
JTRACER: A FRAMEWORK FOR AUTOMATIC TEST
GENERATION FOR SECURE WEB APPLICATIONS

by

Edward Javier Herrera Aguirre

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2009

Approved by:

Bienvenido Vélez, PhD
President, Graduate Committee

Date

Manuel Rodriguez, PhD
Member, Graduate Committee

Date

Jaime Seguel, PhD
Member, Graduate Committee

Date

Pedro Vásquez, PhD
Representative of Graduate Studies

Date

Isidoro Couvertier, PhD
Chairperson of the Department

Date

 ii

ABSTRACT

JTRACER: A FRAMEWORK FOR AUTOMATIC TEST GENERATION

FOR SECURE WEB APPLICATIONS

By

Edward Herrera Aguirre

Web application systems are one of the most ubiquitous software systems in use today. In

contrast to traditional software systems, web application systems can evolve rapidly due to

changes usage demands. Currently many tools and techniques has been developed for testing

of Web applications however, the session generation data is still the more significant aspect

for Web application testing. In this thesis we introduce JTracer, a framework for automatic

test generation for secure Web applications. We have developed tools and techniques for

automatically generating testing traces that could be used to measure and thus improve the

tolerance of Web applications to sudden increases in load. Several algorithms that generate

session data from logs files have been characterized showing the scenarios where they can

suite better and finally, an algorithm for generating artificial session data is implemented.

 iii

RESUMEN

JTRACER: UN MARCO DE TRABAJO PARA LA GENERACION

AUTOMATICA DE PRUEBAS PARA APLICACIONES WEB SEGURAS

Por

Edward Herrera Aguirre

Las aplicaciones Web son los sistemas de software más extendidos y utilizados hoy en día.

Contrariamente a los sistemas de software tradicionales, las aplicaciones Web pueden

evolucionar rápidamente debido a cambios en las demandas de uso. Actualmente muchas

herramientas y técnicas han sido desarrolladas para hacer pruebas a las aplicaciones Web sin

embargo, la generación de datos de sesiones de usuario aún es el aspecto más significativo

para las pruebas a las aplicaciones Web. En este trabajo de tesis introducimos JTracer un

marco de trabajo para la generación automática de pruebas a aplicaciones Web seguras.

Hemos desarrollado herramientas y técnicas para generar automáticamente guías que pueden

ser usadas para medir y mejorar la tolerancia de las aplicaciones Web a incrementos

inesperados en la carga que reciben. Una variedad de algoritmos que generan pruebas

servidores han sido caracterizados para mostrar los escenarios donde dichas pruebas puedan

desempeñarse óptimamente y finalmente, un algoritmo para generar sesiones artificiales ha

sido implementado.

 iv

Copyright © by

Edward Herrera Aguirre

2009

 v

To Nadia my wife, the great love of my life. To my parents Edward

and Julia for the love, patience and guidance. To my sister Yubelly,

brother Mijail and for Peti.

 vi

ACKNOWLEDGEMENTS

I would like to thank God for giving me the strength and the faith to accomplish this task. I

thank to my wife Nadia for their unconditional love, patience, support and understanding.

Thanks to my parents Edward and Julia for give me the life, their infinite love and their

advices, thanks to my sister Yubelly and brother Mijail for accept me as I am. I wish to thank

to my advisor, Dr. Bienvenido Vélez for his support, advice, and patience, Dr. Manuel

Rodríguez, and Dr. Jaime Seguel to accept be part of my committee and thrust in me. Special

thanks to Dr. Ismael Pagán Trinidad for the economical support, his friendship and

understanding.

 vii

Table of Contents
ABSTRACT...II

RESUMEN .. III

ACKNOWLEDGEMENTS... VI

TABLE OF CONTENTS ..VII

TABLE LIST.. IX

FIGURE LIST ...X

1 INTRODUCTION...2
1.1 OVERVIEW ...2
1.2 PROBLEM STATEMENT ..3
1.3 PROPOSED SOLUTION ...5
1.4 CONTRIBUTIONS ...6
1.5 THESIS STRUCTURE ...6

2 RELATED WORK ...8
2.1 WEB APPLICATION ..8
2.2 WEB APPLICATION TESTING..10
2.2.1 Models based methods for Web application testing ..10
2.2.2 User session based methods for Web application testing ...13
2.2.3 Others methods for Web application testing ..16

2.3 PERFORMANCE TESTING ...18
2.4 SCALABILITY OF WEB SERVERS ...20

3 DESIGN AND IMPLEMENTATION OF JTRACER..22
3.1 OVERALL ARCHITECTURE OF JTRACER ..22
3.2 THE CODE INJECTOR MODULE ...24
3.3 THE LOG PARSER MODULE ..37
3.4 ARTIFICIAL SESSION TRACE GENERATOR MODULE ...43
3.4.1 Statistical based user data creation algorithm...43

3.5 TEST CASES GENERATOR MODULE ...51
3.5.1 Translating the log file to JMX file ...53

3.6 TEST ENGINE ...60
3.7 ERROR REPORTING ...61

4 EXPERIMENTAL ANALYSIS ..64

 viii

4.1 INTRODUCTION ...64
4.1.1 Computing infrastructure...64

4.2 USER NAVIGATION SEQUENCE..65
4.3 ANALYSIS OF THE TEST ALGORITHMS ...69
4.3.1 Analysis of the Concurrent Algorithm ...69
4.3.2 Analysis of the By Session Algorithm ..75
4.3.3 Analysis of the Log Replay Algorithm ...78
4.3.4 Analysis of the By Block User Session Test Case Algorithms ..81

5 CONCLUSIONS AND FUTURE WORK ...85
5.1 CONCLUSIONS...85
5.2 FUTURE WORK ..86

REFERENCES..87

 ix

Table List

Tables Page

TABLE 3.1 Requests logged according to the user navigation .. 33
TABLE 3.2 Navigation flow logged according to the real user navigation 34
TABLE 3.3 Brief description of the JMeter load testing components 54
TABLE 3.4 Errors reported by the Error Reporting Module.. 63
TABLE 4.1 Example of logged data by the sniffer and by the Web application 67
TABLE 4.2 Comparative of errors generated by replicated and artificially sessions 71
TABLE 4.3 Errors detailed for sessions replicated .. 73
TABLE 4.4 Errors detailed for sessions created artificially ... 73
TABLE 4.5 Errors detected using By Session Test Case scenario... 76
TABLE 4.6 Errors reported by sessions executed sequentially.. 77
TABLE 4.7 Errors in Log Replay by compression factor .. 79

 x

Figure List

Figures Page

Figure 2.1 Sequence diagram representing the interaction with a web application.................. 9
Figure 2.2 Sessions classification according to algorithms presented by Sprenkle et al. 14
Figure 3.1 Overall System Architecture ... 23
Figure 3.2 Code Injector algorithm phases ... 26
Figure 3.3 Digiweb Web application interfaces ... 29
Figure 3.4 User inserting a new instrument in Digiweb Web application.............................. 30
Figure 3.5 Log data as the user navigates the Web application.. 32
Figure 3.6 Log data according to JSF specification.. 36
Figure 3.7 Log Parser process phases ... 38
Figure 3.8 Typical user session gotten by using a spy or a proxy .. 39
Figure 3.9 The Tokenization proceess .. 41
Figure 3.10 Grammar specification for the new log file... 42
Figure 3.11 Statistical based user data creation algorithm ... 44
Figure 3.12 Selection process ... 45
Figure 3.13 Data capture algorithm .. 46
Figure 3.14 Occurrences matrix.. 47
Figure 3.15 Algorithm for updating the Occurrences Matrix ... 48
Figure 3.16 User session generation algorithm... 49
Figure 3.17 Navigation path created using the Occurrences Matrix 50
Figure 3.18 Form used by JTracer to setup the parameters for test cases generation............. 51
Figure 3.19 Concurrent Test Case Scenario translated to JMeter test plan 56
Figure 3.20 By Session Test Case Scenario translated to JMeter test plan 57
Figure 3.21 By Block Test Case Scenario translated to JMeter test plan 59
Figure 3.22 JMeter testing tool interface .. 61
Figure 3.23 JMeter testing tool and Error Reporting.. 62
Figure 4.1 Experimental Set-up to validate the Code Injector functionality 68
Figure 4.2 Good sessions versus bad sessions with set replicated.. 71
Figure 4.3 Good sessions versus bad sessions with set created artificially 72
Figure 4.4 Error by error type using sessions replicated .. 74
Figure 4.5 Error by error type using sessions artificially created ... 74
Figure 4.6 Errors in Log Replay by compression factor... 80
Figure 4.7 Bad sessions using a concurrent and a by block test ... 83

1 INTRODUCTION

1.1 Overview

Web application systems are one of the most ubiquitous software systems in use

today. Since they appeared they have grown quickly and have evolved faster than other

software systems. Day to day more information systems are being supported by this

technology and most of the information systems are likely to be supported by this technology

in the future. As they become adopted by more and more companies, they have become more

complex and sophisticated. In many cases their success is crucial for the success of the

company. Thus ensuring the reliability and robustness of the Web application systems is a

big concern for companies.

Although traditional techniques for testing software systems have been used and

proved for a long time, these techniques are no longer adequate for testing web application

systems. In contrast to traditional software systems, web application systems can evolve

rapidly due to changes usage demands. They also require more complex maintenance due to

their heterogeneous, distributed, concurrent, and platform-independent nature. All those

factors demand more complex techniques for web application testing.

2

We are particularly interested in developing tools and techniques for automatically

generating testing traces that could be used to measure and thus improve the tolerance of a

Web application to sudden increases in load.

As example, one web application designed to manage a few hundred users could

suddenly find itself managing millions of users. This increment may trigger many scalability

problems in the web application that couldn’t possibly be predicted unless an appropriate tool

is available.

1.2 Problem Statement

Sudden increments in the number of concurrent users that Web applications systems

can support have raised their size and complexity. Such complexity has forced developers to

spend more time testing and validating.

No existing technique or method has proven to uncover all errors or bugs in web

application systems. Most testing methods serve a specific testing purpose. Manually test

case generation is a common technique for validation and verification of software systems

when used for testing Web applications. However these techniques are very labor intensive

and often can result in test suites that are not representative of real usage patterns.

Techniques for automatically generating realistic testing suites are thus mighty desirable.

 3

Web applications service uses interactions in the form of sessions comprising several

requests. A session typically starts when the user logs in and ends when he/she logs out. This

type of interaction requires a protocol for maintaining the relationship among multiple

requests belonging to a given session. The Web application must be able to associate each

request that it receives with a particular session and a particular user even when those request

may arrive at the server in any order.

Manually creating a testing user session is a complex task. Tools that allow to accomplish

this task automatically requires the use of proxies, capture-replay tools or scripts written by

the software testing engineer. Using proxies or capture-replay tools requires simulating the

user interaction with the Web application, hence the user session is created in a virtual

fashion. That is each user session is created following a set of steps according to an artificial

script which may necessarily reflect the real user interaction with the web application.

Our research is an attempt to automate the process of user session test creation and

execution by automatically instrumenting a Web application to collect real user interaction

traces even when the communication channel is encrypted.

 4

1.3 Proposed Solution

The proposed solution is to log the user session from inside the Web application. This

is accomplished by automatically injecting code after a static analysis of the Web application

source code. The produced log is then processed to get the real world user session. The log

file will be translated to a .jmx file which is a XML file used to describe test cases for the

JMeter [18] testing tool. This test generation process is transparent to the user of the Web

application system as well as to the software testing engineer.

Once the log file is captured the log data is used to create various types of test suites

that can simulate various types of access patterns. Also the log data can be analyzed by the

engineer in order to learn about user behavior in order to create completely new artificial

sessions that mimic such behavior.

