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ABSTRACT 

 

Efforts have been made to reduce the costs associated to healthcare systems. No-

shows to medical appointments impact healthcare systems finances and efficiency.  

Outpatient clinics have used diverse methods to decrease no-show rates; however, it has not 

been eradicated.  This work presents a framework for the development of a cost model that 

integrates patients’ probabilities of no-show and cost information to determine the cost 

expected value of an appointment slot as a representation of the cost of a no-show to the 

system.  The cost model has led to the development of a procedure for the evaluation of 

scheduling scenarios with the purpose of identifying the ones that perform better.  A 

prototype of an interactive platform in Excel has been created to demonstrate the application 

of the developed methodology, and also to provide a tool that may help an outpatient facility 

in the scheduling process.
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RESUMEN 

Múltiples esfuerzos se han realizado con el propósito de reducir los costos asociados 

a los sistemas de salud.  Las ausencias a las citas médicas, específicamente los pacientes que 

se ausentan sin aviso previo (“no-shows”), impactan los sistemas de salud en términos 

financieros y de eficiencia.  Clínicas ambulatorias han utilizado varios métodos para reducir 

la incidencia de ausencias, sin embargo, las ausencias a citas médicas no han sido erradicadas. 

Este trabajo de investigación presenta un esquema general para el desarrollo de un modelo 

de costos que integra probabilidades de “no-show” con un análisis de costos, con el propósito 

de determinar el valor esperado del costo de una cita médica, que a la misma vez sirve de 

estimado del costo que un “no show” representa a una clínica ambulatoria.  El modelo 

estocástico de costos se ha utilizado como base para el desarrollo de un procedimiento para 

la evaluación de diferentes esquemas de itinerarios, para así identificar posibles escenarios 

que presenten mejor desempeño en términos del costo total al sistema.  Adicional, se 

introduce un prototipo de una herramienta para generar itinerarios de citas médicas, el cual 

se presenta en forma de una plataforma interactiva desarrollada utilizando Excel.  La 

plataforma interactiva demuestra la aplicación de la metodología desarrollada en este trabajo, 

además provee una herramienta que puede servir de ayuda a las clínicas ambulatorias durante 

el proceso de realizar el itinerario de citas médicas. 
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1 CHAPTER – INTRODUCTION 

The rise of healthcare costs has been a topic that has taken notoriety in the recent 

years.  As Muthuraman and Lawley established [2], the environment of raising costs, limited 

capacity and an increasing demand for services has caused many clinics to shift from 

inpatient to outpatient facilities.  Access to outpatient facilities is controlled through 

appointment scheduling, and tend to confront problems of patients non-attendance.  Non-

attendance to a clinical appointment can be described as the action of a patient failing to 

appear for a scheduled appointment [3].  Failed appointments can be divided in two groups: 

cancellations and no-shows.  Cancellations are appointments that have been cancelled prior 

to the due time.  Since these are known previous to the appointment date, the clinic can devise 

a strategy to use the available capacity.  No-show is the term used to describe patients who 

fail to appear for the scheduled appointment without previous cancellation.  Of the two 

groups, no-shows tend to have the greatest impact in healthcare operation systems because 

its occurrence is not known in advance, which results in an immediate loss of capacity. 

No-shows can result in challenges in determining appropriate staffing levels, affecting 

productivity and efficiency due to the under-utilized clinical capacity, among other 

consequences on operational aspects of a clinic.  Also, it is argued to be a problem that has 

consequences for the cost of healthcare due to their effect in social and financial costs [3].   

The study of patient’s attendance can help in mitigating healthcare costs by reducing 

inefficiencies [4].  Throughout the years, studies and investigations have been held to find 

methods to reduce failed appointments, such as reminder systems like phone calls, emails, 

among others [9].  However, non-attendance has not been eradicated.  Researchers have 

demonstrated the use of patients’ demographic attributes and characteristics of the 
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appointment system as a way to characterize patients’ susceptibility to fail a clinical 

appointment [4, 5, 7, 8, 16, 17, 19-24].  Then, that information has served as an input for the 

construction of the appointment schedules, providing satisfactory results [5, 19, 25, 26]. 

Recently, one of the questions that have been raised regarding this issue is related to how to 

estimate, as accurate as possible, the real cost of a no-show to the system [3].   Clinical 

appointment schedules are structured by slots of fixed or variable time length. Its construction 

can be as simple as the assignment of one patient per slot or as complex as assigning multiple 

patients per slot, which is known as overbooking.  In the simplest form, the cost of the 

physical resources and personnel that are used during the time interval of duration can be 

used to estimate the cost of the slot. However, when overbooking occurs new aspects emerge, 

as waiting time and personnel overtime, for example.  When multiple patients arrive for the 

same appointment slot, appointments begin to fall behind; a chain effect occurs across all the 

slots and new direct and indirect costs arise as a consequence.  This is the reason why it is 

not desired to schedule in the same slot patients with a high chance of attending to the 

appointment. 

This document presents the development of a cost model that integrates patients’ 

probabilities of no-show and cost information to determine the cost expected value of an 

appointment slot as a representation of the estimation of the cost of a no-show to the system.  

A methodology has been designed in order to achieve this objective.  It includes using a 

Classification Trees approach to construct a classification model, with the purpose of 

predicting the patients’ no-show probability.  Also, it involves performing a cost analysis 

including financial costs that can be directly estimated and social costs which add complexity 

to the analysis because they have to be indirectly estimated and allocated. The predictions 
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(probabilities) from the classification model and the outcomes of the cost analysis are 

integrated in a cost model that estimates the expected cost of an appointment slot for a 

scheduling scheme constructed using overbooking.  Then, this stochastic cost model is used 

to assist in the process of evaluation of different scheduling schemes, with the purpose of 

identifying possible scenarios that perform better in terms of the total no-show cost to the 

system.  Its application in real life would benefit outpatient practices during the scheduling 

process; this is demonstrated through the creation of a prototype for an interactive 

appointment scheduling platform in Excel. 

1.1 Significance 

Outpatient clinics offer services of medical procedures or tests that can be done in a 

medical center without an overnight stay. Usually they cost less because of the shorter length 

of stay, which implies the elimination or reduction of several procedures and costs associated 

when a patient is hospitalized.  In general, outpatient clinics can be divided in four service 

categories: Wellness and Prevention, Diagnosis, Treatment, and Rehabilitation.  Wellness 

and Prevention centers focus in the orientation and application of preventive medicine.  

Diagnosis centers include radiology services and laboratory tests, among other services.  The 

Treatment centers operate minor surgical interventions and provide treatments for specific 

medical conditions such as cancer.  Rehabilitation centers provide services to treat patients 

with psychological conditions, patients who require physical therapy, among other services.  

It is important to clarify that an outpatient clinic can provide in their facilities more than one 

of the services described.  Since outpatient clinics work at an appointment basis, they tend to 

be impacted by the absences of patients. 
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Non-attendance to clinical appointments implies a negative impact in the healthcare 

systems because it has consequences in costs, productivity, resources utilization and patients’ 

flow, among others [5-8].  Besides the economic impact of non-attendance, other aspects of 

the operation of the system are affected by failed appointments [5]. Fail appointments 

interrupts the flow of patient care and the clinic productivity declines [6]. Also, no-shows 

cause relative longer waiting periods for appointments [7].  Scheduling conflicts and 

interrupting continuity of care are other effects of failed appointments [8].  Loss of available 

clinic capacity and higher times of the patients waiting on the clinic are examples of social 

consequences due to non-attendance, which can also be expressed in monetary terms as social 

costs [3].  As it can be seen, failed appointments may have an impact in financial, social and 

medical aspects. 

By 1979, studies about hospital clinics with low socioeconomic populations presented 

appointments fail rates between nineteen and twenty eight percent and studies about family 

practice centers reported appointments fail rates which vary from five to eleven percent [10].  

In 1999, Hixon et al. [11] performed a survey study on family practice residency programs.  

In the results, the authors show that more than one third of the clinics that answered the 

survey reported a no-show rate of more than twenty one percent.  According to a study held 

by Moore et al. in 2001, no-shows and cancellations represented 31.1% of scheduled 

appointments and 32.2% of scheduled time [6].  This problem extends to today since, in a 

study published in 2014 by Lofti and Torres, held on a physical therapy clinic, clinical records 

showed that the typical monthly no-show rate was approximately 16% for all patients and 

21% for new patients while the cancellation rate was approximately 22% for all patients and 

27% for new patients [5]. 
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Figure 1. No-Show Rate in Studies Held in Clinics 

In 2007, the healthcare industry expenditures represented approximately 15% of the gross 

domestic product (GPD) of the United States, a figure that increased to 17.4% in the year 

2013 and is projected to increase 1.9% by 2023 [1]. According to the Centers for Medicare 

and Medicaid Services, the National Healthcare Expenditures (NHE) grew 3.6% from 2012 

to 2013, accounting to 2.9 trillion of dollars, and is projected to grow at an average rate of 

5.7% from 2013 to 2023 [1].  The increase in expenditures can be ascribed to the influence 

of several factors such as the introduction of new expensive technologies to the system, 

unfavorable trends in population demographics and legal expenses, among others [2].In 

economic terms, non-attendance has impacted public expenditures around the world.  The 

United Kingdom National Health Service (NHS), in 1984, reported a cost of up to 266 million 

pounds caused by broken appointments, and the Department of Health reported that as much 

as 360 million of pounds would be wasted each year [12].  From 1996 to 1997 the UK 

accounted for an average of 366 million of pounds due to missed appointments [12].  In the 

United States, information can be found about lost due to non-attendance in healthcare 
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clinics.  In 2001, Moore et al. showed that total revenue shortfalls could range from 3 percent 

to 14 percent of total clinic revenue [6].  David Keefer, a health system specialist at the Lyster 

Army Health Clinic, expressed that “no-shows” cost the clinic $450,000 to $900,000 per year 

in lost revenue [13].   

Outpatient clinics have used several methods to decrease non-attendance rates, for 

example, mailed and telephone remainders [9].  Also, they have implemented other 

techniques to decrease the impact of non-attendance.  The use of no-show probability, 

extracted from data bases, as an input for scheduling appointments, has been researched and 

implemented through case studies.  One of the disadvantages of this method is the fact that 

most of the approaches include overbooking, which involves scheduling an additional fixed 

number of patients each day based on the clinic no-show rate. It is known that overbooking 

can cause increases patient wait times, which impact patients experience in the system, and 

can cause provider overtime, which also impacts the clinic profit [14].  Since the magnitude 

of the number of additional patients to be scheduled depends on the clinic no-show rate, it is 

important to have a robust methodology and framework to assess the no-show probability.  

Lofti and Torres express in their article: 

“Hence, a reliable procedure is needed to estimate the probability of show for patients 

who are scheduled too close to one another which is a form of overbooking.  This will allow 

the scheduler to avoid overbooking patients with a relatively high probability of show.  It will 

also allow the scheduler to implement a targeted overbooking of patients with high 

probability of no-show, minimizing the expected number of unused timeslots due to no-shows, 

thereby increasing the overall utilization of the Clinic.” [5] 
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The fact that non-attendance is a current problem in outpatient clinics emphasizes the 

need of research in this area in order to use the information available to assess the status of 

the system and identify areas of opportunities for improvement.  In future research, that 

information could be used to strategize and develop better practices to counteract their impact 

in the system.   

1.2 Justification and Contribution 

Several efforts have been made within the research community by using historical 

information in the databases of healthcare outpatient centers or semi-structured interviews, 

with the purpose of identifying the probabilities of no-show of patients.  Their main objective 

is using that information as a source of knowledge to use for many applications, such as using 

it as an input to determine an efficient medical appointment schedule.  For this reason, many 

researchers have investigated possible factors that influence whether a person is sensitive to 

fail an appointment with or without prior notice. Besides the efforts, however, in the relevant 

literature regarding this topic one could identify the following areas of opportunity: 

1. It is not evident that previous publications perform a deep investigation about the 

relationship (internal dependency) among factors and have not presented a general 

framework that can be applied into different scenarios. 

2. Few studies considered or focused on exploring the costs of non-attendance; the 

ones that have been published are not as deep and extensive as needed. 

3. Few studies considered the assessment of non-attendance, using no-show 

probabilities and cost information as a way to describe the expected cost of a failed 

appointment slot, and use that information as input in the scheduling process. 
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This research focuses in developing a general methodology that will overcome the areas of 

opportunity mentioned before.  Specifically this work: 

1. Develops a cost model that integrates patients’ probabilities of no-show and cost 

information to determine the expected value of an appointment slot as a 

representation of the estimation of the real cost of a no-show to the system. 

a. The cost model will integrate cost information in two major cost categories, 

the financial costs and the social costs. Few publications present research 

estimating the social cost of a patient absence.  The ones that include this cost 

category estimate it from the patient point of view.  On the contrary, in this 

work it has been identified allocation basis to estimate the social costs from 

the clinic point of view to determine the indirect economic impact in the 

clinic of a patient absence to a medical appointment.  

2. Evaluates different scheduling scenarios in terms of costs by using stochastic cost 

model developed. 

3. Demonstrates the cost model usefulness through the construction of an interactive 

platform that allows the scheduler to choose the attributes of the patients to calculate 

their probabilities of no-show and the estimated cost of the appointment slots when 

patients are assigned. 

1.3 Thesis Organization 

 This thesis is organized in chapters. The second chapter consists of a literature review 

regarding the most relevant recent published articles related to the topic under research.  A 

description of the methodology followed is given in the third chapter.  The fourth chapter 
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presents a detailed explanation of the results.  General conclusions, additional comments, and 

recommendations for future research in this area of interest are discussed in the fifth chapter.   
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2 CHAPTER – LITERATURE REVIEW 

Non-attendance to clinical appointments has been a subject investigated for many 

years by the academic research community interested in healthcare operations.  The work 

done about this topic can be divided in three main categories.  The first category can be titled 

as Predictors & Modeling. Other research articles can be categorized as Scheduling 

Applications. The last category of research in this topic can be titled as Financial 

Considerations.  A summary of the relevant literature related to these categories is presented 

next. 

2.1 Predictors and Modeling 

Researchers under this category have concentrated their efforts in the investigation of 

the factors that significantly influence patients to fail an appointment, they use this 

information as predictors to determine the probability of no-show of a patient [4, 7, 8, 15-

18]. Their methodologies vary from structured interviews to patients, to retrospective studies 

using information from the data bases of outpatient clinics.  Using statistical tools and 

techniques, researchers have constructed predictive models to determine the probability of 

no-show of a patient. 

2.1.1 Factors Selection 

Many reasons or factors that contribute to missed or broken appointments 

have been pointed out by researchers in this field of investigation.  One of the most 

complete literature reviews in this topic was held by Deyo and Inui [18] were they 

present a table of “determinants” of broken appointments.  The authors classified the 

“determinants” in eight categories: features of the patient, features of the medical 
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provider, features of the disease or reason for appointment, features of the patient-

provider interaction, features of the therapeutic regimen, features of the medical 

facility and administrative process, features of access to the facility and 

environmental factors. They identified nearly eighty-six factors or reasons that can 

contribute to dropout and broken appointments.  From the factors identified by the 

Deyo and Inui, only those related to demographic features of the patients and features 

of the appointment scheduling process are being considered in this work. 

The majority of the studies related to this topic have been performed through 

data analysis from adult medical clinics, psychiatric and pediatric populations, where 

most of the publications until 1980 focused their work [18]. Interviews have also been 

used as a method to gather information.  As Deyo and Inui [18] present, many 

investigators have presented results of studies held by interviewing patients by 

telephone, by mailed questionnaires, or in person.  Patient forgot, did not know about 

the appointment, or misunderstood are the most frequent reasons given by the 

patients.  Other reasons related to transportation, economic situation and time or work 

conflicts, also resulted significant.  In [15], Lacy et al. held a semi-structured 

interview study on a university-affiliated family practice clinic.  The purpose of the 

interview was to identify the patient perception about this topic.  Results revealed 

three major issues related to missing appointments without previous notification. The 

first one is emotional barriers; according to the patients, the negative emotions about 

going to see the doctor were greater than the perceived benefit of it.  The second 

reason is perceived disrespect from the healthcare staff.  The last issue is related to 

the patient lack of understanding of the scheduling system; the patients seemed 
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unaware of the impact of missed appointments.  As Deyo and Inui established [18], it 

is important to consider that the validity of data and results from interviews is open 

to questions because it depends on the respondent’s attitude towards the interviewer. 

Also, the sample interviewed may or may not represent the population perception 

about the topic.  The positive aspect about interviews is that people’s opinion can be 

known, however it can be incorrect to use results from the interview as definitive or 

the norm. 

Not necessarily the same factors are considered in all publications presented, 

also not necessarily all of them present the same results; it can vary among the 

scenarios.  However, in general, several factors have resulted to be consistently 

significant in most of the articles reviewed.  Age, socioeconomic status and history 

of non-attendance have been the factors that consistently resulted significant in the 

majority of the articles published [4, 5, 7, 8, 16, 17, 19-24].  In general, patients who 

are sensitive to fail an appointment tend to be young, of lower socioeconomic status 

or unemployed and with a previous history of non-attendance.  In addition, age has 

also been relevant in relation to patients’ calling to make an appointment cancellation 

[7].  Deyo and Inui [18] confirmed in their review that, in general, the majority of the 

studies present that age, education and socioeconomic status are probably the most 

consistent and important demographic reasons on appointment-keeping behavior.  In 

the case of patient’s mode of payment, it has been found important in some studies 

but not in others, the significance of this factor depends on the setting and the scenario 

under analysis [4, 17, 22, 23].  Factors like gender [5, 8, 22] and time between 

scheduling and the actual appointment date (lead time) [4, 5, 8, 15-17, 19, 22-25] have 
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resulted as relevant in several publications.  Other factors such as transportation, 

waiting time, misunderstanding in scheduling, patients’ lack of knowledge about the 

process, among others, have been mentioned in literature but with less relevance.  It 

can be seen that factors related to demographic features of the patients and features 

of the appointment scheduling process tends to be more relevant in relation to patients 

non-attendance.  This is the reason why this work focuses on them. The consideration 

of factors and their significance is dependent on the scenario (the particular 

characteristics of the system being analyzed) and the availability of information. 

Dependence between factors is important to be considered; for example, the 

patient’s payment method can be strongly related or influenced by several 

demographic factors like age and socioeconomic status.  In summary, Deyo and Inui 

literature review reveals two important characteristics that need to be considered in 

the analysis: interdependency between factors and that factors significance can vary 

among scenarios.  In this work, in order to deal with the possible interdependency 

between factors, a classification technique called Classification and Regression Trees 

is used because provides prediction models that are not affected in the presence of 

multi-collinearity.  A literature review approach has been considered to identify those 

factors or attributes that consistently resulted as significance in previous studies held 

on healthcare clinics. 

As mentioned before, non-attendance can be divided in two groups: cancellations 

and no-shows.  Of the research literature, in most of the cases, cancellations and no-

shows are grouped together and studied under one category usually called non-

attendants, or only no-shows are considered in the analysis. Cancellations are 
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important for service operations because a clinic could devise a strategy to recover 

the capacity, something that cannot happen with no-shows [4].  This is the reason why 

Norris et al. [4] performed an empirical investigation of the factors affecting patient 

cancellations and no-shows at outpatient clinics.  They examined patient attendance 

using three discrete outcomes: no-shows, cancellations and patients who arrive.  In 

[7], Shaparin et al. also considered cancellations in their analysis.  From their results 

it can be highlighted the fact that the same factors can be studied for no-show and 

cancellations, however not necessarily the same factors will result significant in both 

categories. This reinforces the necessity of considering and analyzing cancellations 

apart from no-shows. 

