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ABSTRACT 
 

Hyperthermia is a type of cancer treatment in which cancer cells are exposed to high 

temperatures (in the range 42-45°C). Research has shown that high temperatures can damage 

and kill cells by maintaining them in that range of temperatures for approximately thirty 

minutes. By killing cancer cells and damaging proteins and structures within them, 

hyperthermia may shrink tumors with minimal injury to normal tissues. In this research, the 

viability of the treatment is investigated by means of Pennes’ bio-heat equation to model the 

heat diffusion in tissues for domains containing magnetic nanoparticles, which are the heat 

sources. The heating mechanism is the result of the magnetic relaxation of the particles 

(Brownian and/or Néel relaxation) by the application of alternating magnetic fields. The bio-

heat equation is solved for different shapes of the domain and heating conditions by 

numerical and analytical methods. A method for solving analytically bio-heat problems by 

means of free-space Green’s functions is developed and applied to some particular problems. 

A parametric analysis was carried out to develop the relative influence of the parameters 

involved in the process on the temperature profile, like the generation rate, perfusion rate and 

distribution of the sources. This study shows that with heating rates already achievable, it is 

possible to reach the therapeutic temperature profile. Then, the limitations in the treatment 

would rely in questions of toxicity, targeting, among others. 
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RESUMEN  
 

Hipertermia es un tipo de tratamiento para el cáncer en el cual el tejido canceroso es 

sometido a altas temperaturas (en el rango 42-45°C). Estas altas temperaturas dañan e 

inducen la muerte celular luego de una exposición de alrededor de treinta minutos. De esta 

forma, el tratamiento por hipertermia puede reducir tumores con un daño leve al tejido sano 

colindante. La viabilidad del tratamiento es investigada modelando la difusión de calor en los 

tejidos a través del modelo de Pennes, conocido como bio-heat equation y usándolo para 

evaluar los perfiles de temperatura obtenibles en dominios de tejido conteniendo 

nanopartículas magnéticas de escala nanométrica, que son las fuentes de calor. Los 

mecanismos de generación son el resultado de efectos de relajación magnética  (relajación 

Browniana y/o de Néel) bajo la acción de campos magnéticos alternos. La temperatura es 

resuelta para diferentes configuraciones del dominio y condiciones de generación por medio 

de técnicas analíticas y numéricas. En particular, se propone un método para resolver 

problemas de esta índole en medios infinitos y se muestra la aplicación del mismo a partir de 

unos casos particulares. Se llevo a cabo un análisis de la importancia relativa de los distintos 

parámetros que intervienen en el desarrollo del perfil de temperatura. Entre los parámetros 

analizados se encuentran la tasa de generación, la tasa de perfusión y la distribución de las 

fuentes. Este estudio muestra que, con las tasas de generación alcanzables actualmente, es 

posible establecer el perfil de temperatura terapéutico. Luego, limitaciones en la aplicación 

tendrían que ver con cuestiones como la toxicidad de las partículas, focalización, entre otras. 
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INTRODUCTION 

1 INTRODUCTION 

 

1.1 Motivation 
 
The survival rate for many types of cancer has improved in recent years; however, as the 

National Cancer Institute reports, cancer is still the second leading cause of death in the 

United States.  

In contrast with chemotherapy and radiotherapy, the side effects of magnetic fluid 

hyperthermia are almost negligible. Assuming that the particles are not toxic, the patient 

could only feel soft arrhythmia. There is no pain involved and several applications of the 

magnetic field are possible without depositing more particles in the tissue. 

Developing solutions for the temperature profiles achievable is mandatory for the treatment 

in order to be able to set the variables involved (concentration of particles, magnetic field 

intensity and frequency) to produce profiles that are close to the therapeutic one (see Figure 

1.1) and, thus, specific to the cancerous tissues. 

1.2 Importance of the Problem 
 
Many efforts have been done in the last fifteen years to improve hyperthermia technique. 

Advances in the area of the nanotechnology have contributed to the development of the 

magnetic fluid hyperthermia which is very promising because, as it was addressed, it has 

fewer side effects than chemotherapy and radiotherapy that are the most used treatments for 

cancer. An exhaustive review of papers and an excellent description about the state of the art 

of hyperthermia is given by (Goya, Grazu et al. 2008). 

There have been no trials in humans till now but, there are records for in vivo experiments 

(Jordan, Scholz et al. 1997; Moroz, Jones et al. 2002). The research group of Jordan in 
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Germany is the most advanced in the field and they have a prototype which is able to 

generate variables magnetic fields of intensity in the range 0 – 15 kA/m at the frequency of 

100 kHz, and it has probes to invasively measure the temperature at real time to ensure that 

neither the upper limit of the therapeutic temperature threshold is exceed (this would result in 

thermal ablation) nor the lower limit is crossed, which would end up in under treatment. This 

prototype is capable to treat tumors placed in any region of the body. 

Only local hyperthermia will be considered for magnetic fluid hyperthermia. In this case 

magnetic nanoparticles in a fluid carrier will be located inside the tumor through direct 

injection or arterial embolization, after which the tumor has to be exposed to a magnetic 

field. This field makes the particles to generate heat by magnetic relaxation mechanisms. 

 

 

The above description of hyperthermia treatment shows the importance of knowing the 

temperature profile obtained under specific heating conditions. In that context, the ideal 

Figure 1.1: Ideal Therapeutic Temperature Profile 
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temperature profile, as shown in Figure 1.1, is the one that maintaining the body temperature 

in healthy tissue also keeps constant the therapeutic temperature inside the tumor. 

However, a smooth transition from the therapeutic temperature to the body temperature 

exists; in reality the profile is not flat, neither in the tumor nor in the normal tissue because of 

thermal diffusion. 

1.3 Scope of the thesis 
 
In the present research, the response of human tissue to heat deposition is analyzed taking 

care of the intrinsic mechanisms of thermoregulation, i.e. blood perfusion rate and metabolic 

heat generation. It is intended to get an answer for questions like: What is the necessary 

power dissipation required for the particles to produce the therapeutic temperature profile? Is 

the diffusion of the particles relevant to affect the heat diffusion? Is this Specific Absorption 

Rate (SAR) achievable? Is there a particular distribution for the particles that produces the 

closest temperature distribution to the ideal one? Knowing that the blood perfusion rate 

removes some of the heat produced for the particles, can this effect be neglected for the 

calculation of the temperature profile? 

Regular domains in rectangular, cylindrical and spherical coordinate systems are considered 

and the temperature is solved by analytical, numerical and stochastic methods. The variations 

in the values of the thermo-physical properties of the tissues are negligible and, thus, 

neglected see Table 5.1. 
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1.4 Objectives 
 
• To find an optimum achievable configuration of the system to produce the closest 

temperature profile to the therapeutic one. 

• To determine whether the treatment can be successfully implemented from a thermal point 

of view.  

• To show how analytic and numerical techniques can be used for solving bio-heat transfer 

problems. 

• To get an insight of the mass and heat diffusion processes in living tissues. 

1.5 Methodology 
 
As was previously mentioned, numerical and analytical methods are used in this research to 

solve the Pennes’ bio-heat model for different geometries, as well as, different spatial heating 

configurations and boundary conditions. 

The analytical solutions are obtained using the Finite Fourier Transform (also known as 

Integral Transform) method and the Green’s Function Method because they allow us to deal 

with time and space varying boundary conditions as well as time and space varying non 

homogeneous source terms. These analytical solutions are very useful for validating 

numerical codes and, also, to perform a sensitivity analysis of all the parameters that affect 

the thermal diffusion process. This analysis is valuable for revealing important information 

regarding the relative weight of the different processes that take place in the diffusion 

process.  
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Although elegant, the analytical methods, in general, are not suitable for solving the 

temperature field when the sources are randomly distributed along a certain region within the 

domain or when nonlinearities are present. 

Regarding Green’s functions, a method for infinitely large domains in rectangular, 

cylindrical and spherical coordinates is presented. The solutions obtained for such domains 

are called fundamental solutions or free space Green’s function in literature. The integral 

transform method (Deen 1998; Ozisik 1968) is used for solving the case of a spherical tumor 

with the nanoparticles generating heat in its surface and the whole configuration surrounded 

by healthy tissue. Among the spatial heating considered, the following may be mentioned: 

point source, shell source, line source, plane source heat generation. 

The bio-heat equation was solved numerically using a finite volumes approach. Also a Monte 

Carlo model was developed for the following reasons: It depends weakly on the dimension 

and the geometry of the domain; a computer code can be developed with certain ease; the 

method is intrinsically parallelizable because a random walk is independent from others 

allowing a reduction in computational time; the temperature of a point may be evaluated 

without solving the temperatures of all the point of the grid, which can be of particular 

interest in hyperthermia where the temperature in some isolated points is required. 

The Finite Volumes method, is used to get an indirect validation of the solutions and gain 

confidence about them. A structured grid is constructed to mesh a cubic domain yielding a 

rather simple problem. 
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1.6 Organization of the Thesis 
 
In chapter 2 a review of the fundamental concepts involved in the problem is presented along 

with the structure of the tissues, the features of tumor vasculature that make possible the 

treatment. Chapter 3 presents the mathematical formulation of the problem for the 

computation of the temperature profile with all the assumptions made and the initial and 

boundary conditions used. The methodology is depicted in Chapter 4, where the numerical 

and analytic methods used are developed in detail. Results and discussion that arises from 

them is exposed in Chapter 5. Conclusions are summarized and exposed in Chapter 6. 
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2 LITERATURE REVIEW 
 
 

2.1  Definition of Transport Processes  
 
For the problem in hand the transport processes involved are the heat diffusion and the mass 

diffusion. A brief review of these processes is presented in this section. 

Two physical phenomena are involved in the transport of molecules: Diffusion and 

Convection (Truskey, Yuan et al.). 

Diffusion is the random motion of molecules that arises from thermal energy transferred by 

molecular collisions. We can talk about heat diffusion or species diffusion (mass diffusion). 

Convection, on the other hand, is a mechanism of transport resulting from the bulk motion of 

fluids. 

2.1.1 Mass diffusion and Fick’s Law 
 
The relationship between the mass flux and the concentration gradient (known as a 

constitutive equation) was first quantified by Fick in 1855. Fick’s law is strictly applicable to 

the diffusion in dilute binary solutions. 

The quantity that relates the diffusion flux to the concentration gradient is the binary 

diffusion coefficient, ijD , where the subscript i refers to the solute and j to the solvent. It is a 

function of the thermodynamic properties of the medium such as the temperature and the 

pressure and its magnitude depends upon the solute and the medium through which diffusion 

occurs. 

Fick’s law describes mass diffusion in tissues if the binary diffusion coefficient is replaced 

with an effective diffusion coefficient. This coefficient characterizes the diffusion of one 
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molecule relative to another. It incorporates the effect of increased diffusion distances and 

drag forces exerted by the extracellular matrix and cells (Truskey, Yuan et al.).  

Information about the orders of magnitude of mass diffusion compared with heat diffusion is 

shown below using the Stokes-Einstein relation to estimate the mass diffusion coefficient for 

a dilute solution of the magnetic nanoparticles in tetradecane. The particles are assumed to be 

spherical and the surfactant layer is included in the radius. 

The Stokes-Einstein relation provides a way to estimate the mass diffusion coefficient as the 

relation between the thermal energy of the system and the resistance to flow which is 

quantified through the translation tensor whose components are referred to as friction 

coefficients. For spherical particles, the information stored in the tensor can be reduced to a 

scalar, which is nothing but the Stokes solution for the drag coefficient for a spherical 

particle (Low-Reynolds number flow) f 6 Rπµ= . 

Then, the diffusivity of species and the diffusivity of heat are given by: 

2 2

 =
f 6
B Bk T k Tm m

D
s R sπµ

   
=    

   
  (2.1) 

2

 
k m

c s
α

ρ

 
=  

 
  (2.2) 

 

Where [ ]231.38 10Bk J K−= ×  is the Boltzmann constant; T is the absolute temperature; µ  is 

the dynamic viscosity of the carrier fluid; k is the thermal conductivity of tissue; ρ  is the 

density of tissue; and c is the specific heat of tissue. 

