

ii

ii

Abstract

 This project describes the digital implementation of a Second-Order Costas Loop

demodulator using simulation software SystemView by Elanix. The digital design of the

system is based on direct transformation of every analog component of the Costas Loop to its

respective discrete-time and subsequent digital domain. The relation between every

component in the analog system that has to do with carrier tracking and synchronization is

based on analog phase-locked loop theory. We used Costas Loop theory, which describes the

Costas Loop as two phase locked-loops operating in quadrature phase to each other, to

develop a linear model practically identical to that of the analog phase-locked loop. The

difference between these two models consists of the phase detector gain, which is evident

when establishing the phase detector gain of each system in relation to the amplitude of the

input and output signals. We then used this model and phase-locked loop theory to develop

the analog design of the Costas Loop and its subsequent transformation to the digital domain.

The design of the arm filters, however, did not follow the derived linear model. Instead, we

used conventional Costas Loop theory and the filter design tools of SystemView to design

these two filters. The final digital implementation of the system was then realized using the

design and simulation tools of SystemView in addition to fixed-point arithmetic theory to

represent the parameters and the values of the signals processed.

iii

iii

Resumen

 Este proyecto describe la implementación digital de un Costas Loop de Segundo

orden utilizando simulaciones llevadas a cabo con el software SystemView, hecho por

Elanix. El diseño digital del sistema está basado en la transformación directa de cada

componente análogo a su respectivo dominio discreto o digital. La relación que existe entre

cada componente del sistema análogo que controla la adquisición y sincronización de la señal

portadora (carrier), está basada en la teoría del Phase-Locked Loop análogo. Para ésto

utilizamos la teoría del Costas Loop, que lo describe a éste como un sistema compuesto por

dos Phase-Locked Loops que operan con un desfase de noventa grados el uno del otro, para

asi desarrollar un modelo lineal prácticamente idéntico al del Phase-Locked Loop análogo.

La diferencia entre ambos modelos se encuentra en la ganancia del detector de fase, la cual se

puede apreciar cuando establecemos la relación entre la ganancia de los detectores de fase de

cada sistema y la amplitud de las señales de entrada y salida. Una vez obtenido el modelo, lo

utilizamos en conjunto con la teoría de Phase-Locked Loops análogos para desarrollar el

diseño análogo del Costas Loop y su transformación al dominio digital. El diseño de los

filtros laterales (Arm Filters) no se llevó a cabo utilizando este modelo lineal. En lugar de

ésto, utilizamos la teoria convencional del Costas Loop y las herramientas de diseño de

filtros de SystemView. Finalmente, llevamos a cabo la implementación del sistema digital

utilizando las herramientas de diseño y simulación de SystemView en conjunto con la teoria

matemática fixed-point (fixed-point arithmetic) para representar los parámetros de cada

componente del sistema y de las señales procesadas por éste.

iv

iv

Copyright disclosure and consent

 I hereby authorize the Library of the University of Puerto Rico at Mayagüez to allow

partial or complete copying of this document for research purposes.

© Copyright by

David Pérez-Feliciano

2004

v

v

Dedicated to

 To my parents David and María, my grandmother Ramonita, and Professor Rafael

Fernandez Sein for their guidance, constant support and encouragement that kept me focused

and motivated throughout these years, making possible the completion of this project.

To my brothers Elvis, José, Ángel and Luis, my sisters María and Rosín, my nephew

Ángel, and nieces Cristina and Jarixa, for being there for me when I needed them the most

and to encourage them to persevere and continue working hard to reach their goals.

To Carmen Lugo, for giving me the opportunity to be part of the NASA/UPRM

partnership for space telecommunications and education, which led to the summer internship

jobs at NASA Goddard Space Flight Center.

To Madeline Butler, Deputy Chief of Engineers at NASA Goddard Space Flight

Center for the time she devoted to mentor me during the summer jobs, encouraging me to

improve my English and stay focused throughout the completion of my assignment.

To Dave Israel and Scott D. Hoy for the time devoted to being my mentors during the

summer jobs I spent at NASA Goddard Space Flight Center.

vi

vi

Acknowledgements

To Professor Rafael Fernandez Sein for his patience, guidance, suggestions, and the

time and effort spent correcting this document. Moreover, for giving me the opportunity to

work during two consecutive summer internship jobs at NASA Goddard Space Flight Center

in Maryland, experience that motivated me to continue graduate studies and helped me select

the subject of this project.

To the members of the Graduate Committee, Dr. José L. Cruz Rivera and Dr. Mario

Ierkic, for the time and effort spent correcting this document.

To my sister María and my brother Elvis for the time they spent helping me submit

this document while I was out of the country.

vii

vii

Table of Content

LIST OF TABLES...X

LIST OF FIGURES... XI

LIST OF FIGURES... XI

LIST OF APPENDICES.. XIII

LIST OF APPENDICES.. XIII

1 INTRODUCTION ..1

2 REVISION OF LITERATURE ..4

3 ANALOG PHASE-LOCKED LOOP THEORY ...11

3.1 THE ANALOG PHASE-LOCKED LOOP: AN OVERVIEW..11

3.2 TIME DOMAIN ANALYSIS ..14

3.3 FREQUENCY DOMAIN ANALYSIS ...17

3.3.1 The Loop Filter...20

3.3.2 Steady-State Error in PLLs Due to Common Excitation Signals..27

3.3.3 Closed-Loop Transfer Function of the PLL..40

3.3.4 Open Loop Analysis: Bode Plot..46

3.4 PARAMETERS FOR DYNAMIC PERFORMANCE OF THE PLL: HOLD-IN, LOCK-IN, PULL-IN, AND PULL-

OUT RANGES ...49

3.4.1 Lock-In Range...50

3.4.2 The Pull-In Range...53

3.4.3 The Pull-Out Range ..54

3.4.4 The Hold-In Range ...54

4 THE ANALOG COSTAS LOOP..58

4.1 AN OVERVIEW ..58

viii

viii

4.2 TIME DOMAIN ANALYSIS ..63

4.3 LINEAR MODEL OF THE COSTAS LOOP ..69

5 DISCRETE-TIME MODEL OF THE PLL ...73

5.1 DISCRETE-TIME LOOP FILTER ...74

5.2 THE NUMERICALLY CONTROLLED OSCILLATOR ...76

5.3 CLOSED-LOOP TRANSFER FUNCTION ..80

5.4 THE ERROR TRANSFER FUNCTION...81

5.5 THE STEADY-STATE ERROR OF THE DPLL ...83

6 FIXED POINT ARITHMETIC...88

6.1 UNSIGNED INTEGER AND FIXED-POINT RATIONAL..88

6.2 SIGNED TWO’S COMPLEMENT INTEGERS AND FIXED-POINT RATIONALS ...90

6.3 LOGIC AND ARITHMETIC FIXED-POINT OPERATIONS ..92

6.3.1 Shifting and Word length Reduction...92

6.3.2 Addition ..94

6.3.3 Multiplication ...94

6.4 EXAMPLES...95

7 DESIGNING THE ANALOG COSTAS LOOP ..98

8 SIMULATION RESULTS: ANALOG COSTAS LOOP IMPLEMENTATION104

8.1 SIMULATION RESULTS WITH PHASE AND FREQUENCY OFFSETS EQUAL TO ZERO..................................109

8.2 SIMULATION RESULTS WITH PHASE OFFSET EQUAL TO 45 DEGREES ..112

8.3 SIMULATION RESULTS WITH FREQUENCY OFFSET EQUAL TO 100HZ ...115

8.4 SIMULATION RESULTS WITH FREQUENCY OFFSET EQUAL TO 700HZ ...118

9 DESIGNING THE DIGITAL COSTAS LOOP DEMODULATOR ...121

9.1 DISCRETE-TIME DESIGN ..121

9.2 ESTABLISHING FIXED-POINT REPRESENTATION OF THE SYSTEM PARAMETERS126

9.2.1 The BPSK signal source ...127

ix

ix

9.2.2 The Pre-filter ..127

9.2.3 The I- and Q- Mixers ..128

9.2.4 The Arm Filters...128

9.2.5 The Third Multiplier ...129

9.2.6 The Loop Filter...129

9.2.7 The NCO...130

10 SIMULATION RESULTS: DIGITAL COSTAS LOOP IMPLEMENTATION133

10.1 SIMULATION RESULTS WITH PHASE AND FREQUENCY OFFSETS EQUAL TO ZERO..................................137

10.2 SIMULATION RESULTS WITH PHASE OFFSET EQUAL TO 45 DEGREES ..140

10.3 SIMULATION RESULTS WITH FREQUENCY OFFSET EQUAL TO 100HZ ...143

10.4 SIMULATION RESULTS WITH FREQUENCY OFFSET EQUAL TO 700HZ ...146

11 MATERIALS AND METHODOLOGY EMPLOYED...149

12 CONCLUSION AND FUTURE WORK ..152

BIBLIOGRAPHY ..154

A. APPENDIX: DIAGRAMS OF THE ANALOG AND DIGITAL COSTAS LOOPS......................158

B. APPENDIX: PARAMETERS DEFINITION FOR SYSTEMVIEW...161

C. APPENDIX: SYSTEM SPECIFICATIONS FOR SYSTEMVIEW ..165

D. APPENDIX: MATLAB PROGRAMS..166

D-1 PLOTTING THE BODE DIAGRAM FOR THE ANALOG AND DIGITAL SYSTEMS ...166

D-2 PLOTTING THE ROOT LOCUS FOR THE DIGITAL SYSTEM ..169

x

x

List of Tables

TABLE B-1: PARAMETERS DEFINITION FOR THE COMPONENTS OF THE ANALOG COSTAS LOOP161

TABLE B-2: PARAMETERS DEFINITION FOR THE COMPONENTS OF THE DIGITAL COSTAS LOOP..........................162

xi

xi

List of Figures

FIGURE 3-1. TIME-DOMAIN BLOCK DIAGRAM OF A PLL ..11

FIGURE 3-2. BLOCK DIAGRAM OF LINEAR PLL IN THE FREQUENCY DOMAIN...17

FIGURE 3-3. CIRCUIT OF PASSIVE LAG-LEAD FILTER..19

FIGURE 3-4. BODE DIAGRAM OF PASSIVE LAG-LEAD FILTER ...20

FIGURE 3-5. CIRCUIT OF THE ACTIVE LAG-LEAD FILTER..21

FIGURE 3-6. CIRCUIT OF THE PI LAG-LEAD FILTER ...22

FIGURE 3-7. BODE DIAGRAM OF THE ACTIVE LAG-LEAD FILTER ...22

FIGURE 3-8. BODE DIAGRAM OF THE PI LAG-LEAD FILTER ..23

FIGURE 3-9. PHASE STEP APPLIED TO INPUT SIGNAL ..24

FIGURE 3-10. INPUT SIGNAL HAVING PHASE-STEP VARIATIONS ..25

FIGURE 3-11. INPUT SIGNAL HAVING FREQUENCY STEP VARIATIONS ..26

FIGURE 3-12. FREQUENCY STEP APPLIED TO INPUT SIGNAL ...27

FIGURE 3-13. EQUIVALENT PHASE RAMP APPLIED TO INPUT SIGNAL ...28

FIGURE 3-14. INPUT SIGNAL HAVING FREQUENCY RAMP VARIATIONS ..28

FIGURE 3-15. FREQUENCY RAMP APPLIED TO INPUT SIGNAL ...29

FIGURE 3-16. EQUIVALENT PHASE PARABOLA APPLIED TO INPUT SIGNAL...30

FIGURE 3-17. FREQUENCY RESPONSE OF PLL FOR DIFFERENT VALUES OF DAMPING RATIO...............................30

FIGURE 3-18. FREQUENCY RESPONSE OF THE PHASE-ERROR TRANSFER FUNCTION FOR DIFFERENT VALUES OF

DAMPING RATIO ...31

FIGURE 3-19. TRANSIENT RESPONSE OF THE PHASE ERROR DUE TO A PHASE STEP..32

FIGURE 3-20. TRANSIENT RESPONSE OF THE PHASE ERROR DUE TO A PHASE RAMP ..33

FIGURE 3-21. TRANSIENT RESPONSE OF THE PHASE ERROR DUE TO A PHASE PARABOLA34

FIGURE 3-22. BODE PLOT OF THE OPEN LOOP TRANSFER FUNCTION OF THE FIRST-ORDER PLL..........................35

FIGURE 3-23. BODE PLOT OF OPEN LOOP TRANSFER FUNCTION OF THE SECOND-ORDER PLL.............................36

FIGURE 3-24. BODE PLOT FOR OPEN LOOP TRANSFER FUNCTION FOR SECOND-ORDER PLL WHEN 5.0=ς37

FIGURE 3-25. BODE PLOT OF OPEN LOOP TRANSFER FUNCTION OF PLL HAVING PI LOOP FILTER38

xii

xii

FIGURE 3-26. LOCK-IN PROCESS: Lωω ∆=∆ ..39

FIGURE 3-27. UNSUCCESSFUL LOCK-IN PROCESS: Lωω ∆>∆ ..41

FIGURE 4-1. THE COSTAS LOOP DEMODULATOR ..58

FIGURE 4-2. BLOCK DIAGRAM OF LINEAR MODEL OF THE COSTAS LOOP IN THE TIME DOMAIN70

FIGURE 4-3. BLOCK DIAGRAM OF LINEAR MODEL OF THE COSTAS LOOP IN THE FREQUENCY DOMAIN71

FIGURE A-1: SYSTEMVIEW SCHEMATIC OF THE ANALOG COSTAS LOOP ..158

FIGURE A-2: SYSTEMVIEW SCHEMATIC OF THE DIGITAL COSTAS LOOP...159

FIGURE A-3: DESIGN AND SIMULATION WINDOW FOR SYSTEMVIEW ...160

FIGURE C-1: SYSTEM SPECIFICATIONS FOR SYSTEMVIEW ..165

xiii

xiii

List of Appendices

A. APPENDIX: DIAGRAMS OF THE ANALOG AND DIGITAL COSTAS LOOPS

..158

B. APPENDIX: PARAMETERS DEFINITION FOR SYSTEMVIEW...161

C. APPENDIX: SYSTEM SPECIFICATIONS FOR SYSTEMVIEW ..165

D. APPENDIX: MATLAB PROGRAMS..166

D-1 PLOTTING THE BODE DIAGRAM FOR THE ANALOG AND DIGITAL SYSTEMS ...166

D-2 PLOTTING THE ROOT LOCUS FOR THE DIGITAL SYSTEM ..169

1

1

1 Introduction

Coherent detection and demodulation requires the utilization of synchronization

systems that extract carrier phase and frequency information from the received signal. Phase

and frequency are two parameters used by synchronization systems, such as Phase-Locked

Loops (PLL) to track, acquire and synchronize to the carrier of the received signal. Making

use of additional components, PLLs can be used directly to demodulate a signal when the

signal contains a positive average energy at its carrier frequency. Old communications

systems used to transmit and receive signals that had an average or residual energy at the

carrier frequency in order to reduce complexity and cost of the demodulation design.

Modern communications systems, on the other hand, do not use this method, as the residual

energy is considered to be wasted energy, since it does not transmit any data; however, the

carrier is required for the PLL in the receiver to synchronize to. In practice, techniques that

conserve power are of interest, hence modern communications systems use suppressed-

carrier modulation/demodulation techniques, which do not require a residual energy at the

carrier frequency. Using suppressed-carrier modulation techniques, present a problem for

PLLs, since in the absence of the carrier, PLLs cannot track, acquire and synchronize to the

received signal. Therefore, another synchronization system must be used instead. An

example of such a system is the Costas Loop.

The Costas Loop is a synchronization system that was first introduced by John P.

Costas in 1956 to achieve phase tracking, acquisition, synchronization and demodulation of

double-sideband suppressed-carrier AM signals. The components of the system are the

2

2

Arm Filters, the Loop Filter, three multipliers that we will refer to as Phase Detectors, and a

Voltage-Controlled Oscillator (VCO). The Costas Loop is able to obtain the phase and

frequency information of the modulated carrier and achieve phase tracking, acquisition and

synchronization to this extracted carrier while demodulating and extracting the data

contained in the received signal. Although the original intent of the Costas Loop was to track

and demodulate double-sideband suppressed-carrier AM signals, it can very well be used to

demodulate other suppressed-carrier modulation techniques. Another modulation technique

for which the Costas Loop is readily used without modifications is Binary Phase Shift

Keying (BPSK). The truth of this statement lies in the fact that BPSK signals can be

expressed and demodulated as double-sideband suppressed-carrier AM signals. Other

applications of the Costas Loop are QPSK (Quadrature Phase Shift Keying), 8-PSK,

OQPSK, FSK (Frequency Shift Keying), FM and spread spectrum.

The Costas Loop can be considered to be a variation of a PLL system. Costas Loop

theory describes the system as two phase-locked loops operating in phase quadrature to each

other. We used this theory to develop a linear model of the Costas Loop (analog system) that

is practically identical to that of the analog phase-locked loop. The difference between these

two models is established at the phase detector gain term for each system. When the linear

modeled was derived, we noticed that there was a publication by (Kamperman 1994 [12]) that

attempted to do the same. As the Costas Loop has two multipliers that independently detect

phase differences between the input and output signals, and a third multiplier that adds these

two phase differences and eliminates the modulation effects attached to them (that is, in

3

3

addition to increasing the gain requirements), we end up with a gain term equal to the square

of the phase detector gain in the PLL. This difference is evident when establishing the

relation between the phase detector gain of each system to the amplitude of their respective

input and output signals. We then used this model and phase-locked loop theory to develop

the analog design of the Costas Loop and its subsequent transformation to and

implementation on the digital domain. The design of the arm filters, however, did not follow

the derived linear model. Instead, we used the Costas Loop theory and the filter design tools

of SystemView to design two low-pass filters of the Bessel-type. A Bessel-type filter was

chosen for the arm filters because the phase response of these filters is constant at 0dB inside

the designated bandwidth area. Once all the parameters of the analog system were defined,

we proceeded to define those of the digital system. Then we used the design and simulation

tools of SystemView, in addition to fixed-point arithmetic theory, to represent the parameters

of the digital system and the values of the signals processed.

 This project describes the digital implementation of a Second-Order Costas Loop

demodulator using simulation software SystemView by Elanix. The digital design of the

system is based on direct transformation of every analog component of the Costas Loop to its

respective discrete-time and subsequent digital domain. In order to provide thorough details

of the design process, this document also includes the theory of analog phase-locked loop

and Costas Loop systems, derivation of the Costas Loop linear model used in the design,

transformation of the analog PLL and Costas Loop systems to a discrete-time and subsequent

digital system, fixed-point arithmetic theory, implementation and simulation of the analog

and digital Costas Loop using SystemView, and the final discussion of the results.

4

4

2 Revision of Literature

 The Costas Loop is a synchronization system introduced by John P. Costas in 1956 to

address some of the problems and concerns facing coherent communications systems at the

time. Back then, most commercial and military communications systems were using

amplitude modulation techniques to transmit information. Double-sideband transmitted

carrier was the preferred amplitude modulation technique employed due to the simplicity of

the systems that could be used to implement it. Although inefficient, energy wise,

transmitting the carrier along with the modulated information allowed the use of phase-

locked loop technology to achieve coherent demodulation of the data, greatly improving the

demodulation process. But the increasing need for more efficient (in terms of the energy and

bandwidth used) and reliable communications systems laid down the grounds for new

modulation and demodulation techniques to be proposed; this was the case for the Costas

Loop. The Costas Loop significantly improved the amplitude modulation/demodulation

techniques by allowing the efficient demodulation of double-sideband suppressed-carrier

signals. Doing so, it made possible a more efficient transmission of double-sideband AM

signals by allowing the removal of the additional carrier signal formerly transmitted with the

modulated information, and thereby reducing the amount of energy needed during the

transmission process. In addition to demodulating double-sideband suppressed-carrier AM

signals, Costas Loops are used to demodulate BPSK, QPSK, 8-PSK, OQPSK, FSK

(Frequency Shift Keying), and FM signals, for example. This characteristic of the Costas

Loop makes it suitable for many applications. Some examples are satellite communications,

spread spectrum, and CDMA (used in cellular telephone communications).

5

5

The Costas loop is a synchronization system that could be analyzed as two phase-

locked loops that operate in phase quadrature to each other. Consequently, the operation of

any Costas Loop system is influenced by the operation of these two PLLs to a great extent.

For this reason, this project devotes a great deal of time and effort to PLL theory and to

establish its relation to Costas Loop systems. The following paragraphs are allotted to

establishing the progress of phase-locked loop technology and its relation to other

technological advances as well as Costas Loop systems.

The first publications about Phase-Locked Loop (PLL)-like systems appeared in 1923

and 1932. In 1923, E. V. Appleton published his paper "Automatic synchronization of triode

oscillators", and H. de Bellescize published "La reception synchrone" in 1932. However, it is

Henri de Bellescize, a French engineer, who is considered to be the inventor of coherent

communications after he designed a vacuum tube based synchronous demodulator for an AM

receiver, (Best 1999 [1]). Although the concept was readily available, the use of PLLs did not

become as important until the 1940’s when engineers at the Jet Propulsion Laboratories were

faced with the problem of providing telemetry and radio guidance for short-range ballistic

missiles and producing reliable communications under conditions of heavy interference,

(Lindsey et al 1991 [8]). To solve these problems, a great deal of study and expansion was

given to the earlier work done by C. Shannon, N. Wiener and the staffs of MIT Radiation and

Lincoln Laboratories. Following these efforts, the theory and operation of servomechanisms

functioning in the presence of noise was developed. Then in the early fifties, E. Rechtin and

R. Jaffe applied this theory to develop phase-locked loop receivers, and other PLL

6

6

applications such as automatic gain control systems and coherent two-way velocity and range

measuring systems. Since then, PLLs have contributed to coherent communications systems

and other technological advances.

Another important application, and one of the firsts for PLLs, also occurred during

the 1950s: a PLL was used to recover the color sub-carrier in television, (Best 1999 [1]).

Originally, PLLs were mostly used for military applications and did not find broader

industrial and commercial use until they became available as an integrated circuit. The first

PLL ICs appeared around 1965 and were purely analog devices, (Best 1999 [1]). Signetics

and RCA developed the first analog PLL ICs: the NE565 and CD4046, (Hsieh et al 1996 [16]).

The PLL integrated in those chips included a sinusoidal phase detector, a loop filter, and a

voltage-controlled oscillator. The phase detector was a four-quadrant multiplier that had a

phase-lock range that extended from
2
π

− to
2
π . In 1970 these PLL ICs were being used on

speed control systems for synchronous and DC motors, (Hsieh et al 1996 [16]). As IC and

digital technology was improving, it was possible to extend the phase error detection range of

the PLL by using a sawtooth comparator as the phase detector. The phase error detection

range for this phase detector was π− to π . Later in 1972, Motorola manufactured the

sequential phase/frequency detector (PFD) chip MC4044, capable of detecting phase error

changes that extended from π2− to π2 . This phase detector was combined with the analog

components of the NE565 analog phase-locked loop to achieve the realization of a hybrid

PLL system used to control the speed of a synchronous motor. This combination allowed a

speed regulation of 0.002%, (Hsieh et al 1996 [16]).

7

7

As many applications of analog PLLs started developing, by 1970 the theoretical

description of these systems was very well established, and plenty of information could be

found in [A. Blanchard, "Phase-Locked Loops: Application to Coherent Receiver Design", F.

M. Gardner, "Phaselock Techniques", and W. C. Lindsey, "A survey of digital phase-locked

loops"]. This theoretical description included noise and nonlinear analysis of the loop,

variety of phase detectors, threshold performance and determination, modifications to the

system based on signal and channel type, and established important design parameters such

as bandwidth, steady-state error, mean-square phase error, lock-in range, pull-in range,

acquisition time, filter parameters and SNR behavior for low CNR at the input, (Gupta 1975

[13]). Also, there was some work being done to develop other types of phase-locked loops

that could be implemented digitally and a variety of systems were proposed. These other

phase-locked loops were categorized at the time as Hybrid, Discrete and all-digital phase-

locked loops.

The Hybrid phase-locked loop is defined as an analog phase-locked loop where one

or more, but not all elements in the loop are digital, (Gupta 1975 [13]). This type of

implementation enables the use of more efficient components in the analog system to

improve its performance. However, unlike the analog PLL (second-order, for example),

system stability has to be analyzed, given that a high system gain could make this loop

unstable. The Discrete phase-locked loop used a sampler as the phase detector and the other

components were a digital filter and a digital oscillator. This phase-locked loop tracks and

synchronizes to the input signal (sine wave) by predicting zero crossing points on this signal.

Unfortunately, the architecture of the loop leads to twice as many nonlinearities in the system

8

8

equations, compared to the analog phase-locked loop (APLL). These nonlinearities are the

result of the non-uniform sampling and sinusoidal nonlinearities. Hence, this phase-locked

loop is more difficult to analyze than an APLL. Finally, we have the all-digital phase-locked

loop, for which there were various systems proposed. The first all-digital phase-locked loop

proposed consisted of replacing all analog components by digital ones. Other digital phase-

locked loops were proposed based on specific applications such as harmonic signal filtration

and FM demodulation.