The thesis relies on the JMeter testing tool for simulating the interaction between

users and Web application systems. JMeter [18] is an easy to use open source solution used

broadly for load testing of Web applications; it has an active community that maintains the

application up to date. This tool allows us to validate and compare the sessions generated

from the real traffic with the obtained from the Web application itself. However many other

tools exist in the market [32] that can serve to this purpose, many of them are open source

too. However those don’t have the support that JMeter has while the commercial tools are

expensive.

 5

1.4 Contributions

The main contribution of this research is simplifying the process of creating user

session test suites and catching real world scenario user sessions, even when the protocol is

encrypted. As explained before, creating a user session manually is a cumbersome task and

creating the user session relying on proxies or spies generate security risks. A better way to

create a trustworthy user session is by generating it from inside the Web applications secure

domain. We implement and test various algorithms to generate user sessions test suites from

the log data captured. We present the results of various experiments that validate the

correctness of our approach and evidence its advantages using other testing techniques.

1.5 Thesis Structure

The remainder of this document is organized as follows: In Chapter 2 we present a

general overview of available articles related to this thesis, along with the theoretical

background for the reader to better understand of the terminology and scope of this work.

Chapter 3 introduces the JTracer framework and describes their phases and components.

Further the functionality of each component is described in order to show their importance in

the proposed solution to the problem stated above. Chapter 4 presents the different

experiments that were carried out in order to test the proposed thesis and to evaluate and

 6

analyze their results. Finally Chapter 5 presents a summary of the conclusions and directions

for future work.

 7

 8

2 RELATED WORK

Through this chapter some concepts and previous works related to the thesis work will be

shown.

2.1 Web application

Is an application stored on a server and accessed mainly using a web browser,

composed by web pages logically connected which can be delivered over a network like the

internet or an intranet. A web application is commonly structured as a three-tier application

comprising a User Service tier to access to the application, a Business Service tier to carry

out complex activities and a Data Service tier which allows data storage and retrieval.

 9

Figure 2.1 Sequence diagram representing the interaction with a web application

In the Figure 2.1 Sidat [25] shows how a simple web application works, the client

sends a request to the server through a web browser. The server process the request and

delivers contents to the client. The contents are usually delivered in a markup-language form

as HTML, these are interpreted by the client’s web browser and shown like a web page [21].

The server’s processing of the request sent by the client is a complex task, specially if the

client’s request include data provided by the user, in such case, the application server, the

database management system and a set of scripts have to collaborate to generate a dynamic

web page that fits the client’s request.

 10

2.2 Web application testing

Web application testing groups a set of tests over Web application systems which

include functionality, usability, interface, compatibility, performance and security testing.

For a web application system be robust, faster, reliable and eye-catching have to be

successful over these tests. Although those tests are used for testing traditional software

systems too, those can’t be used in the same way on Web applications systems because of

their characteristics [17] [19]; Testing Web applications are more complicated than testing

traditional programs because of their heterogeneous, distributed, and concurrent nature along

with their capacity to support hypermedia and be accessed by hundred or even thousand of

users at the same time. Due to the previous aspects, testing Web applications requires to

increase the complexity and to specialize the techniques used by the traditional software

testing.

2.2.1 Models based methods for Web application testing

Many techniques have been developed for Web application testing; some of them rely

on models for high level representation of Web applications.

Di Lucca et. al. [10] propose a test model for a web application representing at a

coarse grained view, the web pages and a finer grain level, the inner components, scripts,

 11

links and applets. Based on that model, functional testing is carried out in two phases. In a

first phase functional tests are created for the web pages of the web application and a model

of the functional requirements is used to determine the expected behavior of the pages. In a

second phase for each use case of the application, functional and test cases are executed on

the web pages that implements such uses case. A Web application analyzer, test case

generator, tests executor also have been developed to validate their solution.

As Di Lucca et. al. [10], the work of Ricca and Tonella [27] is based on models of

Web applications where the definition of the testing criteria and the generation of the test

cases rely on the internal structure and data flows of the Web application. Hence the model

allows them first realize a static analysis where unreachable pages can be detected, data

dependencies are identified, navigation correct order are validated and finally shorter paths

are determined. Later, given a test criterion, a set of tests consistent of URL and input values

are compared against the internal structure of the web application to determine if every page

is visited at least once, if each hyperlink of each page is visited at least once and finally if

every path in the site is visited at least once. This ensures that all paths that satisfies a

determinate criterion are validated before the Web application is deployed.

The work of Conallen [4], Baresi et. al. [2] and Li et. al. [20] are focused at propose

models for Web Applications by extending the Unified Modeling Language UML using its

formal extension mechanism, hence web-specific components can be integrated with the

 12

model, concepts borrowed for other methodologies are added and finally Web applications

are described from different levels of abstraction.

Chien-Hung et. al [6] [5] extends data flow analysis techniques for testing traditional

software systems to the elements that compose a Web application, they proposed a model

called WATM that capture Web applications tests artifacts so data flow test cases can be

derived from them. Similarly [26] propose a methodology of Model-Driven Testing for Web

applications, they proposed a model called WANM that describe the relations among web

pages and the links and forms in each web page. Additionally deployment and test control

models are proposed. All these models are used for applying the MDT process to Web

application testing. A test engine executes test cases based on the models defined previously.

The drawback of both models is the complexity for creating test data.

As we have seen so far, the tools developed by those researches allow us to generate

semi-automatically the test cases by analyzing the internal structure of the Web application

or by reverse engineering of the Web application. However such test cases are not derived

from a real world scenario, it means they not necessary reflect the interaction of the users

with the web application system. Those techniques require that the web testing engineer has

knowledge of the internal structure of the application as well as the documentation of the

system functionality.

 13

2.2.2 User session based methods for Web application testing

Although the techniques mentioned so far have shown promising and encouraging

results, such techniques are expensive to implement and to program moreover require much

intervention from the web testing engineer. Elbaum et. al [11][12] proposed web application

testing using data gathered as the user operates the Web application, their work showed that

user session data gathered as users operate web browsers can be used to produce test suites

more effectively than with the model based techniques and with less effort, they conclude

that both techniques are complementary because the faults detected for both techniques differ.

Due to the sequential nature of the logs files created after the capture of the user

interaction with the web application, tests using those data are executed in a replay fashion, it

means in the same order than appears in the log file. The work of Sprenkle et al. [34] showed

that creating test cases that test various levels of multi-user interaction and state

dependencies provide more coverage than the user-session based technique. They propose

three techniques for partitioning the log file, Fixed by block that strictly partition the log into

fixed-time-length block, Server inactivity threshold where the first request of each block

differs a time “t” of the last request of the previous one and, Augmented user session where

each group include the request whose time is between the initial and end time of each user

session. The figure 2.2 illustrates an example of the session classification according to these

algorithms.

 14

Figure 2.2 Sessions classification according to algorithms presented by Sprenkle et al.

The main drawback of the User session based technique is the cost and effort in

collecting, analyzing and replaying the vast number of user sessions; therefore redundant test

cases should be removed without losing fault detection and coverage properties. Techniques

that reduce the set of user session gathered [14][29] try to represent with fewer sessions the

behavior of many sessions.

The Harrold et al. [14] technique first define each URL of the web application as a

requirement, then an optimal set of user sessions that meets the fewer requirements is

determined, in each iteration a new user session is added to the optimal set until the set

covers all the requirements. The cardinality of each requirement is the number of user

sessions that cover such requirement. For each iteration the new session added to the optimal

 15

set is the one that covers the most requirements with lower cardinality. The main drawback

of this technique is the increment in the time of processing as the number of sessions grows.

To avoid large processing as the number of sessions grows, the work of Sampath et.

al. [30] uses incremental concept analysis techniques to address the test case reduction

problem. Their technique is based on incremental concept formation algorithms which

created a reduced set of test cases as the test cases are added to the set. The algorithm takes

as input the session to be added and a table where the columns are the URLs of the Web

application and the rows are the user sessions, each entry in the table is true if the session

requests the URL. The table is represented as a graph called Latice that has in their high

levels the URLs requested by almost all the sessions and in their low levels the URLs

requested by the fewer or none sessions. As output, the algorithm returns the Latice with

nodes added and deleted according to the concept analysis approach. Each iteration of the

algorithm always maintains the optimal reduced set.

Sampth et al. [29] make an interesting contribution by analyzing the user session

clustering, in their research they shown that choosing a user session from a cluster will not

result in loss of the attributes represented or covered by other user session belonging to the

same cluster, the research shown that clustering could be done based on URLs as attributes

and based on the URL and name-value as attribute. This research will be useful to formulate

new techniques for reduction of test sets.

 16

Other researches have tried to synthetically create user session data starting with the

already existent data, Elbaum et al. [12] showed than merging and splitting user session to

generate additional test session data, were not as effective as the primarily user session

technique proposed early by themself. Sant et al. [31] automatically builds statistical models

of user sessions and automatically derives test cases from these models, the study

demonstrated that those tests achieve high coverage and accurately model user behavior.

They build Markov models starting with web log data; this is done by using statistical

language learning algorithms to construct Control models and Data models that address the

user session generation. The Control models represent the possible sequence of URLs that

are visited when the user navigates the application and the Data models represent the set of

name-values values in a request for a specific URL like this User session are created

according to the distribution learned from the web log.

2.2.3 Others methods for Web application testing

Others methods for Web application testing rely on static code analysis as proposed by Deng

et al. [8] who after an analysis of the source code of the Web application create and execute

dynamically test sessions relying on graphs that represents the URLs and the links between

them. Halfond and Orso [13] get value-domain pairs by analyzing the source code of a Web

application, those pairs could be used by software testing engineers to supply data that

exercises the system.

 17

Xiaoping and Hongming [39] use formal specifications for testing Web applications, the test

process, the security, the functionality and the performance are specified using a formal

language defined by themselves. A test engine reads test specifications from a XML file and

generates test cases based on such specifications; the results are compared with the expected

results which are specified using the same formal language. Although the research has not

been proved on large and complex Web applications, the results obtained are promising.

Yu et al. [40] proposes use agents for Web application testing, where specific test agents are

generated from abstract classes. Each test agent takes charge of testing a particular type of

Web document or object by certain testing methods. Each test agent of high level is able to

create test agents of low levels to execute the test in lower levels. The Web application

testing is performed based on four levels: function, cluster, object and web application levels.

The authors specify the structure and items of each agent level. The approach is flexible and

extensible because any new function could be added through a new test agent.

As we can see so far, many research and many promising results has been accomplished, and

the web application testing field is still being exploited and researched, day-to-day new tools

are created and proposed [32]. No matter which technique is used, all of them rely on the

user session data. The user session data is the element that finally exercises and validates the

web application system. The thesis is aimed at catch and replicate such user sessions making

it a simple and inexpensive task for the Web application testing engineer. Later the Web

 18

application testing engineer could use them as the main ingredient along with the different

techniques to test the web application systems.

2.3 Performance testing

Performance tests are usually described as belonging to one of the following three categories:

• Performance testing. Meier et. al [22] defines performance testing as the type of test

for determining and validating the speed, scalability and/or stability characteristics of

the system or application under test. The main objective is to meet the response times,

throughput and resource-utilization levels expected for the software or product. The

results are useful to estimate the resources needed to support the application operation.

• Load testing. According to Meier et. al [22] this type of testing “determines and

validates the performance characteristics of the system or application under test when

subjected to workloads and load volumes anticipated during production operations.”

• Stress testing. After the application or system under test has been successful on load

testing, a set of tests that simulates conditions beyond those anticipated during

production operations are executed, stressful conditions as limited memory, server

crash, hardware fault, among others are simulated. Then is possible determine how

 19

the application will fail and the indicators that can be monitored to warm and avoid

failures [22].

