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Abstract

This document presents digital signal processingnéilations and computing
methods using the DSP processor TMS320C6711, o&slénxstruments, to implement
multirate systems with discrete and finite lengtignals. In many digital signal
processing applications sampling rates need taHsnged for high computational
efficiency losing the desired information carrieg the signal. These multirate systems
play an important role in many engineering and caomications applications such as
sensor arrays, beamformnig, FIR filters, filter kentime frequency representations and
systems with associated diverse sampling rateci@panphasis is given to the concepts
of modularity and scalability during the hardwarglementation.

The main goal of this work consists in reducing saenpling rate to control the
lose of desired information in a communication sigin order to obtain only the desired
information stored in the original communicationgrsl with associated lower
computational effort. The implementation of thesmaepts was made on the DSP
processor TMS320C6711 of Texas Instruments. Biralinultirate beamforming with

32 sensors were implemented on the DSP procesisgy simulated data from Matlab®.



Resumen

Este documento presenta formulaciones de procestomiigital de sefales y
métodos computacionales usando el procesador TMEFAA DSP de Texas
Instruments para implementar sistemas multi-frecizZerde muestreo con sefales
digitales y de finita duracién. En muchas aplicae®mde procesamiento digital de sefiales
la frecuencia de muestreo necesita ser alteradayper mayor eficiencia computacional
perdiendo solo la informacion que se desea deflal gortadora . Estos sistemas de
multi-frecuencia juegan un papel muy importante emchas aplicaciones de
comunicaciones e ingenieria tales como: arreglosetsores, “beamforming”, filtros
FIR, bancos de filtros, representaciones tiempaufacia y sistemas con diversas
frecuencias de muestreo. Un énfasis muy especiadaskd a los conceptos de
modularidad y escalabilidad durante la implemedtadel hardware.

El objetivo mas importante de este trabajo consstaeducir la frecuencia de
muestreo de una sefial teniendo el control de tarirdcion que se pierde en una sefial de
comunicaciones. Para entonces obtener solo lamiaition deseada con una asociada
disminucién en el esfuerzo computacional. La imgetacién de estos conceptos fueron
hechos utilizando el procesador TMS320C6711 de Jémstruments. Finalmente un
sistema de multi-frequencia de muestreo y “beamifigin con 32 sensores fue

implementado en el procesador DSP usando datosasiosudesde Matlab®.
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Chapter 1

Introduction

This work deals with the formulation of computingetmods for the action of
multirate systems on discrete and finite lengtimalg where the sampling rates need to
be changed for high computational efficiency. Thesstirate systems play an important
role in many engineering and communications apfidina such as sensor arrays,
beamformnig, FIR filters, filter banks, time freaquy representations, and systems with

associated diverse sampling rates.

Kronecker Structured Multirate (KSM) offers the imatnatical framework of this
Signal Processing System. It explains, with matrfarmulations, different
representations, operations, and transformationsoofmunications signals represented

by vectors.

Sensor Arrays consist of a set of sensors thatiospaiporally measure a
wavefield. Several sensors, sampling a common \ial&s may be merging to produce

more refined information about the communicatiamnais.

The emphasis of this work is about modular andadgdatomputing methods, for
signal processing applications using Digital SigRabcessors (DSP). The modular and
scalable approach implies that the functions anacstres of the algorithmic treatment

should adapt to changes in the scales of an assdceystem, and the size or



dimensionality of the signals to be processed. flindamental information obtained by
our algorithms are important variables involvedcmmmunications signal processing
systems to quantify, represent, transform, encdeéepde, qualify information-carried

and obtained by sensor arrays.

Algorithm is defined as a procedure to solve a lenobin a finite number of steps.
A problem is anything which requires a solution. ltitate systems are defined as
systems that can increase or decrease the sangplaung (and thus the sampling rate)
of individual signals before, or while, processitigem. Communications signal
processing is described here as an area dealing thié analysis, design, and
implementation of circuits, signals, and systemsth® transmission and reception of
communications signals. A communications signalened as a information coded by a
signal, appearing in any of the stages of an amyitcommunication system. This work
concentrates on Multirate systems for digital comioations and the way to implement

this concept using sensor arrays technology.

1.1 Previous Work

The interest of this work is in applications in wiisignal enhancement can be
achieved by processing the waveform received byingles sensor, but often it is
advantageous to use an array of sensors usingrat@ltechniques. The treatment of a
desired signal is mostly done through algorithneichniques implemented on physical

DSP units. The technology used to make the pravgssidigital signals varies from PC



workstations, matrix software development toolstilwhgital signal processors (DSP)
units. Some of the most relevant publications asoaated with the development of
algorithm formulations based on Kronecker prodaetd multirate techniques related to

sensor arrays and their implementation as deschibkxv.

J. Jonson, R. W. Jonson, D. Rodriguez, and R. Tafimroposed a methodology
for designing, modifying, and implementing Fourteansform algorithms on various
architectures [1]. In 1990, they presented all dlescriptions and properties of tensor
products (Kronecker products) that will play a majmle in the design and
implementation of Fourier transform algorithms. Thamalism of tensor product
notation can be used to keep track of the compleex calculation needed in Fourier

transform algorithms.

D. B. Ward, Z. Ding, and R. A. Kennedy proposed@abband DOA estimation
using frequency-invariant beam-space processing If2]1995, they presented a new
method of beam-space direction of arrival (DOA)ireation for multiple far-field
broadband signals. A novel multirate beamformimgcttire having a frequency invariant

property is applied to the array outputs.

D. B. Ward, R.A. Kennedy and R. C. Williamson preed a theory and design of
broadband sensor arrays with frequency invarianfiéédd beam patterns [3]. In 1998,
they presented the frequency invariant beam pateoperty defined in terms of a

continuously distributed sensor, and the problendedigning a practical sensor array



was treated as an approximation to this continsamsor using a discrete set of filtered
broadband omni directional array elements. Thegmesiethodology is suitable for one-,

two-, and three-dimensional array elements basedtlitirate techniques.

M. Ghavami and R. Kohomo, proposed a rectangulayarfor uniform wideband
beamforming with adjustable structure [4]. In 200y presented the increasing of the
demand for different broadband services and appits that was a key problem of the
future mobile communications system. Because thadtions of the available spectrum
for providing high data rate communications for nellular scribers, it is predicted that

the application of smart antennas can increassytstem capacity and performance.

