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Abstract

This project describes the digital implementation of a Second-Order Costas Loop
demodulator using simulation software SystemView by Elanix. The digital design of the
system is based on direct transformation of every analog component of the Costas Loop to its
respective discrete-time and subsequent digital domain. The relation between every
component in the analog system that has to do with carrier tracking and synchronization is
based on analog phase-locked loop theory. We used Costas Loop theory, which describes the
Costas Loop as two phase locked-loops operating in quadrature phase to each other, to
develop a linear model practically identical to that of the analog phase-locked loop. The
difference between these two models consists of the phase detector gain, which is evident
when establishing the phase detector gain of each system in relation to the amplitude of the
input and output signals. We then used this model and phase-locked loop theory to develop
the analog design of the Costas Loop and its subsequent transformation to the digital domain.
The design of the arm filters, however, did not follow the derived linear model. Instead, we
used conventional Costas Loop theory and the filter design tools of SystemView to design
these two filters. The final digital implementation of the system was then realized using the
design and simulation tools of SystemView in addition to fixed-point arithmetic theory to

represent the parameters and the values of the signals processed.



Resumen

Este proyecto describe la implementacion digital de un Costas Loop de Segundo
orden utilizando simulaciones llevadas a cabo con el software SystemView, hecho por
Elanix. El disefio digital del sistema est4 basado en la transformacion directa de cada
componente analogo a su respectivo dominio discreto o digital. La relacion que existe entre
cada componente del sistema analogo que controla la adquisicién y sincronizacion de la sefial
portadora (carrier), estd basada en la teoria del Phase-Locked Loop analogo. Para ésto
utilizamos la teoria del Costas Loop, que lo describe a éste como un sistema compuesto por
dos Phase-Locked Loops que operan con un desfase de noventa grados el uno del otro, para
asi desarrollar un modelo lineal practicamente idéntico al del Phase-Locked Loop analogo.
La diferencia entre ambos modelos se encuentra en la ganancia del detector de fase, la cual se
puede apreciar cuando establecemos la relacion entre la ganancia de los detectores de fase de
cada sistema y la amplitud de las sefiales de entrada y salida. Una vez obtenido el modelo, lo
utilizamos en conjunto con la teoria de Phase-Locked Loops andlogos para desarrollar el
disefio analogo del Costas Loop y su transformacion al dominio digital. EIl disefio de los
filtros laterales (Arm Filters) no se llevo a cabo utilizando este modelo lineal. En lugar de
ésto, utilizamos la teoria convencional del Costas Loop y las herramientas de disefio de
filtros de SystemView. Finalmente, llevamos a cabo la implementacion del sistema digital
utilizando las herramientas de disefio y simulacion de SystemView en conjunto con la teoria
matematica fixed-point (fixed-point arithmetic) para representar los parametros de cada

componente del sistema y de las sefiales procesadas por éste.
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1 Introduction

Coherent detection and demodulation requires the utilization of synchronization
systems that extract carrier phase and frequency information from the received signal. Phase
and frequency are two parameters used by synchronization systems, such as Phase-Locked
Loops (PLL) to track, acquire and synchronize to the carrier of the received signal. Making
use of additional components, PLLs can be used directly to demodulate a signal when the
signal contains a positive average energy at its carrier frequency. OIld communications
systems used to transmit and receive signals that had an average or residual energy at the
carrier frequency in order to reduce complexity and cost of the demodulation design.
Modern communications systems, on the other hand, do not use this method, as the residual
energy is considered to be wasted energy, since it does not transmit any data; however, the
carrier is required for the PLL in the receiver to synchronize to. In practice, techniques that
conserve power are of interest, hence modern communications systems use suppressed-
carrier modulation/demodulation techniques, which do not require a residual energy at the
carrier frequency. Using suppressed-carrier modulation techniques, present a problem for
PLLs, since in the absence of the carrier, PLLs cannot track, acquire and synchronize to the
received signal. Therefore, another synchronization system must be used instead. An

example of such a system is the Costas Loop.

The Costas Loop is a synchronization system that was first introduced by John P.
Costas in 1956 to achieve phase tracking, acquisition, synchronization and demodulation of

double-sideband suppressed-carrier AM signals.  The components of the system are the



Arm Filters, the Loop Filter, three multipliers that we will refer to as Phase Detectors, and a
Voltage-Controlled Oscillator (VCO). The Costas Loop is able to obtain the phase and
frequency information of the modulated carrier and achieve phase tracking, acquisition and
synchronization to this extracted carrier while demodulating and extracting the data
contained in the received signal. Although the original intent of the Costas Loop was to track
and demodulate double-sideband suppressed-carrier AM signals, it can very well be used to
demodulate other suppressed-carrier modulation techniques. Another modulation technique
for which the Costas Loop is readily used without modifications is Binary Phase Shift
Keying (BPSK). The truth of this statement lies in the fact that BPSK signals can be
expressed and demodulated as double-sideband suppressed-carrier AM signals.  Other
applications of the Costas Loop are QPSK (Quadrature Phase Shift Keying), 8-PSK,

OQPSK, FSK (Frequency Shift Keying), FM and spread spectrum.

The Costas Loop can be considered to be a variation of a PLL system. Costas Loop
theory describes the system as two phase-locked loops operating in phase quadrature to each
other. We used this theory to develop a linear model of the Costas Loop (analog system) that
is practically identical to that of the analog phase-locked loop. The difference between these
two models is established at the phase detector gain term for each system. When the linear
modeled was derived, we noticed that there was a publication by (Kamperman 1994 2 that
attempted to do the same. As the Costas Loop has two multipliers that independently detect
phase differences between the input and output signals, and a third multiplier that adds these

two phase differences and eliminates the modulation effects attached to them (that is, in



addition to increasing the gain requirements), we end up with a gain term equal to the square
of the phase detector gain in the PLL. This difference is evident when establishing the
relation between the phase detector gain of each system to the amplitude of their respective
input and output signals. We then used this model and phase-locked loop theory to develop
the analog design of the Costas Loop and its subsequent transformation to and
implementation on the digital domain. The design of the arm filters, however, did not follow
the derived linear model. Instead, we used the Costas Loop theory and the filter design tools
of SystemView to design two low-pass filters of the Bessel-type. A Bessel-type filter was
chosen for the arm filters because the phase response of these filters is constant at 0dB inside
the designated bandwidth area. Once all the parameters of the analog system were defined,
we proceeded to define those of the digital system. Then we used the design and simulation
tools of SystemView, in addition to fixed-point arithmetic theory, to represent the parameters

of the digital system and the values of the signals processed.

This project describes the digital implementation of a Second-Order Costas Loop
demodulator using simulation software SystemView by Elanix. The digital design of the
system is based on direct transformation of every analog component of the Costas Loop to its
respective discrete-time and subsequent digital domain. In order to provide thorough details
of the design process, this document also includes the theory of analog phase-locked loop
and Costas Loop systems, derivation of the Costas Loop linear model used in the design,
transformation of the analog PLL and Costas Loop systems to a discrete-time and subsequent
digital system, fixed-point arithmetic theory, implementation and simulation of the analog

and digital Costas Loop using SystemView, and the final discussion of the results.



2 Revision of Literature

The Costas Loop is a synchronization system introduced by John P. Costas in 1956 to
address some of the problems and concerns facing coherent communications systems at the
time. Back then, most commercial and military communications systems were using
amplitude modulation techniques to transmit information. Double-sideband transmitted
carrier was the preferred amplitude modulation technique employed due to the simplicity of
the systems that could be used to implement it. Although inefficient, energy wise,
transmitting the carrier along with the modulated information allowed the use of phase-
locked loop technology to achieve coherent demodulation of the data, greatly improving the
demodulation process. But the increasing need for more efficient (in terms of the energy and
bandwidth used) and reliable communications systems laid down the grounds for new
modulation and demodulation techniques to be proposed; this was the case for the Costas
Loop. The Costas Loop significantly improved the amplitude modulation/demodulation
techniques by allowing the efficient demodulation of double-sideband suppressed-carrier
signals. Doing so, it made possible a more efficient transmission of double-sideband AM
signals by allowing the removal of the additional carrier signal formerly transmitted with the
modulated information, and thereby reducing the amount of energy needed during the
transmission process. In addition to demodulating double-sideband suppressed-carrier AM
signals, Costas Loops are used to demodulate BPSK, QPSK, 8-PSK, OQPSK, FSK
(Frequency Shift Keying), and FM signals, for example. This characteristic of the Costas
Loop makes it suitable for many applications. Some examples are satellite communications,

spread spectrum, and CDMA (used in cellular telephone communications).



The Costas loop is a synchronization system that could be analyzed as two phase-
locked loops that operate in phase quadrature to each other. Consequently, the operation of
any Costas Loop system is influenced by the operation of these two PLLs to a great extent.
For this reason, this project devotes a great deal of time and effort to PLL theory and to
establish its relation to Costas Loop systems. The following paragraphs are allotted to
establishing the progress of phase-locked loop technology and its relation to other

technological advances as well as Costas Loop systems.

The first publications about Phase-Locked Loop (PLL)-like systems appeared in 1923
and 1932. In 1923, E. V. Appleton published his paper "Automatic synchronization of triode
oscillators”, and H. de Bellescize published "La reception synchrone™ in 1932. However, it is
Henri de Bellescize, a French engineer, who is considered to be the inventor of coherent
communications after he designed a vacuum tube based synchronous demodulator for an AM
receiver, (Best 1999 1), Although the concept was readily available, the use of PLLs did not
become as important until the 1940’s when engineers at the Jet Propulsion Laboratories were
faced with the problem of providing telemetry and radio guidance for short-range ballistic
missiles and producing reliable communications under conditions of heavy interference,
(Lindsey et al 1991 ). To solve these problems, a great deal of study and expansion was
given to the earlier work done by C. Shannon, N. Wiener and the staffs of MIT Radiation and
Lincoln Laboratories. Following these efforts, the theory and operation of servomechanisms
functioning in the presence of noise was developed. Then in the early fifties, E. Rechtin and

R. Jaffe applied this theory to develop phase-locked loop receivers, and other PLL



applications such as automatic gain control systems and coherent two-way velocity and range
measuring systems. Since then, PLLs have contributed to coherent communications systems

and other technological advances.

Another important application, and one of the firsts for PLLs, also occurred during
the 1950s: a PLL was used to recover the color sub-carrier in television, (Best 1999 ™).
Originally, PLLs were mostly used for military applications and did not find broader
industrial and commercial use until they became available as an integrated circuit. The first
PLL ICs appeared around 1965 and were purely analog devices, (Best 1999 ). Signetics
and RCA developed the first analog PLL ICs: the NE565 and CD4046, (Hsieh et al 1996 [°).
The PLL integrated in those chips included a sinusoidal phase detector, a loop filter, and a

voltage-controlled oscillator. The phase detector was a four-quadrant multiplier that had a
phase-lock range that extended from —% to % In 1970 these PLL ICs were being used on

speed control systems for synchronous and DC motors, (Hsieh et al 1996 2®)). As IC and
digital technology was improving, it was possible to extend the phase error detection range of
the PLL by using a sawtooth comparator as the phase detector. The phase error detection
range for this phase detector was —z to x. Later in 1972, Motorola manufactured the
sequential phase/frequency detector (PFD) chip MC4044, capable of detecting phase error
changes that extended from — 27 to 2z . This phase detector was combined with the analog
components of the NE565 analog phase-locked loop to achieve the realization of a hybrid
PLL system used to control the speed of a synchronous motor. This combination allowed a

speed regulation of 0.002%, (Hsieh et al 1996 [1°}),



As many applications of analog PLLs started developing, by 1970 the theoretical
description of these systems was very well established, and plenty of information could be
found in [A. Blanchard, "Phase-Locked Loops: Application to Coherent Receiver Design™, F.
M. Gardner, "Phaselock Techniques”, and W. C. Lindsey, "A survey of digital phase-locked
loops"]. This theoretical description included noise and nonlinear analysis of the loop,
variety of phase detectors, threshold performance and determination, modifications to the
system based on signal and channel type, and established important design parameters such
as bandwidth, steady-state error, mean-square phase error, lock-in range, pull-in range,
acquisition time, filter parameters and SNR behavior for low CNR at the input, (Gupta 1975
(3, Also, there was some work being done to develop other types of phase-locked loops
that could be implemented digitally and a variety of systems were proposed. These other
phase-locked loops were categorized at the time as Hybrid, Discrete and all-digital phase-

locked loops.

The Hybrid phase-locked loop is defined as an analog phase-locked loop where one
or more, but not all elements in the loop are digital, (Gupta 1975 ™). This type of
implementation enables the use of more efficient components in the analog system to
improve its performance. However, unlike the analog PLL (second-order, for example),
system stability has to be analyzed, given that a high system gain could make this loop
unstable. The Discrete phase-locked loop used a sampler as the phase detector and the other
components were a digital filter and a digital oscillator. This phase-locked loop tracks and
synchronizes to the input signal (sine wave) by predicting zero crossing points on this signal.

Unfortunately, the architecture of the loop leads to twice as many nonlinearities in the system



equations, compared to the analog phase-locked loop (APLL). These nonlinearities are the
result of the non-uniform sampling and sinusoidal nonlinearities. Hence, this phase-locked
loop is more difficult to analyze than an APLL. Finally, we have the all-digital phase-locked
loop, for which there were various systems proposed. The first all-digital phase-locked loop
proposed consisted of replacing all analog components by digital ones. Other digital phase-
locked loops were proposed based on specific applications such as harmonic signal filtration

and FM demodulation.

Progress on the study of digital phase-locked loops continued and in 1982, (Lindsey
et al 1981 ™) provided an extensive report on digital phase-locked loop technology that
covered the period from 1960 to 1980. In this paper, (Lindsey et al 1981 ) classified the
digital phase-locked loops into four categories, based on the type of phase detector used.
These four categories were: Flip-Flop (FF), Nyquist Rate (NR), Zero Crossing (ZC), and
Lead/Lag (LL) digital phase-locked loops (DPLL). The FF-DPLL, obtains phase error
information from the duration between the set and reset time of the flip-flop triggered by
positive zero crossings of the input signal and the local clock. In the NR-DPLL, the input
signal is sampled at the Nyquist rate, then the resulting samples are multiplied digitally with
the samples of the local reference to generate the required phase error. The ZC-DPLL has
two variations. In the first version, the loop samples the input signal in the positive going
zero crossings. The second version, however, samples the input signal in both positive and
negative going zero crossing points. Finally, for the LL-DPLL the phase detector determines
at each cycle of the clock whether the input leads or lags the locally generated clock; if so,

the phase is adjusted accordingly. (Lindsey et al 1981 *®)) also provided a thorough analysis



of each system, including steady-state error. It also provided equations in the z-domain for
the common excitation signals: phase step, phase ramp and phase parabola; these are the

equations used in this project for the analysis of the digital Costas Loop designed.

Another extensive coverage of phase-locked loop theory is provided in, (Best 1999
(). In this recent publication, (Best 1999 ™) covers all aspects of the phase-locked loop
theory from a professional engineering point of view, starting with analog phase-locked
loops and ending with a category that he describes as the software phase-locked loop. The
phase-locked loops covered by (Best 1999 ™) are essentially those covered by (Gupta 1975
(31 and (Lindsey et al 1981 8, except the categories are named differently. For example,
the analog phase-locked loop is described as the linear phase-locked loop, the hybrid PLL is
called the classical digital phase-locked loop, and the group composed by the flip-flop,
Nyquist rate and zero crossing (including another one that uses a Hilbert transform phase
detector) is called all digital phase-locked loops. The category called the software phase-
locked loop is essentially a software implementation of all the previous categories already
mentioned, including the analog phase-locked loop. This theory developed in this work for a
software implementation of the analog PLL that we use to implement the digital Costas
Loop. To do so we first used analog Costas Loop and phase-locked loop theory to derive a
linear model for the analog Costas Loop. Then we used the results obtained for the software
version of the analog PLL to obtain a digital version of the analog Costas Loop. Finally, a
design implementation and simulation of the digital Costas Loop was achieved using

software SystemView by Elanix.
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As an extension to this chapter, chapters three to six have been included to provide a
through discussion of the phase-locked loop/Costas Loop subject and its migration to the

digital implementation provided in this project.
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3 Analog Phase-Locked Loop Theory

3.1 The Analog Phase-Locked Loop: An Overview

A Phase-locked loop is a circuit that generates a signal that is synchronized to the
input signal. To achieve synchronization, phase and frequency parameters of both signals
are compared and an error signal is produced. This error signal is used to correct the
phase and frequency of the output signal in such a way that the error reduces to zero or a

minimum. When the error signal reaches or

| 1 2 3
ui(t) ? Ua(® E Uf_(t)@ Uo(®)

Figure 3-1. Time-Domain Block Diagram of a PLL

settles to a minimum value, we say the signals are synchronized and the phase-locked
loop (PLL) is locked. A block diagram of a PLL can be seen in figure 3-1. The diagram
shows the three major components of the PLL along with the corresponding signals. The
three major components of the loop, from left to right are 1) Phase Detector, 2) Loop
filter, and 3) Voltage-Controlled Oscillator (VCO). (A circle with a cross denotes the

phase detector and f (t) the loop filter.) PLL signals are defined as follows:

() = Asin(ot +0) ).
0,0 = Asin(ot +) 32
) =2 cosl(@, -0t 6, - g, |- Lo, + @)t + 6+ 0,]  (33)

=22 cosl(@, - 0,)t+6, -] (3-4)

11
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The input signal, u,(t) is a sine waveform with amplitude A, radian frequency w,,
and phase &.. u,(t) is the form of the output signal just before the tracking and

acquisition process of the input signal begins. It also is a sine waveform with amplitude

A, , radian frequency ., and phase ¢,. When the tracking and acquisition process is
taking place, the PLL will operate in such a way that @, - @, and the phase error

between input and output reduces to zero or a minimum. Since the phase detector is

sinusoidal (four-quadrant multiplier), its output signal is as given by u, (t), which results
in a signal composed of two cosine waveforms with frequency components (@, —®,) and
(@, + ®,) . (Think of the four-quadrant multiplier as a device that performs the same type

of multiplication operation we would perform in a calculator, or by hand, with any two
numbers.) Now let us take a look at each argument of the cosine terms. The argument of

the first cosine, [(w, — )t + 6, — ¢, ] sustains a phase and frequency difference between

the input and output signals, whereas the argument of the second term results in phase

and frequency addition. Given this phase and frequency addition,

AA

Tcos[(a)i +w, )t +6, +(po] is considered the high-frequency component of u,(t), also

known as the AC component of u,(t) because it will always be an oscillating signal of

AA

frequency (o, +®,). On the other hand, it is Tcos[(a)i —w,)t+6,—p,], the first term

of u,(t), that contains information about the phase and frequency error between u,(t)
and u,(t). When the error between the signals is zero or minimum, this term will tend to

a DC value. Moreover, if the error between the signals is large, but the PLL is following

12



13

AA

the input signal correctly, Tcos[(a)i—a)o)t+¢9i—¢>0] will induce an average DC

voltage that takes the loop to the correct lock-in direction (synchronization takes place).

For this reason, this term is known as the DC component of u,(t).

The process continues in the loop filter. Think of the loop filter as a low-pass filter

with 3-db bandwidth lower than (@, + @,) but higher than (o, —®,). Consequently, the

output signal of the loop filter u,(t), will be solely composed of

AA

Tcos[(a)i —,)t+6,—¢,], as shown by equation (3-4). (This is true if we assume an
ideal filtering process.) In the previous paragraph it was pointed out that only the first
cosine term of u,(t) provided useful information to sustain the proper operation of the
PLL. This is the low-frequency component of u,(t), which justifies selecting a low-pass
filter as the loop filter. Finally, u, (t) frequency modulates the output signal of the VCO,
adjusting its phase and frequency until they match those of the input signal, u,(t). We
say u,(t) frequency modulates the output signal of the VCO because before the error
between the signals is close to zero, u, (t) oscillates. In fact, this is the same process

used during frequency modulation (FM).

The frequency of the VCO signal is given by (Best 1999 1))

W, = Wy, + Kouf (t) (3'5)1

13
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where @, is its center frequency. It is noticeable that @, = @,, when u,(t)=0. For this
reason, it is a design rule to set w,. equal to the frequency of the signal we expect to

receive, o,. From the above equations and discussion, a PLL can be seen as a servo

control system that establishes synchronization generating an estimated replica of the
input signal. (This is true if the input signal is not carrying any type of modulation.
However, if the received signal is carrying some type of information (received signal is

modulated), then the PLL will lock to its carrier.)

3.2 Time Domain Analysis

Let us analyze the previous equations to derive a more detailed analysis of PLL in
the time domain. Assuming the PLL is not locked (the loop is in the process of tracking
and acquiring the input signal to achieve synchronization), the equations that govern its
operation are as given in the previous section. Furthermore, presume the PLL is
operating in the lock-in range and, as a result, synchronization occurs considerably fast.

Therefore the synchronization process can be explained as follows.

When the synchronization process starts, both the input and output signals are

multiplied in the phase detector generating the signal u,(t). This signal goes to the loop
filter, which eliminates the high-frequency component of u,(t), producing the signal
u, (t). This signal is fed to the VCO to adjust its output signal in a favorable way as to

reduce the difference between its parameters and those of the input. We call this
difference the error between the signals. When the error is reduced, synchronization

takes place, signifying that the frequency and phase of the output signal match those of

14
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the input signal. Examining u,(t) we see that (o, —®,) can only be zero if

=|(w, — w )t + ¢, |, which defines ¢, as a function of time. Substituting ¢, into u; (t)
i 0 0 o} o} f

AA)

we obtain u, (t) = -2 cos[(w, — )t + 6, —[(w, -, )t + ¢,]|. Simplifying this equation

we obtain a representation for u; (t) totally dependent on the phase of the signals
u, 0 =22 cos(6, -4, (3-6).

Having the PLL eliminated the frequency difference, it will modify the phase of the VCO

to equate it to the input until u,(t)=0. Equation (3-6) establishes that u,(t) can be

equal to zero if the argument of the cosine is % Hence, defining ¢, as 6, —% and

placing it into the argument of equation (3-6) we obtain u,(t) = A‘A’ ——2cos(6, — 6, + )
Re-writing this equation yields
u, ® = 2sin(0, -0, (3-7).

