imagery, single bands,

or multispectral imagery, which contains from tens of bands, most materials have

somewhat unique characteristics across the electromagnetic spectrum in a HSI data,

which contains hundreds to thousands of bands. HSI data have many applications

including classification, anomaly detection, and target detection. Classification is

the process of assigning a class to each pixel within a scene. Anomaly detection is

when the target model is unknown, and locates pixels in the scene that are different

from all other pixels. Target detection attempts to locate pixels containing a target

material of known spectral composition.

Searching for the presence of a specific material over a large area (target de-

tection) has practical difficulties. The prospect of using remotely sensed HSI to

perform this task in an accurate and timely manner has driven the research commu-

nity to generate many different types of target detection algorithms using HSI. Most

1



2

of these algorithms contain a model of the background, also called clutter, which is

used to suppress its appearance and enhance the contrast of potential targets. Some

detectors use structured backgrounds, which are based on geometric models. Other

detectors can model the background with unstructured representations, which are

based on a statistical distribution. In this work, we focus in characterization of the

background with structured models.

Some studies on comparison of basis-vectors methods that involve structured

models are reported in (Bajorski et al., 2004) and (Bajorski and Ientilucci, 2004).

Three basis-vector selection methods (Singular Value Decomposition (SVD), Max-

imum Distance (MaxD) and Pixel Purity Index (PPI)) were used to generate low

dimensional representation of the target and background spaces in hyperspectral

imagery and are applied to target detection. The main conclusion of these studies is

that the detector performance is highly dependent on the data, the number of basis

vectors and the method used to generate those basis vectors.

The work shown in this thesis involved the study of three geometric approaches

for modeling of hyperspectral imagery and present detection results that take into

consideration the geometrical structure of the model under consideration. The first

approach is a linear subspace model, which restricts the spectrum vector variability

to be contained in a low dimensional subspace as described by Healey et al. (Healey

and Slater, 1999; Thai and Healey, 2002). In their studies, the dimension of the

subspace and an orthonormal basis for the subspace is extracted from a SVD of the

training samples.

The last two modeling approaches are based on variants of the Linear Mixing

Model (LMM) (Adams et al., 1993). In the second model, the spectral signatures

are restricted to be in a convex cone; e.g. the polyhedral cone generated by the

endmembers (van den Hof and van Schuppen, 1994, 1999). The Positive Matrix
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Factorization (PMF) algorithm (Lee and Seung, 1999) is used to retrieve the end-

members (or frame (van den Hof and van Schuppen, 1994, 1999)) that generate the

convex cone. In this model, the background spectra is constrained to be a positive

linear combination of endmembers. In the third approach, the signatures are con-

strained to be in the convex hull (or simplex (Boardman, 1993, 1995)) generated by

the endmembers. To obtain the endmembers for the convex hull, the constrained

PMF (cPMF) algorithm (Masalmah, 2007) and the MaxD algorithm (Schott et al.,

2003) are used. We observed that in addition to the positivity constraint, the convex

hull model adds the sum-to-one constraint to the coefficients of the linear combina-

tion. Figure 2–6 illustrates pictorially the three models. With two-dimensional data

embedded in a three-dimensional space. Section 2.2 describes these three geometric

models in more detail. The detection performance of the Orthogonal Subspace Pro-

jector (OSP) detector (Harsanyi and Chang, 1994), and modified versions of OSP

based on oblique projections are used to compare the geometric models for target

detection applications.

1.2 Objectives

1.2.1 General Objective

Study three structured models that involve linear models for the characteriza-

tion of background in target detection using hyperspectral imagery and the perfor-

mance of target detection algorithms based on them.

1.2.2 Specific Objectives

• Study different structured models such as linear subspaces, polyhedral cones, and

convex hulls, in order to understand which one better models natural variability

of the data.

• Study different detectors based on orthogonal and oblique projections for linear

subspace, polyhedral cones, and convex hulls, and evaluate their performance.
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• Determine the dimensionality of the background subspace, or number of endmem-

bers, using different methods reported in the literature.

• Carry out diverse experiments with different images, allowing to evaluate the per-

formance of used target detection algorithms.

1.3 Contributions of the Work

Our main contribution is the evaluation of different methods for structured

models of hyperspectral imagery for target detection. We study structured mod-

els based on linear subspace, convex hull and convex polyhedral cones, and their

application to target detection.

Second, we study different methods based on linear dimensionality of hyper-

spectral imagery in order to estimate the number of background endmembers, or

model order. Experiments showed that the dimension estimated does not necessarily

correspond to the model order where the best performance is reached. In addition,

the results showed that the performance of target detection algorithms is closely re-

lated to the model order. Depending on the type of structured model, underfitting

or overfitting causes reduction in detection performance in a more or less significant

favor. Results are presented for different methods, using simulated and real data.

Third, different training methods are studied for the background characteriza-

tion: SVD is used for linear subspace, PMF is used for convex polyhedral cone, and

cPMF and MaxD for convex hull.

Fourth, we have proposed to use detectors based on orthogonal and oblique

projections for the three different structured models, linear subspace, convex hull

and convex polyhedral cone. In addition, we have used ROC curves to evaluate

the performance of these detectors. We also showed an evaluation of the proposed

algorithm with different hyperspectral imagery.

The results showed that the performance of the detector is sensitive to the

number of endmembers. Underfitting or overfitting degrade detector performance.
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Moreover, based on the Forest Radiance scenes, the PMF and cPMF algorithms

demonstrated that are more stable in terms of probability of detection, compared

to the SVD and MaxD algorithms.

With the data used, the detectors based on orthogonal and oblique projec-

tions for convex polyhedral cone and convex hull gave similar performance, but the

oblique projections required larger number of endmembers to have a comparable

performance.

1.4 Thesis Overview

Chapter 2 presents the background and previous work around the concept of

hyperspectral imagery, spectral variability modeling. In this research, the spectral

variability was modeled using linear subspaces, convex polyhedral cone, and convex

hull. This chapter also describes the different sequentially connected components

of the target detection algorithms. Also, target detection using structured mod-

els, and the Receiver Operating Characteristics (ROC) curve as the performance

measurement for target detection algorithms are described.

Chapter 3 shows the approach for target detection algorithms using the struc-

tured models proposed in this work. Different methods are discussed to estimate

the number of endmembers, for the three structured models. Moreover, the chapter

describes in detail the training methods, and the detectors used for each structured

model based on orthogonal and oblique projections. Real data of hyperspectral

imagery were used in this work. The Forest Radiance I data was collected with

the airborne HYDICE sensor. The other hyperspectral image was acquired by the

airborne HyMap sensor over Cooke City, USA. Detection results are presented in

Chapter 4. Finally, the Chapter 5 shows the conclusions of this research and sug-

gestions for future work.



Chapter 2

Background and Literature Review

This chapter presents fundamental concepts, and the review of previous work

related to this research topic. The concept of hyperspectral imagery is described,

as well as how to model spectral variability, linear subspaces, convex polyhedral

cone, and convex hull used for structured models, spectral detection algorithms,

and performance measurements for target detection algorithms.

2.1 Image Spectroscopy

The basic principle of image spectroscopy is that materials reflect, absorb, and

emit electromagnetic radiation at specific wavelengths, in distinctive patterns related

to their molecular composition and shape. Imaging spectroscopy or hyperspectral

imagery can be defined as the image acquisition of a scene or object, where each pixel

in the image has a spectral radiance (energy distribution in frequency or wavelength),

given by the amount of radiation arriving to the sensor (Manolakis et al., 2003). The

spectra give information about the energy-matter iteration. Figure 2–1 shows an

example of a spectroscopic image. Spatial and spectral information is represented

by a cube, whose face is the spatial coordinates (x,y), and the depth is spectral

information (bands).

Multispectral sensors acquire images simultaneously at separate non-contiguous

wavelength intervals or bands in the electromagnetic spectrum. They typically

record tens of bands, or so, with varying bandwidths. Improvements in remote

sensing imaging technology are related to improving spatial and spectral resolution.

6
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Hyperspectral images have in general hundreds of bands, and a narrow band-

width of few tens of nanometers, or less, for Visible (VIS) and Near Infrared (NIR).

Figure 2–2 illustrates the difference between multispectral and hyperspectral imag-

ing.

Figure 2–1: Hyperspectral concept illustration.

Figure 2–2: Types of spectral sampling in spectral imaging, (Resmini, 2005).

Examples of hyperspectral scanners are the 224-band Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) developed by the NASA Jet Propulsion Laboratory

(Kruse, 1999), the 210-band Hyperspectral Digital Imagery Collection Experiments

(HYDICE) developed by the Naval Research Laboratory (Kruse, 1999), and the
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220-band HYPERION satellite sensor developed by NASA (Pearlman et al., 2000).

Table 2–1 summarizes the specifications of these hyperspectral sensors.

Table 2–1: Specifications of hyperspectral sensors.