A. Quichanegua and D. Rodriguez, proposed a KrarddkT multi- beamforming
implementation approach [5]. In 2003, they presenew methodology for the hardware
implementation of multi-beamforming algorithms bédse®n Kronecker products
decomposition. Kronecker products algebra was usehis work as a tool language to
identify integrated and coherent manner similasiaed differences between fast Fourier
transform (FFT) algorithm formulation in order t@héeve efficient hardware core

implementation.

J.C Chen, L.Yip, H. Wang, D. Maniezzo, R.E. HudsdnElson, K. Yao and D.
Estrin proposed a DSP implementation of a disteduacoustical beamforming on a
wireless sensor platform [6]. In 2003 they proposegerform beamforming based on

coherent processing of acoustical waveforms catbcirom the sensor nodes for



detection, localization, tracking, identificatiorgnd signal to noise ratio (SNR)
enhancement of acoustical sources counting the euwibsuch sources and estimating

the impulse responses of the acoustical channels.

1.2 Justification

The function of a Multirate system is to alter g@mpling rate (up-sampling/down-
sampling) of discrete-time signals to give a nemlang rate for other signal processing
system. This new sampling rate offers the systdma, gossibility to perform their
operations spending lower computational effort. Tlhever computational effort is
obtained because the new length of the communicaiignal to be processed decreases
with respect to the original sampling rate, thisssociated directly with the number of

points or samples of the original communicatiomalg

The main goal of this work consists in reducing siaenpling rates but controlling
the lose information of the original communicatggnal, in order to extract the relevant
information stored on the original communicatiognsil with the associated lower
computational effort. The implementation of thisncept was made using the DSP
processor TMS320C6711 of Texas Instruments usingreay of microphones and A/D
converters. For complete characterization of souyidknomenon, time-frequency
algorithms were implemented in order to obtainttikh capability of this floating point
hipper performance processor. The theoretical dmonk is based on Kronecker

products and the physical structures are basedrsoss array.



1.3 Thesis Objectives

» Understand the concepts of multirate signal prangsssensor arrays and
Kronecker Array Signal (KAS) algebra as a langufmyecomputational signal
processing systems.

* Learn about Matlab tools, DSP architectures, P@esis, in the field of multirate
and sensor arrays.

» Develop algorithms for multirate sensor arrdyased on the characteristics of
modularity and scalability.

* Map different algorithms into DSP units during thglementation process.

1.4 Research Methodology

In order to achieve the proposed objectives ofttiesis, we fallow method bellow:

* Review and research of the literature and fundaahgminciples involved in
digital signal processing, multirate signal protegssensor arrays, filters banks
and Kronecker mathematical formulations, in order dbserve, quantify,
represent, transform, qualify and render informatarrying signals in our sensor
arrays reality. This step involves analysis andtlsysis of the theoretical
information and identification of specific hardwased software tools used for

digital signal processing applications.



* Define the mathematical formulation based on Kréeegroducts to develop
algorithms as operations matrix-vector, using MAB.Awitch stands for
MATrix LABoratory).

» Selection and learning of software and hardwardstdor development and
implementation of the algorithms to achieve muléraensor arrays. In this step
we will define the environment of development amdplementation of the
algorithms for DSP units. This environment will lised throughout the PC
Workstation platform, MATLAB tools, and digital sigl processing (DSP)
microprocessor units.

* Mapping algorithms developed to DSP computing uméisig a defined modular,

scalable methodology. Coding the algorithms usidgrnguage.

1.5 Original Contributions

This work examines the implementation of multiratencepts on real DSP unit
such as DSP320C6711, that is the last floatingtd@8P processor developed by Texas
Instruments (T.l.). It determines the capabilifyrese units to perform signal processing
operations based on double precision variables{#®}- in order to evaluate execution

time and memory capacity of this processor.

In addition the work developed physical hardwarelamentation of sensors
array using an array of six-microphones as unitegisional array (ULA), developing

hardware for a signal conditioner interfaddR-0404-1)and obtaining real data from



microphones way 16-bits six- channels A/D convei#d»S8364 of T.l.). For a complete

characterization of particular sound phenomenon.

In order to evaluate the DSP320C6711’'s capabilitprocessing floating point
variables, different signal processing algorithmistime-frequency representations were
implemented. Some of these algorithms are ShorteThourier Transform (STFT),
Cyclic Correlation and Ambiguity Function (AF) ugimeal data from A/Ds or simulated
with Matlab®. All these algorithms and the datadusee stored on a CD as a library
resource for students working at the university D&soratories. Because there are not

tools like this provided before.

Finally, as an important application a Multirate adgorming system was
developed using real and simulated data. This shbtwatsthe sensor array structures
based on Kronecker products are an important tool miodularity and scalability

approach, which are used in Radar and Sonar apphica



Chapter 2

Multirate Systems

This chapter presents basic concepts on multirgsteims [7]. Discrete time
systems with unequal sampling rates, in variousspairit are called multirate systems.
Where sampling rate needs to be converted into cuiv&ent signal with different
sampling rate. To achieve this, is important toarsthnd the concepts of down-sampling
and up-sampling and their input and output relaionthe time and frequency domain.
The cascade equivalences for up and down samplenthan explained too. For cascade
up and down sampling rate alterations there hdstesome details given, of the use of
lowpass digital filters. The frequency response cdpations of these filters are
developed next. A computational sampling rate irm@etation is then illustrated by a
specific design problem. The DSP320C6711 proces$ofexas Instruments and its

development kit was used to perform the real impletation.

2.1 The Basic Sample Rate Alteration Concepts

The two basic components in sampling rate altemadre the up-sampler and down-
sampler. Figure 2.1 shows the block diagram reptatien for this two components. The
block diagram representation of the up-sampleq eddled “sampling rate expander” and
the block diagram of the down-sampler “sampling i@mpressor”.

Thel positive integer factor represents the up-samplesduced between each sample

of the original signak[n] to produce the output signgln], and theM positive integer



10

factor represents the down-samples taken from tlggnal signalx[n] to produce the

output signay|[n].