In order to get numerical values, the thermo-physical properties of tissue are used: 
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3
1000                                              0.5

3800p

kg W
k

m mK

J
c

kgK

ρ
   

= =      

 
=  

 

 

Characteristics of the ferrofluid: 

0.00235                            30 
kg

R nm
ms

µ
 

= = 
 

 

For establishing the comparison between them their quotient is arranged, yielding 

6f 2.3136 10
B

P

k T
D

k
c

α
ρ

−= = ×   (2.3) 

 
The result in equation (2.3) shows that the time scale for the mass diffusion is six orders of 

magnitude lower than the thermal diffusion. 

This fact has two meaningful implications. First, there is no coupling in the equations and 

both diffusion processes can be regarded as independent from each other and the volume 

fraction of particles may be assumed to be a constant as well as the rate of heat generation; 

second, once the nanoparticles are placed inside the tumor they will stay there enough time 

for making subsequent magnetic field exposures without injecting more ferrofluid.  

2.2 Drug Transport Within Solid Tumors 
 
One of the main steps in magnetic fluid hyperthermia is the delivery of the magnetic 

nanoparticles. This justifies a review of the process of drug transport in tumors, as well as, to 

the structure of the blood vessel network through which they are going to be transported. In 

this context the word drug will be used for any agent that must be delivered in the treatment 

of cancer. These agents can be as small as an oxygen molecule or as large as immune cells. 
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In a tumor tissue, three different regions can be found. They are: 

- Blood Vessles 

- Interstitium 

- Cells 

 

There are significant differences in the way that these constituents are arranged in both types 

of tissues considered, healthy tissue and tumor tissue as it can be inferred from Table 2.1. 

 

Table 2.1: Tumor tissue vs Normal tissue 
 

 Solid Tumors Normal Tissues 

Volume fraction of blood vessels 0.01 to 0.28 0.019 to 0.3 

Volume fraction of interstitial space 0.13 to 0.6 0.06 to 0.3 

 

Interstitial space 

Blood Vessel 

Cells 

Figure 2.1: General Structure of Tissues at micro scale 
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2.2.1 Tumor vasculature 

Blood enters a normal organ through large arteries, which subsequently bifurcates into small 

arteries, arterioles, precapillary arterioles and capillaries (smallest blood vessels). Capillaries 

are responsible for nutrient and waste exchange between the blood and tissues. 

In tumor vascular networks there is no such order, in other words the tumor vascular network 

is chaotic. Vessels division follows no pattern except for large arteries and veins that connect 

a tumor to the systemic circulation, structures in other vessels are heterogeneous and cannot 

be classified in any category. 

Unique features appear in tumors that rarely occur in normal vasculature: 

• Formation of vessel loops and shunts 

• Bifurcation of a small vessels into two large ones 

• Trifurcation of vessels 

2.2.2 Tumor Microcirculation 
 
Chaotic vasculature structure causes a heterogeneous blood flow, with velocity varying both 

spatially and temporally in a random manner. In some vessels, the direction of blood flow 

may even change with time (this is very unusual in normal tissues). 

Some tumor vessels are too small that red blood cells cannot pass through and only plasma 

can enter this vessel which translates in a deficiency of oxygen inside tumor. This is one of 

the characteristics of solid tumors.  

Blood flow determines how much of a drug systemically administrated can be delivered to a 

tumor. So improving tumor blood flow, the delivery of drugs to these regions will be 
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enhanced. Recall that, in this context, drug is used for any agent (nanoparticles) designated to 

the treatment of cancer. 

2.2.3 Transvascular Transport 
 
When drug molecules reach tumor microcirculation, they may cross the microvessel walls. 

The rate of transvascular transport is characterized by the microvascular permeability 

coefficient, which depends upon physical and chemical properties of the drug and properties 

of the vessel wall. 

This permeability is heterogeneous in tumors and higher than that in normal tissues, the 

transport of macromolecules and nanoparticles is allowed. 

The cutoff pore size in tumors can take values up to two microns when in normal tissues the 

maximum value for the pore size can be about 20 nanometers. This is the key of the magnetic 

fluid hyperthermia, therapeutic agents larger than 20 nm and smaller than the cutoff size of 

the pores of tumor vessels will accumulate preferentially in tumors. 

2.2.4 Interstitial Transport 
 
The interstitial space consists in interstitial fluid and extracellular matrix.  

This type of transport is one of the most difficult steps in both, systemic and local drug 

delivery to tumor cells for the following reasons: 

• Low convective transport due to elevated interstitial fluid pressure 

• Outward gradients of the interstitial fluid pressure 

• Large diffusion distances in some regions of the interstitium 

• Binding of drugs to various components in tissues 
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2.3 Magnetically Mediated Hyperthermia 
 

Experimental investigations of the application of magnetic materials for hyperthermia date 

back to 1957 when Gilchrist et al (Gilchrist RK 1957) heated various tissue samples with 20–

100 nm size particles of γ -Fe2O3 exposed to a 1.2MHz magnetic field. 

Since then, there have been numerous publications describing a variety of schemes using 

different types of magnetic materials, different field strengths and frequencies and different 

methods of encapsulation and delivery of the particles (Jordan, Scholz et al. 1999; Jordan, 

Scholz et al. 2001). In broad terms, the procedure involves dispersing magnetic particles 

throughout the target tissue, and then to apply an AC magnetic field of sufficient strength and 

frequency to cause the particles to heat by magnetic hysteresis losses or Neel relaxation 

(Hergt, Andra et al. 1998; Rosensweig 2002). This heat conducts into the immediately 

surrounding diseased tissue whereby, if the temperature can be maintained above the 

therapeutic threshold of 42˚C for 30 min or more, the cancer is destroyed. 

The National Cancer Institute (www.nci.nih.gov) recognizes three different types of 

hyperthermia treatments: 

1. Local hyperthermia: the heat is applied to a small area, such as a tumor, using various 

techniques that deliver energy to heat the tumor. Different types of energy may be 

used to apply heat, including microwave, radiofrequency, and ultrasound. 

2. Regional hyperthermia: large areas of tissue, such as a body cavity, organ, or limb are 

heated using different approaches such as external applicators or regional perfusion. 

3. Whole body hyperthermia: is used to treat metastatic cancer that has spread 

throughout the body. 
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The modality of cancer treatment referred in this work is a type of local hyperthermia which 

is called magnetically mediated hyperthermia or, more specifically, magnetic fluid 

hyperthermia.  

Among all hyperthermia modalities including microwave, laser and ultrasonic wave-based 

treatments, magnetic fluid hyperthermia has the maximum potential for a selective targeting 

(between healthy and diseased cells), producing a lot less side effects than the well 

established treatments of chemotherapy and radiotherapy. 

The magnetic fluid carrying the nanoparticles is delivered in one of these two ways (Moroz, 

Jones et al. 2002): 

1. Arterial embolization: the fluid carrying the magnetic particles is injected in the 

arterial supply of the tumor and is used as the pathway to deliver them.  

2. Direct injection: consists of directly injecting the fluid into the tumor tissue. The 

particles will be located in the interstitial space and, thus, when the magnetic field is 

then applied, the heat originates outside the cells. 

In the research group, the nanoparticles are being synthesized with a coating with specific 

tumor antibodies so they are selectively ingested by the tumor cells, with minimal uptake by 

normal cells (differential endocytosis).  Then, the time that the particles are going to be 

placed in the tumor region is increased which is very desirable in sight of future applications 

of the magnetic field. 

2.4 Previous Work Using Pennes’ Model 
 
Bio-heat transfer processes in living tissues are often influenced by the effects of blood 

perfusion through the vascular network on the local temperature distribution. When there is a 

significant difference between the temperature of the blood and the tissue through which it 
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flows, convective heat transport will occur, altering the temperatures of both the blood and 

the tissue. 

The blood/tissue thermal interaction is a function of several parameters including the rate of 

perfusion and the vascular anatomy, which vary widely among the different tissues, organs of 

the body, and pathology as discussed in the section 2.2. The literature contains an extensive 

compilation of perfusion rate data for many tissues and organs (Kreith F. 2000). 

The rate of perfusion of blood through different tissues and organs varies depending on 

factors such as physical activity, physiological stimulus and environmental conditions.  

There are several models of the bio-heat transfer; the first one was developed by (Pennes 

1948) which is nothing but the heat diffusion equation with a term for the heat transport due 

to blood perfusion and another one to consider the metabolic heat generation. This model is 

applicable in tissues with small blood vessels. Other models were developed after Pennes’ 

but the complexity of these models and the applicability of Pennes’ equation in regions with 

small vessels make this model a good candidate for bio-heat studies. Most of the other 

models for bio-heat transfer are discussed in a rather exhaustive review in the work presented 

by (Arkin, Xu et al. 1994). 

Several studies have aimed at obtaining analytical solutions to the Pennes’ equation for a 

single region (Vyas and Rustgi 1992; Gao, Langer et al. 1995; Deng and Liu 2002). Other 

studies (Durkee, Antich et al. 1990 a; Durkee, Antich et al. 1990 b; Durkee and Antich 1991 

a; Durkee and Antich 1991 b; Andra, d'Ambly et al. 1999) have shown work on analytical 

solutions for multi-layer regions. (Andra, d'Ambly et al. 1999) modeled the diseased tissue 

with constant heat generation by magnetic fluid hyperthermia as a finite spherical region 

surrounded by an infinite spherical region of healthy tissue. They neglected blood perfusion 
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effects in either region. (Durkee, Antich et al. 1990) modeled several finite regions in 

spherical and Cartesian coordinates with blood perfusion and constant heat generation. The 

inclusion of blood perfusion and modeling tissues as finite regions makes the model of 

Durkee et al. closer to reality. (Bagaria and Johnson 2005) modeled the diseased and healthy 

tissues as two finite concentric spherical regions and included the blood perfusion effect in 

both the regions. They have calculated analytical solutions to the model by separation of 

variables method and numerical solutions by an explicit finite differencing technique. 

Analytical and numerical solutions for cases with constant and spatially varying heat 

generation sources are presented in that work too. The model studies the proper distribution 

of magnetic particles throughout the tumor could minimize the damage to the surrounding 

healthy tissue while still maintaining a therapeutic temperature in the tumor. However, this 

distribution is defined mathematically but is not feasible to control in practical applications. 

A good discussion about the influence of the spatial generation in the temperature profile is 

done as well as of the influence of blood perfusion. 

2.5 Heating Mechanisms in AC Magnetic Fields 
 
(Rosensweig 2002) has studied the mechanism of heat generation in a magnetic fluid due to a 

variable magnetic field and, thus, developed dissipation relationships based on rotational 

relaxation of single domain magnetic particles dispersed in a liquid matrix. These particles 

are assumed to be less than 20nm in diameter so eddy current heating can be neglected.  

In that work, Rosensweig found that there is strong size dependence in the heating rate. The 

size of the particle affect the time constant of each relaxation mechanism, the larger the 

particles the smaller Brownian relaxation time constant, otherwise, Neel relaxation 
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mechanism will dominate. This is due to that both mechanisms take place in parallel. In order 

to achieve high heating rates the Neel relaxation must not to be allowed to dominate. 

The above mentioned power dissipation expression obtained by Rosensweig is widely used 

to model the power dissipation due to magnetic fluid during hyperthermia cancer treatment. 

The mathematical formulation for the power dissipation is obtained performing an energy 

balance in an isolated sample, hence the increase in the internal energy of the isolated sample 

is the magnetic work: 

0U MdHµ∆ = − ∫Ñ   (2.4) 

 
Subjecting the sample to an alternating magnetic field of the form: 

( ) 0 0cos( ) Re[ ]i t
tH H t H e ωω= =   (2.5) 

 
Then, the magnetization is given by: 

( ) 0Re[ ]i t
tM H e ωχ=   (2.6) 

 
Where χ  is the complex susceptibility: ' ''iχ χ χ= −  

Substitution of equations (2.5)-(2.6) in equation (2.4) yields: 

2

2 2
0 0

0

2 sin ( )U H t dt
π ω

µ ω∆ = ∫   (2.7) 

The power dissipation is given by the product of the increase in the thermal energy and the 

frequency of the magnetic field: 

'' 2
0 0P fHµ πχ=   (2.8) 

 
If each and every factor of the above equation is expressed in SI units P will be given in 

Joules per second or, equivalently, Watts. In this expression for the power dissipated was 
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assumed that the particles are single domain, all the processes are adiabatic and that eddy 

currents are negligible (due to the small size of the particles). 