Specification AVIRIS HYDICE HYPERION

Spectral Range (nm) 400 to 2500 400 to 2500 400 to 2500

Spectral Resolution (nm) 10 10 10

Spectral Samples (bands) 224 210 220

Spatial Resolution (meters) 20 1 to 4 30

Radiometric Resolution (bits) 12 16 16

2.2 Geometrical Concepts for Structured Background Modeling

In this work, the background subspace of the image is characterized by three

different structured models mentioned in Section 2.3. Therefore, to understand these

structured models, we need to explain the definitions of linear subspace, convex

polyhedral cone and convex hull.

In general, radiance measurements are given by vectors with real entries that

represent the magnitude of the electromagnetic radiation received by the sensor.

The magnitude is along discrete values of the wavelength (λ) or bands (p). In other

words, a finite number of elements.

If the dimension of the vectors is p, these vectors live in the Euclidean vector

space <p. Note that <p is the biggest set where the radiance vectors are contained,

but the image vectors can also be represented by subset of this vector space. For

example, the radiance vector coefficients are always positive values or zero. So, a

new subset or subspace can be defined to represent the image domain.

2.2.1 Linear Subspace

Large areas can be covered by a pixel in remote sensing, given by the Field of

View - FOV - of the sensor. Several objects can be covered by this area, and the
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radiance vector per pixel is the result of the contribution of the radiance of each

different object (Schowengerdt, 2007).

In remote sensing algorithms, the radiance vector of a pixel is represented by

the linear combination of the materials radiance, and the fractional abundances of

each material (Manolakis et al., 2003). Since it is assumed that there are fewer

materials in the scene, than the number of bands on the space dimension p, the

radiance vectors are contained in a lower dimensional subspace.

Definition 2.1. Let X be a vector space over the field <. A subspace of X is a

subset S of X which is itself a vector space over < with the operations of vector

addition and scalar multiplication on X (Hoffman and Kunze, 1971):

1. b1, b2 ∈ S implies b1 + b2 ∈ S

2. b ∈ S and α ∈ < imply αs ∈ S

Definition 2.2. Let B be a set of vectors in a vector space X. The subspace spanned

by B is defined to be the intersection S of all subspaces of X which contain B. When

B is a finite set of vectors, B = {b1, b2, . . ., bm}, we shall simply call S the subspace

spanned by the vectors b1, b2, . . ., bm (Hoffman and Kunze, 1971).

This definition does not imply that the elements of B are linearly independent.

In this case, the linear rank of this matrix can be less or equal to the number of

vectors m. The method used in this research to model the liner subspace for the

image background, find basis vectors linearly independent (e.g. orthogonal vectors

using SVD), so the linear rank of B is equal to m.

Theorem 2.1. The subspace spanned by a non-empty subset B of a vector space X

is the set of all linear combinations of vectors in B (Hoffman and Kunze, 1971).

b = α1b1 + α2b2 + . . .+ αmbm, αi ∈ <
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The radiance vector of a mixed pixel can be represented as a linear combination

of the different materials of the image, where the coefficients for the linear combi-

nation satisfy some constraints. In the case of linear subspace, these coefficients are

unconstrained. So we are only interested in positive linear combinations:

b = α1b1 + α2b2 + . . .+ αmbm, αi ∈ <+,

which motivate our next two geometric objects. For convex polyhedral cone, we re-

strict coefficients to be positive. If we add an additional constraint, these coefficients

sum to one, we obtain another geometric model called convex hull.

2.2.2 Convex Polyhedral Cones

The convex polyhedral cone is defined as follows:

Definition 2.3. A subset S of <m is called a convex cone if the two following

conditions hold (van den Hof and van Schuppen, 1994, 1999):

1. b1, b2 ∈ S implies b1 + b2 ∈ S

2. b ∈ S and α ∈ <+ imply αb ∈ S

We are interested in cones generated by finite number of vectors.

Definition 2.4. A convex cone S is said to be a polyhedral cone if it is spanned by

a finite number of vectors b1, b2, . . ., bm ∈ <m
+ (Boyd and Vandenberghe, 2004;

van den Hof and van Schuppen, 1994, 1999).

Thus S is a polyhedral cone if and only if there exists a finite set B ⊂ <m such

that S = cone(B). We call B the set of spanning vectors of S. In our set we are

interested in the minimum spanning set.

2.2.3 Convex Hull

The convex hull is defined as follows:

Definition 2.5. The convex hull of a set of vectors B, of dimension p, is the in-

tersection of all convex sets containing B. For m vectors b1,b2, . . . ,bm, the convex

hull, chull(B), is given by the expression (Boyd and Vandenberghe, 2004):
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b =
∑m

i=1 αibi, αi ∈ <+ and
∑m

i=1 αi = 1

The geometric figure of a convex hull is called simplex. A m-simplex is the figure

spanned by a set of m+ 1 linear independent vectors. For example, the 2-simplex is

a triangle generated by three vectors; A 3-simplex is a tetrahedron formed by four,

m+ 1, vectors or vertex (Boardman, 1995), see Figure 2–3.

Figure 2–3: The progression of mixing simplices from 0-d to m-d, (Boardman, 1995).

In the case of HSI, the convex hull is motivated by the linear mixing model where

the measured spectrum is assumed to be a linear combination of pure materials

multiplied by the area fraction they cover on the pixel (Boardman, 1995).

2.2.4 Projection on a Convex Set

The idea of a projection on a convex set of the image X, is that given a fixed

vector t ∈ <p, we want to find a vector x ∈ X which is at a minimum distance from

t (see Figure 2–4). In other words,

min(‖t− x‖2), ∀x ∈ X

Some important facts of this projection are summarized in the following theorem

(Bertsekas, 1995).

Theorem 2.2 (The Projection Theorem).

(a) For every t ∈ <p, there exists an unique x∗ ∈ X that minimizes

‖t− x‖2 over all x ∈ X.

(b) Given some t ∈ <p, a vector x∗ ∈ X is equal to the projection x′

if and only if (t− x∗)T (x− x∗) ≤ 0,∀x ∈ X.
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(c) Orthogonality: A vector x∗ ∈ X is a projection of t if and only if

t− x∗ is orthogonal to X, that is

(t− x∗)Tx = 0, ∀x ∈ X.

Figure 2–4: Illustration of orthogonal projection on a convex set, (Bertsekas, 1995).

Given a projection x′ not equal to x∗, the non-orthogonal projection is given by

t− x′, as shown in Figure 2–5. This is also called oblique projection.

Figure 2–5: Illustration of oblique projection on a convex set.

2.3 Modeling Spectral Variability

Spectral measurements of materials in remote sensing systems are generally

affected by physical factors that cause variability in the measurements. Several

authors (Healey and Slater, 1999; Schott, 2007), had modeled such physical factors.
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A radiance model can be represented by the radiative transfer equation (Healey and

Slater, 1999):

L(x, y, λ) = Tu(λ)R(x, y, λ)Td(λ)Eo(λ) cos[θ(x, y)] + LP (λ), (2.1)

where Tu(λ) is the upward atmospheric transmittance, R(x, y, λ) is the spectral re-

flectance of the matte surface projecting to sensor location (x, y) and λ denotes

wavelength, Td(λ) is the downward atmospheric transmittance, Eo(λ) is the ex-

traterrestrial solar radiance, and LP (λ) is the path-scattered radiance.

Several terms in radiance model contribute to the variability of the spectral mea-

surement of a material. Only the spectral reflectance R(x, y, λ) in (2.1) is intrinsic

to the material. The other factors are related with the atmospheric and geometric

conditions of the scene. These factors produce different measured spectral radiances

L(x, y, λ), for a given material with fixed spectral reflectance R(x, y, λ).

This spectral variability can be described by using either a subspace model

that is called structured model, or a statistical approach called unstructured model

(Manolakis et al., 2003). In this work, we focus on the geometric approach to model

spectral variability; therefore a structured model is used to characterize the image

background. The spectral cloud is assumed to be well described by a linear subspace,

a convex polyhedral cone, or a convex hull (see Figure 2–6).

2.3.1 Unstructured Models

The stochastic approach derives an unstructured model from the image data.

In the target detector equation, this takes the form of a statistical mean and a

covariance or correlation matrix, where the mean, covariance matrix, and correlation

matrix are expressed respectively, as:

µ =
1

n

n∑
i=1

xi, (2.2)
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K =
1

n

n∑
i=1

(xi − µ)(xi − µ)T , (2.3)

R =
1

n

n∑
i=1

(xi)(xi)
T . (2.4)

This concept for representation of background is the basis of several variations

of target detectors when applying to the first and second order statistics of the target

detection problem. It is important to note the underlying assumptions described in

(Manolakis et al., 2003).

2.3.2 Structured Models

The image pixels X, in a structured model, are approximated using a linear

combination of endmember vectors

X = BA, (2.5)

where the columns of matrix B are the background endmembers, and matrix A is

the coefficients matrix. For convex hull, the coefficients are called abundances.

We study structured models based on linear subspaces and the linear mixing

model. In subspace modeling, the data is modeled by finding the subspace where

the data is embedded (Manolakis et al., 2003), see Figure 2–6(a).