X[ il Xl g

a) b)

Figure 2.1Block diagram representation for a) Up-samplingpbwn-sampling

2.1.1 Time Domain Characterization

An up-sampler with an up-sampling factgrwherel is a positive integer, develops
an output sequencg[n] with a sampling rate that ik times larger than the input
sequenc&([n]. This operation is implemented by inserting 1 equidistant zero-valued
samples between two consecutive samples of the sgguence|n] according to the

relation

. (2.1)
0; otherwise

Xx[n/L];n=0,xL,x2L,....
y[n] = :
The up-sampling operation is illustrated in FigRr2 using Matlab®.
In a real application, the zero-valued samplesriadeby the up-sampler are replaced
with appropriated values interpolated using filtgrprocess. This makes the new higher-

rate sequence useful. This process is called ioliEiipn, and will be discussed later in

this chapter.
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Figure 2.2lllustration of the =3, up-sampling process.

Furthermore, the down-sampler with a down-sampfactor M, whereM is a
positive integer, obtains an output sequey{oé with a sampling rate that is {@jth of
the input sequencdn]. The down-sampling operation is implemented bypkeg every
Mth sample of the input sequence and remoMAg in-between samples, to generate the
output sequence according to the relation
y[n] = x[nM ]. (2.2)
As a result, all input samples with indices eqoahm integer multiple o¥, are retained

at the output and all others are discarded, asshowigure 2.3 .
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Input Sequence

“SZWTTH A,
SAFE

1 1 1 1 1 1 1 ]
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e
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Tirne index n

Figure 2.3lllustration of the M =2, down-sampling process.

The up-sampler and the down-sampler are linear tiout-varying discrete system.
Down-sampling time-varying property is demonstrdtad

y.[n] = x[Mn - ng]
yln = ng] = x[M (n = ny)]
X[Mn = Mn ] # y,[n]. (2.3)

Up-sampling time-varying property is demonstrated f

y.[n] = x[n/L = n,]
y[n-=ny,] = x[1/L(n=n,)]
X(n/L-n,/L]# y[n]. (2.4)

The linearity property of down-sampling is demoatdd using superposition
y [n] = x[Mn]

Xs[n] = ax,[Mn ]+ Sx,[Mn ]
ys[n] = ay,[Mn ]+ By,[Mn]=ax[Mn]+ Sx,[Mn]= x,[n].25)
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The linearity property of up-sampling is demon&datising superposition

y [n]=x[n/L]
Xs[n]=ax,n/L]+ Bx,[n/L]
y.[n] =ay[n/ L]+ By,[n/L]=ax[n/L]+ Bx,[n/L]=X[n]. (2.6)

2.1.2 Frequency Domain Characterization

For better understanding we first derive the retet between the spectrums of the

input and the output for a factor o£R up-sampler.

If

y[n]:{x[n/Z];.n:O,J_rL,J_rZL,.... | -
0; otherwise
In terms of the z-transform, the input-output rielatis then given by
Y(z) = nimy[n]z‘“ :n:ix[n/Z]z‘” , (2.8)
replacing rnen/2
S x[m]z 2™ = X (2?). (2.9)

m = —oo
In general it can be said that for a factor_afip-sampler the outpw transform of the

output with respect to the input is given by
Y(z)= X(z"), (2.10)
for z=e!“the above equation becomes

Y (e'?) = X (el®) (2.11)
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indicating that the Fourier transform is compresbgd factor ofL, in this casd_1=2.
This process is called “imaging” because we Qeit additional image of the input
spectrum in the base band. Figure 2.4 shows threal@pectrum of the input signgh],
then this signal is up-sampling bhy=2, Figure 2.5 shows the output signft] and the

correspond spectrum with the imaging of the oripgpeectrum.

=

o
221

Magnitude

01k

0 0 20 o 40 80 B0 70 B0 %0 100
Time index n
Input Spectrum
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0 01 02 03 04 05 D6 07 08 09 1
ol

Figure 2.4 Input sequence and input spectrumxior] .
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Figure 2.50utput sequence and output spectrunyfo}.
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For L1=3 Figure 2.6 shows the original input spectrum andespondL-1 spectral

imaging of the output.

Input Spectrum
T T

o s s S, _

Magnitude

i i i i h . 1 . .

o 01 02 03 04 05 06 07 0B 09 1
wf!
Output Spectrurn
T T T

05k 4 il

Magnitude

1 . . H | i f .
o 01 02 03 04 05 0B OF 08 083 1
wf!

Figure 2.6 Input and output spectrum, Up-samplingLigy=3.

Now we derive the relations of the input and outppéctrums relations of a down-
sampler, applying the z-transform.
If

y[n] = x[Mn ]

Y(z)= 3 x[Mn]z™". (2.12)

n= -0

The right hand equation cannot be directly exprbsseerms ofX(z) An intermediate

sequenceintn] is used

xim[n]:{x[”]’”zo’iM x2M 2.13)

0; otherwise

Then
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Y (z) = _i X[Mn ]z™" = _i X [MNn 127"

k = Mn

(2.14)

Y(2) = ¥ xn[klz™9™ =X, [2""],

Now if xint{n] can be related te[n] through xint[n] = c[n]x[n] , where ] is defined by

c[n] = 1;,n=0,rM ,x2M 015
B 0; otherwise (2.15)

A convenient representation ] is given by
1 ™M -1 Kn
c[n]=——> W, . (2.16)
M «k=o
where W,, =e™'#”™ . Substituting inint{n] = c[n]x[n] and making use of z-transform of

xint[n], we obtain

<
I
i

1 m-1 _
Y(z)=-—"—-3 X[z""W_,"]. (2.18)
M «k=o
To understand the implication relation of the abosation, we can consider the case of

down-sampleM =2, by replacing z = e!“ then

N

Y(z)z%ilxu“zwz‘k], (2.19)

k=0
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expanding and replacing we get
Y(e) = ~{x (e« x (ere il @20

The output spectrum expresses the original speabfjm] expanded by 2, and the same
expanded spectrum shifted 2w . Figure 2.7 shows the input sequence and speaifum

X[n], Figure 2.8 shows the output sequence and speadtrdawn-sampling by |=2.

=
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Figure 2.7 Input sequence and spectrunmxpf].