The derivation of equation (3-7) indicates that synchronization occurs when the input and

output signals of the PLL are in phase quadrature to each other; that is, they are 90

degrees or % radians apart. In PLL theory, it customary to think of the sin(g, —6,) as

6, , the phase error of the PLL. When the loop is locked, (the difference between &, and

0

0

is small), we can use the small angle approximation to simplify 6, to (6,-6,).

Moreover, defining a new gain term, K,, and equating it to we obtain a more

AA,
2
useful linear approximation for equation (3-7),

15
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U (t) = Ky (6, - 6,) (3-8),
where K, will represent the gain of the phase detector. Now, having a linear expression
for u, (t), we can rewrite u,(t)as

uy (t) = K, (6, — 6,) + high - frequency terms (3-9).
In order to justify equation (3-7), the VCO signal has to be changed from a sine to a
cosine waveform. This exemplifies the quadrature phase difference between input and

output signals mentioned before. We can use the trigonometric identity about the product

of two sinusoids to prove that the VCO signal has to be a cosine waveform when the
input to the PLL is a sine wave, sin(A)cos(B) :%[sen(A— B) +sen(A+B)]. Remember

that we started the explanation defining both input and output signals as sine waveforms.
Then, after some derivation process, it was shown that they had to be in quadrature for
the PLL to lock. Since the input signal is fixed, only the output signal can be varied.
Consequently, it is the output signal that changes to a cosine waveform. Now going back

to the trigonometric identity, having the input expressed as A sin(e;t +6;) and the output
as A, cos(at+6,), multiplying them and filtering the result we obtain equation (3-7),

which can be simplified to equation (3-8) if the phase difference between the signals is
small (the loop is locked), proving the relation stated before. This simplifications of

Uy (t) and u, (t) will prove to be useful when deriving a frequency model for the PLL.

16
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3.3 Frequency Domain Analysis

Before initiating the frequency domain analysis it would be useful to express the
PLL signals in a more compact form. Reconsidering the time domain analysis, we have

the signals u,(t), u,(t), u,(t),

A(s) + -~ O(t) Ua(s), Ux(s) (1)
ST e P

Figure 3-2. Block Diagram of Linear PLL in the Frequency Domain

and u,(t), representing the input, output, phase detector, and loop filter signal

respectively. These signals can be expressed as

0,=06 -6, (3-10)
ug () =u,(t)-u, (t) = K, - 6., (Not including high frequency terms.) (3-11),
U (t) =uy (t) > f (t), where * denotes convolution. (3-12),
u,(t) =K, -6,* f(t) (3-13).

Note the relation of the above equations with the phase error, 6,. We will not have the
set of equations complete, until we express u,(t) in terms of a phase variable. (The idea

of these derivations is to establish a relation within every signal of the PLL with a phase
variable, given the predisposition of the PLL to keep a phase difference between two
signals, input and output, close to zero. PLLs translate every phase or frequency

variation to a phase difference, which explains the meaning of its name.)

The frequency of the VCO signal is given by equation (3-5) as

w, = w,, + K,u, (t). For the purpose of this analysis we are assuming the PLL is locked,

0
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therefore the center frequency of the VCO signal equals that of the input signal, that is,
,. = o,, and the output frequency can be rewritten as @, =, + K u, (t). By definition,
the phase of the VCO is given by the integral of the frequency variation (Best 1999 1),
Making use of this definition yields:

0, =K, Ju (t)dt (3-14).
Now that we have all the set of equations determined in terms of phase variables, we are
able to proceed with the frequency domain analysis. Before we start, it is necessary to
make one more assumption. Assume the phase of the input and output signals is

changing with time, hence they have to be expressed as &,(t) and 6,(t). Now we are

able to use the Laplace transform to derive the frequency counterpart of each loop

equation.
6,(5) = {6, (0} (3.15),
0,(9) = Lo, = L{K, [u, 0t~ 2u, 9 (3.16),
o) K,

co_Uf(S) - S (317),
0,(5)=6,(5) - 6,(5) (3.18),
Uy (5) = L{U, (O} = K,6,(5) (3.19),
F(s)= L{T (0} (3.20),
U, (s)=U,(s) - F(s) (3.21),

where L{ } is the Laplace operator and V_(s) the transfer function of the VCO. It is

important to point out that equation (3.16) was obtained assuming that all initial

conditions of & (t) are zero (Best 1999 (1), Having equations (3-16) to (3-21) we can

develop the linear model of the PLL, which will end up with the derivation of its transfer

18
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function (Dorf et al 1995 ). The block diagram for this linear model is presented in

figure 3-2. Let us now derive the transfer function of the system (PLL).

From equation (3.16) 6’0(3):%Uf(s). Using equation (3.21), 6,(s) can be

written as 490(3):&~Ud(s)-F(s). Substituting the definition of U, (s) into the
S

previous equation we obtain &,(S) :%-6@ -F(s). Then we use equation (3.18) to

find 6,(s) = KoKy -(6,(s)—6,(s))- F(s). Solving for 6,(s) yields
eo<s){1+ KoK, ?} Kk, 2 0(6).

Finally, expressing the former equation in the form of 0,(5) =H(s) gives us the closed-

loop transfer function of the PLL.:

90 (S) — Kd KOF(S)

Hs) = 0.(5) s+ K,K.F(s)

(3.22).

l
R2
It T Output
1

Figure 3-3. Circuit of Passive Lag-Lead Filter
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Equation (3.22) is the starting point of the frequency domain analysis that leads to the
understanding of the system response to various excitation signals. However, before
getting deep into this analysis it would be pertinent to consider the type of loop filter

appropriate for the PLL.

A
IF(s)|
20dB/decade
1
. >
1 1
T, +7, 7,

Figure 3-4. Bode Diagram of Passive Lag-Lead Filter

3.3.1 The Loop Filter

The loop filter is the component of the PLL that eliminates unwanted signals (high-
frequency signals). In figure 3-2, the loop filter is designated in the frequency domain by
F(s), its transfer function. The selection of the loop filter is a very important decision,
since it will determine the behavior and characteristics of the PLL under various
operating conditions. The type of loop filter employed will determine characteristics
such as bandwidth, lock-in range, pull-in range, pull-out range and hold-in range of the

PLL during operation.

In control theory, it is the number of poles in the transfer function of a closed-loop

system (when the system does not have a feedback path the open-loop transfer function is

20
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used instead) that determines the order of the system. This concept is well suited to
designate the order of any system for which its transfer function can be expressed as a

rational function.

Figure 3-5. Circuit of the Active Lag-Lead Filter

The poles of a system can be defined as the zeros or roots of the denominator in
the system transfer function. Since the design presented in this work is a second-order

system, we can use this equation as an example to explain the order concept and root

20,8+ !

calculation: H(s)=—; >
S*+2¢m,8 + w;

. To determine the poles of this system, we should

take a look at its denominator s* + 2¢w,s + @’ , which is a quadratic equation on s. Now
we can determine the values of s that make the denominator of H(s) to become zero.

For a quadratic equation, only two values of s can make it happen. They can be obtained

: : — 26w, £/ (25w,)? — 4o}
using the quadratic formula, s,,s, = s, £4(260,) ~ 4o, :

2
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Figure 3-6. Circuit of the PI lag-Lead Filter

Simplifying the equation we obtain the two zeros of s*+2¢w,s+w?, which are

S, =—cw, +w,4J¢*—1 and s, =—cw, — /¢’ —1. As mentioned previously, these two

values of s make the denominator of H(s) to become zero, which therefore make H (s)
to become infinite (% — oo, Where x can be any number, except zero). When a value of

s makes H(s) to become infinite, we call that value a pole of H(s). Now, given this
system has only two poles, it is called a second-order system. On the other hand, if H(s)

had three poles it would be called a third-order system, and so on.

A
F(s)
| | -20dB/Decade
Kel
> @
1 1
7 7y

Figure 3-7. Bode Diagram of the Active Lag-Lead Filter
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There are PLLs implemented as first-, second-, and third-order systems.
However, it is the second-order PLL that is mostly implemented because of its stability,
outstanding response, and ease of analysis (although it can be cumbersome too), (Best
1999 [1]). Third- and higher-order loops can be implemented, however, they confront
stability problems and their analysis is cumbersome, which makes third-order loops the
highest-order PLLs implemented. Yet, its implementation can be achieved using second-
order approximations. Taking a look at equation (3.22), which gives the general form of
the closed-loop transfer function of a linear PLL, we can see that the lowest-order loop
that can be implemented is first-order. To obtain this type of PLL we have to substitute

the loop filter by a gain, which we will refer to as K, .. The resulting transfer function is

H(s)=—ReKoKie K (3.23).
s+KK, K s+K

Since second-order system is the main concern of this thesis report, we will cover only
those loop filters that are commonly used for this type of implementation. (First-order
loops were discarded for this work because they do not provide flexibility to adjust

system gain and bandwidth separately as second-order systems do)

A |F(s)|

-20dB/decade

v
S

Figure 3-8. Bode Diagram of the PI Lag-Lead Filter
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Using equation (3.22) again, it can be seen that the loop filter needed to

implement a second-order PLL must add a pole to H(s). Before deciding the type of

loop filter, remember that it has to be low-pass. Therefore, combining both conditions it
turns out that we need a first-order low-pass filter in order to obtain a second-order PLL.
There are three types of filters commonly presented in PLL theory: passive, active, and Pl
(Proportional + integral) lag-lead filters (also known as lead-lag or simply lag filters),
(Best 1999 ™). The schematic of the passive lag-lead filter is shown in figure 3-3. The

input and output to this filter are u,(t) and u,(t) respectively; the same holds for the

other filter diagrams. The transfer function of this filter is given as

1+7,8

SO s

(3.24),

where 7, =RC, and 7, = R,C, (Best 1999 ™). Figure 3-4 shows the Bode diagram of its

frequency response. Once integrated circuit technology became accessible, amplification
devices such as the OPAM (Operational Amplifier) were easily available. This made
possible the implementation of the high-gain loop filters shown in figures 3-5 and 3-6,

respectively.

Phase Step Applied

150 ]
I -
05} ]
-D -
0.5

01 008 -006 004 -D0O2 1] 002 004 006 O0.08
Time in seconds

Magnitude

Figure 3-9. Phase Step Applied to Input Signal
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These are the active and Pl lag-lead filters whose frequency responses are shown in the

Bode diagrams of figures 3-7 and 3-8. The transfer function of each filter is given in

equations (3-25) and (3-26)

1+7,8
F(s)=K 2 3-25),
(8) =Ky 1+ 25 (3-25)
F(s) =241 (3-26).
s

For the active loop filter 7, =RC,, 7r,=R,C,, and K :—%, whereas r, =R,C and
2

r, =R,C for the PI filter. Due to the integrator, % term in equation (3-26), the PI filter is

the most effective loop filter that could be used ina PLL.

Phase Siep ﬁppiiad fo Input Signal

VWV

0.1 EEIZB E!l]S UEI4 DIIE DIIE IJIZH EIIIIS IJEIEI
Time in secunds

Amplitude
= p—

(]
ry

Figure 3-10. Input Signal Having Phase-Step Variations

Some of the characteristics that make this the obvious selection will be explained later,
however it is important to mention at least one. Remember from previous explanations
that the loop filter is used to eliminate the high frequency component of u,(t), retaining

only the low frequency component. This low frequency component tends to a DC value

when the PLL is locked. Now let us take a look at the DC gain of the Pl filter, which is
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7,(0)+1 _1
7,(0)

obtained when s=0, F(0) = = — 0. Itisobvious from this result that the PI

filter will emphasize the DC over any other signal, forcing the establishment of
synchronization. More about this subject will be covered in subsequent sections. It is
important to point out that the transfer function given in equation (3.26) is an

— A(sCR, +1)
SCR, +1+ (1+ A)sCR,

approximation of F(s) = , Which is the real transfer function of

the PI filter. The variable A in this equation is the gain of the operational amplifier in
the circuit. Because this gain is considered to be high, the expression is simplified to that

given in equation (3.26).

AN VW

F; ﬂﬂB {IDE Dl]:l EIEIE IZI DDE IJEIaI ﬂﬁE D!ZIE
Time in seconds

Amplitude

,J_-,L.g_..

Figure 3-11. Input Signal Having Frequency Step Variations

The important consequence of this result is that the PI filter cannot be implemented in the
analog domain, but approximated. However, even when this is true, this statement does
not hold for a digital implementation of the PI filter, which results in a filter having the
exact infinite DC gain desired and indicated before (this subject will be covered in
subsequent sections), (Gardner 1979 ). Now that we have some loop filters defined we

can proceed with the analysis.
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3.3.2 Steady-State Error in PLLs Due to Common Excitation Signals

The response of the Phase-locked loop will be examined using the most common
conditions encountered by communication systems: phase step, frequency step, and
frequency ramp. These three excitation signals can be seen as an example of phase
modulation, frequency modulation, and a signal whose frequency is changing linearly

with time.

Frequency Step Applied
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Figure 3-12. Frequency Step Applied to Input Signal

A phase step can also model an abrupt change in the phase of the input signal,
whereas the frequency step can model a Doppler shift in the frequency of the incoming
signal due to relative motion between transmitter and receiver. A frequency ramp, on the
other hand, can model a change in the Doppler rate, due to acceleration in the motion.
These excitation signals will be used to determine the steady-state error of the system,
which results from the response of the system to these signals. Figures 3-9, 3-11, and 3-
14 show a sine wave subject to each variation mentioned.

The steady-state error of a system is defined as the error when the time period is
large and the transient response has decayed, leaving only the continuous response. To

determine the steady-state error of the PLL due to any of the previously mentioned
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signals, let us first obtain an expression for the error of the closed-loop system, also

called the error transfer function, 6,(s).

¥ L]

Equivalent Phase Ramp Applied
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Figure 3-13. Equivalent Phase Ramp Applied to Input Signal

Amplitude
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Figure 3-14. Input Signal Having Frequency Ramp Variations

From equation (3-18), 6.(s)=6.(s)—6,(s). Equation (3-22) established that

H(s) = 6(8) __KoKoF(S) . Rewriting equation (3-22) in terms of &,(s) we obtain
6,(s)  s+KKF(s)

6,(s)=6,(s)H(s) = M@i (s). Substituting this result into (3.18) we obtain
s+ K, K, F(s)

0,(8)=[L1-H ()] 6,5) =m (3-27).
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Making use of the definition of steady-state error, it would be necessary to
measure the error between the actual and desired response of the system for a large
period of time (until transients have died out) to obtain an idea of the system’s
performance. To understand the meaning of the term actual and desired response of a
system, consider the block diagram of the PLL given in figure 3-2. This diagram is a
linearized model of the PLL in the frequency domain. From figure 3-2, the PLL has an

input signal, having a phase value designated by é.(s), and an output signal, having a
phase value designated by &, (s). &.(s), the phase of the input signal, represents the

desired response of the system.

Frequency Ramp Applied

A1 -008 006 -0.04 -D02 1] 002 004 008 008
Time in seconds

Magnitude

bDHE
L L

Figure 3-15. Frequency Ramp Applied to Input Signal

It is the phase that the output signal must have to allow correct demodulation of the input

signal. &,(s), the phase of the output signal, represents the actual response of the system.

It is the phase that the output signal possesses while the system is trying to match (which

is really approximating via estimation) the phase of the input signal.
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Equivalent Phase Parabola Applied
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Figure 3-17. Frequency Response of PLL For Different Values of Damping Ratio
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(3.28),

Remember that we are dealing with carrier synchronization, a part of synchronous

communications, which requires that the receiving system have phase and frequency

information of the carrier of the input signal, because without this information, the

system will not be able to demodulate the received signal correctly. Mathematically, we

can define the steady-state error of the system as

= lim 6, (1

eSS

t is a time variable, and 6,(t) is the

where e is the steady-state error of the system,

inverse Laplace transform of 6,(s), (Dorf et al 1995 (%) Although equation (3.28) can

-state error of the system, it requires the

be correctly employed to calculate the steady

calculation of the inverse Laplace transform of the error transfer function 6,(s).
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Figure 3-18. Frequency Response of the Phase-Error Transfer Function for Different Values of

Damping Ratio
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Given that most PLL requirements, if not all, are given in the frequency domain, and
since we already have its error transfer function (for which it can be difficult to obtain its
inverse transform), it would be desirable to determine the steady-state error right from the
frequency domain. This can be done utilizing the final value theorem

€ :!im ee(t)zlirr()]s-ee(s) (3.29).

Using equation (3.29) we are able to determine an equation that can be applied for PLLs
using any type of loop filter. Substituting equation (3.27) into (3.29) yields equation

(3.30).

2
e, =lims-4,(s)=lim——>—.4(s) (3.30).
s—>0 205+ K K, F(s)

Transient Response of Phase Error due to a Phase Step

o e e e e
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Figure 3-19. Transient Response of the Phase Error Due to a Phase Step
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Before substituting each transfer function of the loop filters provided in section 3.3.1, the

steady-state error analysis will be provided using a general representation, valid for any

—, Where P(s) and Q(s) can be any

P(s)
Q(s)s

type of loop filter, (Best 1999 M), F(s)

and N is the number of poles at s=0. Substituting this expression for

polynomial in s

F(s) into equation (3.30) we obtain

(3.31).

-6,(s)

25" Q(s)
Q(s) + K K,P(s)

S

N

s>08§.9

=lim

eSS

The steady-state error can now be calculated as follows.

uency Responge for PLL having Pl Loop Filter
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Figure 3-20. Transient Response of the Phase Error Due to a Phase Ramp

First consider a phase step applied to the input signal as shown in figure 3-10.

AD -u(t), where 6,(t) is the phase of the input signal

The phase step is defined as & (t)
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in time, A® is the magnitude of the phase step, and u(t) is the unit step function. Do
not confuse u(t) with the signals u,(t) and u,(t), which are the input and output signals

of the PLL. Remember that &,(t) is part of the expression of u,(t) presented in equation

(3-1). The Laplace transform of &,(t) is &, (s)=%. Substituting this equation into

2~N
equation (3.31) yields e, = lim s's°Q(s) A

. -——, Which results in a steady-
s>05-.9 Q(S)+ Kd KOP(S) S

state error of zero, after solving the expression (e, =0).

Transient Response of Phase Eror due to Phase Parabola
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Figure 3-21. Transient Response of the Phase Error Due to a Phase Parabola

This result is independent of Ad® , and is true for any value of N, including zero, hence,

valid for any type of loop filter. This means that no matter the amplitude of the phase
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step and the type of loop filter employed, PLLs can track down and phase-lock to the

signal until the steady-state error is settled to zero.

Consider now a frequency step applied to the input signal as shown in figure 3-12.

For this case, the angular frequency of the signal becomes ;(t) = @, + Aw - u(t), where

w,, 1s the center frequency of the input signal, and A® is the magnitude of the frequency

io

step. In order to use equation (3.31) to analyze the frequency step, we have to express it

in the form of a phase variation.

Log(G(jm)|) 4 ' 200B/dec |

Figure 3-22. Bode Plot of the Open Loop Transfer Function of the First-Order PLL

By definition, &,(t) is the integral over the frequency variation Aw, thus, 6,(t) = Awt,

which turns out to be a phase ramp. Figure 3-13 shows the equivalent phase ramp

employed. Applying the Laplace transform we obtain &,(s) :AS—?. Now, substituting

2N
this result into equation (3.31) yields e, = lim—— 5> ) A2 - Simplifying
s205-57Q(s) + K K,P(s) s
: : : : s"Q(s) : :
this expression we obtain e =lim -Aw . This expression can only

s-05-sMNQ(s) + K K, P(s)
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become zero if N is greater than or equal to one. This means that loop filters of first
order or higher, with an integrator at s =0 are required to settle the steady-state error to
zero. Loop filters of first order or higher result in PLLs of second order or higher. If a

first order PLL is used, (the loop filter is substituted by an amplifier of gain K, ), and

AxQ(0)

the steady-state error would be e = :
K¢K,P(0)

LOQQG(jw)|) 4 ' -20dB/dec |
—

-40dB/dec

Figure 3-23. Bode Plot of Open Loop Transfer Function of the Second-Order PLL

Since Q(s) =1 and P(s) = K, for this case, F(s) =K. Hence, e, can be written as

Aw Aw

e, = - (3.32),
KKK, K

where K =K K K, ; this term is known as the gain of the PLL. In control theory, this

constant is referred to as the velocity error constant, K, (Dorf et al 1995 %),
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The final analysis considers a frequency ramp applied to the input signal, u,(t).

Refer to figures 3-14 and 3-15 for graphical examples. For a frequency ramp, the angular

frequency of the signal is expressed as o, (t) = o, +Ac:)t, where Ac:) is the rate of

change of the frequency, and t represents time. Using the process of the previous

2 Aw

analysis it turns out that 6, (t) = Aa.)%, hence &.(s) = o

>

Log(G(jw)])

' 20dB/dec |
/

40dB/dec

1 1 / /7
2] ) ' 20dB/dec |

Figure 3-24. Bode Plot for Open Loop Transfer Function for Second-Order PLL when ¢ = 0.5

Figure 3-16 shows a graph of the phase parabola derived. Finally, substituting this result

: : . : s"Q(s) . : :
into equation (3.31) yields e, =lim -A@. This expression can

-0 5% . sNQ(s) + sK, K, P(s)
only be zero if N is larger than or equal to two. Therefore, the steady-state error will be
zero if the PLL is third-order or higher. Revising previous analysis it turns out that a

first-order PLL will never follow a parabolic phase change (e, — o), whereas a second-
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 A0Q()

= . Having this
KyK,P(0)

order PLL can track it down with a steady-state error of e

general expression for the steady-state error of a second-order PLL we can substitute the
transfer function of the loop filters presented in section 3.3.1 to determine their respective
steady-state value. It arises that the steady-state error is infinite for both the active and

passive loop filters. This is true because none of these filters have a pole at s=0.

Log(G(jw)|) 1

-40dB/dec

-20dB/dec
3

. Log(®)

Figure 3-25. Bode Plot of Open Loop Transfer Function of PLL Having Pl Loop Filter

Thus, for these two types of loop filters, the second-order PLL behaves as first-order,

unless 7, >>1, and z, >>r,, where the transfer function of the passive and active filters

7,5+1

,and F(s) = KLFM, respectively. Consequently,
7, 7,8

can be rewritten as F(s) =

these two loop filters will behave as the PI filter, which has a pole at s=0. For the PI

filter, the steady-state error is written as
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where K=K K,.