To predict performance of a Web application, Benchmarks or Performance models can be

used.

Benchmarks are standards workload models used by the industry to test existing

architectures with expected traffic, some tools as SpecWeb99 [36], TPC-W [23], WebStone

[38] and WebBench [37] use file-list as supply for the workload characterization, while

Surge [3] use mathematical distributions to represent the main characteristics of the system

under test. As can be noticed, benchmarks don’t provide realistic workload because of the

vast types of Web applications. Although TPC_W [23] provide a realistic workload

characterization by simulating an e-commerce Web application, is far from simulating all e-

commerce Web applications systems. Hence using a Benchmark for stress or load testing

could produce non-reliable results if the Web application would not adjust accurately to some

existing architecture with expected traffic.

Performance models use analytical or simulative models to predict the performance

of a Web application. By replaying set of sessions against the server under evaluation

measures such as throughput, response times, disk storage and computational resource, can

be derived, for this many tools with diverse features have been implemented, a complete list

can be found on [32].

 20

Only accurate predictions about Web application performance in a production

environment is achieved when realistic workload models are simulated [22]. Andreolini et al.

[1] presents some methods for design and testing of Web applications and for improvements

to do for the already deployed Web applications to satisfy performance constraints. However,

a Web application is considered well performed only after passing a realistic workload.

Relying on information extracted from logs files Ruffo et al. [28] proposed WALTy a

set of tools for performance analysis of Web applications. Their research shows that

representative traffic can be simulated using Customer Behavior Model Graphs extracted

from log files. Customer Behavior Model Graphs first proposed my Menasce et al. [24] are

session-based representation of user navigational patterns and proposed for workload

characterization of e-Commerce sites. Using those models trace-based synthetic workloads

were performed. After testing their tool against other tools, they found different measures

concluding that the results depend on the chosen virtual user behavior. Hence the choice of

adequate user sessions could perform a valid workload generation.

2.4 Scalability of Web servers

Is the ability of the web server to maintain the site operable, available, reliable, and

efficient as the number of simultaneous requests increases. “Scalability means not just the

 21

ability to operate, but to operate efficiently and with adequate quality of service, over the

given range of configurations. Increased capacity should be in proportion to the cost, and

quality of service should be maintained” [37].

To determine the scalability of a Web application is not necessary to perform a load

testing by levels of numbers of users until the performance desired is met. Do it in that way is

time-consuming and very expensive. By using load testing along with analytic or simulation

performance models the scalability of a Web application can be predicted.

 22

3 DESIGN AND IMPLEMENTATION OF
JTRACER

3.1 Overall architecture of JTracer

 This chapter presents the overall JTracer architecture. Each component and its roles is

explained in detail. The JTracer incorporates tools and components to automate the creation

of load testing suites, their execution against the application server and the reporting of errors

produced by such execution. JTracer is capable of feedback of the response of a Web

application under different load levels and user behaviors.

 23

Original
Web

Application

Code
Injector

New
Web

Application

Raw
Log
Data

Log Parser

Artificial
Session
Trace

Generator

Test Log
Data

(xml file)

Test cases
generator

Test
Engine

Original
Web

Application

Parameters

Error
Reporter

Modify
Application

Collect Log
Data

Create test
suites Run test

Test Suites

Web app
Response

Figure 3.1 Overall System Architecture

The process of generating a test suite starts with the capture of the real session data. This is

done either by spying the communication port on non-encrypted protocols or by generating

the session data directly from the Web application. Spying the port is an easy task and

software exists in the market that allows to do it. If we want the session data would generated

 24

directly by the Web application, it has to be modified to provide such functionality. This

functionality can be automatically attached to the Web application by inserting the source

code necessary to log the user interactions.

The real session data captured earlier (Raw Log Data), have to be translated to a more

structured file, this is done by using a parser implemented into the Log Parser module. Also

the real session data could be the supply for algorithms that generate artificial session data

implemented into the Artificial Session Trace Generator. The data produced after processing

the raw log data will be translated according to a set of parameters to a XML file

representing a test plan for the Test Engine in charge of exercising the Web application.

As the Test Engine exercises the Web application its responses are captured. Then these

responses are analyzed and summarized by the Error Reporting module.

3.2 The Code Injector Module

The Code Injector Module (CIM) instruments a Web application with code to log session

request as real users interacts with the Web application. The first mission of JTracer is

designed to work with any Web application implemented under the J2EE Java platform and

using JavaServer Faces technology. However support for other technologies could be

implemented in a similar fashion.

 25

 The CIM performs a static analysis of the Web Application source code to determine

the exact location where additional source code that logs the user interaction with the Web

Application will be inserted. The source code injection process is divided into two phases. In

the first phase, the algorithm takes as input a set of files that implements the Web

Application user interfaces (.jsp files) and returns the set of managed beans components and

the methods which would trigger some action caused by an HTTP request. In the second

phase, the source code that logs the user interaction is injected into the user interface files as

well as into the correspondent managed beans methods. A general overview is shown in

Figure 3.2.

 26

Original JSF files

Beans and
methods

JSF
parser

Beans and
methods with
code inserted

First Phase
Static
Analysis

Second Phase
Code
injection

Code

Injector

FacesConfig.xml

New JSF files

Figure 3.2 Code Injector algorithm phases

To determine which beans and methods should be instrumented it is necessary to

determine which user actions make a call to a method or a forward to another user interface

file. The user interacts with the Web application by selecting a visual controller as a link, a

menu command or a button, which triggers a new HTTP Request to the server. Such

controllers and their actions are specified inside the user interface or JSP file as marks:

 27

[<h: [component_name] action=“cad”>

Where “cad” could reference a Bean and a method name or a URL link. Thus “cad”

has to be parsed to determine whether it is a method or an URL. In case “cad” references a

method then the bean and the method name are added to the set mentioned previously along

with their location in the source code. The bean location is extracted from the

FacesConfig.xml file. In case “cad” references an URL location then the JSP implementing

such URL will be added to a set of JSP elements to be processed further.

The algorithm traverses the set of BEANS, and for each method that implements a

user action, source codes that implements the logging of the action as an HTTP Request is

inserted. The source code inserted relies on the Faces Context class to get the current request,

their headers and their parameters. The Faces Context class is a general Java Server Faces

class that contains JSF-related request information among other request parameters.

Once all the managed beans have been processed, appropriate codes are inserted into

the headers of the JSP files. However, no all the JSP files have to log user session data

neither have to log the session data only one time. Later in this section will detail conditions

that determine what user session data must be logged.

 28

Before explaining the logging process we introduce to Digiweb [9] Web application

system which we will use to illustrate the examples. This Web application is designed to

manage and control documents (instruments and affidavits) issued by the notaries as well as

their personal information. The system also controls the submission of the documents

registered by month for no further modification. Figure 3.3 shows some interfaces that

implement the Web application.

 29

(a) Login interface that allows
access to the system

(d) Submission of the documents by month

(b) Manager of the documents
issued by the notary by months

(c) Details of the documents issued by the notary

Figure 3.3 Digiweb Web application interfaces

When a notary wants to issue a document, he/she logs into the system (Figure 3.3 (a)), then

select “Ficha de Informes” and then chose the month he/she wants to register the document

in (Figure 3.3 (b)). Finally inserts the details of the documents as date of emission, the

 30

participants and the subject (Figure 3.3 (c)). All those documents are summarized by month

and can be submitted for no further modification (Figure 3.3 (d)).

Figure 3.4 User inserting a new instrument in Digiweb Web application

Figure 3.4 illustrates how the user interaction is logged by JTracer. The diagram

shows step by step the actions performed by a Web application and when the User inserts a

new document into the system. Although many software components work together to

implement the operations that complete a transaction, the Web interfaces are the only ones

visible to the user.

 31

Once the user accesses the Web Application, the login page is displayed. The user inserts his

name and password and the Authentication bean authenticates his/her credentials. If both

user and password are correct then the bean redirects the navigation to MyAccount page.

Once MyAccount is shown the user pushes the link to go to the Manager page. In response

the system shows the Manager interface. The user decides create a new instrument, and

displays the Instruments page. Once the user completes the data requested for a new report

the MonthlyInstrument bean stores the data in the database and redirects the navigation again

to the instrument page after letting the user know the status of his operation. Finally the user

logs out of the system.

Figure 3.5 shows the user interaction with the Digiweb, the corresponding pages and beans

that work together as the user navigates the Web application and how the user actions are

logged.

 32

Login

Go to
Reports

Add
Instrument

Logout

Create a new
Report

login.jsf

MyAccount.jsf

Manager.jsf

instruments.jsf

logout.jsf

instruments.jsf

User action

http://www.digiweb.net

AuthenticationBEAN

MonthlyInstrumentBEAN

GET login.jsf

GET MyAccount.jsf

GET Manager.jsf

GET instruments.jsf

GET logout.jsf

GET instruments.jsf

POST login.jsf

POST instruments.jsf

HTTP Request Logged Current jsf interface

Figure 3.5 Log data as the user navigates the Web application

Table 3.1 shows at the right the HTTP Request logged by the JTracer logging

algorithm. However, such logged session data doesn’t reflect precisely the user interaction

with the Web Application according to the JSF specification. As can be seen, each page and

bean file log itself. However, according to the JSF specification pushing a button or a link

have to trigger a POST request. For example, when the user is on the MyAccount.jsp page

 33

and clicks the link to go to Manager.jsp, the logged data will be “GET Manager.jsp”,

however no logged data is registered for the action of clicking the link. We should remember

that according to Java Server Faces specification a “POST MyAccount.jsp” must be

registered in response to a click of a button or link. A more detailed explanation of the

sequence of operations performed as the user navigates the Web application is presented in

Table 3.2, in blank the requests that can’t be logged are shown, this happen because the

interface log itself when is shown.

TABLE 3.1 Requests logged according to the user navigation
Action Current Interface or

BEAN
Request logged

User access to the application and insert user name
and password

login.jsf GET login.jsf

Bean authenticated the user and password and redirect
to MyAccount.jsp

AuthenticationBEAN POST login.jsf

The application shows the interface MyAccount.jsp MyAccount.jsf GET MyAccount.jsf
The user push a button to go to Manager MyAccount.jsf
The application shows the interface Manager.jsp Manager.jsf GET Manager.jsf
The user push a button to go to instruments Manager.jsf
The application shows the interface instruments.jsp instruments.jsf GET instruments.jsf
The user insert some data and push save button instruments.jsf
Bean stores the data into the database MonthlyInstrumentBEAN POST instruments.jsf
The user push button to logout the application instruments.jsf
The application logout logout.jsf GET logout.jsf

As can be noticed in Table 3.1 accessing the next page displayed must log two

requests, one for the previous page and one for itself when a link or a button is clicked.

However, if the request has already logged by a bean and, as mentioned above, the next page

logs the request of the previous page and itself then such request will be logged twice. Also,

some requests don’t have to be logged as when a page redirects the navigational flow. We

summarize those cases and instrument them into the original algorithm as follows:

 34

• If a JSP file redirects the navigation flow then such file does not have to be processed

because it was not produced by a direct user interaction with the system.

• If a JSP file has a directive that finishes the session and redirects to another page then

the next page does not have to be processed because it does not belong to the current

session.

• If the method of the current request is GET and the previous request does not come

from a bean, log along with the current request the previous request registered as

POST request. It because this page has been called by clicking a link, a button or

other visual component and according to the JSF specification this should produce a

POST call in such page, and must be logged by the next page called.

• If the method of the current request is POST and the previous request comes from a

bean, it would not log the current request because it has already been logged by the

bean.

Finally Table 3.2 and Figure 3.6 show the pages and the beans and how they work together

logging the user interaction with the Web application.