Output Sequence y[n] M=2
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Figure 2.8 Output sequence and spectrunyfof], down-samplindv |=2.
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We need to consider that if the original spectrirte’®) of the input sequencdn] is
non zero for|a.12 /2, this causes an overlap and the output spectrymeriements

“aliasing”, that takes place due to undersampligufe 2.9 shows an input sequenge] x

with spectrumX (e’ )and|ej = 77/2, the output experiments “aliasing”.

Input Sequence x[n)

o2
=]

01k

Magnitude

01k

02
0

Time index n
Input Spectrum

Magnitude

07 08 0% 1

Figure 2.91nput sequence and spectrum of x[n], with non :{erdgaj >7l2.

Output Sequence y[n] M=2

2 o
o =
T

Magnitude

o

=}
[}

5 10 1\ 20 25 30 3 40 45 50
Time index n
Output Spectrurn Aliasing Efect

Magnitude

0 01 02 03 04 05 D6 07 08 09 1
ol

Figure 2.100utput sequence and spectrunyjof], with aliasing effect.
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2.2 Cascade Connections

The complex multirate system is formed by an taanection of basic sample rate
alteration devices and the components of an LTitaifjlter. In many applications these
devices appear in cascade form, because not otdgenup or down sampling rate is
needed Furthermore some applications use up/dowoven/up fractional rates as shown

in Figure 2.11.

X[L L1 viln] Ml_._yw[n]
a)

X[L Ml V2[n]= LT _’yg[n]
b)

Figure 2.11Cascade arrangements a) up/down sampler b) dowafapler.

2.3 Filters in Sampling Rate Converters Systems

From the sampling theorem, it is known that thecad sampling rate of a discrete
time signal with spectrum occupying the full Nydgursinge, cannot be reduced any
further. This is because such reduction will introgl aliasing. For that reason, the
bandwidth of a critically sample signal must beusstl by lowpass filtering, before its

sampling rate is reduced by a down sampler. Likewihe zero-valued samples
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introduced by an up-sampler must be interpolatedntye appropriate values for an
effective sampling rates increase. Also, this déation can be simply achieved by

digital lowpass filtering.

2.3.1 Filter Specifications

Since up sampling causes periodic repetition ef llasic spectrum as shown in
Figure 2.5, the unwanted images in the spectrd@fup-sampled signgln] must be
removed by using a lowpass filteli(z), called the “interpolation filter” Figure 2.12(a).

On the other hand, as indicated in Figure 2.12¢bpr to down sampling, the signal

vi[n] should be bandlimited t¢w| > 1/ M by means of a lowpass filtéta(z), called the

“decimation filter”, to avoid aliasing caused bywosampling process.

x[n] LT \’1[n]= H(z) yi[n]

a)
X[L Ha(2) Vz[nL Ml _’yg[n]
b)

Figure 2.12Filters in sampling rate alteration a) interpoledad b) decimator.

The specifications of the interpolator filtdi(z) are based on the bandwidth of the

spectrums ok[n] — X(e'’) Figure 2.13(a)yi[n] — X(e'“), H,(e') Figure2.13(b)
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and Y,(e'”) Figure 2.13(c). In practice, a transition bandpisvided to ensure the
realizability and stability of the lowpass interatibn filter H,(e'“) with a cut

frequency atnn/L and gainL, the output of the filter will be preciseyn]. Hence, the

desired lowpass filter should have a stopband etlge = 72/L and a passband edgg

close to the stopband, to reduce the distortion of the spectrum of tlgmaix[n] . If «

C

denotes the highest frequency that needs to bempezsin the signal to be interpolated,

the passband edge, of the lowpass filter should beaf =« /L. The specifications
for the lowpass interpolation filter are thus ginmn

_ Lin=|w|sw, /L
H. (e'”) = (2.21)

O;m/L < |w|sm

2] Input Spectrum X (e
T T T T
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L L L i I 1 1 1 L
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Figure 2.13Spectrum of a) the inpu{n], b) the outputa[n] and interpolator filter for

it=3, and c) the outpwyin].
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In a similar manner, the developed specificatiohshe lowpass decimation filter are
given by

Lin=|w|lsw /M

H,(e'”) = { (2.22)

0;m /M < |w|s .

The two digital lowpass filters studied before aiheir specifications, guarantee the
complete information reproduction of the input signvith the associated frequency
samplingFsl, and the output signal with the associated frequesacyplingFs2, for up

samplingFs2 > Fsland for down samplings2 < Fs1.
2.3.2 Filter for Fractional Sampling Rate Convertes

A fractional change in the sampling rate carabhieved by cascading a factor of
M| decimator with a factor df1 interpolator, wheré andL are positive integers. Such
cascade is equivalent to a decimator with a deamgactor ofM/L. There are three
possible cascade connections, as shown in Figlre @f these two, the 2.14b) is more
efficient since only one of the filterdili(z) or Hd(z), is adequate to serve as the
interpolation filter and the decimation filter, aeling on which one of the two stopband
frequencies,n/L or n1/M is a minimum. It should be noted in Figure 2.14ttin
general, preserve less of the signal’'s frequencayerd than the one on Figure 2.14hb),
because the multirate system starts with a lowplssto reduce the spectral content of
the input signal in order to avoid aliasing. Hent®e desired configuration for the
fractional sampling rate alteration is as indicated~igure 2.14c), where the lowpass

filter Hi(z) has a normalized stopband cutoff frequency at
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w:min(li] 2.23
s YR (2.23)

which suppressed the imaging caused by the intsiqnohile, at the same time ensures

the absence of aliasing that would be caused bgehinator.

xn] Lt y[n]

H(z)

H.(z) M|

a)

x[n] y[n]

Lt H(z) H(z) M|

b)

x[n] y[n]

L1 H(z) M|

c)

Figure 2.14General schemes for increasing the sampling rateéNdy

2.4 A Real Computational Implementation on DSP proessor TMS320C6711

This implementation consists of a fractional rdtarge byM/L=2/3 or M/L=3/2
from the input signal. Based on the concepts edamppling, down-sampling and FIR
(Finite Impulse Response) lowpass filters, thesavsime base of a Multi-rate systems,

and proof different sample rates to know the DS nanges.
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2.4.1 System Flow Chart Implementation

Figure 2.15 shows the multirate system flow chartplemented on the
DSK320C6711 (Development Starter Kid) of Texasrimsents. The steps for the real

implementation are the following:

Figure 2.15System flow chart implemented on DSK320C6711 of T.I

Input signal: Signal generator, microphone or musth maximum bandwidth of
4KHz.

