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We are considering a number of existing normality tests and study their power against

different alternative hypotheses. We also develop an extension to the normality plot by

adding a fixed confidence band. This procedure is named the envelope test. We use a

Monte Carlo simulation to do a power study among all normal tests considered and in

the development of the envelope test. The results show that although there was no best

normality test, we can provide guidelines to improve their efficiency. With the envelope

test we construct a method that eliminates the subjectivity that the normality plot carries

within.
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Resumen de Disertación Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Maestŕıa en Ciencias

UN ESTUDIO DE PRUEBAS DE NORMALIDAD Y UNA EXTENSIÓN
AL GRÁFICO DE NORMALIDAD

Por

Felipe H. Acosta Archila

Mayo 2010

Consejero: Wolfgang Rolke
Departamento: Matemática

Consideramos un número de pruebas de normalidad existentes y estudiamos su poten-

cia utilizando diversas distribuciones como hipótesis alternativas. También desarrollamos

una extensión a la gráfica de normalidad añadiendo una banda de confianza de cubrimiento

establecido. Este procedimiento es llamado la prueba del sobre. Se usa una simulación

de Monte Carlo para hacer un estudio de la potencia entre las pruebas consideradas y

también para el desarrollo de la prueba del sobre. Los resultados muestran que aunque no

existe una mejor prueba de normalidad, podemos tener gúıas para mejorar su eficiencia.

Con la prueba del sobre construimos un método que elimina la subjetividad que conlleva

el uso de gráficos de normalidad.
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CHAPTER 1

INTRODUCTION: NORMALITY TESTS

Statistical models play a fundamental part in many areas of research, they help in

issues such as quantification of uncertainty in data and calculations, characterization of

numerical results of experiments and mathematical models for the better understanding

of a system’s nature, estimation and prediction of the behavior of a system, among other

uses. Statistical models, like other mathematical models, carry conditions for their validity.

The condition of normality is not an unusual one, commonly in regression models and in

inference about a model’s parameters. This issue of testing for normality has been studied

for a long time, beginning in 1900 when Pearson [1] outlined his χ2 test.

A normality test is a special type of a hypothesis test. Checking for normality is

usually done in one of two ways, with graphics or with a formal hypothesis test. Graphical

methods include histograms and normality plots; formal hypothesis tests consist of the

calculation of a statistic from the data. Classical examples of hypothesis tests include the

Pearson test and the Kolmogorov-Smirnov test.

A standard normality test has the following form. Let X1,X2, . . . ,Xn be an i.i.d.

sample from a random variable X with an unspecified distribution. The null (Ho) and the

alternative (Ha) hypothesis are defined by

Ho : X ∼ N (µ, σ)

Ha : X ≁ N (µ, σ)

As with all hypothesis tests, we should be careful when dealing with normality tests,

if the test rejects the null hypothesis all we can say is that it is unlikely that the sample

was drawn from a normal population. On the other hand, if the test fails to reject the null

hypothesis it tells us that there is not enough information to claim that it did not come

1
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from a normal population. The test’s conclusion refers to the population from were the

sample was taken, it does not say if a sample is normal or not.

One question that may arise when dealing with normality tests is the meaning of

the alternative hypothesis. Stating that a sample does not come from a normal distri-

bution does not tell us much. If a specific alternative hypothesis is needed, is up to the

researcher—using histograms, boxplots and other methods—to come up with an alterna-

tive distribution.

Since in practice we do not usually know the parameters µ and σ of a distribution, we

will only discuss tests for composite normality. The tests to be considered also have the

property of being invariant to location–scale transformations, which is important because

it lets us focus on the shape of the distribution rather than also worry about these location–

scale parameters.

Our interest is to compare various tests for normality, hence we need a measure for

their efficiency. For this we use the power of the test, this is, the probability of rejecting

Ho when it is not true. Since in the case of normality testing it is not possible to estimate

a general power against every non–normal distribution, we will measure the power using

different distributions and estimating the power for each alternative.



CHAPTER 2

GRAPHICAL NORMALITY TESTS

There are many graphical procedures that help in the inspection of data to detect

deviations from normality—for example histograms and normality plots—the last one

being the most widely used. A difficulty that these types of tests present is that they can

be very subjective, especially if the investigator is not very experienced.

2.1 Histograms

A very practical, but often unreliable, test is to plot a histogram of the sample with

its area scaled to 1 along with the p.d.f. of a normal distribution. Notice that if we don’t

know the parameters of the normal distribution we will need to estimate them.

Example. Figure ?? is a histogram constructed from a sample of size 200 taken from

a standard normal distribution with its p.d.f. We can see that even for a reasonable big

sample the data and the p.d.f. does not fit perfectly.
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x

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 2–1: Histogram with p.d.f.
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It is easy to see that for smaller sample sizes it will be harder to reach a decision.

Because of this, histograms are rarely used as a conclusive test. Nevertheless they are

useful to check for characteristics such as outliers, symmetry or peakedness of the sample.

A positive aspect of histograms is that it is easy to jump from testing for normality

to testing for other distributions as long as the form of the p.d.f. is know.

2.2 Normality plots

A normality plot is a quantile–quantile (QQ) plot of the sample order statistics against

the population quantiles Φ−1(pi) of a standard normal distribution. The values Φ−1(pi)

can be calculated in different ways, for example two common positions are pi = (i− .5)/n

and pi = i/(n + 1) [2].

Theoretically, under the null hypothesis we have that X ∼ N(µ, σ) and we can define

Z =
X − µ

σ
to be a standard normal variable. Therefore we can write

FZ

(

x− µ

σ

)

= FX(x)

We are interested in the ordered pairs of quantiles
(

F−1
Z (p), F−1

X (p)
)

for 0 < p < 1. Let

p0 ∈ (0, 1) fixed such that

FZ

(

x− µ

σ

)

= FX(x) = p0 (2.1)

Since both FZ and FX are strictly increasing continuous functions their inverses are well

defined. From 2.1 we find that

F−1
Z (p0) =

x− µ

σ
(2.2)

F−1
X (p0) = x (2.3)

Substituting 2.3 in 2.2 and rearranging terms we can write

F−1
X (p0) = µ+ σF−1

Z (p0) (2.4)

Therefore from 2.4 we can see that the quantiles ofX and Z have a linear relationship. This

means that in QQ plots deviance from a straight line is evidence to reject the hypothesis

of normality.
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Example. Figure ?? shows a normality plot for a sample of size 50 taken from a standard

normal distribution.
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Figure 2–2: Normality plot

If the real distribution is not a normal distribution, there are some common deviations

of the points from a straight line. Some well known deviations and their patterns are: a

heavy–tailed distribution will bend the lower tail downward and the upper tail upward,

a short-tailed distribution will bend the lower tail to the left and the upper tail to the

right, creating a “S”-shape, an asymmetric distribution skewed to the left will be concave

upward, and skewed to the right concave downward. Other deviations such as outliers will

appear farther of the straight line, and bimodality as separated lines. [2]

2.2.1 Confidence bands

There are methods to add confidence bands to the normality plot to do a formal

hypothesis test on top of a graphical procedure. Two of these methods are presented in

the library car available in R and in the probability plot available in Minitab.

The first method relies on the calculation of confidence intervals for each of the the-

oretical quantiles in the QQ plot instead of calculating a confidence band for overall cov-

erage. For the method available in Minitab we do not have the procedure of how the
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confidence band is calculated. However in Chapter 4 we show that it does not have the

total coverage confidence level.

Also in Chapter 4, we develop a method of calculation a confidence band based on a

Monte Carlo simulation. We call this method the envelope test. With the envelope test we

want to create a confidence band that has a total coverage confidence level. We compare

the envelope test to the methods available in R and in Minitab.



CHAPTER 3

NUMERICAL NORMALITY TESTS

A numerical normality test consists in the calculation of a statistic from the sample,

then this statistic is compared to a fixed critical value or a significance level is calculated

to decide the outcome of the test. We will classify numerical tests in four categories: tests

based on the empirical distribution function (E.D.F.); moments; correlation and entropy.

3.1 E.D.F. based tests

The E.D.F. of a sample, Fn(x), is the proportion of observations less than or equal

to x. It is defined as

Fn(X) =































0 x < x(1)

i/n x(i) ≤ x < x(i+1), i = 1, . . . , n− 1

1 x ≥ x(n)

A typical example of a E.D.F. ploted with Φ(x) is shown in figure 3–1.

Tests based on the E.D.F of a sample were the first normality tests to be developed,

starting with Pearson in 1900 [1] and Kolmogorov in 1933 [3]. These types of tests compare

the E.D.F. of the sample to the C.D.F. of the null distribution, the problem with classic

E.D.F. tests was that prior knowledge of the null distribution’s parameters is required to

perform the test. It was not until later that, with asymptotic theory and Monte Carlo

studies, critical values for the composite version of the tests could be calculated. [4]

3.1.1 Pearson’s χ2 test

This test groups the observed data in k classes and calculates the difference between

the observed frequency and the expected frequency of each cell.

7
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Figure 3–1: Φ(x) with the E.D.F. of a sample

The statistic for this test is calculated as:

P 2 =
k
∑

i=1

(Oi − Ei)
2

Ei
(3.1)

Where Oi is the observed frequency and Ei is the expected frequency of each class.

The asymptotic distribution of 3.1 is a χ2
k−1 if the parameters of the null distribution

are know, in the case that the parameters are estimated it is a χ2
k−m−1, where m is

the number of estimated parameters, but if all sampled data was used to estimate the

parameters using an efficient estimator— like the maximum likelihood estimators— there

is a recovery of some of the m degrees of freedom resulting in an asymptotic distribution

between χ2
k−1 and χ2

k−m−1 [2]

In the case of composite normality, the null distribution that is used is a standard

normal distribution, and the sample is standardized using the estimated values of µ and

σ, respectively µ̂ = x̄ and σ̂ = s.

Because of this standardization and Proposition 1 in Appendix A, the statistic 3.1 is

invariant to location–scale transformations
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Choosing an adequate number of classes is a difficulty that this test presents, Moore

[4] suggests

k ≤ 4

(

2n2

c(α)2

)1/5

(3.2)

where c(α) is the upper α−point of a standard normal distribution, this value can be

halved with little effect over the power.

For the confidence level of α = 0.05 we find that k ≤ 3.7654n2/5, half the value

is 1.8827n2/5 so we will use the recommended k = 2n2/5. This value is reasonable for

.01 ≤ α ≤ .10 so it will be the default value used. The choice of the number of cells is

sometimes a critical issue, the outcome of the test may be different for a data set using a

different value of k. An example of this situation is given:

Example. Performing the Pearson’s χ2 test assuming the asymptotic distribution for 3.1

and choosing α = 0.05, with the data −6.7, −2.4, −0.2, 0.1, 0.6, 0.8, 0.8 2.2, 2.8, 3.9 using

5 classes we get P = 7, which has p−value of 0.0302 hence rejecting the null hypothesis.

Using 6 classes we get P = 2, which has a p−value of 0.5724 and the test fails to reject

the null hypothesis.

3.1.2 Lillifors’ test

The Lillifors’s test for normality is an extension of the the Kolmogorov-Smirnov test.

The test statistic is the same as the Kolmogorov-Smirnov statistic [5]:

KS = max{D+,D−} (3.3)

where

D+ = max{i/n − Φ(ẑ(i))} and D− = max{Φ(ẑ(i))− (i− 1)/n}

D+ measures the upper diference between the E.D.F. and Φ(x) while D− measures the

lower difference between the E.D.F. and Φ(x).