K =K,K.K,.
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Figure 3-26. Lock-In Process: Aw = Aw,
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(3.33),

When the active loop filter is used, and assuming 7, >>1,
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T, . .
L for reasons that will be obvious

Equation (3.33) has not been simplified to e, = A

later in the next section. Because the steady-state error of the PLL could only be zero for
the PI filter, or a filter behaving like the PI filter, the rest of the analysis performed will

assume a Pl filter is used as loop filter, which results in a second-order PLL.

3.3.3 Closed-Loop Transfer Function of the PLL

In the previous section we considered an important aspect of PLL analysis, the
steady-state error resulting from the response of the system to an excitation signal having

phase step, frequency step, and frequency ramp variations.
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Unsuccessful Lock-in Process

15 A
I Aa)min

0.5

Frequency Vanation in the Output Signal

1] 0.05 01 0.15 0.2 0.25 0.3 0.35
Time

We concluded that only a third-order PLL is able to track all this three type of signals
with a steady-state error equal to zero. However, it is well known that the design and
analysis of third-order PLLs is difficult to perform and, at the end, the design is
accomplished using second-order loop approximations, (Best 1999 1, Gardner 1979 @,
Egan 1998 B! Wolaver 1991 !, and Lindsey et al 1991 ). A second-order loop, tracks

phase and frequency steps with zero steady-state error, but follows the frequency ramp

with an error equivalent to equation (3.33), e, =AT(0.

21

Given the importance of the PI

loop filter and the significance of the analysis presented in next section, it would not be

41



42

appropriate to continue the discussion of PLLs without expressing the specific equations

governing the behavior of the second-order PLL with PI loop filter.

From equation (3.22), the transfer function of a PLL is expressed as

H(s) __KeKF(S) The transfer function of the PI loop filter as given by equation

s+ KK F(s)

(3.26) is F(s):ﬂ. Placing this transfer function into equation (3.22) yields
S

7

Kd KOTZ S+ Kd Ko
21 21
2+ KdKoTZ S+ KdKo

7 7

H(s) = In control theory it is customary to express a second-

S

order system like this one in terms of its damping ratio ¢, and natural frequency o, .

This way we can apply to the PLL the vast amount of theory that has been developed to

analyze this type of system. Making use of this concept we can write the previous

equation as
2
H (S) _ 22ga)nS +a)n _ (334)’
$*+2¢m,5 + o,
where 2¢w, = Ky Ko, ,and @’ = KK, . Equation (3.34) makes evident that the PLL is
2] 21

a second-order low-pass filter having DC gain equal to one, H(0)=1. The expression

for the transfer function of the phase error is obtained by substituting F(s) of the PI loop

2 2

S S
2 KyKo7,8 n KiKy  8*+2cm, s+
0O 0O

filter into equation (3.27), thus 6,(s) =

. Using

N

n

S

42



43

equation (3.30) we can determine an expression for the steady-state error,

2

e = lim > 0.(S) which is equal
= % , Which is equal to
¥ 082+ 2cm, +w! a
e, =22 (3.35).
a)n
. . Ao Ao . .

Comparing equation (3.35) to (3.33), where e, = KK =K it becomes obvious the
d'to o
21 2]

o1,

.. . e . A .
decision of not simplifying e, to . Equation (3.35) relates the steady-state error to

the natural frequency of the second-order PLL. This is a significant relation because
parameters such as the 3-dB bandwidth, @, ., and the noise bandwidth, B, , are directly

related to the natural frequency. The 3-dB bandwidth for a second-order PLL having PI

loop Filter is expressed as, (Best 1999 )

@y g =a)n£[+ 2¢% +4/(L+25%)? +1F (3.36).
Equation (3.36) not only relates the bandwidth of the system to the natural frequency, but
to the damping ratio as well. Assume for a moment that we select ¢ =0.7. Inserting this
value into equation (3.36) results in a 3-dB bandwidth of about twice the natural
frequency, o, , ~2.06w,. Thus, by establishing the values of the damping ratio and the
natural frequency of the system we establish its 3-dB bandwidth. The relation between

the natural frequency and the noise bandwidth will be presented, along with the noise

theory, in other section. Now that we finally have the closed-loop transfer function of the
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second-order PLL as well as its phase error transfer function, let us determine their

respective frequency response.

The frequency response of the PLL is shown in figure 3-17 for different values of

damping ratio. The damping ratio varies as 0.3, 0.5, 0.7, 1, 2, and 3. The frequency axis

is given by @ (it has been normalized to the natural frequency of the system, @, ), and
w

n
both axis are in logarithmic scale. Figure 3-17 presents the PLL as a low-pass filter
capable of tracking phase and frequency variations in the input signal that range from
zero to about its natural frequency. Translating this result to communications, it means
that the PLL is able to track a signal having phase or frequency modulation as long as the

frequency or the frequencies of the signal lie within zero to about w,. (Figure 3-17 also

shows that the value of the normalized frequency “ where all the graphs intersect has
[0

n

an approximate value of V2. This value was determined graphically using Matlab.)

The frequency response of the Phase-error transfer function is shown in figure 3-
18. As with the frequency response of the PLL, the frequency axis has been normalized

by w,, and the response is plotted for different values of damping ratio (0.3, 0.5, 0.7, 1,

2, and 3). The figure shows that the phase error response behaves like a high-pass filter.
Consequently, the phase error during the tracking process of input signals having phase

and frequency modulation smaller than @, remains considerably small. However, for

larger phase and frequency variations the phase error can be as large as the variation itself
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(phase and frequency variation presented by the input signal), meaning that the PLL is no

longer able to maintain phase tracking of the input signal.

The effect of the damping ratio in the dynamic response of the PLL is indicated

by the figures as well. When ¢ <1, the response of the system becomes oscillatory, and is
referred to as an underdamped response. On the other hand, for ¢ =1, the system is
critically damped, and oscillations are hardly seen in the response. For ¢ >1, the system

is said to be overdamped and, as in the previous case, oscillations can be assumed to be
zero. Think of the damping ratio as a measure of responsiveness of the system. When

¢ <1, the system responds fast to variations in the input signal. The smaller the damping

ratio, the faster the response of the system, but the larger the oscillations that occur in the
response. If oscillations in the response are big enough, it might be possible that the PLL

would never track and lock to the signal. If, on the contrary, ¢ >1, the response of the

system becomes sluggish and it might be possible that the PLL would never track and
lock to the signal as well. The effect of the damping ratio is also observed in Figures 3-
17 and 3-18. These figures show that the smaller the damping ratio, the larger the spike

in the frequency response of both the phase error and the PLL.

Before going any further, let us talk revise figures 3-19 to 3-21. These are the
transient response of the Phase error due to a phase step, phase ramp, and phase parabola,
respectively. These figures have been plotted using the same damping ratio values used
for the previous figures. It is evident from these figures that the smaller the damping

ratio the larger the overshoot and/or the undershoot in the transient response of the
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system’s phase error. In addition, figures 3-19 and 3-20 show that for a damping ratio
that is either too small or too large, it takes longer for the phase error response to settle to

its final value, zero phase error. For the case of a phase parabola, as shown in figure 3-

. . . A .
21, it takes long to the phase error response to settle to its final value, —? if the
a,

n

damping ratio has the characteristics just mentioned. It is important to mention that the
magnitude of the phase parabola applied to the system was normalized to 7, making it

equal to one. For this reason, the transient of the phase error response settles to one. (All

these figures were obtained using Matlab.)

3.3.4 Open Loop Analysis: Bode Plot

Bode plots are very useful to study PLLs because several loop parameters appear
as distinctive points on the plots. For this type of analysis we need the open-loop transfer
function of the system, which will be denoted G(s). Since we previously presented
various types of PLL, the Bode plot analysis will be developed to include at least first-
and second-order PLLs. The procedure to obtain a Bode plot will not be covered here,
however, the interested reader can refer to a book of basic circuit theory for information

about the subject.

Let us start the analysis with the first-order PLL. From figure 3.2, the open loop

KaKoK e _5
S

transfer function of a first-order PLL is determined as G(s) = . It can be

seen that the only frequency-selective term of this loop arises from the integrator of the
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VCO, which results in a Bode plot consisting of a single straight line with slope —
20dB/dec (minus twenty decibels per decade), as shown in figure 3-22. Before

continuing any further, let us define the term gain crossover. The gain crossover is the

frequency at which |G(ja))| =1 or 0dB. Applying this definition to the first-order loop, it

arises that its gain crossover lies at ® = K. For a first-order loop, the loop gain K is the
only parameter available for the designer to determine the loop characteristics.

Remember that for this type of PLL, parameter K determined the magnitude of the

steady state error for frequency step (phase ramp) at the input signal (ess :A?wj

Consequently, in order to reduce the steady state error, K has to be quite large, which
results in a wider bandwidth (for this loop the 3-dB bandwidth is equal to K), which is
crucial for the dynamic operation of the loop in the presence of noise. It is because of

this characteristic that first-order PLLs are not commonly used.

For Second-order phase-locked loops the analysis will be mostly developed
assuming a passive lag-lead filter, however, the analysis presented applies for Pl and
active loop filters as well. Stability will not be covered for second-order analog phase-
locked loops, because they are always stable. The open loop transfer function of the

Ky KoK (7,8 +1)

passive loop filter is G(s) =
S(L+17,9)

. Figure 3.23 shows the Bode plot of this

function. It consists of three straight lines with slope —20dB/dec, —40dB/dec, and

—20dB/dec, respectively. The leftmost line of the plot results from the integrator of the

- . . 1 . .
VCO. This line connects to a second line at the point @ =—, the location where lies the
5}

47



48

pole of the loop filter. This point is known as a lag break. The second breaking point

. . 1 . Lo
occurs at the place where lies the zero of the loop filter, @ =—. This point is known as a
7

lead break. The Bode plot of figure 3-23 can be used to determine «,, the natural
frequency of the second-order PLL. Take a look at the straight line with slope —
40dB/dec. If we extend this line until it intersects the frequency axis, where |G(ja))| =1
or 0dB, w, will be the frequency value denoted by this intersection. Another important
parameter we can obtain from the Bode plot is 2¢w,. To obtain this parameter just

consider the place where the third straight line (with slope —20dB/dec) intersects the

frequency axis, 2¢w, will be represented by this frequency value. (If this line does not

touch the frequency axis, then we have to extend the line until the extension touches the

axis.) Consider again the location of @, and 2¢w, in the plot. Comparing these two
parameters it turns out that 2¢w, =@, if ¢ =0.5. This is equivalent to placing the lead
breaking point where |G(jw)|=1 or 0dB. When this happens, w, equals the gain

crossover. A graphical representation of this result is given in figure 3-24. For a second-
order loop, the gain crossover occurs at o = 2¢w, . 1f the damping ratio is selected below
0.5, the response of the PLL becomes highly oscillatory (Best 1999 ™). This will result

in a Bode plot where the line with slope —40dB/dec passes below the frequency axis, as

seen in figure 3-24.

The analysis just presented for PLLs having an passive loop filter applies for PI

and active filters as well. In fact, the Bode plot for the active loop filter will be exactly
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like the one presented for the passive filter. This is not true for a PLL having PI loop
filter. The theory is the same, but the Bode plot is different. The Bode plot of the open
loop transfer function of this PLL is shown in figure 3-25. This Bode plot is composed of
two straight lines having slope of —40dB/decand —20dB/dec, respectively. Since the
PI loop filter has an integrator at s =0, the Bode plot starts with a slope of —40dB/dec.
Remember that it is this pole that gives the PI filter the characteristics needed to make the

PLL track a phase step and phase ramp with steady-state error of zero and a frequency

ramp with steady-state equal to A—Czo Although not shown here, a high-gain third-order

PLL would have a slope of —60dB/dec, resulting from its three poles located at s=0,
characteristic that makes it possible for this loop to follow a phase parabola (frequency

ramp) with zero steady-state error.

3.4 Parameters for Dynamic Performance of the PLL: Hold-In, Lock-In,
Pull-In, and Pull-Out ranges

During operation, the PLL is affected by the conditions acting upon the incoming
signal. Some of these conditions were discussed previously as phase and frequency
variations. Three specific cases were discussed, phase step, phase ramp (frequency step),
and phase parabola (frequency ramp). It was shown that the operation of the loop greatly
depended upon the type of loop filter selected. In addition, it was mentioned that for
some parameters, like the selection of the damping ratio, it was possible for the PLL not
to track and lock to a signal. This happened because the response was either too slow

(had no oscillations at all) or too fast (had large oscillations). It is well known that for
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signals having the characteristics presented previously, the loop may never lock to the
signal. Consequently, it is important to study the dynamic characteristics of the PLL that
govern its dynamic response to these signals. These characteristics or parameters are

known as lock-in, pull-in, pull-out, and hold-in ranges.

3.4.1 Lock-In Range

When a PLL is tracking the input signal, the phase and frequency parameters of
its output signal are equal to those of the input (the phase and frequency difference
between both signals is close to zero) hence, we say the PLL has locked to the signal.
Before locking to the signal, the PLL enters a dynamic process where the parameters of
the incoming signal are estimated. These parameters are used to generate an output
signal intended to resemble the phase and frequency of the input. This output signal is
compared to the input. If the estimates are not correct, an error signal is generated. This
error signal is used to correct the estimated parameters. The process continues until the
error signal is zero or settles to a specific value, at which point, lock-in has occurred. Itis
desired that the PLL be able to acquire and track the input signal as fast as possible.
There is a frequency deviation A@ for which the PLL is able to track the input signal in

just a single beat note in the error signal. Remember from equation (3-4),
uf('[)z%cos[(a)i ~o,)t+6, —¢,], that the filtered error signal has the form of a

cosine wave when the loop is not locked, which causes the signal to oscillate. If the

frequency deviation is inside the lock-in range then u, (t) will settle to zero after a cycle

or less. This is what is called a single beat note.
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It is desired that the PLL operates in the lock-in range. To calculate the lock-in
range, first assume that the loop is not locked and the input signal has frequency

deviation Aw, , where Aw, is the lock-in range. Defining the center frequency as a,,,
the frequency of the input signal can be expressed as o, = @, + Aw,. From equation
(3.5) the frequency of the output signal is o, = @, + K ,u,(t). Subtracting these two
equations we obtain Aw =Aw, — K u; (t), where Aw the frequency difference between
the signals. In order to make Aw equal to zero, Aw, = K,u,(t). Using equation (3.4),

and neglecting (6, —¢,) for the moment, the output of the loop filter would be
u, (t) = Kd|F(Aa)L)|cos[(Aa)L)t], where K, :%. From this result, the peak frequency
deviation that can be obtained is K, K F(Aw.)|. Plugging this result into
Aw, =K,u,(t) we obtain

Ao, =K K |F(Aw,)| (3.37).
Substituting |F(Aa)L)| for each loop filters given in section 3.3.1 we obtain a non-linear

expression for Aw, . Nevertheless, since it is customary that Aw, is larger than the loop

filter parameters 1 and i, and z, >>r, we can approximate |F(Aa)L)| for each filter as

(2} 7}
follows
For the passive filter: |F (Ao, )|~ L BN (3.38),
7 + 7, 7
For the active filter: |F (Ao, )|~ K % (3.39),

1
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And for the PI Filter: |F(Aw,)| ~ 2 (3.40).
T

1

Using these approximations the lock-in range is given as

For the passive filter: Ao, = KoKorz _ 250, (3.38),
0O
For the active filter: Aw, = K¢ KoKoTy _ 2c0,K ¢ (3.39),
1
And for the PI Filter: Aw, ~-aKo%2 _ o) (3.40).
0O

Assume for the moment that we are using the Pl loop filter and we want to

calculate Aw, without using the approximations stated above. In this case, Aw, is
expressed as

Ao! - (2¢0,)’ Ao} - o) =0 (3.41).
Having this non-linear expression, all we have to do is to solve for the roots of Aw,,

which is easily done using Matlab or any graphics calculator such as the HP48GX. When

solving equation (3.41) Matlab will give four possible results for Aw,, as it should be.

Select as Aw, the largest real and positive result given by Matlab.

Now that we have equations to determine the lock-in range of second-order PLLs,
let us examine its meaning graphically. Figure 3-26 shows a lock-in process that occurs

when the frequency difference A equals the lock-in range of the PLL, Aw@, . The sine
wave presented in the figure represents K, u, (t), which in this case equals Aw, . The

figure shows how the frequency of the VCO output signal is increased until it equals that
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of the input. Figure 3-27, on the other hand, show the case where Aw > Aw, . In this

case lock-in does not occur with just a beat note. It is going to take longer for the PLL to

lock to the signal. For this case, acquisition will occur as a pull-in process.

3.4.2 The Pull-In Range

The pull-in process occurs when the frequency difference Aw =, —w, is larger
than A, . Let us take a look at figure 3-27 again. Remember that K u, (t), the VCO

input signal is oscillatory when the PLL is not locked. It can be seen from the figure that

the frequency of VCO output signal o, increases during the positive cycle of K u, (t),

o
whereas it decreases during the negative cycle. When @, is modulated in the positive
direction, Aw reaches a minimum value called Aw,,,. When the modulation occurs in
the negative direction, @, reaches a maximum value Aw, . . During this process o, is
modulated non-harmonically, making the half cycle in which @, is modulated in the

positive direction to last longer than that in which it is modulated in the negative
direction. As a consequence, the average frequency of the VCO is set to a value higher
than its central frequency, reducing the difference between input and output Aw. Since
this process is regenerative if occurs as explained, A is reduced until it reaches the

lock-in range Aw, , where the PLL locks to the signal in a single beat note.

Since the process involved in deriving the formulas is very complicated, they will

be presented as given by, (Best 1999 ™):
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For passive filter: Ao, ~ i\/ngan K, - o} (3.42),
V3
ifr,>>7, Aw,=~ ﬂqlga)an K, (3.43),
T

For active filter: Ao, ~ i\/Zga)an K, —w?,
VA

ifz,>>7, Ao, zﬂqlga)an K, .
T
And for Pl Filter:  Aw, — o (3.44),

where Aw, is the pull-in range.

3.4.3 The Pull-Out Range

The pull-out range is considered to be the dynamic range for stable operation of a
PLL, (Best 1999 ). This range is defined as the frequency step that causes the loop to
lose lock momentarily. When the PLL loses track of the signal because of a large
frequency step, it returns to the lock operation through a pull-in process. Equations for
the pull-out range have not been derived and calculated as in previous sections (this is the
approach followed by references we used to explain this subject in this work). Instead,
the equation provided is the result of computer simulations, (Best 1999 ! and Gardner

1979 . The pull-out range Aw,, is approximately

Awpy #1.80, (¢ +1) (3.45).

3.4.4 The Hold-In Range
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Let us assume that the PLL is tracking the input signal and that the center

frequency of the signal equals that of the PLL, @,.. We start increasing the frequency of

the input signal slowly so that the rate of change A'a) of the frequency is negligible.

Consequently, the phase error 6, is proportional to Aw. We continue increasing the

frequency until we reach a limit where the loop loses track of the signal. In the vicinity
of that limit lies a frequency value known as hold-in, which marks the maximum
frequency deviation of the input signal that the loop can tolerate, because after that point

the loop loses track of the signal forever. This critical frequency value is given the name

Hold-in range, and causes the phase error 6, to attain a value equal to % Although the

hold-in range was referred to as part of the PLL’s dynamic characteristics, it is really a
range where the stability of the loop is conditionally stable. For this reason a PLL that
operates in the hold-in range will be able to track a signal if its parameters (phase and
frequency) remain static in time, since the slightest variation in phase or frequency of the
input signal will make the loop to unlock forever. This static condition is impossible to
maintain in real life due to noise and fluctuations in the signal that can result from
environmental interaction and intrinsic operation of the oscillator generating the signal.
Therefore, a PLL is never operated in this range. Despite this fact, it is important to
know the hold-in range of the loop as a precaution, so that the frequency deviation of the
input signal is kept below this range. However, remember that a frequency deviation
close to hold-in is only tolerated by the PLL if it was already tracking the signal before

the deviation occurred. Thus, if the signal has a frequency deviation close to hold-in, the
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loop will never track the signal, unless the PLL have a Pl loop filter (this statement will

be justified later).

The hold-in range is obtained by calculating the frequency offset in the input

signal that causes a phase error 6, equal to % (Best 1999 ™). Thus, we start with a

signal whose frequency is given by o, =, + Am,,, where Aw,, is the hold-in range.
The equivalent phase signal would be é.(t) = Aw,t. Using the Laplace transform we

Aw,
SZ

obtain  6.(s) =

Placing this result into equation (3.30) we obtain

Aoy . Since the PLL is not operating in the linear

e.=limé.(t)=lims-6.(s)=———
S 5w (1) $—0 (5) KdKoF(O)

region, the linear model for 6, (t) cannot be used, thus, 6,(t) is substituted by sin[@, (t)]

in the expression. Now, evaluating the resulting expression for the condition when

6.(t)== (hold-in condition ields e, =limsin|g,(t)|=sin| = |=1=—F"—.
0= ) ields e, ~limsinf, 0] -sin| 7| -1 %
Simplifying the equation we obtain

Aoy, =K K, F(0) (3.46).

Now all we have to do is to substitute the appropriate loop filter transfer function into the

expression to obtain a specific equation for each PLL case:

For the passive filter: Ao, = K, K, (3.47),
For the Active Filter: Aw,, = KK K¢ (3.48),
And for the PI Filter: Aw,, — « (3.49).
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Equation (3.49) implies that every time a PI filter is used, the PLL will eventually track
and lock to the input signal. The only limitation that this PLL can have is the frequency

range covered by the VCO.

Let us finish the discussion of the dynamic characteristics of the PLL by

expressing the relation between them

Ao, <Awp, <A, <A, (3.50).
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4 The Analog Costas Loop

4.1 An Overview
In 1956, John P. Costas published the article Synchronous Communications, (Costas

1956 ). This article was addressing one of the growing concerns at the time regarding
communication systems. Most commercial and military communication systems were

employing amplitude modulation (AM) techniques to transmit information.