1. A/D converter: Sampler input signal at a rate dB@ or 24KHz.

2. Record Memory: It stores the sampled signal inboier array of size

36Ksps*8sec. or 24Ksps * 8sec.
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3. Read from Memory: Array to recover the samplesestan the buffer memory.
4. Up-sampling byM: Introduce M-1) zeros between each sample read from the
buffer-memory.
5. LPF: It removes spectral images, interpolateslianits frequency for the down-
sampling stage.
6. Record up-sampled array: This array stores theubvatipthe up-sampling routine.
7. Down-sampling by.: Reads everlz sample from the output memory.
8. DI/A converter: It converts from digital to analaith a sampling rate of 24 KHz
or 36 KHz.
The output signal is reproduced with the correspanftequency sampling=6ou), the
output D/A converter operates at frequency 24 KH2G6KHz. This is obtained from the

following relation

*
Fsout = —¢ M
L
*
Fs ,out = 36 KHBZ 2 - 24 KHz
Fs out = 22 KHZZ 3 - 36 KHz . (2.24)

2.4.2 Routines Flow Chart

The system algorithm is described on Figure 2.1defines the different stages
and routines implemented on the DSK320C6711 usimg $ound daughter card
PCM3003 of T.I. On the Appendix A the complete sfieations and hardware settings

are described.



NOTE 1:

At the beginning the
board's switch should
be placed in'1' or2'.

NOTEZ:

Then the anitch should
be placed inzero to begin
the multi-rate system.
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Routines Flow-chart

Far Multi-Rate System Implementation

By

William Sanchez

RFafael Hudo

Fzlin) = 24khz
Fz(out) = 35 khz

Rate =32 = ML

Rate =23 = Wil
Fz(in) = ZGkhz
Fzlout) = 24khz

®

¢
@

®

D efin itio ns:

bl = Up-zampling Order

L = Down-zampling Crder
Falin)= Input Sampling Freq.
Fafout) = Output Sampling Freq.

Recard_array_out

®

While == 1 an = anitch £ase value
record_array = input memany
/\ Feacord_array_out= autput memons
If:
s =0 EUER o=z o= 3 an =4 A =5 an=7
Straight through then then then then then then
no recording l l l l l l
bl anual recording Up-Sampling Mormal plavback Flayback Up-Sampling Diown- Sampling
to record_array By hd Falout)= Fin) Fziouf)= F=lin) By L St IR S
Playvback
Fiiout)

Figure 2.16System Routines flow chart implemented on DSK32QQ16a7 T.1.

2.4.3 Multirate Results

The following steps explain the different functiaafghe Multirate project

implemented.

Step # 1.

Channel 1: Original Input Signal (Vpp = 500mv angHz).

Channel 2: Up-Sampled Signal by 2

Fs(in) = 36 KHz.
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Fs(out) = 36 KHz.

o s : g l- =
Fr-aa{l):?%.o Hz Freq(2)=500.0 Hz
SoUrce  pe—— Time Measurements ———  Clear
| Freg Period Duty Cy Meas

- e e - -

Figure 2.17Up-sampling by two.

Figure 2.17. shows in channel 2, up-sampled bytas half frequency of the original
input signal, presented in channel 1. The up-sarggrocess increases the size of the
original input signal bjM=2. To show that the up sampling process works,elecsd
Fs (out) with equal value as Fs (in) so that thipaiusignal has two times the samples
than the original signal, and comes out with Hadf frequency of the original signal. On
the other hand is important to know that the ougigmal has been filtered by LPF with
cut frequency oft/3, to interpolate the zero value samples addehl thé original

samples and to eliminate the spectral images getkby the up-sampler.

Step# 2

Channel 1: Original Input Signal (Vpp = 500mv anKHz).
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Channel 2: Signal after Up/Down sampling processgsM/L= 2/3.

Fs (in) = 36 KHz.

Fs (out) = 24 KHz.

Figure 2.18hows that the signal in channel 2, after the upfrdsampling processes, has
the same frequency than the original recorded kightae reason for this, is that the input
signal’'s sampling frequency, Fs(in) = 36 KHz, isliplied by the Up/Down sampling
rate M/L= 2/3, resulting in an output sampling frequency, Fg)(eu24 KHz. To show
that the Up/Down sampling processes works, we tae€es (out) = 24 KHz in order to

reproduce correctly the input signal.

Figure 2.18 Up/Down sampling rat®/L=2/3.

The signal has been filtered to eliminate the spethages and possible aliasing created
by the up-sampler and down-sampler respectivele fithe delay for the processing of

the complete system was shown by the shift in phasgeen signals of channel 1 and 2.
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Step# 3

Channel 1: Original Input Signal (Vpp = 500mv anKHz).
Channel 2: Up-Sampled Signal by 3
Fs (in) = 24 KHz.

Fs (out) = 24 KHz.

+0.00s _ S00u/

Figure 2.19Up-Sampling byM=3.

Figure 2.19 shows that the signal in channel 2saippled by 3, has 1/3 the frequency of
the original input signal, presented in channelb&cause the up-sampling process
increases the size of the original input signalMby3. To show that the up-sampling

process works, we selected Fs (out) with equalevakiFs (in) so that the output signal,
with three times the samples as the original sigz@hes out with 1/3 of the frequency of

the original signal. The output signal has be#aréd by LPF with cut frequency af3
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to interpolate the zero value samples added, aneéliminate the spectral images

generated by the up-sampler.

Step# 4

Channel 1: Original Input Signal (Vpp = 500mv anKHz).
Channel 2: Signal after Up/Down sampling process¢sM/L= 3/2.

Fs (in) = 24 KHz.

Fs (out) = 36 KHz.

Sl i
ry e

LRR RS ERRR u-n.unvlu-nrlnui--.‘5

+

Figure 2.20Up/Down sampling rat®1/L=2/3.