In linear mixing modeling, we define two geometric approaches: convex poly-

hedral cone and convex hull. In convex polyhedral cone, the spectral signatures

are constrained to be inside the polyhedral cone generated by the columns of B, as

shown in Figure 2–6(b). In the convex hull, in addition to the positivity constraint,

all elements of vector a sum to one. The spectral signatures are constrained to be

in the convex hull of the columns of B as shown in Figure 2–6(c). Table 2–2 shows

a summary the structured models studied in this work.
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(a) (b) (c)

Figure 2–6: Structured models, (a) linear subspace; (b) convex polyhedral cone; (c)
convex hull.

Table 2–2: Specifications of the different structured models.

Structured Models B A Range of X

Linear Subspace B ∈ <p×m A ∈ <m×n xi ∈ Ra(B)

Convex Polyhedral Cone B ∈ <p×m
+ A ∈ <m×n

+ xi ∈ cone(B)

Convex Hull B ∈ <p×m
+ A ∈ <m×n

+ ; AT1m = 1n xi ∈ chull(B)

2.4 Spectral Detection Algorithms

Target detection can be described as the process of finding pixels (spectral

vectors) in images, which did not match a background model and/or matches a

target model (Ahlberg and Renhorn, 2004). If a target model is available, based

on spectral libraries, this process is called target detection. If the target model is

unknown, it is called anomaly detection (Ahlberg and Renhorn, 2004).

2.4.1 Target Detection

A target detection algorithm searches for pixels that are similar to a target

signature t, which means that the spectral signature of the target or target class

is known. In contrast, the anomaly detection assumes no such knowledge. We

defined the background model as B, a distance measurement d(.), and a threshold

η. Basically, we measure the distance from a given signature to the target model,
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and the pixel x is classified as a target pixel if d(x, t) < η (Ahlberg and Renhorn,

2004).

2.4.2 Anomaly Detection

Anomaly detection is described when the spectral signature of a target is un-

known and we try to find pixels that are different from the background. We can

regard a pixel x as an anomaly if d(x,B) > η.

The distance measurement is determined by the model used for the background,

and thus the assumptions about background spectral distribution. In addition,

higher threshold values will give low detection, reducing the probability of detection

(PD), and the probability of false alarm (PFA) (Ahlberg and Renhorn, 2004).

2.5 Typical Target Detection Algorithm

Typical target detectors first operate on the whole input image and identify

the regions that might contain targets using an anomaly detection algorithm. Once

the region of interest are identified, the second stage identifies where or where not

a target is present in the region of interest.

The development of robust target detection algorithms must overcome some well

known challenges, including the large number of target classes and aspects, different

geographic and weather conditions, sensor noise, inconsistencies in the signatures of

different targets, limited training and testing data and camouflaged targets, among

others.

Target detection algorithms consist of many sequentially connected components

or steps. Each of these steps plays a role in determining the overall performance of

the target detector, and the literature reveals different reliable algorithms for each

stage. Figure 2–7 shows each of these steps for a typical target detection algorithm

(Grimmab et al., 2005). The atmospheric compensation step aims to convert the

units of the scene from at sensor radiance into reflectance to be consistent with
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the units of the target spectrum. The purpose of the noise/dimensionality reduction

stage is to reduce the noise effect in the image, and reduce the data set dimensionality

in order to remove redundant information without compromising the data integrity.

Background characterization step is basically used to suppress the background of

the image so the target pixels can be detected, in our work, we used the structured

models mentioned in Section 2.3.2 to characterize the background. Finally, the

target detectors are used to produce the detection maps, and a threshold (η) is

defined in order to obtain a binary image. In this research, we developed detection

algorithms focused on the steps of background characterization and target detectors.

Figure 2–7: Stages in target detection algorithms.
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2.6 Target Detection in Structured Models

When the target and background subspaces are available in the background

characterization step, the target detection problem can be defined as a binary hy-

pothesis test (Manolakis et al., 2003). This method consists of two competing hy-

potheses, when an observed spectrum is given by:

H0 : x = Ba + w (target absent)

H1 : x = tγ + Ba + w (target present),
(2.6)

where t has to be specified by the user, and this is a column vector representing the

spectral signature of the target. B is a matrix of the background endmembers that

was calculated for each structured model using the training methods described in

Chapter 3, γ and a are the target and background abundances, respectively. Finally,

w is a column vector representing white Gaussian noise (Manolakis et al., 2003).

The hypotheses of Equation 2.6 can be compared by forming a likelihood ratio:

Λ(x) =
p(x|H1)

p(x|H0)

H1

>

<

H0

η. (2.7)

The detectors based on orthogonal and oblique projections for each structured

model (linear subspace, convex polyhedral cone and convex hull) are described in

Chapter 3.

2.7 Receiver Operating Characteristic (ROC) Curves

One of the most common ways to compare the algorithms performance is by

means the ROC curves. These curves show the relationship between probability of

false alarm (PFA) and probability of detection (PD).

In order to obtain the ROC curves, a priori knowledge of the images may be

available for a specific scene. Ground truth involves information such as precise
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location, size, and orientation of the materials in the scene. Then, a full ROC curve

can be formed by varying different number of thresholds (η). The ideal ROC is the

one that have maximum detection rate to very low rates of false alarm.

In order to compare the target detection results, ROC curves were calculated

for the target detectors and datasets as are mentioned in Chapter 3 and Chapter 4.

Ground truth is available for each hyperspectral image, giving the number of pixels

of target nt and background nb.

For a given image and a value of η, the number of pixels detected correctly as

target of nt pixels, also called true positive, is given by nTP . Then, an estimation of

the probability of detection is given by PD = nTP/nt.

In the same manner, an estimation of the probability of false alarm is PFA =

nFN/nb, where nFN is the number of target pixels misclassified, also called false

negative. Thus, varying η, a ROC curve can be constructed for different values of

PD and PFA as you can see in Figure 2–8.

Figure 2–8: An example of the ROC curves.
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2.8 Summary

This chapter presented the background information about hyperspectral im-

agery and sensors types. Different structured models based on linear subspace, con-

vex polyhedral cones, and convex hull were introduced to describe the background

of hyperspectral images. The components of a typical target detection algorithm

were also described. Finally, performance measurement to evaluate target detection

algorithm was presented.

In Chapter 3, each of the target detectors and the training methods used for each

structured model will be discussed in detail. Background and theoretical explanation

of the detection algorithms will be discussed followed by results, in the form of ROC

curves, in order to evaluate the target detectors performance.



Chapter 3

Target Detection using Structured Background Mod-
els

The important issue of training for structured models for a given p × n image

matrix X of training samples, is how to determine the dimensionality of the data,

m, and the matrix of endmembers B. In this chapter we present some of the most

commonly used methods to estimate the dimensionality of the signal subspace, m.

Also, we summarize the training methods used for each structured model. Specifi-

cally, we use SVD for linear subspace model, PMF for convex polyhedral cone, and

cPMF and MaxD for convex hull. Finally, we describe a target detector based on

orthogonal projections to linear subspace, and a target detector based on oblique

projections for convex polyhedral cone and convex hull.

3.1 Methods to Determine the Dimensionality of the Background Sub-
space

In many problems of signal processing, the observed data can be modeled as

a linear combination of a finite number of signals corrupted with additive noise

(LMM). The knowledge of this number of signals or model order is essential infor-

mation for the signal inference algorithms (Shah and Tufts, 1994). In the case of

target detection, the model order is an important issue for endmember extraction.

Therefore, the number of signals (endmembers) is used as an input for the algorithms

of training methods, and its accuracy has a significant impact on the performance

results of detection algorithms.

21
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The word endmembers is used specifically for spectral signatures, they are mate-

rials related to the image. However, basis-vectors are simply a basis for the training

data, and they do not have physical interpretation in the image or scene.

As you can see, one of the important problems in training methods for structural

models is the estimation of the number of endmembers, m. For subspace models,

this is the same as estimating the dimension of the linear embedding space for the

data. In general, the number of endmembers in the LMM can be related to the

positive dimension of the data which can be much larger than the dimension of the

linear embedding space.

With this in mind, for linear subspace, we used the linear rank of the image

matrix, which is defined as the number of linearly independent rows or columns of the

image matrix X, and also it is equal to the number of nonzero singular values of X.

Some commonly methods used to estimate linear dimensionality are the Percentage

of Variability criterion, Scree Test, and Size of Variance of Principal Components

(Jolliffe, 1986).

For convex polyhedral cone, we used the positive rank concept, which is esti-

mated by plotting the fitting error as a function of number of endmembers using

PMF algorithm. Thus, we can estimate the number of endmembers for the convex

polyhedral cone as the number after which the error does not decrease significantly.

To estimate the number of endmembers for convex hull, we plot the fitting

error as a function of number of endmembers using cPMF algorithm. Each of these

methods will be described in this section.

3.1.1 Rank Estimator: The Percentage of Variability Criterion

One of the simplest and most commonly used methods for linear dimensionality

estimation is to calculate the accumulative sum of the first m singular values that
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explain over 95%− 99% of the total variability (Jolliffe, 1986), as follows

%V ariability = 100×
∑m

i σ
2
i∑n

i σ
2
i

≥ 99.9% (3.1)

where m < n, and {σ1 ≥ σ2 ≥ . . . ≥ σn} are the singular values of correlation

matrix R. We used Equation 3.1 to estimate the rank of the subspace spanned by

the rows of X, which is the matrix of the image (p× n). The estimate for the rank

of X is the minimum number m for which Equation 3.1 holds.