Uy, (t) u, (t) m(t)
Uyy (1) u, (t) ug (t)
i | A

\ 4

90°

Uo, (1)

t
. Ug, (t) ’E Uq (t)

Figure 4-1. The Costas Loop Demodulator

Y
v

This type of modulation, specifically Double-sideband transmitted carrier AM (DSBWC),
was preferred over others proposed due to the simplicity of the systems used to implement it.
However, continued growth on communication demands could not be easily met by
conventional AM, imposing the need to use other modulation techniques, despite the
additional system complexity. New modulation techniques were proposed and it seemed

obvious that Single-Sideband AM could be used as the logical replacement for conventional
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AM. Hence, Single-Sideband AM was given a great deal of publicity and support. In theory,
single-sideband (SSB) allows the transmission of information more efficiently than Double-
sideband Transmitted carrier. SSB uses less power and the information transmitted occupies
half the bandwidth required for conventional AM; this characteristic is considered to be its
primary advantage. A major disadvantage, however, is the difficulty in building a transmitter
or an effective receiver, not to mention its susceptibility to jamming. This is not to say that a
SSB transmitter could not be designed for simple operation, but this simplicity was obtained

at the expense of additional complexity in manufacture and maintenance.

This scenario, his involvement with the technology and the increasing need for
efficient and simpler modulation techniques seems to have motivated John P. Costas to
question the actual benefits of SSB and propose an alternative that would efficiently generate
and detect Double-sideband (DSB) suppressed carrier AM signals. DSB suppressed carrier
AM uses the generated power at the transmitter more efficiently, compared to DSB
Transmitted Carrier AM, because no extra energy is required to include the carrier in the
transmitted signal. It was necessary to include the carrier with the transmitted DSB AM
signal because DSB requires synchronous detection and demodulation. This implies that the
receiver has to use an exact copy of the carrier in the received signal to achieve a successful
demodulation process. This copy of the signal carrier has to be synchronized in phase and
frequency. The proposed reception mechanism, known today as the Costas Loop, relies on
the feedback principle related to the Phase-Locked Loop, thereby allowing for the
synchronous detection and demodulation of Double-sideband suppressed carrier AM. Figure

4-1 shows the basic diagram of the Costas Loop.
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Although it may not seem that obvious at first, the Costas Loop seen on the figure is
essentially a system with two Phase-Locked Loops that receive the same input signal, but
operate in phase quadrature to each other, (Costas 1956 2, and Best 1999 ™). However, as
the loop moves into and operates at the lock state, it can be shown that it would actually
function as a single PLL. This result will enable the development of a linearized model that
can be used to design an analog Costas Loop following the same approach employed with

analog PLLs.

Unlike conventional PLLs, which require the presence of a carrier in the incoming
signal to lock to, the Costas Loop was designed to receive, extract carrier information and
demodulate a specific type of suppressed carrier signal: DSB suppressed carrier AM. To
accomplish the demodulation process, the signal received is passed through each PLL, which
operating in phase quadrature to each other, remove the effects of the modulation and
estimate the phase and frequency of its carrier. The estimated carrier information is then fed
to a VCO to generate a waveform that is a replica of the carrier. This replica is then used to
demodulate the input signal and to correct the phase and frequency estimates made by the

system.

To identify each of the PLLs composing the Costas Loop and determine their phase
quadrature operation, we ought to take a look again at figure 4-1. Notice the symmetry of the
diagram. The upper and lower sides of the diagram, known as the Arms or Channels, are

composed of a multiplier and a filter. To maintain the symmetry of the system, both filters,
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also referred to as Arm Filters, have to be equal in design; otherwise the operation of the
system would be compromised. On the center of the diagram lie the VCO, a 90°-phase
shifter, the loop filter, and a third multiplier. The loop filter used in the Costas Loop takes its
name from PLL theory, as this filter performs the same operation as that of the loop filter
present in an analog PLL. The PLLs composing the Costas Loop are formed when the

upper- and lower-side arms are connected to the center components through the multipliers.

The phase quadrature operation that takes place between the PLLs is obtained by
using the 90°-phase shifter; which shifts the phase of the VCO output signal by 90 degrees
and feeds it to the lower-side PLL. Because of this shifted signal, this PLL is said to be in
phase-quadrature, hence its side arm is called Q-Arm or Q-Channel. Conversely, the signal
that goes to the upper-side PLL, is not shifted, and so this PLL is said to be in-phase with the
carrier; therefore the side arm of this loop is called I-Arm or I-Channel. As an example,
assume the carrier of the input signal is a sine wave. As the Costas Loop is able to estimate
its phase and frequency, the VCO output will look much like the carrier, a sine wave. This
generated sine wave replica is fed directly to the upper-side arm of the loop, whereas the
lower-side arm receives a 90-degree phase shifted version (cosine wave); this shifted signal
is said to be in phase quadrature. On the other hand, if the carrier were a cosine, the VCO
output signal would be a cosine wave, whereas the shifter output signal would be a sine
wave. Both examples show how no matter the type of sinusoid used as the carrier, the upper-
side arm would always be in phase with the carrier, whereas the lower-side arm would

always be in phase quadrature.
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How is it that having two PLLs operating in phase quadrature allows the
demodulation of a DSB suppressed carrier AM signal? Suppose that the Costas Loop is
locked to the carrier of the input signal and this carrier is a sine wave. From communications
theory we know that in order to demodulate a DSB suppressed carrier AM signal, we have to
multiply the signal by its carrier and low-pass filter the results. This task is accomplished by
the upper-side PLL, namely its multiplier and arm filter. Therefore the output of the I-Arm
filter would contain the demodulated signal. Unfortunately, a PLL cannot track and lock to a
suppressed carrier signal by itself, hence the lower-side PLL had to be added, as well as a
third multiplier. When the Costas Loop is in lock, the output of the Q-Arm will be
approximately zero, and so the output of the third multiplier. The resulting signal in the Q-
channel bases its properties on the quadrature null effect obtained from multiplying two
sinusoids that are exactly 90 degrees apart from each other. Prior to the arm filter, there is a
second component at twice the carrier frequency, but the arm filter eliminates this
component, hence it is not seen at the output. Should a small phase drift occur on either the
input carrier or the generated replica, the output of the I-channel would remain essentially the
same, whereas the signal level at the Q-channel would no longer be zero. Instead, it would
acquire a voltage level proportional to the magnitude of the phase error detected, and its
polarity would equal the I-channel polarity for a positive direction of the phase drift and
opposite polarity for a negative direction of the phase drift. Therefore, by multiplying the
signals on the I- and Q- channels, we obtain the desired DC control signal that is used to

adjust and correct the parameters of the locally generated replica.
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4.2 Time Domain Analysis
The previous section concentrated on the origins of the Costas Loop and presented a

concise description and explanation of its operation and importance. The description
provided, however, lacked the mathematical analysis required to further understand its
operation and achieve a realizable design. This section provides the mathematical analysis,
based on the time domain. The theory provided in this and all other sections of this chapter

was obtained from (Costas 1956 1, and Best 1999 1),

Figure 4-1 shows a block diagram of the analog Costas Loop with components and
signals expressed in the time domain. These components are three multipliers, two arm

filters a(t), a loop filter f(t), a VCO and a 90-degree phase shifter. The signals seen on the

figure will be defined as we progress with the discussion.

At the input to the system we have u,(t), defined on equation 4.1 as a DSB
suppressed carrier AM signal with amplitude A, modulating signal m(t) and a sine wave as

the carrier. This sine wave will have frequency @, and phase .. Unless otherwise

specified, amplitude terms will have units of Volts, frequency terms will have units of

radians
second

and phase terms will have units of radians. The modulating signal m(t),

represents digital data encoded in Non-Return-to-Zero format (NRZ).

u, (t) = Am(t)sin(ot +6,) (4.2),
uol(t) = Ao Sin(a)it + (90) (42)!
U,, (t) = A, cos(a,t +6,) (4.3).
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Although equation 4.1 corresponds to a DSB suppressed carrier AM signal, by defining m(t)
as a NRZ signal, we make equation 4.1 be the definition of the Binary Phase Shift Keying
(BPSK) signal that will be the input to the system. As the Costas Loop has a quadrature-
phase type operation, there are two output signals to be defined: u(t) and u,(t). u,(t) is
the signal that is in-phase with the carrier, whereas u,,(t) will be in phase quadrature to the

carrier. In order to mathematically define each of these signals, first we have to know the
carrier of the input signal. Since the carrier of the input signal is a sine wave, as seen on

equation 4.1, we can define u(t) as a sine wave and u,,(t) as a cosine wave; when the

system is locked these are the signals that will be seen at the output of the VCO and 90-

degree phase shifter, respectively. Both waveforms will have amplitude A/, frequency o,

and phase 6, .

As mentioned on section 4.1, the Costas Loop can be broken into two PLLs, one
operating in phase and the other in phase quadrature. This configuration gives the Costas
Loop the ability to detect and demodulate DSB suppressed carrier AM signals and any other
signal that can be expressed in this format, such as BPSK. Without a carrier signal added to

the input, a PLL fails to detect and demodulate a signal such as u,(t), because after the

detection and filtering process the signal entering the VCO would be like
u; (t) :%m(t)sin(ei —6,). In addition to having a wide bandwidth, this signal is subject

to variations in sign resulting from m(t). As we defined m(t) to be a NRZ signal, its

amplitude varies from +V to -V ; for simplicity purpose, we will assume that the

magnitude varies from 1 to —1. Due to this change in polarity the VCO sees a phase error of
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0,=6,-6,+r instead of 6, =6, —6,, hence, the loop locks in anti-phase with the carrier.

Therefore, in order to solve this problem, the effects of the modulation have to be eliminated.
Eliminating the effects of the modulation is what the Costas Loop does to properly detect and

demodulate the received signal.

Now that we have the input and output signals properly defined, we can proceed with
the analysis of the Costas Loop. Referring again to figure 4-1 we see that u, (t) is multiplied
to u,(t) and u,(t) at the upper- and lower-side multipliers, respectively. Using

trigonometric identities, the signals obtained from these multiplications are:

Ugy (1) = AA° m(t) cos(d, — 6,) ———> AA° m(t)sin(2at + 6, +6,) (4.4),

Uy, (t) = AA" m(t)sin(@, - 6,) + —— AA° m(t)sin(2ot + 6, +6,) (4.5).

At these two multipliers phase detection already takes place as the first term on each of their

outputs has a component with phase difference & -6, . Itis these two components that have

the phase error information the VCO will use to generate a replica of the carrier. Then again,
the VCO will not be able to use this phase error information unless the modulation
component attached to it is removed. At this point, this modulation component is at base-
band and has a bandwidth in Hertz equal to the data rate, R ; the base-band bandwidth of a
BPSK signal is equal to its data rate. Equations 4.4 and 4.5 also have a high frequency term,

which is at twice the carrier frequency, 2m,. These two terms are undesirable and need to be

removed. Removal of these components is accomplished through the arm filters. Although
not considered for this project, it is worth mentioning that the arm filters can be designed to

be matched filters to provide improved noise immunity to the system [8]. Nevertheless, for
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simplicity a low-pass filter can be chosen, which can be designed to approximate a matched

filter by making its bandwidth equals to R, the data rate of m(t).

Signals ug,(t) and u,,(t) are passed through the arm filters to remove their high

frequency components. For the purpose of this analysis we will assume the arm filters are

low-pass and their output signals are u, (t) and u,(t), respectively. These two signals are

represented by equations 4.6 and 4.7. Having the high frequency terms successfully removed

by the arm filters, signals u, (t) and u,(t) are multiplied to obtain u,(t), as given by

equation 4.8.
0 0= A5 cosg, -4, (456),
Uy (1) = %m(t)sin(ﬁi ~0,) @.7).

It is at this multiplier that the modulation component m(t) is removed and the last stage of

the phase detection process takes place. However, unlike conventional PLLs, the Costas

Loop will track a doubled-phase error 2(6, — 6, ), as shown on equation 4.8.
2 2
U (t) = Wsin(@i ~0,-0,+0,) +Wsin[2(¢9i -0,)]

U, (t) =Wsin(m +Wsin[2(@i N

u, (1) :(”‘%)zsin[zwi -6,)] (4.8)

66



67

Since m(t) was defined as a NRZ signal whose amplitude varies from 1 to -1, squaring this
signal makes it possible to remove its modulating effect as m?(t) =1. To finish the process,

signal u, (t) is low-pass filtered by f (t), the Loop Filter, to obtain u; (t).

u,(t) = (A*Qo)z sin[2(0, - 6,)] (4.9),

It is obvious that equations 4.8 and 4.9 represent the same signal, that is, assuming the loop

filter is wide enough to let u, (t) pass through unaffected. Hence, we could ask ourselves:

what is the purpose of the loop filter in the Costas Loop? First of all, based on PLL theory,
we know that it is the loop filter that determines important characteristics of the system, such
as steady-state response to variations in the input, as covered in chapter three. Nevertheless,
the importance of this filter becomes obvious when we include noise effects in the analysis.
As a quick example, let us assume that additive Gaussian noise is present at the input signal
and that this signal has been pre-filtered before being fed to the Costas Loop. The filter used
at this stage is band-pass with bandwidth 2R ; when a BPSK signal is not at base-band
frequency, it occupies a bandwidth of twice its data rate. This signal is fed to the Costas loop
where it is multiplied by a locally generated replica of its carrier, and a 90-degree shifted

version of it, to obtain signals u,(t) and u,,(t) . These two signals are low-pass filtered by
the arm filters with bandwidth equal to R. This is the bandwidth of signals u, (t) and u,(t),
which includes m(t) plus the noise. At the third multiplier, u, (t) the resulting signal has a

bandwidth equal to R. This bandwidth is occupied by the phase error information, which is
at or close to DC level, and the noise, which occupies the whole bandwidth given by R. At

this point the use of the loop filter becomes obvious. This low-pass filter can be designed to
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have a bandwidth much narrower than R, which will reduce the noise fed to the VCO even

further, hence, improving system performance.

Now that we understand the importance of the loop filter in the Costas loop, we can
take the analysis of equation 4.9 a bit further. Suppose the system is locked or close to lock
to the carrier signal. In such case, the phase difference between the carrier of the input signal

and its locally generated replica will be zero or close to zero, hence 6 ~6,. If this

assumption holds true, we can use the small angle approximation to simplify equation 4.9.

From the small angle approximation, sin[2(6, —6,)]~ 2(6, —6,). Defining W as K,,
the phase detector gain (this is the gain at the third multiplier), we obtain

0, =2 [20,-0,)

u, (t) =K, -86,) (4.10).

Using the small angle approximation, equation (4.10) shows that the Costas Loop would
actually track a single-phase error when it is at or close to the locked state. This result is very
important, as equation (4.10) is exactly the same outcome obtained on equation (3.8) for the

conventional PLL.

Up to this point, we have developed the discussion and presented equations geared
towards the analysis of the phase-track capabilities of the system, but have not discussed yet
how does the demodulation process takes place. In order to develop this discussion, we have
to make use of equations (4.6) and (4.7). The main goal of the Costas Loop is to recover the

transmitted data, which in this case, it is encoded as a NRZ waveform, and it is received as a
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DSB suppressed carrier AM signal. To do so, it estimates the phase and frequency

parameters of the input carrier, modulated by m(t), and generates a replica that is used to

correct these estimates. If these parameters are estimated correctly, the loop will move to the

lock state, in which case the phase error will be close to zero; that is, 6, =6,. When this

condition is met, equations (4.6) and (4.7) become equations (4.11) and (4.12).

u, (t) =%m(t) cos(0)
u, () =%m(t) (4.11)

Uq (1) :%m(t)sin(O)

Uy (t) =0 (4.12)

These results clearly show that when the Costas Loop is locked, m(t), the desired

signal, can be obtained directly from the I-Channel. This eliminates the need to implement

extra circuitry to attain its recovery. Since m(t) is multiplied by the constant % if we set

A =1and A =2, u,(t) inthe I-Channel becomes m(t) .

4.3 Linear Model of the Costas Loop

When we first got involved with the analysis and design of a Costas Loop, most
publications would provide a high level analysis of the system and did not attempt to develop

a simpler linear model, such as that available for PLLs. Why is it that a linear model is
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always available or mentioned on most publications related to PLLs, yet we could not obtain
such a document for the Costas Loop topic? Even though we do not have an answer for this
question, we do know that some of the analysis developed for PLLs can be applied to the
analysis and design of Costas Loops. How is this possible? Is it possible because the Costas
Loop (along with its added components) is still a PLL, and it can be modeled as two PLLs,
one operating in-phase and the other in phase-quadrature? On this section, we will attempt to
provide a linear model for this system, and in order to do so, we will employ some of the
equations provided on the previous sections and the assumption that this system can be

modeled as two PLLs.

] Ug (t) uy (t)
_.EH'“) : —1 f(t) —>I Ko [ et >
0, (t)

Figure 4-2. Block Diagram of Linear Model of the Costas Loop in the Time Domain

So far, the analysis of the Costas Loop is assuming that the input to the system is a
BPSK modulated signal expressed as DSB suppressed carrier AM. What if we consider the

case where the input is just an un-modulated carrier of the form u;(t) = A sin(e;t +6,) and
the system is already locked to this signal? Equations (4.4) and (4.5) show the output of the
first two multipliers as

Ug, (1) :%COS(@ —6’0)—%3in(2a)it+6?i +6,)) (4.13)

Uy, (0) =%sin(ei —00)+%sin(2wit+0i +6,) (4.14).
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The arm filters remove the high frequency terms and based on equations (4.6) and (4.7) their

outputs are

u, (t) = % cos(@, —6,) (4.15),

Uq (1) :%sin(ei -0,) (4.16).

These two signals are then fed to the third multiplier, where the result is exactly the same as

that provided by equation 4.8

%ayJAgygﬁaa—@ﬂ (4.17).

uq (t) is passed through the loop filter to obtain

UJU:Q%%XﬂdKQ—@ﬂ (4.18).

If we now assume that the loop is locked or close to lock, equation (4.18) can be expressed as

u; (t) =Ky (6 -6,) (4.19).

_ Uy (s) Ui (s)
o an il Gl E
6,(s)

Figure 4-3. Block Diagram of Linear Model of the Costas Loop in the Frequency Domain

Using the locked state assumption, we can see that equation (4.15) would become the

AA

constant 5 Itis u, (t) that will keep the system locked to the carrier. On the next step
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of the process, u, (t) is multiplied to u, (t) , which is the constant % Since the I-Channel

contribution has become a DC level of magnitude %

, | propose to substitute the whole I-

Channel by a gain term equal to % By implementing this change we will have to remove

three components from the diagram: the multiplier that feeds the signal to the 1-Channel, the
third or rightmost multiplier, and the 90-degree phase shifter. This is an important
assumption as the result leads us to a PLL model with a small variation in the phase detector
gain. A block diagram of the resulting model, is presented on figures 2 and 3. Figure 3,
however, shows the linearized model expressed in the frequency domain. From chapter
three, it is obvious that this model has a closed-loop transfer function of the form given by
equation (3.22), that is

KF(s)

®) s+ KF(s) (4.20)
: : - (AA) .
For this transfer function, the gain term K=K, xK, . But K, =, instead of
K, =%, as it occurs for the conventional PLL. The analysis presented on this section

would be of importance, as it shows that the Costas Loop essentially functions as a PLL
when it is operating in the locked state. It is for this reason that | devoted so much time

presenting the PLL theory on chapter three.
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5 Discrete-Time Model of the PLL

Chapters three and four show the theory that applies to analog phase-locked loops and
analog Costas loops. As part of the theory, time and frequency analysis of both systems was
presented, including linear models on the frequency domain that help define the parameters
for the desired characteristics, understand the response of the system to various excitation
signals and achieve its final design implementation. All the theory included on these two
chapters, can be obtained on any of the references provided along with this project, except
for the time and frequency models developed for the for the Costas Loop. These models
were mainly developed to show the relation between Costas Loops and PLLs, and will be
used later on to design and implement a Costas Loop demodulator. Based on the analog
phase-locked loop (APLL) theory and its similarity to that of the Costas Loop, specifically its
linearized model, we will derive a discrete-time model that can be used to design a discrete-

time PLL or Costas Loop and achieve its subsequent digital implementation.

A digital implementation of a PLL system has many advantages over its analog
counterpart. For example, (Shayan et al 1989 ) establishes that a digital PLL has better
dynamic tracking ability because perfect integrators can be realized in the loop filter (only
approximations are implemented in the analog domain). Furthermore, digital
implementations have proven to solve other problems, such as sensitivity to DC drifts,
component saturation, difficulties building higher-order loops, and the need for initial
calibration and periodic adjustment. Considering the specific characteristics of the Costas

Loop, a digital implementation provides yet an additional advantage: complete signal balance
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between I- and Q- channel. It is well known (Costas 1956 ??) of the Costas Loop depends
upon the balance between the I- and Q-Channel. This balance is achieved by designing both

arm filters with equal characteristics, namely bandwidth, gain and frequency response.

An analog Costas Loop is composed of three multipliers, two arm filters, a loop filter
and a VCO. An analog PLL, on the other hand, does not have arm filters and uses only one
multiplier, along with a loop filter and a VCO. In order to have a discrete-time and
subsequent digital implementation of either a PLL or Costas Loop, while keeping the same
architectural block diagram design as their analog counterparts, each of their components can
be discretized and digitized. Discrete-time implementation of these systems can be realized

by following the procedure presented in (Best 1999 ™) for linear digital PLLs.

5.1 Discrete-Time Loop Filter

An analog PLL achieves outstanding performance when the loop filter is of the PI

7,5+1
s

type. The transfer function of this filter is given by equation (3.26) as F(s) = A

discrete-time version of this filter can be obtained by using the bilinear transformation. The
bilinear transformation enables us to calculate the z -transfer function of a system directly

from its s -transfer function (Laplace transfer function)

S =

2
T 1+2° 6.1).

Substituting equation (5.1) into equation (3.26) we obtain F(z), the z -transfer function of

F(s).
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2 1-z7%
ol T 14 2 +l
F(z)=
(@) . 2 1-77
T 1427

2t,+T +T - 27, S

27 27 b, +bz™
F(z)=—4 S R 5.2),
(@) 1-z* 1-z7 62
where b, = 2541 and b, = T=2% | (Best 1999 ), constants b, and b, are defined as
27, 27,
b, :L- 1+# , and bI:L- 1—# . If the sampling period T is very
27, T 27, T
tan| —— tan| ——
2z, 2z,

small, then the equations presented in (Best 1999 X)) are equal to the ones just derived here

using the bilinear transformation.