Figure 2.20 shows that the signal in channel 2y dfte up/down sampling processes, has
the same frequency as the original recorded sigdlis is due to the input signal’s
sampling frequency, Fs(in) = 24 KHz, which is mplied by the up/down sampling rate
M/L= 3/2, resulting in a output sampling frequency, FsYeu86 KHz. To demonstrate

that the up/down sampling processes works, we teeldes (out) = 36 KHz in order to
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reproduce correctly the input signal. This sighak been filtered to eliminate the
spectral images and possible aliasing created byugrsampler and down-sampler

respectively.

2.4.4 Lowpass filter design with MatLab

We used Matlab® as a tool for the coefficientsfiltlesign. This LPF lowpass
digital filter is used for interpolation, spectrahages rejection and anti-aliasing. We
designed a finite impulse response FIR filter, wotlder of 13 and a cut frequency of
a/3. We used the FIR1 command to generate the icmeiffs used, by the
implementation, that are located in the fI®EF_CLPF.h(see appendix A for complete

implementation).Figure 2.2dhows Frequency and Phase response for the desiljeed

Filter Responce of LPF, N=13, Wc = pi/3

Magnitude (dB)
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Normalized Frequency (xx rad/sample)

o

]
<]
s)
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=}
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@
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Phase (degrees)

&
<1
s)

-1000
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (xx rad/sample)

Figure 2.21 Frequency and Phase Response for LPF.
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Chapter 3

Kronecker Products Algebra

For the implementation of signal processing we glesil computational
structures. To achieve this, Kronecker productelaig, a branch in finite multilinear
algebra which serves as an organizational languags, used. The mapping between
Kronecker products notation and code generatiorcéoe implementations is made by
using the mathematical properties of Kronecker pctsl [8]. Below you will find some
of the basic properties of Kronecker products #ratkey elements on the development
and implementations of digital signal processingodathms, such as filter banks

algorithms and digital beamforming.
3.1 Properties of Kronecker Products

Given two matricesA(mx n) andB(k x ) , the Kronecker product is defined as

the (mk x nl) matrix

_Abo,o Abo,l Abo,|—1

Abl.o Abl.l Abl,l—l

ADB=[Af, 4] = (3.1)

_Ah<—1,o AQ—M Ahd,l—l_
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Where b, is the ¢,s)-th element ofB. this definition is in fact a left Kronecker

product [8]. Notice that the Kronecker product loé¢ tequation (3.1) is not commutative,
i.e., AOB#B0OA. This work concentrates mostly on square matrites, is, m=Kk
andn =1, but the definition generally applies to matricésiny dimensions.

We now state the key properties of the Kroneckerdpets that are useful to

understand matrix decompositions and further Krkaetormulations [9]
» Scalar Multiplication: If a is a scalar, then
A0 (aB) =a(AOB). (3.2)

» Distributive Law: The Kronecker product is distributive with respecaddition
(A+B)OC=A0C+BOC (3.3)
AO(B+C)=AOB+(AOC). (3.4)

* Associative Law The Kronecker product is associative
AO(BOC)=(AOB)OC. (3.5)

* ldentity Product: Givenl ., ther x cidentity matrix,

rc?

1, 01,. (3.6)

l,. =
» Transpose The transpose for both matrix and tensor operatis useful for
manipulating symmetric matrices (e.g. the Fourieatrmm), where the original
matrix and the transpose are equal.
(AB)" =BTA'

(ADB) =A"OB" . (3.7)
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« Mixed Product Rule: Let A andC be M xM and B and D be\ x N matrices.
Thus,

(AUOB)(COD)=ACOBD . (3.8)

One useful identity which follows (3.8), giveB(l xs), then
AOD =(Al,)O(1,D)=(AOI,)(1, OD) (3.9)
« Let U be a Mx1 vector denoted byU,, =[u,,u,,u,, ,u,,]", where

Uy =U; =U, =---=Uy, . Then, (I DUITA):[IN,O,IN,L"WIN,M—l]-

The action of the matriC = A B on an arbitraryMN dimensional vector can be
performed efficiently with the aid of the followirdpecomposition

AOB=(AO1)(I, OB)=(l, OB)ADI,), (3.10)

wherel,, andl, areN andM dimensional identity matrices.

3.1.1Stride Permutation Matrices

We are able to use a class of matrices calledesfpermutations [9], which
commute a Kronecker product; given that Kroneckeydpcts are not commutative.
These permutation matrices let Kronecker produchédations to be mapped to parallel

and vector architectures, converting parallel ogpera (BOI1, ) to vector
operationgl, 00 A ) Essentially, a stride permutation matrix, dendigd, is a square

matrix which its effect over & x1vector, to move the components of the vector t@ ne
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locations using the parametgrcalled the stride. The stride is related with $iee of a

vector, beindN =R[S, where R and S are integer numbers. Consider a

RISxRISmatrix Pysrsrepresented as follows

Poo Poy  Pogrsy
R (3.11)
| Prs109  Prs-1y  Pirs-1rsy |
where the elementg;; ;, of the permutation matrix arg; ;, =1 for i = j =(RS-1), and

for j =iSmod(RS-1), 0<i <(RS-1); p,; =0 for the otheii,j elements

For instance, let N=4 and S=2 be the order of p&timn matrix and the stride

respectively. TherP,, = P,,, is generated as follows

P, =1for (i,))=(0,0), (1,2), (2,1), (3,3)p,;, = O for the othei,j elements.

The stride permutation matrix becomes

1000
P,, = 0010 (3.13)
1o 10 of '
0 001
The action ofP, , over a4 x1vectorx is represented in the expression below:
1 0 0 Of X% o
0010
P, = Xl | % (3.14)
“ 10 1 0 0] |x, 9
0 0 0 1] |x
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In general, P, sreorders the coordinates at stride S into S cotisesusegments

of M elements, theth segment beginning with,. The most important property of the
stride permutations is that they commute the factor the Kronecker products of
matrices. We now state some of the propertieseofthde permutations.

If N=RS thenthe stride permutation matri’s = P, .
If N=RS then the stride permutation mati s = P, ».
If N=RS then the product betwed?), ;and P, becomes
Pur[Pus =1 (3.15)

Now, we state a theorem for the commutation of €oker factors using the previous
stride permutations properties.

Theorem 3.1f A is a Rx Rmatrix and B is ar6x S matrix then

Pus(AOB)Rs =(BOA). (3.16)

Details of the stride permutations and proof ofotleens and properties are
described in [9]. In this chapter, we have preskbtesic concepts on Kronecker products
algebra, which are used in the development of cdimgpualgorithms for digital signal

processing.