2.1.2 Use of Data Base Information and Statistical Modeling 

Once the possible factors that influence whether a person is sensitive to fail an 

appointment without prior notice have been investigated,  statistical screening has 

been essential in order to consider the variables or factors that show statistical 

importance with respect to the response; that in this case is known as patient 

sensitivity to fail a medical appointment. In general, the majority of the studies 

published use statistical techniques to determine the importance of the factors and for 

the construction of predictive models in order to calculate the probability of no-show. 

Lacy et al. [15] is an exception because the researchers used semi-structured 

interviews to patients in order to obtain the data and used an immersion-crystallization 

organizing style to analyze the data.  Dove & Schneider used an interactive computer 

language for statistical analysis on data analysis and variables screening [16].  

Predictive modeling with multinomial logistic regression and decision trees has been 
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techniques used in several studies [4-19]. For a study held on an academic pain clinic 

in Newark, New Jersey, researchers used 2-sample t-test for continuous variables 

comparisons and Pearsons chi-square test or Fisher exact test for categorical 

variables.  They modeled the data using a marginal logistic regression [7].   Lee et al. 

[8] used univariate analysis to determine variables significance and multivariate 

analysis with a multiple logistic regression to construct a prediction model.  Also, 

they used a receiver-operating characteristic (ROC) curve to assess the model’s 

discrimination ability.  Artificial Neural Networks have also been used to construct 

models and predict the risk of no-show for a patient appointment; Dravenstott et al. 

[17] accompanied the technique with a sensitivity analysis with the purpose of 

eliminating the variables that were not sensitive.   Lofti and Torres used Classification 

and Regression Tree (CART) for data analysis, as we do, they compared the results 

with the ones obtained of a Bayesian Network and Neural Network models [5]. 

The literature reviewed reveals that Dove and Schneider [16], in 1981, were ones 

of the first researchers to use a tree model approach to develop a predictive model of 

no-shows for outpatient clinics.  They used the patients’ individual characteristics as 

variables to predict the number of patients who could be expected to keep their 

appointments.  The statistical analysis revealed that only four variables (patient’s age, 

travel distance, appointment interval, and previous no-show record) were significant 

in relation to the binary dependent variable patient’s last appointment.    Those four 

variables were considered under a decision tree structure to develop a predictive 

model to estimate the expected number of patients who will show out of all patients.  

The purpose of their model was not to make a prediction for each individual patient, 
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as is intended in this research.  Their decision tree is not complex and the fact that 

only four variables are considered makes the problem simpler.  Lofti and Torres [5] 

expand Dove and Schneider work with a more complex approach using Classification 

and Regression Tree (CART), assessing the relative predictive powers of four 

different decision tree techniques; which at the same time are compared with the 

predictive power of models obtained from Bayesian Networks (BN) and Artificial 

Neural Network (ANN) models.   The authors compared the four decision tree 

techniques using measures as sensitivity (portion of patients correctly classified as 

show), specificity (portion of correctly classified as no-show patients), and risk 

estimate (overall portion of the cases that are misclassified).  Decision tree analysis 

exhibited superior performance when compared with those of BN and ANN.   

2.2 Scheduling Applications 

Publications under this category have gone more far in their investigation, studying 

the use of no-show modeling as a tool to improve clinic performance [5, 19, 25, 26].  These 

researches utilize the no-show probabilities obtained from the models as an input of advanced 

scheduling methods. 

Considering no-show probabilities in patients’ appointments scheduling has been an 

approach used in order to reduce the impact of no-shows in clinic efficiency.  The scheduling 

approach includes two methods: overbooking (the most used) and short lead time scheduling 

[19].  Overbooking, which consists in booking multiple patients in the same appointment 

slot, can result in a negative impact because it can cause clinic personnel overtime and higher 

patients’ waiting time, among other consequences.  The short lead time scheduling minimizes 

the time between the appointment making and the appointment date.  This method has 
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worked for some scenarios, but not for others.  There is a current need for research in this 

area, starting with the assessment of the input data needed and finishing with the development 

of new scheduling methods.  Most articles about this topic, before doing the schedule, show 

the use of factor screening and no-show model construction because they provide part of the 

input needed to develop the scheduling methodologies or algorithms. Several research efforts 

related to this topic can be found in the academic literature. Most of them are from 2009 to 

the present. It is a relevant issue to what is happening in the healthcare systems.   

Daggy et al. in [19] demonstrated the utility of using no-show probabilities as an input 

for appointments scheduling by comparing a regular schedule with a schedule developed 

using the Mu-Law method.   The Mu-Law method use no-show probabilities, service time, 

slot length information in conjunction with cost and revenue information to assign 

appointment slots to patients.  The objective of the method is to optimally balance patient 

waiting times, clinic overtime and revenue.  It is a dynamic method that can overbook or 

leave slots unassigned because it is dependent of the sequence of appointment calls.  The 

algorithm stops when the increment in marginal costs by the addition of one patient is higher 

than the marginal revenue [19].  To feed the algorithm, in this article, the authors performed 

a logistical regression to determine the no-show probabilities.  Results from the study 

revealed that, in terms of physician utilization and overtime, the Mu-Law based schedule 

performed better.  However, in terms of patients’ waiting time, the regular schedule 

performed better.  It was expected because the Mu-Law method tends to overbook. Also, 

considering the dynamic call in sequence of patients and their probability of now-show, Tsai 

et al. [26] presented a stochastic appointment scheduling system with multiple resources.  In 

their algorithm, the authors considered a fixed number of slots of equal length, the probability 
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of no-show and the fact that in the visit the patient can require more than one resource.  The 

no-show rate was used to classify the patients in different classes.  The algorithm is designed 

with the purpose of maximizing total profit, considering patient’s waiting cost and 

physicians’ overtime costs. The stochastic scheduling system developed by them was then 

compared with traditional scheduling systems and with systems that consider no-show rate 

in a homogenous way; it performed better in profitability terms. 

Lofti and Torres, in [5], used the attendance conditional probabilities obtained from the 

CART approach they applied to assist with scheduling.  They developed an algorithm 

considering time slots, attendance probabilities and the expected number of patients schedule 

in timeslots.  The authors analyzed five scenarios, from a regular one-slot per patient schedule 

to several patients per slot schedule according to their attendance probability (which allows 

overbooking).  As a result, the scenarios that allow overbooking performed better in terms of 

number of timeslots with no-shows and in terms of clinic’s utilization.  However, the authors 

do not consider or discuss the effects in patients waiting time caused by overbooking.  In 

[27], Tang et al. present two approaches to develop an appointment schedule considering no-

show probability. They propose an exact deterministic service time method to find an optimal 

schedule.  They also propose a heuristic algorithm, considering exponential distributed 

service time, which provides a local optimal solution to develop a schedule.  They consider 

two types of patients: routine patients and urgent patients.  The algorithms were designed to 

minimize the average patient waiting time, the physician idle time and overtime. 

 The methodology developed in this work consider no-show modeling, as the 

publications mentioned previously do, but also include financial information, all integrated 

in a probabilistic cost model.  This cost model contribute in assessing the cost of a no-show 
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to an outpatient clinic, which allows compare different scheduling policies that may or may 

not include overbooking in order to identify a better procedure to schedule patients 

appointments.  The scheduling policies are compared in terms of clinic utilization, level of 

overbooking and cost, among other performance measures. 

2.3 Financial Considerations 

Researchers under this category have focused their studies in the economic impact of 

non-attendance [3, 6, 12, 28].  The vast majority of research in appointments non-attendance 

considers cost impact in their analysis.  However, very few perform a deep economic analysis 

considering all the cost components involved, instead a basic analysis is presented.  As Bech 

established, few studies have explored this topic category and many of the studies done are 

rather unsophisticated or even misleading [3].  Areas of opportunity for research in this topic 

are considered. 

Few studies consider or focus on exploring the costs of non-attendance; the ones that 

have been published are not as extensive as required.  For the year 2005, Mickael Bech, in 

"The economics of non-attendance and the expected effect of charging to fine on non-

attendees" [3], establishes that very few studies have explored the costs of "non-attendance".  

In addition, he indicates that the majority of the studies made in previous years were 

unsophisticated or confusing. Even the majority of studies and estimates were not up to par 

with the standards of an economic analysis, the majority over-estimated in its techniques. 

However, these studies provide an idea of the magnitude of the economic impact that the 

absences to medical appointments cause in healthcare centers.  An extensive and complete 

cost analysis is required in order to fully assess the cost/benefit balance. 
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After 2005, very few studies on the economic effects of the absences to medical 

appointments can be found. Within the most recent is "Impact of missed appointments for 

outpatient back on cost, efficiency and patients' recovery" [28].  In this study a basic cost 

analysis considering gains and losses is performed, and even within its own set of limitations 

it clarifies that the estimated value of the cost per treatment used does not represent the actual 

cost. 

As established by Michael Bech in [3], the costs of non-attendance to medical 

appointments can be divided into two types of costs, which in part overlap.  These are the 

social costs and the financial costs to their healthcare providers. Within the social costs are 

the value lost by the non-utilization of resources, resulting in low productivity and loss of 

benefits.  It also includes the staff time not used, the equipment not used and the utilities this 

entails, and the "good-will lost" because patients can wait more because there is a tendency 

to "over-scheduling" for counteracting the effects of the no-show.  The failure to redistribute 

resources vacancies by the absence of the patients is also a social cost. Opportunity cost is a 

significant social cost; it can be seen as the benefits that could have been generated if the 

time and the resources were used in other activities.  In addition to the already mentioned, 

the delay in waiting times can cause serious clinical results because it is known that the 

effectiveness of treatments depends on the time frame between the diagnosis and treatment.  

As Deyo & Inui established, few studies have attempted to show increased hospitalization 

rates for those who break appointments [18].  There are social costs associated with this 

aspect, which should be investigated.  The social costs are often ignored by healthcare 

providers because they do not necessarily affects them directly, however, they can have an 

indirect impact.  This work incorporated both cost categories in the development of the 
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probabilistic cost model.  The financial costs are strictly considered as the operational costs 

directly related to the service provided to the patient.  In relation to the social costs, this work 

studies the “loss of good-will” cost, referred in this document as the waiting cost, and also 

consider the cost of the value lost due to the non-utilization of the resources. 

The financial costs to the healthcare providers are related to the loss of income due to 

the absence of the patient, given that when warning ahead from the scheduled patient, the 

providers could not fill the space with another patient.  As is well known, the medical 

providers (doctors) give a service, which is then reimbursed economically by the well-known 

"third party payers" or health insurance companies.  In addition, the medical insurance may 

not cover the entire operation to the patient and therefore the patient has to pay a deductible 

for the service. The providers that are paid in charge for their services or by schema of cases 

are the ones most affected.  It is important to consider that in many occasions a no-show does 

not mean a financial loss due to the "walk-in" patients that can fill that space. "Walk-in" is 

patients seeking appointment the same day, and as the space is empty by the absence of the 

no-show, the slot can be filled immediately. Researchers who published the article "Time and 

Money: Effects of No-Shows at a Family Practice Residency Clinic" [6] explored the balance 

between the no-show and the “walk-in" patients.  Within their findings is that the "walk-in" 

patients generate less revenue than the one that could have been generated with the no-show 

patients that were in the itinerary.  Additional to that, there may be loss of productivity and 

resources, among others, because, if for example, the patient in the itinerary that failed the 

appointment was cited for a procedure of thirty minutes, and the "walk-in" patient requires a 

procedure of fifteen minutes; there are still fifteen idle minutes that impacts in a negative 

way. 
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In general, we can say that the majority of investigations related to the economic 

impact of failed appointments focused on the financial costs, for the purpose of presenting 

the economic impact on the income by the absence without prior notice of the patient.  Berg 

et al. consider social costs in their discrete event simulation study conducted for an outpatient 

endoscopy clinic [29]. They evaluated different scheduling policies and different 

overbooking levels, in order to determine the schedule that maximize the net gain of the 

clinic.  In the study they included the traditional operational costs, estimated as a percent of 

the clinic reimbursement, and also included the cost of no-show, the overtime cost and the 

patients’ waiting cost.  The overtime cost was estimated based on expert opinion.  The cost 

of no show was quantified based on the difference between the revenue obtain from the 

procedure and the operational costs of managing the procedure, which they call net gain.  

Finally, they quantified the patient waiting cost in terms of the average wage the patient loose 

by waiting on the clinic instead of being productive at work.  It can be said that the authors 

are accounting this social cost from the patients’ point of view, and not from the clinic point 

of view as will be seen in this research work.  The authors simulated the scenarios using 

general statistics about the patients’ attendance in a length of time.  Their methodology do 

not focus in the assignment of each individual patient in the appointment schedule.  They do 

not consider each patient susceptibility (probability) to fail an appointment in order to use 

that information for the assignment, as will be presented in this research work.  To the best 

of our knowledge, there has not been more research or publications that conducted a more 

in-depth study (considering social costs, financial and opportunity costs) on the economic 

impact of patients’ non-attendance.   
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Few methods or heuristics consider the economic factor as a determinant aspect at the 

moment of making the schedule of appointments, once you have the probability of no-show.  

The Mu-Law algorithm, a method constructed, developed and published by Muthuraman and 

Lawley, considers the probability of no-show of patients but it also calculates the expected 

income for each block of time and accommodates the patient in the block of time that 

maximizes profit [2].  They constructed an optimization model for the call-in scheduling 

problem with a profit maximization objective function. The objective function presented by 

the authors is unimodal, meaning that is non-decreasing until a peak is reached and then is 

monotone decreasing afterwards.  This implies that the optimization model assign until the 

cost of assigning one patient outweigh the revenue generated, which can be seen as a stopping 

criterion.  It is a probabilistic optimization model because it considers patients’ probability 

of no-show and the probability that the assignment of a patient to a slot may increase the 

overflow from one slot to another.  Sands et. al [19] used the Mu-Law algorithm in their 

investigation and by the results it is presented that the optimization model leave some slots 

unassigned, something that can be seen as a disadvantage.  Even when the Mu-Law 

methodology performed better than the one-patient per slot scenario, it is important to 

highlight the fact that it is designed for scheduling construction and not for the evaluation of 

different possible scenarios. Although it has an economic based objective function, the 

authors do not present a methodology to identify, define, assign and allocate the direct and 

indirect financial and social costs involved.  Also, it does not provide a cost model that could 

be applied to evaluate different scheduling scenarios, which is the purpose and contribution 

of the methodology that will be presented in the following section. 
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3 CHAPTER – METHODOLOGY 

A methodology has been developed with the purpose of structuring a plan to 

accomplish the objectives of this research.  It consists of a series of steps that will be 

explained in detail in the following sub-sections.  Figure 2 presents an illustration of the 

research methodology. 

“No-show” 
Cost 

Assessment

Variable 
Selection

  Data 
Simulation

Apply Method 
C&RT

Conduct 
Economic 
Analysis

Develop 
Cost Model

Create 
Interactive 
Platform in 

Excel
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Figure 2. Research Methodology 

3.1 Variable Selection 

As mentioned in Sub-section 1.1.1, several research publications have presented 

studies related to the attributes associated or significant in relation to patients’ non-attendance 

to medical appointments.  A literature review of the recent publications related to this topic 

has been conducted with the purpose of identifying the attributes that has resulted constantly 

significant in relation to predict a patient susceptibility to fail an appointment. Twelve 

published articles, in total, under the category of “Predictors and Modelling” were reviewed.  

Table 1 presents a sample of seven of the twelve published articles reviewed, showing the 

overall factors considered in those publications, highlighting the factors that resulted 

significant from the statistical screening. The fact that an attribute is considered in a study 

does not imply that it has to result statistical significant, that is the reason why the data is 

analyzed using a screening technique.  As it can be seen, since the publications present some 
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variables or factors in common, it can be said that the significance of factors may vary among 

scenarios. 

Table 1. Summary of overall relevant factors found in seven publications 

 

Since a considerable number of attributes were identified in the literature, it was 

convenient to organize them in categories.  To accomplish that, the twenty-one attributes 

were categorized in six of the eight “determinants” of broken appointments as established by 

Deyo and Iniu [18].  Table 2 present the attributes categorized and show (highlighted in gray) 

in which of the twelve published articles those attributes resulted statistical significant.  

 

Norris et al. Lofti et al. Shaparin et al. Lee et al. Dove et al. Sands et al. Dravenstott et al. 

Age X X X X X X X

Appointment Length X

Continuity of care( office visit number) X

 Date of Last Visit X

Distance X X X X X X

Education X

Gender X X X X

Having an interventional procedure 

scheduled and performed in connection 

to the appointment

X

Hospital admission during the 

appointment or between scheduling 

and appointment

X

Hospital Department X X

Lead Time X X X X X X

Marital Status X X

Number of days since patients' last 

completed appointment
X X

Particular complaint X X

Patients' Employment Status X X X

Patients' length of time being seen in 

the health system
X

Patients' Primary Language X

Prior attendance history X X X X X X

Provision of cellphone number X X

Race X X X X

Referring Physician X

Schedule ( Day of week, hour, time of 

the day)
X X X

Season X X

Service connected disability: priority 

given to patients with disease or 

disability that ocurred during active 

duty

X

Type of Payment (Insurance) X X X X

Type of Visit X X

Weather X

Factor
Article

Factors 

marked 

with an X 

were 

considered 

in their 

respective 

analysis; 

the ones 

highlighted 

resulted 

significant 

after the 

statistical 

screening.
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Table 2. Attributes categorized according to the “determinants” of broken appointments 

 

 The number of times a factor is mentioned in the literature as significant has been used 

as the criteria of identification because each author has used different techniques for 

statistical screening and prediction model construction.  Not all the publications provides an 

attribute ranking that inform about the importance of an attribute in comparison with the 

others.  Analyzing Table 2, it has been identified that thirteen attributes were consistently 

mentioned as significant across most of the articles.  These are related to demographic factors, 

scheduling factors, and prior attendance history.  Demographic attributes refer to particular 

characteristics of the patient, such as gender and race.  The scheduling attribute is related to 

Factors

Demographic Attributes [4] [5] [7] [8] [16] [17] [19] [20] [21] [22] [23] [24]

Age

Education

Gender

Marital Status

Patients' Employment Status

Patients' Primary Language

Race

Socioeconomic Status

Type of Payment (Insurance)

Access Attributes

Cellphone number

Distance

Facility and Administrative 

Process Attributes

Appointment Length

Lead Time

Hospital Department

Number of days since 

patients' last completed 

appointment

Continuity of care( office visit 

number)

Environment Attributes

Schedule ( Day of week, 

hour, time of the day)

Season

Sociobehavioral Attributes

Prior attendance history

Other Attributes

Having an interventional 

procedure scheduled and 

performed in connection to 

the appointment

Particular complaint

Research Articles
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the lead time; the time from making the appointment to the appointment date.  Prior 

attendance history depends on the patients’ previous no-show record.  Table 3 show the final 

fourteen attributes identified by the literature review. 