In order to make equation (2.8) useful, the out of phase component of the magnetic 

susceptibility must be related to the properties of the ferrofluid. This is done using the 

relaxation relationship developed by Shliomis (Shliomis 1974): 

( )

0( ) ( )

1
( )t

t t

M
M M

t τ

∂
= −

∂
  (2.9) 

 
Where M0 is the equilibrium magnetization. Replacing the expression for the real part of the 

complex magnetization in equation (2.9): 

( )
''

02
1

ωτ
χ χ

ωτ
=

+
  (2.10) 

Substitution of equation (2.10) in equation (2.8) yields the expression that will be used to get 

the power loss of a ferrofluid: 

( )
2

0 0 0 2

2

1 2

f
P fH

f

π τ
µ πχ

π τ
=

+
  (2.11) 

 
Here, τ is the effective time constant, which can be obtained from the characteristic times for 

Brown and Neel relaxation processes: 

B N

B N

τ τ
τ

τ τ
=

+
  (2.12) 

 
Where: 

3 H
B

V

kT

η
τ =   (2.13) 

0
2

b
N

M

k T

V

π
τ τ=

Κ
  (2.14) 
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η: viscosity of the carrier (liquid) 

VH: hydrodynamic volume 

VM: volume of the magnetic core 

kb: Boltzmann constant 

T: absolute temperature  

K: anisotropic constant 

As it can be seen, the dependence of P, the power dissipated, as a function of the temperature 

is given through the time constants. 

There is one equation remaining, and it has to do with that one for the equilibrium 

susceptibility which, with a conservative criterion, may be approximated using the 

susceptibility corresponding to the Langevin equation: 

( )

1
coth

s

M
L

M
ξ

ξ

ξ

 −
= =  

 
  (2.15) 

0 ;            M
d s d

HV
M M M

kT
ξ µ φ= =   (2.16) 

2
0

3
M

i d

i

VM
M

H kT
χ µ φ

∂ 
= = ∂ 

  (2.17) 

 
The last equation can be obtained by differentiating the Langevin equation. 

The frequency and strength of the externally applied AC magnetic field used to generate the 

heating is limited by deleterious physiological responses to high frequency magnetic fields. 

These include stimulation of peripheral and skeletal muscles, possible cardiac stimulation 

and arrhythmia, and non-specific inductive heating of tissue. Generally, the usable range of 

frequencies and amplitudes is considered to be 0.05 1.2 MHzf = −  and 10 15 kAmH −= −  

(Pankhurst, Connolly et al. 2003). Experimental data on exposure to much higher frequencies 
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fields comes from (Atkinson, Brezovich et al. 1984) who developed a treatment system based 

on eddy current heating of implantable metal thermo seeds. Atkinson et al. concluded that 

exposure to fields where the product .H f  does not exceed 4.85x108 Am-1s-1 is safe and 

tolerable. 

Even though much work has been done, there are still needs for better understanding of the 

influence of the spatial distribution of the sources in the temperature profile as well as the 

relationship between the volume fraction of particles and the heating rates achievable. 

Furthermore, few works have considered the incidence in the temperature distribution of 

changes in the blood perfusion coefficient. 
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3  MATHEMATICAL FORMULATION 
 
 

3.1 Governing Equation 
 
As it was mentioned in the introduction, a classical mathematical model for heat diffusion in 

biological bodies is used in this research. It was proposed by (Pennes 1948) and it is referred 

to it as the bio-heat equation. This equation is, basically, the result of performing an energy 

balance on a control volume in a stationary media assuming the domain as homogeneous and 

isotropic. This is an “effective model” which means that the whole domain is regarded to 

have effective thermal properties. In that work, Pennes, compared experimental data with the 

temperature predicted by the model, showing good agreement. The bio-heat equation 

assuming constant thermal properties and isotropic medium is: 

( ) ( )
( ) ( ) ( )( ) ( ) ( )

. .
, 2

, ,, ,

t

t b a met t gen tt tt b

T
c k T c T T q Q

t
ρ ρ ω

∂
= ∇ + − + +

∂

X

X XX X
   (3.1) 

Where: 

 T  is the unknown tissue temperature °C 

 aT  is the arterial temperature °C 

 t  subscript refers to tissue  

 b subscript b refers to blood 

 ρ  is the density kg/m3 

 c  is the specific heat J/(kg °C) 

 bω  is the blood perfusion coefficient 1/s 

 
.

metq  is the rate of heat generation due to metabolism W/m3 
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.

genQ  represents the rate of heat generation due to the magnetic nanoparticles W/m3 

 ( )1 2 3, ,x x x=X  are the spatial coordinates in any coordinate system  m 

In hyperthermia applications (T higher than Ta), the term containing the blood perfusion 

coefficient bω  represents the heat removal produced by the flow of blood. It is a convection 

term in the differential equation whose effect is homogeneously distributed along the 

domain. 

3.2 Initial and Boundary Conditions 
 
The initial condition is assumed constant which would represent the core body temperature: 

( ),0 cT T=
X

  (3.2) 

 

The numerical value of this temperature, Tc, can be regarded to be the same as the arterial 

temperature. 

The adopted boundary conditions will depend on the case under consideration but whenever 

we are dealing with a bounded domain, they will be of Dirichlet type. The main reason for 

this choice is that the temperature field is solved in a relatively large domain compared to the 

tumor size which allows assuming that the temperature far from the sources (i.e. the 

nanoparticles inside the tumor tissue) is constant and equal to the body temperature. 

So, the boundary condition is: 

( ),i cS t
T T=   (3.3) 

 

Where the subscript i= 1,2,3…,SN denotes the boundary surface i of N boundary surfaces. As 

it was said, temperature is assumed constant on the boundary. 



 

 23 

MATHEMATICAL FORMULATION 

3.3 Equation in Dimensionless Form 
 
Starting with the governing equation (3.1), by defining non-dimensional parameters, the 

equation will be reduced to non-dimensional form. 

Defining the following non-dimensional parameters: 

* * * *

2
;  ;  ;  

t x y z
t x y z

L L L L

α
= = = =   (3.4) 

 

( ) ( ) ( ) ( )( )
( )( ), , ,

, , ,x y z t

ax y z t

a

T T

Tη γ β τ

−
Θ =   (3.5) 

 

L is a characteristic length. The metabolic rate of heat generation 
.

metq  can change in a small 

interval of values and will be regarded as a constant throughout all this work. 

The nanoparticles are modeled as point sources and it mathematical formulation in 

rectangular coordinates is given by ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0, , , , , ,gen x y z t x y z t x x y y z z
Q P δ δ δ

− − −
= , where δ  is the 

Dirac delta function and the difference in the argument means a displacement by 0x  units in 

the x-direction. The intensity of the sources is going to be considered as space-time 

independent ( )0 0 0, , ,
constant.

x y z t
P =   

Substituting equations (3.4) and (3.5) in (3.1): 

( )
2 2. .

*2

* P b met genb
a

L L
c q Q

t k T k
ρ ω

∂Θ  = ∇ Θ − Θ + + 
∂  

 (3.6) 

 

Where 
2 2 2 2 2 2

* 2

*2 *2 *2 *2 *2 *2
L

x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂
∇ = + + = + + 

∂ ∂ ∂ ∂ ∂ ∂ 
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From (3.6) dimensionless heat and perfusion terms: 

..
22

;  ;
genmet

a a

Q Lq L
q Q

kT kT
= =  

( )2

2 b bL c

k

ρ ω
γ =  are defined. 

 
Finally, by substitution in equation (3.6) we get a dimensionless form of the bio-heat 
equation: 
 

2 2 q Q
t

γ
∂Θ

= ∇ Θ − Θ + +
∂

  (3.7) 

 
Where the * was dropped in order to make the notation clearer. In equation (3.7), q 

represents the heat generated by metabolism; Q the heat generated by the magnetic 

nanoparticles; and the term with 2γ  is the one related with blood perfusion. 

3.4 Assumptions 
 
Since Pennes model for heat diffusion in tissues is going to be employed in this work, all the 

assumptions related with the transport process of this model apply here, and they can be 

summarized as: 

• The rate of heat generation by tissue metabolism is constant. 

• The volume flow of blood per unit volume is constant and uniform throughout the 

tissue which means a constant perfusion coefficient ( )bω . 

• Effective thermo physical properties and temperature independent. 

In the work by Pennes there are assumptions regarding the geometry of the forearm and the 

boundary conditions of that particular problem which are not needed here. 
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4 NUMERICAL AND ANALYTICAL APPROACHES 
 
The mathematical model used in this work was proved to yield temperature profiles that are 

in good agreement with measurements of tissue temperature distributions as well as the 

model for the power dissipated by ferrofluids exposed to a time varying magnetic field. 

In order to carry out an analysis that allows to confirm the viability of the magnetic fluid 

hyperthermia performing simulations can reduce considerably the number of experiments. In 

this way only few experiments are needed because the order of magnitude of the parameters 

involved in the treatment, i.e. magnetic field intensity and frequency, time of exposure, etc, 

may be set from the results obtained in these simulations. 

4.1 Numerical Approaches 
 

The application of the Monte Carlo and the Finite Volumes methods for bio-heat problems is 

developed in this section. The algorithms and the theoretical background for such methods 

are also addressed in some detail. 

4.1.1 Monte Carlo Method 
 
This method, also known as method of statistical trials, is a method of approximately solving 

problems using sequences of random numbers, which constitutes the core ingredient of the 

method. It is a means of treating mathematical problems, deterministic by nature, by finding 

a probabilistic analog and then obtaining approximate answers to this analog by some 

experimental sampling procedure. The solution of a problem by this method is closer in spirit 

to physical experiments than to classical numerical techniques (Haji-Sheikh 1966). 
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This method is very attractive because, in contrast to classical numerical methods, the 

efficiency depends weakly on the dimension and geometric details of the domain. The most 

outstanding feature of this method is that the solution can be addressed for a particular point 

within the domain without solving the entire temperature field, saving computational time. 

During hyperthermia treatment it is desirable to know the temperature at some particular 

regions inside and outside the tumor to ensure that under treatment is not going to occur. As 

the last justification for the choice of this fairly used method is that the inclusion of the point 

sources representing the generating magnetic nanoparticles is straightforward (Deng and Liu 

2002), this idea will be seen clearly in the mathematical formulation and development of the 

algorithm. 

As mentioned, an underlying concept of the probabilistic or Monte Carlo solution of 

differential equations is the random walk. A random walker may be regarded as a particle 

wandering within the domain according the probabilities established by the stochastic analog 

of the deterministic problem being solved. Different types of random walk lead to different 

Monte Carlo methods. The most popular types are the fixed-random walk and floating 

random walk. Other types, that are less popular, include the Exodus method, shrinking 

boundary method, inscribed figure method, and the surface density method (Sadiku 2001). 

In the fixed-random walk method, the finite difference discretization of the governing 

equation is used in order to establish the probabilistic analog of the problem and is going to 

be used in this work. Here, the coefficients of the nodal temperatures define the probabilities 

for a random walker, situated in a certain node in the grid, to move in certain direction to a 

neighboring node. For instance, there will be four of these probabilities for a steady 2-D 

problem, and six for a steady 3-D one. 
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4.1.1.1 Discretized Governing Equation 

 
An explicit formulation will be adopted but an implicit scheme can be adopted. For the sake 

of simplicity, a uniform grid is assumed where x y z∆ = ∆ = ∆ = ∆ , so the discretized form of 

equation (3.1) is: 

( ) ( ) ( )

( )
( ) ( )

( )

( )

.
3 3

,

, ,, ,
1 1

1 6
i i

p b tb
t tt t

i i p pt t

c t Q t
T Fo T Fo T Fo T

c c

ρ ω

ρ ρ
+∆ −∆

= =

 ∆ ∆
 = + + − − +
 
 

∑ ∑
X

X XX X X X  (4.1) 

Where  

t∆       : time step 

2

t
Fo

α∆
=

∆
     : Fourier number 

bω       : blood perfusion coefficient 

1 2 3( , , )x x x=X     : spatial coordinates 

i∆X       : displacement in the i direction 

( ) ( ) ( )

. . .