From equation (5.2) we can derive a recursive equation that we can use to implement
the loop filter either physically or by software. (Oppenheim et al 1989 ™) describes a well
known procedure that can be applied to a rational expression in the z -domain (representing a

Linear time-invariant system) to obtain a linear constant-coefficient difference equation of

bo + blz‘l . U, (2)
1-z7  U,(2)’

N M
the form > a,y[n—k]=>_b,x[n—k]. For our digital loop filter, F(z) =
0 0

where U (z) is the output signal of the phase detector (input to the loop filter) and U, (z) is

the output of the loop filter expressed in the z —domain. Using the procedure presented in

(Oppenheim et al 1989 ™), which is also employed in (Best 1999 ™), we obtain

(-2%)U, (@) =0, +bz*)-U,(2)
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u [n]=uy [n—11=b,u, [n] + b, [n 1] (5.3),
u,[n]=bu,[n]+bu,[n-1]+u,[n-1] (5.4).
Equation (5.3) is a linear constant-coefficient difference equation that can be implemented
through a recursive calculation process. From equation (5.3) we move to equation (5.4),

which indicates that the current value of the loop filter output u,[n], depends on the past
value of its output u,[n—1], the current value of its input u,[n] and the past value of its

input u,[n—1], weighted by their respective constants.

5.2 The Numerically Controlled Oscillator

The Voltage-Controlled Oscillator used in the analog PLL generated a sinusoid signal
whose phase and frequency was controlled by the output signal of the loop filter. Since PLLs
are feedback systems, the input signal is compared to that of the VCO output and an error
signal is generated to correct the phase and frequency parameters of the locally generated
VCO signal. This process is exactly followed by DPLLs; however, as other components are
digitized, the VCO is substituted by its digital version, the Numerically Controlled Oscillator
(NCO). This NCO generates a sine wave whose value is known at the sampling instants

t=0,T,2T,..nT. (Best 1999 M) presents a process to derive a recursive equation to

determine the phase of the NCO output signal and attain its subsequent implementation. This

process is shown below.

Equation (3.5) provides the instantaneous angular frequency of the VCO output

signal, o, =w,. + K,u,(t). The total phase of this signal can be obtained by integrating

76



77

equation (3.5) with respect to time. Back in Chapter 3, when the analysis of the VCO was

presented, we only integrated over the frequency variation K u, (t), which resulted in the

parameter &, (t). o,. was not used in the calculation because it is a constant that represents

the center frequency of the VCO and it is established and fixed with external components; it
is only the frequency variation term that carries the information to adjust the output
frequency of the VCO.  To derive the NCO recursive equation, however, we will have to
calculate the total phase of the VCO output signal by integrating the instantaneous frequency

with respect to time.

8,0) = [ @, ®) dt = [ (y, + Ko, (0)
8,() = o5t + K, [u, (1) dt (5.5).

To develop the recursive equation, let us assume that we sample the Loop Filter output signal
u, (t) and we know its value at sampling instant t=nT . Let us further assume that this
sample stays constant for a whole period of time that we can represent as (n—1)T <t <nT.

Given that u, (t) is constant in an interval equal to a sampling period, we can calculate

A, (1), the change in the total phase of the NCO output signal in that interval.

nT

A = . (@, + K,u, [nT])dt
t=nT t=nT
A, = oty + Koy L -

AG) = 0y NT — 0y NT + @y, T + K u [nNTINT — K u, [nTInT + K u, [nTIT
AG, =, T + K, Tu [nT]
A8, =y, +K,u, [n])T (5.6).

Assuming that we know the phase 4,[n—1] at sampling instant t =(n—1)T , we could use

equation (5.6) to extrapolate the total phase 9 [n] at sampling instant t=nT , using this

recursive equation
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9,[n] = 9,[n -1+ (@,, + K,u, [n])T (5.7).
The above procedure was presented in (Best 1999 M) assuming the time period
nT <t<(n+1)T. Although I will not show the derivation required to obtain A9, (t) with

this new interval, the interested reader can very well substitute these new values to prove that
the resulting A9, (t) is the same as that shown in equation (5.6). Using this result, we can
derive another recursive equation. This time, we assume that we know the phase 4 [n] at
sampling instant t =nT and we can extrapolate the total phase & [n+1] at sampling instant
t=(n+1)T using the recursive equation
9,[n+1] = 4[]+ (@,, + K,u, [n]JT (5.8).

Equations (5.7) and (5.8) are recursive equations that implement a digital integrator, also
known as an accumulator. Equation (5.7) could be considered the classical implementation
of an accumulator. Equation (5.8) was obtained directly from (Best 1999 M) and has been
added so that we can analyze the implementation using software System View, by Elanix; the
NCO available in this software has an accumulator implementation of the form of equation

(5.8). For both equations, KT is the gain of the NCO, @, is a constant that represents the
center frequency in Rad% and @, T is its corresponding phase value; u,[n] is the output

signal of the discrete-time Loop Filter at sampling instant n. (Oppenheim et al 1989 [

shows that it is common practice to represent a discrete-time function like u,[nT] as u,[n]

by dropping the variable T that represents the sampling period. This is usually done to

normalize the time axis and express it as a sample axis.
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These recursive equations can be easily implemented in software. If we write a

program to calculate 9,[n] based on equation (5.7) or ,[n+1] based on equation (5.8), and
we execute the program for a long period of time, $[n] and $,[n+1] will become very
large, causing an overflow. To avoid this situation $,[n] and ,[n+1] can be limited to a
range of 2z radians, say —7 <8, <z . (Best 1999 [y suggests that to bound 4, [n] to the
27 period —7 <9, <z, we should subtract 2z whenever 4 [n] and $,[n+1] exceed 7.

Having recursive equations (5.7) and (5.8) we can determine their respective transfer

function N(z), in the z—domain using the procedure presented in (Oppenheim et al 1989

[7]).
9,[n] - 4,[n 1] = (@, + K,u, [n])T
%,@-2")=K,TU, (2)

3(2) _ KT
U,(z2) (-z*

): N (z) (5.9).
When the NCO uses recursive equation

9, [n+11-9,[n] = (@, + K.u, [n])T

3,(2)(z-1)=K,TU, (2)

$(z) KT KTz

U,z (-1 (- z—l)= N (@) (5.9).

®,T was not used to calculate the transfer function because it is a constant whose only

purpose is to establish the center frequency (and its respective phase value) of the NCO.
Equations (5.9) and (5.10) are the transfer function of a specific accumulator. Each

accumulator type is the digital version of the analog integrator that appears in the VCO.
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5.3 Closed-Loop Transfer Function

Now that we have the transfer function of all the components of the digital PLL, we
can determine the closed-loop transfer function. From control theory, the general form of the

closed-loop transfer function is

H(z) = aF (N(2) (5.11).
1+ K F(z)N(z)
Substituting the NCO transfer function given by (5.9) into equation (5.11) we obtain

K K, TF(z)
1-z27+ K K, TF(2)

H(z) = (5.12).

Substituting the NCO transfer function given by (5.10) into equation (5.11) we obtain

K K, TF(2)z™*

H(z)=
(@) 1-7+ KK TF(2)z*

(5.13).

Finally, we substitute the transfer function of the equivalent digital PI loop filter, F(z) as
given by equation (5.2), into equations (5.12) and (5.13).
When using equation (5.12) we obtain

Kd KoT (bo + blzil)

H(z)=
2) 1-z12+ K K T(b, +bz?)

H(z) = K, K,Th, + K K, Thz™
1-27+ 772 + K, K, Th, + K K T,z

H2) = K, K,Th, + K, K, Thz™
K,K.Th +1)+(K,K Th, —2)zt+z72
( d" Yo' Mo d't '™

K,K_Th, K,K.Th
+ Z
H(z) = (KaKaTb, +D)  (KyK,Tb, +1)

KK -2 L 1
(KK, Th,+1) ~ (K K Th, +1)
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d,+d;z*

H(z)=
(2) 1+czt+c,27°

(5.14),

K,K,Th, —2 1 K,K,Th, K,K,Th,
,C, = . d, = ,and d, =——d4—~o 1
K,K,Th, +1 K,K,Th, +1 K,K,Th, +1 K,K,Th, +1

where ¢, =

When using equation (5.13) we obtain

K K, T(b, +bz)z™

H(z)=
(@) Q-2+ KK T(b, +bz ™M)z
K K,Th,z ™ + K K, Thz?

H(z) = T, -y )

1-277+ 727 + K K, Th,z™ + K K, Th,z
H(z) = K K, T,z + K K, Thz?

1+ (K K, Th, —2)z7 + (K K, Th, +1)z7?

-1 -2

H(z)= o2+ 42 (5.15),

1+czt+¢,27°
where ¢, = K,K Tb, -2, ¢, =K K Tb +1, d, = K K, Tb,, and d, = K K Th,.
Closed-loop transfer functions (5.14) and (5.15) have gain terms K,, K, and T. It would

be practical to define a new gain variable to represent the gain of the DPLL. This variable

would be called the digital gain and will be represented as
Ky = KK, T (5.16).
Note that since T has been added as a gain term, the overall digital gain K is going to be

much smaller than K, the analog gain term, where K = K K ; this is assuming that T <<1.

5.4 The Error Transfer Function

In chapter 3 section 3.3.2, we dealt with the steady-state error of the analog PLL

(APLL). To perform that analysis we made use of equation (3.27), 6,(s) =[1-H(s)]6,(s) ,

the phase error signal. In that equation, the expression 1—H(s) represented the error
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transfer function H,(s). The same concept applied to analog PLLs can be applied to

0:.(2) =1-H(z), where
7)

DPLLs. The error transfer function can be expressed as H.(z) =

0.(z)=0,(z)-9,(z); 6,(z) and 9,(z) are the phase of the input and output signals,
respectively. To derive the Error transfer function, we will make use of equations (5.12) and
(5.13). But we will substitute K,, K, and T by K, =K, K, T. Using equation (5.12) we
obtain that H,_(z) is

KoF(2)
1-21+K,F(2)

H.(z)=1-H(z)=1-

1-z7*
-2+ K F(2)

Ho(2) =

(1-z7)°
Q-2 +K,(b, +bz™)

H,(z) = (5.17).

Using equation (5.13) H, (z) is

K,F(z)z™

H.(2)=1-H(2) :1_1— 2+ K F(2)z?

1-z7
1-7+ K F(2)z?

H.(2) =

(1-z7Y?
Q-2 +K,y(b,z" +bz7?)

H,(z) = (5.18)

Equations (5.17) and (5.18) were obtained assuming F(z) is of the form given by equation

(5.2).
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5.5 The Steady-State Error of the DPLL
Using the final value theorem, the steady-state error was defined in section 3.3.2 as
e = Iirrgs@e(s). From (Shayan et al 1989 [?Y) the steady-state error is defined in the
Z —domain as
. " . (z2-1
e, = Iml1 1-27)0.(2) = |IrTll (—j&e(z) (5.19).
7! 7’ z

Before continuing the discussion, it would be a good idea to express equations (5.17) and

(5.18) in terms of z rather than z*

_1\2
H,(2)= 5 (2-1) 5 , from equation (5.17);
(z-D)°+ K K, T(b,z° +b,z)
2
H.(2) = (2-1) , from equation (5.18).

(z-1)°+K K, T(b,z+h,)
Using these results and equation (5.19) we determine that the steady state error for each of

the DPLL with P1 loop filter is

eZ:Iim(Z_l) . (2-0)° . 0.(2) (5.20)
-1\ 7z (z-D)°+ K K, T(b,z° +b,z)

ezzlim(z_lj- _ (21 0.(2) (5.21).
71 7 (Z—l) +KdKoT(boZ+b1)

Since the final result for each of the DPLLs is the same, | will only show the results for
equation (5.21). This way | will not show the same results over and over. | picked equation
(5.21) to show the results because it represents the DPLL implemented (simulated) using
software System View, by Elanix. However, the interested reader can substitute each of the
input signals into equation (5.21) to prove this statement. As we did with the APLL, the

steady-state error of the DPLL will be determined for input signals with variations such as
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phase step, frequency step (phase ramp), and frequency ramp (phase parabola). From
(Lindsey et al 1981 8)) the phase step, phase ramp and phase parabola are expressed in the

z —domain as

Z
Phase Step =0, ——
p 1

z
(z-1)°

QT z(z+1)
2 (z-1)°

Phase Ramp =Q,T

Phase Parabola =

Utilizing the notation presented in chapter 3 for the magnitude of each signal, the above

equations can be rewritten as

Phase Step = A@il (5.22),
Z_
z
Phase Ramp = Aol ——— 5.23),
S (5.23)
AoT? 2(z+1)

Phase Parabola =

2 (2-1)° (5.24),

where, A®, Aw, and Ac:) represent the magnitude of the phase step, phase ramp, and phase

parabola, respectively.

Having the excitation signals expressed in the z—domain, we are able to proceed
with the steady-state analysis. When the input signal has a phase variation of the form of
equation (5.22), the resulting steady state error is

Phase Step:

2
eZ:Iim(Z_lj- > (2-1) N
-1z ) (z-D°+ K K, T(b,z+Db) z-1
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. AD(z 1)
e, =lim 5 =
-1 (2-1)° + K K, T(b,z+D)

This result agrees with the steady-state error obtained for its analog counterpart. Now the
input signal &,(z) is a phase ramp, as given by equation (5.23)

Phase Ramp (Frequency Step):

2
eZ:Iim(Z_lj- Gt V) pa—
1\ 2 (z-1)° +K K, T(b,z+b,) (z-1
e —lim AoT (z-1)

Tt (2-1)2 + KK T(b,z+b)
Once again, the results obtained agree with those obtained with the APLL. Finally, let us

assume that the input signal is a phase parabola, as given by equation (5.24)

Phase Parabola (Frequency Ramp):

. _“m(z—lj_ (z-1)? _Ac:)T2 2(z+1)

Yootz ) 2-D)P+ KK T(b,z+b) 2 (z-1°°
. AoT(z+1) AT

e =Ilim =

Pt (-1 + KK T(b,z+b) KK (b, +b)’
Substituting the definition for b, and b, into the above result shows that the response of the

DPLL to a phase parabola is identical to its analog counter part.

o AeT Ao _Ao
‘ Kd Ko (bo + bl) % a)r?
21

As we could see from the steady-state error analysis, the second-order DPLLs

presented in this project have theoretically the same performance as the second-order APLL
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using a PI loop filter. As with the APLL, it is the loop filter that determines the response of

the system to these and any other types of signals that enter the system. Taking a look at the

Pl digital loop filter used and the definitions for b, and b, where b, = 2T§+T , and
2]
b, = T-27% , It is obvious that each of the DPLLs will only have the same performance as
2]

the APLL if we express b, and b, with enough precision as to allow a noticeable difference
in magnitude between them. This is more important when the system is operating at high
frequencies, where the sampling period T is so small that it could be assumed to be
negligible. The idea behind this thought is not to make the mistake of assuming that T is

negligible, which would make b, =-b,. When this happens, the digital loop filter will

behave like an all pass filter with a gain that equals or approximates L2 making the DPLL
(2]

behave like a first-order loop. This can be easily proved using the definitions for F(z), b,

and b,. If we assume that the sampling period is negligible or its effect is not effectively

accounted for because we did not use enough precision to express b, and b;, then b, =L
(2

and blzﬁ. Applying these results to F(z), which result in b, =-b, we obtain
2]

b,+bz" —b@l-z7) T
F(z2) =22t —=—1 =-b =-2%.
(@) 1-z7% 1-z7% Yo
Ko7, 71 Ko7,
Substituting F(z) into H(z) we obtain H(z) = 4! - The response of
14 K072 ;1 5, KoT
21 21

this system could be very well compared to a first-order PLL. This could be easily seen if we
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calculate the steady-state error for this system as we did previously for the second-order loop.

Using the same example shown above for a phase ramp input signal, we obtain that the

steady-state error for this system is e, = Iirrl{Z _1) (z _Kl)K AT Zl .
. z (Z—].)+ d Mo 2 (Z_ )
O
e, = Aol __Aw Ao . Therefore, this result shows that, like a first-order APLL,
KiK,JT7, K K,7, 7,0,

(2] 2]
this system will track a phase ramp with a steady-state error different from zero. In fact, the

error is proportional to the magnitude of the phase ramp.
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6 Fixed Point Arithmetic

Fixed-point binary representation uses binary digits to express and manipulate
decimal integer and rational numbers as binary integer numbers. These numbers can be
assumed to be signed or unsigned, and can be manipulated using logic and arithmetic
operations.  Manipulating fixed-point numbers could be easily attained using the
hardware-assisted integer operations embedded in any microprocessor. This inherent
quality of fixed-point arithmetic makes its implementation less expensive than floating-

point; that is, in addition to requiring less processing time.

Adhering to the approach followed by (Yates [33]) and combined with examples
and equations provided by (Labrosse 1998 B, the following sections will present some
of the theory used to express and handle the four common binary representations known
as unsigned integers, unsigned fixed-point rationals, signed two’s complement integer

and signed two’s complement fixed-point rationals.

6.1 Unsigned Integer and Fixed-Point Rational

An N —Dbit binary word interpreted as an unsigned integer number can be

expressed as U, ((x); x is an N —bit binary number and a=N for unsigned integers.

The range of values that an N — bit unsigned integer number can take on is determined by

OsUa,o(x)s(ZN —1). Expressing an unsigned integer number as U, (x) will be

understandable when we present unsigned fixed-point rational numbers, and express
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unsigned integer numbers as a special case of fixed-point rationals. The value of a

particular N —bit binary number x interpreted as U, ,(x) can be obtained using this

equation
N-1
U,o(x) =D 2"x, (6.1),
n=0

where x, represents bit n of x and the dot between 2" and x, means multiplication.
As an example, consider the eight-bit binary number x = 00010000 =0,0,0.1,0,0,0,0, .

The sub index added to each bit indicates the significance and order each bit has in the
binary number. It emphasizes the fact that the theory provided assumes that the least
significant bit, which has sub index 0, is located to the rightmost bit position; therefore,

the order of significance increases from right to left. Interpreting this number as U, ,(x)

results in

,
U,o(X) =D %, =20%) + 285 + 22X, + 22 + 2%, + 2°% + 2°%, + 27,
n=0

;
U,o(X)= Z X, =2°0+2"0+2°.0+2°0+2%1+2°0+2°0+2".0=16

n=0
Using this same approach, we can present the theory related to unsigned fixed-point

rationals.

An N —bit binary number x interpreted as an unsigned fixed-point rational can

be expressed as U, (X), where a is the number of integer bits and b is the number of

fractional bits used to represent the fixed-point number. a and b follow this relation
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a=N-b. The value of a particular N —bit binary number x interpreted as U, (x) can

be obtained using this equation
N-1
U,,(x)=2">2"x, (6.2)
n=0

Note that when b =0 equation (6.2) becomes (6.1). For this reason we assume that
unsigned integer numbers are a special case of unsigned fixed-point rationals. The range

of values that an unsigned fixed-point rational number can take on are determined by
0<U,,(x)<(2*-27"), where 2*—2°=2"(2" -1). As an example, let us use the

same 8-bit binary number we used previously. This time, the 8-bit binary number will be
interpreted as an unsigned fixed-point rational that has the radix point between sub index

locations 3 and 2:  x=00010.000 = 0,0,0.1,0,.0,0,0,. For this example, N =8, b=3
and a=8-3=5, hence the range of wvalues Ug,(x) can take on are:
0<Ug,(x)<(2°-27). So the values range from 0 to 32-1/8=31.875. Using

equation (6.2) we obtain the wvalue for the specific example as

7
Ugs(x)=27) 2"x, =27°2%1=2"16=2.000.

n=0

6.2 Signed two’'s complement Integers and Fixed-Point Rationals

An N —bit binary word, interpreted as a signed two’s complement integer

number, can be expressed as A, ,(x), where a=N-1. Note that unlike unsigned

integers, where the number of bits representing an integer number was equal to N

(a=N), signed two’s complement integers only use N —1 bits to represent the integer
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part of the number. This occurs because the most significant bit, the leftmost bit,
represents the sign of the number. The value of a particular N — bit binary number x
interpreted as A, ,(x) can be obtained using this equation

N-2

Ao () ==2""x + D 2", (6.3)

n=0
The range of values that a signed two’s complement integer number can take on are

2V <A ()< (Y -1).

When the N —bit binary word is interpreted as a signed two’s complement fixed-
point rational, it is expressed as A, (x). From this expression we can see that signed
two’s complement integers can be considered a special case of signed two’s complement
fixed-point rationals, as occurred with unsigned integers and unsigned fixed-point

rationals. To see the relation, all we have to do is equal b to zero, and A, (x) = A, ,(X).

To calculate the value of a particular N — bit binary number, we use equation

A, () = 2‘{— 2"t L+ NZ_ZZ”.XJ (6.4)

Py
Equation (6.4) shows that to obtain the expression for signed two’s complement fixed-
point numbers, we multiply equation (6.3) by the scaling factor 2°. The range of
numbers that can be represented by an N —bit binary are obtained with this relation:
—2MP <AL (x) < (Y —27). For this representation, variables a, b, and N are
related by a=N-b-1. Examples are provided in the sections below, where we

combine the representation given by (Labrosse 1998 %) and (Yates &%),

91



92

6.3 Logic and Arithmetic Fixed-Point Operations

In the next sections we will examine basic logic and arithmetic operations that can
be applied to signed or unsigned fixed-point rational numbers. The operations we will
cover are addition, multiplication, word-length reduction, and shifting. Before moving
on to next section, we should combine the notations used by (Labrosse 1998 B%) and
(Yates ) to express signed and un-signed fixed-point numbers. On his notation,
(Labrosse 1998 B%) uses the concept of the mantissa, which essentially consists of the
signed or unsigned integer value of an N — bit binary word. The mantissa, expressed as

m, can be interpreted as U, (x) or A, ,(x). Then, to obtain a fixed-point rational

representation, we multiply by the scaling factor, 2°. So, we expresses fixed-point
numbers, whether signed or unsigned, as fixed — point =< mantissa > S < exponent >
or, using the changes added, fixed — point=<m>S <-b>. Combining this notation
with that provided by (Yates %), we obtain

Xap(X)=<m>S <-b> (6.5)
where X, (x) could represent U, (x) or A, (x); proper substitution of these functions

can be done as we know what type of number we are working with. This notation will

prove to be useful as we work with logic and arithmetic operations.