TABLE 3.2 Navigation flow logged according to the real user navigation
Action Current interface or

BEAN
Request logged

User access to the application and insert user name
and password

login.jsf GET login.jsf

Bean authenticated the user and password and redirect
to MyAccount.jsf

AuthenticationBEAN POST login.jsf

The application shows the interface MyAccount.jsf MyAccount.jsf GET MyAccount.jsf

 35

The user push a button to go to Manager MyAccount.jsf Will Be Registered In
The Next Request

The application shows the interface Manager.jsf Manager.jsf POST MyAccount.jsf
GET Manager.jsf

The user push a button to go to instruments Manager.jsf Will Be Registered In
The Next Request

The application shows the interface Instruments.jsf instruments.jsf POST Manager.jsf
GET instruments.jsf

The user insert some data and push to save instruments.jsf Will Be Registered In
The Next Request

Bean stores the data into the database MonthlyInstrumentBEAN POST instruments.jsf
The application shows the interface Instruments.jsf instruments.jsf GET instruments.jsf
The user push button to logout the application instruments.jsf Will Be Registered In

The Next Request
The application logout logout.jsf POST instruments.jsf

GET logout.jsf

 36

Action logged by
AuthenticationBEAN

Login

Go to
Informs

Add
Instrument

Logout

Create a new
Inform

login.jsf

MyAccount.jsf

Manager.jsf

instruments.jsf

logout.jsf

instruments.jsf

User action

http://www.digiweb.net

AuthenticationBEAN

MonthlyInstrumentBEAN

GET login.jsf

GET MyAccount.jsf

POST MyAccount.jsf
GET Manager.jsf

GET instruments.jsf

POST instrument.jsf
GET logout.jsf

GET instruments.jsf

POST login.jsf

POST instruments.jsf

HTTP Request Logged Current jsf interface

Action logged by
Manager.jsf

Action logged by
instruments.jsf

Action logged by
MonthlyInstrumentBEAN

Action logged by
logout.jsf

Figure 3.6 Log data according to JSF specification

The log file generated by the instrumented web application reflects the real user

interaction with the Web application according to the JSF specification. This file will be the

basis for the rest of the test suite generation process.

 37

3.3 The Log Parser Module

The Log Parser (LP) extracts from the log file the data useful for load test generation,

receives as input the raw log data and produces a new more readable and compact file that

will be come the input to the following test case generation algorithms. The process is

divided into two phases as shown in Figure 3.7. In the first phase, the tokenization phase, the

list define, give example are extracted from the log file. During the second phase, the

Reduction phase, the list of tokens produced in the first phase is organized in such a way that

each HTTP Request is inserted into a line in a new file. Furthermore the HTTP Responses

are excluded from the new log file. The new resulting log file is up to 12 times smaller than

the original.

 38

…
Tokenization

Reduction

token1 token2 tokenN

Raw log file

New log file

Figure 3.7 Log Parser process phases

Figure 3.8 shows a fragment of the log file. As can be seen the data in each request of

the original log file is hard to read because is contains several lines, the URLs are not

followed by their parameters but by the JSESSIONID and HTTP Request and HTTP

Responses are intermixed in the same file. The goal of the LP module is to create a new log

file more readable and flexible that can be used as input for the test cases generation

algorithms and can be analyzed by a testing engineer to learn user behavior.

 39

T 192.168.100.5:1565 -> 192.168.100.1:8080 [AP]
 POST /Digiweb/login.jsf;jsessionid=AD1C10E29CD391F9471A46BAFF290AEF HTTP/1.
 1..Host: admtesting.net:8080..User-Agent: Mozilla/5.0 (Windows; U; Windows
 NT 5.1; en-US; rv:1.9.0.4) Gecko/2008102920 Firefox/3.0.4..Accept: text/htm
 l,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8..Accept-Language: e
 n-us,en;q=0.5..Accept-Encoding: gzip,deflate..Accept-Charset: ISO-8859-1,ut
 f-8;q=0.7,*;q=0.7..Keep-Alive: 300..Connection: keep-alive..Referer: http:/
 /admtesting.net:8080/Digiweb/..Cookie: JSESSIONID=AD1C10E29CD391F9471A46BAF
 F290AEF..Content-Type: application/x-www-form-urlencoded..Content-Length: 2
 07....loginForm%3ANameInputID=Jimenez&loginForm%3APasswordInputID=&loginFor
 m%3APinInputID=&loginForm%3AsubmitButtonID.x=0&loginForm%3AsubmitButtonID.y
 =0&loginForm_SUBMIT=1&jsf_sequence=1&loginForm%3A_link_hidden_=

T 192.168.100.1:8080 -> 192.168.100.5:1565 [A]
 HTTP/1.1 200 OK..Server: Apache-Coyote/1.1..Content-Type: text/html;charset
 =ISO-8859-1..Content-Language: es..Content-Length: 7610..Date: Sat, 02 May
 2009 00:33:52 GMT............ <!DOCTYPE html PUBLIC "-//W3C//DTD XHTM

T 192.168.100.5:1566 -> 192.168.100.1:8080 [AP]
 POST /Digiweb/administration/Manager.jsf HTTP/1.1..Host: admtesting.net:808
 0..User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.4)
 Gecko/2008102920 Firefox/3.0.4..Accept: text/html,application/xhtml+xml,app
 lication/xml;q=0.9,*/*;q=0.8..Accept-Language: en-us,en;q=0.5..Accept-Encod
 ing: gzip,deflate..Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7..Keep-Ali
 ve: 300..Connection: keep-alive..Referer: http://admtesting.net:8080/Digiwe
 b/login.jsf;jsessionid=AD1C10E29CD391F9471A46BAFF290AEF..Cookie: JSESSIONID
 =AD1C10E29CD391F9471A46BAFF290AEF..Content-Type: application/x-www-form-url
 encoded..Content-Length: 182....mainheader%3AmenuHeaderForm%3A_idJsp3.x=34&
 mainheader%3AmenuHeaderForm%3A_idJsp3.y=25&mainheader%3AmenuHeaderForm_SUBM
 IT=1&jsf_sequence=2&mainheader%3AmenuHeaderForm%3A_link_hidden_=

T 192.168.100.1:8080 -> 192.168.100.5:1566 [AP]
 HTTP/1.1 302 Moved Temporarily..Server: Apache-Coyote/1.1..Location: http:/
 /admtesting.net:8080/Digiweb/administration/members/UserMenu.jsf..Content-L
 ength: 0..Date: Sat, 02 May 2009 00:33:54 GMT....

T 192.168.100.5:1565 -> 192.168.100.1:8080 [AP]
 GET /Digiweb/administration/members/UserMenu.jsf HTTP/1.1..Host: admtesting
 .net:8080..User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1
 .9.0.4) Gecko/2008102920 Firefox/3.0.4..Accept: text/html,application/xhtml
 +xml,application/xml;q=0.9,*/*;q=0.8..Accept-Language: en-us,en;q=0.5..Acce
 pt-Encoding: gzip,deflate..Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7..
 Keep-Alive: 300..Connection: keep-alive..Referer: http://admtesting.net:808
 0/Digiweb/login.jsf;jsessionid=AD1C10E29CD391F9471A46BAFF290AEF..Cookie: JS
 ESSIONID=AD1C10E29CD391F9471A46BAFF290AEF....

T 192.168.100.1:8080 -> 192.168.100.5:1565 [A]
 HTTP/1.1 200 OK..Server: Apache-Coyote/1.1..Content-Type: text/html;charset
 =ISO-8859-1..Content-Language: en..Content-Length: 7048..Date: Sat, 02 May
 2009 00:33:54 GMT............ <!DOCTYPE html PUBLIC "-//W3C//DTD XHT
 ML 1.0 Transitional//EN".."http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitio
 nal.dtd">........<html xmlns="http://www.w3.org/1999/xhtml">..<head>..<meta
 http-equiv="cache-control" content

Figure 3.8 Typical user session gotten by using a spy or a proxy

In the Tokenization phase, the LP must identify the sequences of characters in the raw

log file in order to construct the new readable log file. The process starts with the

 40

tokenization of the stream of characters, a token is a character, number, word, punctuation

mark or sequence of characters treated as a single unit. We have considered the following.

1. Space, tab and new line characters are considered as delimiters.

2. The hash char followed by a new line char represent the start of a new HTTP Request.

3. The semicolon, colon, plus, equals chars are always delimiters.

4. The hyphen char followed by the major sign char represents the direction of the

HTTP Request thus is considered a delimiter.

5. The hyphen joining words or numbers form a single token. (eg. ISO-8859-1,utf-8)

6. Web URL can have numeric and alphanumeric chars.

7. IP addresses are considered as tokens.

8. IP addresses followed by colon and a port number are considered as tokens.

9. A number could be an integer or a real and could have embedded numeric chars, the

dot and the comma characters.

10. The tokenizer has been customized to identify the following keyword tokens: Host,

User-Agent, GET, POST, Accept, Accept-Language, Accept-Encoding, Accept-

Charset, Keep-Alive, Connection, Referer, Cookie, Content-Type, Content-Length,

Connection and JSESSIONID.

 41

Raw log file
Single
tokens
extraction

Verify
composite
tokens

Verify
numbers

Return token list

Is the
server ip
and port?

Read file line by
line until the
current line start
with the #
delimiter

Is the
previous
a # char?

YesNo

YesNo

Figure 3.9 The Tokenization proceess

 As the raw log data contains both the HTTP requests from the user as well as the

HTTP responses from the server, the tokenization process is optimized by filtering all the

HTTP responses tokens. This is accomplished by comparing each new token with the value

IP:PORT where IP is the IP address of the server and PORT is the port at which the server is

providing the service. If the token is the same then the previous token is verified. If the

previous token is the hash (#) token, then the tokenization process read the file line by line

until the current line starts with a hash (#) character token followed by a newline char, then

the tokenization process starts again. Figure 3.9 summarizes the tokenization process.

 42

In the reduction phase, the original log file will be reduced and simplified, starting using the

token list generated by the tokenization phase. The new log file will be constructed according

to the grammar shown in the Figure 3.10 and will contains one HTTP requests per line.

LogFile -> (HTTP_Request)*

HTTP Request IP:port..[Request]..[Host]..[User-
Agent]..[Accept]..[Accept-Language]..[Accept-Encoding]..[Accept-
Charset]..[Keep-
Alive]..[Connection]..[Referer]..[Cookie]..[JSESSIONID]

Request [Method] [url] [httpVer]| [Method] [url][params] [httpVer]

Host host : [url]:port | host : IP:port

User-Agent (*)

Accept (*)

Accept-Language (*)

Accept-Encoding (*)

Accept-Charset (*)

Keep-Alive (*)

Connection (*)

Referer (*)

Cookie (*)

JSESSIONID JSESSIONID = [alfanumeric]

(*) According to the RFC2616 specifications [33]

Figure 3.10 Grammar specification for the new log file

The grammar for User-Agent, Accept, Accept-Language, Accept-Encoding, Accept-Charset,

Keep-Alive, Connection, Referer, Cookie are specified in [33].

 43

3.4 Artificial Session Trace Generator module

As explained in the Related Work chapter, many techniques have been proposed for

Web Application test generation based on real session data.

The Artificial Session Trace Generator (ASTG) module is in charge of producing

artificial logs that mimic realistic behaviors captured by real logs; and it can incorporate any

algorithm for creating artificial log data; currently JTracer implements one algorithm for

artificial trace generation.

3.4.1 Statistical based user data creation algorithm

The main drawback of User session testing based techniques is the lack of scalability,

redundancy and production impact. D. Menasce et al. [24], J.D. Meier et al. [22] highlight the

importance of the real user session data for load and stress testing. JTracer includes one

algorithm for user artificial trace session generation based on statistical user behavior learned

from real session traces.