, ,p b at met gen tb
Q c T q Qρ ω= + +X X

    : generalized heat sources 

Re-writing equation (4.1) in the following form: 

( )

( ) ( )
( ) ( ) ( ) ( )

( )

( )

.

3 3
,

0, ,, ,
1 1

i ii i

p p b tt b
t tt t

i ip pt t

c c t Q t
T P T P T PT

c c

ρ ρ ω

ρ ρ
+ −+∆ −∆

= =

 − ∆ ∆ = + + +
 
  

∑ ∑
X

X XX X X XX X
 (4.2) 

 
 To get the equation (4.2), the common factor outside the square brackets was extracted from 

(4.1). The reason for doing so that a stochastic analog to the problem was being sought and it 

must satisfy the probability laws which, for this particular case are expressed by the 

following equations: 
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3 3

0
1 1

1
i i

i i

P P P+ −

= =

+ + =∑ ∑X X
  (4.3) 

 

( )
( ) ( )

0
i i

p t

p p bt b

Fo c
P P

c c t

ρ

ρ ρ ω
+ −= = ≥

− ∆X X
  (4.4) 

 

( )
( ) ( )0

6
1 0

p t

p p bt b

Fo c
P

c c t

ρ

ρ ρ ω

 
 = − ≥
 − ∆
 

  (4.5) 

 

So the Monte Carlo model can be now established and the equation (4.2) may be given a 

probabilistic interpretation: if a random walking particle is instantaneously at the point (x, y, 

z), it has probabilities Px+, Px−, Py+, Py−, Pz+ and Pz− of moving from (x, y, z) to (x+Δ, y, 

z), (x−Δ, y, z), (x, y+Δ, z), (x, y−Δ, z), (x, y, z+Δ), and (x, y, z-Δ) respectively; P0 is the 

probability of the random walking particle not to move during that particular time step. It 

should be noticed that any of this actions implies one time step during the process of the 

random walk. In other words, if the temperature at a particular time tf is needed, the time 

variable is set to this value and by the same time that the random walking process is taking 

place, the time starts to decrease in t∆  units for each and every event. So, there are two ways 

in which a random walk could end; a) one boundary of the domain is reached; b) an initial 

point is reached, in other words, 0ft m t− ∆ = , where m is a variable which count for the 

number of steps of the random walker in the grid for that particular random walk. 

If the lower limit for the inequality (4.5) is chosen, the value for the time step is set as 

( )
( )

( )
1 6

p t

p bb

c
t Fo

c

ρ

ρ ω
∆ = −  the probability for the random walker to stay in the same grid point 

is zero, i.e. 0 0P = , and the walker would move in the grid in each time step. 
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4.1.1.2  Formulation of the Algorithm 

 
In order to develop a computer code it is necessary to relate the movement of the random 

walking particle with the probabilities of the model. This is done by generating pseudo 

random numbers between zero and one and instructing the particle to walk according the 

cumulative probabilities:  

( )

( )

( )

( )

1

1 1 2

1 2 1 2 3

1 2 3 1 2 3 1

, , ( , , )    if 0

, , ( , , )    if 

, , ( , , )    if 

, , ( , , )    if 

                    

x y z x y z RN P

x y z x y z P RN P P

x y z x y z P P RN P P P

x y z x y z P P P RN P P P P

+

+ + +

+ + + + +

+ + + + + + −

→ + ∆ ≤ <

→ + ∆ ≤ < +

→ + ∆ + ≤ < + +

→ − ∆ + + ≤ < + + +

X

X X X

X X X X X

X X X X X X X

M M

( ) 0

                                                   

, , ( , , )          if 1- 1x y z x y z P RN→ ≤ ≤

M

 (4.6) 

 
Where RN means Random Number. 

If the interest is to solve for the temperature of the arbitrary grid point (x,y,z), N random 

walking particles must be dispatched from this point. Each particle will wander through the 

grid of the domain till either a boundary or an initial point is reached, i.e., a point within the 

domain when the time variable value is zero. 

Now, an stochastic variable ξ can be defined, whose expectation will be the approximation to 

the temperature for the point where the random walking particles have started: 

 
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )

1 .
1

1

i k
k

p p b p p bt b t b
j G

i p p p b pt t b t

C C t C C tQ t
f

C C C t C

ρ ρ ω ρ ρ ω
ξ

ρ ρ ρ ω ρ

+
−

=

   − ∆ − ∆∆
   = +
   − ∆
   

∑ (4.7) 

 

The subscript j refers to each random walk, i refers to each step of the random walking 

particle, k to the last step and G  may be either a boundary point, , 1,2,.....,lS l N= , or an 
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initial point so the value of ( )G
f  will be either a boundary temperature (Dirichlet boundary 

condition) or the initial temperature of the point where the particle was stand in whether the 

boundary was reached or time variable was zero, respectively. Recall that 

( ) ( ) ( )

. . .

, ,p b at met gen tb
Q c T q Qρ ω= + +X X

 includes all the sink/source terms. 

Table 4.1: Tallies  for the Monte Carlo Method 

CONDITION TALLY 

BOUNDARY POINT ( ),lS t
T  

INITIAL POINT ( ), 0t
T

=X
 

METABOLIC HEAT GENERATION 
( ) ( )

.

met

p p bt b

q t

C C tρ ρ ω

∆

− ∆
 

PERFUSION 
( )

( ) ( )
p b ab

p p bt b

C T t

C C t

ρ ω

ρ ρ ω

∆

− ∆
 

NANOPARTICLES HEAT 

GENERATION 

( )

( ) ( )

.

,gen t

p p bt b

Q t

C C tρ ρ ω

∆

− ∆

X
 

 
As the particle wanders through the grid nodes the term corresponding to the metabolic heat 

must be tallied, as well as that one corresponding to the heat removal associated with blood 

perfusion. The generating particles are modeled as point heat sources whose power 

dissipation is regarded to be constant. This means that the effect of these point sources is 

taken into account only when the random walking particle steps on one of the nodes where a 

particle is located. 
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Finally, the temperature at the point ( )0 0 0 0, ,x y z=X  at time 0t  is approximated after the Nth 

random walk by: 

( )0 0,
1

1 N

jt
j

T
N

ξ
=

= ∑X
  (4.8) 

 

4.1.2 Finite Volumes 
 
The first step in solving a differential equation using the finite volume method is to perform a 

discretization of the domain in little volumes called finite volumes as shown in Figure 4.1. In 

this figure the dashed lines represent the contour of the finite volumes. Inside each of these 

volumes a node is placed where the function, in this case the temperature, is going to be 

determined.  

 

 

 

 

 

 

 

 

In the notation commonly used (geographic notation), the capital letters are reserved for the 

nodes or grid points and small letters are reserved for control volume faces as shown in 

Figure 4.1. In this notation, P is the center of the control volume. The letters N, S, E, W, T, B 

denote North, South, East, West, Top and Bottom respectively. In the figure T and B are not 

Figure 4.1: 2-D grid and notation used 
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visualized. This is the most used notation for the finite volume method; it is used in (Patankar 

1980; Versteeg and Malalasekra 1995; Ferziger and Peric 2002). 

The second step is to discretize the equation along with the linearization of the non-

homogeneous terms (if necessary), after which a set of linear equations in terms of the nodal 

temperatures is obtained.  

Finally, using a linear solver, iterative or direct depending upon the size of the system, the 

unknown temperatures are determined. 

4.1.2.1 Discretization of the Governing Equation 

 
Equation (3.7) is rewritten here but with q+Q= H, including all the heat sources 
 

2 2 Hγ
τ

∂Θ
= ∇ Θ − Θ +

∂
  (4.9) 

 
Where the Laplacian is in terms of the dimensionless spatial coordinates. 
 
In order to get the discretized form of this equation, integration along an arbitrary control 

volume followed by integration over a time step are carried out. This approach is what 

distinguishes the finite volume method from other methods for solving partial differential 

equations; it represents a flux balance of the property (temperature, in this case) over each 

and every control volume in each time step, exposing the programmer to the underlying 

physical concepts of the problem at hand during the formulation. 

Then, the integral over a control volume is discretized as 

e w

e wV

dxdydz A A
x x x x

∆

∂ ∂Θ ∂Θ ∂Θ     
= −     

∂ ∂ ∂ ∂     
∫   (4.10) 
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Now, it is necessary to relate the flux at the control volume faces with the nodal values of Θ . 

This is done by approximating the spatial derivatives through the grid point values by means 

of the incremental quotient: 

E P

e PEx xδ

 Θ − Θ∂Θ 
=   ∂   

  (4.11) 

 
Before taking this results to equation (4.9), it is necessary to discretize the time derivative. If 

it is assumed that the nodal temperatures prevails over the entire control volumes: 

 

( )
t t

o
P P

CV t

dt dV V
t

+∆ ∂Θ
= Θ − Θ ∆ 

∂ 
∫ ∫   (4.12) 

 

Where the superscript “o” refers to nodal temperature at time level t. 

Integrating over a control volume and linearizing the source term: 

p P u

CV

HdV S V S S= ∆ = Θ +∫   (4.13) 

The bar over S means that it is an averaged value of the generation in all the control volume. 

Substituting equations (4.10-4.13) in equation (4.9) 
 

( )
t t

o P W N PE P
P P e w n

PE WP PNt

t t

P S T P P B
s t b

SP PT BP t

V A A A
x x y

A A A dt S Vdt
y z z

δ δ δ

δ δ δ

+∆

+∆

      Θ − Θ Θ − ΘΘ − Θ
Θ − Θ ∆ = − + −     

     

     Θ − Θ Θ − Θ Θ − Θ
+ − + ∆     

     

∫

∫

 (4.14) 

 
An assumption about the variation of the temperature with time is now needed. It may be 

used the values for the temperatures at t or t+Δt or another weighted combination of both 

leading to the different integration schemes. The fully implicit, i.e. t+Δt, scheme is used here 

because its robustness and unconditional stability. This stability is guaranteed for any size of 

the time step because all the coefficients are positive, for a more detailed explanation see 
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(Versteeg and Malalasekra 1995) chapter 5. Although the stability is assured, large time steps 

should be avoided because the accuracy of this scheme is first order in time. In order to get 

good accuracy, the time step (for a uniform grid and constant conductivity) is maintained 

approximately in the order of 
6

x∆
. Recall that all the variables involved here are 

dimensionless, this is why the thermal diffusivity does not appear explicitly. 

Using the fully implicit discretization, the equation for each interior grid point is: 

o o
P P E E W W N N S S T T B B P P ua a a a a a a a SΘ = Θ + Θ + Θ + Θ + Θ + Θ + Θ +  (4.15) 

 
The values for each of the coefficients appearing in (4.15) are summarized in the Table 4.2. 

 

Table 4.2: Finite Volumes Coefficients for Interior Nodes 

Ia  Pa  pS  uS  

i

PI

A

δ
 

o
P I P

I

a a S+ −∑  2 Vγ− ∆  ( )met genq Q V+ ∆  

 
 

Corrections in pS , uS  and, hence, Pa  must be carried out for the boundary nodes. In the case 

of Dirichlet boundary conditions, the type for the problem in hand, a prescribed temperature 

is set to all the nodes at a boundary. Then, the corresponding term in equation (4.15) can be 

evaluated and it will be included in Su for the equation of that node. 

After an equation like (4.15) is derived for each and every interior grid point, a linear system 

of N equations is obtained whose unknowns, as previously mentioned, are the temperatures 

of the grid nodes. 
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4.1.2.2  Algorithm for Solving the Linear System of Equations 

 
For solving the linear system produced by the discretization of the dimensionless governing 

equation, the Bi-Conjugate Gradient Stabilized (BCGSTAB) method was chosen, mainly for 

its fast convergence and stability. 

This method is a modification to the Conjugate Gradient (CG) method in order to make it 

suitable for solving nonsymmetric linear systems. The BCGSTAB is like applying the CG 

(applicable to symmetric matrices) to an augmented matrix constructed as shown in equation 

(4.16). 

0
Augmented Matrix = 

0

A

A

 
 
 

  (4.16) 

For this work, the algorithm provided by Ferziger and Peric (Ferziger and Peric 2002) was 

modified and employed (Gutierrez 2002). 