6.3.1 Shifting and Word length Reduction

Before introducing the basic arithmetic operations that apply to fixed-point

numbers, it is important to cover the shifting and word length reduction operations first.
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Although the shift operation could be defined as logical or arithmetic, depending on the
implementation, we will adhere to the arithmetic definition used to handle fixed-point
numbers. Shift operations manipulate binary words at the bit level by moving all the bits
of the binary word to the left or the right. A shift is executed either to the left or to the
right by a positive integer number of bits k. An arithmetic shift operation can be
employed to divide or multiply a fixed-point number by a power of two, thereby
modifying its scaling factor. When a fixed-point number is scaled up by 2%, we are
multiplying the number by 2%, which is equivalent to a shift left operation (k bits to the

left). This operation can be denoted as
SL X s ()] = Xz iy (X) (6.6).
On the other hand, if we scale down the fixed-point number by 2, we are dividing the

number by 2%, which implies a shift right operation (k bits to the right). This operation

can be denoted as

SRk[Xa,b (X)] = X(a+k,b—k)(x) (6-7)-

Word length reduction implies the extraction of either the n most significant bits
or the n least significant bits from an N — bit binary word. The extracted bits will form
a new binary word with length equal to n; to keep consistency of variables, we can then
express n as N . This can be done because after the extraction, we will only work with
the new extracted binary word. Following the notation used by (Yates 2), the extraction

of the n most significant bits of X, (x) can be denoted as

Hln[Xa,b(X)] = X(a,b—n)(x) (68)
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The extraction of the n least significant bits of X, (x) can be denoted as
Lon[xa,b (X)] = X(a—n,b)(x) (69)

Note: For all these operations to work, both k and n must be much smaller than N .

6.3.2 Addition

Two binary numbers, interpreted as signed or unsigned fixed-point rationals, can
only be added if they are both signed or unsigned and have the same word length and
scaling. That is, two numbers Y, (x) and W_,(x) can only be added if a=c and b=d ;
this also implies that both numbers have the same number of bits, hence N, =N, .
Since a=c and b=d, the result of the addition would be

Xainp (X) = Yo (X) + W, 5 (X) (6.10)
Equation (6.10) implies that adding two N — bit numbers requires (N +1) bits to express

the result.

6.3.3 Multiplication

The rules that apply to multiplication of two fixed-point numbers are not as strict
as those that apply to addition. The only requirement that must be followed is that both
numbers be signed or unsigned. When multiplying two unsigned fixed-point numbers

Y, (x) and W, (x), each having N, and N,, number of bits, the result would be

U (a+c,b+d) (X) = Ya,b (X) ><\Nc,d (X) (611)
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When multiplying two signed fixed-point numbers Y, (x) and W_,(x), the resulting

number would be
Aaiciipea) (X) =Y, (X) xW, 4 (X) (6.12)

Both equations basically state that the number of bits used to represent the resulting

number equals the addition of N, and N, , the size in bits of each fixed-point number.

In other words, N, =N, + N, , where X represents U or A.

6.4 Examples

To better understand the theory provided in the previous sections of these chapter,
let us discuss two examples. All numbers used in these examples will N —bit numbers
interpreted as signed fixed-point rationals and will be expressed using the format

Xap(X)=<m>S <-b>.
Example 1: Addition of 16-bit signed numbers Al (x) =20480S-15
(0.625) and A2 ;. (x) =317455 -18 (0.1211). Express the result as a 16-bit

number.

Although these two numbers have the same number of bits, they cannot be added
because their exponents do not have the same order of magnitude; Al has an exponent
equal to S—15 and A2 has an exponent equal to S—18. To be able to add these

numbers, we must convert the number with smaller exponent to the same order of

magnitude as the other. To do this we must divide A2, (X) by 2°s—3=2°x27. In

other words, we divide the mantissa by 8 and add 3 to the exponent. Note that all we did
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was to divide A2 ;. (X) by 1,as 2°x27° =1. Another way of obtaining the same result
is to shift A2 ;.4 (x) three bits to the right. Using either process, the result would be
A2 15 (X) =3968S —15. Please, note that if you divide 31745 by 8, the result is

3968.125, however, we truncate the number and keep only its integer part without

rounding it.

Adding Al and A2 we obtain A3, (x)=24376S-15. We know that

a=N —b-1 for a signed number. Using this relation we get that N=a+b+1. So, for
this example, N =1+15+1=17. This extra bit that results from the addition is known as
the carry bit. This bit can be depreciated if the result can still be represented as a 16-bit
number. To verify that the result can be represented as a 16-bit number, we must

determine the range of a 16-bit signed fixed-point rational number. The range is obtained
using —2"*° < A (x) < (2"*" -27). But since we have expressed the number in the
format given by equation (6.5), it would be easier to use the range for signed integers and
compare the result to the mantissa. In this case we have that
-2" <AL (x) < (2" -1), gives a range of —32768 < A, ,(x) <32767. Comparing this
result to the mantissa of A3, we confirm that this number can be represented as a 16-bit
number; 32767 > 24376 . So, all we have to do is to depreciate the value of the carrier
and keep the remaining 16 bits. The final result can be expressed as

A5 (X) =24376S -15; N =0+15+1=16.
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Example 2: Multiplication of 16-bit signed numbers Al (x) = 20480S-15
(0.625) and A2 ;. (x) =317455 -18 (0.1211). Express the result as a 16-bit

number.

To multiply these two numbers, just multiply their mantissas and add their

exponents. The result would be A3, . (x) =650137600S —35. Since the number of
bits representing the result is equal to the sum of the number of bits in each number,
N,y =Ny +N,,, A3 is a 32-bit number. From example 1 we know that the highest

positive number that could be represented by a 16-bit number is 32767. Looking at the
mantissa, we realize that we still have to do some processing to express A3 as a 16-bit

number.

Since we want the result to be a 16-bit number, we have to divide A3 by a

number « . To make sure that the mantissa of the result fits the 16-bit range for signed

integer numbers, we must make « equal to 2 x2™. As you can see, we are still
dividing by one, so we are not changing the actual value of the fixed-point number. The

result of the division is A3, (X) =19840S —20. See that the mantissa of the result

does fit the 16-bit range for a signed integer number. Now all we have to do is extract the

16 least significant bits of A3, ,, (X). The result is

LOJ_G[A(IS,ZO) x)]= A(,gyzo) (x) =19840S - 20.
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7 Designing the Analog Costas Loop

Designing an analog Costas Loop can be attained by combining its theory and
operating principles with those of an APLL. We have previously shown that the Costas Loop
can be linearized and modeled as an APLL if we assume that it is operating in a locked state
or it is close to lock, and the bandwidth of the arm filters is wide enough, when compared to
the bandwidth of the Loop filter. When the Costas Loop was initially introduced by John P.
Costas, its main purpose was the demodulation of double-sideband suppressed carrier AM
signals. Although technically the Costas Loop will be operating as if it was tracking and
demodulating a double-sideband suppressed carrier AM signal, in this project it is actually
going to be demodulating a Binary Phase Shift Keying signal (BPSK). This signal will have

these characteristics:

Carrier Frequency fearrier = TMHZ,
Data Rate DR = 300KHz = 300Kbps,
Amplitude A=1lv,

Bandwidth BW =2DR =600KHz .

Starting with this data we can proceed with the design of a Second-Order Analog Costas

Loop with PI Loop Filter.

Overall, there are some parameters and equations that characterize an APLL and,
consequently the Costas Loop. These parameters could be summarized as damping ratio,
natural frequency, bandwidth, noise bandwidth, dynamic operation, phase detector and VCO

gains, and loop filter time constants.
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While establishing the theory behind analog phase-locked loops and Costas Loops,
many authors do not make it easy to understand the relation between the loop gain terms

K,and K,, their meaning and actual use in the design process. In my opinion, the relation
that should be explained better is that between K,, the phase detector gain, and the
magnitude of the input and output signals of the Costas Loop, A and A, . To avoid this

problem, these relations were defined in chapters three and four for the analog PLL and

Costas Loop, respectively. For the analog Costas Loop, this relation was defined in chapter 4

_AA

as K, = 1 Since the amplitude of the input signal has already been established to be 1V

(throughout the discussion of this material we will not be talking about the unit of volts when
referring to amplitudes, instead we will just refer to it as a plain magnitude value; but the
units will always be assumed to be volts), we can start by defining the gain of the phase
detector in the linearized system and calculating the magnitude of the output signal. Setting

the gain of the phase detector to K, =1, we obtain that the magnitude of the output signal

should be A, =%1/Kd =2. The next gain term to consider would be the gain of the VCO,

K,. The selection of K is very important as it controls the range of frequencies the VCO
can reach, based on its input signal u,(t). This gain term, along with the phase detector

gain, compose the overall gain of the analog system, K =K K,. It is this gain parameter

that controls various characteristics of the system, such as lock-in range and steady-state

error. For this specific case we will set the gain of the VCO to K, =100K ; then the system

gain would be K =100K. Having established the gain of the system, we have to select a
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suitable value for its damping ratio ¢. From chapter 3 we know that in order for a second-

order system to achieve a fast and smooth frequency response, its damping ratio should be

we 0.7, so we will fix this value to ¢ =0.7. Another parameter to establish is the natural

frequency of the system.

Although this project does not cover the analysis of noise or optimizations for the
analog Costas Loop or PLL, we will be using the noise bandwidth equation to establish the
relation between the natural frequency of the system and its noise bandwidth. (Best 1999 ),

(Gardner 1979 ), (Egan 1998 B, (Wolaver 1991 ), (Stensby 1997 ), and (Lindsey et al

1991 1) define the noise bandwidth as B, :%(g +%J Based on the defined value for

the damping ratio, we have that B, =0.5286 @,. Using this relation, we can calculate any of

the two values, as long as one of them is fixed. Fixing the natural frequency to

@, =500rads/sec, we calculate the noise bandwidth for the system to be B, =264.26 Hz .

Although we chose a specific value for the natural frequency to then calculate the respective
noise bandwidth, we could have definitely followed another path in which the noise
bandwidth was previously defined based on the application and design constraints. For many
applications, the noise bandwidth should be very narrow. In such case, we can establish the
desired noise bandwidth first and then calculate the natural frequency. Each of the calculated
parameters: system gains, damping ratio, natural frequency and noise bandwidth, are related
to the linearized closed loop transfer function of the Costas Loop. Now we have to use those

values to calculate the parameters that define the loop filter.
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The loop filter used in this project is a Pl-type loop filter. This filter was chosen
because it provides the best response for the system. The parameters that define this filter are

time constants 7, and z,. Using the closed loop transfer function given by equation 3.34, we

KyKo7 and w? = KaK, , Which can be used to

21 7

can have the following relation: 2¢w, =

calculate 7, and z,. However, before using these two equations, we have to make sure that
the results comply with the relation 7, =ar,, where a>2. This relation was obtained by

calculating the 3—dB frequency of the loop filter: o ¢ ; 4 :;. In order for

\/0.25¢7 — 72
\0.25¢77 — 72 >0, it turns out that 7, > 2z,, which results in a > 2; otherwise, the 3-dB
frequency would have been an imaginary value. (Gardner 1979 ?!) suggests that 7, and 7,
can have any relation, although it advises that 7, >>z,. However, on simulations run using

system view, the analog Costas Loop does not lock to the input signal if 7, >2z,.

Nevertheless, it is possible that it just takes too long for the system to lock and the limited

resources on the computer used are not enough to show a lock-in result. From

260, = AL and w? _ KK we obtain that a= KoK, | Substituting the respective
0 41 20w,

100,000

P _142.86.
2(0.7)(500)

value for each variable we get a =

Combining the above equations for 2¢wm, and @’ we derive an equation for z,,

which is z, :2_42% =0.0028. Having this result we can use the relation 7, =ar, to
,

n
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obtain 7, =142.86 7, =0.4. We could have also used 7, =Kd—}2<°, however, it is important

@y,

to verify that the relation 7, > 2z, always holds. For this system, the linearized closed-loop

700s + 250e3
s? +700s +250e3

transfer function would be H(s) =

Analog PLL theory emphasizes that the system gain K, can be varied and usually be
given a very large value to ensure proper system response. The system gain can be varied as
required by the design. Nevertheless, whatever its value is, it will affect time constant z, .
We know that with the addition of the loop filter, we are able to control the system gain for

overall performance result, whereas keeping a desired system bandwidth. All this is

achieved through time constants z, and z, in the loop filter. Since 7z, :—4, it is a and
@

n

subsequently z,, which alter the loop filter response to compensate for the change in the

system gain; thereby, keeping the same overall system bandwidth. Having determined the

parameters of the Pl-type loop filter, we now proceed to the design of the arm filters.

The arm filters process signals uy,(t) and ug,(t), which are obtained after the input
signal u,(t) is multiplied by the in-phase and quadrature-phase output signals u,(t)and
Uy, (t) . uy,(t) and uy,(t) are the resulting signal on each arm of the system and each signal

has two frequency components: a DC or base-band component and a component at twice the
input frequency. It is the base-band component that we will use to synchronize the system to
and obtain the data from. In order to extract these base-band components, we have to design

the arm filters to be low-pass and to have a bandwidth equal to or greater than the base-band

102



103

signal, but smaller than 2 f —DR. Since the base-band signal has bandwidth equal to

Carrier

DR (the bandwidth we are referring to is the single-side bandwidth), the bandwidth of the

arm filters will be equal to DR. Please, note that DR and f are given in Hertz. We

Carrier
will express these two frequency terms in Hertz for simplicity, since the data rate can be

expressed in Hertz, instead of bits per second.

Following the bandwidth requirement, we design the arm filters to have a 3-db
bandwidth of DR =300KHz and a gain of 0-dB in that bandwidth. In addition to this
requirement, we will design the arm filters to be of the Bessel type. Since the phase response
of a Bessel filter remains constant at zero degrees inside the designed bandwidth, it does not
introduce phase variations to the signals that could affect the response of the system. Have to
point out, however, that other type of filters can be used as well. The order of the filter
would depend on the designer and the application, but it is common to use a first-order filter,
which is usually more than enough to get the desired results. This statement about the order
of the filter would become important when designing the digital system, reducing complexity

and computation time.
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8 Simulation Results: Analog Costas Loop Implementation

The results of the design will be provided using simulation software SystemView and
Matlab. Using SystemView we will provide simulation results of the operation of the analog
Costas Loop, and Matlab will be used to show the Bode plot diagrams for the system. To
obtain this bode plot, a simple Matlab program was required. This program is included in
appendix D. Apendix A shows a block diagram of the design in SystemView. The Costas
Loop will be demodulating a BPSK signal with a data rate of 300KHz and a carrier
frequency of 7MHz. The arm filters will be of the Bessel type and will have a bandwidth of

300KHz; we chose a single pole for this filter.

Based on the linear model derived for the analog Costas Loop, the design
implementation done in this project is a second order system. This type of system is always
stable, hence we will not cover stability analysis. We can start providing the results of the
Bode Plot diagram. From equation (3.36), the frequency at which the 3-dB bandwidth of the

system occurs is @, 4 =2.06w, . Since the natural frequency of the system o, =500rads/s

and ¢ =0.7, o, ,; =1030rads/s.
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Bode Diagrams
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Figure 8-1. Bode Plot Diagrams

To obtain the magnitude and phase Bode Plot diagrams, we provided the parameters
determined for the system transfer function to a Matlab program. The Bode diagram shows
that the 3-dB frequency of the system is around 1000 rads/s, which properly relates to the

results obtained mathematically.

The simulation results obtained with SystemView will be provided graphically.
These results are divided in four groups, based on the phase and frequency offset assumed for

the carrier f, of the input signal on each simulation. The phase and frequency offset

combination for each group is shown on the table below.
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Phase Offset (Degrees) Frequency Offset (Hertz)
0 0

45 0

0 100

0 700

Table 8-1. Phase and Frequency Offset Combinations

Each of the simulation results include graphs for signals u, (t), u, (t) and Ku,(t). For the
case of u, (t) we decided to show the results multiplied by the system gain, K =100e3. The
first two graphs, figures 8-2 and 8-3 show signals u,(t) and u,(t) when f;, the carrier
frequency of the input signal has a phase and frequency offset equal to zero. As we can see
from the figures, u,(t) is quickly attenuated and settles to a value that is practically zero

after 800 microseconds; Costas Loop theory indicates that u,(t) must be zero when the

system is locked. u,(t), obtained after the arm filter, contains the demodulated data. This

signal settles quickly as well and the magnitude of the recovered NRZ data is definitely
bounded by amplitudes 1 and —1; these are the pick to pick amplitude values for the NRZ

data originally sent. The third graph is the output of the loop filter u, (t). It started with an

under damped oscillation and quickly settled to zero after 800 microseconds, just as the other

signals did.

106



107

The second simulation assumes a phase offset of 45° or % rads, but the frequency

offset remains unaltered at zero. We will be using degrees as the unit to refer to the phase
offset because this is the unit used by SystemView to establish waveform parameters. The
same applies for the frequency offset. SystemView uses Hertz as the unit to establish
frequency parameters for the system, waveforms and other components, therefore this is the
unit that we will be using in this report. All three figures show that the Costas Loop was able
to track and lock quickly to the input signal as it did in the previous simulation. This time
however, the output signal of the loop filter had a positive oscillation. The amplitude of this
signal settled back to zero as expected, once the system was locked. The time required for

this process still took around 800 microseconds.

The third simulation assumes a frequency offset of 100 Hz and zero phase offset.
Figures 8-8, 8-9 and 8-19 show again that the Costas Loop was still able to track and lock to
the input signal, only this time it took the system longer to settle. Approximately, it took the

system 6ms to lock to this signal. It is important to notice that the settling value for Ku, (t)

was in the vicinity of 100, showing the relation between Kuj, (t) and the system response.

The fourth simulation assumes a frequency offset of 700Hz; the phase offset remains
at zero degrees. It appears from figures 8-11, 8-12 and 8-13 that the system was not able to
lock. At least that is the case in the time window covered by the simulation. However, we
notice that the system is moving in the right direction to lock to the input signal. Although

no graphical result is added, the system was able to lock to this signal after 16ms.
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From PLL theory, the lock-in range of a second-order PLL using Pl-type loop filter is
approximately 2¢w,, as given by equation (3.40). This results in a lock-in frequency of
700rads/s or 111 Hz for this system. Simulations and comparisons done with a similar PLL
using SystemView showed that both systems had very similar responses to phase and

frequency changes in their respective input signal.
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8.1 Simulation Results with phase and frequency offsets equal to zero
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Figure 8-2. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 50mV/Division.
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Figure 8-3. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.
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Figure 8-4. Loop Filter Output Signal Multiplied by K=100e3

In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 20Hz/Division.

(By multiplying the output of the loop filter by K we obtain a frequency measure.)
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8.2 Simulation Results with phase offset equal to 45 degrees
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Figure 8-5. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 200mV/Division.
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Figure 8-6. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.
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Figure 8-7. Loop Filter Output Signal Multiplied by K=100e3

In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 50Hz/Division.

(By multiplying the output of the loop filter by K we obtain a frequency measure.)
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8.3 Simulation Results with frequency offset equal to 100Hz
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Figure 8-8. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 50mV/Division.
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Figure 8-9. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.
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Figure 8-10. Loop Filter Output Signal Multiplied by K=100e3

In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 50Hz/Division.

(By multiplying the output of the loop filter by K we obtain a frequency measure.)
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8.4 Simulation Results with frequency offset equal to 700Hz
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Figure 8-11. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.
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Figure 8-12. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

119



Apvmlaw

Arplitude

Locp FIMEFOAPALSINal WA Mphea Dy 100E3 M2
o 203 (] LI e

Time b Seooudr

Figure 8-13. Loop Filter Output Signal Multiplied by K=100e3

In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 200Hz/Division.

(By multiplying the output of the loop filter by K we obtain a frequency measure.)
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9 Designing the Digital Costas Loop Demodulator

9.1 Discrete-Time design

Design of the digital Costas Loop should be straightforward from the results obtained
in chapter 7 for the analog Costas Loop. Chapter 5 shows the theory and equations that relate
a second-order APLL with Pl-type loop filter to two specific digital counterparts. This
theory establishes a relation between the parameters of the analog phase-locked loop and that
of the digital phase-locked loop system, allowing us to achieve a totally digital
implementation with analog like characteristics and performance. In addition to relating the
parameters of both systems, the equations that define the digital phase-locked loop also relate
the characteristics and performance of the system to the selected sampling period. Therefore,
before going any further, we should establish the criteria to determine the sampling period of
the system. From the sampling theorem of discrete-time signal processing theory
(Oppenheim et al 1989 ™), we know that the sampling frequency (also considered the system

frequency) f, must be larger than or equal to 2f,,,, where f,,, is the largest frequency in

Max !

the signal or signals processed by the system. Consequently, in order to determine f,,. and

Max

subsequently f,, we must determine the frequency range occupied by the signals in the

analog system, the analog Costas Loop. For this analysis we will not use the linear model.

From Chapter 4 we obtain the conglomerate of signals processed by the analog

Costas Loop that have a frequency content higher than DC level. For the readers

convenience these signals are presented below.
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u; (t) = Am(t)sin(eo;t +6,)
U (t) = A, sin(et +6,)
Uy, (t) = A, Cos(et +06,)

Ugy :%m(t) cos(@, —46,) —%m(‘r)sin(Za)iHé’i +6,)
Uy, :%m(t)sin(ﬁi -0,) +%m(t)sin(2a)it +6 +6,)
0 0= A5 cos, -4,

U (1) =Msin(9i ~0,)

We can start by examining signal u,(t), the BPSK signal that enters the system. Technically,

u, (t) occupies a bandwidth equal to twice the Data Rate, 2DR, and its carrier frequency is

f, =;)—i; the data rate DR and bandwidth occupied by u,(t) comes from the signal
T

component m(t). However, for this to be true we must assume that u,(t) was filtered prior

to entering the Costas Loop; the filter used is band-pass with single-sided bandwidth equal to

2DR and center frequency f; ( f; is the center frequency in a range of frequencies occupied

by 2DR). This pre-filter is added to eliminate any frequency content outside the desired
frequency range that could have been added to the signal during transmission, reception or

previous processing of the signal. The highest frequency present in u,(t) is obtained by
adding its carrier frequency to its data rate, f, + DR. Signals u,(t) and u,(t) just have a
spectral line at frequency f,. Signals ug,(t) and u,,(t) are composed of the sum of two
frequency components, each having a single-sided spectral line at 0 Hz and 2f;; at each
frequency component, m(t) provides a single-sided bandwidth equal to DR and 2DR,

respectively. Taking this into account, the highest frequency in these signals is 2f, + DR.
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Signals u, (t) and uy(t) are base-band signals with bandwidth equal to DR, hence the

highest frequency present on these two signals is DR. Finally, although not included in the

list of signals above, we should take a look at signals u,(t) and u, (t). These two signals

have basically a DC component; therefore, their frequency value is practically zero. Based
on this analysis, it turns out that the highest frequency term processed by the system is

fuax = 2T, + DR . Having this result, we use the sampling theorem to determine the system
frequency (sampling frequency) f..

f,=2f,, =2(2f + DR)=4f, + 2DR (8.1),
=7MHz and DR =300KHz.

where f, =f From Chapter 7 we know that f

Carrier * Carrier

Hence, the sampling frequency of the digital Costas Loop has to be at least f, =28.6MHz;
we will round this value to f,=30MHz. For an actual design, the system frequency

(sampling frequency) selected must take into account any frequency variations in the input

signal that could increase the value of f an example could be the Doppler effect.