The difference between the Komogorov-Smirnov and the Lillifors test is the set of

critical values for each test. Lillifors calculated some of the corrected values for testing

composite normality [5].
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Figure 3–2: D+ and D−

Since the test statistic is calculated by using the standardized order statistics, by

Proposition 1 in Appendix A the test is invariant to location–scale transformations.

3.1.3 Cramér-von Misses’ criterion

The criterion is named after Harold Cramér and Richard Edler von Mises, who first

proposed it in 1928-1930 [6] and [7]. This normality test comes from a family of tests that

compares the squares of the differences between the E.D.F. of a sample and the C.D.F. by

using the statistic:

ω2 = n

∫ +∞

−∞
[Fn(x)− F (x)]2 ψ (F (x)) dF (x) (3.4)

where ψ (F (x)) is a weighting function. In particular if ψ (F (x)) = 1 and F (x) = Φ(x),

ω2 is the Cramér-von Misses statistic for testing normality [2]:

CVM =

n
∑

i=1

{

Φ(ẑ(i))−
(2i− 1)

2n

}2

+
1

12n
(3.5)

This test is invariant to location–scale because it is based on the standardization of

the observations and by Proposition 1 in Appendix A this standardization is invariant to

location–scale transformations.
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3.1.4 Anderson-Darling test

This test is part of the same family defined in 3.4. Anderson and Darling proposed

the weighting function ψ(x) = (x(1− x))−1 [8], and this function yields the statistic [2]:

AD = −n− 1

n

n
∑

i=1

(2i− 1)
{

ln Φ(ẑ(i)) + ln(1− Φ(ẑ(n+1−i)))
}

(3.6)

The resulting test gives more weight to the tails of the distribution than the Cramér-von

Misses test.

One problem that this test presents is the calculation of the value of lnΦ(ẑ(i)) and

ln(1−Φ(ẑ(n+1−i))), because the value of ẑ(i) can be too close to 0 or 1, which would cause

the logarithm to tend to infinity and then the test statistic can not be calculated. In

the experiments performed (see Chapter 5) this happens more often with heavy–tailed

distributions and large sample sizes.

As with the other E.D.F. based tests discussed before, this test is invariant because

it uses the standardized observations to compare the empirical distribution to Φ(x).

3.2 Moments based tests

The k−th central moment of a random variable X is defined as µk = E((X −µ)k) for

k ≥ 2. Note that µ2 = σ2. The tests to be discussed in this section are based on the third

and fourth moments and more specifically the standardized moments, named skewness

and kurtosis respectively. The k−th standardized moments are found by dividing the

k−th moment by µ
k/2
2 .

The skewness of a random variable is a measure of asymmetry, it is defined as
√
β1 =

µ3/µ
3/2
2 , a positive skewness means that the right tail of the density is longer while a

negative skewness means that the left tail is longer. The sample skewness is denoted by
√
b1 and is calculated as:

√

b1 =

√
n

n
∑

i=1

(xi − x̄)3

(

n
∑

i=1

(xi − x̄)2

)3/2
(3.7)

For a standard normal distribution, the value of the skewness is 0. It is important to

notice that since skewness is only a measure of asymmetry, the value of 0 is not unique for
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the standard normal distribution, to have a sample with an estimated skewness near 0 is

not evidence enough to assume normality but a significative value different from 0 would

be good enough to reject normality. [2]

The kurtosis of a random variable is a measure of the “peakedness” and the “heav-

iness” of the tails of the p.d.f. of a random variable X, it is defined as β2 = µ4/µ
2
2. For

a standard normal distribution, it has a value of 3, for this reason it is common to use

the kurtosis excess which is the calculated as β2 − 3, assigning this way to the normal

distribution an excess kurtosis of 0.

The sample kurtosis is denoted as b2 and is calculated as:

b2 =

n
n
∑

i=1

(xi − x̄)4

(

n
∑

i=1

(xi − x̄)2

)2 (3.8)

A positive kurtosis excess means that the distribution can have more peakedness or

heavier tails or both, while a negative kurtosis excess means that the distribution can be

more flat or have shorter tails or both. It is important to be careful and not think that a

higher kurtosis implies a higher variance. In the next example we show the excess kurtosis

of a normal distribution, a double exponential distribution and an uniform distribution,

also the p.d.f is plotted in figure 3–3 all distributions are scaled to σ2 = 1.

Example. Let X ∼ N(0, 1), Y ∼ dexp(1/
√
2) and Z ∼ unif(−

√
3,
√
3). For these

variables we have that σ2x = 1, σ2y = 2/(
√
2)2 = 1 and σ2z = (2

√
3)2/12 = 1. And the

kurtosis excess of each variable is β2x − 3 = 0, β2y − 3 = 3 and β2z − 3 = −6/5.

3.2.1 Jarque-Bera test

The test was proposed by Jarque and Bera in 1987 [9]. The test statistic is calculated

as:

JB = n

{

1

6
(
√

b1)
2 +

1

24
(b2 − 3)2

}

(3.9)

Where
√
b1 and b2 are the sample standardized moments defined in 3.7 and 3.8.

The statistic defined in 3.9 is asymptotically distributed as χ2
2, although its has a very

slow convergency, having problems even with moderately big samples, e.g. n = 100 [10].
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Figure 3–3: p.d.f. of X, Y and Z

One way to overcome this issue is to approximate critical values of JB using Monte Carlo

simulation instead of using its asymptotic distribution.

By Proposition 2 of Appendix A the test is invariant to location–scale transformations

because it is based on standardized moments and those are invariant to location–scale.

3.2.2 D’Agostino-Pearson test

D’Agostino and Pearson developed a normality test based on the skewness and kurto-

sis of a sample. They proposed a transformation Z(x) for
√
b1 and b2 that asymptotically

leads Z(
√
b1) ∼ N(0, 1) and Z(b2) ∼ N(0, 1). This yields to the test statistic [11]:

DP = Z2(
√

b1) + Z2(b2) (3.10)

DP is asymptotically distributed as χ2
2, and this statistic has a faster convergence to its

asymptotic distribution than JB.

The transformation is outlined in [12]. It is based on a standardization using the

mean and the variance of
√
b1 and b2.

Again, as in the Jarque-Bera test, by Proposition 2 of Appendix A the test is invariant

to location–scale transformations because it is based on standardized moments and those

are invariant to location–scale.
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3.3 Correlation based tests

Correlation tests are based on the QQ plots described in chapter 2. The relation of

the order statistics x(i) and the quantiles of the expected values of x(i), Φ
−1(pi), under the

null hypothesis tends to be linear, so it is possible to use a measure of the linear correlation

between them.

3.3.1 Shapiro-Wilk test

The test was proposed by Shapiro and Wilk in 1965 [13], the test statistic is defined

as:

SW =

(

n
∑

i=1

aixi

)2

n
∑

i=1

(xi − x̄)2
(3.11)

where,

a
′ =

w
′
V

−1

(w′
V

−1
V

−1
w)1/2

wi =E(Z(i))

vij =cor(Z(i), Z(j))

The reasoning of the test comes from the fact that in a normality plot we can write

each observation as xi = µ+σzi, then an estimate of σ is found by using generalized least

squares, and up to a constant to standardize the linear coefficients, this estimate is a
′
x

[13].

To show why the statistic is invariant to location–scale transformations, for the case

of a normal distribution we have that −ai = an−i+1, since these are based on the order

statistics which are symmetric as well [13], and if we have an odd number of observations,

say n = 2k+ 1 for the median Z(k+1) we have E(Z(k+1)) = 0 hence a(k+1) = 0. Using this
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we can rewrite 3.11 as

SW =





⌊n/2⌋
∑

i=1

an−i+1(x(n−i+1) − x(i))





2

n
∑

i=1

(xi − x̄)2
(3.12)

Now given a transformation y = αx+ β for each xi, and calculating 3.12 we get:

SWy =





⌊n/2⌋
∑

i=1

an−i+1(y(n−i+1) − y(i))





2

n
∑

i=1

(yi − ȳ)2

=





⌊n/2⌋
∑

i=1

an−i+1(αx(n−i+1) + β − αx(i) − β)





2

n
∑

i=1

(αxi + β − αx̄− β)2

=





⌊n/2⌋
∑

i=1

an−i+1(αx(n−i+1) − αx(i))





2

n
∑

i=1

(αxi − αx̄)2

=

α2





⌊n/2⌋
∑

i=1

an−i+1(x(n−i+1) − x(i))





2

α2

n
∑

i=1

(xi − x̄)2

=SW

Then SW is invariant to location–scale transformations.

For a significance level of α the test has a rejection region of the form SW < swcrit

where the swcrit is the corresponding critical value. Since under the null hypothesis the

numerator and denominator of 3.11 estimate the same quantity, σ2, and in general SW

will have a maximum value of 1 [13].
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3.3.2 D’Agostino test

Introduced in 1971, the test is based on a statistic D which is up to a constant the

ratio of a linear unbiased estimator of the population standard deviation to the sample

standard deviation proposed by Downton in 1966 [14]. It is defined as:

D =

n
∑

i=1

(

i− n+ 1

2

)

x(i)

n3/2

√

√

√

√

n
∑

j=1

(xi − x̄)2

(3.13)

D’Agostino gives the asymptotic mean and standard deviation and proposed the

asymptotic distribution Y =
D − (2

√
π)−1

asd(D)
∼ N(0, 1). A problem with this statistic

is that it is not really appropriate except for very large values of n, so the use of criti-

cal values is recommended with a two-sided rejection region of the form D ≤ dα/2 and

D ≥ d(1−α)/2 [14].

The statistic in 3.13 is invariant to location–scale transformation, let y = αx+ β for

each xi, calculation D for the transformed samples we have:

Dy =

n
∑

i=1

(

i− n+ 1

2

)

y(i)

n3/2

√

√

√

√

n
∑

j=1

(yi − ȳ)2

=

n
∑

i=1

(

i− n+ 1

2

)

(αx(i) + β)

n3/2

√

√

√

√

n
∑

j=1

(αxi + β − αx̄− β)2

=

n
∑

i=1

(

i− n+ 1

2

)

αx(i) +

(

i− n+ 1

2

)

β

n3/2

√

√

√

√

n
∑

j=1

(αxi − αx̄)2

=

n
∑

i=1

(

i− n+ 1

2

)

αx(i) +
n
∑

i=1

(

i− n+ 1

2

)

β

αn3/2

√

√

√

√

n
∑

j=1

(xi − x̄)2
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=

α
n
∑

i=1

(

i− n+ 1

2

)

x(i) +
n
∑

i=1

iβ − n(n+ 1)

2
β

αn3/2

√

√

√

√

n
∑

j=1

(xi − x̄)2

=

α
n
∑

i=1

(

i− n+ 1

2

)

x(i) +
n(n+ 1)

2
β − n(n+ 1)

2
β

αn3/2

√

√

√

√

n
∑

j=1

(xi − x̄)2

=

α
n
∑

i=1

(

i− n+ 1

2

)

x(i)

αn3/2

√

√

√

√

n
∑

j=1

(xi − x̄)2

=

n
∑

i=1

(

i− n+ 1

2

)

x(i)

n3/2

√

√

√

√

n
∑

j=1

(xi − x̄)2

= D

Then 3.13 is invariant to location–scale transformations.