Progress on the study of digital phase-locked loops continued and in 1982, (Lindsey

et al 1981 [18]) provided an extensive report on digital phase-locked loop technology that

covered the period from 1960 to 1980. In this paper, (Lindsey et al 1981 [18]) classified the

digital phase-locked loops into four categories, based on the type of phase detector used.

These four categories were: Flip-Flop (FF), Nyquist Rate (NR), Zero Crossing (ZC), and

Lead/Lag (LL) digital phase-locked loops (DPLL). The FF-DPLL, obtains phase error

information from the duration between the set and reset time of the flip-flop triggered by

positive zero crossings of the input signal and the local clock. In the NR-DPLL, the input

signal is sampled at the Nyquist rate, then the resulting samples are multiplied digitally with

the samples of the local reference to generate the required phase error. The ZC-DPLL has

two variations. In the first version, the loop samples the input signal in the positive going

zero crossings. The second version, however, samples the input signal in both positive and

negative going zero crossing points. Finally, for the LL-DPLL the phase detector determines

at each cycle of the clock whether the input leads or lags the locally generated clock; if so,

the phase is adjusted accordingly. (Lindsey et al 1981 [18]) also provided a thorough analysis

9

9

of each system, including steady-state error. It also provided equations in the z-domain for

the common excitation signals: phase step, phase ramp and phase parabola; these are the

equations used in this project for the analysis of the digital Costas Loop designed.

Another extensive coverage of phase-locked loop theory is provided in, (Best 1999

[1]). In this recent publication, (Best 1999 [1]) covers all aspects of the phase-locked loop

theory from a professional engineering point of view, starting with analog phase-locked

loops and ending with a category that he describes as the software phase-locked loop. The

phase-locked loops covered by (Best 1999 [1]) are essentially those covered by (Gupta 1975

[13]) and (Lindsey et al 1981 [18]), except the categories are named differently. For example,

the analog phase-locked loop is described as the linear phase-locked loop, the hybrid PLL is

called the classical digital phase-locked loop, and the group composed by the flip-flop,

Nyquist rate and zero crossing (including another one that uses a Hilbert transform phase

detector) is called all digital phase-locked loops. The category called the software phase-

locked loop is essentially a software implementation of all the previous categories already

mentioned, including the analog phase-locked loop. This theory developed in this work for a

software implementation of the analog PLL that we use to implement the digital Costas

Loop. To do so we first used analog Costas Loop and phase-locked loop theory to derive a

linear model for the analog Costas Loop. Then we used the results obtained for the software

version of the analog PLL to obtain a digital version of the analog Costas Loop. Finally, a

design implementation and simulation of the digital Costas Loop was achieved using

software SystemView by Elanix.

10

10

As an extension to this chapter, chapters three to six have been included to provide a

through discussion of the phase-locked loop/Costas Loop subject and its migration to the

digital implementation provided in this project.

11

11

3 Analog Phase-Locked Loop Theory

3.1 The Analog Phase-Locked Loop: An Overview

A Phase-locked loop is a circuit that generates a signal that is synchronized to the

input signal. To achieve synchronization, phase and frequency parameters of both signals

are compared and an error signal is produced. This error signal is used to correct the

phase and frequency of the output signal in such a way that the error reduces to zero or a

minimum. When the error signal reaches or

Figure 3-1. Time-Domain Block Diagram of a PLL

settles to a minimum value, we say the signals are synchronized and the phase-locked

loop (PLL) is locked. A block diagram of a PLL can be seen in figure 3-1. The diagram

shows the three major components of the PLL along with the corresponding signals. The

three major components of the loop, from left to right are 1) Phase Detector, 2) Loop

filter, and 3) Voltage-Controlled Oscillator (VCO). (A circle with a cross denotes the

phase detector and)(tf the loop filter.) PLL signals are defined as follows:

)sin()(iiii tAtu θω += (3-1),
)sin()(oooo tAtu ϕω += (3-2),

[] []oioi
oi

oioi
oi

d tAAtAAtu ϕθωωϕθωω +++−−+−=)(cos
2

)(cos
2

)((3-3),

[]oioi
oi

f tAAtu ϕθωω −+−=)(cos
2

)((3-4).

f(t) VCO
ui(t) ud(t) uf(t) uo(t) 1 2 3

12

12

The input signal,)(tui is a sine waveform with amplitude iA , radian frequency iω ,

and phase iθ .)(tuo is the form of the output signal just before the tracking and

acquisition process of the input signal begins. It also is a sine waveform with amplitude

oA , radian frequency oω , and phase oϕ . When the tracking and acquisition process is

taking place, the PLL will operate in such a way that io ωω → and the phase error

between input and output reduces to zero or a minimum. Since the phase detector is

sinusoidal (four-quadrant multiplier), its output signal is as given by)(tud , which results

in a signal composed of two cosine waveforms with frequency components)(oi ωω − and

)(oi ωω + . (Think of the four-quadrant multiplier as a device that performs the same type

of multiplication operation we would perform in a calculator, or by hand, with any two

numbers.) Now let us take a look at each argument of the cosine terms. The argument of

the first cosine, []oioi t ϕθωω −+−)(sustains a phase and frequency difference between

the input and output signals, whereas the argument of the second term results in phase

and frequency addition. Given this phase and frequency addition,

[]oioi
oi tAA ϕθωω +++)(cos

2
 is considered the high-frequency component of)(tud , also

known as the AC component of)(tud because it will always be an oscillating signal of

frequency)(oi ωω + . On the other hand, it is []oioi
oi tAA ϕθωω −+−)(cos

2
, the first term

of)(tud , that contains information about the phase and frequency error between)(tui

and)(tuo . When the error between the signals is zero or minimum, this term will tend to

a DC value. Moreover, if the error between the signals is large, but the PLL is following

13

13

the input signal correctly, []oioi
oi tAA ϕθωω −+−)(cos

2
 will induce an average DC

voltage that takes the loop to the correct lock-in direction (synchronization takes place).

For this reason, this term is known as the DC component of)(tud .

The process continues in the loop filter. Think of the loop filter as a low-pass filter

with 3-db bandwidth lower than)(oi ωω + but higher than)(oi ωω − . Consequently, the

output signal of the loop filter)(tu f , will be solely composed of

[]oioi
oi tAA ϕθωω −+−)(cos

2
, as shown by equation (3-4). (This is true if we assume an

ideal filtering process.) In the previous paragraph it was pointed out that only the first

cosine term of)(tud provided useful information to sustain the proper operation of the

PLL. This is the low-frequency component of)(tud , which justifies selecting a low-pass

filter as the loop filter. Finally,)(tu f frequency modulates the output signal of the VCO,

adjusting its phase and frequency until they match those of the input signal,)(tui . We

say)(tu f frequency modulates the output signal of the VCO because before the error

between the signals is close to zero,)(tu f oscillates. In fact, this is the same process

used during frequency modulation (FM).

The frequency of the VCO signal is given by (Best 1999 [1])

)(0 tuK foco +=ωω (3-5),

14

14

where c0ω is its center frequency. It is noticeable that co 0ωω = when 0)(=tu f . For this

reason, it is a design rule to set c0ω equal to the frequency of the signal we expect to

receive, iω . From the above equations and discussion, a PLL can be seen as a servo

control system that establishes synchronization generating an estimated replica of the

input signal. (This is true if the input signal is not carrying any type of modulation.

However, if the received signal is carrying some type of information (received signal is

modulated), then the PLL will lock to its carrier.)

3.2 Time Domain Analysis

Let us analyze the previous equations to derive a more detailed analysis of PLL in

the time domain. Assuming the PLL is not locked (the loop is in the process of tracking

and acquiring the input signal to achieve synchronization), the equations that govern its

operation are as given in the previous section. Furthermore, presume the PLL is

operating in the lock-in range and, as a result, synchronization occurs considerably fast.

Therefore the synchronization process can be explained as follows.

When the synchronization process starts, both the input and output signals are

multiplied in the phase detector generating the signal)(tud . This signal goes to the loop

filter, which eliminates the high-frequency component of)(tud , producing the signal

)(tu f . This signal is fed to the VCO to adjust its output signal in a favorable way as to

reduce the difference between its parameters and those of the input. We call this

difference the error between the signals. When the error is reduced, synchronization

takes place, signifying that the frequency and phase of the output signal match those of

15

15

the input signal. Examining)(tu f we see that)(oi ωω − can only be zero if

[]ooio t φωωϕ +−=)(, which defines oϕ as a function of time. Substituting oϕ into)(tu f

we obtain [][])()(cos
2

)(ooiioi
oi

f ttAAtu φωωθωω +−−+−= . Simplifying this equation

we obtain a representation for)(tu f totally dependent on the phase of the signals

)cos(
2

)(oi
oi

f
AAtu φθ −= (3-6).

Having the PLL eliminated the frequency difference, it will modify the phase of the VCO

to equate it to the input until 0)(=tu f . Equation (3-6) establishes that)(tu f can be

equal to zero if the argument of the cosine is
2
π . Hence, defining oφ as

2
πθ −o and

placing it into the argument of equation (3-6) we obtain)
2

cos(
2

)(πθθ +−= oi
oi

f
AAtu .

Re-writing this equation yields

)sin(
2

)(oi
oi

f
AAtu θθ −= (3-7).

The derivation of equation (3-7) indicates that synchronization occurs when the input and

output signals of the PLL are in phase quadrature to each other; that is, they are 90

degrees or
2
π radians apart. In PLL theory, it customary to think of the)sin(oi θθ − as

eθ , the phase error of the PLL. When the loop is locked, (the difference between iθ and

oθ is small), we can use the small angle approximation to simplify eθ to)(oi θθ − .

Moreover, defining a new gain term, dK , and equating it to
2

oi AA we obtain a more

useful linear approximation for equation (3-7),

16

16

)()(oidf Ktu θθ −≈ (3-8),

where dK will represent the gain of the phase detector. Now, having a linear expression

for)(tu f , we can rewrite)(tud as

termsfrequency -high)()(+−≈ oidd Ktu θθ (3-9).

In order to justify equation (3-7), the VCO signal has to be changed from a sine to a

cosine waveform. This exemplifies the quadrature phase difference between input and

output signals mentioned before. We can use the trigonometric identity about the product

of two sinusoids to prove that the VCO signal has to be a cosine waveform when the

input to the PLL is a sine wave, [])()(
2
1)cos()sin(BAsenBAsenBA ++−= . Remember

that we started the explanation defining both input and output signals as sine waveforms.

Then, after some derivation process, it was shown that they had to be in quadrature for

the PLL to lock. Since the input signal is fixed, only the output signal can be varied.

Consequently, it is the output signal that changes to a cosine waveform. Now going back

to the trigonometric identity, having the input expressed as)sin(iii tA θω + and the output

as)cos(oio tA θω + , multiplying them and filtering the result we obtain equation (3-7),

which can be simplified to equation (3-8) if the phase difference between the signals is

small (the loop is locked), proving the relation stated before. This simplifications of

)(tud and)(tu f will prove to be useful when deriving a frequency model for the PLL.

17

17

3.3 Frequency Domain Analysis

Before initiating the frequency domain analysis it would be useful to express the

PLL signals in a more compact form. Reconsidering the time domain analysis, we have

the signals)(tui ,)(tuo ,)(tud ,

Figure 3-2. Block Diagram of Linear PLL in the Frequency Domain

and)(tu f , representing the input, output, phase detector, and loop filter signal

respectively. These signals can be expressed as

oie θθθ −= (3-10)

edoid Ktututu θ⋅≈⋅=)()()(, (Not including high frequency terms.) (3-11),
)(*)()(tftutu df = , where * denotes convolution. (3-12),

)(*)(tfKtu edf θ⋅≈ (3-13).

Note the relation of the above equations with the phase error, eθ . We will not have the

set of equations complete, until we express)(tuo in terms of a phase variable. (The idea

of these derivations is to establish a relation within every signal of the PLL with a phase

variable, given the predisposition of the PLL to keep a phase difference between two

signals, input and output, close to zero. PLLs translate every phase or frequency

variation to a phase difference, which explains the meaning of its name.)

The frequency of the VCO signal is given by equation (3-5) as

)(0 tuK foco +=ωω . For the purpose of this analysis we are assuming the PLL is locked,

F(s) Ko/s
θi(s) θe(t) Uf(s) θo(t) Kd

Ud(s) +

-

18

18

therefore the center frequency of the VCO signal equals that of the input signal, that is,

ic ωω =0 , and the output frequency can be rewritten as)(tuK foio +=ωω . By definition,

the phase of the VCO is given by the integral of the frequency variation (Best 1999 [1]).

Making use of this definition yields:

∫= dttuK foo)(θ (3-14).

Now that we have all the set of equations determined in terms of phase variables, we are

able to proceed with the frequency domain analysis. Before we start, it is necessary to

make one more assumption. Assume the phase of the input and output signals is

changing with time, hence they have to be expressed as)(tiθ and)(toθ . Now we are

able to use the Laplace transform to derive the frequency counterpart of each loop

equation.

)}({)(tLs ii θθ = (3.15),

{ })()()}({)(sU
s

KdttuKLtLs f
o

fooo === ∫θθ (3.16),

s
K

sU
sV o

f

o
co ==

)(
)(θ (3.17),

)()()(sss oie θθθ −= (3.18),
)()}({)(sKtuLsU eddd θ== (3.19),

)}({)(tfLsF = (3.20),
)()()(sFsUsU df ⋅= (3.21),

where } {L is the Laplace operator and)(sVco the transfer function of the VCO. It is

important to point out that equation (3.16) was obtained assuming that all initial

conditions of)(toθ are zero (Best 1999 [1]). Having equations (3-16) to (3-21) we can

develop the linear model of the PLL, which will end up with the derivation of its transfer

19

19

function (Dorf et al 1995 [10]). The block diagram for this linear model is presented in

figure 3-2. Let us now derive the transfer function of the system (PLL).

From equation (3.16))()(sU
s

Ks f
o

o =θ . Using equation (3.21),)(soθ can be

written as)()()(sFsU
s

Ks d
o

o ⋅⋅=θ . Substituting the definition of)(sUd into the

previous equation we obtain)()(sF
s
KKs e

do
o ⋅⋅= θθ . Then we use equation (3.18) to

find ())()()()(sFss
s
KKs oi

do
o ⋅−⋅= θθθ . Solving for)(soθ yields

)()()(1)(s
s
sFKK

s
sFKKs iododo θθ ⋅⋅=⎥⎦
⎤

⎢⎣
⎡ ⋅+ .

Finally, expressing the former equation in the form of)(
)(
)(sH

s
s

i

o =
θ
θ gives us the closed-

loop transfer function of the PLL:

)(
)(

)(
)()(

sFKKs
sFKK

s
ssH

od

od

i

o

+
==

θ
θ (3.22).

 Figure 3-3. Circuit of Passive Lag-Lead Filter

20

20

Equation (3.22) is the starting point of the frequency domain analysis that leads to the

understanding of the system response to various excitation signals. However, before

getting deep into this analysis it would be pertinent to consider the type of loop filter

appropriate for the PLL.

Figure 3-4. Bode Diagram of Passive Lag-Lead Filter

3.3.1 The Loop Filter

The loop filter is the component of the PLL that eliminates unwanted signals (high-

frequency signals). In figure 3-2, the loop filter is designated in the frequency domain by

)(sF , its transfer function. The selection of the loop filter is a very important decision,

since it will determine the behavior and characteristics of the PLL under various

operating conditions. The type of loop filter employed will determine characteristics

such as bandwidth, lock-in range, pull-in range, pull-out range and hold-in range of the

PLL during operation.

In control theory, it is the number of poles in the transfer function of a closed-loop

system (when the system does not have a feedback path the open-loop transfer function is

)(sF

ω

21

1
ττ +

2

1
τ

20dB/decade
1

21

21

used instead) that determines the order of the system. This concept is well suited to

designate the order of any system for which its transfer function can be expressed as a

rational function.

Figure 3-5. Circuit of the Active Lag-Lead Filter

The poles of a system can be defined as the zeros or roots of the denominator in

the system transfer function. Since the design presented in this work is a second-order

system, we can use this equation as an example to explain the order concept and root

calculation: 22

2

2
2)(

nn

nn

ss
ssH

ωςω
ωςω
++

+
= . To determine the poles of this system, we should

take a look at its denominator 22 2 nnss ωςω ++ , which is a quadratic equation on s . Now

we can determine the values of s that make the denominator of)(sH to become zero.

For a quadratic equation, only two values of s can make it happen. They can be obtained

using the quadratic formula,
2

4)2(2
,

22

21
nnnss

ωςωςω −±−
= .

22

22

Figure 3-6. Circuit of the PI lag-Lead Filter

Simplifying the equation we obtain the two zeros of 22 2 nnss ωςω ++ , which are

12
1 −+−= ςωςω nns and 12

2 −−−= ςωςω nns . As mentioned previously, these two

values of s make the denominator of)(sH to become zero, which therefore make)(sH

to become infinite (∞→
0
x , where x can be any number, except zero). When a value of

s makes)(sH to become infinite, we call that value a pole of)(sH . Now, given this

system has only two poles, it is called a second-order system. On the other hand, if)(sH

had three poles it would be called a third-order system, and so on.

Figure 3-7. Bode Diagram of the Active Lag-Lead Filter

)(sF

ω

1

1
τ

2

1
τ

-20dB/Decade
FLK

23

23

There are PLLs implemented as first-, second-, and third-order systems.

However, it is the second-order PLL that is mostly implemented because of its stability,

outstanding response, and ease of analysis (although it can be cumbersome too), (Best

1999 [1]). Third- and higher-order loops can be implemented, however, they confront

stability problems and their analysis is cumbersome, which makes third-order loops the

highest-order PLLs implemented. Yet, its implementation can be achieved using second-

order approximations. Taking a look at equation (3.22), which gives the general form of

the closed-loop transfer function of a linear PLL, we can see that the lowest-order loop

that can be implemented is first-order. To obtain this type of PLL we have to substitute

the loop filter by a gain, which we will refer to as LFK . The resulting transfer function is

Ks
K

KKKs
KKKsH

LFod

LFod

+
=

+
=)((3.23).

Since second-order system is the main concern of this thesis report, we will cover only

those loop filters that are commonly used for this type of implementation. (First-order

loops were discarded for this work because they do not provide flexibility to adjust

system gain and bandwidth separately as second-order systems do)

Figure 3-8. Bode Diagram of the PI Lag-Lead Filter

)(sF

ω

2

1
τ

-20dB/decade

24

24

Using equation (3.22) again, it can be seen that the loop filter needed to

implement a second-order PLL must add a pole to)(sH . Before deciding the type of

loop filter, remember that it has to be low-pass. Therefore, combining both conditions it

turns out that we need a first-order low-pass filter in order to obtain a second-order PLL.

There are three types of filters commonly presented in PLL theory: passive, active, and PI

(Proportional + integral) lag-lead filters (also known as lead-lag or simply lag filters),

(Best 1999 [1]). The schematic of the passive lag-lead filter is shown in figure 3-3. The

input and output to this filter are)(tud and)(tu f respectively; the same holds for the

other filter diagrams. The transfer function of this filter is given as

s
ssF

)(1
1)(

21

2

ττ
τ
++

+
= (3.24),

where CR11 =τ , and CR22 =τ , (Best 1999 [1]). Figure 3-4 shows the Bode diagram of its

frequency response. Once integrated circuit technology became accessible, amplification

devices such as the OPAM (Operational Amplifier) were easily available. This made

possible the implementation of the high-gain loop filters shown in figures 3-5 and 3-6,

respectively.

Figure 3-9. Phase Step Applied to Input Signal

25

25

These are the active and PI lag-lead filters whose frequency responses are shown in the

Bode diagrams of figures 3-7 and 3-8. The transfer function of each filter is given in

equations (3-25) and (3-26)

s
sKsF LF

1

2

1
1)(

τ
τ

+
+

= (3-25),

s
ssF
1

2 1)(
τ

τ +
= (3-26).

For the active loop filter 111 CR=τ , 222 CR=τ , and
2

1

C
CK LF −= , whereas CR11 =τ and

CR22 =τ for the PI filter. Due to the integrator,
s
1 term in equation (3-26), the PI filter is

the most effective loop filter that could be used in a PLL.

Figure 3-10. Input Signal Having Phase-Step Variations

Some of the characteristics that make this the obvious selection will be explained later,

however it is important to mention at least one. Remember from previous explanations

that the loop filter is used to eliminate the high frequency component of)(tud , retaining

only the low frequency component. This low frequency component tends to a DC value

when the PLL is locked. Now let us take a look at the DC gain of the PI filter, which is

26

26

obtained when 0=s , ∞→=
+

=
0
1

)0(
1)0()0(

1

2

τ
τF . It is obvious from this result that the PI

filter will emphasize the DC over any other signal, forcing the establishment of

synchronization. More about this subject will be covered in subsequent sections. It is

important to point out that the transfer function given in equation (3.26) is an

approximation of
12

2

)1(1
)1()(
sCRAsCR

sCRAsF
+++
+−

= , which is the real transfer function of

the PI filter. The variable A in this equation is the gain of the operational amplifier in

the circuit. Because this gain is considered to be high, the expression is simplified to that

given in equation (3.26).

Figure 3-11. Input Signal Having Frequency Step Variations

The important consequence of this result is that the PI filter cannot be implemented in the

analog domain, but approximated. However, even when this is true, this statement does

not hold for a digital implementation of the PI filter, which results in a filter having the

exact infinite DC gain desired and indicated before (this subject will be covered in

subsequent sections), (Gardner 1979 [2]). Now that we have some loop filters defined we

can proceed with the analysis.

27

27

3.3.2 Steady-State Error in PLLs Due to Common Excitation Signals

The response of the Phase-locked loop will be examined using the most common

conditions encountered by communication systems: phase step, frequency step, and

frequency ramp. These three excitation signals can be seen as an example of phase

modulation, frequency modulation, and a signal whose frequency is changing linearly

with time.

Figure 3-12. Frequency Step Applied to Input Signal

A phase step can also model an abrupt change in the phase of the input signal,

whereas the frequency step can model a Doppler shift in the frequency of the incoming

signal due to relative motion between transmitter and receiver. A frequency ramp, on the

other hand, can model a change in the Doppler rate, due to acceleration in the motion.

These excitation signals will be used to determine the steady-state error of the system,

which results from the response of the system to these signals. Figures 3-9, 3-11, and 3-

14 show a sine wave subject to each variation mentioned.

The steady-state error of a system is defined as the error when the time period is

large and the transient response has decayed, leaving only the continuous response. To

determine the steady-state error of the PLL due to any of the previously mentioned

28

28

signals, let us first obtain an expression for the error of the closed-loop system, also

called the error transfer function,)(seθ .

Figure 3-13. Equivalent Phase Ramp Applied to Input Signal

Figure 3-14. Input Signal Having Frequency Ramp Variations

From equation (3-18),)()()(sss oie θθθ −= . Equation (3-22) established that

)(
)(

)(
)()(

sFKKs
sFKK

s
ssH

od

od

i

o

+
==

θ
θ . Rewriting equation (3-22) in terms of)(soθ we obtain

)(
)(

)()()()(s
sFKKs

sFKKsHss i
od

od
io θθθ

+
== . Substituting this result into (3.18) we obtain

[]
)(

)()(1)(
sFKKs

sssHs
od

ie +
=⋅−= θθ (3-27).

29

29

Making use of the definition of steady-state error, it would be necessary to

measure the error between the actual and desired response of the system for a large

period of time (until transients have died out) to obtain an idea of the system’s

performance. To understand the meaning of the term actual and desired response of a

system, consider the block diagram of the PLL given in figure 3-2. This diagram is a

linearized model of the PLL in the frequency domain. From figure 3-2, the PLL has an

input signal, having a phase value designated by)(siθ , and an output signal, having a

phase value designated by)(soθ .)(siθ , the phase of the input signal, represents the

desired response of the system.

Figure 3-15. Frequency Ramp Applied to Input Signal

It is the phase that the output signal must have to allow correct demodulation of the input

signal.)(soθ , the phase of the output signal, represents the actual response of the system.

It is the phase that the output signal possesses while the system is trying to match (which

is really approximating via estimation) the phase of the input signal.

30

30

Figure 3-16. Equivalent Phase Parabola Applied to Input Signal

If)(soθ equals)(siθ , and remains like that for a long period of time, then the actual

response of the system has matched the desired response (real systems can only

approximate it closely), which is the phase of the input signal.