Table 3. Final fourteen significant attributes identified 

 

 Since the purpose of this research is to provide an output that could be used in outpatient 

clinics, it is important to consider variables for which the clinics have information or can be 

accessed in their databases.  The literature review has served as a method to determine the 

variables to be considered in the study.  

3.2. Data Simulation 

The reviewed literature related to this topic focus their research scope to particular 

settings or scenarios.  Using data base information from healthcare systems, researchers have 

applied statistical tools to screen the variables with the greatest impact and for model 

construction.  Norris et al. [4], Lofti and Torres [5] and Shaparin et al. [7] used data from 

outpatient facilities from Medical Schools departments in their respective analysis.  

Dravenstott et al. [17] used Primary Care and Endocrinology data set from a healthcare 

No-Show Attributes

Age

Education

Gender

Marital Status

Patients' Employment Status

Patients' Primary Language

Race

Socioeconomic Status

Type of Payment (Insurance)

Provision of Cellphone Number

Distance

Appointment Length

Lead Time

Prior Attendance History
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system. Dove and Scheneider work [16], focused on a sample data collected from a Medical 

Center in the United States.  Veterans’ outpatient clinics from the United States have also 

served as scenarios under study [19].  A study with data collected from an outpatient clinic 

in Singapore, have also been published [8].   

In the case of this research study, simulated data is being used to apply the methodology 

developed.  The purpose is to show how the procedures resulting from this research could be 

replicated in a real scenario of an outpatient clinic.  The attributes and variables for which 

the data has been generated were identified and selected based on literature review, also 

taking in consideration the information that could be accessed or collected in real life.  As 

would be seen in the next chapter, several cases will be analyzed in order to take in 

consideration the possible scenarios that could be encountered in an outpatient clinic 

environment.  Details about how the data was generated is presented next. 

A total of thirty sets of data were generated in Excel for each example.  Each data set 

contains five hundred samples for each of the attributes under consideration. Those five 

hundred samples were then divided in five folds because in the analysis a cross-validation 

approach is being used in order to qualify the prediction model and to assert the level of 

precision we can obtain from it.   From the thirteen possible significant no-show attributes 

identified, which are mentioned in Sub-section 3.1, only eight of them were selected as the 

predictive attributes for the examples: age, distance, race, lead time, type of patient, marital 

status, primary language and gender.  It was identified from a real outpatient clinic that 

information about these eight variables are usually available in the data bases of the system, 

and the idea of this research is to present a methodology that could be used with the 

information that is already available in healthcare facilities. The response variable considered 
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is binary, taking a value of {0} for Show and {1} for No-Show. The five hundred samples of 

each data set were generated creating half of them with a Show response and the other half 

with a No-Show response.  Table 4 presents an illustrative example of the data sets generated 

in Excel, showing the first 30 samples.  Each row of the data sets represents a patient medical 

appointment.  The first column is the patient ID.  Columns two through ten contain the 

attributes information for each particular patient.  The last columns contain the binary 

response, indicating a {0} if the patient showed to that particular appointment, and {1} if not. 

Table 4. Illustrative example of the generated data 

 

3.3 Classification and Regression Tree (CART) 

Classification tree method is the selected technique to assess the no-show to clinical 

appointments through the calculation of no-show probabilities.  Considering a combination 

of continuous and categorical variables, it is pretended to construct a model to predict a binary 

ID l_time a_length age gender race m_status p_language distance t_patient attendance

1001 9 25 36 A A A B 14 B 1

1002 2 11 48 A A A A 12 A 1

1003 12 12 47 A C A A 6 A 1

1004 27 26 33 A B A A 0 A 0

1005 18 16 63 B A B A 12 A 1

1006 4 21 59 B C B A 12 A 0

1007 11 28 44 B A A A 6 B 1

1008 27 10 60 A A B A 14 A 1

1009 20 15 62 A B A B 6 B 1

1010 30 10 65 B A A B 19 A 0

1011 1 28 41 A C A C 8 A 0

1012 20 24 26 A A B B 19 A 1

1013 17 22 23 B B B B 0 B 1

1014 14 23 22 B A A A 0 A 1

1015 26 28 46 B C B C 14 A 0

1016 1 24 35 B B A B 6 A 0

1017 23 18 69 B A A B 14 A 1

1018 30 14 22 A C A B 8 B 0

1019 26 14 35 A C B B 19 A 1

1020 14 26 40 B B A A 14 B 0

1021 6 23 57 B B A B 17 B 1

1022 1 27 62 A C A B 0 B 0

1023 25 21 68 B C A B 14 A 0

1024 18 27 69 A C B B 6 B 0

1025 21 29 53 B A A A 6 B 1

1026 24 30 53 A C B A 19 A 1

1027 1 20 26 B C B B 8 A 0

1028 27 11 70 A C A A 14 A 1

1029 2 12 57 A C A A 12 A 1

1030 5 22 23 B B B A 12 A 0
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dependent variable, which is the classification of a patient as a show or a no-show, and to 

obtain a conditional probability. 

Classification is the task of using a set of attributes (x’s) to assign objects to one of several 

predefined classes (y’s) [30, 34].  It is a tool that helps to distinguish between objects of 

different classes.  As in the regression setting, the classification setting counts with a set of 

training observations (records) that can be used to construct a classification model [31, 35]. 

The main difference between both settings lies in the fact that regression methods assumes 

that the response variable (Y) is quantitative, while classification methods assess the situation 

where a response variable is instead qualitative.  

Classification Tree is a Decision Tree-Based Classification Method which consists in the 

segmentation of the data, better known as predictor space, into regions in order to make a 

prediction or classify a given record (observation) into a class (response) [35]. As a 

classification method, it is used to predict a qualitative response.  Its methodology consists 

of a series of splits of the data in order to stratify the predictor space.  The splitting process 

can be visually represented as a tree (Figure 3). Basically, this technique classify each record 

by predicting that it belongs to the most commonly occurring class of training observations 

in the region to which it belongs [35]. 
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Figure 3. Representation of a Classification Tree 

This method has several advantages over other classification techniques.  First of all, 

CART is a non-parametric method, implying that no assumptions regarding to the probability 

distribution that the data follows has to be known a priori [32]. The second advantage that 

can be mentioned is the simplicity of results, which facilitate its interpretation and make it 

easier to present to management or personnel not familiarized with data mining techniques.  

It is important to mention the ability of the technique to manage missing values [32]. One of 

the most relevant advantages in relation to this research is the fact that the presence of 

multicollinearity does not affect the performance of the method, as in other similar techniques 

such as logistic regression.  The majority of the relevant attributes associated with no-shows 

are demographic factors, which tend to present high correlation among them.  Selecting a 
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prediction technique that can deal with the internal dependencies among the variables is 

essential, and CART accomplishes that.   

Trees are composed of nodes, categorized in three types.  The first type of node is known 

as root node, which is the initial node from which the splitting process begins. It has no 

incoming edges, but can have multiple outgoing edges [34].  Internal nodes are the second 

type of nodes.  These are non-terminal nodes that continue the splitting process, since they 

contains attribute test conditions that allow the segmentation of records that have different 

characteristics.  Each internal node consists of exactly one incoming edge and multiple 

outgoing edges [34]. When a node cannot be split anymore, because the number of 

observations in the node does not allows to differentiate the records in order to classify them 

or because a stopping criteria is reached, it becomes a leaf node which is the last type of 

nodes. Leaf nodes have exactly one incoming edge, no outgoing edges and a class label is 

assigned to each one [34]. Once the tree is constructed, this method provide a straightforward 

and simpler method of classifying records.  It is a matter of following the node path that 

matches the records’ attributes until a leaf node is reached and the record can be classified 

with the class label assigned to that node. 

A classification tree is structured based on a set of attributes of interest and a response 

variable that serve as the class label to classify the records.  The algorithms that has been 

developed for the construction of the classification trees provides a suboptimal solution by 

usually employing a greedy strategy.  By this term, it is intended to describe the process of 

growing the decision tree by making optimum decisions about the attribute that will be used 

to partition the data in purer subsets [34].  Several algorithms have been developed, the 

majority of them have been generated using as basis the Hunt’s Algorithm.  This algorithm 
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simply considers the training records that belong to more than one class, and use an attribute 

test condition in order to stratify the records into smaller subsets by creating child nodes. The 

algorithm is recursively applied to each child node until no more partition of the data is 

possible.   

The process of constructing a classification tree can be summarized in three basic steps: 

tree growing, tree pruning and tree performance validation.  The tree growing step consists 

in using the recursive splitting of the training data until a stopping criteria is reached.  Once 

the tree is fully grown, the tree pruning step allows to prune it back in order to obtain a smaller 

tree (subtree) that presents better performance, since larger trees tends to be complex and are 

likely to over-fit the data. The last step in the process consists in validating the model 

obtained from the previous steps, by using a new set of records (testing data) and assessing 

how the model performs predicting the class label of a set of observation never seen before.  

Each of the steps just mentioned are explained in more detail in Appendix A (see section 

A.1).  Also, Appendix I-section A.2 contains the detailed explanation about the Gradient 

Boosted Trees technique which is a slow learning approach that improves the prediction 

power of a resulting decision tree [38].  Finally, a brief explanation of the packages R-part, 

Caret and gbm, from the computer language R, is presented in the section A.3 of the 

Appendix A [36].  These packages facilitate the task of applying CART and Gradient Boosted 

Trees to large sets of data [37, 39]. 

Two different representative examples were developed to demonstrate the procedure of 

using classification trees to predict the probability of no-show of a patient and also to test the 

functionality of the technique.  The first example consists of an analysis using generated data 

with an unknown pattern, with the purpose of assessing how well the technique could adjust 
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a model in the absence of a known pattern in the data. For the second example, the data was 

managed creating a pattern of no-show for patients below thirty years old who live further 

than fourteen miles from the clinic.  It has been identified in previous publications that 

younger patients and patients that live further from the clinic present a higher risk of no-

showing to the medical appointments.  The purpose of this example is to assess the predictive 

power of the model constructed, identifying how well the technique capture the pattern in the 

data, which was introduced on purpose.  First of all, both examples were analyzed using the 

CART methodology   The patterns that the outpatient clinic real data will present is not 

known, therefore it may be true that applying the CART methodology is sufficient, resulting 

in lower error rates values.  However, the case where applying the CART methodology is not 

enough can be obtained and it may be necessary to enhance the power of the analysis by 

implementing a decision tree technique that uses trees as building blocks to construct more 

powerful prediction models, such as Gradient Boosted Trees.  Appendix B contains the 

results from the application of both techniques in the data of the two representative examples. 

3.4 Economic Analysis 

The economic analysis consists of determining the different costs and benefits 

associated with the two categories that are going to be investigated: social and financial.  Sub-

section 1.3 provides a detailed description of the two economic categories. The financial costs 

considered are strictly related to operational expenditures.  Since the research is being held 

by using generated data and simulating possible scenarios, the emphasis of the economic 

analysis section is suggesting possible ways that outpatient clinics can use to select cost 

drivers to assign direct costs and allocation basis to allocate indirect costs.  With that 

information, an economic analysis has to be done in order to determine the cost of a failed 
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appointment to the clinic.  Table 5 enlist the costs, from both economic categories, that will 

be considered as part of the economic analysis. 

Table 5. Cost to be considered in the economic analysis

 

     The economic analysis has been held using the framework presented by Hepard, Hodgkin 

and Anthony, which is based on the procedures of the UNICEF manual for analysis of district 

health service costs and financing [33].  This framework consists of seven steps, summarized 

in six steps to be used in this work.  This serves as a guide to identify, define, assign, allocate, 

and compute unit costs for centers or departments in healthcare systems.  The six steps are: 

1. Define the final product. 

2. Define cost centers. 

3. Identify the full cost for each input. 

4. Assign inputs to cost centers and allocate all costs to final costs centers. 

5. Compute total and unit cost for each final cost center. 

6. Report results. 

The steps will be described next.  Also, how each step will be adapted and aligned to the 

research methodology of this work will be explained. 

 

Financial Costs Social Costs

Rent

Utilities

Supplies

Direct Personnel 

Services

Indirect Personnel 

Services

Personnel Overtime

Value lost by non-

utilization of resources

"Loss of Good-will" or 

Waiting Time Cost
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1. Define the final product 

It is essential to define the services or departments of interest.  The department 

of interest can be defined as a cost center, or can be composed of many cost centers. 

Cost centers are the centers of activity in the healthcare center to which direct and/or 

indirect costs will be assigned [32].   At the same time, the cost centers are defined 

by unit of output.  The unit of output can be defined as the activity for which the costs 

will be allocated.  Defining the final product help to determine if the unit cost should 

be calculated for each department separately or if a single unit cost for the entire 

health center is sufficient.  Also, it helps to verify the data availability in each of the 

areas of interest, since the unit cost calculation is dependent on the aggregation or 

disaggregation of the required data [32].  Finally, the data availability will influence 

the selection of the time period for which the data will be collected in order to 

calculate the unit cost.  

The scope of the analysis that is being held in this research work is directed 

towards analyzing a single area or service.  If an outpatient clinic provides more than 

one service and each one is divided by areas, it is compounded of several cost centers 

and the analysis can be replicated for each one of them.  In the analysis it is expected 

to estimate the cost of an appointment slot to the outpatient clinic. Each appointment 

slot is defined by the inputs that are used in order to provide services to a patient in 

that interval of time.  The unit of output will be defined as “time slot”, since the cost 

of the service provided to a patient will be estimated in that time interval. 

2. Define cost centers  

Identifying cost centers allows to trace the route of the costs through the entire 

process.  A healthcare cost center can be classified in three categories: patient care, 
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intermediate clinical care, and overhead centers [32].  Patient care cost centers are the 

areas where the patient receives direct care.  Intermediate clinical care cost centers 

provide support to patient care units, but are organized as separate departments, for 

example, the radiology department of a hospital.  Overhead centers support the 

previously mentioned centers, for example, the finance department.  Patient care 

centers and intermediate clinical care centers differentiate from the overhead centers 

in the fact that they generate revenue.  Usually the direct and indirect expenses from 

the overhead centers and other general centers are allocated to those centers that 

produce revenue. 

The methodology established in this research work is focused on patient care 

cost centers, or better known as direct patient care departments, because these are 

the cost centers that provide direct care to the patients.    The links that the direct 

patient care cost center have with other secondary service departments are not being 

taken into consideration.  The purpose is to identify the immediate costs incurred in 

providing services to the patient in the space that occupies the cost center.  For that 

reason using a Direct Allocation Method is reasonable since it would not be necessary 

to consider the costs that arise from other secondary service departments that are 

indirectly linked to the services provided in the primary direct cost center. The word 

“Direct” in the term Direct Allocation Method does not refer to the way of allocating 

the costs (directly or indirectly), instead it makes reference to the fact that the costs 

allocated  are directly related to the service provided in the cost center under analysis, 

secondary costs from external cost centers are ignored [40]. 
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3. Identify the full cost for each input 

The expenditures that will be counted as cost should be determined taking in 

consideration the resources involved in the service provided in the cost center of 

interest. In general, the major direct cost categories or inputs are related to salaries 

and supplies.  Indirect cost inputs may include depreciation, utilities, rent and 

allocated costs from other non-revenue departments. 

4. Assign inputs to cost centers and allocate all costs to final cost centers 

Each input should be assigned to cost centers.  This process can be simple for 

some inputs, since several of them can be completely assigned to a cost center because 

the expenditures belongs or comes from activities perform on a particular cost center.  

However, other inputs assignment is more difficult, since alternative methods have to 

be applied in order to estimate the cost.  One example is the cost of staffing.  When 

the staff is shared by several departments, it is essential to determine what proportion 

of the cost is assignable to each cost center.  Usually, this is assessed using time as 

the cost driver and determining through administrative data or direct measuring the 

proportion of the time that the staff work on each center. 

Assigning costs consists of linking costs with their respective cost objective, 

which can be a product or a department [41].  This can be done by using a cost driver 

as the cost allocating base.  The accuracy of the cost measurement depends on the 

data availability, when the data is incomplete or unreliable, estimates are made.  The 

availability is related to the fact that some resources can be provided internally by the 

healthcare center, but others can be externally provided by a third-way party.  
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As mentioned in Section 3.4, two cost categories will be evaluated in this 

work: financial and social.  The financial costs are strictly related to the operational 

expenditures of the cost center. They are classified according to how accurately they 

can be attributed to the cost object.  If they can be traced with accuracy and little 

effort, then it can be said that it is a direct cost.  In contrast, if the cost is associated 

with multiple cost objects and cannot be individually traced with accuracy to a cost 

object, then it is classified as an indirect cost.  Table 6 presents the financial costs 

enlisted and classified as direct or indirect. Also, possible cost drivers that could be 

used for an effective allocation of the costs have been identified. 

Table 6. Financial Costs Possible Cost Drivers 

 

*It may be necessary to estimate the proportion of the total time spent providing services to 

the patient. 

Rent, utilities and supplies are indirect costs because they can be used by more 

than one cost center of an outpatient clinic, so they have to be indirectly traced to the 

cost center of interest.  Laborers wages or personnel services have been divided in 

two groups.  The first one is Direct Personnel Services including personnel that are 

directly involved in providing services to the patients, such as the nurses and doctors.  

Financial Cost
Direct (D) 

Indirect (I) 

Possible Cost 

Driver

Rent I Per Sq. Feet

Utilities I
Per Sq. Feet                     

Per Consumption

Supplies I
No. Utilized Per 

Patient Per Slot

Direct Personnel 

Services*
D Labor Hours

Indirect Personnel 

Services
I Labor Hours

Personnel overtime D or I Labor Hours
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The second group includes the administrative personnel that work in the cost center 

but is not directly in contact with the patients, such as the receptionists and secretaries.  

Since direct personnel have several responsibilities and perform different activities, 

it would be necessary to estimate the proportion of the total labor time the personnel 

spend providing services to the patient.  In terms of cost drivers, rent and utilities can 

be allocated to the cost objective by using the same cost drivers, per area, as it is 

suggested in books related to the field of study [41].  When this happens it can be said 

that they are a cost pool.  The same happens with the equipment maintenance and the 

personnel services.  The personnel overtime cost could be direct or indirect because 

it may cause an effect in both types of personnel. 

In the case of the social costs, they need to be allocated indirectly since they 

are not associated to a tangible aspect of the service provided to the patient.  They can 

be defined as a penalization to the outpatient clinic if there is a total no-show in the 

slot, causing an immediate loss of capacity, or a penalization due to overbooking the 

slot and causing higher waiting times and personnel overtime.  The first social cost 

that is being considered in the analysis is the value lost due to the non-utilization of 

the resources, and it results if there is a total-no show in the slot causing no activity 

during that interval of time.  This cost can be seen and estimated as an opportunity 

cost.  An opportunity cost can be defined as “the potential benefit that is given up as 

you seek an alternative course of action” [42].  In this case the potential benefit given 

up is going to be considered in terms of the average profit lost due to not overbooking 

the slot or due to not assigning another patient to the slot.   The value lost due to the 

non-utilization of the resources can be calculated as the difference between the 
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average revenue (RV) per patient and the average operational costs (OC) per patient, 

which is the average profit (P). 