3.4 Entropy based tests

The entropy of a continuous random variable is defined as

H = −
∫ ∞

−∞
f(x) log f(x) dx

Shannon [15], showed that the maximum entropy for continuous distributions is H =

log
√
2πe σ and it is attained by a Normal distribution with standard deviation σ. Since

we are interested in testing composite normality we choose σ = 1 and standardize the

observations from the sample. Using this it is possible to construct a test statistic of the

form:

T =
exp Ĥ

σ̂
(3.14)

where Ĥ is an entropy estimator, and a rejection region of the form T < Tcrit where Tcrit

is the appropriate critical value.
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We consider two estimators of entropy, based on sample m−spacings of the form

x(i+m) − x(i−m) and x(i+m) − x(i), where m is a positive integer such that m ≤ n/2. Also,

we define x(i) = x(1) if i < 1 and x(i) = x(n) if i > n.

3.4.1 Vasicek test

Vasicek defined the following estimator for entropy:

Ĥvas,m =
1

n

n
∑

i=1

log
( n

2m
[x(i+m) − x(i−m)]

)

(3.15)

using 3.15 and 3.14 the Vasicek test statistic [16] is defined as:

V ASm =
n

2mσ̂

[

n
∏

i=1

(x(i+m) − x(i−m))

]1/n

(3.16)

After applying the location–scale transformation y = αx + β the statistic 3.16 is

calculated as:

V ASm,y =
n

2mσ̂y

[

n
∏

i=1

(y(i+m) − y(i−m))

]1/n

=
n

2mασ̂

[

n
∏

i=1

(αx(i+m) + β − αx(i−m) − β)

]1/n

=
n

2mασ̂

[

n
∏

i=1

(αx(i+m) − αx(i−m))

]1/n

=
n

2mασ̂
α

[

n
∏

i=1

(x(i+m) − x(i−m))

]1/n

=
n

2mσ̂

[

n
∏

i=1

(x(i+m) − x(i−m))

]1/n

= V ASm

Then 3.16 is invariant to location–scale transformations.

3.4.2 Van Es test

It is based on the estimator proposed by Van Es [17]:

Ĥm =
1

n−m

n−m
∑

i=1

log

(

n+ 1

m
(x(i+m) − x(i))

)

+
n
∑

k=m

1

k
+ log

m

n+ 1
(3.17)
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Using 3.14 with 3.17 results on the test statistic:

V ANm =
1

σ̂
exp

[

n
∑

k=m

1

k

][

n−m
∏

i=1

(x(i+m) − x(i))

]1/(n−m)

(3.18)

After applying the location–scale transformation y = αx + β the statistic 3.16 is

calculated as:

V ANm,y =
1

σ̂y
exp

[

n
∑

k=m

1

k

][

n−m
∏

i=1

(y(i+m) − y(i))

]1/(n−m)

=
1

ασ̂
exp

[

n
∑

k=m

1

k

][

n−m
∏

i=1

(αx(i+m) + β − αx(i) − β)

]1/(n−m)

=
1

ασ̂
exp

[

n
∑

k=m

1

k

][

n−m
∏

i=1

(αx(i+m) − αx(i))

]1/(n−m)

=
1

ασ̂
α exp

[

n
∑

k=m

1

k

] [

n−m
∏

i=1

(x(i+m) − x(i))

]1/(n−m)

=
1

σ̂
exp

[

n
∑

k=m

1

k

] [

n−m
∏

i=1

(x(i+m) − x(i))

]1/(n−m)

= V ANm

Then 3.18 is invariant to location–scale transformations.

A difficulty that both the Vasicek test and the Van Es test present is how to choose

an appropriate value of m because there are no guidelines available. It is necessary then

to investigate the power of the test for different values of m when n and the alternative

distribution are changing to choose a value that maximizes it.

In chapter 5 we show the power of both Vasicek test and Van Es test, for values of m

from 1 to 10 using different distributions. In all the cases studied we observe that there is

a tendency and find an optimal value for each case.



CHAPTER 4

THE ENVELOPE TEST

The proposed test, called envelope test, is an extension of the normality plots reviewed

in chapter 2. The procedure consists in adding a confidence band to the normality plot.

For each sample quantile upper and lower limits are plotted such that the total coverage

probability is a fixed value 1−α. Adding a confidence band to test distributional assump-

tions has been discussed before, one proposed method is inverting the Kolmogorov-Smirnov

test, but overall the method has a poor performance [18].
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Figure 4–1: Coverage of the confidence band for n = 50 and α = 0.05.

Figure 4–1 shows an example of a confidence band (solid lines) constructed with the

envelope test, 1000 samples of size 50 were taken, for each one its normality plot was

constructed (grey dots). The confidence band gives upper and lower limits of each sample

quantile, the test would reject the null hypothesis if at least one observation of the sample

falls outside of the confidence band.

20



21

4.1 Construction of the confidence band

Let X1, . . . ,Xn be an i.i.d. sample. To construct the base normality plot, we will use

the points:

pi =



















Φ−1

(

i− 0.375

n+ 0.25

)

, 1 ≤ n ≤ 10

Φ−1

(

i− 0.5

n

)

, n > 10

as proposed by Blom [19].

Since our interest is testing for composite normality we need to standardize our sam-

ple. We then define the standardized order statistics:

Ẑ(i) =
X(i) − X̄

S

To obtain an overall level of 1− α we need to find limits l and u such that

P (li ≤ Ẑ(i) ≤ ui; i = 1, . . . , n) = 1− α (4.1)

When data comes from a standard normal distribution, by lemma 3 of appendix A

we have that Φ(X(k)) ∼ Beta(k, n− k + 1), this gives us a starting point for estimation:

lk(α, n) = Φ−1
(

β−1(α/2; k, n− k + 1)
)

uk(α, n) = Φ−1
(

β−1(1− α/2; k, n − k + 1)
)

(4.2)

One problem with this is that the ordered statistics are not independant and we do

not have an explicit formula for their joint distribution or the joint distribution of the

Φ(X(k)), also after standardizing the distribution of Φ(X(k)) is not Beta(k, n − k + 1),

but the true distribution of the standardized statistics is free from the mean and standard

deviation. Because of this we use to a Monte Carlo simulation to estimate appropriate

limits to reach the desired coverage probability.

The procedure used to estimate the probability in 4.1, is based on the law of large

numbers. We define a bernoulli random varible T that has value 1 if every standardized

observation of a normal random sample lies within the confidence band and 0 otherwise.

We want to find a value of p that yields to a probability of 1 − α, that is, we need that

the sucess rate of T to be 1− α.
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We define T1,. . . ,Tk, a sequence of i.i.d. T random variables. The mean of each Ti is

its success rate, 1− α. The strong law of large numbers states that:

lim
k→∞

T1 + · · · + Tk
k

= 1− α (4.3)

with probability 1.[23]

We define the function

Ψ(p) = P (li(p, n) ≤ Ẑ(i) ≤ ui(p, n); i = 1, . . . , n) (4.4)

with limits of the form 4.2. We want to find a value of p such that Ψ(p) = 1 − α for a

fixed α.

The function 4.4 is stricly decreasing in p, if p → 0 the limits lk(α, n) → −∞ and

uk(α, n) → +∞ and the probability is 1, when p increases each interval becomes smaller,

thus reducing the overall probability. This assures us that there is a unique solution to

Ψ(p) = 1− α. We will use a bisection algorithm to find the solution.

We start with pl = 0 and ph = 1, for m = (pl + ph)/2 estimate Ψ(m). If it is greater

than 1 − α we set pl = m or ph = m if it is less. Then repeat until we reach ph − pl < e

for a fixed e. The estimation of Ψ(m) is done by generating k samples of size n and then

using 4.3, that is the proportion of the number of samples which all of their standardized

ordered observations ẑi fell between li and ui.

For α = 0.05 a fit of the form p = anb was found using linear fitting with data

transformation. This is useful because the estimation of p using the Monte Carlo simula-

tion requires some computational effort even for values of n which are not very big, this

calculation is shown in section 5.3.

4.2 Differences between existing procedures to calculate a confidence band

The method developed will be compared to two existing procedures, one in the library

“car” available in R that draws point-wise envelope band and the confidence band displayed

in Minitab for a probability plot.

We will show three examples using the data corresponding to the measures of the

depth of earthquakes from the data set “quakes” found in the datasets package of R [20].
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We will use samples of 10, 20 and 50 observations of earthquakes with magnitude between

4 and 4.1.

Example. For a sample of n = 10, figure 4–2 is the outcome of using first the function

qqnorm to construct the normality plot and qqenvl to construct the proposed confidence

band, figures 4–3 and 4–4 are the plots generated by the function qq.plot of the library

car in R and the plot generated by Minitab respectively. Figure 4–5 is the result of the

envelope test envl.plot (solid lines) and drawing the corresponding confidence band given

by Minitab (dotted lines) after standardizing the data.
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Figure 4–2: Envelope method, n = 10
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Figure 4–3: Confidence band from car library, n = 10

Figure 4–4: Confidence band from Minitab, n = 10
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Figure 4–5: Envelope method with Minitab confi-
dence band, n = 10

From the plots it can be easily seen that the confidence band from the car library is

wider than that generated by the proposed method, which would result in a total coverage

confidence of more than 95%. The confidence band drawn by Minitab is just a little wider

than the proposed method’s.
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Example. For a sample of n = 20, figure 4–6 is the outcome of using first the function

qqnorm to construct the normality plot and qqenvl to construct the proposed confidence

band, figures 4–7 and 4–8 are the plots generated by the function qq.plot of the library

car in R and the plot generated by Minitab respectively. Figure 4–9 is the result of the

envelope test envl.plot (solid lines) and drawing the corresponding confidence band given

by Minitab (dotted lines) after standardizing the data.
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Figure 4–6: Envelope method, n = 20
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Figure 4–7: Confidence band from car library, n = 20

Figure 4–8: Confidence band from Minitab, n = 20
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Figure 4–9: Envelope method with Minitab confi-
dence band, n = 20

In the figures corresponding to n = 50 it can be seen that the confidence band cor-

responding to the car library is wider than both the Minitab and the proposed method’s

confidence band. The Minitab’s and the proposed method’s band are close to each other in

the middle values and start to differ towards the extremes, also since Minitab’s confidence

band is contained in the proposed method’s the total coverage confidence will likely be less

than 95%.
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Example. For a sample of n=50, figure 4–10 is the outcome of using first the function

qqnorm to construct the normality plot and qqenvl to construct the proposed confidence

band, figures 4–11 and 4–12 are the plots generated by the function qq.plot of the library

car in R and the plot generated by Minitab respectively. Figure 4–13 is the result of the

envelope test envl.plot (solid lines) and drawing the corresponding confidence band given

by Minitab (dotted lines) after standardizing the data.
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Figure 4–10: Envelope method, n = 50
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Figure 4–11: Confidence band from car library, n =
50

Figure 4–12: Confidence band from Minitab, n = 50
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Figure 4–13: Envelope method with Minitab confi-
dence band, n = 50

The confidence band for the car library is, once again, wider than Minitab’s and the

proposed method’s confidence band. Also, the difference between the Minitab’s and the

proposed method’s band is larger than what it was with a smaller sample size, Minitab’s

band is enclosed by the proposed method hence the total coverage confidence for the former

will be less than 95%, the proposed method’s confidence.

In table 5–1 of section 5.1 we see that the empirical value for α is close to 0.05 for

sample sizes ranging from 20 to 200. We do not have a way to calculate the empirical
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power of the Minitab’s confidence band, however, when Minitab’s band lies within the

proposed band, the empirical α of the proposed test gives us evidence that the true α of

Minitab’s band will be greater than 0.05 resulting in a total coverage confidence of less

than 95% and will be greater than 95% if the lie outside. As a check, a 100 normal samples

of size 50 were generated in Minitab and from these, 39 resulted being rejected as normal

by a critirion based on the confidence band.