4.1.2.3  Grid Generation 

 
The grid generated in the domain has the following features: 

• It is uniform: the point sources modeling the nanoparticles appear as generating finite 

volumes in the code. In order to be consistent, the energy released from these finite 

volumes must be equal to that released by the magnetic nanoparticles. It is common 

to make a grid refinement around each source for the sake of accuracy. However this 

would result in a nonuniform grid. Because the solver being used in the code 

(CGSTAB) is very efficient, there is no need to break the uniformity of the grid, 

instead the size of the control volumes is made small enough to get a good accuracy. 
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• The grid independence was reached after reducing the size of the volumes till the 

results stoped changing. This procedure is necessary to make sure that the algorithm 

converges to the solution. 

The domain’s shape does not change, i.e. it is time independent, so the grid is constructed 

once and needs not to be updated. 

 

Figure 4.2: Grid for the Finite Volumes Method 
 

4.2 Analytical Approaches 
 

In order to gain some insight in the order of magnitude of the response of the system to the 

heating rates achievable and also the transient response, analytical solutions are very useful. 

Unfortunately, if point sources are randomly distributed in the domain, the problem is out of 

the scope of analytical methods, in general. Beside this, some configurations of the domain, 

boundary conditions and spatial heating lead to a problem exhibiting some type of symmetry 
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reducing the number of coordinates and yielding a problem suitable to be solved by means of 

the analytical methods used in this work. 

In the following two sections a discussion of the analytical methods that are used is presented 

and the results for particular configurations are shown in the next chapter. 

 

4.2.1 Green’s Function Approach 
 
The Green’s function method for solving linear differential equations is based in the main 

feature of a linear system, i.e. the superposition principle. 

The Green’s function for a given partial differential equation and corresponding initial and 

boundary conditions is the response of the system by the action of a unit instantaneous 

impulse acting in an arbitrary point r at an arbitrary time τ. By the term instantaneous is 

meant that the source (in this particular case, the heat source) releases all its heat 

spontaneously at a time τ in a point r’ within the domain. In other words, it is the solution, G, 

to a partial differential equation defined by the same linear operator than that of the original 

problem where the non homogeneity of the differential equation is an instantaneous point 

source of unit strength and the initial and boundary conditions are the homogeneous version 

of the boundary conditions of the original problem. 

Thus, a Green’s function is like a block containing the information regarding the response of 

a system to an instantaneous point impulse (in this context the impulse is a heat pulse). Then, 

any other type of forcing term can be thought as the combined effect of many impulses and, 

thus, the solution can be obtained in this way by a convolution integral. The mathematical 

form of the Green’s function depends upon the coordinate system adopted, the linear 

differential operator and the boundary conditions. 
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There already is a rather exhaustive data base, e.g. (Beck, Cole et al. 1992), of Green’s 

functions for the heat diffusion equation in the most commonly used orthogonal coordinate 

systems and for the three major types of boundary conditions. In order to this data base be 

useful for bio-heat diffusion problems a transformation is employed to the governing 

equation so that, after this transformation, the equation reads like the former with an 

additional factor in the non-homogeneous terms of the equation. 

Starting with the governing equation written as given by equation (3.7): 

2 2 H
t

γ
∂Θ

= ∇ Θ − Θ +
∂

  (4.17) 

 

And defining 
2

( , ) ( , )
t

t tW e γ−Θ =X X , after substitution yields: 

 
22 tW

W He
t

γ∂
= ∇ +

∂
  (4.18) 

 
Which is the heat diffusion equation, where H q Q= +  includes all the heat sources, due to 

metabolism and particles. Note that, for convenience of notation, τ  was replaced by t  in 

equation (3.7). 

The Green’s function for the equation (4.18) plus suitable boundary conditions will be the 

solution of the auxiliary problem subjected to the homogeneous version of the same type of 

boundary conditions: 

( ) ( )
2

' t

G
G

t τδ δ
− −

∂
= ∇ +

∂ x x
  (4.19) 

 
δ  is the Dirac delta function. 

As it was already stated, provided we have the Green’s function of a particular problem, the 

temperature distribution is obtained by means of the Green’s function solution equation 

whose derivation is omitted (see (Ozisik 1980) for details): 
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( ) ( ) ( ) ( ), , , . . ,t in t g t b c t
Θ = Θ + Θ + Θ

x x x x
  (4.20) 

 

( ) ( ) ( ), , | ',0 '
'

in t t

R

G F dVΘ = ∫x x x x
  (4.21) 

 

( ) ( ) ( ), , | ', ',

0

'
t

g t t

R

G H dV dτ τ

τ

τ
=

Θ = ∫ ∫x x x x
  (4.22) 

 

( ) ( ) ( ) ( )' ' '

'

' '

. . , ', , | , ,
1 10 0

i i j

i j
j

t ts s

i jb c t i t j
i j jS S

G
f G ds d f ds d

nτ τ τ
τ τ

τ τ
= == = =

∂
Θ = −

∂
∑ ∑∫ ∫ ∫ ∫x x x x x

x x

 (4.23) 

 
The subscript in in the general solution (4.20) refers to the effect of the initial condition, g to 

the generation effect and b.c. to the effect of boundary conditions. ( )'F
x

 in (4.21) represents 

an arbitrary initial condition. The two terms in the contribution of the boundary conditions 

are for the boundary conditions of second (Neumann) and third (Robin) kind, for boundary 

conditions of the first kind (Dirichlet) respectively. 
( )' ,ii

f
τx

 is the non homogeneity of the 

boundary condition. The summations are performed over each and every boundary surface si, 

i= 1,2,3,… S and the tilde is for denoting a dummy variable. The nj in the expression for the 

boundary condition of first time refers to the normal outward direction of the j boundary 

surface. 

In the following sections the solution to the bio-heat equation for point, line and plane 

sources in unbounded domains are developed by using the Green’s function method 

developed here. These Green’s functions are called fundamental, principal or free space 

Green’s functions and they were not reported in the literature until now. 

4.2.2 Free-Space Green’s Function for the Bio-Heat Operator 
 
For obtaining the Green’s functions, an equation like 
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( )( ) ( ) ( )0,t t
L G τδ δ

−−
=

X X X
  (4.24) 

    
Must be solved, where G is the Green’s function. Depending on the geometry and boundary 

conditions, there are many expressions for the Green’s function for a particular linear 

differential operator, e.g. L. Then, it is useful to split the Green’s function in two parts: 

G U h= +   (4.25) 
 
Where U is a particular solution, also called free-space Green’s function, which need not 

satisfy the boundary conditions associated with equation (4.24), while h is a solution of the 

homogeneous equation ( ) 0L G =   but with boundary conditions such that the superposition 

U h+  does, indeed, satisfy the boundary conditions for the original Green’s function 

problem defined by equation (4.24). 

In the following sub-sections the mathematical formulation of the free-space Green’s 

function problem for the bio-heat operator is set for rectangular, cylindrical and spherical 

coordinate systems. All the formulation is developed using the dimensionless form of the 

governing equation, shown in chapter 3.  

 

4.2.2.1  Cartesian Coordinates 

 
The fundamental solution U for a one dimensional problem in Cartesian coordinates is the 

solution of the dimensionless equation: 

( ) ( ) ( )

2
2

'2 x x t
L U U

t x τγ δ δ
− −

 ∂ ∂
= − + = 

∂ ∂ 
  (4.26) 

The Fourier transform with respect to the spatial coordinate is used for eliminate the spatial 

variable and then an ordinary equation in time must be solved. The notation and the 

mathematical form used here for the transform and its inverse are: 
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( ){ } ( ) ( ), , ,

1ˆ
2

i x

x t t x t
U U U e dxω

ω
π

∞
−

−∞

ℑ = = ∫   (4.27) 

( ) ( ){ } ( )
1

, , ,

1ˆ ˆ
2

i x

x t t t
U U U e dω

ω ω
ω

π

∞
−

−∞

= ℑ = ∫   (4.28) 

 
So, taking the Fourier transform to both sides of equation (4.26):   

( ) ( )2 2 '
ˆ

ˆ
2

t i xU
U e

t

τ ω
δ

ω γ
π

− −∂
+ + =

∂
  (4.29) 

 
Note that the right hand side of equation (4.29) is zero for either t τ<  or t τ> , so we have 

two conditions for Û : 

( )

( )

2 2

2 2

           for ˆ

           for 

t

t

Ae t
U

Be t

ω γ

ω γ

τ

τ

− +

− +

 <
= 

 >

  (4.30) 

 
In order to relate the both solutions in (4.30) and to incorporate the singularity in   produced 

by the Dirac delta, integration is performed in (4.29) with respect to t from τ ε−   to τ ε+  

being ε  as small as desired. This yield, in the limit when 0ε → : 

( ) ( )2 2 2 2 '

2

i xe
Ae Be

ω
ω γ τ ω γ τ

π

−
− + − +

− + =   (4.31) 

 

On the other hand, from (4.26) we have 0U =  if t τ< , then ˆ 0U =  and 0A =  from (4.30). In 

this way ( )2 2'
2

i x
B e

ω ω γ τ
π

− + +
=  and replacing in (4.30): 

( )( )2 2'

ˆ                  for 
2

i x t
e

U t

ω ω γ τ

τ
π

− − + −

= >   (4.32) 

 
Taking the Fourier inverse transform, the so called principal or free space solution for the 

bio-heat differential operator, U, is obtained: 
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( )
( )

( ) ( )

2

2'

2

t

t i x x t
H e

U e d

γ τ

τ ω ω τ ω
π

− − ∞
− − − − −

−∞

= ∫   (4.33) 

 
Performing the integration: 
 

( )
( )

( )

( )
( )

( )
2

2'

4

, | ',
4

x x
t

tt

x t x

H
U e

t

γ τ
ττ

τ
π τ

 − −
 − −

− −  =
−

  (4.34) 

 

Where ( )t
H

τ−
 is the Heaviside unit step function. 

This is the first of the three fundamental solutions for the bio-heat linear differential operator.  

 

4.2.2.2  Cylindrical Coordinates 

 
Following the same procedure used to derive the solution in Cartesian coordinates, it is 

possible to find the free-space solution for the bio-heat differential operator in cylindrical 

coordinates. The equation (dimensionless) to be solved is: 

( ) ( )
( ) ( )

2
'2

, | ',2

1

2

r r t

r t r
L U U

t r r r r

τ

τ

δ δ
γ

π

− − ∂ ∂ ∂
= − + + = 

∂ ∂ ∂ 
 (4.35) 

 
The Hankel transform is going to be used to transform the r variable. For an arbitrary 

function f(x) it is defined as: 

( ) ( ) ( )
0

ox x

x

f f J xdxλ λ

∞

=

= ∫%   (4.36) 

( ) ( ) ( )0

0

x r
f f J dλ λ

λ

λ λ
∞

=

= ∫ %   (4.37) 

 

Where ( )0 x
J

λ  is the Bessel function of first kind, order zero and argument ( )xλ . 

 
Taking the Hankel Transform to (4.35) 

( ) ( ) ( )0 '2 2

2

r t
JU

U
t

λ τδ
λ γ

π

−∂
+ + =

∂

%
%   (4.38) 
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Noticing that the right hand side of equation (4.35) is zero for t τ>  and t τ< , the solution for 

those intervals is: 

( )

( )

2 2

2 2

              for 

              for 

t

t

Ae t
U

Be t

λ γ

λ γ

τ

τ

− +

− +

 >
= 

 <

%   (4.39) 

 
Integrating (4.38) from 0τ −  to 0τ +  

( ) ( ) ( )
2 2 2 2

0 '

2

r
J

Ae Be
λ γ τ λ γ τ λ

π

− + − +
− =   (4.40) 

 

As another relation, recall that U, and hence U% , is zero for t τ< , so B=0. Then 

( ) ( )2 2
0 '

2

r
J

A e
λ γ τλ

π

+
=   (4.41) 

 
And 

( ) ( )2 2 ( )0 '

2

tr
J

U e
λ γ τλ

π

− + −
=%   (4.42) 

 
Finally, taking the inverse Hankel Transform: 

( )
( )

( ) ( )

2 ( )

0 0 0 '

0 0

1

2

t

r r r
U UJ d e J J d

λ γ τ

λ λ λ

λ λ

λ λ λ λ
π

∞ ∞
− − −

= =

= =∫ ∫%  (4.43) 

 

The integral ( )
( ) ( )0 0 '

0

t

r r
e J J dβ τ

β β

β

β β
∞

− −

=
∫  can be integrated analytically (Erdelyi, Magnus et al. 