Max ;
Expressing this additional variation as f, , the sampling frequency could then be expressed as
f.=2f,, =2(2f + DR+ f,)=4f +2DR +2f, (8.2).

Now that we have the sampling frequency of the system we can calculate the sampling

period, T,. From (Oppenheim et al 1989 7y T, :fi thus, substituting f, into this equation,

S

1
30MHz

we obtain that the sampling period of the system is T, = =33.33ns.

Before going any further, there is an important rule of thumb that we must follow to

make sure that a second-order digital phase-locked loop operates like a second-order analog
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phase-locked loop. (Lindsey et al 1981 [*8), (Hao et al 1991 %)), (Aguirre at el 1984 2%,
and (Shayan et al 1989 [?!}) establish that a DPLL will operate like an APLL if its noise
bandwidth is less than or equal to one tenth of its sampling frequency. Using this rule of

thumb, we can derive what is well known as the time-bandwidth product relation.

BT, =0.1 (8.3).

In (Lindsey et al 1981 &) and (Shayan et al 1989 ?Y)) it was also shown that the
noise bandwidth of the DPLL is equal to that of the APLL when the time-bandwidth product
relation is followed. Therefore, if we follow this relation we can assume that the noise
bandwidth of the digital system is the same as that of its analog counterpart. The time-

bandwidth product relation for our system is B, T, =8.808e —6. This quantity is definitely

much smaller than 0.1, hence our digital system should have a frequency response equal to
its analog counterpart. With these results we now proceed to determine the other parameters

of the digital system.

From Chapter 5, equation (5.16), the closed-loop transfer function of the DPLL is

-1 -2
d,z7+d,z

H(z)= ,
(@) 1+czt+c,27°

where each of its components is given by ¢, =K ;K Th, -2,

c, =K,K,Th +1, d, =K,K,Th,, d, =K, K,Th, and T =T, . It is obvious that all these

components depend on the sampling period T,, the digital loop filter parameters b, and b,
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and the gain terms of the analog system K, and K . However, these gain terms, along with

the sampling period, are part of the gain of the digital system, defined as the digital gain in
chapter 5, K, = K,K_T, equation (5.17). Using the values previously calculated for K,
K, and T we determine that the gain of the digital system is
Ky = (1)(100e3)(33.33e —9) = 0.003333. Unlike the analog system, which had a closed loop
gain K =100e3, the closed loop gain of the digital system is simply K, =0.003333. This

huge difference in magnitude is the result of T_, the sampling period.

To calculate the parameters of the digital loop filter b, and b,, we use equation (5.2),

-1 —
b, +b1_zl , where b, = 27, + 1 and b, = T-25, Using the
-7 7 22'1

its transfer function F(z) =

values previously calculated for z;, z, and T we obtain that b, = 7.0000417e —3 and
b, =-6.9999583e — 3. Please, note that it is important to keep the difference between b, and
b,. Based, on the values just calculated, it would have been very easy to express them as

b, =0.007 and b, =-0.007. We could have also assumed that the sampling period was

negligible (so small in magnitude) and decided to calculate b, and b, using the relation %2
(2]

with its respective sign. These two mistakes should be avoided at all cost since, by doing so,

we would change the frequency response of the digital loop filter completely: instead of

responding as a first-order, low-pass Pl-type filter, it would respond as an all pass filter with
DC gain equal to 2 Therefore, no matter how small the magnitude of the sampling

7

period is, we must take it always into account when calculating the parameters of the digital
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loop filter. This fact will have an impact at the time of deciding the quantization and scaling

used to represent these parameters on a digital implementation.

Finally, it is time to calculate the parameters of the closed-loop transfer function, d,,
d,, ¢, and c,. Using the values already determined for K,, b, and b, we obtain that
d, =2.3331139e-5, d, =-2.3330861e—-5, c, =—1.9999766689 and c, =0.9999766691.
The closed-loop transfer function IS then expressed as

2.3331139e - 5)z " — (2.3330861e —5) 2
1-1.9999766689 z * +0.9999766691 7 2

H(z):(

9.2 Establishing Fixed-Point Representation of the system parameters

To establish the fixed-point representation of the system parameters we use the theory
provided in chapter 6. It is important to notice that there are some parameters, such as those
in the loop filter transfer function, that we can easily represent as a fixed-point number
(signed fixed-point number for this project). There are others however, that we will have to
consider based on the magnitude of the signals processed by the system. We have to pay
attention to the signal range and desired precision. This seems like a very difficult job, but in
order to make it easier, it is a good idea to run simulations on the analog implementation and
obtain from there the appropriate signal values and ranges that the system should handle.
Doing so we must also consider phase and frequency variations in the input signal and the

respective changes in magnitude seen on other signals in the system, ug, (t), ug,(t) and

u, (t) for instance. When the difference in phase between the carrier of the input signal and
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the VCO’s generated replica is close to zero, the amplitude of u,,(t) and u,,(t) does not
reach a magnitude of two. However, when the difference is close to 90°, their amplitudes

reach a magnitude of two very easily; this is true assuming that ug, (t), ug,(t) and all the

other signals in the system are as defined in chapters four and five. u, (t) is another signal to

consider, this is because its amplitude is in the order of 10~ when the phase error is large

and 10°° when the system is locked.

9.2.1 The BPSK signal source

We can start by defining the fixed-point representation of the input signal. This
signal has amplitude bounded by 1 and -1, and we will not consider the effects of noise for
this design. Choosing a total number of 8 bits to represent this signal, the fixed-point
representation would have the format A(1,6) . The fixed-point representation of this signal
was established using a converter token from SystemView’s DSP library. The token was
formatted to handle a signed fixed-point number of 8 bits in size and 6 bits allocated for the

fraction size.

9.2.2 The Pre-filter

The pre-filter in the system is a 4" order band-pass filter of the Bessel-type. The
cutoff frequencies are 6.69e6 and 7.31e6. This filter was designed using SystemView °s

linear systems design tool (shown as a token). Based on the results provided by system view,

many of the parameters of this filter were in the order of 10™°. These parameters can be
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represented with 24 bits using an A(1,22) format. This format also covers for some of the

parameters that have a magnitude greater than one, but less than two. Simulations should be
run using SystemView with just this filter and the input signal to make sure that no overflow
occurs internally in the filter as a result of calculations when processing the input signal.

Using this type of simulation, we can establish the format of the output signal of this filter as

A(1,20) . Finally, at the output of the filter, we added a converter token to return the format
of the signal to its original value A(1,6). This is possible because SystemView operates on

the magnitudes of the signals.

9.2.3 The I- and Q- Mixers

The I- and Q- multipliers are next to consider. These multipliers will be handling two
8-bit signals having fixed-point format A(2,6) (input) and A(2,5) (NCO output).
Multiplying two 8-bit numbers results in a 16-bit number, therefore the register size for this
token should be 16 bits long. However, based on the amplitude of this signal and simulation

results we can consider using less bits to represent it and use format A(2,7), a 10 bit

representation.

9.2.4 The Arm Filters

To design the arm filters, we followed the same process employed for the band-pass
pre-filter. This is a fourth-order Bessel-type low-pass filter with bandwidth 310KHz. A

first-order filter with bandwidth 310KHz could have been designed, as we would have gotten
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results just as good. For this filter we used a 34-bit register to represent its parameters and

the format is A(3,30). For the output signal we used format A(3,24); this format was

validated using simulations. At the output of each filter, we placed a converter token to

change the signal representation format to A(1,14) . We tried to do this type of format change

right from the filter tokens, but this feature is only available through the converter tokens.

9.2.5 The Third Multiplier

The third multiplier would be the next component to consider. This multiplier
processes two signals with samples that are 16-bit long each. So, the register size for this

multiplier is 32 bits and the format for the output would be A(3,28). The output of this

multiplier was not converted to a different format. Since it has so much information that
requires high precision, we preferred to keep its format intact. To determine if the precision
could be changed, just run a simulation on the analog system and use graphical analysis to
have an idea of the minimum precision required to represent the signal. Then right click on
the SystemView graph that shows this signal to obtain statistical information. This is the

same analysis that should be done with every part of the system.

9.2.6 The Loop Filter

The parameters of the loop filter are very small in magnitude and they required 34
bits for representation and internal calculations of the filter. The format used to represent

these parameters is A(1,32) . For the output of this filter we picked format A(18,27), a 46-bit
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representation. We chose this format to have enough bits in the representation to execute a
17-bit left shift operation that implements the gain of the NCO. This is the same gain used
for the VCO in the analog system. The only difference with this implementation of the NCO
gain term is that 2" is 131072, which is much larger than 100e3, the gain of the analog
system. For this reason this system will have a bit better of a performance, compared to the

analog one.

9.2.7 The NCO

The final component to design is the NCO. The frequency of the carrier in the input
signal is 7MHz, therefore the central frequency of the NCO has to be 7MHz. On the analog
system, the VCO had a gain equal to 100e3. Hence, it allowed the VCO to oscillate between

frequencies covered by + Ku, (t). The same thing applies to the NCO. Let us start by

considering the relation F, :% , Where F, is the output frequency of the NCO and F, is its

clock frequency. In our case, this is the system frequency. This is the relation that must be
followed to make sure that the signal produced by the NCO is a clean one. Previously, we
calculated that the system frequency would be 30MHz, based on the frequency of the input
signal, its data rate, the processing done by the system and the Nyquist sampling rate.

Following the above relation it turns out that F, can be up to 10MHz. This result indicates

that based on the system frequency, the NCO can have a central frequency of 10MHz and

still be able to cover 100KHz of range above and below this value. Another equation to use

in the design is F, = FZC\:,V , Where W represents the input to the NCO and P is the size of
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. . . F
the register in the accumulator (NCO is designed as an accumulator). 2—; represents the

precision of the NCO, which we will establish as 0.1, therefore, we can have P equal to 28.
Another way to address the calculation of P is by determining the maximum value of W,
which can be done through simulations. For our design, the size of use accumulator in the
SystemView NCO token is 28 bits. The remaining part would be to determine how many

bits from the accumulator to use to represent the phase.

The NCO also has a parameter for the number of bits to use in the amplitude of the
output signal. This we had already determined to be 8 bits, so we do not have to consider it
at this time. It is important to mention however, that these amplitude bits have nothing to do
with those in the NCO accumulator. The amplitude bits are related to an internal ROM
memory that has these values stored. Each memory locations in this ROM is addressed by
the bits used to represent the phase, which come out of the accumulator register.
Nevertheless, at the output of the NCO, the amplitude bits will be seen by system view as

signed integer, so they will have to be converted to the appropriate format.

For this design, 12 bits from the accumulator register will be used to represent the
phase. SystemView gives the option to use the NCO as either a frequency or phase
modulator. We will use the NCO token as a frequency modulator, hence signal Ku,[n] will
be connected to this input. The other input, phase modulation, cannot be left unconnected.
The connection to this input should be done through a Custom source token with a constant

output value equal to zero. It is important for SystemView, when running simulations, that

all signals have the same interpretation format. Therefore, the output of the customer source
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must be converted to a signed fixed-point format using a converter. The output of this

converter has to be 12-bits long, as it is the phase representation chosen for this design.

Having designed each of the parts that form the digital Costas Loop, it is time to run
the simulations and get the results. The results of these simulations are provided in the next
chapter. Appendix A shows a block diagram implementation of the digital signal in
SystemView. It also shows the design and simulation window used for the digital design;
this is the window that is seen for any other type of design. Appendix B shows the parameter
definition for each of the tokens used in the digital and analog designs. Appendix C shows
various SystemView windows used to establish some of the system settings for simulations.
Appendix D has Matlab programs that show the system response for the analog and digital
systems as well as the Root locus diagrams for the digital systems. The root locus diagram
can be used to determine the stability of the system, considering that the digital system is not
completely stable (as it occurs with its second-order analog counterpart) and its stability can

be determined as a function of the system gain.
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10 Simulation Results: Digital Costas Loop Implementation

The results of the digital design will be provided using simulation software
SystemView and Matlab, as we did with the analog system. Since the simulation results for
the digital system are the same as those obtained for the analog one, the data provided here
may seem redundant. As with the analog design, we will use SystemView to provide the
simulation results of the operation of the digital Costas Loop, and Matlab to show the Bode
plot diagrams. For a digital system it is customary to plot frequency response diagrams using
a normalized frequency axis that goes from -1 to 1, when we wish to show the double-
sideband bandwidth. However, to show the similarity between the bode plots for this system
and its analog counterpart, we decided to show the frequency axis in rads/s. To obtain the
bode plot, a simple Matlab program was required, and is included in appendix D. Appendix
D also has a Matlab program that plots the root locus for the digital system to determine the
stability based on the system gain Kq. Appendix A shows the block diagram implementation
for the analog and digital system. Appendix B shows the parameters for each of the tokens
used in the digital and analog implementation. Appendix C shows some system windows

used to establish SystemView simulation settings.

To obtain the magnitude and phase Bode Plot diagrams, we provided the parameters
determined for the system transfer function to the Matlab program. The Bode diagram shows
that the frequency and phase response of the system is equal to the analog Costas Loop

(based on the linear model).
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The digital Costas Loop also will be demodulating a BPSK signal with the same characteristics used

on the analog system: data rate of 300KHz and carrier frequency of 7MHz.

Bode Diagrams
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Figure 10-1. Bode Plot Diagrams

The simulation results obtained with SystemView are provided graphically in the next
sections. The results are provided based on the phase and frequency offset assumed for the

carrier f. of the input signal on each simulation. The phase and frequency offset

combination for each simulation is shown on the table below.
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Phase Offset (Degrees) Frequency Offset (Hertz)
0 0

45 0

0 100

0 700

Table 10-1. Phase and Frequency Offset Combinations

Each of the simulation results include graphs for signals u,[n], u,[n] and Ku[n]. For the
case of u,[n] we decided to show the results multiplied by the external gain, K, =100e3;

the NCO token does not provide a gain option as the VCO does. The first two graphs,

figures 10-2 and 10-3 show signals u,[n] and uy[n] when f;, the carrier frequency of the
input signal has a phase and frequency offset equal to zero. As we can see from the figures,
Uo[n] is quickly attenuated and settles to an average value of zero at around 800

microseconds; Costas Loop theory indicates that u,[n] must be zero when the system is

locked. u,[n], obtained after the arm filter, contains the demodulated data. This signal

settles quickly as well and the magnitude of the recovered NRZ data is definitely bounded by
amplitudes 1 and -1; as before, these are the pick to pick amplitude values for the NRZ data

originally sent. The third graph is the output of the loop filter u,[n]. It started with an under

damped oscillation and quickly settled to an average value of zero at around 800

microseconds, just as the other signals did.
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The second simulation assumes a phase offset of 45° or % rads, but the frequency

offset remains unaltered at zero. We will be using degrees as the unit to refer to the phase
offset because this is the unit used by SystemView to establish waveform parameters. The
same applies for the frequency offset. SystemView uses Hertz as the unit to establish
frequency parameters for the system, waveforms and other components, therefore this is the
unit that we will be using in this chapter to refer to frequency. All three figures show that the
Costas Loop was able to track and lock quickly to the input signal as it did in the previous
simulation. This time however, the output signal of the loop filter started with a positive
oscillation. The amplitude of this signal settled back to zero as expected, once the system

was locked. The time required for this process still took around 800 microseconds.

The third simulation assumes a frequency offset of 100 Hz and zero phase offset.
Figures 10-8, 10-9 and 10-19 show again that the Costas Loop was still able to track and lock
to the input signal, only this time it took the system longer to settle. Approximately, it took
the system 6ms to lock to this signal. It is important to notice that the settling value for

Ku; (t) was in the vicinity of 100 (amplitude), showing the relation between Ku, (t) and the

system response.

The fourth simulation assumes a frequency offset of 700Hz; the phase offset remains
at zero degrees. Unlike its analog counterpart, it appears from figures 10-11, 10-12 and 10-
13 that the system is locking to the input signal. The reason for this difference is the fact that
this system has an NCO gain of 2", which is larger than the VCO gain of 100e3 in the

analog system.
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10.1 Simulation Results with phase and frequency offsets equal to zero

Frnmlaw

Figure 10-2. In-Phase Output Signal

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 500mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.
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Figure 10-3. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 5mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.
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Figure 10-4. Loop Filter Output Signal Multiplied by 2’

In this graph, the x-axis represents time at 0.2ms/Division and
the y-axis represents the amplitude at 5SHz/Division.

(By multiplying the output of the loop filter by Kp we obtain a frequency measure.)
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10.2 Simulation Results with phase offset equal to 45 degrees

(112

W-Plase O1patSigiat

Figure 10-5. In-Phase Output Signal

In this graph, the x-axis represents time at 0.2ms/Division and

the y-axis represents the amplitude at 500mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.
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Figure 10-6. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.2ms/Division and
the y-axis represents the amplitude at 200mV/Division.
The mV unit was kept to show the similarity between this system and

the analog implementation.
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Figure 10-7. Loop Filter Output Signal Multiplied by 2’

In this graph, the x-axis represents time at 0.2ms/Division and
the y-axis represents the amplitude at 5SHz/Division.

(By multiplying the output of the loop filter by Kp we obtain a frequency measure.)
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10.3 Simulation Results with frequency offset equal to 100Hz
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the analog implementation.

Figure 10-8. In-Phase Output Signal
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In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 500mV/Division.
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Figure 10-9. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 50mV/Division.
The mV unit was kept to show the similarity between this system and

the analog implementation.
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Figure 10-10. Loop Filter Output Signal Multiplied by 2"’

In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 20Hz/Division.

(By multiplying the output of the loop filter by Kp we obtain a frequency measure.)
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10.4 Simulation Results with frequency offset equal to 700Hz
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Figure 10-11. In-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 500mV/Division.
The mV unit was kept to show the similarity between this system and

the analog implementation.
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Figure 10-12. Quadrature-Phase Output Signal

In this graph, the x-axis represents time at 0.5ms/Division and

the y-axis represents the amplitude at 500mV/Division.

The mV unit was kept to show the similarity between this system and

the analog implementation.

147



Arvmlaw

Loop FimrOvpatSigal
2603 (=) Bad

H )
Il

Figure 10-13. Loop Filter Output Signal Multiplied by 2"’

In this graph, the x-axis represents time at 0.5ms/Division and
the y-axis represents the amplitude at 20Hz/Division.

(By multiplying the output of the loop filter by Kp we obtain a frequency measure.)
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11 Materials and Methodology Employed

Since IC technology became available, there has been a trend to implement many of
the systems originally existing in the analog domain to the digital domain. The Costas Loop
is a good example. Even when that is the case, there was little information available about
this subject; but this was not the case for the phase-locked loop. There was a wealth of
information on IEEE publications covering different aspects of the analog Costas Loop
analysis, yet almost no data about digital implementations. The vast majority of the data
covered analog Costas Loop and Phase-Locked loops, and digital phase-locked loops. That
was the case for publications on the web. It was not until the past few years that abundant
data became available about the Costas Loop subject, most of them about experiments or

courses lectures.

Another missing link in the theory about Costas Loops was the lack of a linear model
that could make easier its analysis and design. The lack of this model made things a bit
difficult in the beginning, but as the theory became familiar, especially its PLL analysis, it
became obvious that the Costas Loop could be modeled as a linear PLL. This was the first
step towards the realization of this project. Then, it was a matter of combining Costas Loop
theory with the linear PLL theory to obtain a suitable design with characteristics that could

be easily determined.

The linear model developed was then used to obtain a discrete-time model to be used
for the final digital implementation of the system. So, the process followed is basically to

design an analog Costas Loop using the linear model developed and then use the parameters
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obtained to design its digital counterpart. To allow an easy implementation, signed fixed-
point arithmetic was employed. This number representation format was chosen because it is
easily available on DSP and FPGA chips and makes processing a lot faster than say, floating

point.

The implementation of the analog and digital systems was done using the 2001
student version of the simulation software SystemView, by Elanix. This software allows
limited design capabilities for DSP and communications systems. However, the capabilities
supported in this version were enough to accomplish both analog and digital designs. It
would be better, however, to use an unrestricted version of the software, which can be easily

obtained especially through Elanix University programs (Educational purposes, of course).

Information about SystemView can be obtained at www.elanix.com. Other type of analysis,
such as bode diagrams, was done using a 1997 student version of Matlab 5.0. This version
comes with the necessary toolboxes to support discrete signal processing and controls
analysis. These toolboxes are Signal Processing and Controls. More Information about

MatLab can be obtained at www.mathworks.com.

SystemView has many tokens (tools) available to simulate many analog and digital
communications devices. The token used to simulate digital systems are called DSP tokens.
There are many functions available within each group (DSP and analog), but the ones we
used are listed below. For example, the analog design used a BPSK source generator, linear
filters from the linear systems design tool, multipliers, VCO, and analysis tokens (Sinks) that

obtained the results from the simulation and displayed them graphically. For the digital
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implementation, we used components that could implement these same functions digitally:
Converter, multipliers, digital filters designed through the linear systems design tool, shifter,
NCO and the analysis tokens (Sinks). The design process for the digital system using
SystemView is very well explained in chapter 9, so we would advise to refer to this chapter

for more details.
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12 Conclusion and Future Work

The design of the digital Costas Loop presented in this project was based on
digitizing each of the components that formed the system. The purpose of this
transformation was to obtain a digital system that could have the same characteristics,
response and performance as the analog implementation. To make this happen, we first
derived a linear model of the analog Costas Loop that resembled the linear model of the
analog phase-locked loop. Then we continued with the digital transformation and
implementation of the system using SystemView. The results of various simulations were
provided for both analog and digital systems. Graphical results showed that both systems
tracked and locked to input signals that had the same characteristics. The response of both
systems was comparable, and it was obvious as we added phase and frequency offsets to the

input signal.