CHAPTER 5

SIMULATIONS

We are interested in comparing the power of the numerical tests described in Chapter

3 and the Envelope test described in Chapter 4. Critical values for α = 0.05 were calculated

for each test, testing is done using different alternative distributions to see how different

distributions affect the power of the test and see what test has a greater power in each

case. The alternative distributions were chosen by classifying them on five categories:

infinite support, asymmetric with infinite support, semi–infinite support, support in [0, 1]

and a Normal distribution with an outlier. The distributions are:

1. Symmetric and infinite support:

(a) t(1)

(b) t(2)

(c) t(5)

(d) t(10)

(e) DExponential(1)

2. Asymmetric with infinite support:

(a) Gumbel(0, 1)

(b) Gumbel(1, 3)

3. Semi–infinite support:

(a) exp(1)

(b) Gamma(2, 1/2)

(c) Gamma(5, 1/2)

(d) LogNorm(0, 1)

(e) LogNorm(0, 1/2)

(f) Weibull(5, 2)

27
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4. Support [0, 1]

(a) Uniform

(b) Beta(1/2, 1/2)

(c) Beta(1, 1/2)

(d) Beta(5, 2)

(e) Triangular(0, 0.5, 1)

5. Normal with Outlier

(a) N(0, 1) with outlier at 3s

(b) N(0, 1) with outlier at 4s

First For the Vasicek and Van Es test, different values of m were tested and are

presented in section 5.2, the one that presented the highest power is the considered in the

power calculation.

The power was approximated by simulating 100000 samples of different sizes from 20

to 200, then looking at the proportion of rejections. The critical values were calculated

simulating a sample of 50000 and then choosing the corresponding ordered statistic for

the desired level.

Table 5–1 show the empirical level α for each test in each sample size. This is the

probability of rejecting the null hypothesis when it is true. The empirical level is close to

the theoretical level α = 5%

Table 5–1: Empirical α for each test.

n P L CVM AD JB DP SW D VAS VAN ENV
20 7 5.16 5.08 5.01 4.78 5.09 5.27 4.64 5.35 5.14 5.18
30 4.97 4.78 5.11 5.16 5.13 4.91 5.18 5.26 5.28 5.14 5.17
40 5.55 5.04 4.95 4.74 5.37 5.19 4.75 4.65 5.33 5.15 4.95
50 5.28 4.8 4.87 5.2 5.14 4.98 4.94 4.93 5.16 5.39 4.98
60 4.52 5.21 4.93 5.08 4.73 4.93 4.87 4.89 5.2 5.19 4.88
70 5.89 4.72 5.34 4.78 5.22 4.93 4.93 5.38 5.17 5.21 4.94
80 5.02 5.09 5.34 4.97 4.69 5.12 4.72 5.1 5.15 5.29 4.89
90 5.18 5.21 5.12 5.14 5.28 5.13 5.08 5.3 5.28 5.18 5.13
100 5.11 4.99 4.81 5.12 4.98 5.05 4.74 5.07 5.05 5.1 5.02
120 4.92 5.02 5.14 4.88 5.04 4.9 4.99 5.37 4.86 4.93 5.23
140 5.09 4.94 5.2 5.26 5.03 5.11 5.3 5.01 4.9 4.86 4.89
160 5.07 4.61 5.11 4.99 5.16 4.89 5.41 5 5.04 5 4.87
180 4.64 5.12 5.17 4.9 5.23 5.01 4.72 4.88 5.07 5.16 5.03
200 4.96 5.01 5.43 5.45 5.22 5.12 5.16 4.77 5.18 5.2 5.13
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Table 5–2: Power against t(1)

n P L CVM AD JB DP SW D VAS VAN ENV
20 80.38 84.92 88.09 88.2 85.99 85.67 86.93 88.02 76.78 91.71 86.56
30 90.7 94.28 96.37 96.5 95.58 94.85 95.9 96.72 90.96 98.06 95.47
40 96.26 98.14 98.96 98.99 98.55 98.17 98.71 99.18 96.71 99.55 98.35
50 98.46 99.31 99.65 99.7 99.58 99.37 99.64 99.76 98.95 99.87 99.45
60 99.32 99.83 99.93 99.93 99.84 99.76 99.88 99.95 99.64 99.98 99.8
70 99.78 99.93 99.98 99.98 99.96 99.92 99.97 99.98 99.88 99.99 99.92
80 99.9 99.98 99.99 * 99.98 99.97 99.99 99.99 99.97 100 99.98
90 99.96 99.99 100 * 99.99 99.99 100 100 99.99 100 99.99
100 99.98 100 100 * 100 100 100 100 100 100 100
120 100 100 100 * 100 100 100 100 100 100 100

* The Anderson-Darling test can not be computed for many samples of this size.
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Figure 5–1: Better performing tests against t(1)

5.1 Power calculation

5.1.1 Symmetric distributions with infinite support

t(1)

Table 5–2 shows the approximated power for different sample sizes. For the t(1)

distribution all tests have good performance, the exception would be the Vasicek test

presenting the lowest power for a sample size of 20. Also the Anderson-Darling can not be

computed for large sizes but every test reach a power of more than 99% with a sample size

of 60. This is not really surprising because of the heavy–tailness of a t(1) we expect to see

observations either too big or too small for a normal distribution. Figure 5–1 shows the

five tests with best performance, that is the Cramér–von Mises test, the Anderson–Darling

test, the Shapiro–Wilk test and Van Es test.
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Table 5–3: Power against t(2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 38.63 45.82 51.28 52.74 56.05 56.18 53.28 54.12 33.26 61.27 53.62
30 46.74 59.16 66.78 68.67 72.46 70.78 69.18 72.12 48.4 76.64 69.1
40 57.57 70.28 77.06 78.48 82.42 80.78 78.98 82.82 60.92 86.2 78.45
50 64.47 77.5 84.29 86.28 88.6 87.01 86.58 89.65 71.15 91.71 85.26
60 69.65 84.09 89.34 90.62 92.11 91 90.89 93.44 77.85 94.63 89.43
70 78.32 88.28 93.31 93.96 95.42 94.17 94.28 96.27 84.17 96.5 92.78
80 81.52 92.02 95.7 94.63 96.84 96.24 96.45 97.83 88.35 97.85 95.09
90 84.81 94.14 96.93 * 98.1 97.47 97.57 98.67 91.43 98.57 96.53
100 88.31 96.03 98.03 * 98.84 98.46 98.55 99.28 93.89 99.04 97.62
120 92.87 98.05 99.24 * 99.51 99.29 99.38 99.73 96.87 99.6 98.83
140 95.53 99.06 99.71 * 99.81 99.72 99.79 99.92 98.47 99.81 99.46
160 97.39 99.54 99.87 * 99.94 99.9 99.92 99.97 99.19 99.91 99.74
180 98.51 99.81 99.95 * 99.97 99.95 99.96 99.98 99.62 99.95 99.88
200 99.17 99.94 99.99 * 100 99.99 99.99 100 99.82 99.98 99.94

* The Anderson-Darling test can not be computed for many samples of this size.
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Figure 5–2: Better performing tests against t(2)

t(2)

For t(2) we can see in table 5–3 that the power of each test is still good, with eight

of them having more than 80% with a sample size of 50. Figure 5–2 shows the five most

power test for this alternative, with the Van Es test showing the highest which is also the

test that achieved highest power for t(1).

t(5)

For t(5), since as the degree of freedom rises, the t distribution approaches the normal

distribution, the overall power decreases substantially, table 5–4 and figure 5–3 show the

Jarque-Bera test is the most powerful for sample sizes up to 160, and then it is surpassed

by the D’Agostino test. Also for small samples the Envelope test has a comparable power

to the D’Agostino test and the Shapiro-Wilk test.
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Table 5–4: Power against t(5)

n P L CVM AD JB DP SW D VAS VAN ENV
20 12.28 13.55 15.75 17.11 22.3 22.81 18.95 18.11 8.27 22.56 19.93
30 10.95 15.55 20.09 22.24 30.87 29.9 25.24 25.99 10.98 30.34 27.26
40 12.83 19.03 23.64 25.73 38.22 36.67 30.18 32.97 13.07 37.49 32.98
50 13.25 20.83 26.94 30.96 43.31 41.31 35.34 38.75 15.63 43.28 37.7
60 12.82 24.37 30.43 34.72 47.59 46.33 40.4 44.64 17.96 47.96 42.04
70 16.42 25.33 34.31 37.02 53.3 50.3 44.32 49.85 20.63 52.85 45.73
80 16.15 28.76 37.89 41.45 56.43 54.94 48.28 54.65 22.97 56.78 49.68
90 16.83 31.76 40.53 45.17 61.46 58.55 52.63 59.5 25.16 59.59 53.43
100 18.39 33.39 42.65 48.41 64.3 61.67 55.72 63.17 27.65 62.12 56.07
120 19.85 37.91 49.64 54.23 70.67 67.58 62.66 70.44 32.34 67.04 61.8
140 21.69 41.62 54.52 59.8 75.49 72.82 68.43 76.09 35.77 71 65.92
160 23.82 44.44 58.96 64.08 80.58 77.57 74.44 80.57 40.99 74.43 70.51
180 25.58 50.96 64.73 69.29 83.94 81.26 77.34 84.23 44.73 77.24 74.12
200 28.33 54.44 68.92 73.54 86.91 84.44 81.29 87.34 48.13 79.36 77.45
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Figure 5–3: Better performing tests against t(5)

t(10)

Table 5–5 shows that for t(10) the four test based on the E.D.F. have power signif-

icantly lower than the other tests. The power is higher in the moments–based tests, the

Anderson–Darling and the Jarque-Bera test, followed by the D’Agostino test. The enve-

lope test also presents a reasonable power, higher than the Shapiro–Wilk and close to the

Van-Es. Figure 5–4 shows the power of the five most powerful tests.

When we have a t distribution as an alternative, a good tests are the Jarque-Bera test

and the D’Agostino Pearson test, both based on sample moments, this is probably because

the value of the kurtosis is high if the d.f. is not high, because the first moments are not

well defined so the sample moments usually return high values. Also the Van Es shows

a good result for an adequate choice of m. The envelope test’s power falls between the
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Table 5–5: Power against t(10)

n P L CVM AD JB DP SW D VAS VAN ENV
20 8.45 7.6 8.22 8.76 11.9 12.45 10.16 9.3 5.41 11.74 10.43
30 6.39 7.65 9.37 10.22 15.57 15.05 12.24 12.01 5.74 14.3 13.4
40 7.24 8.39 9.98 10.79 18.78 18.1 13.59 14.16 6.16 17.05 15.77
50 6.77 8.73 10.36 12.36 20.44 19.4 15.12 15.96 6.62 19.5 17.26
60 5.98 9.75 11.48 13.39 22.28 21.98 17.01 18.14 6.8 20.66 19.24
70 7.74 9.42 12.71 13.42 25.75 23.97 18.64 20.48 7.27 22.95 21.07
80 6.78 10.23 13.37 14.65 26.19 25.71 19.56 22.09 7.54 24.61 22.68
90 6.75 10.62 13.4 15.49 28.95 27.21 21.36 23.91 7.93 26.13 24.08
100 7.2 10.86 13.53 16.18 30.39 28.92 22.47 25.71 8.54 27.17 25.02
120 7.15 11.73 15.61 17.7 34.01 31.71 25.3 29.33 9.28 29.29 27.67
140 7.21 11.97 16.69 19.58 37.25 35.52 29.04 33.18 9.73 30.96 30.2
160 7.62 12.18 17.83 20.93 40.65 37.74 32.01 35.89 10.45 32.9 32.47
180 7.68 14.64 20.12 23.16 44.28 41.08 33.35 39.54 11.36 34.25 35.05
200 8.44 15.12 21.74 25.27 46.98 43.88 36.58 42.48 12.11 34.97 37.22
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Figure 5–4: Better performing tests against t(10)

power of the D’Agostino test and Shapiro–Wilk, showing a higher power than the E.D.F.

tests.