Value lost due to the non-utilization = P = RV - OC        [Equation 1] 

The waiting cost is the second social cost being taken in consideration in this 

work.  In this case it is being considered that higher waiting times in an outpatient 

clinic represent a risk to the system in two aspects: the patient can start to no-show to 

future appointments because of the unpleasant experience or the patient decides to 

switch of the healthcare provider.  Both scenarios represent a loss of benefits for the 

system, which leads to visualize the waiting cost as a loss-of-profit if those two 

scenarios occur as a consequence of overbooking the appointment slots.  Since it is a 

social cost and cannot be directly assigned, it can be allocated in terms of the profit 

loss multiplied by the average number of times a person may visit a healthcare 

provider.  According to statistics by the CDC National Center for Health Statistics, 

people in the U.S. visit hospital outpatients and emergency departments at a rate of 

nearly four visits per person annually [43]. The cost per patient can be estimated in 

terms of the average profit (P) and the number of times a patient might visit in a year. 

Waiting Cost = P * Average # of Times a Patient Visits             [Equation 2] 

This estimate of the waiting cost may seem to lack precision because it 

assumes that after one occurrence of delay in the appointment the patient would 

consider to not show-up or change of healthcare provider. This may not be true at all, 

because the patient may be willing to wait any required time due to the healthcare 

provider good public image about his/her work. For future research, this cost estimate 
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could be refined by investigating, through polls or patients interviews, how many 

delays a patient is willing to accept before deciding switching of healthcare provider.  

The total waiting cost for an appointment slot is subjected to the probabilities of 

overflow from one slot to another.  It will be explained with details in sub-sections 

4.2.1 and 4.2.3. 

5. Compute total and unit cost for each final cost center 

In this step, the data about utilization is integrated into the cost analysis, with 

the purpose of determining the cost per unit.  The utilization is defined in terms of the 

unit of service that is intended to represent.  The total costs of each cost center is 

divided by the unit of service.  For example, it may be desired to know the cost per 

patient serviced on X department. 

Since it is desired to estimate the cost of an appointment slot which have a 

duration of certain time length, as established in Step 1, the unit of output is “time”.  

According to what has been explained in Step 4, some costs are expressed in terms of 

area, others in terms of labor hours and others are expressed “per patient”.  It is 

necessary to express all the costs in terms of the unit of output.  Next, a detail 

explanation for each cost is presented. 

a. Rent Cost per Time Slot (R) 

Usually rent is an expense paid at a monthly rate.  The total monthly 

rate can be divided by the total area that occupies the outpatient clinic in 

order to obtain the cost by square feet.  Since the analysis corresponds to 

evaluating only one cost center, the area of the cost center is required.  The 

rent cost per square feet is multiplied by the cost center area, and the rent 
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cost is allocated to the cost center.  As established before, it is being 

assumed that a working day is divided in appointment slots of equal time 

length.  To obtain the cost expressed in terms of time, the cost center rent 

cost is divided by the working time of the cost center.  Then that cost per 

time unit is multiplied by the time length of the appointment slot, in order 

to express it in terms of time slot length. 

R=
𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅𝑒𝑛𝑡 ($)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑞.  𝐹𝑒𝑒𝑡
 *(

𝐶𝑜𝑠𝑡 𝐶𝑒𝑛𝑡𝑒𝑟
𝑆𝑞.𝐹𝑒𝑒𝑡

𝐶𝑜𝑠𝑡 𝐶𝑒𝑛𝑡𝑒𝑟 
𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

)*(
𝑇𝑖𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓

𝑡ℎ𝑒 𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑆𝑙𝑜𝑡
)       [Equation 3] 

b. Utilities Cost per Time Slot (U) 

If the cost driver being used is square feet, then the utilities cost per 

time slot is calculated with a procedure similar to the presented for the rent 

cost (Equation 13).  Using “consumption” as the driver the total monthly 

utilities cost can be divided by the clinic total consumption (kWh) and then 

multiplied by the cost center consumption (kWh).  To obtain the cost 

expressed in terms of time slot, the cost center utilities cost is divided by 

the working time of the cost center and then multiplied by the time length 

of the appointment slot. 

U= 
𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 ($)

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑤ℎ)
*(

𝐶𝑜𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟
𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑤ℎ)

𝐶𝑜𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟
𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝑇𝑖𝑚𝑒

)*(
𝑇𝑖𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓

𝑡ℎ𝑒 𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑆𝑙𝑜𝑡
)    [Equation 4] 

c. Supplies Cost per Time Slot (S) 

The variable xi represents the number of supplies of the category i used 

on a regular basis per patient per appointment, where i goes from 1 to n 
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categories.  If the unitary cost ci is known for each category i, then the 

supplies cost per patient per appointment slot can be calculated as 

S = ∑ 𝑐𝑖 ∗ 𝑥𝑖
𝑖=𝑛
𝑖=1            [Equation 5] 

 

d. Direct Personnel Cost per Time Slot (DP) 

Direct Personnel Services includes personnel, such as the nurses and 

doctors, that are directed involved in providing services to the patients.  

Commonly, doctors or physicians are paid by annual salaries.  In general, 

it can be estimated that a physician work two thousand hours per year.  

This is based on a basic workload of fifty weeks per year, forty hours per 

week.  From the total time length of the appointment slot, the physician 

spends only a fraction of time f with the patient.  That fraction of time may 

vary per patient, but an estimated can be calculated by performing a time 

study.  The physician labor cost (PLC) per patient per time slot can be 

expressed as: 

PLC = 
𝑃ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑆𝑎𝑙𝑎𝑟𝑦 ($)

2,000 
𝑤𝑜𝑟𝑘−ℎ𝑜𝑢𝑟𝑠

𝑦𝑒𝑎𝑟

*(
𝑇𝑖𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓

𝑡ℎ𝑒 𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑆𝑙𝑜𝑡
) ∗ 𝑓        [Equation 6] 

The nurses are commonly paid a salary at an hourly rate. The nurses 

provide services to the patient since the patient check in and also provide 

support and assistance to the physician during the examination. The nurse 

labor cost (NLC) can be expressed as: 

 NLC = 
𝑁𝑢𝑟𝑠𝑒 𝑠𝑎𝑙𝑎𝑟𝑦 ($)

ℎ𝑜𝑢𝑟
 * (

𝑇𝑖𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓

𝑡ℎ𝑒 𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑆𝑙𝑜𝑡
)                       [Equation 7] 
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The total Direct Personnel Cost can be estimated by adding the physicians 

and the nurses labor cost: 

 DP = PLC + NLC            [Equation 8] 

 

e. Indirect Personnel Cost per Time Slot (IP) 

Clerical personnel do not provide direct healthcare services to the 

patients but are involved in administrative activities that are indirectly 

related to the services provided to the patients, for example, managing the 

appointment schedule, registering the patients and filing the patients’ 

medical records, among others activities.  Administrative personnel are 

paid at an hourly basis.  The cost for Indirect Personnel Services can be 

expressed as: 

 IP = 

𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 
𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑠𝑎𝑙𝑎𝑟𝑦 ($)

ℎ𝑜𝑢𝑟
 * (

𝑇𝑖𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓

𝑡ℎ𝑒 𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑆𝑙𝑜𝑡
)                     [Equation 9] 

f. Personnel Overtime Cost per Time Slot (OP) 

Overtime work can result as a consequence of overbooking the 

appointment slot and since the regular work time is not sufficient to 

provide services to all the patients booked, extra time is required.  

Compensation for overtime worked hours does not apply to doctors, but it 

does for nurses and administrative personnel.  Paid for overtime hours is 

regulated by law.  For example, in Puerto Rico a laborer is paid regular 

hourly salary for an eight hours daily working load.  The laborer only can 
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work in excess of that daily limit, if paid at least one and a half times the 

regular salary.  If the overtime hours worked exceeds forty hours a week, 

the worker should be paid double the regular salary [44].   Taking this into 

consideration, the overtime personnel cost can be calculated by 

multiplying the overtime salary by the number of extra hours worked: 

OP = 
𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 𝑆𝑎𝑙𝑎𝑟𝑦 ($)

ℎ𝑜𝑢𝑟𝑠
* (

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎

𝑡ℎ𝑒 𝐴𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡 𝑆𝑙𝑜𝑡
  )                       [Equation 10] 

Since the attendance of the patients to the appointments is not known 

with certainty, the number of possible overtime hours required cannot be 

calculated.  However, it can be estimated by calculating an expected value 

of the cost by using the probabilities of overflow in the last appointment 

slot of the day.  Details about this procedure will be explained in Sub-

section 4.2.4. 

g. Value lost due to the non-utilization Cost per Time Slot (V) 

If calculated as established in Equation 1, a cost per patient per 

appointment time slot is obtained.  No further computations are required, 

since it is already expressed in terms of the unit of output. Since the 

parameters R, U, S, DP and IP (from Equation 3 to 9) represent the 

operational costs of the cost center, and assuming that the parameter RV is 

the average revenue the clinic generates from providing services to a 

patient, Equation 1 can be expressed as: 

 V= RV – (R+U+S+DP+IP)          [Equation 11] 
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This cost occurrence is subjected to the fact that the slot is completely 

empty because patients no-show to the appointment.  An expected value 

of this cost can be estimated by using the probability of total no-show in a 

slot, which can be obtained from the overflow calculation analysis that 

will be presented in Sub-section 4.2.1.  For that reason, further explanation 

of the computation of the expected value of this cost will be explained with 

details in Sub-section 4.2.2. 

h. Waiting Cost (W) 

Since the cost of the value lost due to the non-utilization of the 

resources was expressed in terms of the revenue and the operational 

expenses (Equation 11).  The waiting cost (Equation 2) can also be 

expressed in the same terms as: 

 W = V * Average # of Times a Patient Visits                  [Equation 12] 

The waiting cost depends on the occurrence of overflow from one slot 

to another.  The cost per patient per appointment time slot, as presented in 

Equation 12, will be elaborated with more details in Sub-section 4.2.3 by 

adding the overflow probabilities (Sub-section 4.2.1) in order to obtain the 

expected value of the cost. 

Once all the individual costs are expressed in terms of the unit of output, they 

can be integrated as a cost model.  This will be presented in details in Sub-section 

4.2.5. 
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6. Report results 

The report should be redacted in a way that it is clear to the reader how the 

costs were categorized, assigned and allocated.  Also, it should present which costs 

were included in the unit cost calculation, and which were not. 

3.5 Cost Model for the Expected Cost of the Appointment Slot 

Access to outpatient facilities is controlled through scheduled appointments.  Usually, 

a day is divided in n number of slots.  Those slots are intervals of time that may or may 

not be of equal length.  The assignment of patients to slots can go from the simplest form 

of assigning one patient per slot, to overbooking, where more than one patient is assigned 

per slot. Figure 4 and Figure 5 present an illustrative representation of both scheduling 

scenarios.  The assumption that we have n number of slots and each slot have a time 

length swill be used.  For the case in which only one patient is assigned to each slot 

(Figure 4), a patient Patient(i,l) is assigned to each slot.  The parameter Patient(i,l) 

represents the patient booked i (i=1….m) assigned to the slot l (l=1…n), where m is the 

total number of patients booked in slot l.  In the case of only one patient per slot, the index 

i is not relevant since only one patient per slot is booked, but it is relevant for the 

overbooking case.  Each patient has been assigned a probability of no-show P(i,l), which 

is obtained from the classification model constructed using Classification Trees 

methodology.  Physical resources and personnel services related to the service provided 

in that length of time can be assigned and their cost can be estimated.  If the patient shows 

to the appointment, revenue that overcome those costs is generated.  If the patient fails to 

show (no-show) an immediate loss of capacity occurs, and related financial costs can be 

assigned and social costs can be allocated.   
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Complexity is encountered when the overbooking scenario (Figure 5) is analyzed.  It 

is similar to the one person per slot case, with the difference that multiple patients can be 

assigned to the same slot.  Even when it is desired to overbook avoiding the assignment 

of patients with high probability of show in the same slot, more than one patient can 

appear at the same time. If more than one patient shows to the same slot, appointments 

begin to fall behind, a chain effect occurs across all the slots and new direct and indirect 

costs arise as a consequence.  Cost of waiting and cost of overtime should be considered, 

since once the patients arrive to the appointment, all of them should be serviced.  Waiting 

is considered in this study as a social indirect cost since it cannot be directly estimated, 

while the overtime cost is considered as a financial indirect cost.  The waiting cost can 

be visualized as a penalty cost incurred by the system due to overbooking that slot.  In 

order to estimate the expected waiting time per slot it would be necessary to calculate the 

probability of overflow from slot l to slot l+1.  To calculate the overtime cost, it would 

be necessary to estimate the additional time that could be required to provide the service 

to all the patients. 

Since information about the patients’ probability of no-show and information about 

the economic impact of failed appointments is generated from this research methodology, 

for a given schedule configuration an expected cost of an appointment slot can be 

estimated.  For that reason, a cost model considering the financial and social cost 

categories has been developed.  The cost that will be estimated is referred as an expected 

cost because the model integrates the patients’ probabilities of no-show and the possible 

probability of overflow per slot.  This work contributes to the academic literature and the 

creation of knowledge because it responds to the necessity for further research in this 
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area. As Lofti and Torres identified [5] as an area for future research, the potential impact 

of incurring overtime cost and the cost of waiting caused by overbooking can be 

compared versus the loss of potential income due to no-shows. 
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Patient(1,n)

 

Figure 4. One Patient per Slot Representation 
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Figure 5. Overbooking Representation 

3.6 Test Bed 

 Information related to the type of data that a clinic have about a patient and 

information related to the current procedure used for appointment scheduling has been 

collected through interviews with authorized personnel of an outpatient clinic.  Real data 

about the patients attributes could not be provided for this work due to private policies of 

the clinic.  The methodology has been verified, demonstrated and applied through a test 

bed.  It is denominated a test bed because even though the data being used is generated, 

the analysis is performed using real parameters from an outpatient clinic.  The objective 

is to simulate different scheduling scenarios with the purpose of assessing the no-show 

cost for each one of them.  This will allow to perform a comparison between scenarios 

and will contribute to the verification and validation of the methodology developed. 
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3.7 Interactive Platform in Excel 

The applicability of the cost model is presented in the form of an interactive platform 

in Excel, with the purpose of demonstrating the usefulness of the developed 

methodology.  The objective is to provide a tool that may help the outpatient facility to 

estimate the cost of no-show and assist during the appointment scheduling process.  In 

the platform, the user can to indicate the attributes of the patient (Figure 6) and 

automatically the associated probability of no-show will be calculated (Figure 7).  Once 

the patients are assigned to the appointment slots, the tool generate the estimated expected 

value of the cost (Figure 7).  Figure 6 and 7 are an illustrative representation of the initial 

idea developed for the interactive platform.   

 

 

 

 

 

 

 

Figure 6. Input Representation-Interactive Platform 
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Figure 7. Output Representation-Interactive Platform 
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4 CHAPTER – RESULTS 

4.1 Cost Model Results 

As mentioned in Sub-section 3.5, estimating the expected waiting cost per slot for an 

overbooking scheduling scenario requires the computation of the probability of overflow 

from one slot to another.  This is correct under the assumption that if more than one of the 

patients booked for a certain slot shows to the appointment, only one of them will be serviced 

during that period of time and the others have to wait to be serviced in the next available time 

slot.  The problem is that the next available time slot have other patients booked, which can 

or cannot show to the appointment.  A chain effect of patients overflow occurs, causing 

higher waiting times and personnel overtime.  Calculating the overflow probabilities can help 

in evaluating patients scheduling scenarios, in order to identify those that have a lower 

probability of overflow from one slot to another.  Then those overflow probabilities can be 

translated in terms of costs, to be used as a performance measure. 

 4.2.1 Overflow Probabilities 

An example evaluating an overbooking of up to two patients per appointment slot 

will be considered to illustrate the process of calculating the overflow probabilities.  

Two important assumptions are considered in this analysis.  First of all, the 

appointment slots are of equal time length. Second, exactly m patients are going to be 

assigned on each time slot; in the case of this illustrative example m is equal to two 

patients.  Table 7 presents a hypothetical schedule to be used for the example.  It 

consists of three time slots with exactly two different patients booked on each one.  A 

total of six different patients are booked in the three slots, two patients on each one.  

A patient i is booked at a slot n, and at the moment of the appointment the patient can 
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be in any of two conditions j: Show (j=1) or No-Show (j=2).  Each patient has a 

probability for each condition j, according to the data mining analysis using the CART 

methodology (explained in Section 3.3). 

Table 7. Appointment Schedule for Illustrative Example-2 Patients Overbooking 

 

Basically, estimating the overflow probabilities requires to consider all the 

possible scenarios that can occur. These scenarios are mutually exclusive, since only 

one of them can actually occur at each time slot. The initial number of scenarios t that 

can occur depends on the number of patients m assigned to the slot n, and can be 

calculated according to the following combinations equation [45]: 

t = ∑
𝑚!

(𝑚−𝑟)!(𝑟!)

𝑚
𝑟=0       [Equation 13] 

A total of four initial mutually exclusive scenarios (t=4) are possible for the case of 

two patients overbooking: 

Scenario #1: Patient 1 shows to the appointment and Patient 2 does not 

show. 

Scenario #2: Patient 1 does not show to the appointment and Patient 2 

shows.  

  Scenario #3: Both patients show the appointment. 

  Scenario #4: Both patients do not show to the appointment. 

Patient P(show) P(no-show) Patient P(show) P(no-show) Patient P(show) P(no-show)

1 0.8 0.2 1 0.6 0.4 1 0.6 0.4

2 0.7 0.3 2 0.9 0.1 2 0.3 0.7

Slot 1 Slot 2 Slot 3
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Since each patient can be visualized as an independent event, the probability of 

occurrence of each scenario can be calculated by multiplying the probabilities of each 

event [45].  Let’s assume that Pijl represents the probability of a patient i being in 

response j on slot l, where i=1,…,m, j=1 (Show) or 2 (No-Show) and l=1,…,n.  The 

probability of occurrence of the four scenarios presented before can be represented 

as: 

  P(Scenario #1)l =P11l* P22l 

  P(Scenario #2)l = P12l* P21l   

P(Scenario #3)l = P11l* P21l 

  P(Scenario #4)l = P12l* P22l 

To have a better understanding of the process, from now on, the procedure is 

going to be explained for each time slot individually. 

Slot #1 (n=1) 

Since this is the first slot, no overflow from previous slots needs to be considered 

in the analysis.  The probabilities of the four scenarios, according to the values in 

Table 7 are: 

P(Scenario #1)1 = P111 * P221= 0.80*0.30=0.24 Overflow of 0 

 P(Scenario #2)1 = P121 * P211=0.20*0.70=0.14 Overflow of 0  

P(Scenario #3)1 = P111 * P211=0.80*0.70=0.56 Overflow of 1 

 P(Scenario #4)1 = P121 * P221=0.20*0.30=0.06 Overflow of 0 

Scenarios when 

the previous 

outflow is 0 

patients (k=0), 

because there is 

no previous 

slot. 
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The occurrence of each one of these scenarios could have an effect in relation to the 

overflow from this slot to the next one.  For example, in the scenarios #1 and #2 only 

one of the two patients booked show to the appointment, leading to the fact that if one 

of these two scenarios occurs, no overflow results.  The same happens if Scenario #4 

occurs because none of the two booked patients’ shows to the appointment, the 

difference is that in this scenario an immediate loss of capacity results because no 

patient is serviced.  In contrast, Scenario #3 results in an overflow of one patient 

because both patients show to the appointment and only one can receive services in 

that interval of time.  In summary, from the first slot can result either no overflow or 

and overflow of 1 patient.  Since the four scenarios are mutually exclusive, the 

probability of no overflow or an overflow equal to 0 is simply the sum of the three 

scenarios that could result in that output. 