3.1.2 Rank Estimator: Scree Test

This is a graphical method (Cattell, 1966), where the eigenvalues of the nor-

malized correlation matrix R

R = D−1/2XXTD−1/2, (3.2)

are plotted. Here, D is a diagonal matrix of the magnitude of the rows of X.

The rank of X is the number of eigenvalues before the plot levels. Although this

approach is relatively simple, in some cases, the eigenvalues curve does not have a

clear leveling point. In this case, the Scree test is described as inconclusive.

3.1.3 Rank Estimator: Size of Variances of Principal Components

This method is applied to the normalized correlation matrix. The rank is equal

to the number of eigenvalues greater or equal to one. Jolliffe has suggested the use

of the number of eigenvalues greater than or equal to 0.7 instead of 1 because that

threshold gives an underestimate value (Jolliffe, 1986). In this work, we used the

threshold of 0.7.

3.1.4 Positive Rank Estimator: Fitting Error for PMF and cPMF

A positive matrix factorization of X is a tuple of two positive matrices (B,A) ∈

<p×m
+ ×<m×n

+ , such that X = BA, where positive rank is the minimum m such that
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this factorization exists, and it is called the minimal positive matrix factorization of

X (van den Hof and van Schuppen, 1999).

This approximation problem can be solved by using PMF (Lee and Seung,

1999), Equation 3.5. This method estimates the number of endmembers by plotting

the fitting error in the PMF approximation as a function of the number of endmem-

bers. The positive rank estimate is obtained when the fitting error curve level does

not further decrease significantly. We use that as an estimate of model order for

convex polyhedral cone.

Likewise, to estimate the number of endmembers of the convex hull, the ap-

proximation problem is solved by using cPMF algorithm proposed by Masalmah

and Vélez-Reyes (Masalmah, 2007), Equation 3.10. The rank of the convex hull is

obtained when the fitting error curve level does not further decrease significantly.

3.2 Linear Subspace

SVD was used as the training method to characterize the linear subspace as

represented in Figure 2–6(a). This section describes the theory of SVD and the

target detector based on orthogonal projections.

3.2.1 Training Method: Singular Value Decomposition

SVD is a standard procedure to determine a basis for the range space of a

matrix.

Let X the matrix of the image, where the rows are the bands of the image. The

SVD of an p×n (p < n) matrix X = [x1,x2, . . . ,xn] is the decomposition of X into

the product of three matrices as follows (Golub and Van Loan, 1996):

X = UΣVT =

p∑
i=1

σiuiv
T
i , (3.3)

where U = [u1,u2, . . . ,up] is a p × p orthonormal matrix, V = [v1,v2, . . . ,vp] is

a n × n orthonormal matrix, and Σ is a p × n matrix with elements σi (singular
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values) along the diagonal and zeros everywhere else, such that

Σ = diag(σ1, σ2, . . . , σm, σm+1, . . . , σp),

where σi are the singular values of X.

σi ≈ 0, i = m+ 1,m+ 2, . . . , p.

Usually, a small number of singular values, specifically, the first m singular

values, explaining most of the variability, because the remaining singular values are

small. Therefore, the first m columns of U are used as the background basis vectors

(Thai and Healey, 2002), that is B = [u1,u2, . . . ,um].

3.2.2 Detector Based on Orthogonal Projections

In order to select H0 or H1 in Equation 2.6, three detection statistics are used

for each structured model. For subspace modeling, we used Orthogonal Subspace

Projector (OSP) (Chang, 2005; Harsanyi and Chang, 1994), which basically projects

each pixel vector onto a subspace which is orthogonal to the background signatures,

removing the background effects and enhancing the target signatures. In this work,

the normalized OSP operator is used:

DOSP (x) =
tTP⊥Bx

tTP⊥Bt
, (3.4)

where P⊥B = I−PB is the orthogonal projection onto background subspace. PB is the

projection matrix onto the space spanned by B and is given by PB = B(BTB)−1BT,

and t is the target spectral signature.

3.3 Convex Polyhedral Cone

In order to determine the endmembers for the convex polyhedral cone as shown

in Figure 2–6(b), we used the PMF algorithm (Lee and Seung, 1999). We also

proposed a target detector based on oblique projections for this structured model.
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3.3.1 Training Method: Positive Matrix Factorization

PMF algorithm has recently been shown to be a very useful technique in approx-

imating high dimensional data where the data are comprised of positive component.

Lee and Seung proposed the use of the PMF technique in order to find a set of basis

functions to represent image data, where the basis functions enable the identifica-

tion and classification of intrinsic parts that make up the object being imaged by

multiple observations (Lee and Seung, 1999). PMF can be computed by solving the

approximation problem

B̂, Â = arg min
B≥0,A≥0

‖X−BA‖2F , (3.5)

where ‖·‖F is the Frobenous norm, and A is the abundance matrix for all the pixels

in the image. We also used the PMF algorithm, in order to get the endmembers for

the convex polyhedral cone.

3.3.2 Detector Based on Oblique Projections

The detection statistic used for convex polyhderal cone is a detector based on

oblique projections, which is described in this subsection. Based on the properties

of the Orthogonal Subspace Projector as shown in Equation 3.6, we can re-write the

OSP equation (Equation 3.4) as Equation 3.7. We used this expression based on

the projection error in order to motivate the detectors based on oblique projections

for the convex polyhedral cone and convex hull.

(P⊥B)T = P⊥B

(P⊥B)
2

= P⊥B

(3.6)

DOSP (x) =
tTP⊥Bx

tTP⊥Bt
=

(P⊥Bt)T(P⊥Bx)

(P⊥Bt)T(P⊥Bt)
=

(et
LS)

T
ex
LS)

(et
LS)

T
(et

LS)
=

(et
LS)

T
(ex

LS)

‖(et
LS)‖22

. (3.7)

In the last equation, the term (et
LS), is the projection error for the target vector

(t) into the background subspace, in other words, it is the target part, that the
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background subspace could not describe. Likewise, ex
LS is the projection error of

test pixel x into the background subspace. The denominator term, ‖(et
LS)‖22, is a

normalization term.

Using these ideas, we can re-write the OSP equation as Equation 3.8, with the

respective errors. Here, ULS means Unconstrained Least-Squares.

DOSP (x) =
(et

OSP )
T

(ex
OSP )

‖et
OSP‖

2
2

, (3.8)

where:

et
OSP = t−Bat

ULS

ex
OSP = x−Bax

ULS

at
ULS = arg min

a∈<m
‖t−Ba‖22

ax
ULS = arg min

a∈<m
‖x−Ba‖22

By using the idea of inner products between errors, we can propose a detector

for convex polyhedral cone in terms of the error of the oblique projection of the

signatures to the convex polyhedral cone as defined by Equation 3.9, and NNLS

means Nonnegative Least-Squares.

DCCP (x) =
(et

CCP )
T

(ex
CCP )

‖et
CCP‖

2
2

, (3.9)

where:

et
CCP = t−Bat

NNLS

ex
CCP = x−Bax

NNLS

at
NNLS = arg min

a≥0
‖t−Ba‖22

ax
NNLS = arg min

a≥0
‖x−Ba‖22
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3.4 Convex Hull

For comparison purposes, we studied two approaches to generate basis vector

for the convex hull as shown in Figure 2–6(c): Constrained PMF and Maximum

Distance. Like the target detector used for the convex polyhedral cone, we also

proposed a detector based on oblique projection for the convex hull.

3.4.1 Training Method: Constrained PMF and Maximum Distance

The Constrained PMF and Maximum Distance methods are described as follow:

Constrained PMF (cPMF)

We used a constrained PMF algorithm (Masalmah, 2007) to get the endmem-

bers that generate the convex hull. This algorithm is similar to the PMF algorithm

described previously, but it has an additional constraint, which is that the abun-

dances sum to one, AT1p = 1n. The cPMF proposed by Masalmah is given by the

Equation 3.10

B̂, Â = arg min
B≥0,A≥0,
AT1m=1n

‖X−BA‖2F , (3.10)

where ‖·‖F is the Frobenous norm, and 1n is a vector of 1’s of dimension n.

Maximum Distance (MaxD) Method

The Maximum Distance is an endmember selection method developed by Lee

et al. (Schott, 2007; Schott et al., 2003). This technique assumes that a hyperspec-

tral data set can be described by a convex set made up of convex combinations of

endmembers of a given scene, where the weights are all positive and sum to one.

The theoretical basis of this method is based on the fact that for any given point

in a convex hull, a point with maximum distance to the given point must be one

of the vertices of the convex hull. Hence the name, Maximum Distance method
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(Schott, 2007; Schott et al., 2003). The endmembers found by this method are pix-

els of the original image which is not necessarily the case for the constrained PMF

of Masalmah and Vélez-Reyes (Masalmah, 2007).