1954): 

( ) ( ) ( )

( )
( )

( )

2 2

2

'

4( )
0 0 0'

0

1 '

2 2

r r

tt

r r

rr
e J J d e I

t t

τλ τ
λ λ

λ

λ λ
τ τ

+
∞ −

−− −

=

 
=   − − 

∫  (4.44) 

 
 
The final expression for U is given by 
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( )
( )

( )

( )
( )

( )

( )

2 2

2
'

4

0, | ',

'

2 2

r r
t

t t

r t r

H rr
U e I

t t

γ τ
τ τ

τ τ τ

+
− − −

− −  
=   − − 

  (4.45) 

 

( )( )0 ' 2rr t
I

τ−
 is the modified Bessel’s function of first kind, order zero and argument ( )' 2rr t τ− . 

The 2π  of the denominator was dropped so that this result for U can be directly used in the 

Green’s function solution equation. 

This is the second fundamental solution for the bio-heat linear differential operator, 

corresponding with cylindrical coordinates. The domain is unbounded in the z and r 

directions. 

 

4.2.2.3  Spherical Coordinates 

 
The equation for the principal solution, U, in spherical coordinates reads like: 

( ) ( ) ( )
2

'2

2 2

2

4

r r t
L U U

t r r r r

τδ δ
γ

π

− − ∂ ∂ ∂
= − − + = 

∂ ∂ ∂   

 (4.46) 

 

In order to solve this problem, first, a transformation 
2tU e

r
γ−Φ

=  is carried out and equation 

(4.46) transforms to: 

22

( ') ( )2 4

t

r r t

e

t r r

γ

τδ δ
π − −

∂Φ ∂ Φ
= +

∂ ∂
  (4.47) 

 
The Green’s function for equation (4.47) can be obtained from the solution to the associated 

homogeneous form of that equation. This Green’s function is readily obtainable from 

textbooks  (Ozisik 1980) or (Carslaw and Jaeger 1967): 

( )

( )
( )

( )
( )

2 2
2 ' '

4 4

8 '

r r r r

t te
G e e

r t

γ τ
τ τ

π π τ

− − − +

− −
 
 = −
 −
 

  (4.48) 
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Then, going back in the transformation, the free space Green’s function U is obtained: 

( )

( )

( )
( )

( )
( )

2 2
2

2

' '

4 4

8 '

r r r rt
t ttG e

U e e e
r rr t

γ τ
τ τγ

π π τ

− − − +− −
− −−

 
 = = −
 −
 

 (4.49) 

 
For being able to use this fundamental solution in the Green’s function solution equation, 

(4.49) must be multiplied by the factor 4π . The reason for doing this has to do with the 

formulation adopted here for expressing the temperature in terms of the Green’s function, i.e. 

the Green’s function solution equation presented in section 4.2.3 below. 

( )
( )

( )

( )

( )
( )

( )
( )

2 22 ' '

4 4

, | ',
2 '

t r r r r

t t t

r t r

H e
U e e

rr t

γ τ

τ τ τ

τ
π τ

− − − − − +

− − −
 
 = −
 −
 

  (4.50) 

 
 

4.2.3 Green’s Function Solution Equation 
 
The general solution for the temperature profile in infinite domains, obtained from the bio-

heat equation taking into account the blood perfusion, is given in terms of the free-space 

Green’s function in dimensionless form as: 

( ) ( ) ( ) ( ) ( )| 0
, , | ', ' , | ', ',

0

' ' ' '
t

p p

x t x t x x x t x x
x U F dx x U H dx d

τ
τ τ τ

τ

τ
=

=

Θ = +∫ ∫ ∫  (4.51) 

0 infinite slab

Where '  is the Sturm-Liouville weigth function:    1  infinite cylinder

2  infinite sphere

px p

→


= →
 →  

 

( ), | ',x t x
U

τ  represents the temperature distribution in an infinite medium at the location x, at 

time t, due to an instantaneous point source of unit strength, located at the point x’, releasing 

its heat spontaneously at time t τ= .  
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( )| 0
, | ',x t x

U
τ

τ
=

in equation (4.51) is the free-space Green’s function evaluated at 0τ = ; ( )'x
F  

represents the initial condition; and ( )',x
H

τ  includes all the sinks and/or sources. 

4.2.4 Finite Fourier Transform 
 
This is an analytical method that consists in expanding the solution of a linear partial 

differential equation in terms of a set of known functions, called basis functions. After which 

the problem is reduced to one of finding the spectral coefficients of the expansion: 

( ) ( ) ( ),
1

x t n x n t
n

∞

=

Θ = Φ Θ∑   (4.52) 

 

Where ( ),x t
Θ  is the unknown temperature; ( )n x

Φ  are the basis functions; and ( )n t
Θ  are the 

spectral coefficients. 

The method is applicable to linear problems where at least one coordinate is finite and one 

attractive feature is that it is more flexible and more direct than separation of variables where 

as many sub-problems as non-homogeneities present in the original problem must be solved 

in order to get the final solution by superposition of the solutions of the sub-problems. 

The sets of functions suitable to be used as basis functions are the solutions of certain type of 

eigenvalue problems, called eigenfunctions: 

( ) ( )
2

x x x
L λΦ = − Φ   (4.53) 

 

Where xL  is a linear differential operator; ( )x
Φ  are the eigenfunctions; and λ  are the 

eigenvalues. For an expansion like (4.52) to be valid, the set of basis functions ( )n x
Φ  must be 

orthogonal. It can be proved that a sufficient condition for the basis functions to form an 

orthogonal set, is the differential operator xL  to be self-adjoint. Any Sturm-Liouville 
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eigenvalue problem meet these conditions, i.e, the differential operator is self-adjoint and, 

then, the eigenfunctions are orthogonal with respect to a weighting function usually called 

( )x
w

 
in literature. The boundary conditions for an eigenvalue problem must be any 

combination of the homogeneous version of the Dirichlet, Neumann, and Robin types. The 

operator xL  may be recognized by inspection of the conservation equation by selecting those 

terms containing x. 

Once the differential operator is identified and the appropriate basis functions selected, the 

next step is transform the differential equation along with the initial and boundary conditions 

with respect to the basis function and the weighting function in the interval of orthogonality 

as many times as needed to end up with an ordinary differential equation. Then this equation 

is solved in the transformed domain to get the solution for the spectral coefficients ( )n t
Θ . The 

transformation is defined as: 

( ) ( ) ( ) ( ),

0

L

n t x n x x t
w dxΘ = Φ Θ∫   (4.54) 

 

Where ( ),x t
Θ  is the dependent variable and ( )x

w  is the Sturm-Liouville weighting function. 

Besides of being orthogonal, the basis functions are required to be normalized in the interval 

because in this way ( )n t
Θ  is the spectral coefficient itself. Otherwise, the spectral coefficient 

of the expansion would differ with ( )n t
Θ  by a constant, the norm.  Using the inner product 

notation the orthonormal condition is expressed as: 

( ) ( ) ( ) ( ) ( )
0

,
L

n m n m nmx x x x x
w dx δΦ Φ = Φ Φ =∫   (4.55) 

 

Where 0 x L≤ ≤  is the interval of orthonormality; and nmδ  is the Kronecker delta. 
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Because for the Sturm-Liouville problem to exist a finite dimension is needed, the 

transformation is always performed over the finite coordinates. For instance, in a one-

dimensional transient heat diffusion problem in a finite region, the transformation would be 

carried out over the spatial coordinate (time domain is semi-infinite). 

When the solution for the transformed temperature and the spectral coefficients of the series 

expansion of the solution ( )n tΘ  is obtained, substitution in equation (4.52) provides the 

temperature field. The exact solution results when the summation is carried out over all the 

eigenvalues, i.e. n = ∞ . 

For a detailed theoretical presentation of the method the textbooks of (Deen ; Ozisik 1968) 

are suggested.  
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5 RESSULTS AND DISCUSSION 
 

In this chapter, the solutions developed in the previous chapter are plotted and the discussion 

of the results is addressed. For this aim, typical values of tissue thermal properties are 

adopted as given by (Deng and Liu 2002; Bagaria and Johnson 2005): ρt= ρb=1,000 kg/m3; 

ct= cb=3,800 J/kg°C; Ta=37 °C; k= 0.5 W/m°C; qmet= 700 W/m3; ωb= 0.0005 (ml/s)/ml 

(volumetric blood flow, per ml of tissue). 

In order to establish an order of magnitude in the heat generation rate of the particles, a 

concentration of 310 10−× g of magnetite per gram of tissue, which is a normal dosage 

reported in clinical trials (C.F. Chan, B. Kirpotin et al. 1993), is assumed. Setting the 

magnetic field intensity in 6.5 kAm-1 and the frequency at 500 kHz (values in between the 

safety threshold), substitution in the model depicted in Section 2.5 yields a linear relationship 

between the power P and the volume fraction of particles, φ . 

The ferrofluid is assumed to be a colloidal suspension of monodisperse magnetite single-

domain particles of 12 nm diameter. Correspondingly all the properties required in the 

expression of the power loss are that of the magnetite (Rosensweig 2002). 

So, for magnetite water based ferrofluid under a magnetic field of the features depicted 

above, equation (2.11) is reduced to: 

8 32.495 10 /P W mφ  = ×     (5.1) 

310 10−× g of magnetite per gram of tissue is equivalent to 0.003φ ≈  establishing a power of: 

3748500 /P W m =     (5.2) 

This value will be regarded as the maximum value feasible for the simulations. However, 

higher losses can be achievable by using ferrofluids with higher SAR values or higher 
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magnetic field intensity. Recall that the upper limit is 15 kAm-1 (Atkinson, Brezovich et al. 

1984). 

5.1 Numerical Solutions 
 

5.1.1 Monte Carlo Solutions 
 
The geometry being considered for obtaining the Monte Carlo solution was a cube of side 

length L=0.2 m. In order to solve the temperature for an sphere of radius R=0.1m, the random 

walkers were instructed to tally the boundary condition when they reach the surface of the 

sphere. The grid constructed for the walkers to wander through had 27 nodes in each 

direction. This is a coarse grid but it is enough to get an approximated profile. Beside this 

fact, as a comparison, the time required for calculations with 40 nodes in each direction is 

more than 2 hours in a computer with a core 2 duo processor running at 2.26 GHz while the 

time required for 27 nodes is reduced to 20 minutes. This computational time is not a linear 

function of the grid size because an increase in the number of grid points translates in more 

steps for the random walker to take until a boundary or an initial time is reached. But because 

of the random motion of the walker, the number of steps does not necessarily follow a linear 

trend. 

The boundary condition is: 

( , )r R t aT T= =   (5.3) 

 
Where R is the radius of the sphere. 
 
The nanoparticles are modeled as point sources whose generalized form is: 

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0

.

, , , , , ,gen x y z t x y z t x x y y z z
Q P δ δ δ

− − −
=   (5.4) 
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Where P is the point heating power in W, δ is the Delta of Dirac function, and (x0,y0,z0) is the 

position of the point-heating source. The strength for each point source is P=0.3 W. 

A slice of the domain corresponding to the plane y=0.1m is shown in Figure 5.1 where the 

size of the sample was N=5000 and N=2000 Random Walks for the plot in the left and the 

one in the right side, respectively. Next, in Figure 5.2, the profile for N=1200 is shown. As 

can be seen, with 5000 Random Walks the temperatures field is smooth enough to consider 

sufficient trials for the computation of temperatures. All these figures show the results of the 

simulations differing only in the number of random walkers dispatched. 

The time consumption for the calculation of the temperature field is higher than that required 

by, for instance, the finite volume method but, as it was mentioned in the introduction, 

getting an approximation of the temperature for a point is very fast, even though for sample 

sizes as large as N=10000. 