The algorithm is similar to the one by Sant et al. [31] but does not rely on the same

data model. We consider as a request the combination of URL and parameters. Moreover the

 44

data associated to such combination doesn’t intersect with the data associated to other URL

parameters combinations even when both URL’s could be the same. Figure 3.11 shows an

overall view of the algorithm.

Selection of URLsLog file

Data Capture Tables

Occurrences
Matriz generation

User session
generation

Figure 3.11 Statistical based user data creation algorithm

Our algorithm analyzes a real world session trace by extracting the behavior of the

users accessing the Web application. This is accomplished by creating a square matrix where

rows and columns represent the URL requests received by the Web application and cells in

the matrix count the times that the request on column “j” is followed by the request in row

“i”. The algorithm is divided into four phases. The first phase summarizes the requests

composed by each unique URL and parameter combination. In the second phase, the data

from the parameters captured in the first phase is inserted into a database. The third phase

 45

constructs the occurrences matrix representing the user behavior and finally the fourth phase

generates the virtual user session trace based on the occurrences matrix.

3.4.1.1 Selection of the set of URLs

Starting with an empty set, the algorithm traverses the log file and, using the same

tokenization process specified in section 2.1, gets from each HTTP Request the tokens

corresponding to the URL and the request parameter names and inserts those values into the

set. If the combination URL/parameters already exists then it is not inserted again. In this

phase each combination URL/parameters is assigned a unique key and inserted into a list

where each key corresponds uniquely to one URL/parameters combination. Hence, the

cardinality of the set is always less than the number of HTTP requests in the log file. Figure

3.12 shows the pseudo-code for the selection algorithm.

Figure 3.12 Selection process

SET = NULL;
While not END_OF_FILE
 URL = getURL(Current Line)
 ParamsNames = getParamsNames(CurrentLine)
 If URL+ParamsNames no exists in SET
 AddToSET(URL+Params)

 46

3.4.1.2 Data capture

We can avoid supplying new arguments for the session parameters by using the same

argument data used in the original request if and only if this data is used in another new

random session. In this phase, the algorithm creates a table for each request of the set

containing a unique URL/parameter combination. This table fields will be the parameter

names and their values. Once all the tables have been created, the algorithm traverses the log

file again and extracts the values corresponding to each parameter of the URL/parameter

combination. Then it inserts those values into the table entry with name equal to the key

corresponding to the URL/parameter combination. Figure 3.13 shows the Data Capture

process

For each item in SET
 Create table with name URL+ParamsName
 For each item into ParamsName
 Create field Varchar with length (MAX (field Value in the log file))

While not END_OF_FILE
 ValueList = getParameterValues(CurrentLine)
 Insert into URL+ParamsName values (ValueList)

Figure 3.13 Data capture algorithm

 47

3.4.1.3 Occurrences Matrix construction

The Occurrences Matrix is a square matrix with URL/parameter combination in the

rows and in the columns. The cells of the matrix are integer values representing the times that

the URL/parameter in the row is followed by the URL/parameter in the column. We chose

the URL/parameter combination as the indexes of the Occurrences matrix because the URL

alone can’t represent accurately the user request.

Figure 3.14 Occurrences matrix

For example, Figure 3.14 shows an Occurrences matrix with six URL/parameter

combinations as indexes. Cells with value cero means that the request of the row is never

followed by the request of the column. This is clearly shown in the first column

(Login?id&psw) where almost all the rows are cero and this clearly reflects the system flow

logic where no request is prior to the login of the application. In the other hand, the cells of

 48

the last column (Logout?id) almost all have a value greater than cero and this because is

more likely to log out of the Web application after any request.

More formally the Occurrences matrix is defined as follows:

Oij = {count | request “i” is followed by request “j” }

Where

 O = Occurrences Matrix

 i, j = URL/parameter combination

The algorithm traverses the log file and for each HTTP Request inspects the

URL/parameter combination of the previous HTTP Request, using the key of both current

and previous HTTP Request URL/parameters combination seeks the correspondent cell into

the Occurrences Matrix, then increments the current count. To construct the Occurrences

Matrix the algorithm needs to traverse the log file only once. Figure 3.15 shows the

algorithm.

currentLine = Get first line;
While (not END_OF_FILE)
 i = index of URL+ Parameters in currentLine
 j = index of URL+ Parameters in previousLine
 Oij = Oij + 1;
 previousLine = currentLine
 currentLine = Get next line

Figure 3.15 Algorithm for updating the Occurrences Matrix

 49

3.4.1.4 User session generation

Finally in the fourth phase, user sessions are generated relying on the Occurrences

Matrix; the process of user session generation is explained in the Figure 3.16.

currentKey = next HTTP Request(Oij);

 create request (currenKey);

currentKey = Choose randomly an HTTP Request;

While (not END_SESSION)

Figure 3.16 User session generation algorithm

The algorithm shown in Figure 3.16 first chose randomly an HTTP Request from the

log file. Then seeks the request in the rows of the Occurrences matrix. Finally chose one of

the cells of the row corresponding to that request, the election of the cell is a random process

influenced by the value of the cell. Hence the next more probable request to be generated

would be the one with more weight in the row referencing the current key. The column

corresponding to the cell chosen will be the next request to be generated. The process is

repeated until a request previously defined as the end of a session is found.

 50

Login (A)

Figure 3.17 Navigation path created using the Occurrences Matrix

Figure 3.17 shows the navigation path chosen for creating a new user session relying

in the Occurrences Matrix. Only the paths present in the log file will appear in the graph. A

cero value in a cell of the Occurrences Matrix means that the URL/Parameter in the row is

never followed by the URL/Parameter in the column. Therefore, any step must choose such

path; this is done by excluding the cells with value cero of the process.

119 10 7 8 5 6

4

3

2

1

MyAccount
(B)

Manager (C)

Instruments (F)

AddInstrument
(G)

Logout
(H)

ReportDa
ta (D)

UpdateAccou
nt

(E)

Steps A B C D E F G H

1 10 A 0 2 5 0 0 0 1

3 B 0 1 5 6 10 0 0 4

2,4 C 0 5 1 7 0 10 0 8

 D 0 5 9 10 0 0 0 9

 E 0 10 0 0 0 0 0 20

5,7,9 F 0 0 10 0 0 5 20 10

6,8,10,11 G 0 0 0 0 2 30 2 10

 H 40 0 0 0 0 0 0 0

For each step a new random column is
chosen. The cells with greater value are
more likely to be chosen.

 51

3.5 Test Cases Generator module

 The Test Cases Generator (TCG) takes as input the Test Log Data file and a set of

parameters and generates several load testing suites. This is accomplished by translating the

log file data to a XML file representing a test plan for the JMeter [18] load testing tool.

Variations on a few parameters, the way the sessions are grouped and the execution order of

each session are used to create several different load testing suites. Each suite could be used

to test a specific aspect of the Web Application according to the needs of the testing engineer.

Figure 3.18 shows the parameters required to setup to create a test case.

Figure 3.18 Form used by JTracer to setup the parameters for test cases generation

 52

The first parameter, Log file, is the path name of the log file (raw or processed) to be

translated to a .jmx file. The Domain parameter and the Port parameter are the URL relative

for all the HTTP Requests into the log file. The jmx file is stored in the Result file parameter.

Ramp time indicates how long it will take to define all the threads or concurrent sessions if

any. The Num files parameter is useful when distributed testing is needed due to capacity of

the client or tester. Finally four types of tests can be generated using the same input log file.

The following load tests generation algorithms have been implemented:

• Concurrent. This algorithm simulates multiple clients accessing the Web Application

at the same time, each client executes one session. This test is useful to measure the

maximum number of simultaneous connections that the server can support.

• By Session. This scenario simulates a set of sequential clients accessing the Web

application one after another. This test is useful to verify the response time of the

server for each type of session and to verify that the sessions created manually or

artificially are working as expected.

• Log Replay. This scenario replays the request in the log file in the same order than it

appear. The test is useful to recreate errors as happen or to replay an old scenario or

historic scenario.

 53

• By Blocks. Divides the tests by blocks of time each block contains many sessions

inside. Then all the blocks can be sent concurrently. This allows testing the Web

server for longer periods of time. A test with only one session by block is the same

than the Concurrent scenario.

• Augmented User Session. Because partition the sessions by blocks cut some sessions,

this scenario guarantees that every session in the log file is completed at least one

time. For further information see [34].

3.5.1 Translating the log file to JMX file

To test a Web Application using JMeter must create a test plan. A test plan is a

descriptor file that provides data and execution parameters which instruct JMeter how the test

has to be conducted. Starting with a set of sessions, even slight variations on the structure of

the jmx files can produce significantly distinct test cases scenarios.

Mainly three JMeter components are combined to create several test cases scenarios,

The Thread Group, The Simple Controller and the Constant Timer. The rest of components

supply settings that don’t influence the way the sessions are sent to the server. Table 3.3

summarizes all the components used by JTracer to generate JMX files. More detailed

information about these components can be found in the JMeter [18] official site.

 54

TABLE 3.3 Brief description of the JMeter load testing components
Component Description

ThreadGroup Controls the number of threads used to execute the test plan. Multiple
threads can be used to simulate concurrent connections.

HTTP Request Sends an HTTP request to a web server

Simple Controller Organizes and groups the samples and controllers
Constant Timer Causes a delay of a constant amount of time before a request is sent to the

Web server
HTTP Request Defaults Specifies the default settings for all the HTTP Request belonging to the

same group.
HTTP Cookie Manager Ensure that each thread or simple controller gets its own cookies but

shared across all the HTTP Request components in the session.

The process of creating a JMX plan test is divided into three phases. In the first phase the

HTTP requests with the same JSESSIONID’s are grouped as belonging to the same session.

Additionally the HTTP requests without JSESSIONID but that are in a predetermined time

are added to the nearest JSESSIONID group. For each session one text file containing all its

HTTP Requests is created and named by its JSESSIONID. In the second phase, according to

the type of test case scenario, the files generated in the first phase are organized into

directories. In the third phase according to the test case scenario a Thread Group component

is created by file or a Simple Controller is created by file; the HTTP request into each session

file are inserted as HTTP Request component into a Thread Group or a Simple Controller,

again, depending of the type of test case scenario. We now explain the process of creating

each test case scenario:

• Concurrent Test Case Scenario. Each session file generated in the first phase is

represented with a Thread Group Component. A HTTP Cookie Manager is attached

 55

to the Thread Group Component to be shared by all the HTTP Requests. The HTTP

requests corresponding to the session files are added one by one to their Thread

Group.

Figure 3.19 explains the creation process. Each box in the left represents a session.

Inside each box are the HTTP Requests. The session is represented in JMeter as a Thread

Group component and their request by HTTP Request component.

 56

One HTTP Request by each
line into the session file

One thread for
each session

Figure 3.19 Concurrent Test Case Scenario translated to JMeter test plan

• By Session Test Case Scenario. Each session file generated in the first phase is

represented by a Simple Controller component, only one Thread Group is used and it

will group all the Simple Controllers created for each session file. An HTTP Cookie

Manager is attached to each Simple Controller. The HTTP Requests in all the session

files are added one by one to each Simple Controller.

 57

Figure 3.20 explains the creation process. Each box in the left represents a session.

Inside each box are the HTTP Requests. The session is represented in JMeter as a Simple

Controller component and their request by HTTP Request component. As this scenario

represents a sequential execution, only one thread will be necessary. A Thread Group

component contains all the sessions.

Figure 3.20 By Session Test Case Scenario translated to JMeter test plan

Only one thread is created

One Simple
Controller for
each session

One HTTP Request by each
line into the session file

 58

• Log Replay Test Case Scenario. For test execution of a Log Replay, the threads and

HTTP Requests are created in the same way as the Concurrent Test Case Scenario. In

addition to those components a Timer component is attached to each HTTP Request.