Assuming that POFkl represents the probability of overflow of k patients in slot l, 

where for each slot l the index k=0,…,l; in this first slot POF01 and POF11 can be 

calculated. 

 POF01= P(Scenario #1)1+ P(Scenario #2)1+ P(Scenario #4)1=0.44 

 POF11=P(Scenario #3)1=0.56 

 These two probabilities of overflow will be considered when analyzing the next slot, 

Slot #2. 

Slot #2 (n=2) 

Two different patients are booked in this slot.  The same four scenarios discussed 

above applies to this slot; but with a slightly difference.  Now, those four scenarios 
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have to be analyzed taking in consideration that an overflow from the previous slot 

can occur.  In this case the overflow from Slot #1 to Slot #2 can either be 0 patients 

or 1 patient. Two times the number of initial scenarios has to be evaluated for this 

slot, in this case a total of eight scenarios.  

The computations of the probabilities of the four initial scenarios for Slot #2, 

according to the values in Table 7, are: 

P(Scenario #1)2: P112* P222= 0.60*0.10=0.06 

  P(Scenario #2)2: P122* P212=0.40*0.90=0.36  

P(Scenario #3)2: P112* P212=0.60*0.90=0.54 

  P(Scenario #4)2: P122* P222=0.40*0.10=0.04 

Assuming that Splk represents the probability of the scenario p in the time slot l 

with a previous overflow of k patients, where p =1,…, t, l= 1,…, n and k = 0,…, l-1.  

Also, assuming that the order of the scenarios will not be altered, then the probability 

of the scenarios will be Splk = P(Scenario p)l * POFk,l-1∀k,p where k=0,…,l-1 and 

p=1,....,t. 

S120 = P(Scenario #1)2* POF01= 0.06*0.44=0.0264 Overflow of 0 

S220 = P(Scenario #2)2*  POF01= 0.36*0.44=0.1584 Overflow of 0 

S320 = P(Scenario #3)2* POF01= 0.54*0.44=0.2376 Overflow of 1 

S420 = P(Scenario #4)2*  POF01= 0.04*0.44=0.0176 Overflow of 0 

Scenarios 

when the 

previous 

outflow is 

0 patients 

(k=0). 
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S121 = P(Scenario #1)2* POF11=0.06*0.56=0.0336 Overflow of 1 

S221 = P(Scenario #2)2*  POF11=0.36*0.56=0.2016 Overflow of 1 

S321 = P(Scenario #3)2* POF11=0.54*0.56=0.3024 Overflow of 2 

S421 = P(Scenario #4)2*  POF11=0.04*0.56=0.0224 Overflow of 0 

In this slot there are eight scenarios, that depending of which one occur, it can 

cause an overflow that can range from 0 to 2 patients.  For example, in the scenario 

S321 both booked patients show to the appointment, and since an overflow of one 

patient is received from Slot #1, only one patient can receive service and the other 

two will overflow the next time slot. The probabilities of overflow POFkl for the 

second slot are: 

POF02= S120+ S220+S420+S421=0.2248 

POF12=S320+ S121+S221=0.4728 

POF22=S321=0.3024 

These three probabilities of overflow will be considered when analyzing the next slot, 

Slot #3. 

Slot #3 (n=3) 

Since three possible overflows can result from the previous slot, the number of 

scenarios to analyze in this slot is three times the number of the initial scenarios.  In 

this case, twelve scenarios will be evaluated.  The computations of the probabilities 

of the four initial scenarios for Slot #3, according to the values in Table 7, are: 

Scenarios 

when the 

previous 

outflow is 

1 patient 

(k=1). 
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P(Scenario #1)3: P113 * P223= 0.60*0.70=0.42  

  P(Scenario #2)3: P123 * P213=0.40*0.30=0.12  

P(Scenario #3)3: P113 * P213=0.60*0.30=0.18  

  P(Scenario #4)3: P123 * P223=0.40*0.70=0.28 

The twelve scenarios, taking in consideration the possible overflow values from the 

previous slot are: 

S130 = P(Scenario #1)3* POF02= 0.42*0.2248=0.0944 Overflow of 0 

S230 = P(Scenario #2)3*  POF02= 0.12*0.2248=0.0269 Overflow of 0 

S330 = P(Scenario #3)3* POF02= 0.18*0.2248=0.0404 Overflow of 1 

S430 = P(Scenario #4)3*  POF02= 0.28*0.2248=0.0629 Overflow of 0 

 

S131 = P(Scenario #1)3* POF12=0.42*0.4728=0.1985 Overflow of 1 

S231 = P(Scenario #2)3*  POF12=0.12*0.4728=0.0567 Overflow of 1 

S331 = P(Scenario #3)3* POF12=0.18*0.4728=0.0851 Overflow of 2 

S431 = P(Scenario #4)3*  POF12=0.28*0.4728=0.1323 Overflow of 0 

Scenarios 

when the 

previous 

outflow is 

0 patients 

(k=0). 

Scenarios 

when the 

previous 

outflow is 

1 patient 

(k=1). 
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S132 = P(Scenario #1)3* POF22=0.42*0.3024=0.1270 Overflow of 2 

S232 = P(Scenario #2)3*  POF22=0.12*0.3024=0.0362 Overflow of 2 

S332 = P(Scenario #3)3* POF22=0.18*0.3024=0.0544 Overflow of 3 

S432 = P(Scenario #4)3*  POF22=0.28*0.3024=0.0846 Overflow of 1 

The probabilities of overflow POFkl for the third slot are: 

POF03= S130+ S230+S430+S431=0.3165 

POF13=S330+ S131+S231+S432 =0.3802 

POF23= S331+S132+S232= 0.2483 

POF33= S332=0.0544 

These four probabilities of overflow will be considered when analyzing the next slot, 

Slot #4. 

In general (for two patients overbooking (m=2)) 

If the order of the initial scenarios is maintained as presented, several observations 

can be pointed out in relation to patterns in the calculation of the overflow 

probabilities slot per slot for the case of two patients overbooking schedule.   

1. For each slot l calculate the probabilities of the four initial scenarios 

P(Scenario #1)l = P11l* P22l 

P(Scenario #2)l = P12l* P21l   

P(Scenario #3)l = P11l* P21l 

P(Scenario #4)l = P12l* P22l 

Scenarios 

when the 

previous 

outflow is 

2 patients 

(k=2). 
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2. For each slot l calculate the probabilities of the scenarios Splk by taking in 

consideration the values of overflow (k) that can result from the previous time 

slot: 

Splk = P(Scenario p)l * POFk,l-1∀k,p where k=0,…,l-1 and p=1,....,t and k>0 

3. The possible resulting overflow of each scenario Splk can be determined in the 

following way: 

For k=0: 

 S1l0 Overflow of k 

 S2l0 Overflow of k 

 S3l0 Overflow of k+1 

 S4l0 Overflow of k 

For k>0: 

 S1lk Overflow of k 

 S2lk Overflow of k 

 S3lk Overflow of k+1 

 S4lk Overflow of k-1

4. For each slot, the possible overflow that can result and affect to the next time 

slot goes from 0 to l. 

POFk,l where k=0,…,l 

5. The probability of overflow POFkl is the sum of the probabilities of the 

scenarios Splk which if occurring could lead to an overflow of k patients from 

the slot l to the slot l+1.

In general 

The same procedure explained before for the case of overbooking two patients per 

slot, can be reproduced for any number of patients m.  The following basic steps can 
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be followed.  The procedure will be exemplified by using the case of overbooking 

three patients (m=3). 

1. Calculate the number of initial scenarios t by using Equation 13. 

Example: t = ∑
𝑚!

(𝑚−𝑟)!(𝑟!)

𝑚
𝑟=0  = ∑

3!

(3−𝑟)!(𝑟!)

3
𝑟=0  = 8 initial scenarios 

2. Establish the t initial scenarios in the order that will be analyzed across the 

slots evaluation. 

Example: 

  Scenario #1: Patient #1 shows, Patient #2 and Patient #3 do not show. 

  Scenario #2: Patient #2 shows, Patient #1 and Patient #3 do not show. 

  Scenario #3: Patient #3 shows, Patient #1 and Patient #2 do not show. 

  Scenario #4: Patient #1 does not show, Patient #2 and Patient #3 shows. 

Scenario #5: Patient #2 does not show, Patient #1 and Patient #2 shows. 

Scenario #6: Patient #3 does not show, Patient #1 and Patient #2 shows. 

Scenario #7: All patients show to the appointment. 

Scenario #8: All patients do not show to the appointment. 

3. Beginning with the first slot, calculate the probabilities (P(Scenario p)n) of 

each of the t initial scenarios by multiplying the probabilities of the 

independent events, defined by the probabilities of show and no-show of the 

m patients booked in the slot l, Pijl where i=1,…,m, j=1 (Show) or 2 (No-Show) 

and l=1,…,n.   
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Example: 

P(Scenario #1)n = P11n * P22n*P32n 

  P(Scenario #2)n = P12n * P21n*P32n  

P(Scenario #3)n = P12n * P22n*P31n 

P(Scenario #4)n = P12n * P21n*P31n 

P(Scenario #5)n= P11n * P22n*P31n 

  P(Scenario #6)n = P11n * P21n*P32n 

  P(Scenario #7)n = P11n * P21n*P31n 

  P(Scenario #8)n = P12n * P22n*P32n 

4. Compute the scenarios probabilities for the first slot and determine the 

possible overflow that can result if each one occurs. 

Example: First Slot 

P(Scenario #1)1 = P111 * P221*P321 Overflow of 0 

  P(Scenario #2)1 = P121 * P211*P321 Overflow of 0  

P(Scenario #3)1 = P121 * P221*P311  Overflow of 0 

P(Scenario #4)1 = P121* P211*P311  Overflow of 1 

P(Scenario #5)1= P111* P221*P311  Overflow of 1 

  P(Scenario #6)1 = P111* P211*P321  Overflow of 1 

  P(Scenario #7)1 = P111 * P211*P311  Overflow of 2 
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  P(Scenario #8)1 = P121* P221*P321  Overflow of 0 

5. For the first time slot, compute POFkl, the probabilities of overflow of k 

patients in slot l, by adding the probabilities of those scenarios that could result 

in the same output of an overflow of k patients.  Those probabilities will be 

used in the evaluation of the next time slot. 

  Example: First Slot  

POF01=P(Scenario #1)1+P(Scenario #2)1+P(Scenario#3)1+P(Scenario #8)1 

  POF11= P(Scenario #4)1 + P(Scenario #5)1 + P(Scenario #6)1 

  POF21 = P(Scenario #7)1 

6. Since there is a probability of receiving overflow from the previous slot, 

from the second slot onwards, (t*number of possible POF’s from the previous 

slot) number of scenarios Splkare going to be evaluated.  The initial scenarios 

are evaluated in the slot when the previous overflow is k=0 and so on until 

assessing all the possible k’s that can be evaluated from the previous slot. 
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Example: Second Slot 

Since the overflow probabilities from the first slot could be either 

zero, one or two patients, a total of 8*3=24 scenarios are evaluated. 

  S12k = P(Scenario #1)2* POFk,1-1 

S22k = P(Scenario #2)2*  POFk,1-1 

S32k = P(Scenario #3)2* POFk,1-1 

S42k = P(Scenario #4)2*  POFk,1-1 

S52k = P(Scenario #5)2* POFk,1-1 

S62k = P(Scenario #6)2*  POFk,1-1 

S72k = P(Scenario #7)2* POFk,1-1 

S82k = P(Scenario #8)2*  POFk,1-1 

7. Compute POFkl, the probabilities of overflow of k patients in slot l, by 

adding the probabilities of those scenarios that could result in the same output 

of an overflow of k patients.  Those probabilities will be used in the evaluation 

of the next time slot.  Maintaining the order of the scenarios as established in 

Step 2, discover the pattern in the POF’s in order to facilitate the analysis. 

Example: 

For any value of k 

 S1l0 Overflow of k 

 S2l0 Overflow of k 

Scenarios should 

be evaluated for 

k=0, k=1 and k=2. 
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 S3l0  Overflow of k 

 S4l0 Overflow of k+1 

 S5l0 Overflow of k+1 

 S6l0 Overflow of k+1 

 S7l0 Overflow of k+2 

 S8l0 Overflow of k 

8. Use those probabilities POFkl to evaluate the next slot. 

4.2.2 Value Lost Due to the Non-Utilization Cost Expected Value (E(V)) 

For this research work, value is lost due to the non-utilization of the resources 

when there is a complete no-show in the appointment slot, in other words, no patient 

received service during that time interval.  As established in Section 3.4, the cost 

related is a social cost that can be defined as an opportunity cost defined by the 

average profit lost due to not overbooking the slot or due to not assigning another 

patient to the time slot (Equation 11).  Equation 11 presents a way to estimate the cost 

per patient per slot.  However, this cost is dependent of the occurrence of a total no-

show in the slot.  This cannot be assessed with certainty, since it is unknown if a 

patient will show to an appointment, but probabilities of show and no-show can be 

calculated as explained in sections 3.3 and 4.1.  In order to estimate the expected value 

of the cost of the value lost due to the non-utilization of the resources, it is necessary 

to consider the probability of total no-show in each slot.  That probability is estimated 

for the case of two patients overbooking, as explained in Sub-section 4.2.1, when two 

patients are booked in an appointment slot, four initial mutually exclusive scenarios 

are possible: 
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Scenario #1: Patient 1 shows to the appointment and Patient 2 does not 

show. 

Scenario #2: Patient 1 does not show to the appointment and Patient 2 

shows.  

  Scenario #3: Both patients show the appointment. 

  Scenario #4: Both patients do not show to the appointment. 

 In the first appointment slot (Slot #1) there is no overflow from previous slots, 

then a complete no-show happens if Scenario #4 occurs, assuming that the order of 

the scenarios is not altered.  The probability of a total no-show in Slot #1 is equal to 

the probability of occurrence of the Scenario #4 in that slot, which is P(Scenario #4)1 

= P121* P221.  Refer to Sub-section 4.2.1 for more information.  For each following 

appointment slot, the probability of total no-show is influenced by the probability of 

overflow from previous slots.  A total no-show will occur if Scenario #4 happens and 

the overflow from the previous slot is zero patients.  Using the notation presented in 

Sub-section 4.2.1, in general for each slot, the probability of total no-show for slots 

other than Slot#1 can be defined as S4l0=P(Scenario#4)l * POF0,l-1.  Refer to Sub-

section 4.2.1 for more details about the parameters and the notation.  Now, the 

expected value of the cost of value lost due to the non-utilization of the resources, for 

each slot, can be estimated as: 

  E(V)l = V * S4l0             [Equation 14] 
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Where V is the cost per patient per time slot of the value lost due to the non-utilization 

of resources (Equation 11) and S4l0 is the probability of the scenario # 4 in the slot l 

when the previous overflow is zero patients. 

4.2.3 Waiting Cost Expected Value (E(W)) 

In Section 3.4 a way to allocate the waiting cost per patient was presented.  

Since the objective is to estimate the cost per appointment slot, it is necessary to 

express the cost in terms of that unit of output.  It is not known with certainty the 

number of patients that will overflow from one slot to another, however, in Sub-

section 4.2.1 a procedure to estimate the overflow probabilities from one slot to a 

consecutive slot has been developed by using the probabilities of show and no-show 

of the patients booked.  The procedure has been established for the case of 

overbooking two patients per slot, and it has been identified that on each slot l we 

could have a probability of overflow POFkl where k has values that goes from 0 to l.  

Taking this into consideration, for the two patients overbooking scenario, the 

expected value of the waiting cost (E(W)l) can be estimated as: 

E(W)l = ∑ 𝑊 ∗ 𝑘 ∗ 𝑃𝑂𝐹𝑘𝑙
𝑙
𝑘=0             [Equation 15] 

where W is the waiting cost per patient (Equation 12), k is the number of patients that 

could overflow from that slot and POFkl is the probability of overflow of the k patients 

from slot l to slot l+1. 

4.2.4 Personnel Overtime Cost Expected Value (E(OP)) 

The overtime can be defined as the additional time required to provide services 

to patients that could not be attended during the regular work time.  Since a day is 
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divided in n number of time slots, overtime will be required if more than one patient 

in the last appointment slot (n) are left unattended yet. That value cannot not be 

estimated with certainty in order to calculate the cost, but the probabilities of overflow 

in the slot n (Refer to sub-section 4.2.1) can be used to estimate the expected value of 

the personnel overtime cost.  Taking this into consideration, the personnel overtime 

cost expected value in the last appointment slot E(OP)n can be expressed as: 

E(OP)n = ∑ 𝑂𝑃 ∗ 𝑘 ∗ 𝑃𝑂𝐹𝑘𝑛
𝑛
𝑘=0            [Equation 16] 

 Where OP is the personnel overtime cost per time slot (Equation 10) and POFkn is the 

probability of having k patients left unattended at the end of the last time slot n. 

4.2.5 Stochastic Cost Model 

All the costs has been expressed in terms of the unit output and the cost 

expected value of each social cost has been calculated.  When evaluating an existing 

appointment schedule, the total cost of an appointment slot Cl for all the slots in the 

schedule can be expressed as: 

Cl = R+U+S+DP+IP+ V*r + W*k           [Equation 17] 

Where r is a binary variable that takes a value of 1 if the appointment slot was a 

complete no-show, and a value of 0 otherwise. The parameter k is the number of 

patients that will overflow from slot l to slot l+1.  In the case of estimating the no-

show cost when generating an appointment schedule a priori, which add an stochastic 

element to the cost model, the total expected value of the cost of an appointment slot 

(E(Cl)), for slot 1 to slot n-1, can be expressed as: 

E(Cl) = R+U+S+DP+IP+ E(V)l + E(W)l          [Equation 18] 
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For the last time slot (n) of the appointment schedule, the personnel overtime cost is 

added to the equation. 

 E(Cn) = R+U+S+DP+IP+ E(V)n + E(W)n + E(OP)n                    [Equation 19] 

The details about each parameter in the stochastic cost model can be found in Section 

3.4 and in Section 4.2, Sub-sections 4.2.1 through 4.2.4.  In the next section, this 

stochastic cost model will be used to evaluate several appointment scheduling 

scenarios in terms of the total no-show cost to the system. 

4.3 Test Bed-Scenarios Simulation 

 As mentioned before, outpatient clinics construct their appointment schedules by 

using a single patient per slot approach or by overbooking the appointment slots.  When 

overbooking, the vast majority of the clinics do not have established a specific procedure and 

instead they assign the patients randomly.  The purpose of developing a stochastic cost model 

in this research work is to create a methodology to assess the economic impact that patients’ 

absences have in healthcare systems, but also to use it as a tool for the evaluation of different 

scheduling policies, in terms of the total cost to the system. 