Figure 3-17. Frequency Response of PLL For Different Values of Damping Ratio

3.0=ς

3=ς

31

31

Remember that we are dealing with carrier synchronization, a part of synchronous

communications, which requires that the receiving system have phase and frequency

information of the carrier of the input signal, because without this information, the

system will not be able to demodulate the received signal correctly. Mathematically, we

can define the steady-state error of the system as

)(lim te etss θ
∞→

= (3.28),

where sse is the steady-state error of the system, t is a time variable, and)(teθ is the

inverse Laplace transform of)(seθ , (Dorf et al 1995 [10]). Although equation (3.28) can

be correctly employed to calculate the steady-state error of the system, it requires the

calculation of the inverse Laplace transform of the error transfer function)(seθ .

Figure 3-18. Frequency Response of the Phase-Error Transfer Function for Different Values of
Damping Ratio

32

32

Given that most PLL requirements, if not all, are given in the frequency domain, and

since we already have its error transfer function (for which it can be difficult to obtain its

inverse transform), it would be desirable to determine the steady-state error right from the

frequency domain. This can be done utilizing the final value theorem

)(lim)(lim
0

sste esetss θθ ⋅==
→∞→

 (3.29).

Using equation (3.29) we are able to determine an equation that can be applied for PLLs

using any type of loop filter. Substituting equation (3.27) into (3.29) yields equation

(3.30).

)(
)(

lim)(lim
2

00
s

sFKKs
ssse i

od
sesss θθ ⋅

+
=⋅=

→→
 (3.30).

Figure 3-19. Transient Response of the Phase Error Due to a Phase Step

3.0=ς

3=ς

33

33

Before substituting each transfer function of the loop filters provided in section 3.3.1, the

steady-state error analysis will be provided using a general representation, valid for any

type of loop filter, (Best 1999 [1]), NssQ
sPsF
)(

)()(= , where)(sP and)(sQ can be any

polynomial in s , and N is the number of poles at 0=s . Substituting this expression for

)(sF into equation (3.30) we obtain

)(
)()(

)(lim
2

0
s

sPKKsQss
sQsse i

od
N

N

sss θ⋅
+⋅

=
→

 (3.31).

The steady-state error can now be calculated as follows.

Figure 3-20. Transient Response of the Phase Error Due to a Phase Ramp

First consider a phase step applied to the input signal as shown in figure 3-10.

The phase step is defined as)()(tuti ⋅∆Φ=θ , where)(tiθ is the phase of the input signal

3.0=ς

3=ς

34

34

in time, ∆Φ is the magnitude of the phase step, and)(tu is the unit step function. Do

not confuse)(tu with the signals)(tui and)(tuo , which are the input and output signals

of the PLL. Remember that)(tiθ is part of the expression of)(tui presented in equation

(3-1). The Laplace transform of)(tiθ is
s

si
∆Φ

=)(θ . Substituting this equation into

equation (3.31) yields
ssPKKsQss

sQsse
od

N

N

sss
∆Φ
⋅

+⋅
=

→)()(
)(lim

2

0
, which results in a steady-

state error of zero, after solving the expression (0=sse).

Figure 3-21. Transient Response of the Phase Error Due to a Phase Parabola

This result is independent of ∆Φ , and is true for any value of N , including zero, hence,

valid for any type of loop filter. This means that no matter the amplitude of the phase

3=ς

35

35

step and the type of loop filter employed, PLLs can track down and phase-lock to the

signal until the steady-state error is settled to zero.

Consider now a frequency step applied to the input signal as shown in figure 3-12.

For this case, the angular frequency of the signal becomes)()(tut ioi ⋅∆+= ωωω , where

ioω is the center frequency of the input signal, and ω∆ is the magnitude of the frequency

step. In order to use equation (3.31) to analyze the frequency step, we have to express it

in the form of a phase variation.

Figure 3-22. Bode Plot of the Open Loop Transfer Function of the First-Order PLL

By definition,)(tiθ is the integral over the frequency variation ω∆ , thus, tti)(ωθ ∆= ,

which turns out to be a phase ramp. Figure 3-13 shows the equivalent phase ramp

employed. Applying the Laplace transform we obtain 2)(
s

si
ωθ ∆

= . Now, substituting

this result into equation (3.31) yields 2

2

0)()(
)(lim

ssPKKsQss
sQsse

od
N

N

sss
ω∆

⋅
+⋅

=
→

. Simplifying

this expression we obtain ω∆⋅
+⋅

=
→)()(

)(lim
0 sPKKsQss

sQse
od

N

N

sss . This expression can only

K

())(ωjGLog

)(ωLog

-20dB/dec

36

36

become zero if N is greater than or equal to one. This means that loop filters of first

order or higher, with an integrator at 0=s are required to settle the steady-state error to

zero. Loop filters of first order or higher result in PLLs of second order or higher. If a

first order PLL is used, (the loop filter is substituted by an amplifier of gain LFK), and

the steady-state error would be
)0(

)0(
PKK

Qe
od

ss
ω∆

= .

Figure 3-23. Bode Plot of Open Loop Transfer Function of the Second-Order PLL

Since 1)(=sQ and LFKsP =)(, for this case, LFKsF =)(. Hence, sse can be written as

KKKK
e

LFod
ss

ωω ∆
=

∆
= (3.32),

where LFod KKKK = ; this term is known as the gain of the PLL. In control theory, this

constant is referred to as the velocity error constant, vK , (Dorf et al 1995 [10]).

1

1
τ

2

1
τ

nςωω 2=

nω

())(ωjGLog

)(ωLog

-20dB/dec

-40dB/dec

-20dB/dec

37

37

The final analysis considers a frequency ramp applied to the input signal,)(tui .

Refer to figures 3-14 and 3-15 for graphical examples. For a frequency ramp, the angular

frequency of the signal is expressed as tt ioi

•

∆+= ωωω)(, where
•

∆ω is the rate of

change of the frequency, and t represents time. Using the process of the previous

analysis it turns out that
2

)(
2tti

•

∆= ωθ , hence 3)(
s

si

•

∆
=

ωθ .

Figure 3-24. Bode Plot for Open Loop Transfer Function for Second-Order PLL when 5.0=ς

Figure 3-16 shows a graph of the phase parabola derived. Finally, substituting this result

into equation (3.31) yields
•

→
∆⋅

+⋅
= ω

)()(
)(lim 20 sPKsKsQss

sQse
od

N

N

sss . This expression can

only be zero if N is larger than or equal to two. Therefore, the steady-state error will be

zero if the PLL is third-order or higher. Revising previous analysis it turns out that a

first-order PLL will never follow a parabolic phase change (∞→sse), whereas a second-

1

1
τ

2

1
τ

2

12
τ

ωςωω === nn

())(ωjGLog

)(ωLog

20dB/dec

40dB/dec

20dB/dec

38

38

order PLL can track it down with a steady-state error of
)0(

)0(
PKK

Qe
od

ss

•

∆
=

ω . Having this

general expression for the steady-state error of a second-order PLL we can substitute the

transfer function of the loop filters presented in section 3.3.1 to determine their respective

steady-state value. It arises that the steady-state error is infinite for both the active and

passive loop filters. This is true because none of these filters have a pole at 0=s .

Figure 3-25. Bode Plot of Open Loop Transfer Function of PLL Having PI Loop Filter

Thus, for these two types of loop filters, the second-order PLL behaves as first-order,

unless 11 >>τ , and 21 ττ >> , where the transfer function of the passive and active filters

can be rewritten as
s

ssF
1

2 1)(
τ

τ +
≈ , and

s
sKsF LF
1

2 1)(
τ

τ +
≈ , respectively. Consequently,

these two loop filters will behave as the PI filter, which has a pole at 0=s . For the PI

filter, the steady-state error is written as

nω

())(ωjGLog

)(ωLog

2

1
τ

nςωω 2=

-20dB/dec

-40dB/dec

39

39

11 τ

ω

τ

ω
KKKe

od
ss

••

∆
=

∆
= (3.33),

where od KKK = . When the active loop filter is used, and assuming 11 >>τ ,

LFod KKKK = .

Figure 3-26. Lock-In Process: Lωω ∆=∆

Lωω ∆=∆

40

40

Equation (3.33) has not been simplified to
K

ess
1τω

•

∆
= for reasons that will be obvious

later in the next section. Because the steady-state error of the PLL could only be zero for

the PI filter, or a filter behaving like the PI filter, the rest of the analysis performed will

assume a PI filter is used as loop filter, which results in a second-order PLL.

3.3.3 Closed-Loop Transfer Function of the PLL

In the previous section we considered an important aspect of PLL analysis, the

steady-state error resulting from the response of the system to an excitation signal having

phase step, frequency step, and frequency ramp variations.

41

41

Figure 3-27. Unsuccessful Lock-In Process: Lωω ∆>∆

We concluded that only a third-order PLL is able to track all this three type of signals

with a steady-state error equal to zero. However, it is well known that the design and

analysis of third-order PLLs is difficult to perform and, at the end, the design is

accomplished using second-order loop approximations, (Best 1999 [1], Gardner 1979 [2],

Egan 1998 [3], Wolaver 1991 [4], and Lindsey et al 1991 [8]). A second-order loop, tracks

phase and frequency steps with zero steady-state error, but follows the frequency ramp

with an error equivalent to equation (3.33),

1τ

ω
Kess

•

∆
= . Given the importance of the PI

loop filter and the significance of the analysis presented in next section, it would not be

ω∆

Lω∆

minω∆

maxω∆

42

42

appropriate to continue the discussion of PLLs without expressing the specific equations

governing the behavior of the second-order PLL with PI loop filter.

From equation (3.22), the transfer function of a PLL is expressed as

)(
)()(
sFKKs

sFKKsH
od

od

+
= . The transfer function of the PI loop filter as given by equation

(3.26) is
s

ssF
1

2 1)(
τ

τ +
= . Placing this transfer function into equation (3.22) yields

11

22

11

2

)(

ττ
τ

ττ
τ

odod

odod

KKsKKs

KKsKK

sH
++

+
= . In control theory it is customary to express a second-

order system like this one in terms of its damping ratio ς , and natural frequency nω .

This way we can apply to the PLL the vast amount of theory that has been developed to

analyze this type of system. Making use of this concept we can write the previous

equation as

22

2

2
2)(

nn

nn

ss
ssH

ωςω
ωςω
++

+
= (3.34),

where
1

22
τ
τςω od

n
KK

= , and
1

2

τ
ω od

n
KK

= . Equation (3.34) makes evident that the PLL is

a second-order low-pass filter having DC gain equal to one, 1)0(=H . The expression

for the transfer function of the phase error is obtained by substituting)(sF of the PI loop

filter into equation (3.27), thus 22

2

11

22

2

2
)(

nnodod
e ss

s
KKsKKs

ss
ωςω

ττ
τθ

++
=

++
= . Using

43

43

equation (3.30) we can determine an expression for the steady-state error,

)(
2

lim 22

2

0
s

s
se i

nn
sss θ

ωςω
⋅

++
=

→
, which is equal to

2
n

sse
ω
ω
•

∆
= . (3.35).

Comparing equation (3.35) to (3.33), where

11 τ

ω

τ

ω
KKKe

od
ss

••

∆
=

∆
= , it becomes obvious the

decision of not simplifying sse to
K

1 τω
•

∆ . Equation (3.35) relates the steady-state error to

the natural frequency of the second-order PLL. This is a significant relation because

parameters such as the 3-dB bandwidth, dB−3ω , and the noise bandwidth, LB , are directly

related to the natural frequency. The 3-dB bandwidth for a second-order PLL having PI

loop Filter is expressed as, (Best 1999 [1]):

[]2
1

222
3 1)21(21 ++++=− ςςωω ndB (3.36).

Equation (3.36) not only relates the bandwidth of the system to the natural frequency, but

to the damping ratio as well. Assume for a moment that we select 7.0=ς . Inserting this

value into equation (3.36) results in a 3-dB bandwidth of about twice the natural

frequency, ndB ωω 06.23 ≈− . Thus, by establishing the values of the damping ratio and the

natural frequency of the system we establish its 3-dB bandwidth. The relation between

the natural frequency and the noise bandwidth will be presented, along with the noise

theory, in other section. Now that we finally have the closed-loop transfer function of the

44

44

second-order PLL as well as its phase error transfer function, let us determine their

respective frequency response.

The frequency response of the PLL is shown in figure 3-17 for different values of

damping ratio. The damping ratio varies as 0.3, 0.5, 0.7, 1, 2, and 3. The frequency axis

is given by
nω

ω (it has been normalized to the natural frequency of the system, nω), and

both axis are in logarithmic scale. Figure 3-17 presents the PLL as a low-pass filter

capable of tracking phase and frequency variations in the input signal that range from

zero to about its natural frequency. Translating this result to communications, it means

that the PLL is able to track a signal having phase or frequency modulation as long as the

frequency or the frequencies of the signal lie within zero to about nω . (Figure 3-17 also

shows that the value of the normalized frequency
nω

ω where all the graphs intersect has

an approximate value of 2 . This value was determined graphically using Matlab.)

The frequency response of the Phase-error transfer function is shown in figure 3-

18. As with the frequency response of the PLL, the frequency axis has been normalized

by nω , and the response is plotted for different values of damping ratio (0.3, 0.5, 0.7, 1,

2, and 3). The figure shows that the phase error response behaves like a high-pass filter.

Consequently, the phase error during the tracking process of input signals having phase

and frequency modulation smaller than nω remains considerably small. However, for

larger phase and frequency variations the phase error can be as large as the variation itself

45

45

(phase and frequency variation presented by the input signal), meaning that the PLL is no

longer able to maintain phase tracking of the input signal.

The effect of the damping ratio in the dynamic response of the PLL is indicated

by the figures as well. When 1<ς , the response of the system becomes oscillatory, and is

referred to as an underdamped response. On the other hand, for 1=ς , the system is

critically damped, and oscillations are hardly seen in the response. For 1>ς , the system

is said to be overdamped and, as in the previous case, oscillations can be assumed to be

zero. Think of the damping ratio as a measure of responsiveness of the system. When

1<ς , the system responds fast to variations in the input signal. The smaller the damping

ratio, the faster the response of the system, but the larger the oscillations that occur in the

response. If oscillations in the response are big enough, it might be possible that the PLL

would never track and lock to the signal. If, on the contrary, 1≥ς , the response of the

system becomes sluggish and it might be possible that the PLL would never track and

lock to the signal as well. The effect of the damping ratio is also observed in Figures 3-

17 and 3-18. These figures show that the smaller the damping ratio, the larger the spike

in the frequency response of both the phase error and the PLL.

Before going any further, let us talk revise figures 3-19 to 3-21. These are the

transient response of the Phase error due to a phase step, phase ramp, and phase parabola,

respectively. These figures have been plotted using the same damping ratio values used

for the previous figures. It is evident from these figures that the smaller the damping

ratio the larger the overshoot and/or the undershoot in the transient response of the

46

46

system’s phase error. In addition, figures 3-19 and 3-20 show that for a damping ratio

that is either too small or too large, it takes longer for the phase error response to settle to

its final value, zero phase error. For the case of a phase parabola, as shown in figure 3-

21, it takes long to the phase error response to settle to its final value, 2
nω
ω
•

∆ , if the

damping ratio has the characteristics just mentioned. It is important to mention that the

magnitude of the phase parabola applied to the system was normalized to 2
nω , making it

equal to one. For this reason, the transient of the phase error response settles to one. (All

these figures were obtained using Matlab.)

3.3.4 Open Loop Analysis: Bode Plot

Bode plots are very useful to study PLLs because several loop parameters appear

as distinctive points on the plots. For this type of analysis we need the open-loop transfer

function of the system, which will be denoted)(sG . Since we previously presented

various types of PLL, the Bode plot analysis will be developed to include at least first-

and second-order PLLs. The procedure to obtain a Bode plot will not be covered here,

however, the interested reader can refer to a book of basic circuit theory for information

about the subject.

Let us start the analysis with the first-order PLL. From figure 3.2, the open loop

transfer function of a first-order PLL is determined as
s
K

s
KKKsG LFod ==)(. It can be

seen that the only frequency-selective term of this loop arises from the integrator of the

47

47

VCO, which results in a Bode plot consisting of a single straight line with slope –

20dB/dec (minus twenty decibels per decade), as shown in figure 3-22. Before

continuing any further, let us define the term gain crossover. The gain crossover is the

frequency at which 1)(=ωjG or 0dB. Applying this definition to the first-order loop, it

arises that its gain crossover lies at K=ω . For a first-order loop, the loop gain K is the

only parameter available for the designer to determine the loop characteristics.

Remember that for this type of PLL, parameter K determined the magnitude of the

steady state error for frequency step (phase ramp) at the input signal ⎟
⎠
⎞

⎜
⎝
⎛ ∆

=
K

ess
ω .

Consequently, in order to reduce the steady state error, K has to be quite large, which

results in a wider bandwidth (for this loop the 3-dB bandwidth is equal to K), which is

crucial for the dynamic operation of the loop in the presence of noise. It is because of

this characteristic that first-order PLLs are not commonly used.

For Second-order phase-locked loops the analysis will be mostly developed

assuming a passive lag-lead filter, however, the analysis presented applies for PI and

active loop filters as well. Stability will not be covered for second-order analog phase-

locked loops, because they are always stable. The open loop transfer function of the

passive loop filter is
)1(

)1()(
1

2

ss
sKKKsG LFod

τ
τ

+
+

= . Figure 3.23 shows the Bode plot of this

function. It consists of three straight lines with slope decdB /20− , decdB /40− , and

decdB /20− , respectively. The leftmost line of the plot results from the integrator of the

VCO. This line connects to a second line at the point
1

1
τ

ω = , the location where lies the

48

48

pole of the loop filter. This point is known as a lag break. The second breaking point

occurs at the place where lies the zero of the loop filter,
2

1
τ

ω = . This point is known as a

lead break. The Bode plot of figure 3-23 can be used to determine nω , the natural

frequency of the second-order PLL. Take a look at the straight line with slope –

40dB/dec. If we extend this line until it intersects the frequency axis, where 1)(=ωjG

or 0dB, nω will be the frequency value denoted by this intersection. Another important

parameter we can obtain from the Bode plot is nςω2 . To obtain this parameter just

consider the place where the third straight line (with slope –20dB/dec) intersects the

frequency axis, nςω2 will be represented by this frequency value. (If this line does not

touch the frequency axis, then we have to extend the line until the extension touches the

axis.) Consider again the location of nω and nςω2 in the plot. Comparing these two

parameters it turns out that nn ωςω =2 if 5.0=ς . This is equivalent to placing the lead

breaking point where 1)(=ωjG or 0dB. When this happens, nω equals the gain

crossover. A graphical representation of this result is given in figure 3-24. For a second-

order loop, the gain crossover occurs at nςωω 2= . If the damping ratio is selected below

0.5, the response of the PLL becomes highly oscillatory (Best 1999 [1]). This will result

in a Bode plot where the line with slope –40dB/dec passes below the frequency axis, as

seen in figure 3-24.

The analysis just presented for PLLs having an passive loop filter applies for PI

and active filters as well. In fact, the Bode plot for the active loop filter will be exactly

49

49

like the one presented for the passive filter. This is not true for a PLL having PI loop

filter. The theory is the same, but the Bode plot is different. The Bode plot of the open

loop transfer function of this PLL is shown in figure 3-25. This Bode plot is composed of

two straight lines having slope of decdB /40− and decdB /20− , respectively. Since the

PI loop filter has an integrator at 0=s , the Bode plot starts with a slope of decdB /40− .

Remember that it is this pole that gives the PI filter the characteristics needed to make the

PLL track a phase step and phase ramp with steady-state error of zero and a frequency

ramp with steady-state equal to 2
nω
ω
•

∆ . Although not shown here, a high-gain third-order

PLL would have a slope of decdB /60− , resulting from its three poles located at 0=s ,

characteristic that makes it possible for this loop to follow a phase parabola (frequency

ramp) with zero steady-state error.

3.4 Parameters for Dynamic Performance of the PLL: Hold-In, Lock-In,
Pull-In, and Pull-Out ranges

During operation, the PLL is affected by the conditions acting upon the incoming

signal. Some of these conditions were discussed previously as phase and frequency

variations. Three specific cases were discussed, phase step, phase ramp (frequency step),

and phase parabola (frequency ramp). It was shown that the operation of the loop greatly

depended upon the type of loop filter selected. In addition, it was mentioned that for

some parameters, like the selection of the damping ratio, it was possible for the PLL not

to track and lock to a signal. This happened because the response was either too slow

(had no oscillations at all) or too fast (had large oscillations). It is well known that for

50

50

signals having the characteristics presented previously, the loop may never lock to the

signal. Consequently, it is important to study the dynamic characteristics of the PLL that

govern its dynamic response to these signals. These characteristics or parameters are

known as lock-in, pull-in, pull-out, and hold-in ranges.

3.4.1 Lock-In Range

When a PLL is tracking the input signal, the phase and frequency parameters of

its output signal are equal to those of the input (the phase and frequency difference

between both signals is close to zero) hence, we say the PLL has locked to the signal.

Before locking to the signal, the PLL enters a dynamic process where the parameters of

the incoming signal are estimated. These parameters are used to generate an output

signal intended to resemble the phase and frequency of the input. This output signal is

compared to the input. If the estimates are not correct, an error signal is generated. This

error signal is used to correct the estimated parameters. The process continues until the

error signal is zero or settles to a specific value, at which point, lock-in has occurred. It is

desired that the PLL be able to acquire and track the input signal as fast as possible.

There is a frequency deviation ω∆ for which the PLL is able to track the input signal in

just a single beat note in the error signal. Remember from equation (3-4),

[]oioi
oi

f tAAtu ϕθωω −+−=)(cos
2

)(, that the filtered error signal has the form of a

cosine wave when the loop is not locked, which causes the signal to oscillate. If the

frequency deviation is inside the lock-in range then)(tu f will settle to zero after a cycle

or less. This is what is called a single beat note.

51

51

It is desired that the PLL operates in the lock-in range. To calculate the lock-in

range, first assume that the loop is not locked and the input signal has frequency

deviation Lω∆ , where Lω∆ is the lock-in range. Defining the center frequency as c0ω ,

the frequency of the input signal can be expressed as Lci ωωω ∆+= 0 . From equation

(3.5) the frequency of the output signal is)(0 tuK foco +=ωω . Subtracting these two

equations we obtain)(tuK foL −∆=∆ ωω , where ω∆ the frequency difference between

the signals. In order to make ω∆ equal to zero,)(tuK foL =∆ω . Using equation (3.4),

and neglecting)(oi ϕθ − for the moment, the output of the loop filter would be

[]tFKtu LLdf)(cos)()(ωω ∆∆= , where
2

oi
d

AAK = . From this result, the peak frequency

deviation that can be obtained is)(Lod FKK ω∆ . Plugging this result into

)(tuK foL =∆ω we obtain

)(LodL FKK ωω ∆=∆ (3.37).

Substituting)(LF ω∆ for each loop filters given in section 3.3.1 we obtain a non-linear

expression for Lω∆ . Nevertheless, since it is customary that Lω∆ is larger than the loop

filter parameters
1

1
τ

 and
2

1
τ

, and 21 ττ >> we can approximate)(LF ω∆ for each filter as

follows

For the passive filter:
1

2

21

2)(
τ
τ

ττ
τω ≈
+

≈∆ LF (3.38),

For the active filter:
1

2)(
τ
τω LFL KF ≈∆ (3.39),

52

52

And for the PI Filter:
1

2)(
τ
τω ≈∆ LF (3.40).

Using these approximations the lock-in range is given as

For the passive filter: n
od

L
KK ςω
τ
τω 2

1

2 =≈∆ (3.38),

For the active filter: LFn
od

LFL KKKK ςω
τ
τω 2

1

2 =≈∆ (3.39),

And for the PI Filter: n
od

L
KK ςω
τ
τω 2

1

2 =≈∆ (3.40).

Assume for the moment that we are using the PI loop filter and we want to

calculate Lω∆ without using the approximations stated above. In this case, Lω∆ is

expressed as

0)2(4224 =−∆−∆ nLnL ωωςωω (3.41).

Having this non-linear expression, all we have to do is to solve for the roots of Lω∆ ,

which is easily done using Matlab or any graphics calculator such as the HP48GX. When

solving equation (3.41) Matlab will give four possible results for Lω∆ , as it should be.

Select as Lω∆ the largest real and positive result given by Matlab.

Now that we have equations to determine the lock-in range of second-order PLLs,

let us examine its meaning graphically. Figure 3-26 shows a lock-in process that occurs

when the frequency difference ω∆ equals the lock-in range of the PLL, Lω∆ . The sine

wave presented in the figure represents)(tuK fo , which in this case equals Lω∆ . The

figure shows how the frequency of the VCO output signal is increased until it equals that

53

53

of the input. Figure 3-27, on the other hand, show the case where Lωω ∆>∆ . In this

case lock-in does not occur with just a beat note. It is going to take longer for the PLL to

lock to the signal. For this case, acquisition will occur as a pull-in process.