Dexp(1)

In table 5–6 we can see that against a double exponential distribution, almost every

test shows a good power, for smaller sample sizes the Van Es test performs better while

for bigger sample sizes the D’Agostino test is the one with the highest power, this can be

seen in figure 5–5. The tests that perform poorly are the Pearson test and the Vasicek

test. The envelope test has a lower power than most alternatives, up to a sample size of

50 it has a similar performance to other tests that do well in general.
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Table 5–6: Power against Dexp(1)

n P L CVM AD JB DP SW D VAS VAN ENV
20 18.23 22.48 26.35 26.9 29.3 29.65 26.43 26.96 11.3 38.02 27.49
30 18.95 28.85 36.57 37.51 40.29 38.33 36.18 39.79 16.83 51.74 36.9
40 24 36.75 45.17 45.28 49.19 46.54 43.35 50.68 22.65 61.65 43.63
50 27.49 42.93 53.31 55.15 55.97 52.54 52.11 60.05 29.05 68.45 50.36
60 28.73 50.35 60.65 61.91 60.93 58.11 58.45 67.39 35.09 73.33 55.15
70 37.73 54.7 68.29 67.64 67.81 63.13 64.93 74.15 40.2 77.93 59.9
80 39.67 61.6 74.4 74.25 71.78 68.87 70.73 79.91 45.52 81.47 65.05
90 42.42 66.45 78.17 78.65 76.31 71.93 75.48 83.95 51.17 84.32 68.41
100 47.51 71.07 82.22 83.34 80.22 76.32 79.59 87.65 55.96 86.26 72.22
120 54.24 78.23 88.53 88.53 85.38 81.51 85.82 92.36 64.41 89.91 77.66
140 60.57 83.88 92.63 92.94 89.78 86.97 90.87 95.32 71.8 92.8 82.13
160 66.91 87.72 95.38 95.42 93.13 90.52 94.39 97.16 77.65 94.22 86.26
180 72.03 91.94 97.17 97.16 95.24 93.22 95.91 98.32 82.16 96.04 89.53
200 77.25 94.16 98.43 98.46 96.77 95.29 97.62 99.02 86.34 96.97 91.86
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Figure 5–5: Better performing tests against Dexp(1)
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5.1.2 Asymmetric distributions with infinite support

Gumbel(0, 1)

Table 5–7: Power against Gumbel(0, 1)

n P L CVM AD JB DP SW D VAS VAN ENV
20 17.68 20.7 24.99 27.34 28.28 28.49 32.05 19.28 20.91 21.71 25.88
30 18.32 27.61 35.66 39.68 41.5 40.4 46.38 27.18 30.92 30.24 37.01
40 24.22 36.64 45.33 49.31 53.13 51.94 57.42 33.49 40.21 38.32 46.61
50 27.14 42.97 54.01 60.79 62.48 61.38 68.71 39.11 48.22 45.65 55.49
60 29.4 51.82 62.71 68.82 68.79 69.61 76.83 44.61 56.77 52.18 63.11
70 38.49 57.28 70.8 75.1 78.12 76.97 83.25 50.29 63.87 59.05 70.17
80 41.07 63.89 76.71 81.06 81.93 83.1 87.98 54.34 69.15 64.04 76.05
90 44.77 68.94 80.53 85.49 87.21 87.18 91.44 58.88 74.59 68.92 80.89
100 50.14 73.49 84.24 89.24 90.65 91.09 94 62.49 78.42 73.51 84.81
120 57.49 81.03 90.74 93.7 95.18 95.33 97.2 69.02 85.44 80.46 90.86
140 65.29 86.34 94.58 96.83 97.68 97.97 98.89 74.96 90.38 85.9 94.57
160 72.14 90.01 96.75 98.27 99.03 99.09 99.54 79.15 93.7 90.12 96.96
180 77.55 93.88 98.28 99.16 99.6 99.63 99.78 83.15 95.83 93.17 98.31
200 83.21 95.91 99.1 99.57 99.82 99.83 99.9 86.04 97.32 95.12 99.07
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Figure 5–6: Better performing tests against Gumbel(0, 1)

In table 5–7 and figure 5–6 we can see that the test that performs better against a

Gumbel(0, 1) is the Shapiro–Wilk test, followed by the Jarque–Bera, D’Agostino–Pearson

and Anderson-Darling tests. The envelope test follows these last tests performing better

than both the entropy–based tests, the D’Agostino test, the Pearson test and the Lilliefors

test.

Gumbel(1, 3)

In table 5–8 and figure 5–7 we can see that the results for the Gumbel(1, 3) and the

Gumbel(0, 1) do not vary significantly.
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Table 5–8: Power against Gumbel(1, 3)

n P L CVM AD JB DP SW D VAS VAN ENV
20 17.42 20.9 25.15 27.47 28.05 28.36 31.99 19.13 21.13 21.73 25.85
30 18.48 28.02 35.84 39.89 41.62 40.46 46.57 27.03 31.04 30.81 37.1
40 24.07 36.55 45.39 49.47 53.31 52.19 57.63 33.15 40.34 38.23 46.62
50 27.39 43.65 54.45 61.01 62.31 61.2 68.82 39.34 48.48 45.61 55.66
60 29.57 51.58 62.49 68.63 68.89 69.8 76.58 44.7 56.71 52.32 63.03
70 38.48 56.96 70.68 75.33 78.25 77.04 83.77 49.97 63.69 58.95 70.19
80 41.24 63.93 76.6 81.26 82.1 83.35 88.12 54.43 69.3 63.74 76.41
90 44.89 69.15 80.59 85.46 87.43 87.41 91.66 58.29 74.82 69.06 80.68
100 49.95 73.42 84.24 89.09 90.68 91.1 94.09 62.21 78.7 73.43 84.8
120 57.38 80.76 90.8 93.79 95.5 95.65 97.38 69.19 85.39 80.41 90.93
140 65.23 86.3 94.42 96.73 97.65 97.96 98.76 74.7 90.23 85.69 94.43
160 72.14 89.93 96.77 98.23 99.03 99.1 99.54 78.83 93.65 90.11 96.89
180 77.69 93.76 98.29 99.13 99.59 99.61 99.77 83.03 95.86 93.01 98.18
200 83.19 95.87 99.12 99.6 99.86 99.86 99.94 86.36 97.41 95.19 99.18
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Figure 5–7: Better performing tests against Gumbel(1, 3)
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5.1.3 Distributions with semi–infinite support

Exp(1)

Table 5–9: Power against Exp(1)

n P L CVM AD JB DP SW D VAS VAN ENV
20 69.2 59.16 72.76 77.64 61.65 59.48 84.31 50.99 85.66 66.51 69.6
30 84.87 77.62 89.65 93.33 82.47 78.3 96.73 68.46 97.5 85.87 92.39
40 95.16 90.22 96.53 98.19 93.52 90.98 99.41 79.94 99.68 94.76 98.88
50 98.41 95.95 98.94 99.7 97.93 96.94 99.93 87.54 99.97 98.21 99.87
60 99.13 98.7 99.73 99.95 99.14 99.07 99.99 92.11 100 99.53 99.99
70 99.9 99.54 99.92 99.98 99.9 99.85 100 95.44 100 99.87 100
80 99.96 99.89 99.99 100 99.98 99.98 100 97.28 100 99.97 100
90 99.97 99.96 99.99 100 100 99.99 100 98.35 100 100 100
100 100 99.99 100 * 100 100 100 99.08 100 100 100

* The Anderson-Darling test can not be computed for many samples of this size.
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Figure 5–8: Better performing tests against Exp(1)

In table 5–9 and figure 5–8 we see that for an exponential distribution most of the

classical tests have good performance, three of them and the envelope test exceed a power

90% with a sample size of 30.

Gamma(2, 1/2)

Table 5–10 and figure 5–9 shows that when moving from a exponential to a gamma

the power starts to decrease, but the same tests that do better for the exponential case

do better for this case.

Gamma(5, 1/2)

In table 5–10 and figure 5–9 we see that for a greater shape parameter the power

decreases even more, this behavior is expected because as the shape parameter increases

the distribution starts approximating to a normal distribution. And for a shape value of 5
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Table 5–10: Power against Gamma(2, 1/2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 32.52 33.06 41.47 45.74 39.35 38.81 53.54 27.66 47.49 33.39 38.82
30 41 45.85 59.91 66.48 58.22 55.33 75.44 39.53 69.61 49.42 58.89
40 55.48 59.62 73.66 79.6 73.26 69.87 87.52 48.67 84.04 62.23 75.47
50 65.18 69.36 83.49 89.41 83.21 80.45 94.92 56.89 92.24 72.66 87.6
60 72.75 78.83 90.18 94.61 89.11 88.89 97.91 63.53 96.49 81.54 94.33
70 82.82 84.2 94.61 97.09 95.1 93.93 99.29 69.71 98.44 87.45 97.86
80 87.89 89.77 97.02 98.63 97.01 97.25 99.72 75.15 99.31 91.8 99.22
90 91.7 93.01 98.32 99.48 98.85 98.72 99.93 79.18 99.72 94.83 99.78
100 94.76 95.45 99 99.72 99.5 99.47 99.97 82.75 99.91 96.87 99.91
120 97.94 98.03 99.79 99.95 99.94 99.93 100 88.35 99.98 98.81 99.99
140 99.31 99.31 99.96 99.99 100 100 100 92.07 99.99 99.63 100
160 99.79 99.7 99.99 99.99 100 100 100 94.46 100 99.91 100
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Figure 5–9: Better performing tests against Gamma(2, 1/2)

even having a relative big sample of 200 not all tests have achieved a power of more than

90%. Some of the same tests that performed better in the last two cases keep performing

better in this case, including the envelope test.

Lognormal(0, 1)

Against a lognormal(0, 1) all classical tests have a good performance, see table 5–12

and figure 5–11, achieving a power of 90% with a sample size of 30. Also with this sample

size the envelope test has a better performance or comparable performance to all the tests.

Lognormal(0, 1/2)

With a smaller shape parameter the lognormal distribution starts taking a bell–form,

resembling a normal distribution, and overall, the tests become less powerful, see table

5–13 and figure 5–12. Still the envelope test has a similar performance to the classical

tests with higher power.
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Table 5–11: Power against Gamma(5, 1/2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 13.9 15.67 18.5 20.42 20.57 20.95 24.59 13.37 17.55 15.15 19.07
30 13.99 21.11 26.93 30.65 31.03 30.02 37.32 18.31 25.9 20.49 27.63
40 18.21 27.47 34.48 38.62 40.99 39.76 47.59 22.05 34.03 25.95 35.36
50 20.98 32.93 42.23 49.15 49 47.64 58.92 25.13 42.16 31.32 43.53
60 22.21 40.13 49.6 56.88 54.41 55.4 67.49 28.29 50.44 37.05 50.37
70 29.46 44.04 57.91 63.34 65.15 63.38 75.38 31.68 57.39 41.56 58.13
80 31.45 50.61 64.03 70.29 69.13 70.91 81.33 35.07 62.55 46.54 65.1
90 34.79 55.87 68.4 75.79 77.03 76.92 86.44 37.65 68.47 51.05 71.5
100 38.76 60.45 73.07 80.96 81.31 81.91 89.94 40.52 73.16 55.58 76.38
120 45.86 68.43 81.94 87.55 89.37 89.52 95.13 45.48 81.01 63.81 84.98
140 52.95 74.46 87.66 92.68 93.79 94.44 97.66 50.05 86.83 71.03 90.65
160 60.17 79.96 91.98 95.59 97.2 97.27 99.12 54.09 91.06 77.18 94.66
180 65.69 85.79 94.83 97.56 98.77 98.8 99.56 58.57 94.21 82.36 97.1
200 71.99 89.11 97.02 98.71 99.41 99.46 99.81 62.05 95.98 86.36 98.49
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Figure 5–10: Better performing tests against Gamma(5, 1/2)

Weibull(5, 2)

In table 5–14 and figure 5–13 we see that when tested against a weibull(5, 2), the

tests show overall, a poorly performance, the two best tests are the Shapiro–Wilk test and

the Anderson–Darling test but neither has achieved a power of 30% with a sample of 200.