(a) (b)

Figure 3–1: Illustration of, (a) the MaxD method applied to the image space (sim-
plex); (b) the concept of maximum distance determination and sequential projection
to find the vertices of a simplex spanning the data space, (Bajorski et al., 2004).

The technique starts with identifying two pixels, one with the largest magnitude

vector (denoted by v1) and one with the smallest magnitude (denoted by v2). Next,

all pixel vectors are projected onto the subspace orthogonal to the difference v1− v2

(see Figure 3–1). In these projections, both v1 and v2 project on the same point that

is called v12. The distance between v12 and the projected pixels are calculated. The

pixel with the maximum distance to v12 is the third endmember denoted by v3. All

projected points are now re-projected onto the subspace orthogonal to along v12−v3.

Now, the projected vectors v12 and v3 are denoted by v123. The process is repeated

until a desired number of endmembers is identified. This process can be continued

until (p + 1) endmembers are identified, where p is the number of image bands. If

all projected points reduce to one point, the process can no longer be continued.

That is, up to (p + 1) endmembers can be identified using MaxD, which is not a
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limitation in practice when working with hyperspectral images. Additionally, the

MaxD method is computationally fast (Bajorski et al., 2004).

3.4.2 Detector Based on Oblique Projections

In a similar fashion to the detector for the convex polyhedral cone, we can

define a detector for the convex hull model which is given by Equation 3.11 , and

NNSTOLS means Nonnegative Sum to One Least-Squares.

DCHP (x) =
(et

CHP )
T

(ex
CHP )

‖et
CHP‖

2
2

, (3.11)

where:

et
CHP = t−Bat

NNSTOLS

ex
CHP = x−Bax

NNSTOLS

at
NNSTOLS = arg min

a≥0,aT 1=1
‖t−Ba‖22

ax
NNSTOLS = arg min

a≥0,aT 1=1
‖x−Ba‖22

3.5 Summary

This chapter presented different steps of the target detection algorithm devel-

oped in this work. Methods used to determine the dimensionality of the background

subspace, which was tested and reported in the literature were described. In addi-

tion, training methods and target detectors based on orthogonal and oblique projec-

tions for each structured models were also presented. Detector based on orthogonal

projections was used for linear subspace modeling, and detector based on oblique

projections was proposed for convex polyhedral cone and convex hull.



Chapter 4

Experimental Results

This chapter presents experimental results comparing all models described pre-

viously with application to target detection using hyperspectral imagery. Figure 4–1

shows the images used in the experiments.

(a) (b) (c) (d)

Figure 4–1: Simulated and hyperspectral data, (a) Simulated Data, (61 x 61) pixels;
(b) Forest Radiance I, Target 1, (100 x 40) pixels; (c) Forest Radiance I, Target 2,
(50 x 80) pixels; (d) Cooke city, MT, (80 x 80) pixels.

During the experiments, the target pixels were removed from image in order

to estimate the background model. In addition, we used each of the four training

methods (SVD, PMF, cPMF and MaxD) for generating the basis or endmembers

matrix B.

The performance of each detection algorithm was evaluated using ROC curves.

Different ROC curves were calculated varying the number of endmembers by the

combination of the training methods (SVD, PMF, cPMF and MaxD), and the pro-

jection algorithms (orthogonal and oblique).

31
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4.1 Simulated Data

This image is simulated using three signatures of different materials from the

Cooke city image, Figure 4–2. The fourth endmember is calculated as a non convex

combination from the first three endmembers, see Equation 4.1. Consequently, the

linear rank of this data is three, due to the linear dependence of the fourth end-

member, but it is important to note that the number of vertices is four for this case.

Figure 4–3 shows the spectral signatures.

b4 =
(4b1 + 3b2 + 2b3)

6
(4.1)

Figure 4–2: The first three endmembers for simulated data.
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Figure 4–3: Spectral signatures of the simulated data.
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The abundance maps of each endmember were designed, considering that each

endmember has pure pixels and mixed pixels with the other three endmembers.

Figure 4–4 shows the abundance maps for each endmember.

These abundance maps were obtained by using a square image of 61×61 pixels,

divided in four triangles given by the diagonal lines between the vertices. For the

first three endmembers, a triangle has abundances equal to one inside. For the

fourth endmember, the abundances inside are slightly greater than one.

Abundance values less than one are generated outside of the area of the triangle.

Pixels away from the triangle have low abundance values. Abundances equal to zero

are obtained ten pixels after the triangle. A Gaussian i.i.d noise was added, we used

a variance equal to the 0.5% of the signal amplitude.

(a) (b) (c) (d)

Figure 4–4: Abundances of the simulated data, (a) endmember 1, trees; (b) end-
member 2, road; (c) endmember 3, soil; (d) endmember 4, linear combination.

The simulated image shown in Figure 4–1(a) was used in order to study the rank

estimation methods described in Section 3.1. We present the results for percentage

of variability criterion, Scree test, size of variance of principal components, and

fitting error curves next.

4.1.1 Determination of the Linear Dimension

Figure 4–5 shows the Scree graph for the simulated data. From the graph,

there is a small gap between the fifth and sixth eigenvalue, therefore the rank of the

image is five according with this method. The percentage variability criterion with
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99.9% and size of variance of principal components with 0.7 as threshold gave three

components for the model order.
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Figure 4–5: Scree graph for the correlation matrix, simulated data.

Figure 4–6 shows the fitting errors of the PMF and cPMF methods. We can

see that the error for PMF stays roughly constant after three endmembers. For

the case of cPMF, the error stays constant after four endmembers. Therefore, we

conclude that, as expected, the positive rank has a value of 3 and that the number

of endmembers for cPMF is 4. Table 4–1 describes the results for the methods

mentioned above.

Table 4–1: Estimation of number of endmembers for simulated data.

Variability (99.9%) Scree Test SVPC PMF cPMF

No. Endm. 3 5 3 3 4

We used simulated data to compare the different methods to determine the

model order. The simulated data is based in three linearly independent endmembers,

and one linearly dependent. The percentage variability criterion and size of variances

of principal components found a linear rank of three. The fitting error using PMF
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found a positive rank equal to three. On the other hand, the fitting error using cPMF

found a model order equal of four, showing the fourth endmember as a vertex, which

is the linear combination of the other three endmembers.
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Figure 4–6: Fitting error curve for simulated data, (a) using PMF; (b) using cPMF.
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4.2 Forest Radiance I, Target 1

The Forest Radiance hyperspectral data set collected with the HYDICE sensor

is used for testing to validation of the target detection algorithms studied in this

research. HYDICE collects calibrated spectral radiance data in 210 wavelengths,

spanning from 400 to 2500 nm at 10 nm spectral resolution (Kruse, 1999). The

image in Figure 4–7 is a color composite of this data.

In the experiments, we used the two regions from the image shown in Figures 4–

8 and 4–17. We show in the next two sections, the results of the estimation of the

subspace dimension, and the target detection results obtained for them. We selected

these regions because the targets have enough pixels to obtain a reliable estimate of

the ROC curves.

For generation of the ROC curves, the threshold was varied in the range of

the detector values. Around 2000 threshold values were calculated per ROC. The

probability of detection and false alarm were obtained for each case. The probability

of detection is the ratio between the number of detected target pixels to the number

the total target pixels. The probability of false alarm is the ratio of the number of

background pixels detected as a target to the number of total background pixels.

Figure 4–7: Forest Radiance I image showing the two targets of interest.
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The first region of interest is the 100×40 shown in Figure 4–8(a). The target of

interest contains 24 full-pixels, 17 sub-pixels, 7 shadow pixels and 88 guard pixels.

The ground truth for the target is shown in Figure 4–8(b) and 4–8(c), the magenta

pixels represent the full pixels, red sub-pixels, maroon shadow pixels, and yellow

guard pixels. We removed the 48 pixels of the target in order to obtain only the

pixels of the background subspace for training purposes.

(a) (b) (c)

Figure 4–8: Forest Radiance I, Target 1: (a) color composite of the 100 × 40 pixels
region; (b) ground truth for Target 1; (c) zoom of ground truth for Target 1.

4.2.1 Determination of the Linear Dimension

Figure 4–9 shows the Scree graph for the background subspace of the Forest

Radiance I, Target 1 image. We chose eight members although the curve does

not have clear-cut or obvious change in order to determine a suitable number of

endmembers. We also used the size of variances method of principal components to

estimate the rank of the subspace. According to this method, three endmembers are

required to model the background subspace. The percentage of variability criterion

with 99.9% also resulted in three as the rank of this image.

Figure 4–10 shows the Fitting Error using PMF and cPMF. In the case of PMF,

approximately eight endmembers are required to fit the background. In the case

of cPMF, approximately eight endmembers are also required for the convex hull.

Table 4–2 shows a summary of the model order values obtained for the different

methods.
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Figure 4–9: Scree graph for the correlation matrix, Forest Radiance, Target 1.