 The work of Lofti and Torres [5] has been used as reference for the policies 

simulations.  They performed a simulation of five scheduling policies.  In the policies that 

included overbooking, their methodology assigned patients in a slot until the expected 

number of patients reached a value of one.  In other words, each slot was overbooked until 

the sum of the probabilities of show of the patients assigned to the slot reached a value of 

one.  That approach works by overbooking patients with a low probability of showing (high 

probability of no-show) in the same slot.  The authors recognize that this approach could be 
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harmful to the system, in terms of the waiting time of the patients and the personnel overtime, 

because patients with a low probability of showing can actually show up to the appointments.  

However, in contrast to what is being done in this research work, Lofti and Torres are not 

considering these two aspects in their evaluation; instead they are only comparing the policies 

in terms of the clinic utilization.  In this research work, the policies are being compared in 

terms of the clinic utilization but also in terms of the total cost to the system, which includes 

the waiting cost, the personnel overtime cost, and the cost of the resources non-utilization, 

among other costs.  Instead of overbooking until the expected number of patients in the slot 

reach one, a threshold value of 2 patients overbook per appointment slot will be used.  

The following four scheduling policies have been simulated in Visual Basic: 

 Policy 1: Assign one patient per appointment slot. 

 Policy 2: Avoid overbooking consecutive appointment slots. Overbook one 

appointment slot and not the next one. 

 Policy 3: Overbook all the appointment slots without taking in consideration the 

patients probabilities of attendance. 

 Policy 4: Overbook all the appointment slots by assigning a patient with a high 

probability of showing (P(show)>60) and a patient with a low probability of showing 

(P(show)<40) in the same appointment slot. 

The four policies has been simulated using data from a data set from the illustrative 

example that provided the lowest generalized cross-validated error when the model was 

constructed using the Generalized Boosted Trees technique.  The model provides a seventy 

percent of accuracy in the prediction.  The probabilities of show and no-show were obtained 

for each sample in the data set based on the prediction provided by the classification model.  
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It is known if the patient actually arrived to the appointment, for each sample.  Basically, five 

hundred medical appointments (samples) have been simulated.  The simulation algorithm 

selects patients from the full data set at a random order and assign them according to the 

specifications of the scheduling policy being evaluated. It is being considered that one clinic 

day consist of ten appointment slots.  Once all the time slots of a day are full with assigned 

patients, the algorithm begins a new day; so on until all the patients are assigned to an 

appointment slot. For the first policy (Policy 1) a total of fifty clinic days has been simulated.  

Thirty-four days has been simulated for the second policy (Policy 2).  Finally, twenty-five 

days has been simulated for the third (Policy 3) and fourth (Policy 4) policies. 

Six performance measures has been calculated based on the output results collected for 

each policy simulated.  The first performance measure is the clinic utilization.  Lofti and 

Torres [5] define the clinic utilization based on the proportion of time slots that had at least 

one patient assigned that showed to the appointment (Equation 20).  This measure do not 

consider patients overflow from previous slots, is only based on patients assignments. Since 

an empty slot can be filled out due to an overflow of a patient from a previous slot, it has 

been decided to calculate the overall clinic utilization (Equation 21), which is the second 

performance measure.  The third performance measure to consider is the fraction of slots 

with overflow from one slot to a consecutive slot (Equation 22).  The fourth performance 

measure is the fraction of show overbooks, which collect the proportion of slots that were 

overbooked with assigned patients that both showed to the appointment (Equation 23).  

clinic utilization (%) = (1-
𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝐸𝑚𝑝𝑡𝑦 𝑆𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
)*100         [Equation 20] 

overall clinic utilization = (1-
𝑅𝑒𝑎𝑙 𝐸𝑚𝑝𝑡𝑦 𝑆𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
)*100                   [Equation 21] 
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fraction of slots with overflow = 
𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑠𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
                    [Equation 22] 

fraction of show overbooks = 
𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑠ℎ𝑜𝑤 𝑜𝑣𝑒𝑟𝑏𝑜𝑜𝑘𝑒𝑑  𝑠𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
        [Equation 23] 

The fifth performance measure is the expected cost to the system, calculated by evaluating 

each schedule with the stochastic cost model (Equation 18 and Equation 19), which are based 

on the probabilities of attendance of the patients.  By using the developed stochastic cost 

model, each policy is also being evaluated in terms of the expected waiting of the patients, 

the expected non-utilization of the resources and the expected personnel overtime.  Finally, 

the sixth performance measure is the actual cost to the system, which is calculated based on 

the real output of the schedules.  The objective is to compare the expected total cost, which 

is based on probabilities, with the actual total cost, which is based on what would have really 

happened if it was the real schedule.  This will allow to assess how well the stochastic cost 

model estimated the cost of the schedule under each policy. A set of hypothetical values were 

used to assess the different cost values considered in the cost model.     

 A stochastic element is present in the simulation due to the randomization of the 

patients at the beginning, which cause variability in the results of the different performance 

measures of interest on each simulation run.  It is incorrect to make inferences about the 

values of the performance measures with only one simulation run, this is the reason why 

several replication runs are used instead.  The required number of replication runs (n) 

depends on the statistical relative error (er) willing to be accepted for the confidence level 

desired.  The replication runs allows to estimate the average values of the performance 

measures (�̅�) by calculating the average value among the replications.  The average value do 

not provide information about the precision of the estimate.  To address this issue, each 
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average value is accompanied with a half-width (h) that provides information about the error 

in the sampling.  In this analysis, an initial set of fifty replication runs has been generated for 

each policy.  This initial sample of replications has been used to estimate if more replication 

runs (n) are required for a confidence level of 95%, with a relative error (er) of 0.05, 

according to Equation 24 where s is the standard deviation.  

  n = (
𝒕𝟏−∝/𝟐,𝒏−𝟏∗ 𝒔

𝒆𝒓�̅�
)2        [Equation 24] 

The parameter n has been estimated for all the performance measures, selecting the higher 

value as the final number of replications to be run.  When no further replications are needed,  

the average value of each performance measure has been estimated and presented 

accompanied with their respective half-width (h), calculated based on Equation 25. 

  h = 
𝒕𝟏−∝/𝟐,𝒏−𝟏∗ 𝒔

√𝒏
        [Equation 25] 

Individual details about the simulations results for each policy are presented in Appendix A.  

Table 8 presents a summary of the results for the scheduling simulations. 

Table 8. Results of the Scheduling Policies Simulation 

 

Policy 1 requires the higher number of days and slots, fifty days and five hundred 

slots, to assign all the patients.  Two hundred and forty-five (245) empty slot results from 

patients that did not show to the appointment.  The number of real empty slots is equal to the 

number of assigned empty slots because one patient is assigned per slot and there is no 
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overflow from one appointment slot to a consecutive appointment slot.  As a consequence 

the clinic utilization is equal to the overall clinic utilization, with a value of fifty-one percent 

(51%), which implies a non-utilization of almost half of the clinic capacity.  No overbooked 

and overflow slots results from this policy.  In terms of the cost to the system, it presents the 

lower average cost per day in comparison with the other policies, but since it requires a higher 

number of days and slots to assign all the patients, it results as the policy with the higher total 

cost to the system.  There is a 0.92% of difference between the estimated total expected cost 

and the total real cost of the schedule.  The stochastic cost model provides a suitable estimate 

of the actual cost of the scheduling policy. 

 Policy 2 is a scheduling policy with a conservative overbooking scheme, trying to 

counteract the possible effect of overbooking one appointment slot by not overbooking the 

consecutive appointment slot.  A total of thirty-four days and three hundred forty slots were 

required to assign all the patients.  It resulted in an approximate of one hundred and twenty 

(120.68 + 1.20) assigned empty slots, on average. The clinic utilization is approximately 

sixty-four percent (64.51% + 0.35%) of the clinic capacity.  The overbooking of some slots 

caused overflow on a total of eighty-six (86.04 + 2.21) appointment slots on average, twenty-

five percent (25% + 0.01%) of the total number of slots.  This leads to the result that on 

average only eighty-seven (87.96 + 0.83) of the one hundred twenty (120.68 + 1.20) are real 

empty slots, which lead to a higher overall clinic utilization of approximate seventy-four 

percent (74.13% + 0.24%).  Two patients that showed to the appointment were assigned in 

the same appointment slot in thirteen percent (13% + 0.004%) of the assigned overbooked 

appointment slots, on average.  The total cost to the system of this policy is lower than the 

cost of the Policy 1 due to the fact that fewer empty slots results due to the overbooking of 
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certain slots, causing a higher utilization of the clinic capacity.  The reduction in the cost of 

the value lost due to the non-utilization of the resources counteracted the effect of the cost of 

waiting and overtime due to the overflow caused by overbooking, also it is due to the balance 

caused by the pattern created by overbooking one slot and not the consecutive one. A 10.83 

percent of difference lies between the estimated total expected cost and the actual cost to the 

system. This policy resulted in the higher variability in estimating the expected cost among 

the replication runs.  Not overbooking certain slots can results in a buffer if two show patients 

were assigned in a previous slot.  However, it can result in a higher number of empty slots, 

than when overbooking all slots, even more when patients are assigned randomly.  This cause 

higher variability in the estimate of the cost.  Also, there is higher probability of empty slots 

in this scenario, than in the policies 3 and 4, reason why the expected cost estimated by the 

stochastic cost model is higher for this policy. 

 The third policy, Policy 3, consists of overbooking all the appointment slots by 

assigning the patients randomly.  The probabilities of attendance of each patient are not taken 

under consideration at the moment of the assignment.  Twenty five days and, two hundred 

and fifty slots have been simulated for this policy.  Approximately sixty (60.22 + 0.97) 

appointment slots resulted as assigned empty slots, however, the real number of empty slots 

is thirty-one (31.36 + 0.96), due to one hundred and thirty-seven (137.24 + 2.50) slots that 

had overflow caused by overbooking.  This leads to an overall clinic utilization of 

approximately eighty-seven percent (87.46% + 0.38%).  In comparison with the previous 

policies, Policy 3 provides a higher clinic utilization.  However, in terms of the fraction of 

slots with overflow (55% + 0.01%) and the fraction of assigned show overbooked slots (26% 

+ 0.004%), it resulted in a poorer performance.  It was expected due to the fact that it is a 
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general consequence of overbooking all the appointment slots. This is reflected in the total 

cost to the system. The percentage of difference between the expected total cost and the actual 

total cost is 5.69 percent, which implies that the stochastic cost model is capturing well the 

cost behavior of the policy.  The total actual cost for this policy is higher than the cost for the 

second policy (Policy 2) because the increase in the number of overflow slots cause an 

increase in the waiting cost and the overtime cost.  However, the percentage of difference of 

the total cost between both policies range between a seven percent (7%) and a nine percent 

(9%), which is not alarming taking in consideration the crucial improvement in the clinic 

utilization.  This result leads to realize that the stochastic cost model is designed to penalize 

more for the patients waiting time and personnel overtime, than penalizing for the loss of 

capacity due to a completely empty slot. 

 The last policy simulated, Policy 4, overbook the appointment slots assigning patients 

by taking in consideration their probabilities of attendance.  The objective is to assign a 

patient with a high probability of showing with a patient with a low probability of showing.  

By the results, a slightly improvement in the clinic utilization (76.82% + 0.51%) and the 

overall clinic utilization (87.53% + 0.47%) is obtained in comparison with Policy 3.  Also, 

on average, fewer overflowed slots (133.02 + 2.53) and assigned show overbook slots (62.96 

+ 0.99) results from this policy.  In terms of the total cost to the system, Policy 4 is the policy 

that resulted with the lower average total expected cost because it balance the patients 

assignment better, reducing the overflows which cause an increase in the waiting cost and 

the overtime cost.  The actual cost to the system is lower than the resulting cost of the Policy 

3 because it balance the patients assignment better, reducing the overflows which cause a 

decrease in the waiting cost and the overtime cost.  The percentage of difference between the 
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expected total cost and the actual total cost is 4.08 percent, which is lower is comparison with 

Policy 2 and Policy 3.  Better results would have been obtained if the data fitted a 

classification model with a higher prediction accuracy.  The model used have a seventy 

percent accuracy, which is the best that could be obtained, but a model with a higher accuracy 

would have allowed better assignment and therefore better results.   

 In overall it is important to highlight that in terms of the performance measure of 

relevance in this work, which is the total cost to the system, the results show that Policy #4 

is the less costly when estimated with anticipation (Expected Cost to the System).  In terms 

of the Actual Cost to the System, Policy #2 presents the lowest cost. However, even when 

Policy #4 is slightly more costly, it allows to book the same amount of patients in less days 

(25 days) providing a higher overall utilization.  When comparing the expected cost values 

with the actual cost values, the higher percent of difference is 10.83% for the Policy #2.  

Taking this in consideration it can be established that the stochastic cost model developed in 

this work provides a suitable estimate of the actual cost of the scheduling policies. 

4.4 Interactive Platform-Appointment Scheduler 

A prototype of an appointment scheduler has been developed in Excel using VBA 

and applying the methodology developed in this work.  Figure 8 present the initial view.  It 

contains the data base with the information of the patients, necessary to predict the probability 

of attendance of the patients based on the prediction model that should have been constructed 

with anticipation.  If the user press the “Start” button, then it can be started the process of 

adding a new patient to the data base or the process of creating an appointment for an existent 

patient.   



80 
 

 

Figure 8. Initial View-Interactive Platform 

Figure 9 shows the steps that the user follows to create the appointment.  After 

pressing the “Book Patient Appointment” button, the user should indicate the existent patient 

ID.  Using the information (attributes) of the indicated patient, the algorithm run the 

classification tree prediction model adjusted for that group of patients, and an output box 

appears with the information of the patient and the respective probability of attendance.  

Then, the user should agree to make an appointment for the patient. 

 

Figure 9. Steps for Scheduling an Appointment-Interactive Platform 
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 The patient assignment process works by booking two patients per appointment slot 

by following the procedure of Policy #4 in the Test Bed (Section 4.3) where a patient with a 

high probability of showing is matched with a patient with a low probability of showing.  In 

Figure 10 is presented an illustrative example of the assignment of three patients, whose 

names are fictitious.  The first patient is Dan S Cortes, who is assigned in the first available 

empty appointment slot.  The second patient assigned is Ezequiel Delbert and since is not a 

probability match with Dan S Cortes it cannot be assigned in the same slot.  Therefore, the 

patient is assigned in the next available slot.  Finally, the third patient (Rhett Lynwood) is a 

match with Dan S Cortes and can be assigned in the same appointment slot.  So on, the 

algorithm continues this logic in the assignment of the patients to appointment slots.  This a 

Beta version of the interactive platform, and it can be subjected to improvements. 

 

Figure 10. Patient Assignment to Generate Appointment-Interactive Platform 
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5 CHAPTER – CONCLUSION AND FUTURE WORK 

In this thesis the performance of four appointment scheduling scenarios for outpatient 

clinics has been evaluated in terms of the total no-show cost to the system.  An emphasis was 

made on evaluating scheduling scenarios constructed by overbooking the appointment slots, 

which have consequences on the patients’ waiting time and personnel overtime.  The no-

show cost has been assessed by the development of a stochastic cost model to determine the 

expected value of an appointment slot as a representation of the estimation of the cost of a 

no-show to the system.  The stochastic cost model integrates the patients’ probabilities of 

attendance with an economic analysis.  A Classification and Regression Tree approach has 

been used as a procedure for the prediction of the probabilities of attendance.  In the economic 

analysis, possible drivers for allocation and estimation of costs have been identified for the 

cost parameters in two cost categories: financial and social costs.   

Through an illustrative example it has been demonstrated that, as Lofti and Torres 

presented in [5], the Classification and Regression Tree (CART) approach is a beneficial 

technique for the classification and prediction of patients’ attendance.  To enhance this 

statement, a Gradient Boosted Tree approach was applied to the same data of the illustrative 

example, resulting in an improvement in the prediction power of the model of up to twenty 

percent in terms of the generalized prediction error.  The only disadvantage that presents the 

latter is that the technique provides a black-box model as an output, something that affects 

the required reproducibility of the model for the application in the prototype of an interactive 

platform that has been developed for the assistance in the scheduling process of an outpatient 

clinic. 
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 One of the most relevant contributions of this work is in the consideration of social 

costs in the economic analysis, and their integration in the cost model.  To the best of our 

knowledge, this has not been addressed in any other research publication.  It has been 

identified that the social costs can be estimated, from the outpatient clinic point of view, in 

terms of the profit lost by the system due to the higher waiting as a consequence of 

overbooking, or due to the value lost by the non-utilization of the resources when there is a 

complete no-show in an appointment slot.  Since both aspects are dependent on the 

attendance of the patient to the appointment, which is uncertain; a deterministic estimate of 

those costs cannot be done but the probabilities of attendance obtained by the classification 

techniques CART and Gradient Boosted Trees has been used to estimate the probabilities of 

patients’ overflow from one appointment slot to a successive appointment slot and to estimate 

the probability of a complete no-show in an appointment slot. As a result, the social costs 

have been estimated in terms of their expected value. The deterministic financial operational 

costs have been integrated with the stochastic social costs in a cost model that has been used 

for the evaluation of appointment scheduling scenarios.   

Four appointment scheduling policies for outpatient clinics were evaluated. The 

simulation results reflect that overbooking in general is beneficial for outpatients’ clinics in 

terms of overall clinic utilization and total cost to the system.  It can depends on the 

overbooking levels utilized.  In this work it is being considered the case of two patients 

overbooking.  Also, the results provide insights about the fact that using patients probabilities 

of attendance as a point of reference at the moment of assigning patients to appointment slots 

improve the performance of the schedule in terms of the metrics considered in the analysis. 

Balancing the patients assignment by overbooking using the patients’ probabilities of 
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attendance, reduce the overflows which cause a decrease in the waiting cost and the overtime 

cost, and at the same time it reduces the number of empty slots that cause a non-utilization 

of the resources capacity, which involves a cost to the system.  It is important to clarify that 

this is dependent on how good the constructed classification model is in terms of prediction 

accuracy. 

Future work includes a deeper exploration of the two social costs considered in this 

research work by trying to identify other possible drivers to allocate and estimate them with 

more accuracy.  Furthermore, explore the possibility of integrating other social costs that are 

more complex to estimate such as the “loss of life” and research how they directly and 

indirectly affect the system.  Currently the cost model has been used only for the evaluation 

of scheduling scenarios.  It may be beneficial to address the patients’ assignment to the 

appointment slot as an optimization problem with a cost minimization objective function. 