Overall, the best performing test is Shapiro–Wilk test, followed by the Anderson–

Darling test, but this test has the problem that sometimes for distributions with heavy

tails it can not be calculated for big sample sizes. To these the Vasicek test follows but

this has the problem that we need to find an adequate value for m to have its maximum

performance. For most of the alternatives presented a value of m around 4 was used. This

is shown with more detail in the next section. The envelope test has a similar performance

to the Cramér–von Mises test, and most of the time it is better than the rest of the tests.
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Table 5–12: Power against Lognormal(0, 1)

n P L CVM AD JB DP SW D VAS VAN ENV
20 85.14 79.74 88.31 90.69 81.56 79.84 93.5 75.75 92.96 83.85 85.65
30 95.02 93.07 97.53 98.42 95.25 93.55 99.24 90.2 99.1 95.6 97.71
40 98.87 98.18 99.45 99.7 99.05 98.57 99.89 96.02 99.89 98.97 99.71
50 99.71 99.55 99.93 99.98 99.81 99.72 100 98.41 100 99.81 99.98
60 99.87 99.89 99.99 99.99 99.98 99.97 100 99.43 100 99.96 100
70 99.99 99.99 100 100 100 100 100 99.8 100 100 100
80 99.99 99.99 100 * 100 100 100 99.93 100 100 100
90 100 100 100 * 100 100 100 99.98 100 100 100

* The Anderson-Darling test can not be computed for many samples of this size.
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Figure 5–11: Better performing tests against LogN(0, 1)

Table 5–13: Power against Lognormal(0, 1/2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 32.02 34.91 42.9 46.87 43.75 43.4 53.13 32.42 41.99 36.51 41.7
30 38.57 47.84 60.27 65.49 62.13 60.06 72.64 45.4 60.85 51.37 58.97
40 50.79 61.18 73.32 77.76 76.02 73.74 84.51 55.51 74.82 63.83 72.48
50 58.82 70.38 82.37 87.45 84.8 83.16 92.39 64.21 84.51 74.03 82.82
60 64.48 79.27 88.92 92.72 90.35 90.29 96.17 70.85 90.79 81.17 89.65
70 75.92 84.56 93.64 95.76 95.48 94.69 98.32 77.1 94.54 86.75 94.27
80 80.09 89.52 96.26 97.8 97.08 97.32 99.19 81.65 96.81 90.85 96.74
90 84.57 92.86 97.75 98.82 98.74 98.66 99.67 85.24 98.13 93.69 98.44
100 89.09 94.99 98.68 99.42 99.36 99.38 99.85 88.28 98.98 95.86 99.19
120 93.95 97.84 99.59 99.67 99.85 99.85 99.97 92.58 99.66 98.08 99.81
140 96.98 98.99 99.89 99.69 99.99 99.99 100 95.54 99.91 99.2 99.96
160 98.68 99.54 99.96 * 100 99.99 100 97.11 99.95 99.7 99.99

* The Anderson-Darling test can not be computed for many samples of this size.
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Figure 5–12: Better performing tests against LogN(0, 1/2)

Table 5–14: Power against Weibull(5, 2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 7.46 6.08 5.84 5.89 4.68 4.97 6.24 4.63 6.73 5.15 5.4
30 5.83 6.35 6.88 7.12 5.27 5.15 7.2 5.1 7.29 5.51 5.86
40 6.5 6.93 7.36 7.27 5.69 5.6 7.43 4.61 8.25 5.38 5.69
50 6.3 7.37 7.92 8.88 5.98 5.85 8.58 4.84 8.95 5.57 6.04
60 5.56 8.66 9.02 9.79 5.64 6.29 9.45 4.79 9.79 5.59 6.37
70 7.43 8.62 10.43 10.25 7.08 6.91 10.61 5.33 10.37 5.86 6.81
80 6.95 10.19 11.52 11.65 6.56 7.68 11.46 5.26 11.25 6.01 7.63
90 6.95 10.41 11.62 12.37 7.75 8.1 12.56 5.3 11.93 5.9 7.84
100 7.46 11.15 12.11 13.6 8.29 9.14 13.75 5.13 11.88 6.31 8.78
120 7.66 12.48 14.39 15.23 9.97 10.56 16.16 5.21 12.55 6.28 9.49
140 8.12 13.41 16.12 17.91 11.17 12.78 19.32 5.07 13.9 6.81 10.81
160 8.69 14.41 17.87 19.54 13.68 14.28 22.74 5.23 14.79 7.12 11.96
180 8.66 17.06 20.26 21.94 16.22 16.88 23.28 5.32 16.01 7.46 13.55
200 9.92 18.09 22.55 24.82 18.59 19.5 27.03 5.13 17.51 7.72 14.84
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Figure 5–13: Better performing tests against Weibull(5, 2)



41

5.1.4 Distributions with support [0,1]

Uniform

Table 5–15: Power against Uniform

n P L CVM AD JB DP SW D VAS VAN ENV
20 11.12 10.13 14.02 16.68 0.22 0.2 20.78 8.21 47.21 13.6 8.82
30 10.92 13.76 23.43 30.12 0.12 0.06 39.19 21.98 76.16 20.05 12.41
40 15.66 20.17 32.81 42.4 0.15 0.03 56.31 37.1 91.27 28.51 17.89
50 20.09 25.49 43.42 58.95 1.24 0.07 74.82 54.99 97.19 37.13 26.22
60 22.76 33.24 53.93 70.16 3.41 0.11 86.26 70.08 99.34 46.14 37.75
70 29.3 38.46 64.65 78.62 23.68 0.31 93.77 82.38 99.84 54.96 52.27
80 34.66 46.62 72.56 86.5 30.48 0.71 97.12 88.8 99.96 64.08 67.12
90 42.31 53.42 78.64 91.76 59.31 1.29 99 93.04 99.99 70.68 80.41
100 45.7 59.42 83.65 95.22 73.6 2.63 99.6 95.79 100 77.37 88.96
120 57 70.28 92.02 98.33 92.73 9.46 99.97 98.5 100 87.6 97.62
140 68.48 78.55 96.12 99.58 98.33 37.93 100 99.36 100 93.45 99.64
160 79.47 85.06 98.35 99.87 99.79 67.88 100 99.78 100 96.97 99.97
180 82.71 91.49 99.3 99.97 99.98 90.64 100 99.95 100 98.72 100
200 90.17 94.63 99.72 100 100 97.84 100 99.98 100 99.43 100
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Figure 5–14: Better performing tests against Uniform(0, 1)

Against an uniform(0, 1) distribution as alternative, most of the test have a low

performance for small sample sizes, with only the Vasicek test having a power of more

than 50% at a sample size of 30. The Vasicek test is followed by the Shapiro–Wilk test,

see table 5–15 and figure 5–14.
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Beta(1/2, 1/2)

Table 5–16: Power against Beta(1/2, 1/2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 31.36 32.62 50.51 61.6 0.5 0.31 73.51 2.84 47.88 13.47 37.09
30 39.94 49.25 74.37 86.02 0.49 0.11 94.39 5.12 76.17 20.35 60.51
40 56.92 67.14 88.42 95.76 11.39 0.35 99.17 7.45 91.23 28.31 81.6
50 71.72 79.62 95.23 99.13 45.17 0.84 99.92 11.66 97.2 37.26 95.09
60 83.84 89.62 98.59 99.87 70.5 1.99 100 15.62 99.28 46.11 99.27
70 88.5 93.82 99.55 99.97 96.62 4.62 100 22.42 99.81 54.97 99.93
80 95.08 97.3 99.89 100 98.67 11.56 100 27.42 99.96 64.3 99.99
90 98.41 98.71 99.97 100 99.89 23.9 100 32.42 99.99 70.86 100
100 98.95 99.5 99.98 100 99.97 53.64 100 37.7 100 77.47 100
120 99.9 99.93 100 100 100 93.77 100 48.3 100 100 100
140 99.99 99.99 100 100 100 99.93 100 55.72 100 100 100
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Figure 5–15: Better performing tests against Beta(1/2, 1/2)

Table 5–16 and figure 5–15 show that using a beta(1/2, 1/2) as alternative we found

that again the Shapiro–Wilk test has the higher power, this time followed by the Anderson–

Darling test. After these two, the Cramér–von Mises test, the Vasicek test and the envelope

test follow, and around a sample size of 50 all the previous tests have reached a power of

at least 90%.
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Beta(1, 1/2)

Table 5–17: Power against Beta(1, 1/2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 53.11 43.52 57.16 64.44 11.24 9.08 73.14 10.65 59.83 22 49.62
30 71.17 62.01 79.36 86.85 18.5 11.09 93.21 12.02 85.3 34.41 82.12
40 86.71 78.89 90.96 95.69 35.81 22.52 98.64 12.65 96.32 46.94 96.2
50 95.09 88.64 96.55 99.06 58.04 39.16 99.86 13.57 99.15 59.14 99.49
60 98.52 95.21 98.93 99.8 74.36 60.2 99.98 14.14 99.89 70.96 99.95
70 99.27 97.93 99.7 99.96 95.11 78.2 100 15.3 99.97 80.66 99.99
80 99.82 99.24 99.9 99.99 97.52 90.6 100 15.33 100 87.32 100
90 99.97 99.75 99.98 100 99.67 95.83 100 16.19 100 91.4 100
100 99.98 99.92 99.99 100 99.93 98.65 100 17.21 100 94.56 100
120 100 100 100 100 100 99.91 100 18.72 100 100 100
140 100 100 100 100 100 100 100 20.09 100 100 100
160 100 100 100 100 100 100 100 20.84 100 100 100
180 100 100 100 100 100 100 100 22.27 100 100 100
200 100 100 100 100 100 100 100 23.71 100 100 100
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Figure 5–16: Better performing tests against Beta(1, 1/2)

Against a beta(1, 1/2), we can see in table 5–17 and figure 5–16 that the performance

of the tests varies by a large amount, for small sample sizes the Shapiro–Wilk reaches a

power of 90% with a sample of 30 while both moment based tests and the D’Agostino test

are below 20%. The envelope test has a good performance comparable to other classical

tests, attaining a power of more 95% with a sample size of 40.