This Timer will induce delay of a few milliseconds before sending the HTTP Request

to the server. The requests are synchronized so as to force them to be sent in the same

order as they appeared in the log file. The delay time attached to each HTTP Request

is calculated as follows:

Ti0 = Ti0 – Tfirst_HTTP , i >= 0

Tij = Tij – Ti0 , i > 1, j > 0

Where

i = number of session

j = number of HTTP Requests in the session “i”

Tfirst_HTTP = Time of the first request of the first session logged.

Tij = Time of the HTTP Request “j” in the session “i”

• By Blocks Test Case Scenario. When a larger log file is divided into blocks each

block contains many sessions inside. To create a By Blocks Test Case Scenario each

block is represented as a Thread Group and each session inside those blocks is

represented by a Simple Controller. The Cookie Manager is attached to each Simple

Controller. In this way several blocks can run concurrently.

 59

Figure 3.21 explains the creation process. Each box in the left represents a session.

Inside each box are the HTTP Requests. The session is represented in JMeter as a Simple

Controller component and their request by HTTP Request component. For each block of time

a Thread Group is created. The requests inside the session that are into the block interval

time are attached as part of the block as a new session, no matter that this new session results

incomplete.

Figure 3.21 By Block Test Case Scenario translated to JMeter test plan

Some sessions can result
cut and belong to two or
more blocks

Many sessions
inside the same
group

 60

• Augmented User Session Test Case Scenario. For each session a block is created.

Each block is represented by a Thread Group. The HTTP Requests with system time

between the first and the last system time of the session in progress are added to the

group. Each of those HTTP Requests are simultaneously grouped in the session that

they belong to. Two or more sessions whose time intervals intersect its time ten this

scenario is equivalent to the Concurrent Test Case scenario.

3.6 Test Engine

The Test Engine (TE) module is in charge of carrying out the test plan by sending

requests and receiving responses from the Web Application server. This module also

interprets the files generated by the TCG module to perform different types of load and stress

testing. The current version of JTracer uses JMeter as its TE module. We chose this tool

because it is an Open Source solution broadly used and with a big community that maintains

it up to date. Further information can be found in the official Web site of the Jakarta JMeter

project [18].

Figure 3.22 shows a snapshot of a JMeter testing tool window showing a test plan and

the elements that work together for creating a load testing to the Web server. The elements

are organized hierarchically being the Test Plan the top element followed by the Thread

Group, the Simple Controller and the HTTP Request elements. The window at the left side

 61

shows the components and in the right side the parameters that setup such component.

Currently the HTTP Request component is selected, the parameters that are send in the

request are shown in the right, also the Method of the request, the URL, the protocol among

others parameters.

Figure 3.22 JMeter testing tool interface

3.7 Error Reporting

The Error Reporting (ER) module is responsible for summarizing the errors that the

TE module identified from the Web server responses. Before reporting the errors the first

 62

step consists of creating a large load for the server and classifying the errors detected by type.

Then for the following tests the responses returned by the server are analyzed and

summarized according a predetermined classification.

Figure 3.23 shows a test plan and their corresponding Listener component. A Listener

is an element that captures the Web application responses. In the right side the error

responses are shown, the text responses are analyzed and summarized by the Error Reporting

module and the number of errors by error type is shown.

Figure 3.23 JMeter testing tool and Error Reporting

 63

Table 3.4 summarizes the errors captured by the Error Reporting module.

TABLE 3.4 Errors reported by the Error Reporting Module
Component Description

Hibernate Reports that other request is blocking the current database record
PostgreSQL Reports that the maximum number of concurrent connections have been

exceeded
Out of Memory Reports that the Web application system is out of memory
Connection Reset Reports that the Web server is rejecting the connection
Connection Time Out Reports that the Web server can respond to the request in a reasonable

interval of time
Connection Refused Reports that the Web server is not longer providing the service requested
Null Pointer Error Reports that some component has not still been created and is been

referenced as it would exist, for example a dynamic button that is
generated only when the user has accomplished some process

 64

4 EXPERIMENTAL ANALYSIS

4.1 Introduction

This chapter describes and presents the results of experiments that were carried out in

order to validate our proposals. The specific objectives of the experiments were to test:

1. If the Code Injector module correctly instruments a Web application to log the

HTTP Requests of the user interaction as the user navigates the Web application.

Even when the Web application requests are encrypted.

2. If the algorithms implemented to generate the test cases scenarios exercise the

Web server according to the characteristics of each test case scenario.

3. If the Statistically based user data creation algorithm presented in section

3.4.1 generates sessions that offer substantial improvements over replicating many

times a single set of sessions.

4.1.1 Computing infrastructure

 65

The experiments were carry out using “Digiweb”[9] a Web Application system

developed by the ADMG Group of the University of Puerto Rico Mayaguez, and four

commodity hardware systems.

• A Dell Precision PWS 380, Intel Pentium D 2.0 GHz, 1 GB of RAM, Nvidia Quadro

540 with 128MB with Linux Ubuntu operating system, web application server

Apache Tomcat 5.5.1 and running PostgreSQL 8.2 as database system. This system

was used as the server for the Web application.

• Three computer systems with Windows operating system, as the clients of the Web

application. Each client was equiped with the JMeter [18] testing tool.

4.2 User navigation sequence

The objective of this experiment is to verify that the log file created after the code

injection process reflects the exact sequence of actions performed by users when they

accessed the Web application. Two main aspects deserve validation:

• Verify if the sequence of user actions is logged in the same order than the real

navigation sequence produced by the interaction between the Web server and

the users.

 66

• Verify if the data logged produce the same Web application state than the

produced by the original user navigation.

The experiments methodology was as follows:

1. The Web application is undeployed and a backup of the database is taken.

2. Source code is inserted by the Code Injector into the original Web application.

3. The new instrumented Web application is deployed.

4. A sniffer is run to catch all the traffic between the user and the Web server.

5. A set of pre-scripted sessions were executed in the new Web application. At

the same time, the log file is generated by the Web application.

6. Again a backup of the resulting database is taken.

7. The log file produced by the sniffer in step 4 is compared with the log

produced by the Web application in step 5.

8. The Web application is restored to its original state in step 1.

9. The Web application is exercised with the request of the log file produced in

step 5.

10. The database resulting is compared with the database got in step 6.

Table 4.1 shows as example the differences between the log produced by the sniffer

and the log produced by the instrumented Web application.

 67

TABLE 4.1 Example of logged data by the sniffer and by the Web application
 Requests caught using the sniffer Requests produced by the code injection
1 GET /Digiweb/ GET /Digiweb/
2 GET /Digiweb/images/logodigiweb.gif
3 GET /Digiweb/images/newIcons/conectar.png
4 POST /Digiweb/login.jsf POST /Digiweb/login.jsf
5 GET /Digiweb/members/MyAccount.jsf GET /Digiweb/members/MyAccount.jsf
6 GET /Digiweb/members/Sandbox___Download.jsf
7 GET /Digiweb/members/Sandbox___Download.jsf
8 POST /Digiweb/members/MyAccount.jsf POST /Digiweb/members/MyAccount.jsf
9 GET /Digiweb/members/MyAccount-edit.jsf GET /Digiweb/members/MyAccount-edit.jsf
10 GET /Digiweb/members/Sandbox___Download.jsf
11 GET /Digiweb/members/Sandbox___Download.jsf
12 POST /Digiweb/members/MyAccount-edit.jsf POST /Digiweb/members/MyAccount-edit.jsf
13 GET /Digiweb/members/MyAccount.jsf GET /Digiweb/members/MyAccount.jsf
14 GET /Digiweb/members/Sandbox___Download.jsf
15 GET /Digiweb/members/Sandbox___Download.jsf
16 POST /Digiweb/members/MyAccount.jsf POST /Digiweb/members/MyAccount.jsf
17 GET /Digiweb/logout.jsf GET /Digiweb/logout.jsf

Although both logs look different, the user interactions with the system are quite

similar. The small differences arise because the web browser requests additional visual

elements as a button images, icons, etc. As can be noticed, the requests that the Web

application can not log are those that are not produced directly by explicit user action such as

a mouse click on a button or hyperlink.

However, we have to verify that this fact doesn’t influence the Web application final

state. That is, starting with the same Web application state, the replay of the log produced by

the Web application have to produce the same final Web Application state than that of the

original trace. To ensure this, an algorithm that compares the database produced after the

load testing of the log captured by the Web application was developed, the scenario is

showed in Figure 4.1. After comparing both databases, no differences were found therefore

the results of this test were successful.

 68

Figure 4.1 Experimental Set-up to validate the Code Injector functionality

 Both experiments show that the log data produced by the Web application follow the

user navigation flow. Furthermore the final Web application state produced by the log data

captured is the same than the produced originally. It demonstrates that the sequence of

navigation of the user is logged correctly.

 69

4.3 Analysis of the test algorithms

A series of experiments were carried out for characterizing each test algorithm and to verify

that the test cases scenarios generated by the tool produce the results according to the

characteristic to the test suite.

4.3.1 Analysis of the Concurrent Algorithm

 We expect a Concurrent Test Case to overwhelm the Web application server for a big

load. In this way the number of concurrent connections that the Web server can attend at the

same time can be estimated. Other uses for this scenario are for example to compare the

results got from simulating a set of sessions sent many times (replicated) and a set of sessions

generated using the algorithm presented in Section 3.4.1. In this way the second and third

experimental objective can be validated. The methodology was as follows:

1. A backup of the current Web application state is taken to restart the original state

for each test that is performed.

2. Starting with a set of “N” sessions, loads testing replicating the set two, three, six,

nine and twelve times are executed. For each load testing the Web application is

re-started to its original state. Additionally the same number of sessions than the

 70

resulting number after each replication of the original set is created using the

algorithm presented in the Section 3.4.1. Again for each load the Web application

is re-started to its original state.

3. After each test the Web server responses are summarized by using the Error

Reporting module and the results are compared between both types of session

data.

According to the characteristics of the Web application under test and of the sessions

chosen, the number of good and bad sessions reported by the Web application could vary. In

this experiment we considered a session good if all their HTTP Requests are successfully

executed, that is, the Web server responds successfully to all HTTP request. We expect the

number of bad sessions to increment as the number of concurrent sessions increments. Table

4.2 shows the number of good and bad sessions according to the number of concurrent

sessions sent. The experiments were carried out starting with 40 sessions, for each next

experiment the 40 sessions were replicated two, three, six, nine and twelve times. At the

same time, the same number of sessions were created using the algorithm presented in

Section 3.4.1

 71

TABLE 4.2 Comparative of errors generated by replicated and artificially sessions

Replicating Sessions Sessions Statistically Created

Num
Times

Replicated

Avg.
Bad

Session

Avg.
Good

Session
Total

Sessions
% Good
Sessions

Avg. Bad
Session

Avg.
Good

Session
% Good
Sessions

40 1 10.75 29.25 73.13 4.5 35.5 88.75
80 2 21.25 58.75 73.44 9.5 70.5 88.13

120 3 40.25 79.75 66.46 33.75 86.25 71.88
240 6 138.25 101.75 42.40 114.25 125.75 52.40
360 9 269.75 90.25 25.07 231.00 129 35.83
480 12 407.25 72.75 15.16 344.00 136 28.33

Table 4.2 shows that there exists an optimal point where the number of good sessions

start to decrease compared to the number of bad sessions. This can be noticed more clearly in

Figure 4.2 and Figure 4.3.