3.4.2 The Pull-In Range

The pull-in process occurs when the frequency difference oi ωωω −=∆ is larger

than Lω∆ . Let us take a look at figure 3-27 again. Remember that)(tuK fo , the VCO

input signal is oscillatory when the PLL is not locked. It can be seen from the figure that

the frequency of VCO output signal oω increases during the positive cycle of)(tuK fo ,

whereas it decreases during the negative cycle. When oω is modulated in the positive

direction, ω∆ reaches a minimum value called minω∆ . When the modulation occurs in

the negative direction, oω reaches a maximum value maxω∆ . During this process oω is

modulated non-harmonically, making the half cycle in which oω is modulated in the

positive direction to last longer than that in which it is modulated in the negative

direction. As a consequence, the average frequency of the VCO is set to a value higher

than its central frequency, reducing the difference between input and output ω∆ . Since

this process is regenerative if occurs as explained, ω∆ is reduced until it reaches the

lock-in range Lω∆ , where the PLL locks to the signal in a single beat note.

Since the process involved in deriving the formulas is very complicated, they will

be presented as given by, (Best 1999 [1]):

54

54

For passive filter: 224
nodnp KK ωςω

π
ω −≈∆ (3.42),

If 21 ττ >> odnp KKςω
π

ω 24
≈∆ (3.43),

For active filter: 224
nodnp KK ωςω

π
ω −≈∆ ,

If 21 ττ >> odnp KKςω
π

ω 24
≈∆ ,

And for PI Filter: ∞→∆ pω (3.44),

where pω∆ is the pull-in range.

3.4.3 The Pull-Out Range

The pull-out range is considered to be the dynamic range for stable operation of a

PLL, (Best 1999 [1]). This range is defined as the frequency step that causes the loop to

lose lock momentarily. When the PLL loses track of the signal because of a large

frequency step, it returns to the lock operation through a pull-in process. Equations for

the pull-out range have not been derived and calculated as in previous sections (this is the

approach followed by references we used to explain this subject in this work). Instead,

the equation provided is the result of computer simulations, (Best 1999 [1] and Gardner

1979 [2]). The pull-out range POω∆ is approximately

)1(8.1 +≈∆ ςωω nPO (3.45).

3.4.4 The Hold-In Range

55

55

Let us assume that the PLL is tracking the input signal and that the center

frequency of the signal equals that of the PLL, c0ω . We start increasing the frequency of

the input signal slowly so that the rate of change
•

∆ω of the frequency is negligible.

Consequently, the phase error eθ is proportional to ω∆ . We continue increasing the

frequency until we reach a limit where the loop loses track of the signal. In the vicinity

of that limit lies a frequency value known as hold-in, which marks the maximum

frequency deviation of the input signal that the loop can tolerate, because after that point

the loop loses track of the signal forever. This critical frequency value is given the name

Hold-in range, and causes the phase error eθ to attain a value equal to
2
π . Although the

hold-in range was referred to as part of the PLL’s dynamic characteristics, it is really a

range where the stability of the loop is conditionally stable. For this reason a PLL that

operates in the hold-in range will be able to track a signal if its parameters (phase and

frequency) remain static in time, since the slightest variation in phase or frequency of the

input signal will make the loop to unlock forever. This static condition is impossible to

maintain in real life due to noise and fluctuations in the signal that can result from

environmental interaction and intrinsic operation of the oscillator generating the signal.

Therefore, a PLL is never operated in this range. Despite this fact, it is important to

know the hold-in range of the loop as a precaution, so that the frequency deviation of the

input signal is kept below this range. However, remember that a frequency deviation

close to hold-in is only tolerated by the PLL if it was already tracking the signal before

the deviation occurred. Thus, if the signal has a frequency deviation close to hold-in, the

56

56

loop will never track the signal, unless the PLL have a PI loop filter (this statement will

be justified later).

The hold-in range is obtained by calculating the frequency offset in the input

signal that causes a phase error eθ equal to
2
π , (Best 1999 [1]). Thus, we start with a

signal whose frequency is given by Hci ωωω ∆+= 0 , where Hω∆ is the hold-in range.

The equivalent phase signal would be tt Hi ωθ ∆=)(. Using the Laplace transform we

obtain 2)(
s

s H
i

ωθ ∆
= . Placing this result into equation (3.30) we obtain

)0(
)(lim)(lim

0 FKK
sste

od

H
esetss

ωθθ ∆
=⋅==

→∞→
. Since the PLL is not operating in the linear

region, the linear model for)(teθ cannot be used, thus,)(teθ is substituted by [])(sin teθ

in the expression. Now, evaluating the resulting expression for the condition when

2
)(πθ =te (hold-in condition) yields []

)0(
1

2
sin)(sin lim

FKK
te

od

H
etss

ωπθ ∆
==⎟

⎠
⎞

⎜
⎝
⎛==

∞→
.

Simplifying the equation we obtain

)0(FKK odH =∆ω (3.46).

Now all we have to do is to substitute the appropriate loop filter transfer function into the

expression to obtain a specific equation for each PLL case:

For the passive filter: odH KK=∆ω (3.47),

For the Active Filter: LFodH KKK=∆ω (3.48),

And for the PI Filter: ∞→∆ Hω (3.49).

57

57

Equation (3.49) implies that every time a PI filter is used, the PLL will eventually track

and lock to the input signal. The only limitation that this PLL can have is the frequency

range covered by the VCO.

Let us finish the discussion of the dynamic characteristics of the PLL by

expressing the relation between them

HpPOL ωωωω ∆<∆<∆<∆ (3.50).

58

58

4 The Analog Costas Loop

4.1 An Overview
In 1956, John P. Costas published the article Synchronous Communications, (Costas

1956 [22]). This article was addressing one of the growing concerns at the time regarding

communication systems. Most commercial and military communication systems were

employing amplitude modulation (AM) techniques to transmit information.

Figure 4-1. The Costas Loop Demodulator

This type of modulation, specifically Double-sideband transmitted carrier AM (DSBWC),

was preferred over others proposed due to the simplicity of the systems used to implement it.

However, continued growth on communication demands could not be easily met by

conventional AM, imposing the need to use other modulation techniques, despite the

additional system complexity. New modulation techniques were proposed and it seemed

obvious that Single-Sideband AM could be used as the logical replacement for conventional

)(ta

)(ta

VCO)(tf

ο90

)(tui

)(1 tuo

)(2 tuo

)(1 tud

)(2 tud

)(tuI

)(tuQ

)(tud)(tu f

)(tm

59

59

AM. Hence, Single-Sideband AM was given a great deal of publicity and support. In theory,

single-sideband (SSB) allows the transmission of information more efficiently than Double-

sideband Transmitted carrier. SSB uses less power and the information transmitted occupies

half the bandwidth required for conventional AM; this characteristic is considered to be its

primary advantage. A major disadvantage, however, is the difficulty in building a transmitter

or an effective receiver, not to mention its susceptibility to jamming. This is not to say that a

SSB transmitter could not be designed for simple operation, but this simplicity was obtained

at the expense of additional complexity in manufacture and maintenance.

This scenario, his involvement with the technology and the increasing need for

efficient and simpler modulation techniques seems to have motivated John P. Costas to

question the actual benefits of SSB and propose an alternative that would efficiently generate

and detect Double-sideband (DSB) suppressed carrier AM signals. DSB suppressed carrier

AM uses the generated power at the transmitter more efficiently, compared to DSB

Transmitted Carrier AM, because no extra energy is required to include the carrier in the

transmitted signal. It was necessary to include the carrier with the transmitted DSB AM

signal because DSB requires synchronous detection and demodulation. This implies that the

receiver has to use an exact copy of the carrier in the received signal to achieve a successful

demodulation process. This copy of the signal carrier has to be synchronized in phase and

frequency. The proposed reception mechanism, known today as the Costas Loop, relies on

the feedback principle related to the Phase-Locked Loop, thereby allowing for the

synchronous detection and demodulation of Double-sideband suppressed carrier AM. Figure

4-1 shows the basic diagram of the Costas Loop.

60

60

Although it may not seem that obvious at first, the Costas Loop seen on the figure is

essentially a system with two Phase-Locked Loops that receive the same input signal, but

operate in phase quadrature to each other, (Costas 1956 [22], and Best 1999 [1]). However, as

the loop moves into and operates at the lock state, it can be shown that it would actually

function as a single PLL. This result will enable the development of a linearized model that

can be used to design an analog Costas Loop following the same approach employed with

analog PLLs.

Unlike conventional PLLs, which require the presence of a carrier in the incoming

signal to lock to, the Costas Loop was designed to receive, extract carrier information and

demodulate a specific type of suppressed carrier signal: DSB suppressed carrier AM. To

accomplish the demodulation process, the signal received is passed through each PLL, which

operating in phase quadrature to each other, remove the effects of the modulation and

estimate the phase and frequency of its carrier. The estimated carrier information is then fed

to a VCO to generate a waveform that is a replica of the carrier. This replica is then used to

demodulate the input signal and to correct the phase and frequency estimates made by the

system.

To identify each of the PLLs composing the Costas Loop and determine their phase

quadrature operation, we ought to take a look again at figure 4-1. Notice the symmetry of the

diagram. The upper and lower sides of the diagram, known as the Arms or Channels, are

composed of a multiplier and a filter. To maintain the symmetry of the system, both filters,

61

61

also referred to as Arm Filters, have to be equal in design; otherwise the operation of the

system would be compromised. On the center of the diagram lie the VCO, a 90°-phase

shifter, the loop filter, and a third multiplier. The loop filter used in the Costas Loop takes its

name from PLL theory, as this filter performs the same operation as that of the loop filter

present in an analog PLL. The PLLs composing the Costas Loop are formed when the

upper- and lower-side arms are connected to the center components through the multipliers.

The phase quadrature operation that takes place between the PLLs is obtained by

using the 90°-phase shifter; which shifts the phase of the VCO output signal by 90 degrees

and feeds it to the lower-side PLL. Because of this shifted signal, this PLL is said to be in

phase-quadrature, hence its side arm is called Q-Arm or Q-Channel. Conversely, the signal

that goes to the upper-side PLL, is not shifted, and so this PLL is said to be in-phase with the

carrier; therefore the side arm of this loop is called I-Arm or I-Channel. As an example,

assume the carrier of the input signal is a sine wave. As the Costas Loop is able to estimate

its phase and frequency, the VCO output will look much like the carrier, a sine wave. This

generated sine wave replica is fed directly to the upper-side arm of the loop, whereas the

lower-side arm receives a 90-degree phase shifted version (cosine wave); this shifted signal

is said to be in phase quadrature. On the other hand, if the carrier were a cosine, the VCO

output signal would be a cosine wave, whereas the shifter output signal would be a sine

wave. Both examples show how no matter the type of sinusoid used as the carrier, the upper-

side arm would always be in phase with the carrier, whereas the lower-side arm would

always be in phase quadrature.

62

62

How is it that having two PLLs operating in phase quadrature allows the

demodulation of a DSB suppressed carrier AM signal? Suppose that the Costas Loop is

locked to the carrier of the input signal and this carrier is a sine wave. From communications

theory we know that in order to demodulate a DSB suppressed carrier AM signal, we have to

multiply the signal by its carrier and low-pass filter the results. This task is accomplished by

the upper-side PLL, namely its multiplier and arm filter. Therefore the output of the I-Arm

filter would contain the demodulated signal. Unfortunately, a PLL cannot track and lock to a

suppressed carrier signal by itself, hence the lower-side PLL had to be added, as well as a

third multiplier. When the Costas Loop is in lock, the output of the Q-Arm will be

approximately zero, and so the output of the third multiplier. The resulting signal in the Q-

channel bases its properties on the quadrature null effect obtained from multiplying two

sinusoids that are exactly 90 degrees apart from each other. Prior to the arm filter, there is a

second component at twice the carrier frequency, but the arm filter eliminates this

component, hence it is not seen at the output. Should a small phase drift occur on either the

input carrier or the generated replica, the output of the I-channel would remain essentially the

same, whereas the signal level at the Q-channel would no longer be zero. Instead, it would

acquire a voltage level proportional to the magnitude of the phase error detected, and its

polarity would equal the I-channel polarity for a positive direction of the phase drift and

opposite polarity for a negative direction of the phase drift. Therefore, by multiplying the

signals on the I- and Q- channels, we obtain the desired DC control signal that is used to

adjust and correct the parameters of the locally generated replica.

63

63

4.2 Time Domain Analysis
The previous section concentrated on the origins of the Costas Loop and presented a

concise description and explanation of its operation and importance. The description

provided, however, lacked the mathematical analysis required to further understand its

operation and achieve a realizable design. This section provides the mathematical analysis,

based on the time domain. The theory provided in this and all other sections of this chapter

was obtained from (Costas 1956 [22], and Best 1999 [1]).

Figure 4-1 shows a block diagram of the analog Costas Loop with components and

signals expressed in the time domain. These components are three multipliers, two arm

filters)(ta , a loop filter)(tf , a VCO and a 90-degree phase shifter. The signals seen on the

figure will be defined as we progress with the discussion.

At the input to the system we have)(tui , defined on equation 4.1 as a DSB

suppressed carrier AM signal with amplitude iA , modulating signal)(tm and a sine wave as

the carrier. This sine wave will have frequency iω and phase iθ . Unless otherwise

specified, amplitude terms will have units of Volts , frequency terms will have units of

ond
radians
sec

 and phase terms will have units of radians . The modulating signal)(tm ,

represents digital data encoded in Non-Return-to-Zero format (NRZ).

)sin()()(iiii ttmAtu θω += (4.1),
)sin()(1 oioo tAtu θω += (4.2),
)cos()(2 oioo tAtu θω += (4.3).

64

64

Although equation 4.1 corresponds to a DSB suppressed carrier AM signal, by defining)(tm

as a NRZ signal, we make equation 4.1 be the definition of the Binary Phase Shift Keying

(BPSK) signal that will be the input to the system. As the Costas Loop has a quadrature-

phase type operation, there are two output signals to be defined:)(1 tuo and)(2 tuo .)(1 tuo is

the signal that is in-phase with the carrier, whereas)(2 tuo will be in phase quadrature to the

carrier. In order to mathematically define each of these signals, first we have to know the

carrier of the input signal. Since the carrier of the input signal is a sine wave, as seen on

equation 4.1, we can define)(1 tuo as a sine wave and)(2 tuo as a cosine wave; when the

system is locked these are the signals that will be seen at the output of the VCO and 90-

degree phase shifter, respectively. Both waveforms will have amplitude oA , frequency iω

and phase oθ .

As mentioned on section 4.1, the Costas Loop can be broken into two PLLs, one

operating in phase and the other in phase quadrature. This configuration gives the Costas

Loop the ability to detect and demodulate DSB suppressed carrier AM signals and any other

signal that can be expressed in this format, such as BPSK. Without a carrier signal added to

the input, a PLL fails to detect and demodulate a signal such as)(tui , because after the

detection and filtering process the signal entering the VCO would be like

)sin(
2

)()(oi
oi

f
tmAAtu θθ −= . In addition to having a wide bandwidth, this signal is subject

to variations in sign resulting from)(tm . As we defined)(tm to be a NRZ signal, its

amplitude varies from V+ to V− ; for simplicity purpose, we will assume that the

magnitude varies from 1 to –1. Due to this change in polarity the VCO sees a phase error of

65

65

πθθθ +−= oie instead of oie θθθ −= , hence, the loop locks in anti-phase with the carrier.

Therefore, in order to solve this problem, the effects of the modulation have to be eliminated.

Eliminating the effects of the modulation is what the Costas Loop does to properly detect and

demodulate the received signal.

Now that we have the input and output signals properly defined, we can proceed with

the analysis of the Costas Loop. Referring again to figure 4-1 we see that)(tui is multiplied

to)(1 tuo and)(2 tuo at the upper- and lower-side multipliers, respectively. Using

trigonometric identities, the signals obtained from these multiplications are:

)2sin()(
2

)cos()(
2

)(1 oii
oi

oi
oi

d ttmAAtmAAtu θθωθθ ++−−= (4.4),

)2sin()(
2

)sin()(
2

)(2 oii
oi

oi
oi

d ttmAAtmAAtu θθωθθ +++−= (4.5).

At these two multipliers phase detection already takes place as the first term on each of their

outputs has a component with phase difference oi θθ − . It is these two components that have

the phase error information the VCO will use to generate a replica of the carrier. Then again,

the VCO will not be able to use this phase error information unless the modulation

component attached to it is removed. At this point, this modulation component is at base-

band and has a bandwidth in Hertz equal to the data rate, R ; the base-band bandwidth of a

BPSK signal is equal to its data rate. Equations 4.4 and 4.5 also have a high frequency term,

which is at twice the carrier frequency, iω2 . These two terms are undesirable and need to be

removed. Removal of these components is accomplished through the arm filters. Although

not considered for this project, it is worth mentioning that the arm filters can be designed to

be matched filters to provide improved noise immunity to the system [8]. Nevertheless, for

66

66

simplicity a low-pass filter can be chosen, which can be designed to approximate a matched

filter by making its bandwidth equals to R , the data rate of)(tm .

Signals)(1 tud and)(2 tud are passed through the arm filters to remove their high

frequency components. For the purpose of this analysis we will assume the arm filters are

low-pass and their output signals are)(tuI and)(tuQ , respectively. These two signals are

represented by equations 4.6 and 4.7. Having the high frequency terms successfully removed

by the arm filters, signals)(tuI and)(tuQ are multiplied to obtain)(tud , as given by

equation 4.8.

)cos(
2

)(
)(oi

oi
I

tmAA
tu θθ −= (4.6),

)sin(
2

)(
)(oi

oi
Q

tmAA
tu θθ −= (4.7).

It is at this multiplier that the modulation component)(tm is removed and the last stage of

the phase detection process takes place. However, unlike conventional PLLs, the Costas

Loop will track a doubled-phase error ()oi θθ −2 , as shown on equation 4.8.

[] [] [])(2sin
8

)()sin(
8

)()(
22

oi
oi

oioi
oi

d
tmAAtmAAtu θθθθθθ −++−−=

[] [] [])(2sin
8

)()0sin(
8

)()(
22

oi
oioi

d
tmAAtmAAtu θθ −+=

() [])(2sin
8

)(
2

oi
oi

d
AAtu θθ −= (4.8)

67

67

Since)(tm was defined as a NRZ signal whose amplitude varies from 1 to –1, squaring this

signal makes it possible to remove its modulating effect as 1)(2 =tm . To finish the process,

signal)(tud is low-pass filtered by)(tf , the Loop Filter, to obtain)(tu f .

() [])(2sin
8

)(2

2

θθ −= i
oi

f
AAtu (4.9),

It is obvious that equations 4.8 and 4.9 represent the same signal, that is, assuming the loop

filter is wide enough to let)(tu f pass through unaffected. Hence, we could ask ourselves:

what is the purpose of the loop filter in the Costas Loop? First of all, based on PLL theory,

we know that it is the loop filter that determines important characteristics of the system, such

as steady-state response to variations in the input, as covered in chapter three. Nevertheless,

the importance of this filter becomes obvious when we include noise effects in the analysis.

As a quick example, let us assume that additive Gaussian noise is present at the input signal

and that this signal has been pre-filtered before being fed to the Costas Loop. The filter used

at this stage is band-pass with bandwidth R2 ; when a BPSK signal is not at base-band

frequency, it occupies a bandwidth of twice its data rate. This signal is fed to the Costas loop

where it is multiplied by a locally generated replica of its carrier, and a 90-degree shifted

version of it, to obtain signals)(1 tud and)(2 tud . These two signals are low-pass filtered by

the arm filters with bandwidth equal to R . This is the bandwidth of signals)(tuI and)(tuQ ,

which includes)(tm plus the noise. At the third multiplier,)(tud the resulting signal has a

bandwidth equal to R . This bandwidth is occupied by the phase error information, which is

at or close to DC level, and the noise, which occupies the whole bandwidth given by R . At

this point the use of the loop filter becomes obvious. This low-pass filter can be designed to

68

68

have a bandwidth much narrower than R , which will reduce the noise fed to the VCO even

further, hence, improving system performance.

Now that we understand the importance of the loop filter in the Costas loop, we can

take the analysis of equation 4.9 a bit further. Suppose the system is locked or close to lock

to the carrier signal. In such case, the phase difference between the carrier of the input signal

and its locally generated replica will be zero or close to zero, hence oi θθ ≈ . If this

assumption holds true, we can use the small angle approximation to simplify equation 4.9.

From the small angle approximation, ()[] ()oioi θθθθ −≈− 22sin . Defining
()

4

2
oi AA

 as dK ,

the phase detector gain (this is the gain at the third multiplier), we obtain

[])(2
2

)(oi
d

f
Ktu θθ −≈

)()(oidf Ktu θθ −= (4.10).

Using the small angle approximation, equation (4.10) shows that the Costas Loop would

actually track a single-phase error when it is at or close to the locked state. This result is very

important, as equation (4.10) is exactly the same outcome obtained on equation (3.8) for the

conventional PLL.

Up to this point, we have developed the discussion and presented equations geared

towards the analysis of the phase-track capabilities of the system, but have not discussed yet

how does the demodulation process takes place. In order to develop this discussion, we have

to make use of equations (4.6) and (4.7). The main goal of the Costas Loop is to recover the

transmitted data, which in this case, it is encoded as a NRZ waveform, and it is received as a

69

69

DSB suppressed carrier AM signal. To do so, it estimates the phase and frequency

parameters of the input carrier, modulated by)(tm , and generates a replica that is used to

correct these estimates. If these parameters are estimated correctly, the loop will move to the

lock state, in which case the phase error will be close to zero; that is, oi θθ ≈ . When this

condition is met, equations (4.6) and (4.7) become equations (4.11) and (4.12).

)0cos()(
2

)(tmAAtu oi
I =

)(
2

)(tmAAtu oi
I = (4.11)

)0sin()(
2

)(tmAAtu oi
Q =

0)(=tuQ (4.12)

These results clearly show that when the Costas Loop is locked,)(tm , the desired

signal, can be obtained directly from the I-Channel. This eliminates the need to implement

extra circuitry to attain its recovery. Since)(tm is multiplied by the constant
2

oi AA , if we set

1=iA and 2=oA ,)(tuI in the I-Channel becomes)(tm .

4.3 Linear Model of the Costas Loop

When we first got involved with the analysis and design of a Costas Loop, most

publications would provide a high level analysis of the system and did not attempt to develop

a simpler linear model, such as that available for PLLs. Why is it that a linear model is

70

70

always available or mentioned on most publications related to PLLs, yet we could not obtain

such a document for the Costas Loop topic? Even though we do not have an answer for this

question, we do know that some of the analysis developed for PLLs can be applied to the

analysis and design of Costas Loops. How is this possible? Is it possible because the Costas

Loop (along with its added components) is still a PLL, and it can be modeled as two PLLs,

one operating in-phase and the other in phase-quadrature? On this section, we will attempt to

provide a linear model for this system, and in order to do so, we will employ some of the

equations provided on the previous sections and the assumption that this system can be

modeled as two PLLs.

Figure 4-2. Block Diagram of Linear Model of the Costas Loop in the Time Domain

So far, the analysis of the Costas Loop is assuming that the input to the system is a

BPSK modulated signal expressed as DSB suppressed carrier AM. What if we consider the

case where the input is just an un-modulated carrier of the form)sin()(iiii tAtu θω += and

the system is already locked to this signal? Equations (4.4) and (4.5) show the output of the

first two multipliers as

)2sin(
2

)cos(
2

)(1 oii
oi

oi
oi

d tAAAAtu θθωθθ ++−−= (4.13)

)2sin(
2

)sin(
2

)(2 oii
oi

oi
oi

d tAAAAtu θθωθθ +++−= (4.14).

4

22
oi AA

)(tf dtKo ∫) (
)(tiθ

)(toθ

+)(tud)(tu f

71

71

The arm filters remove the high frequency terms and based on equations (4.6) and (4.7) their

outputs are

)cos(
2

)(oi
oi

I
AAtu θθ −= (4.15),

)sin(
2

)(oi
oi

Q
AAtu θθ −= (4.16).

These two signals are then fed to the third multiplier, where the result is exactly the same as

that provided by equation 4.8

() [])(2sin
8

)(
2

oi
oi

d
AAtu θθ −= (4.17).

)(tud is passed through the loop filter to obtain

() [])(2sin
8

)(2

2

θθ −= i
oi

f
AAtu (4.18).

If we now assume that the loop is locked or close to lock, equation (4.18) can be expressed as

)()(oidf Ktu θθ −= (4.19).

Figure 4-3. Block Diagram of Linear Model of the Costas Loop in the Frequency Domain

Using the locked state assumption, we can see that equation (4.15) would become the

constant
2

oi AA . It is)(tuQ that will keep the system locked to the carrier. On the next step

4

22
oi AA

)(sF
s

Ko
)(siθ

)(soθ

+)(sUd)(sU f

72

72

of the process,)(tuQ is multiplied to)(tuI , which is the constant
2

oi AA . Since the I-Channel

contribution has become a DC level of magnitude
2

oi AA , I propose to substitute the whole I-

Channel by a gain term equal to
2

oi AA . By implementing this change we will have to remove

three components from the diagram: the multiplier that feeds the signal to the I-Channel, the

third or rightmost multiplier, and the 90-degree phase shifter. This is an important

assumption as the result leads us to a PLL model with a small variation in the phase detector

gain. A block diagram of the resulting model, is presented on figures 2 and 3. Figure 3,

however, shows the linearized model expressed in the frequency domain. From chapter

three, it is obvious that this model has a closed-loop transfer function of the form given by

equation (3.22), that is

)(
)()(
sKFs

sKFsH
+

= (4.20).