Certainly, this type of implementation is referred to as a software system by (Best
1999 [”). However, even when a software implementation of this system is possible using
high-speed programmable DSP devices, advances in technology can make the
implementation happen in hardware directly. Definitely, there are changes that would have
to be added to such an implementation and an example is the Digital Costas Loop chip
provided in (Best 1999 ™) by Harris Corporation, now Intersil. This chip is the HSP50210,
that has applications on Satellite receivers and modems, digital carrier tracking, BPSK,

QPSK, 8-PSK OQPSK, FSK, AM and FM demodulators.
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The Costas Loop designed in this project did not include noise effect, false lock, cycle
slipping, and other optimization and performance analysis. Therefore, for future work we
can consider extending the analysis currently provided to any one of these analysis proposed,

including an actual physical implementation of the system.
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A. Appendix: Diagrams of the Analog and Digital Costas Loops
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Figure A-1: SystemView Schematic of the Analog Costas Loop

158




159

~““Digital Costas Loop Demodulator

['h3

@—% Fixed-Point

In-Phase
[BPSK Signal [In-Phase Detector |Arm Filter

Band-Pass
Filter

E

EE i E = |In-Phase Qutput Signal o
—ODJ; I_Jum

In-Phase
Qutput

Fixed-Point
Converter

Quadrature
! Converter Output
 — L ] JT[ i)
%ﬂ 0 _{i I o ﬂ 4 .
==l IQuadrature-Phase Qutput Signal .
Quadrature-Phase
Arm Filter

Quadrature-Phase
Detector

SystemWiaw by ELANIX

0> Fixed-Point Sink Token
‘ Bit Shifter Converter Stores

s [prase

comverer i Detector
4 Sink Token
" Bit Shifter Fixed-Point Stores

Figure A-2: SystemView Schematic of the Digital Costas Loop

159



® SystemView - C:\Downloads\Para la Tesis' Archivos Descomprimidos\Resultados Digitales2'\Digital Costas Loop3.svi

160

=8|

EE \ﬁm@@mﬂm % EEGE w58 || S aae ‘
T “’""”"‘”Dlgltal Costas Loop Demodulator

o

Custom In-Phase

™

=}
&
=

iE]

im

£
£

|BPSK Signal

[In-Phase Detector |arm Fitter

|ln-Phase Output Signal

Fixed-Point
Converter

0>
Fixed-Point
Converter

Band Pass
Filter

IBit Shifter
e <0

N

Bit Shifter

El e
Fixed-Point [Sink Token
Converter f:.‘f:;::w

Qutput
Fixed-Point
Converter ILoop Filter pr—
s | Thir
ikes— (i~ |phase
[Bit Shifter Detector
Custom
Source Sink Token
= = &
Fixed-Point Q:::::ature
Converter Output

-

|Quadrature-Phase Output Signal

Quadrature-Phase
Detector

Quadrature-Phase
Arm Filter

[E-RI

DIt Speed Optimized
Sysem Time: 4.3890333¢-3 sec

|I|Ad|mdrm

Figure A-3: Design and Simulation Window for SystemView

160



B. Appendix: Parameters Definition for SystemView

161

Source: PSK

Amp=1v

Freq =7.e+6 Hz

Phase = 10 deg

Rate = 300.e+3 Hz

Symbols = 2

Output 0 = Modulated Carrier
Output 1 = Baseband Symbols
(Token 0)

BPSK-Modulated Signal

Operator: Linear Sys
DSP Mode Disabled
FPGA Aware = True
Butterworth Bandpass IIR
3 Poles

Low Fc = 6.69e+6 Hz

Hi Fc = 7.31e+6 Hz
Quant Bits = None

Init Cndtn = Transient
(Token 1)

Operator: Linear Sys
DSP Mode Disabled
FPGA Aware = True
Butterworth Lowpass IIR
3 Poles

Fc =310.e+3 Hz

Quant Bits = None

Init Cndtn = Transient
(Tokens 4 & 5)

I- & Q-Arm Filters

Pre-Filter
Operator: Linear Sys Function: FM Multiplier: Non Parametric
DSP Mode Disabled Amp=2v Inputs from 1 8
FPGA Aware = True Freq =7.e+6 Hz Outputs to 4
Custom Laplace Phase = 0 deg (Token 2 & 3)

1 Sections

Quant Bits = None
Numl = (2.8e-3)s+1
Denl = (400.e-3)s
Init Cndtn = Transient
(Token 7)

Loop Filter

Mod Gain = 100.e+3 Hz/v
Output 0 = Quadrature (Sin)
Output 1 = In-Phase (Cos)
(Token 8)

VCO

I- & Q-Phase Detectors.

Sink: Analysis
Input from t4 Output Port 0
(Token 9 & 10)

Sink Tokens That Store The
Results Of The Simulations.

Table B-1: Parameters Definition for the Components of the Analog Costas Loop
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Source: PSK

Amp=1v

Freq = 7.003e+6 Hz

Phase = 20 deg

Rate = 300.e+3 Hz

Symbols = 2

Output 0 = Modulated Carrier
Output 1 = Baseband Symbols
(Token 0)

BPSK Signal Generator

DSP: Converter

FPGA Aware = True

Data Type Out = Signed Fixed Pt
Register Out = 8 bits

Fraction Size = 6 bits

Convert Mode = Numeric Value
Output 0 = Data

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag
(Token 1)

Converts Samples On The BPSK
Signal To Signed Fixed-Point.

Operator: Linear Sys

DSP Mode Enabled

FPGA Aware = True

Bessel Bandpass IR

4 Poles

Low Fc = 6.69e+6 Hz

Hi Fc = 7.31e+6 Hz

Quant Bits =24

Init Cndtn = Transient

Coeff Data Type = Signed Fixed
Pt

Coeff Register = 24 bits

Coeff Fraction Size = 22 bits
Coeff Convert Mode = Numeric
Value

Data Type Out = Signed Fixed Pt
Register Out = 22 bits

Fraction Size = 20 bits

Output Convert Mode = Numeric
Value

Output 0 = Data

Output 1 = Overflow Flag
(Token 2)

Pre-Filter: Filters The BPSK
Signal To Limit Its Bandwidth

DSP: Converter

FPGA Aware = True

Data Type Out = Signed Fixed Pt
Register Out = 8 bits

Fraction Size = 6 bits

Convert Mode = Numeric Value
Output 0 = Data

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag
(Token 5)

Converts The Output Of The Pre-
Filter to A(1,6) Format.

DSP: Multiplier

FPGA Aware = False

Data Type Out = Signed Fixed Pt
Register Out = 10 bits

Fraction Size = 7 bits

Convert Mode = Numeric Value
Output 0 = Data

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag
(Tokens 3 & 4)

Multipliers That Act As The | &
Q Phase Detectors.

Comm: NCO

Amp Bits =8

Acc Bits = 28

Phase Bits = 12

Freq Offset = 7.e+6 Hz
Phase Offset = 0 deg
Freq In = t16 Output 0
Phase In = t17 Output 0
Output 0 = InPhase
Output 1 = Quadrature
(Token 19)

Generates Local Carrier Replica
Of The Input Signal.

Table B-2: Parameters Definition for the Components of the Digital Costas Loop
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DSP: Converter

FPGA Aware = True

Data Type Out = Signed Fixed Pt
Register Out = 8 bits

Fraction Size = 5 bits

Convert Mode = Numeric Value
Output 0 = Data

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag
(Tokens 6 & 7)

Converts The Processed Output
Of The NCO to A(2,5) Format.

DSP: Bit Shift

Direction = Right

Shift By = 6 bits

FPGA Aware = False

Output 0 = Data t6

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag
Data Type Out = Signed Fixed Pt
Register Out = 16 bits
Exponent Out = 5 bits

Max Rate (Port 0) = 30e+6 Hz
(Token 23 & 24)

Divides The Output Of The NCO
By 64.

Operator: Linear Sys

DSP Mode Enabled

FPGA Aware = True

Bessel Lowpass IIR

4 Poles

Fc =310.e+3 Hz

Quant Bits =34

Init Cndtn = Transient

Coeff Data Type = Signed Fixed
Pt

Coeff Register = 34 bits

Coeff Fraction Size = 30 bits
Coeff Convert Mode = Numeric
Value

Data Type Out = Signed Fixed Pt
Register Out = 28 bits

Fraction Size = 24 bits

Output Convert Mode = Numeric
Value

Output 0 = Data

Output 1 = Overflow Flag
(Tokens 8 & 9)

I- and Q-Arm Filters.

DSP: Converter

FPGA Aware = True

Data Type Out = Signed Fixed Pt
Register Out = 16 bits

Fraction Size = 14 bits

Convert Mode = Numeric Value
Output 0 = Data

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag
(Tokens 17 & 18)

Convert The Output Of The
ARM Filters to A(1,14) Format.

DSP: Multiplier

FPGA Aware = False

Data Type Out = Signed Fixed Pt
Register Out = 32 bits

Fraction Size = 28 bits

Convert Mode = Numeric Value
Output 0 = Data

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag
(Token 10)

Third Multiplier Or Phase
Detector That Eliminates The
Effects Of The Modulation.

Operator: Linear Sys

DSP Mode Enabled

FPGA Aware = True

Custom Digital System

2 Num Coefs and 2 Den Coefs
Quant Bits =34

Init Cndtn =0

Coeff Data Type = Signed Fixed
Pt

Coeff Register = 34 bits

Coeff Fraction Size = 32 bits
Coeff Convert Mode = Numeric
Value

Data Type Out = Signed Fixed Pt
Register Out = 46 bits

Fraction Size = 27 bits

Output Convert Mode = Numeric
Value

Output 0 = Data

Output 1 = Overflow Flag
(Token 11)

Loop Filter

Table B-2: Continuation
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DSP: Bit Shift

FPGA Aware = False
Direction = Left

Shift By = 17 bits

Output 0 = Data

Output 1 = Overflow Flag
Output 2 = Carry Flag
Output 3 = Zero Flag
Output 4 = Sign Flag
Output 5 = Underflow Flag
(Token 12)

Shifter Used To Implement The
Gain of the NCO

DSP: Converter

FPGA Aware = True

Data Type Out = Signed Fixed Pt
Register Out = 28 bits

Fraction Size = 9 bits

Convert Mode = Numeric Value
Output 0 = Data

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag
(Token 13)

Converters The Output Of the Bit
Shifter to A(18,9) Format.

Source: Custom

No. of Assigned Outputs = 1
Algebra p(0)=0

Operating Data Type = IEEE
Double

Output Data Type = IEEE Double
Max Rate = 30e+6 Hz

(Token 14)

Custom Signal To Provide A
Value To The Input Phase
Parameter Of The NCO.

DSP: Converter

Data Type Out = Signed Fixed Pt
Register Out = 12 bits

Fraction Size = 0 bits

Convert Mode = Numeric Value
FPGA Aware = True

Output 0 = Data t19

Output 1 = Overflow Flag
Output 2 = Carry Flag

Output 3 = Zero Flag

Output 4 = Sign Flag

Output 5 = Underflow Flag

Max Rate (Port 0) = 30e+6 Hz
(Token 20)

Converts The Output Of The
Custom Signal to A(11,0)
Format.

Sink: Analysis

Input from t18 Output Port 0
Max Input Rate = 30e+6 Hz
(Token 15 & 16)

Sink Token That Store The
Results Of The Simulations.

Table B-2: Continuation
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C. Appendix: System Specifications for SystemView

"l‘b System Time Specification
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Figure C-1: System Specifications for SystemView
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D. Appendix: Matlab Programs

D-1 Plotting the Bode Diagram for the Analog and Digital Systems

% This is a Matlab code that will calculate the parameters

% of both analog and digital Phase-Locked Loops in order

% to present a plot of the frequency response for each case.

% To obtain the plot of the frequency response, we need to use

% the transfer function of each of the Systems (APLL and DPLL).

% The transfer function of the APLL is defined as H(s) = N(s)/D(s).-
% Here 1 am expressing It as HS = NS/DS; where NS is the numerator
% and DS the denominator of the APLL transfer function.

% The transfer function of the DPLL is defined as H(z) = N(2)/D(z).
% Here 1 am expressing it as HZ = NZ/DZ; where NZ is the numerator
% and DZ the denominator of the DPLL transfer function.

% Defining Acronyms:

% PLL = Phase-Locked Loop

% APLL = Analog Phase-Locked Loop

% DPLL = Digital Phase-Locked Loop

% ALF = Analog Loop Filter

% DLF = Digital Loop Filter

% NCO(z) = Transfer Function of the NCO or Numerically Controlled

% Oscillator

% Defigning Parameters:

% t2 = When expressed as 1/t2, Indicates The Zero Location Of The
% Analog Loop Filter

% tl = Parameter Of The Denominator Of The Analog Loop Filter;

% 1/t1 can be thought of as a gain term of the Analog Loop

% Filter

% K = Open-Loop Gain of the APLL; K = Kd*Ko;

% Kd = Gain OFf The Analog Phase Detector

% Ko = Gain Of The VCO; Ko*Ts is the gain of the NCO

% T = Sampling Period of the DPLL; T = 1/Fs;

% Fs = Sampling Rate of the DPLL

% bO = Indicates The Zero Location Of The Digital Loop Filter

% bl = Indicates The Pole Location Of The Digital Loop Filter

% wn = Natural Frequency Of The APLL

% a = Constant Relating tl1 and t2; tl1 = a*t2; a has to be greater

% than or equal to 2.
% r Damping Ratio of the APLL

% Parameters of the Transfer Function of the APLL:

% NS = 2*r*wn*s + wn”"2 = Numerator of the APLL Transfer

% Function

% DS = s™2 + 2*r*wn*s + wn”2 = Denominator of the APLL Transfer
% Function

% HS = NS/DS = Transfer Function of the APLL
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% Parameters of the Transfer Function of the DPLL with Pl Loop Filter
% NCO(z) = 1/(1-zn-1):

% NZ = do + di1*zn-1 = Numerator of the DPLL Transfer
% Function

% DZ =1 + cl*zN-1 + c2*z"-2 = Denominator of the DPLL APLL

% Transfer Function

% HZ = NzZ/DzZ = Transfer Function of the DPLL
% al = 1 + Kd*Ko*T*bo

% do = Kd*Ko*T*bo/al

% dil = Kd*Ko*T*b1/al

% cl = (Kd*Ko*T*b1l - 2)/al

% c2 = 1/al

% Parameters of the Transfer Function of the DPLL with Pl Loop Filter
% NCO(z) = z™-1/(1-z"-1):

% NZ2 = do2 + dl2*z"~-1

% DZ2 =1 + cl2*z™N-1 + c22*z"-2
% HZ2 = NZ2/DZ2;

% do2 = K*T*bo;

% d12 = K*T*bl;

% cl2 = (K*T*bo-2);

% c22 = K*T*bl+l;

% Preparing Matlab Session

close all; % Closes all figures open
clc; % Clears the Command Line Screen
clear all; % Clears All Defined Varialbes

format long; % Sets all Matlab Computations to scaled fixed-point
4 Format with 15 digits

=

% Defining Parameters of the APLL

Ko = 100e3;

Kd =1;

K = Ko*Kd;

wn = 500;

r = 0.7;

a = Ko/(2*r*wn);
t2 = (2*r)/wn;

Tl = a*t2;

% Calculating the Transfer Function of the APLL

num = [2*r*wn wn"2];

den = [1 num];

HS = tf(num,den);

% Defining Sampling Frequency (Fs) and Time Period (T)
Fs = 30e6;

T = 1/Fs;

% Calculating Parameters of the Digital Loop Filter
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b1

% Calculating Parameters of

(T+2*12)/(2*t1);
(T-2*12)/(2*t1);

al = (K*T*bo+1);

do = K*T*bo/al ;

di = K*T*bl/al;

cl = (K*T*b1-2)/al;
c2 = 1/al;

the DPLL with NCO(z) = z™-1/(1-zn-1)

% Calculating the Transfer Function of the DPLL with
% NCO(z) = z™-1/(1-z~-1)

NZ = [do d1 0];
DZ = [1 cl1 c2];
HZ = tfF(NZ,DZ,T);

% Calculating Parameters of the DPLL with NCO(z)

do2 = K*T*bo;

diz = K*T*b1;

cl2 = (K*T*bo-2);
c22 = K*T*b1l+1;

% Calculating the Transfer Function of DPLL with NCO(z)=1/(1-z"-1)

NZz2 = [do2 di2];
Dz2 = [1 cl2 c22];
HZ2 = tf(Nz2,DZ2,T);

% Generating Bode

figure(l) %
bode(HS);
title("Bode Plots
grid on

zoom on

% Generating Bode

figure(2) %
bode(HZ)
title("Bode Plots
grid on
zoom on

% Generating Bode

figure(3d) %
bode(Hz2)
title("Bode Plots
grid on

zoom on

= 1/(1-z"-1)

Plot For The Transfer Function Of The APLL

Opening a Window For a Figure

For APLL With Pl Loop Filter™)

(Bode Plot)

Plot For The Transfer Function Of The DPLL

Opening a Window For a Figure

(Bode Plot)

For DPLL With PI Loop Filter 1/(1-z"-1)7)

Plot For The Transfer Function Of The DPLL

Opening a Window For a Figure

For DPLL With PI Loop Filter
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(Bode Plot)

zZ7-1/(1-z*-1)")
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D-2 Plotting the Root Locus for the Digital System

% This is a Matlab code that will calculate the parameters
% for two second-order digital Phase-Locked Loops based on
% those of an analog system in order to present the plot
% of the Root Locus for each system. The difference

% between each digital system is based on the transfer

% Ffunction of the NCO. The two transfer functions to

% be used are 1/(1-z~-1) and z™-1/(1-z"-1).

%

% To obtain the plot of the Root Locus, we need to use

% the Characteristic Equation of the System .

% The characteristic equation is defined as 1 + K*(p/q)=0.
% p and q are respectively the numerator and denominator
% of the open loop transfer function and k is the system
% gain. The upper case K will be used to represent the

% gain of the analog system, whereas the lower case k

% represents the gain of the digital system.

% Defining Acronyms:

% PLL = Phase-Locked Loop

% APLL = Analog Phase-Locked Loop
% DPLL = Digital Phase-Locked Loop
% ALF = Analog Loop Filter

% DLF = Digital Loop Filter

% Defigning Parameters of the APLL:

% t2 1/t2 Indicates The Zero Location OFf The Analog Loop Filter
% tl1 Parameter Of The Denominator Of The Analog Loop Filter;
% 1/t1 can be thought of as a gain term of the Analog Loop Filter

% K = Open-Loop Gain of the PLL; K = Kd*Ko;

% Kd = Gain OF The Phase Detector

% Ko = Gain Of The VCO and NCO

% wn = Natural Frequency Of The APLL

% a = Constant Relating tl1 and t2; tl = a*t2.

% r = Damping Ratio

% ps = Numerator of the Characteristic Equation of the APLL

% qs = Denominator of the Characteristic Equation of the APLL

% Defining Parameters of the DPLL:

% T = Sampling Period of the DPLL; T = 1/Fs;

% Fs = Sampling Rate of the DPLL

% b0 = Indicates The Zero Location Of The Digital Loop Filter
% bl = Indicates The Pole Location Of The Digital Loop Filter

% Defining Parameters of the characteristic equation when the
% NCO in the DPLL has transfer function 1/(1-z"-1).

Numerator of the Characteristic Equation of the DPLL
Denominator of the Characteristic Equation of the DPLL

% pz
% gz
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% Defining Parameters of the characteristic equation when the
% NCO in the DPLL has transfer function z"-1/(1-z"-1).

% pz2= Numerator of the Characteristic Equation of the DPLL
% qz2= Denominator of the Characteristic Equation of the DPLL

% Preparing Matlab For The Process:

close all % Closing All Figures
clc % Clearing Command Window
clear all % Clearing Memory

format long; % Defining precision

% Defigning Gain Terms for the analog system:

Ko = 100e3;
Kd = 1;
k = Ko*Kd;

% Calculating Parameters Of The APLL:

r = 1/sqrt(2);
wn = 500;

a = Ko/(2*r*wn);
t2 = (2*r)/wn;

tl = a*t2;

% Calculating Parameters Of The DPLL:

Fs = 30e6;

T = 1/Fs;

bo = (2*t2+T)/(2*tl);

bl = (T-2*t2)/(2*tl);

K = k*T; % <--- Gain term for the DPLL

% Expressing Numerator and Denominator Of Characteristic

% Equation for The DPLL having NCO z"-1/(1-z"-1):

% For this specific system, if t1=0.4, t2=0.0028 and T=1/30e6,
% the location of the open loop zero is z=0.9999880953.

[bo bi];
[1 -2 1];

Pz
qz

% Expressing Numerator and Denominator Of Characteristic

% Equation for The DPLL having NCO z™-1/(1-z"-1):

% For this specific system, if t1=0.4, t2=0.0028 and T=1/30e€6,

% the location of the open loop zero is z=0.9999880953 and z = O.

pz2
qz2

[bo bl 0];
az;
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X

» Parameters to define unit circle.
= [-1:0.1:1];
= [sgrt(ones(1,length(x))-x-"2)];

< X

% Ploting ROOT LOCUS Of DPLL having open loop transfer function pz/qgz:

figure(l)

rlocus(pz,qz); % Plotting Root Locus

[gain,poles] = rlocfind(pz,qz,0.9); % Finding gain and poles of HZ
% when a pole location is 0.9

hold on

plot(x,y, " —-",X,-y,"--") % Plotting unit circle

zoom on

% Plotting ROOT LOCUS DPLL having open loop transfer function pz2/qz2:

figure(2)

rlocus(pz2,qz2); % Plotting Root Locus

[gain2,poles2] = rlocfind(pz2,qz2,0.9); % Finding gain and poles of HZ
% when a pole location is 0.9

hold on

plot(x,y," —-",X,-y,"--") % Plotting unit circle

zoom on
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