Replicating 40 Sessions

0
50

100
150
200
250
300
350
400
450

40 80 120 240 360 480

Num concurrent users

N
um

 S
es

si
on

s

Avg Bad
Session

Good
 Sessions

Figure 4.2 Good sessions versus bad sessions with set replicated

 72

Sessions statistically created

0
50

100
150
200
250
300
350
400
450

40 80 120 240 360 480

Num concurrent user

Nu
m

 S
es

si
on

s
Avg Bad
Session
Good
 Sessions

Figure 4.3 Good sessions versus bad sessions with set created artificially

The experiment allows us to collect detailed information about the errors produced

during the test using the two types of sessions (replicated and statistically created). Six types

of errors were found, those errors were classified using the ER module and the results are

shown in Tables 4.3 and 4.4. From these tables we can see that Connection Time Out and

Null Pointer errors increment faster than the others types of errors, being Connection Time

Out the one that registered the bigger increment rate. Again both types of sessions discovered

more types of errors in the same load testing level (240 sessions), also they registered the

biggest increment in the same type of error, more than 400% for Connection Time Out in the

same load testing level (360 sessions). This behavior deflects the fact that statistically created

sessions have as basis the same 40 sessions that are being replicated.

 73

TABLE 4.3 Errors detailed for sessions replicated

Total Sessions

Avg.
Hibernate
Error

Avg.
Postgres
SQL
Error

Avg.
Connection
Reset

Avg.
Connection
Time Out

Avg.
Connection
Refused

Avg.
Null
Pointer

40 3.25 0 0 0 0 38.25
80 4.50 0 0 0 0 77.00

120 15.00 0 0 0 0 159.50
240 21.50 43.75 1.00 56.50 0 319.50
360 14.25 95.75 13.50 285.50 7.75 488.50
480 14.50 86.75 112.50 884.25 57.00 518.00

TABLE 4.4 Errors detailed for sessions created artificially

Total Sessions

Avg.
Hibernate
Error

Avg.
Postgres
SQL
Error

Avg.
Connection
Reset

Avg.
Connection
Time Out

Avg.
Connection
Refused

Avg.
Null
Pointer

40 0 0 0 0 0 31.25
80 1.25 0 0 0 0 48.00

120 10.50 0 0 0 0 204.00
240 11.25 40.00 0 11.25 0 330.25
360 18.25 83.25 12.00 155.00 0 407.25
480 14.00 101.25 10.00 326.00 3 684.75

Figures 4.4 and 4.5 show more clearly the differences of the errors produced by using

the set of sessions replicated and the set of sessions created artificially. Notice that

Connection Time Out and Null Pointer exceptions are the bigger errors showed because of

the test.

 74

Errors by Error Type
Sessions replicated

0

200

400

600

800

1000

1200

1400

1600

1800

40 80 120 240 360 480

Concurrent Users

Va
lu

es

Avg.
Null
Pointer

Avg
Conn.
Refuss

Avg.
Conn
Time Out
Avg
Conn.
Reset

Avg.
PSQL

Avg
Hibernate
Error

Figure 4.4 Error by error type using sessions replicated

Error by Error Type
Sessions artificially created

0

200

400

600

800

1000

1200

1400

1600

1800

40 80 120 240 360 480

Concurrent Users

Va
lu

es

Avg.
Null
Pointer

Avg
Conn.
Refuss

Avg.
Conn
Time Out

Avg
Conn.
Reset

Avg.
PSQL

Avg
Hibernate
Error

Figure 4.5 Error by error type using sessions artificially created

 75

Despite of the sessions created statistically and the session replicated start with the

same set of sessions the differences in errors reported specially for Connection Reset,

Connection Time Out and Connection Refused are substantial. Therefore our results confirm

that the set of sessions chosen for the test will influence substantially the final error reports.

Also confirm that a bad election of the set of sessions for the testing could address to

erroneous conclusions.

4.3.2 Analysis of the By Session Algorithm

The scenario produced by this algorithm allow us to verify the correctness of the

sessions created, verify session interdependence and measure response time of a set of

sessions. To validate this test scenario the methodology was as follows:

1. A snapshot of the Web application state is taken.

2. Many sessions are created one after another, the Web application state

resulting is saved again.

3. Using the log generated by the Web application after the code injection and

starting with the original Web application state the sessions were executed

again.

4. The resulting Web application state is compared with the resulting Web

application state from step 3.

 76

As the sessions originally were created sequentially, the By Session Test Case

Algorithm doesn’t generate any error and this is validated by executing the steps 1 to 4 many

times and getting always the same results as shown Table 4.5.

TABLE 4.5 Errors detected using By Session Test Case scenario

Total
 Sessions

Num
Test
group

Total
HTTP
Request

Bad
Sessions

Hibernate
Errors PSQL

Conn.
Reset

Conn.
Time
Out

Conn.
Refuss

Null
Pointer

46 1 736 0 0 0 0 0 0 0
46 2 736 0 0 0 0 0 0 0
46 3 736 0 0 0 0 0 0 0
46 4 736 0 0 0 0 0 0 0
46 5 736 0 0 0 0 0 0 0
46 6 736 0 0 0 0 0 0 0
46 7 736 0 0 0 0 0 0 0

However using By Session Algorithm with sessions created by using the algorithm

presented in the Section 3.4.1 produce bad sessions as is shown in Table 4.6, this is due to the

random nature of these sessions; the Null Pointer Error is caused by some component that

has not been created and is been referenced as if it existed. For example a dynamic button

that is generated only when the user has accomplished some process (close a new fiscal year

for example), if some randomly created session tries to close a year that has not been

processed this error will be produced. The Hibernate error is produced because an update or

delete of some record that still not exists attempted. Table 4.6 also shows that the percent of

Bad Sessions doesn’t increase as the number of sessions increases, this evidence that session

 77

generation is a completely random process. However, these values can give us a relative

measure of the quality of a given set of sessions.

TABLE 4.6 Errors reported by sessions executed sequentially

Total
Sessions

Num
Test
Group

Bad
Sessions

Hibernate
Errors

PSQL
Errors

Conn.
Reset
Errors

Conn.
Time
Out
Errors

Conn.
Refus.
Errors

Null
Pointer
Errors

% Bad
Sessions

46 1 23 0 0 0 0 0 149 0.50
46 2 23 0 0 0 0 0 149 0.50
46 3 23 0 0 0 0 0 149 0.50
92 1 32 1 0 0 0 0 194 0.35
92 2 32 1 0 0 0 0 194 0.35
92 3 32 1 0 0 0 0 194 0.35

138 1 56 0 0 0 0 0 386 0.41
138 2 56 0 0 0 0 0 386 0.41
138 3 56 0 0 0 0 0 386 0.41
184 1 78 0 0 0 0 0 441 0.42
184 2 78 0 0 0 0 0 441 0.42
184 3 78 0 0 0 0 0 441 0.42
230 1 85 0 0 0 0 0 596 0.37
230 2 85 0 0 0 0 0 596 0.37
230 3 85 0 0 0 0 0 596 0.37

Therefore this algorithm generates test suites that validate the correctness of the

sessions created. If those sessions are created manually and under a predefined script the

errors must be cero. If the sessions are created using an artificially generation algorithm the

errors produced will report us the quality of the session set created.

 78

4.3.3 Analysis of the Log Replay Algorithm

The main ingredient in the Log Replay is the time element, the time element

determine the exact moment when an HTTP request has been sent, the big challenge here is

to try to re-create one historical or error condition of the past. To test this scenario the

following methodology is applied:

1. A snapshot of the Web application state is taken.

2. Under a predefined script of sequences of actions many sessions are created

simulating concurrency, some of the sessions are created as dependent of the

values inserted or deleted by other sessions executed in parallel. Finally the

Web application state resulting is saved again.

3. Using the log generated by the Web application after the code injection and

starting with the original Web application state the Log Replay is executed

with several compression factors.

4. The resulting Web application state is compared with the resulting Web

application state taken on step 3.

We expect not to see any errors after an accurate log replay of a previously generated

log file. This is validated by following the steps 1 to 4 specified above. A total of 27 sessions

were executed in parallel following a script where the sequence of execution is detailed. Step

4 of the methodology was verified and after exercising the system with several of the

 79

compression factor the results were satisfactory. Table 4.7 shows the variation in the number

of errors as the compression factor varies. Furthermore, the original 27 sessions required

more than 30 minutes to be created manually. However the time needed by the Log Replay to

generate a successful log replay was of 46 seconds. This is caused by two factors: the time

required by the user using a Web browser to send a HTTP Request always is greater than the

time required by a testing tool and, the thinking time of the user could be compressed in such

a way that the correspondent HTTP Request doesn’t intersect with some previous HTTP

Request. Table 4.7 and Figure 4.6 show the resulting errors as the compression factor is

varied.

TABLE 4.7 Errors in Log Replay by compression factor

Total
Sessions

Total
HTTP
 Requests

Compression
Factor

Bad
Sessions

Hibernate
Errors

PSQL
Errors

Conn.
Reset
Errors

Conn.
Time
Out
Errors

Conn.
Refuss
Errors

Null
Pointer
Errors

27 342 1 0 0 0 0 0 0 0
27 342 32 0 0 0 0 0 0 0
27 342 64 0 0 0 0 0 0 0
27 342 125 0 0 0 0 0 0 0
27 342 250 1 1 0 0 0 0 0
27 342 500 5 5 0 0 0 0 0
27 342 1000 6 6 0 0 0 0 0
27 342 2000 9 7 0 0 0 0 9
27 342 4000 7 6 0 0 0 0 4
27 342 8000 7 7 0 0 0 0 0
27 342 16000 5 2 0 0 0 0 21

 80

Log Replay

0

5

10

15

20

25

1 32 64 12
5

25
0

50
0

10
00

20
00

40
00

80
00

16
00

0

Compression Factor

O
cc

ur
re

nc
es

Bad
Sessions

Hibernate
Errors

PSQL
Errors

Conn.
Reset
Errors

Conn.
Time Out
Errors

Conn. Refuss
Errors

Null
Pointer
Errors

Figure 4.6 Errors in Log Replay by compression factor

The compression factor is the divisor of the time the original HTTP Request was sent,

it means a compression factor of 1 will replay the log in the same time than the original load

testing was executed. As can be seen from Table 4.7 a bigger compression factor doesn’t

necessary generates bigger number of bad sessions, although appears contradictory this

happens because of two factors: the minimum difference time between two requests as the

compression factor grows will always be of 1 millisecond, and the response time of the

server is independent to the compression factor. For example two requests that generated an

interlock blocking could not generate it under other compression factor because one of them

could be nullified by other previous request.

 81

The results in Table 4.7 confirms the expected behavior of the algorithm, starting

with a compression factor of 125 the Web application doesn’t show any errors as the original

historic event replayed.

.

4.3.4 Analysis of the By Block User Session Test Case Algorithms

Although the Concurrent Test Case Algorithm allows determining the number of

concurrent users that a Web server can attend, the By Block Test Case algorithm combines

concurrency with sequential session execution. This allows us to evaluate the max number of

connections supported and the number of errors produced during the concurrent execution.

Although the By Block algorithm can better simulate the concurrency on a real scenario, it is

more expensive to execute and to validate, requires more data and requires the selection of an

optimal block length, which is often a difficult task.

The optimal block length is vital in this type of test because many sessions can be

truncated and this can be interpreted as a user leaving the Web site in the middle of the

session. As the block length increments, the number of sessions decrements and also the

concurrency levels. To validate this algorithm the following experimental methodology was

applied:

1. A snapshot of the Web application state is taken.

 82

2. An interval of time is defined and a set of concurrent sessions are created. The

sessions are managed into groups representing periods of time equal to the

predefined interval.

3. The sessions inside each session group must be present in other groups too so

when the test is performed the concurrent group execution will create conflicts

between those sessions.