For this transfer function, the gain term od KKK ×= . But ()
4

2
oi

d
AAK = , instead of

2
oi

d
AAK = , as it occurs for the conventional PLL. The analysis presented on this section

would be of importance, as it shows that the Costas Loop essentially functions as a PLL

when it is operating in the locked state. It is for this reason that I devoted so much time

presenting the PLL theory on chapter three.

73

73

5 Discrete-Time Model of the PLL

Chapters three and four show the theory that applies to analog phase-locked loops and

analog Costas loops. As part of the theory, time and frequency analysis of both systems was

presented, including linear models on the frequency domain that help define the parameters

for the desired characteristics, understand the response of the system to various excitation

signals and achieve its final design implementation. All the theory included on these two

chapters, can be obtained on any of the references provided along with this project, except

for the time and frequency models developed for the for the Costas Loop. These models

were mainly developed to show the relation between Costas Loops and PLLs, and will be

used later on to design and implement a Costas Loop demodulator. Based on the analog

phase-locked loop (APLL) theory and its similarity to that of the Costas Loop, specifically its

linearized model, we will derive a discrete-time model that can be used to design a discrete-

time PLL or Costas Loop and achieve its subsequent digital implementation.

A digital implementation of a PLL system has many advantages over its analog

counterpart. For example, (Shayan et al 1989 [21]) establishes that a digital PLL has better

dynamic tracking ability because perfect integrators can be realized in the loop filter (only

approximations are implemented in the analog domain). Furthermore, digital

implementations have proven to solve other problems, such as sensitivity to DC drifts,

component saturation, difficulties building higher-order loops, and the need for initial

calibration and periodic adjustment. Considering the specific characteristics of the Costas

Loop, a digital implementation provides yet an additional advantage: complete signal balance

74

74

between I- and Q- channel. It is well known (Costas 1956 [22]) of the Costas Loop depends

upon the balance between the I- and Q-Channel. This balance is achieved by designing both

arm filters with equal characteristics, namely bandwidth, gain and frequency response.

An analog Costas Loop is composed of three multipliers, two arm filters, a loop filter

and a VCO. An analog PLL, on the other hand, does not have arm filters and uses only one

multiplier, along with a loop filter and a VCO. In order to have a discrete-time and

subsequent digital implementation of either a PLL or Costas Loop, while keeping the same

architectural block diagram design as their analog counterparts, each of their components can

be discretized and digitized. Discrete-time implementation of these systems can be realized

by following the procedure presented in (Best 1999 [1]) for linear digital PLLs.

5.1 Discrete-Time Loop Filter

An analog PLL achieves outstanding performance when the loop filter is of the PI

type. The transfer function of this filter is given by equation (3.26) as
s

ssF
1

2 1)(
τ

τ +
= . A

discrete-time version of this filter can be obtained by using the bilinear transformation. The

bilinear transformation enables us to calculate the z -transfer function of a system directly

from its s -transfer function (Laplace transfer function)

1

1

1
12

−

−

+
−

⋅=
z
z

T
s (5.1).

Substituting equation (5.1) into equation (3.26) we obtain)(zF , the z -transfer function of

)(sF ,

75

75

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

⋅

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

⋅
=

−

−

−

−

1

1

1

1

1

2

1
12

1
1
12

)(

z
z

T

z
z

T
zF

τ

τ

1

1
1

1

1

1

2

1

2

11
2

2
2

2

)(−

−

−

−

−
+

=
−

−
+

+

=
z

zbb
z

zTT

zF oτ
τ

τ
τ

 (5.2),

where
1

2

2
2

τ
τ Tbo

+
= , and

1

2
1 2

2
τ
τ−

=
Tb . In (Best 1999 [1]), constants ob and 1b are defined as

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅=

2

1

2
tan

11
2

τ
τ T
Tbo , and

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

2

1
1

2
tan

11
2

τ
τ T
Tb . If the sampling period T is very

small, then the equations presented in (Best 1999 [1]) are equal to the ones just derived here

using the bilinear transformation.

From equation (5.2) we can derive a recursive equation that we can use to implement

the loop filter either physically or by software. (Oppenheim et al 1989 [7]) describes a well

known procedure that can be applied to a rational expression in the z -domain (representing a

Linear time-invariant system) to obtain a linear constant-coefficient difference equation of

the form∑ ∑
= =

−=−
N

k

M

k
kk knxbknya

0 0
][][. For our digital loop filter,

)(
)(

1
)(1

1
1

zU
zU

z
zbbzF

d

fo =
−
+

= −

−

,

where)(zU d is the output signal of the phase detector (input to the loop filter) and)(zU f is

the output of the loop filter expressed in the −z domain. Using the procedure presented in

(Oppenheim et al 1989 [7]), which is also employed in (Best 1999 [1]), we obtain

() ())()(1 1
1

1 zUzbbzUz dof ⋅+=⋅− −−

76

76

]1[][]1[][1 −+=−− nubnubnunu ddoff (5.3),
]1[]1[][][1 −+−+= nunubnubnu fddof (5.4).

Equation (5.3) is a linear constant-coefficient difference equation that can be implemented

through a recursive calculation process. From equation (5.3) we move to equation (5.4),

which indicates that the current value of the loop filter output][nu f , depends on the past

value of its output]1[−nu f , the current value of its input][nud and the past value of its

input]1[−nud , weighted by their respective constants.

5.2 The Numerically Controlled Oscillator

The Voltage-Controlled Oscillator used in the analog PLL generated a sinusoid signal

whose phase and frequency was controlled by the output signal of the loop filter. Since PLLs

are feedback systems, the input signal is compared to that of the VCO output and an error

signal is generated to correct the phase and frequency parameters of the locally generated

VCO signal. This process is exactly followed by DPLLs; however, as other components are

digitized, the VCO is substituted by its digital version, the Numerically Controlled Oscillator

(NCO). This NCO generates a sine wave whose value is known at the sampling instants

nTTTt ,...,2 , ,0= . (Best 1999 [1]) presents a process to derive a recursive equation to

determine the phase of the NCO output signal and attain its subsequent implementation. This

process is shown below.

Equation (3.5) provides the instantaneous angular frequency of the VCO output

signal,)(0 tuK foco +=ωω . The total phase of this signal can be obtained by integrating

77

77

equation (3.5) with respect to time. Back in Chapter 3, when the analysis of the VCO was

presented, we only integrated over the frequency variation)(tuK fo , which resulted in the

parameter)(toθ . c0ω was not used in the calculation because it is a constant that represents

the center frequency of the VCO and it is established and fixed with external components; it

is only the frequency variation term that carries the information to adjust the output

frequency of the VCO. To derive the NCO recursive equation, however, we will have to

calculate the total phase of the VCO output signal by integrating the instantaneous frequency

with respect to time.

()∫ ∫ +== dttuKdttt focoo)()()(0ωωϑ

∫+= dttuKtt foco)()(0ωϑ (5.5).

To develop the recursive equation, let us assume that we sample the Loop Filter output signal

)(tu f and we know its value at sampling instant nTt = . Let us further assume that this

sample stays constant for a whole period of time that we can represent as nTtTn ≤≤−)1(.

Given that)(tu f is constant in an interval equal to a sampling period, we can calculate

)(toϑ∆ , the change in the total phase of the NCO output signal in that interval.

∫ −
+=∆

nT

Tn foco dtnTuK
)1(0])[(ωϑ

nTt

Tntfo
nTt

Tntco nTuKt
=

−=

=

−=
+=∆

)1()1(0][ωϑ

TnTuKnTnTuKnTnTuKTnTnT fofofoccco][][][000 +−++−=∆ ωωωϑ
][0 nTTuKT foco +=∆ ωϑ

()TnuK foco][0 +=∆ ωϑ (5.6).

Assuming that we know the phase]1[−noϑ at sampling instant Tnt)1(−= , we could use

equation (5.6) to extrapolate the total phase][noϑ at sampling instant nTt = , using this

recursive equation

78

78

()TnuKnn focooo][]1[][++−= ωϑϑ (5.7).

The above procedure was presented in (Best 1999 [1]) assuming the time period

TntnT)1(+≤≤ . Although I will not show the derivation required to obtain)(toϑ∆ with

this new interval, the interested reader can very well substitute these new values to prove that

the resulting)(toϑ∆ is the same as that shown in equation (5.6). Using this result, we can

derive another recursive equation. This time, we assume that we know the phase][noϑ at

sampling instant nTt = and we can extrapolate the total phase]1[+noϑ at sampling instant

Tnt)1(+= using the recursive equation

()TnuKnn focooo][][]1[++=+ ωϑϑ (5.8).

Equations (5.7) and (5.8) are recursive equations that implement a digital integrator, also

known as an accumulator. Equation (5.7) could be considered the classical implementation

of an accumulator. Equation (5.8) was obtained directly from (Best 1999 [1]) and has been

added so that we can analyze the implementation using software System View, by Elanix; the

NCO available in this software has an accumulator implementation of the form of equation

(5.8). For both equations, TKo is the gain of the NCO, c0ω is a constant that represents the

center frequency in s
Rads and Tc0ω is its corresponding phase value;][nu f is the output

signal of the discrete-time Loop Filter at sampling instant n . (Oppenheim et al 1989 [7])

shows that it is common practice to represent a discrete-time function like][nTu f as][nu f

by dropping the variable T that represents the sampling period. This is usually done to

normalize the time axis and express it as a sample axis.

79

79

These recursive equations can be easily implemented in software. If we write a

program to calculate][noϑ based on equation (5.7) or]1[+noϑ based on equation (5.8), and

we execute the program for a long period of time,][noϑ and]1[+noϑ will become very

large, causing an overflow. To avoid this situation][noϑ and]1[+noϑ can be limited to a

range of π2 radians, say πϑπ <≤− 2 . (Best 1999 [1]) suggests that to bound][noϑ to the

π2 period πϑπ <≤− 2 , we should subtract π2 whenever][noϑ and]1[+noϑ exceed π .

Having recursive equations (5.7) and (5.8) we can determine their respective transfer

function)(zN , in the −z domain using the procedure presented in (Oppenheim et al 1989

[7]).

()TnuKnn foooo][]1[][+=−− ωϑϑ

())(1)(1 zTUKzz foo =− −ϑ

())(
1)(

)(
1 zN

z
TK

zU
z o

f

o =
−

= −

ϑ (5.9).

When the NCO uses recursive equation

()TnuKnn foooo][][]1[+=−+ ωϑϑ

())(1)(zTUKzz foo =−ϑ

() ())(
11)(

)(
1

1

zN
z

TzK
z

TK
zU
z oo

f

o =
−

=
−

= −

−ϑ (5.9).

Toω was not used to calculate the transfer function because it is a constant whose only

purpose is to establish the center frequency (and its respective phase value) of the NCO.

Equations (5.9) and (5.10) are the transfer function of a specific accumulator. Each

accumulator type is the digital version of the analog integrator that appears in the VCO.

80

80

5.3 Closed-Loop Transfer Function

Now that we have the transfer function of all the components of the digital PLL, we

can determine the closed-loop transfer function. From control theory, the general form of the

closed-loop transfer function is

)()(1
)()()(
zNzFK

zNzFKzH
d

d

+
= (5.11).

Substituting the NCO transfer function given by (5.9) into equation (5.11) we obtain

)(1
)()(1 zTFKKz

zTFKKzH
od

od

+−
= − (5.12).

Substituting the NCO transfer function given by (5.10) into equation (5.11) we obtain

11

1

)(1
)()(−−

−

+−
=

zzTFKKz
zzTFKKzH

od

od (5.13).

Finally, we substitute the transfer function of the equivalent digital PI loop filter,)(zF as

given by equation (5.2), into equations (5.12) and (5.13).

When using equation (5.12) we obtain

)()1(
)()(1

1
21

1
1

−−

−

++−
+

=
zbbTKKz

zbbTKKzH
ood

ood

1
1

21

1
1

21
)(−−−

−

+++−
+

=
zTbKKTbKKzz

zTbKKTbKKzH
odood

odood

21
1

1
1

)2()1(
)(−−

−

+−++
+

=
zzTbKKTbKK

zTbKKTbKKzH
odood

odood

211

11

)1(
1

)1(
)2(1

)1()1()(
−−

−

+
+

+
−

+

+
+

+
=

z
TbKK

z
TbKK
TbKK

z
TbKK

TbKK
TbKK

TbKK

zH

oodood

od

ood

od

ood

ood

81

81

2
2

1
1

1
1

1
)(−−

−

++
+

=
zczc

zddzH o (5.14),

where
1
21

1 +
−

=
ood

od

TbKK
TbKKc ,

1
1

2 +
=

ood TbKK
c ,

1+
=

ood

ood
o TbKK

TbKKd , and
1

1
1 +
=

ood

od

TbKK
TbKKd .

When using equation (5.13) we obtain

11
1

21

11
1

)()1(
)()(−−−

−−

++−
+

=
zzbbTKKz

zzbbTKKzH
ood

ood

2
1

121

2
1

1

21
)(−−−−

−−

+++−
+

=
zTbKKzTbKKzz

zTbKKzTbKKzH
odood

odood

2
1

1

2
1

1

)1()2(1
)(−−

−−

++−+
+

=
zTbKKzTbKK

zTbKKzTbKKzH
odood

odood

2
2

1
1

2
1

1

1
)(−−

−−

++
+

=
zczc

zdzdzH o (5.15),

where 21 −= ood TbKKc , 112 += TbKKc od , oodo TbKKd = , and 11 TbKKd od= .

Closed-loop transfer functions (5.14) and (5.15) have gain terms dK , oK and T . It would

be practical to define a new gain variable to represent the gain of the DPLL. This variable

would be called the digital gain and will be represented as

TKKK odD = (5.16).

 Note that since T has been added as a gain term, the overall digital gain DK is going to be

much smaller than K , the analog gain term, where od KKK = ; this is assuming that 1<<T .

5.4 The Error Transfer Function

In chapter 3 section 3.3.2, we dealt with the steady-state error of the analog PLL

(APLL). To perform that analysis we made use of equation (3.27),)()](1[)(ssHs ie θθ −= ,

the phase error signal. In that equation, the expression)(1 sH− represented the error

82

82

transfer function)(sHe . The same concept applied to analog PLLs can be applied to

DPLLs. The error transfer function can be expressed as)(1
)(
)()(zH

z
zzH

i

e
e −==

θ
θ , where

)()()(zzz oie ϑθθ −= ;)(ziθ and)(zoϑ are the phase of the input and output signals,

respectively. To derive the Error transfer function, we will make use of equations (5.12) and

(5.13). But we will substitute dK , oK and T by TKKK odD = . Using equation (5.12) we

obtain that)(zHe is

)(1
)(1)(1)(1 zFKz

zFKzHzH
D

D
e +−

−=−= −

)(1
1)(1

1

zFKz
zzH

D
e +−

−
= −

−

)()1(
)1()(1

1
21

21

−−

−

++−
−

=
zbbKz

zzH
oD

e (5.17).

Using equation (5.13))(zHe is

11

1

)(1
)(1)(1)(−−

−

+−
−=−=

zzFKz
zzFKzHzH

D

D
e

11

1

)(1
1)(−−

−

+−
−

=
zzFKz

zzH
D

e

)()1(
)1()(2

1
121

21

−−−

−

++−
−

=
zbzbKz

zzH
oD

e (5.18)

Equations (5.17) and (5.18) were obtained assuming)(zF is of the form given by equation

(5.2).

83

83

5.5 The Steady-State Error of the DPLL

Using the final value theorem, the steady-state error was defined in section 3.3.2 as

)(lim
0

sse esss θ
→

= . From (Shayan et al 1989 [21]), the steady-state error is defined in the

−z domain as

)(1 lim)()1(lim
1

1

1
z

z
zzze ezezz θθ ⎟

⎠
⎞

⎜
⎝
⎛ −

=−=
→

−

→
 (5.19).

Before continuing the discussion, it would be a good idea to express equations (5.17) and

(5.18) in terms of z rather than 1−z

)()1(
)1()(

1
22

2

zbzbTKKz
zzH

ood
e ++−

−
= , from equation (5.17);

)()1(
)1()(

1
2

2

bzbTKKz
zzH

ood
e ++−

−
= , from equation (5.18).

Using these results and equation (5.19) we determine that the steady state error for each of

the DPLL with PI loop filter is

)(
)()1(

)1(1 lim
1

22

2

1
z

zbzbTKKz
z

z
ze i

ood
zz θ

++−
−

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

=
→

 (5.20)

)(
)()1(

)1(1 lim
1

2

2

1
z

bzbTKKz
z

z
ze i

ood
zz θ

++−
−

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

=
→

 (5.21).

Since the final result for each of the DPLLs is the same, I will only show the results for

equation (5.21). This way I will not show the same results over and over. I picked equation

(5.21) to show the results because it represents the DPLL implemented (simulated) using

software System View, by Elanix. However, the interested reader can substitute each of the

input signals into equation (5.21) to prove this statement. As we did with the APLL, the

steady-state error of the DPLL will be determined for input signals with variations such as

84

84

phase step, frequency step (phase ramp), and frequency ramp (phase parabola). From

(Lindsey et al 1981 [18]), the phase step, phase ramp and phase parabola are expressed in the

−z domain as

1
 0 −
=

z
zStepPhase θ

20)1(

−
Ω=

z
zTRampPhase

3
1

)1(
)1(

2

−
+Ω

=
z
zzTParabolaPhase

Utilizing the notation presented in chapter 3 for the magnitude of each signal, the above

equations can be rewritten as

1

−
∆Φ=

z
zStepPhase (5.22),

2)1(

−
∆=

z
zTRampPhase ω (5.23),

3

2

)1(
)1(

2

−
+∆

=

•

z
zzTParabolaPhase ω (5.24),

where, ∆Φ , ω∆ , and
•

∆ω represent the magnitude of the phase step, phase ramp, and phase

parabola, respectively.

Having the excitation signals expressed in the −z domain, we are able to proceed

with the steady-state analysis. When the input signal has a phase variation of the form of

equation (5.22), the resulting steady state error is

Phase Step:

1)()1(
)1(1 lim

1
2

2

1 −
∆Φ⋅

++−
−

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

=
→ z

z
bzbTKKz

z
z

ze
ood

zz ,

85

85

0
)()1(

)1(lim
1

2

2

1
=

++−
−∆Φ

=
→ bzbTKKz

ze
ood

zz .

This result agrees with the steady-state error obtained for its analog counterpart. Now the

input signal)(ziθ is a phase ramp, as given by equation (5.23)

Phase Ramp (Frequency Step):

2
1

2

2

1)1()()1(
)1(1 lim

−
∆⋅

++−
−

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

=
→ z

zT
bzbTKKz

z
z

ze
ood

zz ω ,

0
)()1(

)1(lim
1

21
=

++−
−∆

=
→ bzbTKKz

zTe
ood

zz
ω .

Once again, the results obtained agree with those obtained with the APLL. Finally, let us

assume that the input signal is a phase parabola, as given by equation (5.24)

Phase Parabola (Frequency Ramp):

3

2

1
2

2

1)1(
)1(

2)()1(
)1(1 lim

−
+∆

⋅
++−

−
⋅⎟
⎠
⎞

⎜
⎝
⎛ −

=
•

→ z
zzT

bzbTKKz
z

z
ze

ood
zz

ω ,

)()()1(
)1(lim

11
2

2

1 bbKK
T

bzbTKKz
zTe

oodood
zz +

∆
=

++−
+∆

=
••

→

ωω .

Substituting the definition for ob and 1b into the above result shows that the response of the

DPLL to a phase parabola is identical to its analog counter part.

2

1

1)(nodood
z KKbbKK

Te
ω
ω

τ

ωω
•••

∆
=

∆
=

+
∆

= .

As we could see from the steady-state error analysis, the second-order DPLLs

presented in this project have theoretically the same performance as the second-order APLL

86

86

using a PI loop filter. As with the APLL, it is the loop filter that determines the response of

the system to these and any other types of signals that enter the system. Taking a look at the

PI digital loop filter used and the definitions for ob and 1b , where
1

2

2
2

τ
τ Tbo

+
= , and

1

2
1 2

2
τ
τ−

=
Tb , it is obvious that each of the DPLLs will only have the same performance as

the APLL if we express ob and 1b with enough precision as to allow a noticeable difference

in magnitude between them. This is more important when the system is operating at high

frequencies, where the sampling period T is so small that it could be assumed to be

negligible. The idea behind this thought is not to make the mistake of assuming that T is

negligible, which would make 1bbo −= . When this happens, the digital loop filter will

behave like an all pass filter with a gain that equals or approximates
1

2

τ
τ , making the DPLL

behave like a first-order loop. This can be easily proved using the definitions for)(zF , ob

and 1b . If we assume that the sampling period is negligible or its effect is not effectively

accounted for because we did not use enough precision to express ob and 1b , then
1

2

τ
τ

=ob

and
1

2
1 τ

τ
=b . Applying these results to)(zF , which result in 1bbo −= , we obtain

1

2
11

1
1

1

1
1

1
)1(

1
)(

τ
τ

=−=
−
−−

=
−
+

= −

−

−

−

b
z

zb
z

zbbzF o .

Substituting)(zF into)(zH we obtain

1

2

1

2

1

1

2

1

1

2

1
)(

τ
τ

τ
τ

τ
τ

τ
τ

D

D

D

D

Kz

K

zK

zK

zH
+

=
+

=
−

−

. The response of

this system could be very well compared to a first-order PLL. This could be easily seen if we

87

87

calculate the steady-state error for this system as we did previously for the second-order loop.

Using the same example shown above for a phase ramp input signal, we obtain that the

steady-state error for this system is 2

1

21)1()1(

)1(1 lim
−

∆⋅
+−

−
⋅⎟
⎠
⎞

⎜
⎝
⎛ −

=
→ z

zTTKKz

z
z

ze
odzz ω

τ
τ

nodod
z KKTKK

Te
ωτ
ω

τ
τ

ω

τ
τ

ω

2

1

2

1

2

∆
=

∆
=

∆
= . Therefore, this result shows that, like a first-order APLL,

this system will track a phase ramp with a steady-state error different from zero. In fact, the

error is proportional to the magnitude of the phase ramp.

88

88

6 Fixed Point Arithmetic

Fixed-point binary representation uses binary digits to express and manipulate

decimal integer and rational numbers as binary integer numbers. These numbers can be

assumed to be signed or unsigned, and can be manipulated using logic and arithmetic

operations. Manipulating fixed-point numbers could be easily attained using the

hardware-assisted integer operations embedded in any microprocessor. This inherent

quality of fixed-point arithmetic makes its implementation less expensive than floating-

point; that is, in addition to requiring less processing time.

Adhering to the approach followed by (Yates [33]) and combined with examples

and equations provided by (Labrosse 1998 [30]), the following sections will present some

of the theory used to express and handle the four common binary representations known

as unsigned integers, unsigned fixed-point rationals, signed two’s complement integer

and signed two’s complement fixed-point rationals.

6.1 Unsigned Integer and Fixed-Point Rational

An −N bit binary word interpreted as an unsigned integer number can be

expressed as)(0, xUa ; x is an −N bit binary number and Na = for unsigned integers.

The range of values that an −N bit unsigned integer number can take on is determined by

)12()(0 0, −≤≤ N
a xU . Expressing an unsigned integer number as)(0, xUa will be

understandable when we present unsigned fixed-point rational numbers, and express

89

89

unsigned integer numbers as a special case of fixed-point rationals. The value of a

particular −N bit binary number x interpreted as)(0, xUa can be obtained using this

equation

∑
−

=

=
1

0
0, .2)(

N

n
n

n
a xxU (6.1),

where nx represents bit n of x and the dot between n2 and nx means multiplication.

As an example, consider the eight-bit binary number 01234567 0000100000010000 ==x .

The sub index added to each bit indicates the significance and order each bit has in the

binary number. It emphasizes the fact that the theory provided assumes that the least

significant bit, which has sub index 0, is located to the rightmost bit position; therefore,

the order of significance increases from right to left. Interpreting this number as)(0, xUa

results in

7
7

6
6

5
5

4
4

3
3

2
2

1
1

0
0

7

0
0, .2.2.2.2.2.2.2.2)(xxxxxxxxxxU

n
na +++++++==∑

=

160.20.20.21.20.20.20.20.2)(76543210
7

0
0, =+++++++==∑

=n
na xxU

Using this same approach, we can present the theory related to unsigned fixed-point

rationals.