Also, it is important to highlight that the procedure developed to estimate the overflow 

probabilities is memoryless, the penalty is the same no matter how many times the patient 

has overflow from one slot to a consecutive one.  As a future step, it could be beneficial to 

take in consideration the number of times a patient has overflow as a criteria to give a higher 

penalty or to establish an alternative step to re-schedule those patients with a higher risk of 

waiting more to receive services. 
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APPENDIX A 

A. 1 Classification and Regression Trees Steps 

A.1.1 Tree Growing 

Tree growing deals with two main issues. The first one is related to the 

splitting process, which depends on the attributes types and the number of ways to 

split.  In the case of CART, only binary splits are allowed. Also, it depends on the 

attribute test condition, which is the term used to refer to the determination of the 

attribute that provides the best split.  This is assessed through the use of impurity 

measures as metrics of the homogeneity of the nodes.  Three main impurity based 

criteria can be mentioned: Classification error, Gini index, and Entropy.  The 

classification error simply measures the fraction in the region, that do not belong to 

the most common class, this is because in classification trees the purpose is to divide 

the observations in regions and assign a record in a region to the most commonly 

occurring class [35].  The Gini index is a measure of the total variance across the 

classes, taking a smaller value as the proportion of the training records in the node 

that are from a particular class is close to 0 or to 1.  This implies that the observations 

in the node tends towards a particular class, something that is beneficial for 

classification matters.  Entropy is another alternative, numerically similar to the Gini 

Index.  Entropy and Gini Index are more sensitive to node purity, reason why are 

more used in tree growing than the classification error [35].  The following are the 

equations for the calculation of the three impurity based criterions: 

  Classification Error = 1 − 𝑚𝑎𝑥𝑖(�̂�𝑖𝑘)          [Equation 26] 
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  Gini Index = ∑ [�̂�𝑖𝑘
𝑖
𝑖=1 (1 − �̂�𝑖𝑘)]           [Equation 27] 

  Entropy = − ∑ �̂�𝑖𝑘𝑙𝑜𝑔�̂�𝑖𝑘
𝑖
𝑖=1             [Equation 28] 

Where �̂�𝑖𝑘 is the proportion of records that belong to the class i of the node k. 

The second main issue in tree growing is related to the stopping criteria.  A tree 

can be expanded completely until all the records belong to the same class or all the 

records have identical attribute values [34]. However, several stopping conditions can 

be followed that go from simple early stopping rules to more restrictive rules.  This 

has its benefit since in general smaller trees with small prediction errors are preferred 

to avoid over-fitting.  Model over-fitting is a phenomenon that occurs as the tree 

becomes too large and the test error rate (generalization error) increases while the 

training error increases [34].  This is due to the fact that a model can fit very well the 

training records, but has a poorer performance with unseen records (test records).  A 

model with a good training error can present a poorer generalization error than a 

model with a higher training error [34]. 

A.1.2 Tree Pruning 

There is two pruning strategies, pre-pruning and post-pruning, which differ in the 

stopping criteria.  Pre-pruning is an early stopping rule, where the algorithm stops 

before the tree is fully grown.  This is done by using a restrictive stopping condition 

as a gain in the impurity measure or when the estimated generalization error value is 

lower than a threshold value (α) established.  Determining the α value may be a 

challenge since a high value can result in under-fitting, but a value too low may result 

in over-fitting.  Post-pruning is a strategy where the tree is fully grown and then it is 
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trimmed back in order to obtain a subtree with a lower test error rate.  This strategy 

usually tends to present better results than pre-pruning, due to the premature 

termination of the pre-pruning strategy. 

A.1.3 Tree Performance Validation 

CART applies a learning algorithm to identify a model that best fits the 

relationship between the response variable and the prediction attributes.  Basically, 

the classification technique works by applying the learning algorithm to an initial data 

set known as training set, which contains records whose class labels are known, and 

constructing a classification model [34].  Then the classification model is applied to 

a different data set, known as the test set, in order to assess the model prediction 

power.  Cross-validation in a method that helps when it is available a limited amount 

of data that difficult the extraction a considerable test set that could be used to estimate 

the testing error rate.  It consists of holding out a subset of the training observations 

from the fitting process, and using that held out observations for testing purposes [35].  

From the several cross-validation techniques, the K-Fold Cross Validation has been 

selected because offers the advantage of allowing to choose the size of each test set 

is and how many trials are average over.  It involves dividing the data set in k groups 

of equal size, preferably.  One fold is selected as the validation set for testing 

purposes, and the rest k-1 folds are used to fit the model.  The procedure is repeated 

k times, alternating the folds so each time a different group is used as a validation set. 

A classification model performance is assessed based on the number of records 

that were correctly and incorrectly predicted.  One way to represent the results and 

tabulate the predictions is through the construction of a confusion matrix. Figure 11 
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presents an illustrative example of a confusion matrix for a classification model with 

a binary response {Show (0), No-Show (1)}.   

 

Figure 11. Illustrative Example of a Confusion Matrix 

Each entry of the confusion matrix provides the number of records that were 

predicted as class i, but their true condition was class j.  For example, the records on 

the True Positive entry were predicted as Show and their true condition was Show.  

In other words, those records were correctly predicted by the classification model.  It 

would be convenient to express the performance of the model by using a single value.  

The following performance metrics (Equations 29-32) can be calculated from the 

confusion matrix entries in order to assess the power of the model. 

Sensitivity=
#  𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆ℎ𝑜𝑤
                      [Equation 29] 

Specifity=
# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑁𝑜−𝑆ℎ𝑜𝑤
          [Equation 30] 

Show Predictive Value=
# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑇𝑒𝑠𝑡 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑆ℎ𝑜𝑤
        [Equation 31] 

No-Show Predictive Value=
# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑇𝑒𝑠𝑡 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑁𝑜−𝑆ℎ𝑜𝑤
    [Equation 32] 

Sensitivity (Equation 29) and Specifity (Equation 30) assess the portion of patients 

correctly classified as show and no-show, respectively.  The Show Predictive Value 
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(Equation 30) calculates the proportion of records that were correctly classified as 

Show, from all the records that were classified with this class label.  The No-Show 

Predictive Value (Equation 31) provides similar information but for the case of the 

records classified as No-Shows.  These four performance metrics are used to assess 

the prediction power of the classification model for each individual response class.  

The overall prediction power of the model can be quantified by calculating the Error 

Rate shown in Equation 33. 

Error Rate = 1- Accuracy = 1-
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
        [Equation 33] 

When a k-fold cross validation method is used, the error rate is the average of the 

errors obtained for each fold (Equation 34). 

  CV Error Rate= 
1

𝑘
∑ 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒𝑖

𝑘
𝑖=1           [Equation 34] 

Since two data sets are involved in the process, training data and test data, two types 

of error rates can be calculated. Both performance metrics are calculated using 

Equation 34, changing the data used. The first one is the Resubstitution Error Rate 

(RE), which is known as an optimistic performance metric because it tests the 

performance of the model by using the same training data that was used to fit it. The 

second one is the Testing Error Rate (TE), considered a pessimistic measure because 

it tests the validity of the model with an independent data set that was not involved in 

the model fitting process.  With the purpose of balancing and considering both types 

of error rates, the Generalized Error Rate (Equation 35) is calculated by performing a 

weighted average where, in the case of this research, the weight value w is assigned 

as the proportion of the data set that contains each set (training and testing). 
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Generalized Error Rate=𝑤𝑇𝑒𝑠𝑡𝑖𝑛𝑔 ∗ RE + 𝑤𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ∗ 𝑇𝐸        [Equation 35] 

A.2 Gradient Boosted Trees 

Boosting is a slow learning approach that improves the prediction power of a 

resulting decision tree.  It works on producing a prediction model by growing 

sequential weak models, where each tree is grown using information from previously 

grown trees.  Each tree is fit on a modified version of the original data set [35].  

Gradient Boosting is an approach developed by Jerome H. Friedman, which consists 

of applying the boosting methodology by constructing each successive tree based on 

the prediction residuals of the previous constructed tree. The technique optimize for 

an arbitrary differentiable loss function. 

Gradient boosted trees require the specification of three essential tuning 

parameters:  

 Number of trees to be generated successively: Choosing a value too 

large can results in over-fitting, reason why a value of one hundred 

trees is typically selected and then cross-validation is used to select the 

optimal value [35].   

 Shrinkage parameter: Controls the rate at which the method learns.  

The typical values of this parameter are 0.01 or 0.001 [35].   

 Number of splits on each tree generated: This parameter is considered 

as the interaction depth parameter because it controls the interaction 

order of the model, since the number of splits implies the number of 

variables involved. 
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Basically, the technique works by generating an initial tree by taking in 

consideration the tuning parameters and by selecting the best partitioning of the data 

according to the impurity measure selected to assess this.  Then, the residuals of the 

resulting tree are calculated by computing the deviations of the predicted values from 

the mean values.  The next tree is then fitted to the residuals of the previous tree.  This 

procedure is repeated until the number of trees specified as a parameter is reached.  

On each iteration, the technique is searching for the best partition that will further 

decrease the error of the data.  At the end, the model is a black box because it cannot 

be tree-based represented since it is composed of the aggregation of sequential trees. 

The procedure just described is the general methodology of the technique and 

it applies for regression modeling.  However, when dealing with a classification 

problem, there are several differences in the methodology.  Friedman developed an 

alternate procedure for multi-class classification problems.  Details about the 

algorithm developed by Friedman can be accessed in his publication “Greedy 

Function Approximation: A Gradient Boosting Machine” published in 1999 [38].  In 

general, the procedure generates a different boosting tree for each class of the 

categorical dependent variable.  Also, for each one, it creates a vector of values [0,1] 

to indicate if an observation in the data belongs or not to the respective class.  The 

algorithm applies a logistic transformation to compute the residuals. The process 

continues for the number of trees indicated as parameters.  At the end, in order to 

obtain the classification probabilities, a logistic transformation is applied to the 

prediction in the vector of prediction [0, 1] of each class. 
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A.3 R packages for CART and Gradient Boosted Trees 

A.3.1 R-part 

A data mining technique as classification trees, which includes the analysis of an 

extensive amount of data, requires the use of a statistical software that facilitate the 

task.  R is a computer language and environment for statistical computing and 

graphics, which is available as a Free Software in source code form [36].  It works 

through a simple programming language that facilitates data manipulation, 

calculations and the creation of illustrative outputs.  It is an environment where 

statistical techniques are implemented; most of them are available via packages that 

can be downloaded through the CRAN family of internet sites.  R-part, whose name 

comes from the phrase “recursive partitioning”, is an R package that consists of 

routines that implement the ideas of CART as presented by Breiman, Friedman, 

Olshen and Stone in books and programs [37].  The program builds classification and 

regression tree models with binary responses. 

R-part works following the three steps explained in Appendix A, Section A.1.  

First, the variable which best splits the data according to the impurity based criterion 

used is selected; the Gini Index is the splitting index being used for this analysis.  The 

data is partitioned, then the process is applied to each sub-group.  This procedure goes 

on until a stopping criterion is reached or no further improvement can be achieved.  

The purpose of using an impurity based criterion is risk reduction.  In other words, 

reducing the risk of classifying incorrectly the records of a particular partition.  R-

part also implements the Altered Prior Method for the calculation of the expected loss, 

which is the probability of misclassification, to assess the risk reduction criteria.  
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Altered Priors are node probabilities that accounts for the initial prior probabilities, 

which are equal to the observed class frequencies in the original sample; for the loss 

matrix when incorrectly classifying a record of class i as class j; and for the proportion 

of the cases included in the node.  The altered priors impact the choice of split by 

assisting the impurity rule in the process of choosing the splits that are likely to be 

good in terms of the misclassification risk [37].  As a second step, cross-cross 

validation is used to trim back the full tree by selecting the tree with the smallest 

possible number of nodes that reduces the misclassification risk. Finally, the 

validation step can be performed by generating the confusion matrix and calculating 

the performance metrics mentioned in Section A.1, Sub-section A.1.3. 

 A.3.2 Caret and gbm 

Caret, which is an abbreviation for “classification and regression training”, is 

a package in R which contains functions that help in the process of model training 

complex regression and classification problems.  This package is composed of several 

number of R packages, an approximate of twenty-six packages.  From all the available 

packages, the gbm package is of interest because it fits a generalized boosted 

regression or classification model, based on Friedman’s gradient boosting 

methodology.  Basically, the package applies the methodology described in Section 

A.2, based on the specification of several parameters.  In this section the essential 

ones will be explained.  The first parameter that should be specified is the distribution, 

which defines the methods for computing the associated deviance, initial value, the 

gradient, and the constants to predict in each terminal node [39].  The second 

parameter is n.trees, which is the number of trees that should be generated for the 
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additive expansion.  The third and fourth parameters are the interaction.depth and the 

shrinkage.  The package allows to construct a black box model and allows to plot it 

in order to select the optimal n.trees value to avoid overfitting.  The predictions of the 

resulting model can be summarized as a confusion matrix and the results can be 

analyzed using the performance metrics in Section A.1, Sub-section A.1.3., as it is 

done for the CART methodology. 
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APPENDIX B 

B.1 CART Results-Representative Example 

Using the r-part package from R (refer to Appendix A, Section A.3, Sub-section 

1.3.1), a model was adjusted for each data set of each example, as follows: 

cfit<-rpart(p_att~ l_time+age+gender+race+m_status+p_language+ 

distance+t_patient,data=df,method="class") 

The code line expresses that the prediction model it is being constructed considering 

the patients’ attendance (p_att) as the outcome and considering the eight attributes, 

mentioned earlier, as prediction variables.  Since it is a classification model, the method is 

specified as “class”. 

A cross-validation approach was used, dividing the data sets (500 samples) in five 

folds (k=5) of 100 samples each.  The analysis was held for each data set by taking k-1 folds 

for training the model and one fold for testing.  The procedure was repeated k times, 

alternating the folds (identified as Fi) so each time a different group is used as a validation 

set (Figure 12). 

 

Figure 12. Representation of the Folding Procedure 

On each fold, the model has been constructed using the training folds. The prediction 

power of the model has been evaluated using the training data and then using the testing data.  

A confusion matrix has been generated for each case, in order to calculate the performance 
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measures of interest for each folding. From all the performance measures mentioned in 

Appendix A, Section A.1, Sub-section A.1.3, the Generalized Error Rate is the one of interest, 

since it is desired to assess the prediction power of the model in relation to the two responses 

(Show, No-Show).  The cross-validated resubstitution error has been calculated for each data 

set by averaging the resubstitution error of each fold (refer to Equation 9).  The same 

procedure has been done for the cross-validated testing error rate, but using the testing error 

rate of each fold.  Then for each data set, the cross-validated general error rate has been 

computed as a weighted average of the cross-validated resubstitution error and the cross-

validated testing error, as presented in Equation 10 in Appendix A, Section A.1, Sub-section 

A.1.3.  The weight parameter (w) has been selected as the proportion of the data that 

constitutes the training data and the testing data.  In this case, on each fold, four fifths of the 

data is being used for training and one fifth for testing. Figures 13 and 14 present an example 

of the confusion matrix and the performance measure calculation for a data set, for the initial 

fully grown tree, in the case of the unknown pattern data example.  This procedure was done 

for the model constructed using the initial fully grown trees and then for the model 

constructed after pruning it, with the purpose of evaluating how the error rates changes.  The 

pruning process was done for each fold of each data set.  The tree with the number of splits 

that provided the lower cross-validated error was selected.  This was evaluated based on the 

Cross-validated Error vs. Tree Size plot that r-part provides as part of the analysis. Figure 15 

presents an illustration of the plot. 
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Figure 13. Example-Confusion Matrix and Performance Measures using Training 

Data for the Unknown Pattern Data Example 

 

Figure 14. Example-Confusion Matrix and Performance Measures using Testing 

Data for the Unknown Pattern Data Example 

 

Figure 15. Example-Cross-Validated Error vs. Tree Size Plot 

Show No-Show Show No-Show Show No-Show Show No-Show Show No-Show

Show 151 59 149 61 125 47 152 66 140 61

No-Show 54 136 53 137 70 158 56 126 70 129
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The results for each data set, for each example, before and after pruning have been 

summarized in a table format. Refer to Tables 9, 10, 11 and 12 for the summaries. 

Table 9. Error Rates for Fully Grown Trees-Unknown Pattern Data Example 

 

 

 

 

Sample
Cross-Validated 

Resubstitution Error Rate

Cross-Validated 

Testing Error Rate

Generalized Cross-

Validated Error Rate

1 0.297 0.424 0.399

2 0.295 0.506 0.464

3 0.293 0.486 0.447

4 0.301 0.548 0.499

5 0.297 0.504 0.463

6 0.288 0.478 0.440

7 0.301 0.526 0.481

8 0.307 0.556 0.506

9 0.284 0.474 0.436

10 0.299 0.456 0.425

11 0.324 0.518 0.479

12 0.299 0.494 0.455

13 0.313 0.504 0.466

14 0.289 0.526 0.479

15 0.285 0.474 0.436

16 0.287 0.502 0.459

17 0.303 0.530 0.485

18 0.305 0.526 0.482

19 0.284 0.528 0.479

20 0.291 0.500 0.458

21 0.283 0.524 0.476

22 0.314 0.528 0.485

23 0.289 0.534 0.485

24 0.299 0.548 0.498

25 0.289 0.506 0.463

26 0.312 0.406 0.387

27 0.301 0.444 0.415

28 0.282 0.504 0.460

29 0.299 0.500 0.460

30 0.303 0.498 0.459
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Table 10. Error Rates for Prune Trees-Unknown Pattern Data Example 

 

The unknown pattern data example resulted in bigger fully grown trees that did not 

presented an evident patterned behavior in the attributes splitting.  This is reflected in the 

high cross-validated testing error rates, which are near to or higher than 0.50, something that 

is expected for random data with no traceable pattern.  The Generalized Cross-Validated 

Error Rate ranged from 0.387 to 0.506.  These values are considerable higher than desired 

for the assessment of the predictive power of a classification model.  However, samples 1 

Sample
Cross-Validated 

Resubstitution Error Rate

Cross-Validated 

Testing Error Rate

Generalized Cross-

Validated Error Rate

1 0.329 0.492 0.459

2 0.392 0.506 0.483

3 0.423 0.470 0.461

4 0.421 0.510 0.492

5 0.429 0.476 0.467

6 0.419 0.422 0.421

7 0.385 0.528 0.499

8 0.397 0.496 0.476

9 0.384 0.444 0.432

10 0.447 0.496 0.486

11 0.408 0.506 0.486

12 0.335 0.530 0.491

13 0.417 0.454 0.447

14 0.393 0.522 0.496

15 0.361 0.468 0.447

16 0.401 0.512 0.490

17 0.357 0.497 0.469

18 0.401 0.510 0.488

19 0.405 0.474 0.460

20 0.340 0.500 0.468

21 0.327 0.554 0.509

22 0.431 0.506 0.491

23 0.355 0.500 0.471

24 0.466 0.466 0.466

25 0.378 0.424 0.415

26 0.379 0.424 0.415

27 0.398 0.460 0.448

28 0.393 0.502 0.480

29 0.360 0.536 0.501

30 0.365 0.482 0.459
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and 26 presents slightly lower cross-validated error rates, something that highlight a possible 

pattern detected by the technique.  For example, checking the data from sample 1, it can be 

identified that patients of gender B and race B and C had a higher tendency of failing an 

appointment with a 63% being no shows.  Also, 60% of the patients younger than forty-eight 

year (age<48) that booked their appointments more than thirteen days before the appointment 

day (lead time>30) were no shows.  Patients with a marital status B and primary language A 

failed the appointments with a 52%.  According to the data patients of type A that lives near 

to the clinic (distance < 8 miles) represent 73% of the no-shows.  This is contrary to what the 

studies have presented, patients that live far from the clinic tend to have high no-show 

incidence, but it is important to remember that this is a hypothetical representative example.  

Those are example of the unknown pattern of the data that the technique could have captured 

and represented in the final prediction model. 