Beta(5, 2)

Using a beta(5, 2) as alternative, the best performing tests are the Shapiro–Wilk and

the the Vasicek test, the later being a little better up to sample sizes of 70. The envelope

test has a similar performance to the Cramér–von Mises test and to the Anderson–Darling
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Table 5–18: Power against Beta(5, 2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 12.05 11.87 13.51 14.62 9.45 9.61 17.41 6.73 19.24 9.12 10.75
30 11.75 15.42 19.84 22.61 13.69 12.61 27.87 8.04 30.52 11.25 15.53
40 15.96 20.82 26.12 29.63 18.67 16.85 37.32 7.92 42.55 14.29 21.15
50 18.74 25.19 32.37 39.88 22.96 20.86 49.55 8.15 53.82 16.94 29.09
60 21.1 31.54 40.26 48.66 26.45 26.71 60.85 8.21 63.11 20.43 39.31
70 27.51 35.14 48.3 55.3 37.45 33.55 70.48 8.51 70.92 24.67 49.96
80 30.69 41.25 54.78 63.14 40.05 42.03 77.8 8.63 77.71 28.43 60.97
90 35.74 46.66 60.22 70.62 52.4 50.42 84.97 8.68 83.47 31.69 71.63
100 39.57 50.5 64.34 76.06 58.85 58.61 89.29 8.33 87.13 35.43 79.27
120 48.08 59.58 75.51 84.77 74.32 72.65 95.63 8.55 93.06 42.97 91.1
140 56.69 66.54 82.77 91.28 84.85 85.26 98.42 8.49 96.42 52.18 96.53
160 65.92 72.24 88.41 94.89 92.87 91.92 99.49 8.47 98.19 59.89 98.91
180 71.26 79.64 92.51 97.32 96.8 96.28 99.85 8.65 99.15 67.04 99.72
200 78.95 84.17 95.49 98.77 98.6 98.35 99.93 8.3 99.64 74.19 99.92
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Figure 5–17: Better performing tests against Beta(5, 2)

test for small samples and by a sample size of 90 it performs better than those. See table

5–18 and figure 5–17.

Triangular(0, 1, 1/2)

We can see in table 5–19 and figure 5–18 that against a triangular(0, 1, 1/2), all tests

have a low performance, with the best being Vasicek test reaching a power of more 50%

with a sample size of 140.
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Table 5–19: Power against Triangular(0, 1, 1/2)

n P L CVM AD JB DP SW D VAS VAN ENV
20 6.43 4.31 4.09 3.86 0.83 0.89 3.46 4.5 8.57 5.26 2.74
30 4.51 3.73 4.01 4.13 0.44 0.41 3.67 6.7 10.99 5.63 2.32
40 5.36 4.21 4.19 4.14 0.23 0.2 3.58 8.17 14.2 5.59 2.09
50 5.27 4.14 4.34 5.1 0.11 0.09 4.54 10.97 17.96 6.04 2.16
60 4.55 4.68 4.7 5.51 0.08 0.09 5.32 13.43 23.13 6.12 2.15
70 5.8 4.19 5.22 5.52 0.08 0.06 6.61 17.62 27.43 6.28 2.22
80 5.53 4.64 5.52 6.27 0.06 0.05 7.14 20.57 31.92 6.63 2.33
90 5.66 4.97 5.73 7.03 0.2 0.08 8.99 23.01 37.65 6.68 2.67
100 5.78 4.92 5.6 7.71 0.24 0.09 10.18 26.45 39.58 6.89 2.81
120 6.05 5.16 6.69 8.53 0.65 0.13 13.95 32.85 48.01 7.42 3.39
140 6.38 5.2 6.95 10.19 1.3 0.18 19.36 37.19 54.77 8.01 4.14
160 6.82 5.19 7.73 11.36 3.38 0.31 26 44.25 60.91 8.49 5.18
180 6.63 6.19 9.07 13.53 6.27 0.45 28.39 49.05 66.12 9.28 6.92
200 7.51 6.39 10.02 16.13 9.45 0.81 36.82 53.74 71.49 10.09 8.93
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Figure 5–18: Better performing tests against Triangular(0, 1/2, 1)

Overall, against this type of alternatives the best tests are the Shapiro–Wilk test

and the Vasicek test. The envelope test has a performance comparable to the Cramér–

von Mises test. Tests that are better to avoid using against these types of alternatives,

specially with small samples, are the moment based tests and the D’Agostino test.
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5.1.5 Standard normal with outlier

Outlier 3s

Table 5–20: Power against SN with outlier 3s

n P L CVM AD JB DP SW D VAS VAN ENV
20 7.98 6.76 6.91 6.77 3.77 3.93 5.9 3.15 3.3 10.2 4.92
30 5.86 6.24 7.17 7.44 5.86 5.38 6.84 4.28 3.55 10.97 6.85
40 6.33 6.39 6.6 6.45 6.67 6.17 6.07 4.69 3.91 10.93 7.6
50 5.67 6.02 6.26 6.95 6.81 6.39 6.35 4.9 4.08 10.27 8.29
60 4.66 6.06 6.14 6.65 6.27 6.57 6.24 5.02 4.12 10.32 8.29
70 6.13 5.68 6.47 6.12 7.45 6.7 6.18 5.1 4.27 10.25 8.23
80 5.37 5.85 6.55 6.51 6.61 7.04 6.03 5.02 4.34 9.76 8.13
90 5.25 5.86 5.88 6.22 7.16 6.8 6.03 4.99 4.42 9.45 7.61
100 5.51 6.07 5.79 6.52 7.05 6.99 5.89 5.13 4.5 9.3 7.11
120 5.29 5.54 5.91 5.85 6.76 6.51 5.78 4.98 4.49 8.88 6.63
140 4.98 5.48 5.74 6.09 6.77 6.86 6.05 5.1 4.41 8.21 6.45
160 5.1 4.81 5.58 5.67 7.02 6.69 6.2 4.79 4.6 8.38 6.73
180 4.83 5.48 5.65 5.53 7.12 6.71 5.33 4.68 4.71 7.76 6.67
200 5.42 5.49 6.12 6.18 7.09 6.79 5.72 4.64 4.65 7.27 6.98
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Figure 5–19: Better performing tests against Normal +Outlier(3s)

In table 5–20 and figure 5–19 we see that an outlier of three times the standard

deviation of the sample most the tests do not detect non-normality, only the Van Es test

reaches a power of 10%.

Outlier 4s

With an outlier of 4 times the sample standard deviation we see in table 5–21 and

figure 5–20 that the best performing tests are the Jarque–Bera test, the D’Agostino–

Pearson test and for sample sizes of less than 120, the envelope test has a comparable

performance to these two.
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Table 5–21: Power against SN with outlier 4s

n P L CVM AD JB DP SW D VAS VAN ENV
20 12.12 13.86 16.25 18.55 84.12 87.41 34.91 29.67 6.42 37.95 57.02
30 8.66 11.66 15.37 18.59 93.03 91.77 41.52 38.09 6.87 36.44 79.74
40 8.82 11.2 13.73 15.78 94.44 92.8 39.27 39.09 6.83 37.49 84.86
50 7.6 9.77 12.12 15.33 93.29 90.37 39.69 37.22 6.95 37.96 86.85
60 6.05 9.82 11.4 13.96 89.75 87.74 37.63 35.46 6.73 37.13 85.9
70 7.81 8.39 11.07 12.06 89.7 84.13 36.37 34.03 6.82 36.46 84.52
80 6.63 9.05 11.24 12.52 83.74 81.45 34 32.56 6.56 35.2 82.69
90 6.35 8.35 9.91 11.57 82.55 76.84 33.11 30.9 6.45 33.98 79.77
100 6.25 8.26 9.24 11.25 77.57 72.71 30.84 29.29 6.58 33.51 74.55
120 5.89 7.52 9.13 9.96 71.21 64.64 29.12 27.33 6.19 30.6 63.25
140 5.55 7.02 8.47 9.58 63.87 59.83 28.62 25.28 5.83 28.04 48.78
160 5.68 6.35 7.9 8.74 59.64 53.49 27.81 22.61 6.09 26.81 36.55
180 5.46 6.92 7.94 8.54 55.66 50 23.37 21.38 6.06 25.43 26.71
200 5.67 6.8 7.87 8.69 50.99 46.22 23.54 20.12 5.74 24.09 20.2
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Figure 5–20: Better performing tests against Normal +Outlier(4s)

In general, it can be seen that not one test is conclusively better than any other,

nevertheless from the E.D.F. group the Pearson test and the Lilliefors test present overall,

the lowest performance. The envelope test, although not as powerful as other classical

tests, like the Shapiro–Wilk test, shows in most cases a comparable performance to other

classical tests.
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5.2 Choosing the best m

When it comes to the test based on entropy, we need to choose a value m for the test,

the power of the test will change for each value of m. The possible values of m depend on

the sample size n, we can choose from 1 to n/2, so with a large n there are many values

of m to be considered. For this study we considered only values of m up to 10 for each

sample size, for each one the corresponding power was calculated for different sample sizes,

giving us a reasonable value for m for each sample size.

5.2.1 Symmetric distributions with infinite support

Figures 5–21 through 5–30 show that for distributions with infinite support the power

for Vasicek will be higher for values of m between 3 and 4. For the Van Es test the power

of test increases as the value of m increases as well.
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Figure 5–21: Power by m, Vasicek test, t(1)
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Figure 5–22: Power by m, Van Es test, t(1)
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Figure 5–23: Power by m, Vasicek test, t(2)
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Figure 5–24: Power by m, Van Es test, t(2)
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t(5)
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Figure 5–25: Power by m, Vasicek test, t(5)
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Figure 5–26: Power by m, Van Es test, t(5)
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Figure 5–27: Power by m, Vasicek test, t(10)
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Figure 5–28: Power by m, Van Es test, t(10)

Dexp(1)
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Figure 5–29: Power by m, Vasicek test, Dexp(1)
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Figure 5–30: Power by m, Van Es test, Dexp(1)



50

5.2.2 Asymmetric distributions with infinite support

For asymmetric distributions with infinite support, figures 5–31 through 5–34 show

that both tests have the behavior that they had against the symmetric alternatives, a

value of m between 3 and 4 for the Vasicek test and a high value of m for the Van Es test

will yield to maximum power.
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Figure 5–31: Power by m, Vasicek test, Gumbel(0, 1)
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Figure 5–32: Power by m, Van Es test, Gumbel(0, 1)

Gumbel(1, 3)

2 4 6 8 10

20
40

60
80

10
0

m

po
w

er

n=20
n=40
n=60
n=80
n=100

Figure 5–33: Power by m, Vasicek test, Gumbel(0, 1)
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Figure 5–34: Power by m, Van Es test, Gumbel(0, 1)
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5.2.3 Distributions with semi–infinite support

Against an exponential alternative, figures 5–35 and 5–36 show that the maximum

power for both tests is attained for a value of m between 3 and 4.
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Figure 5–35: Power by m, Vasicek test, Exp(1)
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Figure 5–36: Power by m, Van Es test, Exp(1)

Against the used Gamma alternatives, figures 5–37 thorugh 5–40 show that the best

value of m lays between 4 and 6.

Gamma(2, 1/2)
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Figure 5–37: Power by m, Vasicek test,
Gamma(2, 1/2)
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Figure 5–38: Power by m, Van Es test,
Gamma(2, 1/2)

In figures 5–41 through 5–44 it can be seen that against a Lognormal distribution the

best value of m for both tests is a low value between 3 and 4.