3.2 A Generalized Kronecker product

In this section we will introduce a generalized mixgproduct [8], which inherits

some useful algebraic properties from the stanHandecker products matrices.
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Definition 3.1Given a set oN (mxr) matricesA, i = 0, 1,...N-1, denoted by{ A},

and ar{N xI) matrix B, we define thgmNxrl) matrix ({ A}, U B)as

A Ob,
{AyOB= A&:Dbl : (3.17)
AN—lDbN—l

where b denotes théth row vector ofB. If each matrixA is identical, then reduces to

the usual Kronecker product of matrices.

Example 3.1

Let

{A}Z:E _ﬂ B:F 1]

The definition of 3.1 yields

E _1}5[1 1] 1

OB= = ,
" L oiop g P -t
1 | '

which is recognized as @x4) DFT matrix with the rows arranged in bit-reverseder.

Definition 3.2 Let {A}, be a sequence oN, (mxn) matrices andE be a single
(nxr) matrix.

Then
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AE

{AVUOE= AlE: : (3.18)

A E

where each matrix in the sequencénsxr). From property (3.10) we know
(AE)D(BHF)=(A, D{B JEDF). (3.19)

The next two identities are useful in developingrsp matrix factorizations.

ldentity 3.1This identity yields a block-diagonal matrix coniag the matrices) .

N-1
ANUIN=OA=ADAD-TA, (3.20)
Identity 3.2Now if we can expressRmatrix asp sets of matrices denoted{oy“'},

k=0, 1,... p-1 where each matrix is(mxn), and thekth set hasN, = m“matrices.
Consider the matriR formed as
R={APY}  O{A®?} ,0--0{A%} OAO, (3.21)

The matrixR admits the sparse matrix factorization

o m (p-k-1)
R[] 5 0w OA - (3.22)

Example 3.2
For convenience, we show the identityn=2, p=3, as the identity can be established for

other dimensions by following the same pattern of teps.

LetR={A®}, O{ A"}, O A pe written explicitly as
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A A OA

R= Ai 0 {Aé:l 0AO = :Af: OA9=[D]O0AY (329
ALA A -
A A

where for convenience we have sdd ={A(2)}4 D{A(l)}z. Using equation (3.9) we
have
[D]o A© =(D]O1,)(1, O A®). (3.24)

Now, to solve for{D] 01, note from equation (3.20) that

[D]Ot, = :é:}ﬂﬁél)ﬂl:ﬁiqﬂﬂf)

A (2)
[D]ot, = :2) DlzJ(lzmpg”)DﬂZz)}D|2](|ZDA{1>) (3.25)
DO, = A Ol,0 A O, {LoAP O, 0AP

A? | g

we obtain the sparse matrix factorization

2 @
r=| A {'2 | }[I4DA(°)], (3.26)

@
2

which agrees with (3.22) fon=n=2, p=3.
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Identity 3.3DFT matrices may also be expressed as

Ry :{B}N/Z URy/2, R =1, (3.27)
1wl . N

and B = _ i=0L---,—-1, (3.28)
1 -w) 2

whereW, =e /#"'" .
3.3 Filter Bank Structure

First a simple DFT filter bank |8
1
h(z) = Rua@. (3.29)

where R, is an(N x N) DFT matrix, anda(z)is a “delay” vector obtained as

a2= z*' z?% ...z (3.30)
The word “delay” is used f@(z), as the ternz™* denotes the backward delay operator.
The utility of this filter bank in signal procesginstems from a modest signal
decorrelation property obtained at the filter bankputs.
The choice ofR as a DFT matrix in (3.29) is for handiness, sifge thoice also allows
output samples obtained from the filter bank, taorierpreted as a Short Time Fourier
Transform of a sliding window of the input samplesThe elements

H. (2, k=0L1---,N-1o0f h(z)are shown in this case to satisfy

H (2) =H,(zW,*), k=22---,N-1, (3.31)
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Thus, the system can be understood as a bank alphss filters, where the
frequency response of each band is frequency dhoftéhat of the adjacent band.

Let us choos&l=8 and derive two different realizations. Fist exgréesm (3.27)

R, ={8}, 0{8}, O{R,} (8:32)
. _
-
1 -]
2
R8: 1 g i/
l:l _e—jﬂ/4j|
L o (3.33)
] L _e—j3ﬂ/4:|_

A flowgraph representation of the filter bank apgeaa Figure 3.1.
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H,(2)X(z)
Hy(z)4(z]
H,(2)X(z)

H,(2)X(z)
» ) (2) & (Z)

Hi(z)4(z)
H3(2)X(z)

H,(2)X(z)

Figure 3.1Simple DFT filter bank

To obtain an alternative realization, observe thatdelay vector can be factored as
1 1 1
a(z)=[L z* z?* z°z* z° 7° 727 :[ _1} D{ _2} D{ _4}, (3.34)
z

V4 y4

replacing on (3.32) and using the definition 3.2

o= 2 oot o o[

h(z) == %{{B}{lz_l} 2 {Bz}{lz—z} - {RZ}FZ-“D | (3.35)

we obtain
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h(2) :%

(3.36)

The correspond signal flowgraph appears on Figite 3

L) Hy(2)X(2)
H,(z)X(z)
z Hy(z)X(z)

Hs(2)X(z)
H(z) X (z]

H3(z)4(z)
H;(2)X(2)

H,(2)X(z)

Figure 3.2Equivalent DFT filter bank

Figure 3.2 has more delay elements than Figure 18uL,the computational

requirements have been reduced. For transformer@él dimension, this can represent a
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substantial saving in computational complexity. Egample, with a largeM (taken to be
a power of two), a direct implementation from eduat(3.33) as Figure 3.1 would
require N-1) number of delays, anflN /2)log,(N rnumber of butterflies. Whereas the
equivalent realization from equation (3.36), as Iigure 3.2 would require

(N /2)log,(N) number of delays andN¢1) number of butterflies.
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Chapter 4

Sensor Array Structures

In this chapter we will present the problem of détey signals using information
from multiple sensors. The objective is to be ablenderstand the advantages of using a
sensor array over a single element. Once we achiesewe will learn about complex
representation of the signals and DFT (Discreterieod ransform) for DOA (Detection
of Arriving Angle), near and far wave fields, andyreal to noise ratio (SNR)
enhancement. Finally, a radar signal processingbbador Matlab® (DBT 2.1®) shows

an example of sensor arrays beamforming.