An −N bit binary number x interpreted as an unsigned fixed-point rational can

be expressed as)(, xU ba , where a is the number of integer bits and b is the number of

fractional bits used to represent the fixed-point number. a and b follow this relation

90

90

bNa −= . The value of a particular −N bit binary number x interpreted as)(, xU ba can

be obtained using this equation

∑
−

=

−=
1

0
, .22)(

N

n
n

nb
ba xxU (6.2)

Note that when 0=b equation (6.2) becomes (6.1). For this reason we assume that

unsigned integer numbers are a special case of unsigned fixed-point rationals. The range

of values that an unsigned fixed-point rational number can take on are determined by

)22()(0 ,
ba

ba xU −−≤≤ , where)12(222 −=− − Nbba . As an example, let us use the

same 8-bit binary number we used previously. This time, the 8-bit binary number will be

interpreted as an unsigned fixed-point rational that has the radix point between sub index

locations 3 and 2: 01234567 000.01000000.00010 ==x . For this example, 8=N , 3=b

and 538 =−=a , hence the range of values)(3,5 xU can take on are:

)22()(0 35
3,5

−−≤≤ xU . So the values range from 0 to 875.318/132 =− . Using

equation (6.2) we obtain the value for the specific example as

000.216.21.2.2.22)(343
7

0

3
3,5 ==== −−

=

− ∑
n

n
n xxU .

6.2 Signed two’s complement Integers and Fixed-Point Rationals

An −N bit binary word, interpreted as a signed two’s complement integer

number, can be expressed as)(0, xAa , where 1−= Na . Note that unlike unsigned

integers, where the number of bits representing an integer number was equal to N

(Na =), signed two’s complement integers only use 1−N bits to represent the integer

91

91

part of the number. This occurs because the most significant bit, the leftmost bit,

represents the sign of the number. The value of a particular −N bit binary number x

interpreted as)(0, xAa can be obtained using this equation

∑
−

=
−

− +−=
2

0
1

1
0, .22)(

N

n
n

n
n

N
a xxxA (6.3)

The range of values that a signed two’s complement integer number can take on are

)12()(2 1
0,

1 −≤≤− −− N
a

N xA .

When the −N bit binary word is interpreted as a signed two’s complement fixed-

point rational, it is expressed as)(, xA ba . From this expression we can see that signed

two’s complement integers can be considered a special case of signed two’s complement

fixed-point rationals, as occurred with unsigned integers and unsigned fixed-point

rationals. To see the relation, all we have to do is equal b to zero, and)()(0,, xAxA aba = .

To calculate the value of a particular −N bit binary number, we use equation

⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑

−

=
−

−−
2

0
1

1
, .222)(

N

n
n

n
n

Nb
ba xxxA (6.4)

Equation (6.4) shows that to obtain the expression for signed two’s complement fixed-

point numbers, we multiply equation (6.3) by the scaling factor b−2 . The range of

numbers that can be represented by an −N bit binary are obtained with this relation:

)22()(2 1
,

1 bbN
ba

bN xA −−−−− −≤≤− . For this representation, variables a , b , and N are

related by 1−−= bNa . Examples are provided in the sections below, where we

combine the representation given by (Labrosse 1998 [30]) and (Yates [33]).

92

92

6.3 Logic and Arithmetic Fixed-Point Operations

In the next sections we will examine basic logic and arithmetic operations that can

be applied to signed or unsigned fixed-point rational numbers. The operations we will

cover are addition, multiplication, word-length reduction, and shifting. Before moving

on to next section, we should combine the notations used by (Labrosse 1998 [30]) and

(Yates [33]) to express signed and un-signed fixed-point numbers. On his notation,

(Labrosse 1998 [30]) uses the concept of the mantissa, which essentially consists of the

signed or unsigned integer value of an −N bit binary word. The mantissa, expressed as

m , can be interpreted as)(0, xUa or)(0, xAa . Then, to obtain a fixed-point rational

representation, we multiply by the scaling factor, b−2 . So, we expresses fixed-point

numbers, whether signed or unsigned, as ><>=<− onentSmantissapofixed expint

or, using the changes added, >−<>=<− bSmpofixed int . Combining this notation

with that provided by (Yates [33]), we obtain

>−<>=< bSmxX ba)(, (6.5)

where)(, xX ba could represent)(, xU ba or)(, xA ba ; proper substitution of these functions

can be done as we know what type of number we are working with. This notation will

prove to be useful as we work with logic and arithmetic operations.

6.3.1 Shifting and Word length Reduction

Before introducing the basic arithmetic operations that apply to fixed-point

numbers, it is important to cover the shifting and word length reduction operations first.

93

93

Although the shift operation could be defined as logical or arithmetic, depending on the

implementation, we will adhere to the arithmetic definition used to handle fixed-point

numbers. Shift operations manipulate binary words at the bit level by moving all the bits

of the binary word to the left or the right. A shift is executed either to the left or to the

right by a positive integer number of bits k . An arithmetic shift operation can be

employed to divide or multiply a fixed-point number by a power of two, thereby

modifying its scaling factor. When a fixed-point number is scaled up by k2 , we are

multiplying the number by k2 , which is equivalent to a shift left operation (k bits to the

left). This operation can be denoted as

)()]([),(, xXxXSL kbkabak +−= (6.6).

On the other hand, if we scale down the fixed-point number by k2 , we are dividing the

number by k2 , which implies a shift right operation (k bits to the right). This operation

can be denoted as

)()]([),(, xXxXSR kbkabak −+= (6.7).

Word length reduction implies the extraction of either the n most significant bits

or the n least significant bits from an −N bit binary word. The extracted bits will form

a new binary word with length equal to n ; to keep consistency of variables, we can then

express n as N . This can be done because after the extraction, we will only work with

the new extracted binary word. Following the notation used by (Yates [33]), the extraction

of the n most significant bits of)(, xX ba can be denoted as

)()]([),(, xXxXHI nbaban −= (6.8)

94

94

The extraction of the n least significant bits of)(, xX ba can be denoted as

)()]([),(, xXxXLO bnaban −= (6.9)

Note: For all these operations to work, both k and n must be much smaller than N .

6.3.2 Addition

Two binary numbers, interpreted as signed or unsigned fixed-point rationals, can

only be added if they are both signed or unsigned and have the same word length and

scaling. That is, two numbers)(, xY ba and)(, xW dc can only be added if ca = and db = ;

this also implies that both numbers have the same number of bits, hence WY NN = .

Since ca = and db = , the result of the addition would be

)()()(,,,1 xWxYxX bababa +=+ (6.10)

Equation (6.10) implies that adding two −N bit numbers requires)1(+N bits to express

the result.

6.3.3 Multiplication

The rules that apply to multiplication of two fixed-point numbers are not as strict

as those that apply to addition. The only requirement that must be followed is that both

numbers be signed or unsigned. When multiplying two unsigned fixed-point numbers

)(, xY ba and)(, xW dc , each having YN and WN number of bits, the result would be

)()()(,,),(xWxYxU dcbadbca ×=++ (6.11)

95

95

When multiplying two signed fixed-point numbers)(, xY ba and)(, xW dc , the resulting

number would be

)()()(,,),1(xWxYxA dcbadbca ×=+++ (6.12)

Both equations basically state that the number of bits used to represent the resulting

number equals the addition of YN and WN , the size in bits of each fixed-point number.

In other words, WYX NNN += , where X represents U or A .

6.4 Examples

To better understand the theory provided in the previous sections of these chapter,

let us discuss two examples. All numbers used in these examples will −N bit numbers

interpreted as signed fixed-point rationals and will be expressed using the format

>−<>=< bSmxX ba)(, .

Example 1: Addition of 16-bit signed numbers 15-20480S(x)A1(0,15) =

(0.625) and 1831745)(2)18,3(−=− SxA (0.1211). Express the result as a 16-bit

number.

Although these two numbers have the same number of bits, they cannot be added

because their exponents do not have the same order of magnitude; 1A has an exponent

equal to 15−S and 2A has an exponent equal to 18−S . To be able to add these

numbers, we must convert the number with smaller exponent to the same order of

magnitude as the other. To do this we must divide)(2)18,3(xA − by 333 2232 −×=−s . In

other words, we divide the mantissa by 8 and add 3 to the exponent. Note that all we did

96

96

was to divide)(2)18,3(xA − by 1, as 122 33 =× − . Another way of obtaining the same result

is to shift)(2)18,3(xA − three bits to the right. Using either process, the result would be

153968)(2)15,0(−= SxA . Please, note that if you divide 31745 by 8, the result is

3968.125, however, we truncate the number and keep only its integer part without

rounding it.

Adding 1A and 2A we obtain 1524376)(3)15,1(−= SxA . We know that

1−−= bNa for a signed number. Using this relation we get that 1++= baN . So, for

this example, 171151 =++=N . This extra bit that results from the addition is known as

the carry bit. This bit can be depreciated if the result can still be represented as a 16-bit

number. To verify that the result can be represented as a 16-bit number, we must

determine the range of a 16-bit signed fixed-point rational number. The range is obtained

using)22()(2 1
,

1 bbN
ba

bN xA −−−−− −≤≤− . But since we have expressed the number in the

format given by equation (6.5), it would be easier to use the range for signed integers and

compare the result to the mantissa. In this case we have that

)12()(2 1
0,

1 −≤≤− −− N
a

N xA , gives a range of 32767)(32768 0, ≤≤− xAa . Comparing this

result to the mantissa of 3A , we confirm that this number can be represented as a 16-bit

number; 2437632767 ≥ . So, all we have to do is to depreciate the value of the carrier

and keep the remaining 16 bits. The final result can be expressed as

1524376)()15,0(−= SxA ; 161150 =++=N .

97

97

Example 2: Multiplication of 16-bit signed numbers 15-20480S(x)A1(0,15) =

(0.625) and 1831745)(2)18,3(−=− SxA (0.1211). Express the result as a 16-bit

number.

To multiply these two numbers, just multiply their mantissas and add their

exponents. The result would be 35650137600)(3)35,2(−=− SxA . Since the number of

bits representing the result is equal to the sum of the number of bits in each number,

213 AAA NNN += , 3A is a 32-bit number. From example 1 we know that the highest

positive number that could be represented by a 16-bit number is 32767. Looking at the

mantissa, we realize that we still have to do some processing to express 3A as a 16-bit

number.

Since we want the result to be a 16-bit number, we have to divide 3A by a

number α . To make sure that the mantissa of the result fits the 16-bit range for signed

integer numbers, we must make α equal to 1515 22 −× . As you can see, we are still

dividing by one, so we are not changing the actual value of the fixed-point number. The

result of the division is 2019840)(3)20,13(−= SxA . See that the mantissa of the result

does fit the 16-bit range for a signed integer number. Now all we have to do is extract the

16 least significant bits of)(3)20,13(xA . The result is

2019840)()]([)20,3()20,13(16 −== − SxAxALO .

98

98

7 Designing the Analog Costas Loop

Designing an analog Costas Loop can be attained by combining its theory and

operating principles with those of an APLL. We have previously shown that the Costas Loop

can be linearized and modeled as an APLL if we assume that it is operating in a locked state

or it is close to lock, and the bandwidth of the arm filters is wide enough, when compared to

the bandwidth of the Loop filter. When the Costas Loop was initially introduced by John P.

Costas, its main purpose was the demodulation of double-sideband suppressed carrier AM

signals. Although technically the Costas Loop will be operating as if it was tracking and

demodulating a double-sideband suppressed carrier AM signal, in this project it is actually

going to be demodulating a Binary Phase Shift Keying signal (BPSK). This signal will have

these characteristics:

Carrier Frequency MHzfCarrier 7= ,

Data Rate KbpsKHzDR 300300 == ,

Amplitude VAi 1= ,

Bandwidth KHzDRBW 6002 == .

Starting with this data we can proceed with the design of a Second-Order Analog Costas

Loop with PI Loop Filter.

Overall, there are some parameters and equations that characterize an APLL and,

consequently the Costas Loop. These parameters could be summarized as damping ratio,

natural frequency, bandwidth, noise bandwidth, dynamic operation, phase detector and VCO

gains, and loop filter time constants.

99

99

While establishing the theory behind analog phase-locked loops and Costas Loops,

many authors do not make it easy to understand the relation between the loop gain terms

oK and dK , their meaning and actual use in the design process. In my opinion, the relation

that should be explained better is that between dK , the phase detector gain, and the

magnitude of the input and output signals of the Costas Loop, iA and oA . To avoid this

problem, these relations were defined in chapters three and four for the analog PLL and

Costas Loop, respectively. For the analog Costas Loop, this relation was defined in chapter 4

as
4

22
oi

d
AAK = . Since the amplitude of the input signal has already been established to be 1V

(throughout the discussion of this material we will not be talking about the unit of volts when

referring to amplitudes, instead we will just refer to it as a plain magnitude value; but the

units will always be assumed to be volts), we can start by defining the gain of the phase

detector in the linearized system and calculating the magnitude of the output signal. Setting

the gain of the phase detector to 1=dK , we obtain that the magnitude of the output signal

should be 22
== d

i
o K

A
A . The next gain term to consider would be the gain of the VCO,

oK . The selection of oK is very important as it controls the range of frequencies the VCO

can reach, based on its input signal)(tu f . This gain term, along with the phase detector

gain, compose the overall gain of the analog system, od KKK = . It is this gain parameter

that controls various characteristics of the system, such as lock-in range and steady-state

error. For this specific case we will set the gain of the VCO to KKo 100= ; then the system

gain would be KK 100= . Having established the gain of the system, we have to select a

100

100

suitable value for its damping ratio ς . From chapter 3 we know that in order for a second-

order system to achieve a fast and smooth frequency response, its damping ratio should be

we 0.7, so we will fix this value to 7.0=ς . Another parameter to establish is the natural

frequency of the system.

Although this project does not cover the analysis of noise or optimizations for the

analog Costas Loop or PLL, we will be using the noise bandwidth equation to establish the

relation between the natural frequency of the system and its noise bandwidth. (Best 1999 [1]),

(Gardner 1979 [2]), (Egan 1998 [3]), (Wolaver 1991 [4]), (Stensby 1997 [6]), and (Lindsey et al

1991 [8]) define the noise bandwidth as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

ζ
ζω

4
1

2
n

LB . Based on the defined value for

the damping ratio, we have that nLB ω 5286.0= . Using this relation, we can calculate any of

the two values, as long as one of them is fixed. Fixing the natural frequency to

sec/ 500 radsn =ω , we calculate the noise bandwidth for the system to be HzBL 26.264= .

Although we chose a specific value for the natural frequency to then calculate the respective

noise bandwidth, we could have definitely followed another path in which the noise

bandwidth was previously defined based on the application and design constraints. For many

applications, the noise bandwidth should be very narrow. In such case, we can establish the

desired noise bandwidth first and then calculate the natural frequency. Each of the calculated

parameters: system gains, damping ratio, natural frequency and noise bandwidth, are related

to the linearized closed loop transfer function of the Costas Loop. Now we have to use those

values to calculate the parameters that define the loop filter.

101

101

The loop filter used in this project is a PI-type loop filter. This filter was chosen

because it provides the best response for the system. The parameters that define this filter are

time constants 1τ and 2τ . Using the closed loop transfer function given by equation 3.34, we

can have the following relation:
1

22
τ
τςω od

n
KK

= and
1

2

τ
ω od

n
KK

= , which can be used to

calculate 1τ and 2τ . However, before using these two equations, we have to make sure that

the results comply with the relation 21 ττ a= , where 2>a . This relation was obtained by

calculating the dB−3 frequency of the loop filter:
2
2

2
1

3_
25.0

1
ττ

ω
−

=−dBLF . In order for

025.0 2
2

2
1 >−ττ , it turns out that 21 2ττ > , which results in 2>a ; otherwise, the 3-dB

frequency would have been an imaginary value. (Gardner 1979 [2]) suggests that 1τ and 2τ

can have any relation, although it advises that 21 ττ >> . However, on simulations run using

system view, the analog Costas Loop does not lock to the input signal if 21 2ττ > .

Nevertheless, it is possible that it just takes too long for the system to lock and the limited

resources on the computer used are not enough to show a lock-in result. From

1

22
τ
τςω od

n
KK

= and
1

2

τ
ω od

n
KK

= we obtain that
n

od KKa
ζω2

= . Substituting the respective

value for each variable we get 86. 142
)500)(7.0(2

000,100
==a .

Combining the above equations for nςω2 and 2
nω we derive an equation for 2τ ,

which is 0028.0
500

)7.0(22
2 ===

nω
ζτ . Having this result we can use the relation 21 ττ a= to

102

102

obtain 4.0 86. 142 21 == ττ . We could have also used 21
n

od KK
ω

τ = , however, it is important

to verify that the relation 21 2ττ > always holds. For this system, the linearized closed-loop

transfer function would be
3250700

3250700)(2 ess
essH

++
+

= .

Analog PLL theory emphasizes that the system gain K , can be varied and usually be

given a very large value to ensure proper system response. The system gain can be varied as

required by the design. Nevertheless, whatever its value is, it will affect time constant 1τ .

We know that with the addition of the loop filter, we are able to control the system gain for

overall performance result, whereas keeping a desired system bandwidth. All this is

achieved through time constants 1τ and 2τ in the loop filter. Since
nω
ζτ 2

2 = , it is a and

subsequently 1τ , which alter the loop filter response to compensate for the change in the

system gain; thereby, keeping the same overall system bandwidth. Having determined the

parameters of the PI-type loop filter, we now proceed to the design of the arm filters.

The arm filters process signals)(1 tud and)(2 tud , which are obtained after the input

signal)(tui is multiplied by the in-phase and quadrature-phase output signals)(1 tuo and

)(2 tuo .)(1 tud and)(2 tud are the resulting signal on each arm of the system and each signal

has two frequency components: a DC or base-band component and a component at twice the

input frequency. It is the base-band component that we will use to synchronize the system to

and obtain the data from. In order to extract these base-band components, we have to design

the arm filters to be low-pass and to have a bandwidth equal to or greater than the base-band

103

103

signal, but smaller than DRfCarrier −2 . Since the base-band signal has bandwidth equal to

DR (the bandwidth we are referring to is the single-side bandwidth), the bandwidth of the

arm filters will be equal to DR . Please, note that DR and Carrierf are given in Hertz. We

will express these two frequency terms in Hertz for simplicity, since the data rate can be

expressed in Hertz, instead of bits per second.

Following the bandwidth requirement, we design the arm filters to have a 3-db

bandwidth of KHzDR 300= and a gain of 0-dB in that bandwidth. In addition to this

requirement, we will design the arm filters to be of the Bessel type. Since the phase response

of a Bessel filter remains constant at zero degrees inside the designed bandwidth, it does not

introduce phase variations to the signals that could affect the response of the system. Have to

point out, however, that other type of filters can be used as well. The order of the filter

would depend on the designer and the application, but it is common to use a first-order filter,

which is usually more than enough to get the desired results. This statement about the order

of the filter would become important when designing the digital system, reducing complexity

and computation time.

104

104

8 Simulation Results: Analog Costas Loop Implementation

The results of the design will be provided using simulation software SystemView and

Matlab. Using SystemView we will provide simulation results of the operation of the analog

Costas Loop, and Matlab will be used to show the Bode plot diagrams for the system. To

obtain this bode plot, a simple Matlab program was required. This program is included in

appendix D. Apendix A shows a block diagram of the design in SystemView. The Costas

Loop will be demodulating a BPSK signal with a data rate of 300KHz and a carrier

frequency of 7MHz. The arm filters will be of the Bessel type and will have a bandwidth of

300KHz; we chose a single pole for this filter.

Based on the linear model derived for the analog Costas Loop, the design

implementation done in this project is a second order system. This type of system is always

stable, hence we will not cover stability analysis. We can start providing the results of the

Bode Plot diagram. From equation (3.36), the frequency at which the 3-dB bandwidth of the

system occurs is ndB ωω 06.23 =− . Since the natural frequency of the system sradsn /500=ω

and 7.0=ς , sradsdB /10303 =−ω .

105

105

Frequency (rad/sec)

P
ha

se
 (d

eg
);

M
ag

ni
tu

de
 (d

B
)

Bode Diagrams

-30

-20

-10

0

10

101 102 103 104
-100

-50

0

Figure 8-1. Bode Plot Diagrams

To obtain the magnitude and phase Bode Plot diagrams, we provided the parameters

determined for the system transfer function to a Matlab program. The Bode diagram shows

that the 3-dB frequency of the system is around 1000 rads/s, which properly relates to the

results obtained mathematically.

The simulation results obtained with SystemView will be provided graphically.

These results are divided in four groups, based on the phase and frequency offset assumed for

the carrier if of the input signal on each simulation. The phase and frequency offset

combination for each group is shown on the table below.

106

106

Phase Offset (Degrees) Frequency Offset (Hertz)

0 0

45 0

0 100

0 700

Table 8-1. Phase and Frequency Offset Combinations

Each of the simulation results include graphs for signals)(tuQ ,)(tuI and)(tKu f . For the

case of)(tu f we decided to show the results multiplied by the system gain, 3100eK = . The

first two graphs, figures 8-2 and 8-3 show signals)(tuQ and)(tuI when if , the carrier

frequency of the input signal has a phase and frequency offset equal to zero. As we can see

from the figures,)(tuQ is quickly attenuated and settles to a value that is practically zero

after 800 microseconds; Costas Loop theory indicates that)(tuQ must be zero when the

system is locked.)(tuI , obtained after the arm filter, contains the demodulated data. This

signal settles quickly as well and the magnitude of the recovered NRZ data is definitely

bounded by amplitudes 1 and –1; these are the pick to pick amplitude values for the NRZ

data originally sent. The third graph is the output of the loop filter)(tu f . It started with an

under damped oscillation and quickly settled to zero after 800 microseconds, just as the other

signals did.

107

107

The second simulation assumes a phase offset of 45° or
4
π rads, but the frequency

offset remains unaltered at zero. We will be using degrees as the unit to refer to the phase

offset because this is the unit used by SystemView to establish waveform parameters. The

same applies for the frequency offset. SystemView uses Hertz as the unit to establish

frequency parameters for the system, waveforms and other components, therefore this is the

unit that we will be using in this report. All three figures show that the Costas Loop was able

to track and lock quickly to the input signal as it did in the previous simulation. This time

however, the output signal of the loop filter had a positive oscillation. The amplitude of this

signal settled back to zero as expected, once the system was locked. The time required for

this process still took around 800 microseconds.

The third simulation assumes a frequency offset of 100 Hz and zero phase offset.

Figures 8-8, 8-9 and 8-19 show again that the Costas Loop was still able to track and lock to

the input signal, only this time it took the system longer to settle. Approximately, it took the

system 6ms to lock to this signal. It is important to notice that the settling value for)(tKu f

was in the vicinity of 100, showing the relation between)(tKu f and the system response.

The fourth simulation assumes a frequency offset of 700Hz; the phase offset remains

at zero degrees. It appears from figures 8-11, 8-12 and 8-13 that the system was not able to

lock. At least that is the case in the time window covered by the simulation. However, we

notice that the system is moving in the right direction to lock to the input signal. Although

no graphical result is added, the system was able to lock to this signal after 16ms.

108

108

From PLL theory, the lock-in range of a second-order PLL using PI-type loop filter is

approximately nςω2 , as given by equation (3.40). This results in a lock-in frequency of

700rads/s or 111 Hz for this system. Simulations and comparisons done with a similar PLL

using SystemView showed that both systems had very similar responses to phase and

frequency changes in their respective input signal.

109

109

8.1 Simulation Results with phase and frequency offsets equal to zero

Figure 8-2. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 50mV/Division.

110

110

Figure 8-3. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

111

111

Figure 8-4. Loop Filter Output Signal Multiplied by K=100e3

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 20Hz/Division.

(By multiplying the output of the loop filter by K we obtain a frequency measure.)

112

112

8.2 Simulation Results with phase offset equal to 45 degrees

Figure 8-5. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 200mV/Division.

113

113

Figure 8-6. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

114

114

Figure 8-7. Loop Filter Output Signal Multiplied by K=100e3

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 50Hz/Division.

(By multiplying the output of the loop filter by K we obtain a frequency measure.)

115

115

8.3 Simulation Results with frequency offset equal to 100Hz

Figure 8-8. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 50mV/Division.

116

116

Figure 8-9. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

117

117

Figure 8-10. Loop Filter Output Signal Multiplied by K=100e3

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 50Hz/Division.

(By multiplying the output of the loop filter by K we obtain a frequency measure.)

118

118

8.4 Simulation Results with frequency offset equal to 700Hz

Figure 8-11. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

119

119

Figure 8-12. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

120

120

Figure 8-13. Loop Filter Output Signal Multiplied by K=100e3

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 200Hz/Division.

(By multiplying the output of the loop filter by K we obtain a frequency measure.)