Following with the analyses of the results, Figure 5.1 must be compared with Figure 5.3 that 

shows the temperature profile obtained by means of the Finite Volumes Method. Further in 

the next section, an analytical solution is compared with the Finite Volumes solution in 

Figure 5.5 in order to validate the codes. 

The profiles exhibit a fast decay in temperature as one move away from the sources. The 

effects of heat removal due to blood perfusion along with a low thermal conductivity and the 

highly localized heat deposition are the principal responsible factors of this behavior. A 

better visualization is provided by the figures showing the analytical results that are 

discussed further in this chapter. 
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Figure 5.1: Approximated Temperature Profile. Left:  N=5000; Right: N=2000 
 

 
 

 
Figure 5.2: Approximated Temperature Profile. N=1200 
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5.1.2 Finite Volumes Solutions 
 
The values for the thermo-physical are the same of the previous section. Figure 5.3 shows the 

slice at y= 0.1m of the cubic domain of tissue. In order to work with a Cartesian grid, the 

thermal conductivity inside the cube takes two different values according the control volume 

face is within a sphere of 0.1 m of diameter or not. A very large value was set for those 

control volumes outside the sphere and 0.5 W/(mK) for the ones inside the region. This is an 

easy way to model a sphere using a Cartesian grid, avoiding to work with irregular shaped 

control volumes. The result is like shrinking the boundaries to the sphere’s surface making 

the problem equal to the one depicted in the previous section.  

A 37 °C isothermal surface is shown in Figure 5.4 where it is visible the shrinking of the 

boundaries to the surface of the sphere. 

 

Figure 5.3: Steady Finite volume Solution for a Generating Spherical 
Subdomain 
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Figure 5.4: 37  C Isothermal surface 

 
For validating the numerical code, a comparison for the steady state temperature distribution 

is shown in Figure 5.5. Here, qmet = 0.0 W/m3, the spherical source has a radius of r0= 0.005m 

and a power of Qgen= 572,958.0 W/m3, the radius of the domain is R= 0.1 m. 

As it can be seen there is a good agreement between both solutions. The difference is due to 

the coarse grid used. It is not worthy to make a refinement of the grid because the solution is 

shown to be close enough to the analytical one. 

In Figure 5.6 is shown that grid independence of the solution is reached for N=110. This 

number means that the grid consists in 110 nodes in each direction of the cube. Thus, the 

number of nodes and, therefore, unknowns is 1103=1,331,000. Recall that in the finite 

volume method, as well as the Monte Carlo method, the temperature in the grid points is 

evaluated. 
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Figure 5.5: Steady Analytical vs Finite Volume Solution. Radius of the Spherical 

Source: r0=0.005 m. qmet=0; Qgen= 572,958 W/m3  
 

 
Figure 5.6: Grid Independence in the Solution. N is the number of nodes in each 

direction. 
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5.2 Analytical Solutions 
 
In the following subsections the analytical solutions are developed by the methods exposed 

in Chapter 4. Each transient solution is plotted for several time steps with the highest time 

level corresponding to the steady state condition. 

 

5.2.1 Plane Source Solution in an Infinite Domain 
 
The equation that models the problem is the 1-D version of equation (3.7) in Cartesian 

coordinates: 

( ) ( )
( ) ( )

2

, , 2

, ,2

0 ; - <

x t x t

x t x t
H

t x

t x

γ
∂Θ ∂ Θ

= + Θ +
∂ ∂

> ∞ < ∞

  (5.5) 

 

( ,0) 0xΘ =   (5.6) 

 

Where ( ) ( ), ,x t x t
H q Q= +  is the generalized source term. Note that all the variables are 

dimensionless. Because there is no characteristic length, the spatial variable x is 

dimensionalized with respect to unity. 

Using the principal solution (4.34) and replacing it in the general solution equation (4.51), 

the solution for the bio-heat equation in infinite domains in Cartesian coordinates is obtained 

by setting the exponent p to be zero: 

( ) ( ) ( ), , | ', ',

0 '

'
t

x t x t x x

x

U H dx dτ τ

τ

τ
∞

= =−∞

Θ = ∫ ∫   (5.7) 

 
Splitting the source H in two parts, one corresponding to the metabolic heat generation and 

another one modeling a plane source, the solution (5.7) reads like 
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( )
( )

( )
( )

( )

( )( )
2

2'

4

, ',

0 '

1
'

4

x xt t
t

x t x

x

e q Q dx d
t

γ τ
τ

τ
τ

τ
π τ

−∞ − − −
−

= =−∞

Θ = +
−

∫ ∫  (5.8) 

 

Now ( ', )xQ τ  represents a plane source releasing its heat at x=0 continuously form t=0. Its 

mathematical representation is given by 
( ) ( )( ', ) 'x s x

Q P
ττ δ=  where 

( )

( )s

s

a

g
P

kT

τ

τ
=

 
is the 

dimensionless source strength; 
( )sg
τ

(W/m2) is the strength of the source and it may be time 

dependent. Substituting this expression in equation (5.8) the temperature distribution is: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
2 2

2 2'

4 4

,

0 ' 0

1
'

4 4

x x xt tt t
St t

x t

x

P
qe dx d e d

t t

γ τ γ τ
ττ τ

τ τ

τ τ
π τ π τ

−∞ − − − − − −
− −

= =−∞ =

Θ = +
− −

∫ ∫ ∫  (5.9) 

 
 

 
Figure 5.7: Transient Temperature Distribution due to a Plane source in an 

Infinite Domain 
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With the normal value of volume fraction concentration of 0.003φ ≈  and the generation rate 

predicted by the heat generation model of Rosensweig, it was shown at the beginning of this 

chapter that a heat deposition of 748500 (W/m3) is achievable with magnetite particles. 

In order to reach therapeutic temperatures, having the particles disposed in a planar region of 

tissue, a thickness of 0.76 mm is needed which means a generation rate of 570 W/m2. The 

transient temperature profiles for this particular configuration of the magnetic nanoparticles 

are shown in Figure 5.7. 

5.2.2 Line Source Solution in an Infinite Domain 
 
The mathematical formulation is given by: 

( ) ( )
( ) ( )

, , 2

, ,

1

0 ; 0

r t r t

r t r t
r H

t r r r

t r

γ
∂Θ ∂Θ ∂

= + Θ +  ∂ ∂ ∂ 

> ≤ < ∞

  (5.10) 

 

( )0,
 finite

t
Θ =   (5.11) 

 

( ),0
0

r
Θ =   (5.12) 

 
Using the free-space Green’s function obtained for this case, equation (4.45), in the general 

solution (4.51) and letting the exponent p of the spatial variable to be unity, the solution is 

written as follows: 

( ) ( ) ( ), , | ', ',

0 ' 0

' '
t

r t r t r r

r

r U H dr dτ τ

τ

τ
∞

= =

Θ = ∫ ∫   (5.13) 

 

Then, recalling that ( ) ( )', ',r r
H q Q

τ τ
= + : 

( ) ( )
( )

( )
( )

( )

( )( )
2 2

2
'

4

, ','
00 ' 0 2

1
'

2

r r
t t

t

r t rrr
r t

I e q Q dr d
t

γ τ
τ

τ

τ τ

τ
τ

+
∞ − − −

−

 
 = =  − 

Θ = +
−∫ ∫  (5.14) 
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Now, the relationship between the volumetric source ( ', )rQ τ  and a line source releasing its 

heat at 0r =  continuously from 0t =  is ( )

( )( ', ) '2 '

L

r r

P
Q

r

τ

τ δ
π

= , where ( )
( )L

L

a

g
P

kT

τ

τ =  is the 

dimensionless strength of the line source and may be time-dependent. ( )L
g

τ (W/m) is the 

dimensional strength of the source. The substitution of this expression for ( ', )gen rQ τ  in (5.14) 

and performing the integral, the expression for the temperature distribution is: 

( )
( )

( )

( )
( )

( )
( )

( )
( )

( )
2 2

2
2 2

''
0

2 4 4

,

0 ' 0 0

' '
2 4

r rrr rt tt t
t Lt t

r t

r

I
P

qr e dr d e d
t t

γ τ γ τ
τ ττ τ

τ τ

τ τ
τ π τ

+ 
∞   − − − − − − − − − 

= = =

Θ = +
− −∫ ∫ ∫  (5.15) 

 
 

 
Figure 5.8: Transient Temperature Distribution due to a Line source in an 

Infinite Domain 
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In order to achieve therapeutic temperatures with a generation of P=784500 (W/m3), the 

radius of the line source must be 3.33 mmLg
r

Pπ
= = . The transient temperature profiles 

yielded by this particular configuration of the sources are shown in Figure 5.8. 

 

5.2.3 Point Source Solutions 
 

5.2.3.1 Finite Spherical Domain 

The mathematical formulation for a spherical domain with an arbitrary source term is (from 

equation (3.7)): 

( ) ( )
( ) ( )

, ,2 2

, ,2

1

0 ; 0 1

r t r t

r t r t
r H

t r r r

t r

γ
∂Θ ∂Θ ∂

= − Θ +  ∂ ∂ ∂ 

> ≤ <

  (5.16) 

 

( )0,
finite

t
Θ =   (5.17) 

( )1,
0

t
Θ =   (5.18) 

( ),0
0

r
Θ =   (5.19) 

 

Where ( ) ( ), ,r t r t
H q Q= + . 

Defining a new variable ( ) ( )

2

, ,

t

r t r t
reγΦ = Θ , and substituting: 

 

( ) ( )
( )

2

2

, ,

,2

0 ;  0 1

r t r t t

r t
H re

t r

t r

γ
∂Φ ∂ Φ

= +
∂ ∂

≥ ≤ ≤

  (5.20) 

( )0,
0

t
Φ =   (5.21) 

( )1,
0

t
Φ =   (5.22) 

( ),0
0

r
Φ =   (5.23) 

 

By using the Finite Fourier Transform method, the solution is given by: 
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( ) ( )( ),
1

n tr t n r
n

φ
∞

=

Φ = Φ∑   (5.24) 

 

Where ( ) ( )2 sin nn r
rφ λ=  are the basis function; ;   1,2,3,...n n nλ π= =  are the eigenvalues 

of the associated Sturm-Liuville problem; and ( )n t
Φ  are the spectral coefficients of the 

Fourier expansion (5.24). 

In order to obtain an expression for the spectral coefficients, the partial differential equation 

(5.20) is transformed with respect to the basis functions ( )n r
φ  and the weighting function 

(which is unity for equation (5.20) accordingly to the associated Sturm-Liuville problem). 

The transformation of each term of equation (5.20) yields: 

1

0

n
n

d
dr

t dt
φ

Φ∂Φ
=

∂∫   (5.25) 

1 2
2

2

0

n n ndr
r

φ λ
∂ Φ

= − Φ
∂∫   (5.26) 

( )2 2
1

0

1
2

n

t t
n

n

qre dr qeγ γφ
λ

−
= −∫   (5.27) 

2 2
1

0

2
4

t tn
n

P
Qre dr eγ γλ

φ
π

= −∫   (5.28) 

In equation (5.28), 
( )

*

24

r
P

Q
r

δ

π
= , which is the mathematical representation of a point source 

located at r=0. The * means that P is in the dimensionless space. 

Subtitution of equations (5.25)-(5.28) in equation (5.20) yields: 

22 tn
n n n

d
A e

dt
γλ

Φ
+ Φ =   (5.29) 

 
The transformed initial condition (5.23) is: 

( )0
0

n
Φ =   (5.30) 
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Where ( )
*

2 1
4

nn
n

n

P q
A

λ

π λ

 
= − − 

 
. 

 
The solution of the ordinary differential equation of order one, (5.29), gives the spectral 

coefficients ( )n t
Φ : 

22

( ) 2 2
n ttn

n t

n

A
e e λγ

λ γ
− Φ = −

  + 
  (5.31) 

 
Then: 

( ) ( )
22

( , ) ( ) 2 2
1 1

2
sin n ttn

r t n t nn r
n n n

A
r e e λγφ λ

λ γ

∞ ∞
−

= =

 Φ = Φ = −
  + 

∑ ∑  (5.32) 

 

Finally the temperature is given by ( )
( ) 2,

,

r t t

r t
e

r
γ−

Φ
Θ = : 

( ) ( )
( )

( )
( )2 2*

, 2 2
1

sin2
1 1

4

n tn nn
r t

n n n

rP q
e

r

γ λλλ

π λ λ γ

∞
− +

=

   Θ = − − −    + 
∑  (5.33) 

 
Figure 5.9 shows the transient response in temperature at different times due to a point source 

located at the center of a sphere of radius R=0.1 m. The solution has a singularity at r=0 

which is represented by the factor 1/r in equation (5.33). 