According to the results in Table 4–2, the percentage of variability criterion

and size of variance of principal components found a linear rank equal to three. The

Scree test (Figure 4–9) does not show a clear gap in order to determine a suitable

number of endmembers. Thus, for this image we decide to use three as the linear

rank when SVD is used to characterize the background subspace.

Table 4–2: Estimation of number of endmembers for Forest Radiance I, Target 1.

Variability (99.9%) Scree Test SVPC PMF cPMF

No. Endm. 3 8 3 8 8

Figure 4–10 shows a small gap in the forth endmember, but in the eight end-

member is where the error curve starts to level. This is maybe caused for the

condition that the abundances do not sum to one for real image, or by shadows and

illumination variations in the image. Consequently, we can say that eight could be

the model order for the convex polyhedral cone and the convex hull.

In the next experiments, we evaluate if the estimated models provide a good

representations of the background in terms of detection performance.
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Figure 4–10: Fitting error curve for Forest Radiance, Target 1: (a) using PMF; (b)
using cPMF.
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4.2.2 Target Detection Results

The ROC curves for each model as a function of number of endmembers were

plotted in order to analyze the effect of the model order in target detection per-

formance. Figure 4–11 shows the ROC curves for detector based on orthogonal

projection using SVD to characterize the background image. Figure 4–12 shows the

ROC curves for detectors based on orthogonal and oblique projections, when PMF

is used. Likewise, Figures 4–13 and 4–14 show ROC curves for detectors based on

orthogonal and oblique projections when cPMF and MaxD are used to characterize

the background subspace.
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Figure 4–11: ROC curves for detector based on orthogonal projection using SVD.

ROC curves in Figure 4–11 show that the best detection performance is for 5

endmembers when SVD is used as training method. For 10 and 14 endmembers

the performance decreases, which is not surprising because each orthonormal vector

added to the basis, increases the space dimension by one, reducing discrimination

capability. A large number of endmembers can cause an overfitting of the back-

ground subspace and the additional basis vectors can be along of the target pixels

direction.
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Figure 4–12: ROC curves using PMF: (a) for detector based on orthogonal projec-
tion; (b) for detector based on oblique projection.
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Figure 4–13: ROC curves using cPMF: (a) for detector based on orthogonal projec-
tion; (b) for detector based on oblique projection.
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Figure 4–14: ROC curves using MaxD: (a) for detector based on orthogonal projec-
tion; (b) for detector based on oblique projection.
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For PMF, cPMF and MaxD, Figures 4–12, 4–13 and 4–14 show a similar per-

formance when the number of endmembers increase. The performance improves up

to the optimal point and then it decreases. Notice that the performance does not

degrade as fast for overfitting as with the linear subspace model. We think that the

additional restrictions in the model coefficients results in sensitivity to overfitting

for the detector.

The 80% of the probability of detection (PD) was achieved at a probability

of false alarm equal to 0.3%, for most of the cases. Thus, we calculated curves of

PD versus number of endmembers, fixing the probabilty of false alarm to 0.3%, see

Figure 4–15. The idea is to study the performance of the target detector when the

number of endmembers increases. Figure 4–15(a) shows the curves of PD for SVD,

PMF, cPMF and MaxD, using detector based on orthogonal projections. Figure 4–

15(b) shows the curves of PD for PMF, cPMF and MaxD, using detectors based on

oblique projections.

In Figure 4–15(a), the PD for the orthogonal projection with PMF and cPMF,

varies between 0.7708 < PD < 0.7917 or 2.1% for endmembers between 2 and 12.

For higher model order values, the detection performance varies between 0.6250 <

PD < 0.7917 or 16.7% for 15 endmembers.

The MaxD algorithm with orthogonal projection only reaches an average per-

formance of 73% for 3 and 4 endmembers, but for higher number of endmembers,

the detection performance is poor achieving PD around 55%. The detection perfor-

mance for OSP using SVD is highly variable, with PD ranging between 77% and

48% for 7 to 11 endmembers, and 33% in extreme cases like 6 and 12 endmembers.

In the case of oblique projections, Figure 4–15(b), it is safe to choose between

2 and 8 for PMF, and between 3 and 13 for cPMF to have less than 4.2% (0.7708 <

PD < 0.8125) of variation in the PD. The performance of PMF is decreased up

to 23% starting from 9 endmembers. The situation is a little better for MaxD,
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with PD varying between 79% and 58%. The best case for this detector is with 4

endmembers, and for values between 6 and 9 a detection of 71% can be reached.
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Figure 4–15: Probability of detection vs. number of endmembers, (a) for detector
based on orthogonal projection; (b) for detector based on oblique projection.
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Figure 4–16: Detector based on orthogonal and oblique projections, (a) using PMF;
(b) using cPMF; (c) using MaxD.
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To compare the detector based on orthogonal projections versus the detector

based on oblique projections, for PMF, cPMF and MaxD. The best ROC curve for

each target detector is shown in Figure 4–16. We used as a metric the PFA at which

PD of 80% is achieved.

We found that for PMF, the best ROC curves for detectors based on orthogonal

and oblique projections are 2 and 6 endmembers. For cPMF, the best ROC curves

for detectors based on orthogonal and oblique projections are 6 and 7 endmembers.

The best ROC curves for MaxD are with 3 and 4 endmembers. In general, we can see

that orthogonal projections tend to do a good detection job with fewer basis vectors

while oblique projections require larger number of endmembers to have comparable

performance.

We want to highlight three important observations. First, the estimation of

the number of endmembers (or subspace dimension) in structured models is still a

challenging, since rank estimation is a hard problem as required for subspace models,

and even harder for positive rank for convex polyhedral cone, and convex hull.

Second, according to the results for this hyperspectral image, the number of

endmembers obtained from the methods to determine the rank of each structured

models (Table 4–2), does not necessarily corresponds to the best performance of

the detection algorithms (Figure 4–15). We found that the linear rank for this

image could be three, but according to the ROC curves, Figures 4–11 and 4–15(a),

we can see that the best performance is with five or seven endmembers when we

use SVD. In the case of MaxD, according to Figures 4–14 and 4–15(a), the best

detection performance is with three endmembers, using detector based on orthogonal

projections, and four endmembers, using detector based on oblique projections, less

than the estimated number of endmembers found as rank of the convex hull, which

was eight. PMF and cPMF have a wide range of high probability of detection, and

the estimated number of endmembers equal to eight is in this range.
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Third, PMF and cPMF algorithms demonstrate for this image that are more

stable in terms of detection performance, than SVD and MaxD algorithms. Varia-

tions up to 5.4% in performance were obtained for different model orders. This is a

good feature of the detectors based on PMF and cPMF, in case of not selecting the

optimal number of endmembers for this dataset.

4.3 Forest Radiance I, Target 2

This image was also selected from Forest Radiance I image. It is the region of

50 × 80 pixels shown in Figure 4–17(a). The target in this image contains 84 full-

pixels, 20 sub-pixels, 8 shadow pixels and 111 guard pixels. The ground truth for the

target is shown in Figure 4–17(b) and 4–17(c), the magenta pixels represent the full

pixels, red sub-pixels, maroon shadow pixels, and yellow guard pixels. We removed

the 112 pixels of the target having only the pixels of the background subspace for

training purposes.

(a) (b) (c)

Figure 4–17: Forest Radiance I, Target 2: (a) color composite of the 50 × 80 pixels
region; (b) ground truth for Target 2; (c) zoom of ground truth for Target 2.

4.3.1 Determination of the Linear Dimension

Figure 4–18 shows the Scree graph for the background pixels of the Forest Ra-

diance I, Target 2 image. A value of nine was selected although like in the previous

HYDICE image, the curve does not have obvious gap to determine a suitable number

of endmembers. We also used the method of size of variances of principal compo-

nents in order to estimate the rank of the subspace. According to this method,

three endmembers are required to model the background subspace. Moreover, we
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obtained three also as the rank estimate for this image when we use the percentage

of variability criterion with 99.9% threshold.
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Figure 4–18: Scree graph for the correlation matrix, Forest Radiance, Target 2.

Figure 4–19 shows the Fitting Error curves for PMF and cPMF. In the case of

PMF, approximately eight endmembers is the positive rank of the background. In

the case of cPMF, also eight endmembers are required. Table 4–3 shows a summary

of the estimates obtained for the linear rank methods and positive rank.

Table 4–3: Estimation of number of endmembers for Forest Radiance I, Target 2.

Variability (99.9%) Scree Test SVPC PMF cPMF

No. Endm. 3 9 3 8 8

According to these results, we propose three as the dimension of the linear

subspace, and eight endmembers for the convex polyhedral cone and convex hull.
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Figure 4–19: Fitting error curve for Forest Radiance, Target 2: (a) using PMF; (b)
using cPMF.
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4.3.2 Target Detection Results

Figure 4–20 shows the ROC curves for OSP using SVD for different numbers of

endmembers. Similarly, Figure 4–21 shows the ROC curves for detectors based on

orthogonal and oblique projection, when PMF is used. Figures 4–22 and 4–23 show

ROC curves for detectors based on orthogonal and oblique projections when cPMF

and MaxD were used, respectively.