121

121

9 Designing the Digital Costas Loop Demodulator

9.1 Discrete-Time design

Design of the digital Costas Loop should be straightforward from the results obtained

in chapter 7 for the analog Costas Loop. Chapter 5 shows the theory and equations that relate

a second-order APLL with PI-type loop filter to two specific digital counterparts. This

theory establishes a relation between the parameters of the analog phase-locked loop and that

of the digital phase-locked loop system, allowing us to achieve a totally digital

implementation with analog like characteristics and performance. In addition to relating the

parameters of both systems, the equations that define the digital phase-locked loop also relate

the characteristics and performance of the system to the selected sampling period. Therefore,

before going any further, we should establish the criteria to determine the sampling period of

the system. From the sampling theorem of discrete-time signal processing theory

(Oppenheim et al 1989 [7]), we know that the sampling frequency (also considered the system

frequency) sf must be larger than or equal to Maxf2 , where Maxf is the largest frequency in

the signal or signals processed by the system. Consequently, in order to determine Maxf and

subsequently sf , we must determine the frequency range occupied by the signals in the

analog system, the analog Costas Loop. For this analysis we will not use the linear model.

From Chapter 4 we obtain the conglomerate of signals processed by the analog

Costas Loop that have a frequency content higher than DC level. For the readers

convenience these signals are presented below.

122

122

)sin()()(iiii ttmAtu θω +=
)sin()(1 oioo tAtu θω +=
)cos()(2 oioo tAtu θω +=

)2sin()(
2

)cos()(
21 oii

oi
oi

oi
d ttmAAtmAAu θθωθθ ++−−=

)2sin()(
2

)sin()(
22 oii

oi
oi

oi
d ttmAAtmAAu θθωθθ +++−=

)cos(
2

)(
)(oi

oi
I

tmAA
tu θθ −=

)sin(
2

)(
)(oi

oi
Q

tmAA
tu θθ −=

We can start by examining signal)(tui , the BPSK signal that enters the system. Technically,

)(tui occupies a bandwidth equal to twice the Data Rate, DR2 , and its carrier frequency is

π
ω
2

i
if = ; the data rate DR and bandwidth occupied by)(tui comes from the signal

component)(tm . However, for this to be true we must assume that)(tui was filtered prior

to entering the Costas Loop; the filter used is band-pass with single-sided bandwidth equal to

DR2 and center frequency if (if is the center frequency in a range of frequencies occupied

by DR2). This pre-filter is added to eliminate any frequency content outside the desired

frequency range that could have been added to the signal during transmission, reception or

previous processing of the signal. The highest frequency present in)(tui is obtained by

adding its carrier frequency to its data rate, DRfi + . Signals)(1 tuo and)(2 tuo just have a

spectral line at frequency if . Signals)(1 tud and)(2 tud are composed of the sum of two

frequency components, each having a single-sided spectral line at 0 Hz and if2 ; at each

frequency component,)(tm provides a single-sided bandwidth equal to DR and DR2 ,

respectively. Taking this into account, the highest frequency in these signals is DRfi +2 .

123

123

Signals)(tuI and)(tuQ are base-band signals with bandwidth equal to DR , hence the

highest frequency present on these two signals is DR . Finally, although not included in the

list of signals above, we should take a look at signals)(tud and)(tu f . These two signals

have basically a DC component; therefore, their frequency value is practically zero. Based

on this analysis, it turns out that the highest frequency term processed by the system is

DRff iMax += 2 . Having this result, we use the sampling theorem to determine the system

frequency (sampling frequency) sf .

() DRfDRfff iiMaxs 24222 +=+== (8.1),

where Carrieri ff = . From Chapter 7 we know that MHzfCarrier 7= and KHzDR 300= .

Hence, the sampling frequency of the digital Costas Loop has to be at least MHzfs 6.28= ;

we will round this value to MHzfs 30= . For an actual design, the system frequency

(sampling frequency) selected must take into account any frequency variations in the input

signal that could increase the value of Maxf ; an example could be the Doppler effect.

Expressing this additional variation as vf , the sampling frequency could then be expressed as

() viviMaxs fDRffDRfff 224222 ++=++== (8.2).

Now that we have the sampling frequency of the system we can calculate the sampling

period, sT . From (Oppenheim et al 1989 [7])
s

s f
T 1

= thus, substituting sf into this equation,

we obtain that the sampling period of the system is ns
MHz

Ts 33.33
30

1
== .

Before going any further, there is an important rule of thumb that we must follow to

make sure that a second-order digital phase-locked loop operates like a second-order analog

124

124

phase-locked loop. (Lindsey et al 1981 [18]), (Hao et al 1991 [19]), (Aguirre at el 1984 [20]),

and (Shayan et al 1989 [21]) establish that a DPLL will operate like an APLL if its noise

bandwidth is less than or equal to one tenth of its sampling frequency. Using this rule of

thumb, we can derive what is well known as the time-bandwidth product relation.

10
s

L
fB ≤

sL fB 1.0≤

s
s T

f 1
=

1.0=sLTB (8.3).

In (Lindsey et al 1981 [18]) and (Shayan et al 1989 [21]) it was also shown that the

noise bandwidth of the DPLL is equal to that of the APLL when the time-bandwidth product

relation is followed. Therefore, if we follow this relation we can assume that the noise

bandwidth of the digital system is the same as that of its analog counterpart. The time-

bandwidth product relation for our system is 6808.8 −= eTB sL . This quantity is definitely

much smaller than 0.1, hence our digital system should have a frequency response equal to

its analog counterpart. With these results we now proceed to determine the other parameters

of the digital system.

From Chapter 5, equation (5.16), the closed-loop transfer function of the DPLL is

2
2

1
1

2
1

1

1
)(−−

−−

++
+

=
zczc

zdzdzH o , where each of its components is given by 21 −= ood TbKKc ,

112 += TbKKc od , oodo TbKKd = , 11 TbKKd od= and sTT = . It is obvious that all these

components depend on the sampling period sT , the digital loop filter parameters ob and 1b ,

125

125

and the gain terms of the analog system dK and oK . However, these gain terms, along with

the sampling period, are part of the gain of the digital system, defined as the digital gain in

chapter 5, TKKK odD = , equation (5.17). Using the values previously calculated for dK ,

oK and T we determine that the gain of the digital system is

003333.0)933.33)(3100)(1(=−= eeKD . Unlike the analog system, which had a closed loop

gain 3100eK = , the closed loop gain of the digital system is simply 003333.0=DK . This

huge difference in magnitude is the result of sT , the sampling period.

To calculate the parameters of the digital loop filter ob and 1b , we use equation (5.2),

its transfer function 1

1
1

1
)(−

−

−
+

=
z

zbbzF o , where
1

2

2
2

τ
τ Tbo

+
= and

1

2
1 2

2
τ
τ−

=
Tb . Using the

values previously calculated for 1τ , 2τ and T we obtain that 30000417.7 −= ebo and

39999583.61 −−= eb . Please, note that it is important to keep the difference between ob and

1b . Based, on the values just calculated, it would have been very easy to express them as

007.0=ob and 007.01 −=b . We could have also assumed that the sampling period was

negligible (so small in magnitude) and decided to calculate ob and 1b using the relation
1

2

τ
τ

with its respective sign. These two mistakes should be avoided at all cost since, by doing so,

we would change the frequency response of the digital loop filter completely: instead of

responding as a first-order, low-pass PI-type filter, it would respond as an all pass filter with

DC gain equal to
1

2

τ
τ

− . Therefore, no matter how small the magnitude of the sampling

period is, we must take it always into account when calculating the parameters of the digital

126

126

loop filter. This fact will have an impact at the time of deciding the quantization and scaling

used to represent these parameters on a digital implementation.

Finally, it is time to calculate the parameters of the closed-loop transfer function, od ,

1d , 1c , and 2c . Using the values already determined for DK , ob and 1b we obtain that

5 3331139.2 −= edo , 5 3330861.21 −−= ed , 9999766689.11 −=c and 9999766691.02 =c .

The closed-loop transfer function is then expressed as

21

21

 9999766691.0 9999766689.11
)5 3330861.2()5 3331139.2()(−−

−−

+−
−−−

=
zz

zezezH .

9.2 Establishing Fixed-Point Representation of the system parameters

To establish the fixed-point representation of the system parameters we use the theory

provided in chapter 6. It is important to notice that there are some parameters, such as those

in the loop filter transfer function, that we can easily represent as a fixed-point number

(signed fixed-point number for this project). There are others however, that we will have to

consider based on the magnitude of the signals processed by the system. We have to pay

attention to the signal range and desired precision. This seems like a very difficult job, but in

order to make it easier, it is a good idea to run simulations on the analog implementation and

obtain from there the appropriate signal values and ranges that the system should handle.

Doing so we must also consider phase and frequency variations in the input signal and the

respective changes in magnitude seen on other signals in the system,)(1 tud ,)(2 tud and

)(tu f for instance. When the difference in phase between the carrier of the input signal and

127

127

the VCO’s generated replica is close to zero, the amplitude of)(1 tud and)(2 tud does not

reach a magnitude of two. However, when the difference is close to 90°, their amplitudes

reach a magnitude of two very easily; this is true assuming that)(1 tud ,)(2 tud and all the

other signals in the system are as defined in chapters four and five.)(tu f is another signal to

consider, this is because its amplitude is in the order of 310− when the phase error is large

and 610− when the system is locked.

9.2.1 The BPSK signal source

We can start by defining the fixed-point representation of the input signal. This

signal has amplitude bounded by 1 and –1, and we will not consider the effects of noise for

this design. Choosing a total number of 8 bits to represent this signal, the fixed-point

representation would have the format)6,1(A . The fixed-point representation of this signal

was established using a converter token from SystemView’s DSP library. The token was

formatted to handle a signed fixed-point number of 8 bits in size and 6 bits allocated for the

fraction size.

9.2.2 The Pre-filter

The pre-filter in the system is a 4th order band-pass filter of the Bessel-type. The

cutoff frequencies are 6.69e6 and 7.31e6. This filter was designed using SystemView ‘s

linear systems design tool (shown as a token). Based on the results provided by system view,

many of the parameters of this filter were in the order of 510− . These parameters can be

128

128

represented with 24 bits using an)22,1(A format. This format also covers for some of the

parameters that have a magnitude greater than one, but less than two. Simulations should be

run using SystemView with just this filter and the input signal to make sure that no overflow

occurs internally in the filter as a result of calculations when processing the input signal.

Using this type of simulation, we can establish the format of the output signal of this filter as

)20,1(A . Finally, at the output of the filter, we added a converter token to return the format

of the signal to its original value)6,1(A . This is possible because SystemView operates on

the magnitudes of the signals.

9.2.3 The I- and Q- Mixers

The I- and Q- multipliers are next to consider. These multipliers will be handling two

8-bit signals having fixed-point format)6,2(A (input) and)5,2(A (NCO output).

Multiplying two 8-bit numbers results in a 16-bit number, therefore the register size for this

token should be 16 bits long. However, based on the amplitude of this signal and simulation

results we can consider using less bits to represent it and use format)7,2(A , a 10 bit

representation.

9.2.4 The Arm Filters

To design the arm filters, we followed the same process employed for the band-pass

pre-filter. This is a fourth-order Bessel-type low-pass filter with bandwidth 310KHz. A

first-order filter with bandwidth 310KHz could have been designed, as we would have gotten

129

129

results just as good. For this filter we used a 34-bit register to represent its parameters and

the format is)30,3(A . For the output signal we used format)24,3(A ; this format was

validated using simulations. At the output of each filter, we placed a converter token to

change the signal representation format to)14,1(A . We tried to do this type of format change

right from the filter tokens, but this feature is only available through the converter tokens.

9.2.5 The Third Multiplier

The third multiplier would be the next component to consider. This multiplier

processes two signals with samples that are 16-bit long each. So, the register size for this

multiplier is 32 bits and the format for the output would be)28,3(A . The output of this

multiplier was not converted to a different format. Since it has so much information that

requires high precision, we preferred to keep its format intact. To determine if the precision

could be changed, just run a simulation on the analog system and use graphical analysis to

have an idea of the minimum precision required to represent the signal. Then right click on

the SystemView graph that shows this signal to obtain statistical information. This is the

same analysis that should be done with every part of the system.

9.2.6 The Loop Filter

The parameters of the loop filter are very small in magnitude and they required 34

bits for representation and internal calculations of the filter. The format used to represent

these parameters is)32,1(A . For the output of this filter we picked format)27,18(A , a 46-bit

130

130

representation. We chose this format to have enough bits in the representation to execute a

17-bit left shift operation that implements the gain of the NCO. This is the same gain used

for the VCO in the analog system. The only difference with this implementation of the NCO

gain term is that 172 is 131072, which is much larger than 100e3, the gain of the analog

system. For this reason this system will have a bit better of a performance, compared to the

analog one.

9.2.7 The NCO

The final component to design is the NCO. The frequency of the carrier in the input

signal is 7MHz, therefore the central frequency of the NCO has to be 7MHz. On the analog

system, the VCO had a gain equal to 100e3. Hence, it allowed the VCO to oscillate between

frequencies covered by)(tKu f± . The same thing applies to the NCO. Let us start by

considering the relation
3

c
o

FF = , where oF is the output frequency of the NCO and cF is its

clock frequency. In our case, this is the system frequency. This is the relation that must be

followed to make sure that the signal produced by the NCO is a clean one. Previously, we

calculated that the system frequency would be 30MHz, based on the frequency of the input

signal, its data rate, the processing done by the system and the Nyquist sampling rate.

Following the above relation it turns out that oF can be up to 10MHz. This result indicates

that based on the system frequency, the NCO can have a central frequency of 10MHz and

still be able to cover 100KHz of range above and below this value. Another equation to use

in the design is P
c

o
WFF

2
= , where W represents the input to the NCO and P is the size of

131

131

the register in the accumulator (NCO is designed as an accumulator). P
cF

2
 represents the

precision of the NCO, which we will establish as 0.1, therefore, we can have P equal to 28.

Another way to address the calculation of P is by determining the maximum value of W ,

which can be done through simulations. For our design, the size of use accumulator in the

SystemView NCO token is 28 bits. The remaining part would be to determine how many

bits from the accumulator to use to represent the phase.

The NCO also has a parameter for the number of bits to use in the amplitude of the

output signal. This we had already determined to be 8 bits, so we do not have to consider it

at this time. It is important to mention however, that these amplitude bits have nothing to do

with those in the NCO accumulator. The amplitude bits are related to an internal ROM

memory that has these values stored. Each memory locations in this ROM is addressed by

the bits used to represent the phase, which come out of the accumulator register.

Nevertheless, at the output of the NCO, the amplitude bits will be seen by system view as

signed integer, so they will have to be converted to the appropriate format.

For this design, 12 bits from the accumulator register will be used to represent the

phase. SystemView gives the option to use the NCO as either a frequency or phase

modulator. We will use the NCO token as a frequency modulator, hence signal][nKu f will

be connected to this input. The other input, phase modulation, cannot be left unconnected.

The connection to this input should be done through a Custom source token with a constant

output value equal to zero. It is important for SystemView, when running simulations, that

all signals have the same interpretation format. Therefore, the output of the customer source

132

132

must be converted to a signed fixed-point format using a converter. The output of this

converter has to be 12-bits long, as it is the phase representation chosen for this design.

Having designed each of the parts that form the digital Costas Loop, it is time to run

the simulations and get the results. The results of these simulations are provided in the next

chapter. Appendix A shows a block diagram implementation of the digital signal in

SystemView. It also shows the design and simulation window used for the digital design;

this is the window that is seen for any other type of design. Appendix B shows the parameter

definition for each of the tokens used in the digital and analog designs. Appendix C shows

various SystemView windows used to establish some of the system settings for simulations.

Appendix D has Matlab programs that show the system response for the analog and digital

systems as well as the Root locus diagrams for the digital systems. The root locus diagram

can be used to determine the stability of the system, considering that the digital system is not

completely stable (as it occurs with its second-order analog counterpart) and its stability can

be determined as a function of the system gain.

133

133

10 Simulation Results: Digital Costas Loop Implementation

The results of the digital design will be provided using simulation software

SystemView and Matlab, as we did with the analog system. Since the simulation results for

the digital system are the same as those obtained for the analog one, the data provided here

may seem redundant. As with the analog design, we will use SystemView to provide the

simulation results of the operation of the digital Costas Loop, and Matlab to show the Bode

plot diagrams. For a digital system it is customary to plot frequency response diagrams using

a normalized frequency axis that goes from –1 to 1, when we wish to show the double-

sideband bandwidth. However, to show the similarity between the bode plots for this system

and its analog counterpart, we decided to show the frequency axis in rads/s. To obtain the

bode plot, a simple Matlab program was required, and is included in appendix D. Appendix

D also has a Matlab program that plots the root locus for the digital system to determine the

stability based on the system gain Kd. Appendix A shows the block diagram implementation

for the analog and digital system. Appendix B shows the parameters for each of the tokens

used in the digital and analog implementation. Appendix C shows some system windows

used to establish SystemView simulation settings.

To obtain the magnitude and phase Bode Plot diagrams, we provided the parameters

determined for the system transfer function to the Matlab program. The Bode diagram shows

that the frequency and phase response of the system is equal to the analog Costas Loop

(based on the linear model).

134

134

The digital Costas Loop also will be demodulating a BPSK signal with the same characteristics used

on the analog system: data rate of 300KHz and carrier frequency of 7MHz.

Frequency (rad/sec)

P
ha

se
 (d

eg
);

M
ag

ni
tu

de
 (d

B
)

Bode Diagrams

-30

-20

-10

0

10

101 102 103 104
-100

-50

0

Figure 10-1. Bode Plot Diagrams

The simulation results obtained with SystemView are provided graphically in the next

sections. The results are provided based on the phase and frequency offset assumed for the

carrier if of the input signal on each simulation. The phase and frequency offset

combination for each simulation is shown on the table below.

135

135

Phase Offset (Degrees) Frequency Offset (Hertz)

0 0

45 0

0 100

0 700

Table 10-1. Phase and Frequency Offset Combinations

Each of the simulation results include graphs for signals][nuQ ,][nuI and][nKu f . For the

case of][nu f we decided to show the results multiplied by the external gain, 3100eKo = ;

the NCO token does not provide a gain option as the VCO does. The first two graphs,

figures 10-2 and 10-3 show signals][nuI and][nuQ when if , the carrier frequency of the

input signal has a phase and frequency offset equal to zero. As we can see from the figures,

][nuQ is quickly attenuated and settles to an average value of zero at around 800

microseconds; Costas Loop theory indicates that][nuQ must be zero when the system is

locked.][nuI , obtained after the arm filter, contains the demodulated data. This signal

settles quickly as well and the magnitude of the recovered NRZ data is definitely bounded by

amplitudes 1 and –1; as before, these are the pick to pick amplitude values for the NRZ data

originally sent. The third graph is the output of the loop filter][nu f . It started with an under

damped oscillation and quickly settled to an average value of zero at around 800

microseconds, just as the other signals did.

136

136

The second simulation assumes a phase offset of 45° or
4
π rads, but the frequency

offset remains unaltered at zero. We will be using degrees as the unit to refer to the phase

offset because this is the unit used by SystemView to establish waveform parameters. The

same applies for the frequency offset. SystemView uses Hertz as the unit to establish

frequency parameters for the system, waveforms and other components, therefore this is the

unit that we will be using in this chapter to refer to frequency. All three figures show that the

Costas Loop was able to track and lock quickly to the input signal as it did in the previous

simulation. This time however, the output signal of the loop filter started with a positive

oscillation. The amplitude of this signal settled back to zero as expected, once the system

was locked. The time required for this process still took around 800 microseconds.

The third simulation assumes a frequency offset of 100 Hz and zero phase offset.

Figures 10-8, 10-9 and 10-19 show again that the Costas Loop was still able to track and lock

to the input signal, only this time it took the system longer to settle. Approximately, it took

the system 6ms to lock to this signal. It is important to notice that the settling value for

)(tKu f was in the vicinity of 100 (amplitude), showing the relation between)(tKu f and the

system response.

The fourth simulation assumes a frequency offset of 700Hz; the phase offset remains

at zero degrees. Unlike its analog counterpart, it appears from figures 10-11, 10-12 and 10-

13 that the system is locking to the input signal. The reason for this difference is the fact that

this system has an NCO gain of 172 , which is larger than the VCO gain of 100e3 in the

analog system.

137

137

10.1 Simulation Results with phase and frequency offsets equal to zero

Figure 10-2. In-Phase Output Signal

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 500mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

138

138

Figure 10-3. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 5mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

139

139

Figure 10-4. Loop Filter Output Signal Multiplied by 172

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 5Hz/Division.

(By multiplying the output of the loop filter by KD we obtain a frequency measure.)

140

140

10.2 Simulation Results with phase offset equal to 45 degrees

Figure 10-5. In-Phase Output Signal

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 500mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

141

141

Figure 10-6. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 200mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

142

142

Figure 10-7. Loop Filter Output Signal Multiplied by 172

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 5Hz/Division.

(By multiplying the output of the loop filter by KD we obtain a frequency measure.)

143

143

10.3 Simulation Results with frequency offset equal to 100Hz

Figure 10-8. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

144

144

Figure 10-9. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 50mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

145

145

Figure 10-10. Loop Filter Output Signal Multiplied by 172

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 20Hz/Division.

(By multiplying the output of the loop filter by KD we obtain a frequency measure.)

146

146

10.4 Simulation Results with frequency offset equal to 700Hz

Figure 10-11. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

147

147

Figure 10-12. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

148

148

Figure 10-13. Loop Filter Output Signal Multiplied by 172

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 20Hz/Division.

(By multiplying the output of the loop filter by KD we obtain a frequency measure.)

149

149

11 Materials and Methodology Employed

Since IC technology became available, there has been a trend to implement many of

the systems originally existing in the analog domain to the digital domain. The Costas Loop

is a good example. Even when that is the case, there was little information available about

this subject; but this was not the case for the phase-locked loop. There was a wealth of

information on IEEE publications covering different aspects of the analog Costas Loop

analysis, yet almost no data about digital implementations. The vast majority of the data

covered analog Costas Loop and Phase-Locked loops, and digital phase-locked loops. That

was the case for publications on the web. It was not until the past few years that abundant

data became available about the Costas Loop subject, most of them about experiments or

courses lectures.

Another missing link in the theory about Costas Loops was the lack of a linear model

that could make easier its analysis and design. The lack of this model made things a bit

difficult in the beginning, but as the theory became familiar, especially its PLL analysis, it

became obvious that the Costas Loop could be modeled as a linear PLL. This was the first

step towards the realization of this project. Then, it was a matter of combining Costas Loop

theory with the linear PLL theory to obtain a suitable design with characteristics that could

be easily determined.

The linear model developed was then used to obtain a discrete-time model to be used

for the final digital implementation of the system. So, the process followed is basically to

design an analog Costas Loop using the linear model developed and then use the parameters

150

150

obtained to design its digital counterpart. To allow an easy implementation, signed fixed-

point arithmetic was employed. This number representation format was chosen because it is

easily available on DSP and FPGA chips and makes processing a lot faster than say, floating

point.

The implementation of the analog and digital systems was done using the 2001

student version of the simulation software SystemView, by Elanix. This software allows

limited design capabilities for DSP and communications systems. However, the capabilities

supported in this version were enough to accomplish both analog and digital designs. It

would be better, however, to use an unrestricted version of the software, which can be easily

obtained especially through Elanix University programs (Educational purposes, of course).

Information about SystemView can be obtained at www.elanix.com. Other type of analysis,

such as bode diagrams, was done using a 1997 student version of Matlab 5.0. This version

comes with the necessary toolboxes to support discrete signal processing and controls

analysis. These toolboxes are Signal Processing and Controls. More Information about

MatLab can be obtained at www.mathworks.com.

SystemView has many tokens (tools) available to simulate many analog and digital

communications devices. The token used to simulate digital systems are called DSP tokens.

There are many functions available within each group (DSP and analog), but the ones we

used are listed below. For example, the analog design used a BPSK source generator, linear

filters from the linear systems design tool, multipliers, VCO, and analysis tokens (Sinks) that

obtained the results from the simulation and displayed them graphically. For the digital

151

151

implementation, we used components that could implement these same functions digitally:

Converter, multipliers, digital filters designed through the linear systems design tool, shifter,

NCO and the analysis tokens (Sinks). The design process for the digital system using

SystemView is very well explained in chapter 9, so we would advise to refer to this chapter

for more details.

152

152

12 Conclusion and Future Work

The design of the digital Costas Loop presented in this project was based on

digitizing each of the components that formed the system. The purpose of this

transformation was to obtain a digital system that could have the same characteristics,

response and performance as the analog implementation. To make this happen, we first

derived a linear model of the analog Costas Loop that resembled the linear model of the

analog phase-locked loop. Then we continued with the digital transformation and

implementation of the system using SystemView. The results of various simulations were

provided for both analog and digital systems. Graphical results showed that both systems

tracked and locked to input signals that had the same characteristics. The response of both

systems was comparable, and it was obvious as we added phase and frequency offsets to the

input signal.