This figure reveals the highly localized effect of a point source. A fast decay in temperature 

with the radial coordinates is observed which is expected given that the effective thermal 

conductivity for the tissues is very small. This effect is discussed in detail in Section 5.2.4. 

A single iron nanoparticle can generate 91.2 10×  (W/m3) (Rabin 2002). Then, the energy 

released by this single particle, considering it is of 10 nm radius and of spherical shape, is 

( )
39 9 154

1.2 10 10 10 5.03 10
3

π − −× × = ×  (W). Note from Figure 5.9 that 0.08 (W) are required 

for a single particle in order to achieve a temperature rise of 12 °C. 
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Figure 5.9: Transient Point Source Solution for a Finite Sphere 

 
This analyses highlights that the solely action of one single particle is not enough to reach 

therapeutic values for the temperatures. Instead, there must be distributed in a certain region 

within the tumor as shown in section 5.1. 

 

5.2.3.2  Infinite Spherical Domain 

 
The mathematical formulation for the bio-heat equation in an unbounded 1-D domain is 

derived from equation (3.7) as: 

( ) ( )
( ) ( )

, ,2 2

, ,2

1

0 ; 0

r t r t

r t r t
r H

t r r r

t r

γ
∂Θ ∂Θ ∂

= − Θ +  ∂ ∂ ∂ 

> ≤ < ∞

  (5.34) 
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( )0,
 finite

t
Θ =   (5.35) 

 

( ),0
0

r
Θ =   (5.36) 

 
The heat sources allowed by this formulation must be such that axis-symmetrical conditions 

are present. 

Using the Green’s function solution equation (4.51), the solution would be: 

( ) ( ) ( )
2

, , | ', ',

0 ' 0

' '
t

r t r t r r

r
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Finally, the solution for ( ),r t
Θ  is expressed as: 
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Now, ( )',r
Q

τ  represents a point source of strength ( )P
P τ  releasing its energy at 0r =  

continuously from times 0t =   whose mathematical representation is: 
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Then, the final solution for the point source is: 
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Figure 5.10 shows the temperature distribution for different times due to a point source 

located at the center of an infinite sphere. The solution presents a singular behavior at r=0.  

 

 
Figure 5.10: Transient Temperature Distribution due to a Point source in an 

Infinite Domain 
 
Comparing this profile with the one for a finite domain, it can be seen that a higher value for 

the power of the source is needed in the former to produce the same temperature profile. The 

explanation of this behavior lies in the fact that the effect of the boundary condition becomes 

negligible as the domain size goes to infinity.  
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Observing the profiles produced by the plane, the line and the point sources, it can be seen 

that, the more localized the source the steeper the change in the temperature profile. 

Inversely, the temperature penetration depth decreases when the heat deposition is more 

localized. 

 

5.2.4 Shell Source Solution 
 
The solution for the temperature distribution inside a full sphere is developed here by means 

of the Finite Fourier Transform. The spherical domain has a shell source at 0r r=  being 

modeled by a Dirac delta function. 

Given the symmetry of the problem the temperature is (r,t) dependent. The mathematical 

formulation is given by equation  (3.7) and it is written down here in a suitable form as: 
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Performing the transformation 
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The basis function suitable for this problem are 

( )2 sinn nrλΦ =   (5.49) 

 

Where n nλ π= . The transformation is given by 
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Taking this transform to each term of the differential equation along with the initial 

condition: 
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Where 
( ) ( )*

0

0

sin 1
2

4

n

n
n

n

P r q
A

r

λ

π λ

 −
= − 

  

 and Q was replaced by ( )0

*

24 r r

P

r
δ

π −
 which models 

the shell source. 

The boundary conditions are automatically included when transforming the diffusion term 

but because of the homogeneity they add nothing to the resulting ordinary differential 

equation. 

The solution of (5.51) and (5.52) is: 
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Taking the inverse transform, the dimensionless temperature is 
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Or, reversing the transformation by 
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Note, from the dimensionless form of the sources, that the relationship between the non-

dimensional source and the dimensional one is 
*2

* 0
2

0a

Pr
P

kT r
= . 

 
Figure 5.11: Transient Temperature Due to a Shell of Nanoparticles at Tumor 

Surface. Radius of the shell: r0=0.01 m. 
 
Valuable information can be extracted from the solution for a shell source. As it can be seen 

in Figure 5.12, an almost flat temperature profile is obtained inside the region that is 

modeling the tumor. This is because during the transient the effect of the heat that flows 

inside this region is to increase the temperature till the steady state value. Once the steady 

state is reached, temperature gradients are small in this region compared to the gradients 

present in the outer region corresponding to the healthy tissue. Due to the low thermal 

conductivity of tissue, according to Fourier’s Law, temperature gradients in this zone must be 

large so the power that is being generated can be diffused producing a steep decrease in 
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temperature in the healthy tissue. Values for the thermal conductivity of some tissues is 

presented in Table 5.1 and also it is included the value for water for a comparison. 

 
Figure 5.12: Augmented region of Figure 5.11. Radius of the shell: r0=0.01 m. 

 
This result highlights that a temperature profile close to the ideal therapeutic temperature 

profile can be achieved if the magnetic nanoparticles are retained by cancerous cells located 

in the surface of the tumor. This can be done by attaching specific binders to the 

nanoparticles during the process of synthesis. 

Table 5.1: Thermal Conductivity of Some Tissues 
Tissue Thermal Conductivity (W/m K) 
Tumor periphery 0.511 
Tumor core 0.561 
Colon cancer 0.545 
Bone 0.41-0.63 
Blood 30.492 9 10−± ×  
Pure water 0.627 
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Considering a spherical solid tumor of 2 cm diameter, the minimum thickness of the shell 

needed to produce the temperature profile shown in figure Figure 5.12 can be determined. 

Knowing that 748500 (W/m3) may be generated, with a volume fraction of particles around 

0.03, and that 0.8 (W) are needed to reach therapeutic temperatures, the thickness of the shell 

can be estimated as: 

( )3 3
2

0.8
748500

4
0.01

3
rπ

=
−

  (5.56) 

 

Where 2r  is the outer radius of the generating shell and its value from equation (5.56) is  

2 0.010786r =  m yielding a thickness of 47.86 10−×  m. 

5.2.5 Parametric Analysis 
 
In highly vascularized tumors the blood perfusion rate can be as large as 0.002 (m3/s/m3) 

which means that the blood flow could considerably move down the temperature profile and 

deviate it away from the therapeutic. Besides depending in the vessel network, the perfusion 

rate is a natural way in which the metabolism regulates the body temperature. Then, it is 

expected to have higher perfusion rates during the heating.  

By plotting the temperature distribution for some values of the perfusion rate within the 

feasible range the effects over the profile is revealed. For instance, from Figure 5.13 it is 

clear that the perfusion rate does not modify too much the highest temperature when the heat 

is deposited highly localized but this is not the case for the penetration depth of the profile. A 

steep decay in temperature is observed for ωb= 0.002 s-1. 

Figure 5.14 shows the influence of the perfusion rate in the temperature profiles for a shell 

source which intents to model the nanoparticles deposition in the surface of a tumor. 
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The negative effect of blood perfusion is that the power to be dissipated within the tumor 

tissue needs to be higher than the one that would be obtained without blood perfusion, or in 

other words, for fixed magnetic field conditions (determined by safety and tolerance), the 

Specific Absorption Rate (SAR) of the ferrofluids must be such that even with the effect of 

heat removal by perfusion, the therapeutic temperarute is still achievable. On the other hand, 

blood perfusion helps to reduce the penetration depth in the healthy tissue. 

 

Figure 5.13: Effect of the Blood Perfusion Rate in the Temperature Distribution 
for a Point Source in a Sphere, R=0.1 m 

 
The average time for the temperature to reach the 95% of its steady state value is around 

forty five minutes and all the plots show the results for sixty minutes to be sure that this 

curve corresponds to steady state. From the steady state curves, the penetration depth of the 
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therapeutic temperature achievable can be considered to be around 1.5 – 2.0 cm in the worst 

scenario. 

The results shown in Figure 5.14 indicate that the heat removal due to the blood perfusion 

may produce significant changes in the temperature profile achievable during the treatment. 

This fact suggests that the effect of blood perfusion should not be neglected and should be 

included in the simulations. Reliable values for this coefficient for different organs and body 

regions may be found in literature, for instance see (Kreith F. 2000). 

 
Figure 5.14: Effect of the Blood Perfusion Rate in the Temperature Distribution 

for a Shell Source 
Figure 5.15 shows the temperature profiles for different volume fraction of particles. These 

particles were assumed to be distributed in a shell of 0.8 mm thickness. The magnetic field 

intensity and frequency were fixed in the introductory paragraphs at the beginning of this 
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chapter leading to a linear relationship between the power dissipated and volume fraction. 

The heating rates under these conditions are shown in Table 5.2. The values for the volume 

fraction adopted are very close to the typical magnetite dosages of 10 mg of Fe per gram of 

tumor. 

Table 5.2: Heat generation for different volume fraction  
Volume fraction 0.0022 0.0026 0.0030 0.0034 

Source intensity [W] 0.5983 0.7070 0.8159 0.9245 

 

 

Figure 5.15: Transient temperature profile for a shell source of 0.8 mm thickness 
and different volume fraction. Outer radius of the shell r0 = 0.01 m 
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6 CONCLUSIONS 
 

Several numerical and analytical solutions of Pennes’ model (bio-heat equation) were 

presented in this work. 

There was no need to consider the mass diffusion coupled to the heat diffusion because was 

proven that the time scales are very different being the time scale for the mass diffusion 

process much higher than that for heat diffusion. This yielded an easier problem to be solved 

and made the research to be focused in the bio-heat diffusion process. 

The Monte Carlo method was shown to be an excellent candidate for bio-heat transfer 

problems in which the temperature of few isolated points within the domain is required. The 

method is not efficient for field calculations, even though a coarse grid can be used to get an 

approximation. The size of the sample must be as large as 5000 random walks in order to get 

acceptable accuracy. 

For field calculations, the finite volume method was used. By integrating the bio-heat 

equation and performing a discretization a set of linear equations was developed and the Bi-

Conjugate Gradient Stabilized solver adapted from literature has shown to be very efficient. 

 Fundamental or free-space Green’s functions have been developed for the bio-heat transfer 

differential operator in the most used coordinate systems. These are the solution of the 

differential equation for an unbounded domain such that no particular boundary conditions 

are used in the solution. These solutions have not been reported in literature yet. 

Characteristic sources in each of the commonly used coordinate system were proposed for 

using the Analytical methods used in this work. These solutions are valuables for getting 

some insight about the heat diffusion process during the magnetic fluid hyperthermia and 
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they are also useful for testing numerical codes used for solving problems where complicated 

geometries and/or sources distribution are present. 

The point source solutions showed that the heating rates achievable from a single 

nanoparticle are not enough to produce the local temperature rise needed in order to reach 

therapeutic levels. 

The solutions suggested that an analysis of the order of magnitude of the heat removed by 

blood perfusion must be performed. The effects of blood perfusion can considerably reduce 

the temperature profile and it cannot be neglected; there is no need to consider the variations 

in the thermo-physical properties of the tissue because they are negligible and do not produce 

significant modifications in the temperature profile; the profile is steep near the source which 

traduces in a small penetration depth of the higher temperatures in the tissue; therapeutic 

values for the temperature were shown to be obtained after 15~20 minutes since the particles 

start generating heat. This means that if the tumor must be hold in the therapeutic range of 

temperatures for 30 minutes, the exposure to the magnetic field must be of 45 minutes, at 

least. 

The best temperature profile, i.e. the one closest to the ideal, is obtained with a superficial 

covering of the tumor with the nanoparticles. An almost constant temperature is got inside 

the domain without penetrating too much the profile in the healthy tissue. 
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