For this image, the ROC curves in Figure 4–20 show that the best detection

performance is for 8 endmembers when SVD is used as training method. Instead,

for 2, 6 and 15 endmembers the performance is worst. It is similar to the result

obtained in previous section, where we realize that a large number of endmembers

does not guarantee a good detection performance.
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Figure 4–20: ROC curves for detector based on orthogonal projection using SVD.

The methods PMF, cPMF and MaxD show a similar performance when the

number of endmembers increase, but in this case, the results obtained when we used

the detector based on oblique projections is more sensitive than the ones obtained

when we used the detector based on orthogonal projections. The ROC curves are

shown in Figures 4–21, 4–22 and 4–23.
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Figure 4–21: ROC curves using PMF: (a) for detector based on orthogonal projec-
tion; (b) for detector based on oblique projection.
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Figure 4–22: ROC curves using cPMF: (a) for detector based on orthogonal projec-
tion; (b) for detector based on oblique projection.
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Figure 4–23: ROC curves using MaxD: (a) for detector based on orthogonal projec-
tion; (b) for detector based on oblique projection.
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For this image, also the 80% of the PD was achieved at a probability of false

alarm equal to 0.3%, for most cases. Thus, we calculated curves of PD versus

number of endmembers, for a probability of false alarm of 0.3%, and show them in

Figure 4–24.
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Figure 4–24: Probability of detection vs. number of endmembers, (a) for detector
based on orthogonal projection; (b) for detector based on oblique projection.
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Figure 4–24(a) shows the curves of PD for SVD, PMF, cPMF and MaxD, us-

ing detectors based on orthogonal projections. Figure 4–24(b) shows the curves of

detection probability for PMF, cPMF and MaxD, using detectors based on oblique

projections.

Figure 4–24(a) shows that PMF and cPMF keep the same stability in the de-

tection performance, compared to Target 1 image. Any model order between 2 and

12 is between 0.7500 < PD < 0.8125. MaxD with the orthogonal projection gets

80% of detection only for 6 endmembers, and around 75% for model order between

8 and 14 endmembers. Some extreme cases like 7 and 15 endmembers, the PD is

reduced by 25%. The SVD algorithm has a similar unstable behavior as obtained

for Target 1 image. In this case, the variations are between 77% and 25% of the PD.

The best result were obtained for 8 endmembers.

Figure 4–24(b) shows that PMF and cPMF are very stable between 7 and 15

endmembers, using an oblique projector, with PD varying between 0.7589 < PD <

0.8125. The MaxD algorithm reaches its best performance for 6 endmembers, with

a PD equal to 78%. Between this value and 15 endmembers, the variations in the

PD are 0.6786 < PD < 0.7768. A PD around 74% can be obtained for endmembers

between 9 and 14.

To compare the orthogonal and oblique projection method for PMF, cPMF

and MaxD, we plotted the best ROC curve for each target detector. In the sense of

which of them reached with the smallest probability of false alarm, the 80% of the

detection probability. Figure 4–25 shows these results. We have used as a metric

the PFA at which PD of 80% is achieved.
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Figure 4–25: Detector based on orthogonal and oblique projections, (a) using PMF;
(b) using cPMF; (c) using MaxD.
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In the case of PMF, we found that the best ROC curves for detectors based

on orthogonal and oblique projections are 5 and 15 endmembers, respectively. For

cPMF, the best ROC curves for detectors based on orthogonal and oblique pro-

jections are 6 and 10 endmembers, respectively. Finally, for MaxD, the best ROC

curves for both orthogonal and oblique projections are 6 endmembers. It is impor-

tant to note that for this image, oblique projections require more endmembers than

for Target 1 image.

Results for this particular image are similar to those obtained for Forest Ra-

diance, Target 1. Summarizing, for the Forest Radiance images, the number of

endmembers is the same for the percentage variability criterion and size of variances

of principal components, which is equal to three. It is not the case of Scree test.

Also, fitting error using PMF and cPMF gave the same model order, which is eight

as the number of endmembers for the convex polyhedral cone and convex hull.

Also, for this hyperspectral image, PMF and cPMF with detectors based on or-

thogonal and oblique projections are more stable in terms of detection performance,

than SVD and MaxD algorithms. Therefore, this is a good feature of the detectors

based on PMF and cPMF, in case of not selecting the best number of endmembers

for Forest Radiance images.

4.4 Cooke City, Montana, USA

Another hyperspectral image used to evaluate the performance of the target

detection algorithm was acquired by the airborne HyMap sensor over Cooke City,

USA1 . The image consists of 126 spectral channels in the VNIR-SWIR and 280 ×

800 pixels with Ground Sampling Distance (GSD) of about 3 meters (Snyder et al.,

2008). During acquisition, several fabric targets were placed in the scene, and their

1 This hyperspectral data can be downloaded from http://dirsapps.cis.rit.edu/blindtest/
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spectral reflectances were measured and collected in a spectral library. A true color

representation of the scene can be seen in Figure 4–26, which clearly shows the high

complexity of the global background, characterized by many objects and classes.

Figure 4–26: HyMap image region (280 x 800) pixels.

A region of 80 × 80 pixels was selected for the experiment, which is shown in

Figure 4–27(a). We focused our detection on the target, which is shown in this

figure. The target of interest contains one full-pixel (yellow pixel) and eigth sub-

pixels (green pixels), see Figure 4–27(c). Figure 4–27(b) shows the other targets

present in this area. We removed the nine pixels of the target in order to obtain

only the pixels of the background subspace.

(a) (b) (c)

Figure 4–27: Cooke city, MT: (a) color composite of the 80 × 80 pixels region, and
ground truth for target 1; (b) ground truth for all targets present in this area; (c)
zoom of ground truth for Target 1.
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4.4.1 Determination of the Linear Dimension

Figure 4–28 shows the Scree graph for the background subspace of the Cooke

city image. This curve has a gap in the fourth eigenvalue. The method of size of

variances of principal components estimates the rank with two eigenvalues. Finally,

three eigenvalues are required to obtain a 99.9% of the variability.
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Figure 4–28: Scree graph for the correlation matrix, Cooke city, Target 1.

Figure 4–29 shows the Fitting Error curves for PMF and cPMF. In the case

of PMF, approximately five endmembers are an estimate of the positive rank of

background subspace. In the case of cPMF, approximately seven endmembers are

required. Table 4–4 shows a summary of the subspace dimensions obtained for the

linear rank and positive rank estimators.

Table 4–4: Estimation of number of endmembers for Cooke City, Target 1.

Variability (99.9%) Scree Test SVPC PMF cPMF

No. Endm. 3 4 2 5 7
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Figure 4–29: Fitting error curve for Cooke City, Target 1: (a) using PMF; (b) using
cPMF.
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Based on Table 4–4, the results for linear rank methods used do not match with

each other. Consequently, it is difficult to estimate the dimension for linear subspace

model. The number of endmembers for fitting error using cPMF is greater than the

PMF method for this particular image, which can be show a possible endmembers

that are linear combinations of the others endmembers. These results show that

positive rank can be greater than or equal to linear rank. Moreover, the estimation

of number of endmembers is a hard and challenging problem.

4.4.2 Target Detection Results

For this particular image, just few target pixels are available, which impair any

reliable estimate of the detection probability. For that reason, we do not use ROC

curves to evaluate the performance of the detection algorithm. We fix the false

alarm probability to 0.2%, and count how many target pixels were detected.

Table 4–5 shows the number of detected pixels of the total of target pixels,

using the training methods SVD, PMF, cPMF, and MaxD for different number of

endmembers since 2 until 10 endmembers. It is important to note that we used

SVD with detector based on orthogonal projections. PMF, cPMF, and MaxD were

used with detector based on oblique projections. In terms of stability, it is hard to

conclude from these values. But in general, if the number of endmembers increases,

the performance increases in the same way.

Table 4–5: Number of detected pixels of target pixels for different number of back-
ground endmembers.

No. Background Endmembers 2 3 4 5 6 7 8 9 10

SVD 0 4 3 8 8 8 8 8 9
PMF 0 4 1 9 8 9 8 9 9
cPMF 0 0 4 4 4 5 4 6 9
MaxD 0 0 0 0 0 8 8 8 8
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Figures 4–30 to 4–33 show the best detection results. According to Table 4–

5, note that SVD has the best detection using five background endmembers, PMF

using also five background endmembers, cPMF using ten background endmembers,

and MaxD using seven background endmembers. Figure 4–30 shows the detection

results when the background subspace was characterized by a subspace using SVD,

Figure 4–31 for a convex polyhedral cone obtained with the PMF algorithm, and

Figures 4–32 and 4–33 for a convex hull, using cPMF and MaxD algorithms. For

each detection result, we show (a) the detector statistic D(x), (b) the histogram of

the detector statistic, and (c) a binary image selected with a threshold set for 0.2%

false alarm rate.

According to the results for this hyperspectral image, the number of endmem-

bers obtained from the methods to determine the model order of each structured

models, does not necessarily corresponds to the best performance of the detection

algorithms. We found that the linear rank for this image could be three or four, but

according to the results in Table 4–5, the best performance is five endmembers for

SVD. In the case of PMF, the best performance is using five endmembers, which

is the same value estimated given by positive rank. The model order estimated for

cPMF was seven, but a better performance was obtained with ten endmembers. The

best detection for MaxD was using seven endmembers, which was the model order

estimated to the convex hull.