It was expected to achieve lower values for the prune trees but the values where higher 

ranging from 0.415 to 0.509.  The biggest percentage of difference is fifteen percent, which 

is a lower value considering that a smallest tree provides a prediction power very similar to 

a fully grown tree. 
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Table 11. Error Rates for Fully Grown Trees-Patterned Data Example 

 

 

 

 

 

 

 

Sample
Cross-Validated 

Resubstitution Error Rate

Cross-Validated 

Testing Error Rate

Generalized Cross-

Validated Error Rate

1 0.220 0.304 0.287

2 0.219 0.328 0.306

3 0.136 0.136 0.136

4 0.201 0.378 0.343

5 0.215 0.476 0.424

6 0.200 0.400 0.360

7 0.196 0.414 0.370

8 0.181 0.400 0.356

9 0.188 0.478 0.420

10 0.180 0.306 0.281

11 0.219 0.538 0.474

12 0.192 0.460 0.406

13 0.194 0.372 0.336

14 0.204 0.348 0.319

15 0.193 0.396 0.355

16 0.217 0.516 0.456

17 0.190 0.448 0.396

18 0.176 0.406 0.360

19 0.198 0.448 0.398

20 0.189 0.342 0.311

21 0.203 0.378 0.343

22 0.202 0.430 0.384

23 0.168 0.290 0.266

24 0.188 0.354 0.321

25 0.204 0.408 0.367

26 0.197 0.336 0.308

27 0.198 0.392 0.353

28 0.183 0.342 0.310

29 0.209 0.486 0.431

30 0.201 0.382 0.346
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Table 12. Error Rates for Prune Trees-Patterned Data Example 

 

In contrast to the unknown pattern data example, the technique captured the patterns 

integrated in the patterned data example.  The data was managed creating a pattern of no-

show for patients below thirty years old who live further than fourteen miles from the clinic.  

As a result, the fully grown trees were smaller and the attributes age and distance resulted 

with the biggest importance on the splitting process.  Also, the prediction error of these 

examples was significantly smaller.  The Generalized Cross-validated Error Rate ranged 

Sample
Cross-Validated 

Resubstitution Error Rate

Cross-Validated 

Testing Error Rate

Generalized Cross-

Validated Error Rate

1 0.256 0.256 0.256

2 0.249 0.300 0.290

3 0.136 0.136 0.136

4 0.254 0.254 0.254

5 0.282 0.282 0.282

6 0.260 0.260 0.260

7 0.245 0.252 0.251

8 0.244 0.306 0.294

9 0.264 0.264 0.264

10 0.218 0.218 0.218

11 0.244 0.560 0.497

12 0.227 0.368 0.340

13 0.226 0.324 0.304

14 0.238 0.238 0.238

15 0.235 0.302 0.289

16 0.263 0.466 0.425

17 0.266 0.266 0.266

18 0.251 0.268 0.265

19 0.243 0.358 0.335

20 0.216 0.298 0.282

21 0.258 0.260 0.260

22 0.257 0.322 0.309

23 0.216 0.216 0.216

24 0.234 0.246 0.244

25 0.271 0.262 0.264

26 0.234 0.234 0.234

27 0.252 0.252 0.252

28 0.238 0.238 0.238

29 0.268 0.342 0.327

30 0.253 0.262 0.260
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from 0.136 to 0.474, for the fully grown trees, and ranged from 0.136 to 0.497 for the prune 

trees. 

B.2 Gradient Boosted Trees Results-Representative Example 

Using the gbm package included in the caret package, a black-box model has been 

constructed for each data set, maintaining the five-fold cross-validation approach.  The 

results have been represented as a confusion matrix and used to compute the performance 

metrics of interest. 

Four tuning parameters were specified in order to run the analysis.  First of all is the 

distribution, and since in this research work it is being assessed is a binary classification 

problem, the distribution selected is Bernoulli.   The second parameter specified is n.trees, 

which is the number of trees that should be generated for the additive expansion.  For this 

first trial a value of n.trees equal to one-hundred has been selected.  The shrinkage parameter 

has been set to 0.001, which is one of the typical values used [35].  A value smaller for the 

shrinkage could require a very large value of n.trees in order to achieve a good performance 

in the prediction model.  The interaction.depth has been set to a value of 1, implying that 

multiple small trees will be generated with one split.  In boosting, using smaller trees is 

sufficient due to the fact that the growth of successive trees is dependent of the results from 

the trees grown previously [35].  The final model is an additive model of the small trees 

generated. 
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Table 13. Comparison Error Rates - CART Prune Trees vs. GBM Trees 

 

Table 13 presents a summary of the results for the Generalized Cross-

Validated Error for both analysis, CART and GBM.  Both methods are compared in 

terms of the percent of reduction in the value of the performance metric.  It can be 

seen that in twenty-five of the thirty data sets samples, a reduction in the error rate 

has been achieved, with a maximum of approximate twenty percent and a minimum 

of zero percent of reduction.  Five of the thirty data sets resulted in an increase in the 

generalized cross-validated error rate, with a maximum increase of approximate 5% 

Sample CART-Prune Trees GBM % Reduction

1 0.459 0.445 3.05

2 0.483 0.447 7.45

3 0.461 0.457 0.87

4 0.492 0.478 2.85

5 0.467 0.441 5.57

6 0.421 0.434 -3.09

7 0.499 0.460 7.82

8 0.476 0.449 5.67

9 0.432 0.401 7.18

10 0.486 0.392 19.34

11 0.486 0.459 5.56

12 0.491 0.420 14.46

13 0.447 0.470 -5.15

14 0.496 0.430 13.31

15 0.447 0.432 3.36

16 0.490 0.461 5.92

17 0.469 0.460 1.92

18 0.488 0.429 12.09

19 0.460 0.471 -2.39

20 0.468 0.421 10.04

21 0.509 0.440 13.56

22 0.491 0.460 6.40

23 0.471 0.480 -1.91

24 0.466 0.470 -0.86

25 0.415 0.415 0.00

26 0.415 0.388 6.51

27 0.448 0.418 6.70

28 0.480 0.420 12.50

29 0.501 0.453 9.58

30 0.459 0.464 -1.09

Generalized Cross-Validated Error Rate-Random Data Example
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and a minimum increase of one percent; which are small values taking in 

consideration that is an illustrative example with data generated with an unknown 

pattern.  In general, it can be seen that a considerable increase in the accuracy of the 

prediction model can be achieved by applying an additive modelling classification 

trees methodology such as gradient boosted trees.  A reduction of up to twenty percent 

in the error rate is significant. 
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APPENDIX C 

Table 14. Replication Runs for Policy 1 

 

Table 15. Statistics Results for the Replication Runs of Policy 1 

 

Total Assigned Empty Slots Total Assigned Overbooked Slots Total Real Empty Slots Total Overflowed Slots Total Expected Cost Total Actual Cost

1 245 0 245 0 26297.49 26054.02

2 245 0 245 0 26297.49 26054.02

3 245 0 245 0 26297.49 26054.02

4 245 0 245 0 26297.49 26054.02

5 245 0 245 0 26297.49 26054.02

6 245 0 245 0 26297.49 26054.02

7 245 0 245 0 26297.49 26054.02

8 245 0 245 0 26297.49 26054.02

9 245 0 245 0 26297.49 26054.02

10 245 0 245 0 26297.49 26054.02

11 245 0 245 0 26297.49 26054.02

12 245 0 245 0 26297.49 26054.02

13 245 0 245 0 26297.49 26054.02

14 245 0 245 0 26297.49 26054.02

15 245 0 245 0 26297.49 26054.02

16 245 0 245 0 26297.49 26054.02

17 245 0 245 0 26297.49 26054.02

18 245 0 245 0 26297.49 26054.02

19 245 0 245 0 26297.49 26054.02

20 245 0 245 0 26297.49 26054.02

21 245 0 245 0 26297.49 26054.02

22 245 0 245 0 26297.49 26054.02

23 245 0 245 0 26297.49 26054.02

24 245 0 245 0 26297.49 26054.02

25 245 0 245 0 26297.49 26054.02

26 245 0 245 0 26297.49 26054.02

27 245 0 245 0 26297.49 26054.02

28 245 0 245 0 26297.49 26054.02

29 245 0 245 0 26297.49 26054.02

30 245 0 245 0 26297.49 26054.02

31 245 0 245 0 26297.49 26054.02

32 245 0 245 0 26297.49 26054.02

33 245 0 245 0 26297.49 26054.02

34 245 0 245 0 26297.49 26054.02

35 245 0 245 0 26297.49 26054.02

36 245 0 245 0 26297.49 26054.02

37 245 0 245 0 26297.49 26054.02

38 245 0 245 0 26297.49 26054.02

39 245 0 245 0 26297.49 26054.02

40 245 0 245 0 26297.49 26054.02

41 245 0 245 0 26297.49 26054.02

42 245 0 245 0 26297.49 26054.02

43 245 0 245 0 26297.49 26054.02

44 245 0 245 0 26297.49 26054.02

45 245 0 245 0 26297.49 26054.02

46 245 0 245 0 26297.49 26054.02

47 245 0 245 0 26297.49 26054.02

48 245 0 245 0 26297.49 26054.02

49 245 0 245 0 26297.49 26054.02

50 245 0 245 0 26297.49 26054.02

Performance Measures
Replicate

Total Assigned Empty Slots Total Assigned Overbooked Slots Total Real Empty Slots Total Overflowed Slots Total Expected Cost Total Actual Cost

Average 245 0 245 0 26297.49 26054.02

Std. Dev. 0 0 0 0 0 0

Number of 

Replicates 

(n)

0 0 0 0 0 0

Confidence 

Interval (h)
0 0 0 0 0 0

Performance Measures
Statistic
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Table 16. Replication Runs for Policy 2 

 

Table 17. Statistics Results for the Replication Runs of Policy 2 

 

Total Assigned Empty Slots Total Assigned Overbooked Slots Total Real Empty Slots Total Overflowed Slots Total Expected Cost Total Actual Cost

1 115 37 83 80 20795.68 20215.49

2 118 40 87 85 20811.88 21488.50

3 121 43 92 83 20851.53 21070.13

4 113 35 87 70 20811.46 19971.80

5 118 40 86 90 20767.57 20854.26

6 118 40 86 81 20771.14 19994.80

7 120 42 89 89 20843.86 21240.26

8 120 42 86 78 20742.40 19691.46

9 119 41 95 81 29708.42 20849.44

10 125 47 93 93 20793.45 21148.24

11 118 40 87 84 20810.20 20527.92

12 122 44 89 88 20777.69 20378.52

13 125 47 93 96 20748.92 21550.42

14 121 43 91 83 20815.66 21090.86

15 115 37 90 83 20787.32 20863.36

16 116 38 84 81 28147.56 19939.70

17 124 46 94 88 20828.01 21630.80

18 114 36 86 80 20744.43 20295.87

19 125 47 85 91 29359.11 20826.71

20 120 42 83 80 20761.35 19861.59

21 117 39 84 86 28796.94 20748.61

22 121 43 92 71 20772.83 19957.88

23 124 46 91 95 20815.19 22101.99

24 126 48 86 85 20769.32 20750.88

25 122 44 89 95 20772.30 21189.70

26 130 52 92 89 28296.85 21270.08

27 122 44 87 92 29938.01 20831.26

28 117 39 84 83 28030.85 20440.72

29 123 45 90 91 28137.91 21419.48

30 123 45 88 85 20682.15 21061.04

31 121 43 91 98 20790.27 21902.04

32 119 41 87 83 20750.00 20121.19

33 123 45 88 85 28795.30 20757.70

34 121 43 84 86 20721.95 20293.60

35 119 41 89 79 20873.57 20732.42

36 115 37 85 94 29292.99 21178.34

37 120 42 87 73 20797.28 20020.08

38 121 43 88 88 20817.68 20909.37

39 123 45 86 84 20771.34 20197.03

40 123 45 86 84 27927.03 20194.76

41 127 49 91 93 27998.31 21699.81

42 127 49 86 98 28177.15 21814.84

43 111 33 88 70 29648.52 19895.96

44 126 48 88 103 20739.40 22072.17

45 118 40 87 90 29400.88 20932.37

46 132 54 90 95 28786.33 21263.26

47 116 38 89 67 20718.02 20277.41

48 119 41 86 94 20792.92 21005.93

49 121 43 85 92 20796.50 21028.94

50 120 42 88 90 20819.16 21111.59

Replicate
Performance Measures

Total Assigned Empty Slots Total Assigned Overbooked Slots Total Real Empty Slots Total Overflowed Slots Total Expected Cost Total Actual Cost

Average 120.68 42.68 87.96 86.04 23342.09 20813.41

Std. Dev. 4.23 4.23 2.93 7.79 3786.34 622.71

Number of 

Replicates (n)
2 16 2 13 43 1

Confidence 

Interval (h)
1.20 1.20 0.83 2.21 1076.83 177.10

Statistic
Performance Measures
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Table 18. Replication Runs for Policy 3 

 

Table 19. Statistics Results for the Replication Runs of Policy 3 

 

Total Assigned Empty Slots Total Assigned Overbooked Slots Total Real Empty Slots Total Overflowed Slots Total Expected Cost Total Actual Cost

1 62 67 35 145 21684.24 22979.31

2 57 62 27 146 21620.72 22993.42

3 58 63 25 157 21488.28 22415.55

4 64 69 35 130 21445.92 23232.09

5 61 66 30 145 21546.92 22849.10

6 64 69 27 136 21404.37 22942.86

7 61 66 32 145 21576.21 22415.84

8 57 62 39 131 21618.61 23376.70

9 63 68 27 139 21507.07 21780.06

10 61 66 38 130 21619.86 24402.24

11 60 65 31 137 21489.99 22683.02

12 64 69 35 130 21519.96 22625.41

13 54 59 30 142 21557.46 23759.12

14 61 66 35 149 21482.79 25355.47

15 67 72 32 147 21413.86 23780.87

16 56 61 33 131 21416.36 22199.21

17 68 73 33 143 21520.83 23311.45

18 63 68 37 137 21584.33 22546.05

19 62 67 29 151 21460.07 24632.98

20 60 65 32 132 21541.80 22719.18

21 62 67 33 129 21653.09 22654.22

22 61 66 29 142 21543.44 22711.83

23 60 65 28 139 21444.84 21310.65

24 64 69 35 141 21524.97 23282.65

25 60 65 32 137 21390.10 23376.41

26 60 65 33 140 21462.67 22199.21

27 60 65 31 144 21659.47 22430.24

28 54 59 25 135 21447.02 21758.31

29 58 63 29 126 21466.92 21144.57

30 54 59 28 141 21384.15 22422.89

31 60 65 33 125 21487.01 21895.87

32 64 69 27 133 21494.02 21527.28

33 63 68 37 130 21519.30 22950.50

34 60 65 33 138 21617.55 22300.32

35 61 66 30 130 21479.91 23607.45

36 57 62 30 133 21617.33 23506.33

37 57 62 30 121 21399.98 20119.04

38 59 64 27 128 21511.97 20162.25

39 60 65 31 155 21344.17 26272.55

40 62 67 31 155 21610.43 24199.72

41 57 62 31 128 21594.90 22025.79

42 58 63 33 139 21586.83 24069.80

43 63 68 30 150 21397.81 23354.66

44 51 56 28 127 21689.99 20451.18

45 58 63 34 121 21434.36 22184.80

46 58 63 27 134 21546.84 21982.29

47 62 67 31 135 21548.41 22581.91

48 57 62 29 129 21474.57 20841.23

49 65 70 36 130 21451.11 23824.37

50 63 68 35 144 21609.45 22928.75

Replicate
Performance Measures

Total Assigned Empty Slots Total Assigned Overbooked Slots Total Real Empty Slots Total Overflowed Slots Total Expected Cost Total Actual Cost

Average 60.22 65.22 31.36 137.24 21517.85 22741.54

Std. Dev. 3.40 3.40 3.37 8.78 85.48 1196.84

Number of 

Replicates 

(n)

5 4 19 7 0 4

Confidence 

Interval (h)
0.97 0.97 0.96 2.50 24.31 340.38

Statistic
Performance Measures
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Table 20. Replication Runs for Policy 4 

 

Table 21. Statistics Results for the Replication Runs of Policy 4 

 

Total Assigned Empty Slots Total Assigned Overbooked Slots Total Real Empty Slots Total Overflowed Slots Total Expected Cost Total Actual Cost

1 61 66 36 134 21436.78 22408.78

2 65 70 28 143 21406.88 23585.70

3 59 64 24 137 21473.35 20862.69

4 64 69 32 132 21362.80 22971.96

5 54 59 27 139 21433.98 23600.10

6 60 65 39 129 21458.59 23932.83

7 58 63 34 138 21488.82 23094.82

8 60 65 38 137 21460.76 22531.64

9 53 58 26 138 21353.98 21288.90

10 56 61 32 120 21447.04 22769.73

11 59 64 32 133 21496.00 21303.59

12 59 64 37 129 21275.27 23405.51

13 53 58 25 128 21465.19 21050.52

14 55 60 31 134 21505.73 20761.87

15 55 60 28 149 21490.53 22877.90

16 52 57 28 137 21443.49 22625.12

17 52 57 26 133 21450.64 21541.68

18 56 61 35 121 21428.15 22827.64

19 63 68 25 142 21458.73 21101.07

20 58 63 28 132 21456.65 21917.33

21 62 67 28 139 21493.41 22069.00

22 59 64 29 131 21467.63 22408.49

23 59 64 28 131 21343.10 21613.99

24 65 70 36 134 21511.96 23723.25

25 55 60 30 131 21359.97 21332.40

26 53 58 31 141 21450.64 22480.80

27 61 66 30 137 21482.06 23101.88

28 61 66 29 137 21554.72 22206.26

29 54 59 36 136 21422.57 23521.03

30 56 61 30 128 21388.20 21332.40

31 64 69 34 132 21391.19 22134.25

32 58 63 37 119 21566.60 21939.37

33 57 62 35 138 21515.44 23029.86

34 61 66 25 153 21435.99 21909.98

35 58 63 30 135 21449.71 22899.65

36 59 64 35 133 21413.81 22675.97

37 53 58 31 114 21374.40 22834.69

38 63 68 31 141 21424.25 21115.77

39 61 66 30 141 21454.99 22950.21

40 57 62 35 135 21415.85 23939.88

41 55 60 39 108 21462.65 20949.98

42 58 63 36 116 21456.14 22762.68

43 57 62 38 120 21512.13 22329.42

44 59 64 26 133 21405.49 21339.45

45 53 58 28 123 21422.30 22321.78

46 57 62 27 151 21478.96 21780.06

47 60 65 34 122 21518.38 21780.35

48 54 59 31 136 21437.70 22329.13

49 59 64 31 135 21369.49 22683.02

50 58 63 28 136 21319.57 21967.88

Replicate
Performance Measures

Total Assigned Empty Slots Total Assigned Overbooked Slots Total Real Empty Slots Total Overflowed Slots Total Expected Cost Total Actual Cost

Average 57.96 62.96 31.18 133.02 21441.85 22318.44

Std. Dev. 3.49 3.49 4.14 8.91 58.00 856.91

Number of 

Replicates 

(n)

6 5 29 7 0 2

Confidence 

Interval (h)
0.99 0.99 1.18 2.53 16.49 243.70

Statistic
Performance Measures