4. The Web application is restored to the state on step 1.

This test has the objective of validating the session grouping by blocks of time. It will

report conflicts when interdependent sessions in separate blocks are sent in parallel to the

server. For the test, 27 sessions where created according to a previously defined script which

determines the execution order and the concurrency level. This script is manually created

introducing interdependent sessions at different points of time. The errors reported after the

By Block Test is performed will validate that interdependent sessions in different points of

times conflict if they are sent in parallel. Although the Concurrent Test Case algorithm can

produce the same effects, the results show that the Concurrent Test Case scenario

concurrency level is greater than the By Block Test Case algorithm. This result appears

discouraging however, the By Block Test Case algorithm exercise the system for longer

periods of time because of his time duration characteristic.

Figure 4.7 shows a comparative of the bad sessions generated after using Concurrent

and By Block test cases scenarios. As expected using the same number of sessions By Block

 83

generates fewer bad sessions than Concurrent test case because of the smaller concurrency

level.

Bad sessions

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

Test number

Nu
m

be
r o

f o
cc

ur
re

nc
es

By Blocks
All Concurrent

Figure 4.7 Bad sessions using a concurrent and a by block test

The results showed in Figure 4.7 demonstrates that the concurrence level is

influenced depending how the sessions are sent to the Web application.

After the experiments we have concluded that using the several algorithms we can

take advantage of the same set of sessions to evaluate the Web application in diverse ways.

Despite of a deep analysis it can not be possible determine if the statistically based session

creation algorithm produce sessions that exercise better the Web application than replicate

the original set. Getting the same conclusions than Ruffo et al. [28] and Meier et al. [22],

however after an analysis of the data created after each testing, we found that the data

 84

inserted by the statistically created sessions has more variety than the inserted by replicating.

This is because replicating the same set will exercise the same operations on the same data.

 85

5 CONCLUSIONS AND FUTURE WORK

In this thesis we have presented JTracer, a framework for Web application test suites

creation focused on leverage the user session data. A prototype tool relying on an open

source tool have been implemented and tested. Several algorithms that characterize tests to

the Web application have been implemented and studied. A technique for capture the user

session data from the Web application also have been implemented by using a Code Injector

program. Furthermore an algorithm that generates artificially user sessions using information

learned from log files have been implemented and the sessions produced by it have been

compared with a set of replicated sessions.

5.1 Conclusions

 In our research we have demonstrated that test session suites can be created

automatically for Secure Web applications developed using frameworks such as Java Server

Faces. The JTracer Code Injector module offers advantages over proxies and ad-hoc

modification of Application Servers for test log data collection.

 The proposed framework can reduce error introduction due to repetition of

transactions to generate large loads. The framework can be implemented with a variety of

 86

algorithms that create artificial session data. Diverse session data can get diverse web

application response; it brings variety of data to the test engineer.

 Finally JTracer can work with any Test Engine in the market, although we used

JMeter testing tool as Test Engine, other testing tools can be used only by generating a test

suite compatible file with the chosen Test Engine.

5.2 Future Work

Future work can be dedicated towards:

• Using request parameter databases in order to generate test suites much larger than

the log collected.

• Investigate if JTracer could suggest a schema for specifying request parameters.

• Investigate how JTracer can be modified to evaluate how well web applications

comply with framework guidelines.

 87

REFERENCES

[1] Mauro Andreolini, Michele Colajanni, Paolo Valente, "Design and testing of scalable
Web-based systems with performance constraints", Proceedings of the 2005
Workshop on Techniques, Methodologies and Tools for Performance Evaluation of
Complex Systems (FIRB-PERF’05), 2005.

[2] Baresi, L., Garzotto, F., and Paolini, P., “Extending UML for Modeling Web

Applications”. Proceedings of the 34th Annual Hawaii International Conference on
System Sciences. IEEE Computer Society, Maui, Hawaii, 2001.

[3] P. Barford and M. E. Crovella. Generating Representative Web Workloads for Network

and Server Performance Evaluation. In Proc. of ACM SIGMETRICS ’98, pages 151–
160,1998.

[4] Conallen, J., “Modeling Web Application Architectures with UML”, Communications of

the ACM, Vol.42, No.10,1999, pp. 63-70.

[5] Chien-Hung, Liu David C, Kung Pei Hsia, “An object-oriented web test model for testing

Web applications”, Quality Software, 2000. Proceedings. First Asia-Pacific
Conference on. IEEE 2000.

[6] Chien-Hung, Liu David C, Kung Pei Hsia, Chih-Tung Hsu, “Structural Testing of Web

Applications”, Software Reliability Engineering, 2000. ISSRE 2000. Proceedings.
11th International Symposium on. IEEE 2000.

[7] Deng Yuetang, Wang Jiong, “Testing Web Database Applications”, ACM SIGSOFT

Software Engineering Notes Volume 29, Issue 5, 2004.

[8] Deng Yuetang, Phyllis Frankl, JiongWang, "Testing Web Database Applications",

Workshop on testing, analysis and verification of web services (TAV-WEB) papers.
2004.

[9] ADMG Group Digiweb Web application system.

[10] Di Lucca, G., Fasolino A., Faralli F., "Testing Web Applications", 18th IEEE

International Conference on Software Maintenance (ICSM'02), 2002.

[11] Elbaum, S., Karre S., and Rothermel G.. “Improving web application testing with user

session data”. In Int Conf on Soft Eng, 2003.

 88

[12] Elbaum Sebastian, Rothermel Gregg, Karre Srikanth, "Leveraging User-Session Data to
Support Web Application Testing", IEEE Transactions on Software Engineering,
2005.

[13] Halfond William G.J., and Orso Alessandro, “Improving Test Case Generation for Web

Applications Using Automated Interface Discovery”, Foundations of Software
Engineering, Proceedings of the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering.

[14] Harrold, M. J., Gupta, R., and Soffa, M. L.. A methodology for controlling the size of a

test suite. ACM Trans on Soft Eng Meth, 2(3):270–285, 1993.

[15] http://htmlunit.sourceforge.net/

[16] http://httpunit.sourceforge.net/

[17] Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang, William. C. Chu, An Object-

Oriented Architecture Supporting Web Application Testing, 23rd International
Computer Software and Applications Conference, IEEE 1999.

[18] http://jakarta.apache.org/jmeter/

[19] Lei Xu, Baowen Xu, A framework for Web Application Testing, Proceedings of the

2004 International Conference on Cyberworlds, IEEE 2004.

[20] Li J., Chen J., and Chen P.. “Modeling Web Application Architecture with UML”,

Proceedings of the 36th International Conference on Technology of Object-Oriented
Languages and Systems, IEEE Computer Society, Xi’an, 2000, pp. 265-274.

[21] Maruyama, H., Tamura K., and Uramato, N, “XML and Java – Developing Web

Applications”. Addison Wesley, 1999.

[22] Meier J.D., Farre Carlos, Bansode Prashant, Barber Scott, Rea Dennis, “Performance

Testing Guidance for Web Applications”, Microsoft Coporation 2007.

[23] D. A. Menasce. Tpc-w: a benchmark for e-commerce. IEEE Internet Computing, May-

June 2002.

[24] D. A. Menasce, A. V. Almeida, R. Fonseca, and M. A. Mendes. "Scaling for E-business:

Technologies, Models and Performance and Capacity Planning". Prentice Hall, 2000.

 89

[25] Mohammed Sidat. “Automated Stress Testing of Web Applications using User Session
Data”. Department of Computer Science, King’s College London 2005.

[26] Nuo Li, Qin-qin Ma, Ji Wu, Mao-zhong Jin, Chao Liu, A Framework of Model-Driven

Web Application Testing, Proceedings of the 30th Annual International Computer
Software and Applications Conference, ACM 2006

[27] Ricca Filippo and Tonella Paolo, “Analysis and Testing of Web Applications”, Software

Engineering, 2001. ICSE 2001. Proceedings of the 23rd International Conference on,
IEEE 2002.

[28] G. Ruffo, R. Schifanella, and M. Sereno, R. Politi, "WALTy: A User Behavior Tailored

Tool for Evaluating Web Application Performance". Proceedings of the Third IEEE
International Symposium on Network Computing and Applications (NCA’04), 2004

[29] Sampath Sreedevi, Sprenkle Sara, Gibson Emily, Pollock Lori, Souter Amie,

“Analyzing clusters of web application user sessions”, International Conference on
Software Engineering, Proceedings of the third international workshop on Dynamic
analysis, 2005.

[30] Sampath Sreedevi, Mihaylov Valentin, Souter Amie, Pollock Lori, "A Scalable

Approach to User-session based Testing of Web Applications through Concept
Analysis". Proceedings of the 19th IEEE international conference on Automated
software engineering. 2004

[31] Sant Jessica, Souter Amie, Greenwald Lloyd, “An Exploration of Statistical Models for

Automated Test Case Generation” Workshop on Dynamic Analysis - WODA 2005.

[32] http://www.softwareqatest.com/qatweb1.html

[33] http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

[34] Sprenkle Sara, Gibson Emily, Sampath Sreedevi, and Pollock Lori, "A Case Study of

Automatically Creating Test Suites from Web Application Field Data", Proceedings
of the 2006 workshop on Testing, analysis, and verification of web services and
applications, 2006.

[35] Sprenkle Sara, Sampath Sreedevi, Gibson Emily, Pollock Lori, Souter Amie, "An

Empirical Comparison of Test Suite Reduction Techniques for User-session-based
Testing of Web Applications". Proceedings of the 21st IEEE International Conference
on Software Maintenance, 2005.

[36] Standard Performance Evaluation Corporation. http://www.specbench.org.

 90

[37] Webbench. www.veritest.com/benchmarks/webbench/webbench.asp.

[38] Webstone. http://www.mindcraft.com/webstone/

[39] Xiaoping Jia and Hongming Liu, "Rigorous and Automatic Testing of Web

Applications". 6th IASTED International Conference on Software Engineering and
Applications, pages 280--285, Nov. 2002.

[40] Yu Qi, David Kung and Eric Wong, "An Agent-based Testing Approach for Web

Applications".

	
	 Abstract
	 Resumen
	 Acknowledgements
	Table of Contents ABSTRAC
	 Figure List
	1 INTRODUCTION
	1.1 Overview
	1.2 Problem Statement
	1.3 Proposed Solution
	1.4 Contributions
	1.5 Thesis Structure
	2 RELATED WORK
	2.1 Web application
	2.2 Web application testing
	2.2.1 Models based methods for Web application testing
	2.2.2 User session based methods for Web application testing
	2.2.3 Others methods for Web application testing

	2.3 Performance testing
	2.4 Scalability of Web servers

	3 DESIGN AND IMPLEMENTATION OF JTRACER
	3.1 Overall architecture of JTracer
	3.2 The Code Injector Module
	3.3 The Log Parser Module
	3.4 Artificial Session Trace Generator module
	3.4.1 Statistical based user data creation algorithm
	3.4.1.1 Selection of the set of URLs
	3.4.1.2 Data capture
	3.4.1.3 Occurrences Matrix construction
	3.4.1.4 User session generation

	3.5 Test Cases Generator module
	3.5.1 Translating the log file to JMX file

	3.6 Test Engine
	3.7 Error Reporting

	4 EXPERIMENTAL ANALYSIS
	4.1 Introduction
	4.1.1 Computing infrastructure

	4.2 User navigation sequence
	4.3 Analysis of the test algorithms
	4.3.1 Analysis of the Concurrent Algorithm
	4.3.2 Analysis of the By Session Algorithm
	4.3.3 Analysis of the Log Replay Algorithm
	4.3.4 Analysis of the By Block User Session Test Case Algorithms

	5 CONCLUSIONS AND FUTURE WORK
	5.1 Conclusions
	5.2 Future Work

	REFERENCES