In the case of SVD, eight of the nine target pixels were detected, which is 88.9%

detection. When we used PMF, the nine target pixels were detected, which is 100%.

Likewise, when we used cPMF, the nine target pixels were detected or 100%. Finally,

when we used MaxD, eight target pixels were detected, which is 88.9% of the target

pixels.
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Figure 4–30: Background subspace characterized by a subspace using SVD: (a)
detector statistic D(x); (b) histogram of D(x); (c) detection with threshold = 0.3495.
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Figure 4–31: Background subspace characterized by a subspace using PMF: (a)
detector statistic D(x); (b) histogram of D(x); (c) detection with threshold = 0.3169.
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Figure 4–32: Background subspace characterized by a subspace using cPMF: (a)
detector statistic D(x); (b) histogram of D(x); (c) detection with threshold = 0.3026.
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Figure 4–33: Background subspace characterized by a subspace using MaxD: (a)
detector statistic D(x); (b) histogram of D(x); (c) detection with threshold = 0.5170.
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To compare the detectors based on orthogonal and oblique projections, we show

in Table 4–6, the detection results when we used detectors based on orthogonal

projections for PMF, cPMF and MaxD.

Table 4–6: Number of detected pixels of target pixels using detectors based on
orthogonal projections.

No. Background Endmembers 2 3 4 5 6 7 8 9 10

PMF 0 4 1 9 8 9 8 9 9
cPMF 0 0 0 6 8 7 8 9 9
MaxD 0 0 0 0 0 6 6 9 9

Figures 4–34 to 4–36 show the best detection results. According to Table 4–6,

we note that PMF has the best detection using five background endmembers, cPMF

using six background endmembers, and MaxD using nine background endmembers.

Figure 4–34 shows the detection results when the background subspace was char-

acterized by a convex polyhedral cone using PMF algorithm, and Figures 4–35 and

4–36 for a convex hull, using cPMF and MaxD algorithms.

In the case of PMF, nine target pixels were detected or 100% detection. When

we use cPMF, eigth of the nine target pixels were detected or 88.9%. Finally, when

we use MaxD, nine target pixels were detected or 100% of the target pixels.

When the OSP is used with PMF, cPMF and MaxD, only the number of end-

members determined by PMF corresponds to the best detection performance, like-

wise the detector based on oblique projections. The model order estimated for the

convex hull was seven, and cPMF required six endmembers for the best performance

and MaxD needed nine endmembers.

The results for this image showed that cPMF performs better using a detector

based on orthogonal projections than based on oblique projections. MaxD has better

detection results when detector based on oblique projections was used, and PMF

showed the same detection results for both detectors.
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Figure 4–34: Background subspace characterized by a subspace using PMF and
OSP: (a) detector statistic D(x); (b) histogram of D(x); (c) detection with threshold
= 0.3169.
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Figure 4–35: Background subspace characterized by a subspace using cPMF and
OSP: (a) detector statistic D(x); (b) histogram of D(x); (c) detection with threshold
= 0.4827.
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Figure 4–36: Background subspace characterized by a subspace using MaxD and
OSP: (a) detector statistic D(x); (b) histogram of D(x); (c) detection with threshold
= 0.2535.

One of the reasons to choose the Cooke city image was that the selected region

contains additional subpixel targets to the target selected for detection. The idea

was to see if the background modeling algorithm and detector discriminate between

background and undesirable targets. In general, results using detectors based on

orthogonal and oblique projections show that most of the pixels in the binary image

are from the target, revealing its shape, and the rest of pixels are false alarms

scattered in the binary image.

In addition, results from the Cooke city dataset show that PMF and cPMF

with detectors based on orthogonal and oblique projections outperformed the other

two training methods. But, PMF achieved the best performance with less number of

background endmembers than cPMF. In general, for this particular dataset, convex

polyhedral cone and convex hull did better than linear subspace method. Moreover,

in the results, only the pixels of the specific target have been detected.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this research, three different structured models were used to represent hyper-

spectral imagery. These structured models are used to model spectral variability of

the data. The approach of each model defines a different geometrical object given

the basis vectors definition, and restrictions of its linear combinations. We study

structured models based on linear subspace, convex polyhedral cone, and convex

hull, and their application to target detection. Different training methods are stud-

ied. First, we used SVD for linear subspace training, PMF for convex polyhedral

cone, cPMF and MaxD for convex hull. In addition, we proposed different detectors

based on orthogonal and oblique projections for the three models, and evaluated

their performance.

The issue of training methods, for structured models, is to determine the model

order (number of endmembers) of the data, and find the basis vectors or endmembers

for the background. For a linear subspace model, determined the number of bases-

vectors is the same as estimating the dimension of the linear embedding space of

the data. Furthermore, the number of endmembers in a convex polyhedral cone

and a convex hull can be related to the positive rank or a fitting error which are

greater than or equal to the dimension of the linear embedding space. In this work,

we studied methods to determine the model order for convex polyhedral cone and

convex hull.

69
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The Forest Radiance results showed that the performance of the detectors, based

on orthogonal or oblique projections, was improved as the number of endmembers

increases. But, after some number of endmembers the performance started to de-

crease. This is a consequence of an overfitting of the data, and it is more evident for

the SVD method. The error of the detector based on orthogonal projections, using

PMF, cPMF and MaxD, did not decrease as much as the linear subspace model

(SVD). We think that the additional restrictions in the model coefficients reduce its

sensitivity to overfitting. In the case of detector based on oblique projections, results

showed more variations in probability of detection for different number of endmem-

bers. However, the MaxD performance tended to be more stable than detectors

based on orthogonal projections

Accordingly with Forest Radiance results, we can conclude that the number of

endmembers is closely related to the performance of target detection algorithms. De-

pending on the type of structured model, underfitting or overfitting causes reduction

in detection performance. Experiments show that the dimension estimated does not

necessarily corresponds to the model order where the best performance is reached.

If a reliable algorithm to determine the number of endmembers is not available, we

suggest to continuously cross-check of the results with the ground-truth evaluating

the performance detection, e.g. ROC curves.

Based on the Forest Radiance scenes, the PMF and cPMF algorithms demon-

strated that are more stable in terms of probability of detection, compared to the

SVD and MaxD algorithms. We think that this is a good feature of the target

detection algorithms based on PMF and cPMF. If the correct number of endmem-

bers is not available, the detection performance with a reasonable estimate is still

acceptable.
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We proposed to use detectors based on orthogonal and oblique projections for

the three different structured models, linear subspace, convex hull and convex poly-

hedral cone. Detectors based on PMF, cPMF and MaxD were compared finding

the best ROC curves for each detector for a specific number of endmembers. The

curves selected are the ones that first reached the probability of detection of 80%.

This probability corresponds to the lowest false alarm probability. We noted that

the orthogonal projection detector tends to do a good detection job with few ba-

sis vectors, while oblique projections require larger number of endmembers to have

comparable performance.

In addition, detectors based on oblique projections are more computationally

expensive than detectors based on subspace models and orthogonal projections. We

think that this difficulty will be minimized with the availability of GPU computing,

because the projections of large images can be distributed in different processors.

We used ROC curves to evaluate the performance of target detectors for Forest

Radiance images. This is the most common way to compare the target detection

algorithms in terms of performance. For this research, ROC curves are the most

useful tools. However, it is important to note that we need a large number of target

pixels to estimate a reliable probability of detection, which was not the case for the

RIT dataset. Consequently, for this image, we fixed the probability of false alarm to

0.2%, and counted how many target pixels were detected. Therefore, it is necessary

to study other metrics in order to evaluate the detection performance, when an

optimal number of target pixels is not available.

5.2 Future work

Reliable determination of model order is still a problem in background modeling

using structured models. In this research, different algorithms were used in order

to obtain the number of endmembers, but we did not find a trustworthy algorithm.

We think that future research should addresses this problem. We observed that in
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many cases, linear rank estimate do not corresponded to the best performance for

detection.

A good performance stability was observed for the PMF and cPMF algorithms,

using the Forest Radiance I image. In order to generalize this observation, it is

necessary to test these algorithms in a larger number of images.

An interesting experiment will be to test the algorithms performance changing

the background contrast to the target. The idea is to test under more difficult

conditions (less contrast) orthogonal and oblique projectors.
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Peña-Ortega C. and Vélez-Reyes M. (2010). Evaluation of different structural

models for target detection in hyperspectral imagery. In Proc. SPIE Algorithms

and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI,

Volume 7695.

Abstract: Target detection is an essential component for defense, security and med-

ical applications of hyperspectral imagery. Structured and unstructured models are
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tion algorithms. In structured models, spectral variability is modeled using different

geometric representations. In linear approaches, the spectral signatures are assumed

to be generated by the linear combination of basis vectors. The nature of the basis

vectors, and its allowable linear combinations, define different structural models such
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