Certainly, this type of implementation is referred to as a software system by (Best

1999 [1]). However, even when a software implementation of this system is possible using

high-speed programmable DSP devices, advances in technology can make the

implementation happen in hardware directly. Definitely, there are changes that would have

to be added to such an implementation and an example is the Digital Costas Loop chip

provided in (Best 1999 [1]) by Harris Corporation, now Intersil. This chip is the HSP50210,

that has applications on Satellite receivers and modems, digital carrier tracking, BPSK,

QPSK, 8-PSK OQPSK, FSK, AM and FM demodulators.

153

153

The Costas Loop designed in this project did not include noise effect, false lock, cycle

slipping, and other optimization and performance analysis. Therefore, for future work we

can consider extending the analysis currently provided to any one of these analysis proposed,

including an actual physical implementation of the system.

154

154

Bibliography

1. Best, Roland E.: Phase-Locked Loops, Design, Simulations, and Applications, 4th ed.,

McGraw-Hill, New York, 1999.

2. Gardner, Floyd M.: Phaselock Techniques, 2nd ed., John Wiley and Sons, New York,

1979.

3. Egan, William F.: Phase-Lock Basics, John Wiley and Sons, New York, New York,

1998.

4. Wolaver, D. H.: Phase-Locked Loop Circuit Design, Prentice Hall, New Jersey, 1991.

5. Dixon R. C.: Spread Spectrum System, John Wiley and Sons, New York, 1984.

6. Stensby, J. L.: Phase-Locked Loops, Theory and Applications, CRC Press LLC,

Florida, 1997.

7. Oppenheim Alan V., and Schafer Ronald W.: Discrete-Time Signal Processing,

Prentice-Hall, New Jersey, 1989

8. Lindsey, William C., and Simon, Marvin K.: Telecommunication Systems

Engineering, Prentice-Hall, New Jersey, 1973, Reprinted by Dover Publications, New

York, 1991.

9. Roden, Martin S.: Analog and Digital Communication Systems, 3rd ed., Prentice-Hall,

New Jersey, 1991.

10. Dorf, Richard C., and Bishop, Robert H.: Modern Control Systems, 7th ed., Addison-

Wesley, New York, 1995.

11. Goldberg, Bar-Giora: Digital Techniques in Frequency Synthesis, McGraw-Hill, New

York, 1996.

155

155

12. Kamperman F.L.A.J.: Design of an all-digital direct-sequence spread-spectrum

receiver, PIRM ‘94/WCN, pp 1364-1367.

13. Gupta, Someshwar C: Phase-Locked Loops, Proceedings of the IEEE, Vol 63, No 2,

pp 291-306, February 1975.

14. Spiegel, Murray R.: Manual de Fórmulas y Tablas Matemáticas, McGraw-Hill,

Mexico, 1993.

15. Houpis, Constantine. H., and Lamont, Gary B.: Digital Control Systems, 2nd ed.,

McGraw-Hill, New York, 1992.

16. Hsieh, G. C., and Hung, J. C.: Phase-Locked Loop Techniques-A Survey, IEEE

Transactions on Industrial Electronics, Vol. 43, No. 6, pp. 609-614, December 1996.

17. Kratzet, Stephen: PLL Hardware Design and Software Simulation Using the 16-bit

Version of SystemView by Elanix, Application Note AN102A, Elanix Inc., April 7,

1997.

18. Lindsey, William C., and Chak Ming Chie: A Survey of Digital Phase-Locked Loops,

Proceedings of the IEEE, Vol. 69, No. 4, pp. 410-431, April 1981.

19. Hao, Shi, and Puqiang Yan: A High Lock-In Speed Digital Phase-Locked Loop,

IEEE Transactions on Communications, Vol. 39, No. 3, pp. 365-368, March 1991.

20. Aguirre, S., and Hurd, W. J.: Design and Performance of Sampled Data Loops for

Subcarrier and Carrier Tracking, JPL TDA Progress Report 42-79, pp. 81-95, Jet

Propulsion Laboratory, Pasadena, California, April 1984.

21. Shayan, Y. R., and Le-Ngoc, T.: All Digital Phase-Locked Loop: Concepts, Design,

and Applications, IEEE Proceedings, Vol. 136, Pt. F, No. 1, pp. 53-56, February

1989.

156

156

22. Costas, John P.: Synchronous Communications, Proceedings of the IRE, pp. 1713-

1718, December 1956.

23. Simon, Marvin K., and Lindsey, William C.: Optimum Performance of Suppressed

Carrier Receivers with Costas Loop Tracking, IEEE Transactions on

Communications, Vol. COM-25, No. 2, February 1977.

24. Lindsey, William C., and Simon, Marvin K.: Optimum Design and Performance of

Costas Loop Receivers Containing Soft Bandpass Limiters, IEEE Transactions on

Communications, Vol. COM-25, No. 8, August 1977.

25. Data Sheet HSP50210, Digital Costas Loop, Intersil Corporation,

http://www.intersil.com, January 1999.

26. Baier J., and Ertl R.: Increasing the Frequency Resolution of NCO-Systems Using a

Circuit Based on a Digital Adder, IEEE Transactions on Circuits and Systems-II:

Analog and Digital Signal Processing, Vol. 43, No. 3, March 1996.

27. Data Sheet HSP45116, Numerically Controlled Oscillator/Modulator, Intersil

Corporation, http://www.intersil.com, May 1999.

28. Vankka, Jouko: Methods of Mapping From Phase to Sine Amplitude in Direct Digital

Synthesis, IEEE International Frequency Control Symposium, pp. 942-950, 1996.

29. Technical Staff of Osicom Technologies Inc.: Direct-Digital Frequency Synthesis, A

Basic Tutorial, November 1999, http://www.osicom.com/notes/ddstutor.html.

30. Labrosse, Jean J.: Fixed-Point Arithmetic for Embedded Systems, C/C++ Users

Journal, www.cuj.com. February 1998.

157

157

31. Instrumentation Newsletter, Using Stable Timing and PXI Phase-Locking

Technology to Take Better Measurements, National Instruments, http://ni.com,

Second Quarter 2000.

32. Sklar, Bernard: Digital Communications Fundamentals and Applications 2nd Edition,

Prentice Hall PTR, New Jersey, 2001.

33. Yates, Charles R: Fixed-Point Arithmetic An Introduction,

personal.bellsouth.net/y/a/yatesc/fp.pdf

158

158

A. Appendix: Diagrams of the Analog and Digital Costas Loops

Figure A-1: SystemView Schematic of the Analog Costas Loop

159

159

Figure A-2: SystemView Schematic of the Digital Costas Loop

160

160

Figure A-3: Design and Simulation Window for SystemView

161

161

B. Appendix: Parameters Definition for SystemView

Source: PSK
Amp = 1 v
Freq = 7.e+6 Hz
Phase = 10 deg
Rate = 300.e+3 Hz
Symbols = 2
Output 0 = Modulated Carrier
Output 1 = Baseband Symbols
(Token 0)

BPSK-Modulated Signal

Operator: Linear Sys
DSP Mode Disabled
FPGA Aware = True
Butterworth Bandpass IIR
3 Poles
Low Fc = 6.69e+6 Hz
Hi Fc = 7.31e+6 Hz
Quant Bits = None
Init Cndtn = Transient
(Token 1)

Pre-Filter

Operator: Linear Sys
DSP Mode Disabled
FPGA Aware = True
Butterworth Lowpass IIR
3 Poles
Fc = 310.e+3 Hz
Quant Bits = None
Init Cndtn = Transient
(Tokens 4 & 5)

I- & Q-Arm Filters

Operator: Linear Sys
DSP Mode Disabled
FPGA Aware = True
Custom Laplace
1 Sections
Quant Bits = None
Num1 = (2.8e-3)s+1
Den1 = (400.e-3)s
Init Cndtn = Transient
(Token 7)

Loop Filter

Function: FM
Amp = 2 v
Freq = 7.e+6 Hz
Phase = 0 deg
Mod Gain = 100.e+3 Hz/v
Output 0 = Quadrature (Sin)
Output 1 = In-Phase (Cos)
(Token 8)

VCO

Multiplier: Non Parametric
Inputs from 1 8
Outputs to 4
(Token 2 & 3)

I- & Q-Phase Detectors.

Sink: Analysis
Input from t4 Output Port 0
(Token 9 & 10)

Sink Tokens That Store The
Results Of The Simulations.

Table B-1: Parameters Definition for the Components of the Analog Costas Loop

162

162

Source: PSK
Amp = 1 v
Freq = 7.003e+6 Hz
Phase = 20 deg
Rate = 300.e+3 Hz
Symbols = 2
Output 0 = Modulated Carrier
Output 1 = Baseband Symbols
(Token 0)

BPSK Signal Generator

DSP: Converter
FPGA Aware = True
Data Type Out = Signed Fixed Pt
Register Out = 8 bits
Fraction Size = 6 bits
Convert Mode = Numeric Value
Output 0 = Data
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Token 1)

Converts Samples On The BPSK
Signal To Signed Fixed-Point.

Operator: Linear Sys
DSP Mode Enabled
FPGA Aware = True
Bessel Bandpass IIR
4 Poles
Low Fc = 6.69e+6 Hz
Hi Fc = 7.31e+6 Hz
Quant Bits =24
Init Cndtn = Transient
Coeff Data Type = Signed Fixed
Pt
Coeff Register = 24 bits
Coeff Fraction Size = 22 bits
Coeff Convert Mode = Numeric
Value
Data Type Out = Signed Fixed Pt
Register Out = 22 bits
Fraction Size = 20 bits
Output Convert Mode = Numeric
Value
Output 0 = Data
Output 1 = Overflow Flag
(Token 2)

Pre-Filter: Filters The BPSK
Signal To Limit Its Bandwidth

DSP: Converter
FPGA Aware = True
Data Type Out = Signed Fixed Pt
Register Out = 8 bits
Fraction Size = 6 bits
Convert Mode = Numeric Value
Output 0 = Data
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Token 5)

Converts The Output Of The Pre-
Filter to A(1,6) Format.

DSP: Multiplier
FPGA Aware = False
Data Type Out = Signed Fixed Pt
Register Out = 10 bits
Fraction Size = 7 bits
Convert Mode = Numeric Value
Output 0 = Data
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Tokens 3 & 4)

Multipliers That Act As The I &
Q Phase Detectors.

Comm: NCO
Amp Bits = 8
Acc Bits = 28
Phase Bits = 12
Freq Offset = 7.e+6 Hz
Phase Offset = 0 deg
Freq In = t16 Output 0
Phase In = t17 Output 0
Output 0 = InPhase
Output 1 = Quadrature
(Token 19)

Generates Local Carrier Replica
Of The Input Signal.

Table B-2: Parameters Definition for the Components of the Digital Costas Loop

163

163

DSP: Converter
FPGA Aware = True
Data Type Out = Signed Fixed Pt
Register Out = 8 bits
Fraction Size = 5 bits
Convert Mode = Numeric Value
Output 0 = Data
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Tokens 6 & 7)

Converts The Processed Output
Of The NCO to A(2,5) Format.

DSP: Bit Shift
Direction = Right
Shift By = 6 bits
FPGA Aware = False
Output 0 = Data t6
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
Data Type Out = Signed Fixed Pt
Register Out = 16 bits
Exponent Out = 5 bits
Max Rate (Port 0) = 30e+6 Hz
(Token 23 & 24)

Divides The Output Of The NCO
By 64.

Operator: Linear Sys
DSP Mode Enabled
FPGA Aware = True
Bessel Lowpass IIR
4 Poles
Fc = 310.e+3 Hz
Quant Bits =34
Init Cndtn = Transient
Coeff Data Type = Signed Fixed
Pt
Coeff Register = 34 bits
Coeff Fraction Size = 30 bits
Coeff Convert Mode = Numeric
Value
Data Type Out = Signed Fixed Pt
Register Out = 28 bits
Fraction Size = 24 bits
Output Convert Mode = Numeric
Value
Output 0 = Data
Output 1 = Overflow Flag
(Tokens 8 & 9)

I- and Q-Arm Filters.

DSP: Converter
FPGA Aware = True
Data Type Out = Signed Fixed Pt
Register Out = 16 bits
Fraction Size = 14 bits
Convert Mode = Numeric Value
Output 0 = Data
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Tokens 17 & 18)

Convert The Output Of The
ARM Filters to A(1,14) Format.

DSP: Multiplier
FPGA Aware = False
Data Type Out = Signed Fixed Pt
Register Out = 32 bits
Fraction Size = 28 bits
Convert Mode = Numeric Value
Output 0 = Data
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Token 10)

Third Multiplier Or Phase
Detector That Eliminates The
Effects Of The Modulation.

Operator: Linear Sys
DSP Mode Enabled
FPGA Aware = True
Custom Digital System
2 Num Coefs and 2 Den Coefs
Quant Bits =34
Init Cndtn = 0
Coeff Data Type = Signed Fixed
Pt
Coeff Register = 34 bits
Coeff Fraction Size = 32 bits
Coeff Convert Mode = Numeric
Value
Data Type Out = Signed Fixed Pt
Register Out = 46 bits
Fraction Size = 27 bits
Output Convert Mode = Numeric
Value
Output 0 = Data
Output 1 = Overflow Flag
(Token 11)

Loop Filter

Table B-2: Continuation

164

164

DSP: Bit Shift
FPGA Aware = False
Direction = Left
Shift By = 17 bits
Output 0 = Data
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Token 12)

Shifter Used To Implement The
Gain of the NCO

DSP: Converter
FPGA Aware = True
Data Type Out = Signed Fixed Pt
Register Out = 28 bits
Fraction Size = 9 bits
Convert Mode = Numeric Value
Output 0 = Data
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Token 13)

Converters The Output Of the Bit
Shifter to A(18,9) Format.

Source: Custom
No. of Assigned Outputs = 1
Algebra p(0)=0
 Operating Data Type = IEEE
Double
Output Data Type = IEEE Double
Max Rate = 30e+6 Hz
(Token 14)

Custom Signal To Provide A
Value To The Input Phase
Parameter Of The NCO.

DSP: Converter
Data Type Out = Signed Fixed Pt
Register Out = 12 bits
Fraction Size = 0 bits
Convert Mode = Numeric Value
FPGA Aware = True
Output 0 = Data t19
Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
Max Rate (Port 0) = 30e+6 Hz
(Token 20)

Converts The Output Of The
Custom Signal to A(11,0)
Format.

Sink: Analysis
Input from t18 Output Port 0
Max Input Rate = 30e+6 Hz
(Token 15 & 16)

Sink Token That Store The
Results Of The Simulations.

Table B-2: Continuation

165

165

C. Appendix: System Specifications for SystemView

Figure C-1: System Specifications for SystemView

166

166

D. Appendix: Matlab Programs

D-1 Plotting the Bode Diagram for the Analog and Digital Systems

% This is a Matlab code that will calculate the parameters
% of both analog and digital Phase-Locked Loops in order
% to present a plot of the frequency response for each case.
% To obtain the plot of the frequency response, we need to use
% the transfer function of each of the Systems (APLL and DPLL).
% The transfer function of the APLL is defined as H(s) = N(s)/D(s).
% Here I am expressing it as HS = NS/DS; where NS is the numerator
% and DS the denominator of the APLL transfer function.
% The transfer function of the DPLL is defined as H(z) = N(z)/D(z).
% Here I am expressing it as HZ = NZ/DZ; where NZ is the numerator
% and DZ the denominator of the DPLL transfer function.

% Defining Acronyms:

% PLL = Phase-Locked Loop
% APLL = Analog Phase-Locked Loop
% DPLL = Digital Phase-Locked Loop
% ALF = Analog Loop Filter
% DLF = Digital Loop Filter
% NCO(z) = Transfer Function of the NCO or Numerically Controlled
% Oscillator

% Defigning Parameters:

% t2 = When expressed as 1/t2, Indicates The Zero Location Of The
% Analog Loop Filter
% t1 = Parameter Of The Denominator Of The Analog Loop Filter;
% 1/t1 can be thought of as a gain term of the Analog Loop
% Filter
% K = Open-Loop Gain of the APLL; K = Kd*Ko;
% Kd = Gain Of The Analog Phase Detector
% Ko = Gain Of The VCO; Ko*Ts is the gain of the NCO
% T = Sampling Period of the DPLL; T = 1/Fs;
% Fs = Sampling Rate of the DPLL
% b0 = Indicates The Zero Location Of The Digital Loop Filter
% b1 = Indicates The Pole Location Of The Digital Loop Filter
% wn = Natural Frequency Of The APLL
% a = Constant Relating t1 and t2; t1 = a*t2; a has to be greater
% than or equal to 2.
% r = Damping Ratio of the APLL

% Parameters of the Transfer Function of the APLL:

% NS = 2*r*wn*s + wn^2 = Numerator of the APLL Transfer
% Function
% DS = s^2 + 2*r*wn*s + wn^2 = Denominator of the APLL Transfer
% Function
% HS = NS/DS = Transfer Function of the APLL

167

167

% Parameters of the Transfer Function of the DPLL with PI Loop Filter
% NCO(z) = 1/(1-z^-1):

% NZ = do + d1*z^-1 = Numerator of the DPLL Transfer
% Function
% DZ = 1 + c1*z^-1 + c2*z^-2 = Denominator of the DPLL APLL
% Transfer Function
% HZ = NZ/DZ = Transfer Function of the DPLL
% al = 1 + Kd*Ko*T*bo
% do = Kd*Ko*T*bo/al
% d1 = Kd*Ko*T*b1/al
% c1 = (Kd*Ko*T*b1 - 2)/al
% c2 = 1/al

% Parameters of the Transfer Function of the DPLL with PI Loop Filter
% NCO(z) = z^-1/(1-z^-1):

% NZ2 = do2 + d12*z^-1
% DZ2 = 1 + c12*z^-1 + c22*z^-2
% HZ2 = NZ2/DZ2;
% do2 = K*T*bo;
% d12 = K*T*b1;
% c12 = (K*T*bo-2);
% c22 = K*T*b1+1;

% Preparing Matlab Session

close all; % Closes all figures open
clc; % Clears the Command Line Screen
clear all; % Clears All Defined Varialbes
format long; % Sets all Matlab Computations to scaled fixed-point
 % format with 15 digits

% Defining Parameters of the APLL

Ko = 100e3;
Kd = 1;
K = Ko*Kd;
wn = 500;
r = 0.7;
a = Ko/(2*r*wn);
t2 = (2*r)/wn;
t1 = a*t2;

% Calculating the Transfer Function of the APLL
num = [2*r*wn wn^2];
den = [1 num];
HS = tf(num,den);

% Defining Sampling Frequency (Fs) and Time Period (T)
Fs = 30e6;
T = 1/Fs;

% Calculating Parameters of the Digital Loop Filter

168

168

bo = (T+2*t2)/(2*t1);
b1 = (T-2*t2)/(2*t1);

% Calculating Parameters of the DPLL with NCO(z) = z^-1/(1-z^-1)
al = (K*T*bo+1);
do = K*T*bo/al;
d1 = K*T*b1/al;
c1 = (K*T*b1-2)/al;
c2 = 1/al;

% Calculating the Transfer Function of the DPLL with
% NCO(z) = z^-1/(1-z^-1)

NZ = [do d1 0];
DZ = [1 c1 c2];
HZ = tf(NZ,DZ,T);

% Calculating Parameters of the DPLL with NCO(z) = 1/(1-z^-1)

do2 = K*T*bo;
d12 = K*T*b1;
c12 = (K*T*bo-2);
c22 = K*T*b1+1;

% Calculating the Transfer Function of DPLL with NCO(z)=1/(1-z^-1)

NZ2 = [do2 d12];
DZ2 = [1 c12 c22];
HZ2 = tf(NZ2,DZ2,T);

% Generating Bode Plot For The Transfer Function Of The APLL

figure(1) % Opening a Window For a Figure (Bode Plot)
bode(HS);
title('Bode Plots For APLL With PI Loop Filter')
grid on
zoom on

% Generating Bode Plot For The Transfer Function Of The DPLL
figure(2) % Opening a Window For a Figure (Bode Plot)
bode(HZ)
title('Bode Plots For DPLL With PI Loop Filter 1/(1-z^-1)')
grid on
zoom on

% Generating Bode Plot For The Transfer Function Of The DPLL
figure(3) % Opening a Window For a Figure (Bode Plot)
bode(HZ2)
title('Bode Plots For DPLL With PI Loop Filter z^-1/(1-z^-1)')
grid on
zoom on

169

169

D-2 Plotting the Root Locus for the Digital System

% This is a Matlab code that will calculate the parameters
% for two second-order digital Phase-Locked Loops based on
% those of an analog system in order to present the plot
% of the Root Locus for each system. The difference
% between each digital system is based on the transfer
% function of the NCO. The two transfer functions to
% be used are 1/(1-z^-1) and z^-1/(1-z^-1).
%
% To obtain the plot of the Root Locus, we need to use
% the Characteristic Equation of the System .
% The characteristic equation is defined as 1 + K*(p/q)=0.
% p and q are respectively the numerator and denominator
% of the open loop transfer function and k is the system
% gain. The upper case K will be used to represent the
% gain of the analog system, whereas the lower case k
% represents the gain of the digital system.

% Defining Acronyms:

% PLL = Phase-Locked Loop
% APLL = Analog Phase-Locked Loop
% DPLL = Digital Phase-Locked Loop
% ALF = Analog Loop Filter
% DLF = Digital Loop Filter

% Defigning Parameters of the APLL:

% t2 = 1/t2 Indicates The Zero Location Of The Analog Loop Filter
% t1 = Parameter Of The Denominator Of The Analog Loop Filter;
% 1/t1 can be thought of as a gain term of the Analog Loop Filter
% K = Open-Loop Gain of the PLL; K = Kd*Ko;
% Kd = Gain Of The Phase Detector
% Ko = Gain Of The VCO and NCO
% wn = Natural Frequency Of The APLL
% a = Constant Relating t1 and t2; t1 = a*t2.
% r = Damping Ratio
% ps = Numerator of the Characteristic Equation of the APLL
% qs = Denominator of the Characteristic Equation of the APLL

% Defining Parameters of the DPLL:

% T = Sampling Period of the DPLL; T = 1/Fs;
% Fs = Sampling Rate of the DPLL
% b0 = Indicates The Zero Location Of The Digital Loop Filter
% b1 = Indicates The Pole Location Of The Digital Loop Filter

% Defining Parameters of the characteristic equation when the
% NCO in the DPLL has transfer function 1/(1-z^-1).

% pz = Numerator of the Characteristic Equation of the DPLL
% qz = Denominator of the Characteristic Equation of the DPLL

170

170

% Defining Parameters of the characteristic equation when the
% NCO in the DPLL has transfer function z^-1/(1-z^-1).

% pz2= Numerator of the Characteristic Equation of the DPLL
% qz2= Denominator of the Characteristic Equation of the DPLL

% Preparing Matlab For The Process:

close all % Closing All Figures
clc % Clearing Command Window
clear all % Clearing Memory
format long; % Defining precision

% Defigning Gain Terms for the analog system:

Ko = 100e3;
Kd = 1;
k = Ko*Kd;

% Calculating Parameters Of The APLL:

r = 1/sqrt(2);
wn = 500;
a = Ko/(2*r*wn);
t2 = (2*r)/wn;
t1 = a*t2;

% Calculating Parameters Of The DPLL:

Fs = 30e6;
T = 1/Fs;
bo = (2*t2+T)/(2*t1);
b1 = (T-2*t2)/(2*t1);
K = k*T; % <--- Gain term for the DPLL

% Expressing Numerator and Denominator Of Characteristic
% Equation for The DPLL having NCO z^-1/(1-z^-1):
% For this specific system, if t1=0.4, t2=0.0028 and T=1/30e6,
% the location of the open loop zero is z=0.9999880953.

pz = [bo b1];
qz = [1 -2 1];

% Expressing Numerator and Denominator Of Characteristic
% Equation for The DPLL having NCO z^-1/(1-z^-1):
% For this specific system, if t1=0.4, t2=0.0028 and T=1/30e6,
% the location of the open loop zero is z=0.9999880953 and z = 0.

pz2 = [bo b1 0];
qz2 = qz;

171

171

% Parameters to define unit circle.
x = [-1:0.1:1];
y = [sqrt(ones(1,length(x))-x.^2)];

% Ploting ROOT LOCUS Of DPLL having open loop transfer function pz/qz:

figure(1)
rlocus(pz,qz); % Plotting Root Locus
[gain,poles] = rlocfind(pz,qz,0.9); % Finding gain and poles of HZ
 % when a pole location is 0.9
hold on
plot(x,y,'--',x,-y,'--') % Plotting unit circle
zoom on

% Plotting ROOT LOCUS DPLL having open loop transfer function pz2/qz2:

figure(2)
rlocus(pz2,qz2); % Plotting Root Locus
[gain2,poles2] = rlocfind(pz2,qz2,0.9); % Finding gain and poles of HZ
 % when a pole location is 0.9
hold on
plot(x,y,'--',x,-y,'--') % Plotting unit circle
zoom on