Against the weibull distribution used, figures 5–45 and 5–45 show that for the Vasicek

test, the power rises with the value of m; the Van Es test presents a very small power, but

it tends to fall as the value of m decreases.
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Gamma(5, 1/2)
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Figure 5–39: Power by m, Vasicek test,
Gamma(5, 1/2)
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Figure 5–40: Power by m, Van Es test,
Gamma(5, 1/2)

Lognormal(0, 1)
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Figure 5–41: Power by m, Vasicek test,
Lognormal(0, 1)
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Figure 5–42: Power by m, Van Es test,
Lognormal(0, 1)

Lognormal(0, 1/2)

2 4 6 8 10

0
20

40
60

80

m

po
w

er

n=20
n=30
n=40
n=50

Figure 5–43: Power by m, Vasicek test,
Lognormal(0, 1/2)
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Figure 5–44: Power by m, Van Es test,
Lognormal(0, 1/2)
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Weibull(5, 2)
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Figure 5–45: Power by m, Vasicek test, Weibull(5, 2)
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Figure 5–46: Power by m, Van Es test, Weibull(5, 2)

According to the alternatives presented, the best value of m for this alternatives will

be a low value, usually a value between 3 and 4, against gamma distributions, this value

tends to slightly increase as the shape parameter increases.

5.2.4 Distributions with support [0,1]

Uniform(0, 1)
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Figure 5–47: Power by m, Vasicek test,
Uniform(0, 1)
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Figure 5–48: Power bym, Van Es test, Uniform(0, 1)
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Beta(1/2, 1/2)
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Figure 5–49: Power by m, Vasicek test,
Beta(1/2, 1/2)
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Figure 5–50: Power bym, Van Es test, Beta(1/2, 1/2)
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Figure 5–51: Power by m, Vasicek test, Beta(1, 1/2)
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Figure 5–52: Power by m, Van Es test, Beta(1, 1/2)

Beta(5, 2)
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Figure 5–53: Power by m, Vasicek test, Beta(5, 2)
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Figure 5–54: Power by m, Van Es test, Beta(5, 2)
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Triangular(0, 1, 1/2)
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Figure 5–55: Power by m, Vasicek test,
Triangular(0, 1, 1/2)
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Figure 5–56: Power by m, Van Es test,
Triangular(0, 1, 1/2)

For this type of distribution, from figure 5–47 to figure 5–56 we can see that the tests

show the same behavior through all the alternatives. Vasicek test’s power increases with

the value of m and Van-Es test’s power reached its maximum for values of m between 2

and 4.
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5.2.5 Standard normal with outlier

Standard normal with outlier 3s

2 4 6 8 10

0
5

10
15

m

po
w

er

n=20
n=40
n=60
n=80
n=100

Figure 5–57: Power by m, Vasicek test, SN +
outlier(3s)
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Figure 5–58: Power by m, Van Es test, SN +
outlier(3s)

Standard normal with outlier 4s
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Figure 5–59: Power by m, Vasicek test, SN +
outlier(4s)
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Figure 5–60: Power by m, Van Es test, SN +
outlier(4s)

With outliers present, Vasicek test’s power is higher for low values of m and Van Es

test’s power increases with as value of m increases.
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5.3 Envelope test calculations

Using the algorithm described in section 4.1 implemented in C++ with an interface

for R, the calculation of each value of p using simulation can take more than a couple

of seconds even for sample sizes that are not really big. For example, to calculate the

corresponding p for n = 50 using 10000 repetitions takes about 3 seconds on a PC running

at 1600 MHz. Therefore we are interested in obtained a function for values of p. For

different sample sizes from 6 to 3000 and using α = 0.05, values for p were calculated.

Figure 5–61 shows the resulting points and suggests that a model of the form p = anb

is adequate. Applying a logarithmic transformation we obtained a linear model of the

form log p = log a+ b log n, this returns the values log a = −0.6095 and b = −0.6454 figure

5–62 shows the transformed data with the regression line.
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Figure 5–61: Values of p against n up to 1000
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Figure 5–62: Transformed data with regression line

As can be seen, the regression line does not have a good fit for small or big values, to

help this situation we are going to use two linear regressions instead, one for values of n up

to 75 and other for the rest. This approach yields to the following regression coefficients:

log a = −0.219938 and b = −0.754644 for the first regression and log a = −1.000823 and

b = −0.573086 for the second.

The transformed data and the new regression lines are show in figure 5–63 and figure

5–64 shows the original data with the fitting curves.

Using this fitting, we obtain a function to quickly approximate p at a level α = 0.05

given by:
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Figure 5–63: Transformed data with two regression
lines
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Figure 5–64: Original data with fitted line

p(x) =















0.8025685n−0.7546436 6 ≤ n ≤ 75

0.3675769n−0.573086 76 ≤ n ≤ 3000



CHAPTER 6

CONCLUSIONS

6.1 Normality tests power study

The task of efficiently determining if a data set was sampled from a normal population

is not a trivial one. We have seen that there is not a superior normality test, instead, most

of the tests’ power varies with the alternative distribution. However there are still some

tests that regularly do better than others. Specifically we see a poor performance from

the older tests, the Pearson χ2 test and the Lillifors test.

Especially for sample sizes smaller than 50 the following recommendations can be

made: For the first group of alternative distributions, the symmetric distributions with

infinite support, the Van Es test using a large value for m has a good performance against

t distribution with a low d.f. value and the double exponential distribution. It’s power is

only exceeded by the Jarque–Bera test and the D’Agostino–Pearson test’s power. Both of

these tests belong to the moment based tests.

In the asymmetric distributions with infinite support category the Shapiro–Wilk test

shows a higher power than any other test. Followed by both moment based tests.

For the next group, the asymmetric distributions with semi–infinite support, the

Shapiro–Wilk test has a very good performance. It is only exceeded by the Vasicek test

against an exponential alternative. Even in this case the recommended test would still be

the Shapiro–Wilk because the difference between is less than 2% and finding the right m

value for the Vasicek test is not straightforward.

In the group of distributions with support [0, 1] we have again the Shapiro-Wilk test

and the Vasicek test as the best performing tests. Against an uniform distribution and a

triangular distribution the Vasicek test using m = 10 overwhelms all other tests for small

sample sizes. The Shapiro–Wilk test has a higher power for two of the Beta distributions,
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α = .5, β = .5 and α = 1, β = .5. For the third Beta distribution studied, the Vasicek

test’s power is about 2% to 4% higher than the Shapiro–Wilk test’s power.

In the case of data with outliers, the Van Es test has a power of about 10% and this

is the highest for the case 3s. For the case 4s both moment based tests have the best

performance. These are followed by the envelope test’s performance.

6.2 Envelope test

With the envelope test we constructed a procedure which allows us to eliminate the

subjectivity in a widely used graphical test for normality. This method is comparable, and

in some cases better, to other classical normality tests.

Although we do not know an analytical form of the curve of the confidence band we

find an approximation to it for the most commonly used confidence level and a Monte

Carlo algorithm to find the band for other confidence levels.

Also we showed that other similar procedures do not take account of a total coverage

confidence. In the case of Minitab, the empirical evidence shows that its confidence band

does not attain the specified level.
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APPENDIX A

PROPOSITIONS

Proposition 1. The standardization of the sample observations is invariant to location–

scale transformations.

Proof. Let X1, . . . ,Xn and i.i.d. sample from a random variable X, the standardization

of an observation is defined as ẑi =
xi − x̄

s
. Let the location–scale transformation of X be

Y = αX+β, where α and β are positive constants. The standardization of an observation

of Y is

ẑi
∗ =

yi − ȳ

sy
=
αxi + β − (αx̄+ β)

αs
=
α(xi − x̄)

αs
=
xi − x̄

s
= ẑi

Therefore, the standardized transformed observations are equal to the original standard-

ized observations.

Proposition 2. The sample skewness and kurtosis of a sample are invariant to location–

scale transformations.

Proof. Let X1, . . . ,Xn and i.i.d. sample from a random variable X with
√
b1 and b2 as

its sample Kurtosis. Let the location–scale transformation of X be Y = αX + β, where α

and β are positive constants.

The new observations are calculated as yi = αxi + β

The sample skewness of Y is:

√

b1y =

√
n

n
∑

i=1

(yi − ȳ)3

(

n
∑

i=1

(yi − ȳ)2

)3/2
=

√
n

n
∑

i=1

(αxi + β − (αx̄+ β))3

(

n
∑

i=1

(αxi + β − (αx̄+ β))2

)3/2
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=

√
n

n
∑

i=1

(αxi − αx̄)3

(

n
∑

i=1

(αxi − αx̄)2

)3/2
=

√
n

n
∑

i=1

α3(xi − x̄)3

(

n
∑

i=1

α2(xi − x̄)2

)3/2

=

α3√n
n
∑

i=1

(xi − x̄)3

α3

(

n
∑

i=1

(xi − x̄)2

)3/2
=

√
n

n
∑

i=1

(yi − ȳ)3

(

n
∑

i=1

(yi − ȳ)2

)3/2

=
√

b1

The sample kurtosis of Y is:

b2y =

n
n
∑

i=1

(yi − ȳ)4

(

n
∑

i=1

(yi − ȳ)2

)2 =

n
n
∑

i=1

(αxi + β − (αx̄+ β))4

(

n
∑

i=1

(αxi + β − (αx̄+ β))2

)2

=

n
n
∑

i=1

(αxi − αx̄)4

(

n
∑

i=1

(αxi − αx̄)2

)2 =

n
n
∑

i=1

α4(xi − x̄)4

(

n
∑

i=1

α2(xi − x̄)2

)2

=

α4n

n
∑

i=1

(xi − x̄)4

α4

(

n
∑

i=1

(xi − x̄)2

)2 =

n

n
∑

i=1

(xi − x̄)4

(

n
∑

i=1

(xi − x̄)2

)2

=b2

Proposition 3. Let X1, . . . ,Xn an i.i.d. sample from a standard normal distribution,

then Φ(X(k)) is distributed Beta(k, n − k + 1) for k = 1, . . . , n

Proof. Let Y = Φ(X(k)) and φ denote the p.d.f. of a standard normal distribution.

FY (y) = P (Y ≤ y)

= P
(

Φ(X(k)) ≤ y
)

= P
(

X(k) ≤ Φ−1(y)
)

, since Φ−1(x) is increasing
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=

∫ Φ−1(y)

−∞

n!

(k − 1)!(n − k)!
φ(t) (Φ(t))k−1 (1− Φ(t))n−k dt

Now we derivate to find fY (y):

fY (y) =
dFy(y)

dy

=
n!

(k − 1)!(n − k)!
φ(Φ−1(y))

(

Φ(Φ−1(y))
)k−1 (

1− Φ(Φ−1(y))
)n−k dΦ−1(y)

dy

Rewriting n! = Γ(n + 1), (k − 1)! = Γ(k) and (n − k)! = Γ(n − k + 1) and using the

derivative of the inverse function
[

f−1
]′
(a) =

1

f ′[f−1(a)]
we have that

fY (y) =
Γ(n+ 1)

Γ(k)Γ(n − k + 1)
φ(Φ−1(y)) yk−1 (1− y)n−k 1

φ(Φ−1(y))

=
Γ(n+ 1)

Γ(k)Γ(n − k + 1)
yk−1 (1− y)n−k+1−1

Which is the p.d.f. of a Beta(k, n− k + 1).
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A STUDY OF NORMALITY TESTS AND AN EXTENSION TO THE
NORMALITY PLOT
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We are considering a number of existing normality tests and study their power against

different alternative hypotheses. We also develop an extension to the normality plot by

adding a fixed confidence band. This procedure is named the envelope test. We use a

Monte Carlo simulation to do a power study among all normal tests considered and in

the development of the envelope test. The results show that although there was no best

normality test, we can provide guidelines to improve their efficiency. With the envelope

test we construct a method that eliminates the subjectivity that the normality plot carries

within.
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