In active sensing situations (e.g., radar and 3paaknown wave form of finite
duration is generated, which in turn propagatesutin a medium, and is reflected by
some target back to the point of origin. The traittewh signal is usually modified, both in
amplitude and phase by the target characteristidsch by themselves might be
changing with time and its position in space. Huattreason, important digital signal
processing theory, time-frequency representatiorg a@gorithms are implemented to

obtain the information carried by the signal.

4.1 Basic Concepts of Signal Complex Representation

This chapter concentrates on the digital processimgane sound waves arriving
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at a passive sensor array. The structures of teepter sensors are called unit
dimensional array (ULA), and for our case, the gtednphasizes in the linear array
structures. The sensor and structure can be extandguantity and dimension through

the use of Kronecker array products.

Changes in amplitude, direction and frequency cammiodeled for signals far
from the source, as a sinusoidal plane wave caran amount of energy, and
propagating with a constant velocity away from slerce [10]. A plane wave has some

attributes such as amplitude, wavelendthtemporal frequencyf,, spatial frequenck,

and propagation speed. A propagating plane wave can be sensed and nmbéele
specific time and spatial point along a propagatlirgction, say the-direction, using
the following expression

S(t,x,) =V, e!2rfdmxo) (4.1)

4.1.2 Spatial Sampling of a Plane Wave

A plane wave can be spatially sampled, using aayaf omnidirectional sensors,
in order to extract information about its propagatdirection and frequency content.
Features of a sensor array, such as number obrseasd distance between
sensors, are related with the wavelength of thelémt wave [11]. In our study case, a

linear sensor array is utilized, and the samplilogp@ the array can be represented as a
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finite, discrete signal to be processed by the PRessor. This signal along with linear

sensor array axis at timean be expressed as follows

j2n(fct—);—°sin 8,)

S(t,%x,) =V,e : (4.2)
Figure 4.1 shows an incident plane wave at aégtever a linear array of equally spaced

sensor with separation distancks

| - ]]]Lsﬁé‘”

x ........
N1 3 2 1 Analog to
L converter
DSP processor

Figure 4.1 Sensor Array Model for DSP implementation

Then, considering the position of the sensor onattiex, the signal can be expressed in

terms of the position of the sensors changiihg —k.dfor convenience as follows
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j2m( fct+kﬁ'—dsin 6y)

P = Ve : (4.3)
In general, the signat, at thek-th sensor can be

j2m (L p,)

¢ = ¢,€ , (4.4)

wheres, =sing,. Spatial samples from all of linear sensor ariGeys be expressed as an
input vector®(5,) =[@,. 4......4,1" , where ®(43, ) represents a monochromatic plane

wave coming fromg,incidence direction.

4.1.3 DFT for Direction of Arriving (DOA) Signal

In the time domain this operation is performed gdime time delay in order to
obtain the coherent sum over tNesensors. The direction of the arriving signakéated
from the point of view of a linear transformatiouweo a finite and discrete input signal.

The DOA, is denoted as a row vector such Buag)®(5,) = Ng,, where

. d . 2d . (N -1)d
—j2m(5Bo) -i2m(5-Bo) -j2n(-=—"=PBo)
B(S,) =|1e A e A, e A . (4.5)
In general, the DOA, or commonly defined as beamiong vector, is used to steer an

input vector ®(3,), towards B(3,) direction obtaining as a result a beam pattera of
linear array steered to a specific direction ofvarg. The productB(s,)®(8,) can be

represented as

N -

B(B,)® (B) =D @.e 27, (4.6)

k=0
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wherev=(d/ )8, is called the spatial spectrum variable. The mnasvidescription can be
extended to the formulation of multiple directioms,order to cover a discrete setf
angles along the entire set defined by <6<n) or (-1< g <1). Multi-beamforming or
multi angles detection can be formulated in terfna matrixB in which rows represent
linear transformations g, ), for k = 0,1,...M-1 acting over a sampled data vectypg)

of lengthN as follows

i —j2nd SEL DL |
| B(5,) 1 e[ 250 e( e
Ciantg an(N-Dd
B B(ﬁgl) = |1 L 1775%) o L(4.7)
e D G v et

Considering the case M steering directions and sensors, beinlyl=N, a single

linear transformatiors(s, ) can be written as

. k . 2k
_JZH(W) _JZU(V)

B(:Bk): l,e , € yerery €

L (N-1)k
j2m( N

)
(4.8)

In (4.7), the steering angles are specifically emoss g, =kiAg, AB=A/Nd and
k={0,1,2,....,N-1}; kOZz, . That permits the redefinition of the equatior®j{4or multiple

direction angles as 8xN matrix denoted by

1 1 1 - 1
B(N_j 1 W, - w N (4.9)

W N(N “1)N-1)
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Cjnf K
where Wt =e j ”(Nj Finally the multi-beamforming matri8 becomes the Discrete

Fourier Transform (DFT) matrix.

4.2 Signal to Noise ration advantage using an Array

The possibility of modifying the array outputs tohance the desired signal
reception, and simultaneously suppress the undeswees, can be illustrated by
considering a single source situation as in Figule in presence dfl identical sensors

[10]. Let d,,d,....d,, represent the normalized distances of this sengitiisrespect to a
reference point ang,(t Yhe complex envelope of the signal at that pdint.the other

hand letn,(t), n,(t),....,n,, (t) represent the respective noise components thaisatened

in practice independent and identical process d&seocf Gaussian distribution). This is

evident withg, (t ), representing the complex envelope of the toteg¢ived signal at the

k-th sensor, and using (4.4)

k.d

o, (1) = g (e " L (1) . (4.10)

and the input signal-to-noise ratio (SNR) is

(SNR ), = E|¢°(t)|22 = Do, (4.11)
E|n, (t)] o

whereR, represents the signal power received at seksOr From (4.5) the signal

-j2 ﬂﬁo
components can be coherently combined, if the aptaput is phase shift tay] " ;
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k =01L....,N —1and the resulting signals are added up. This dhesutput signaj(t) to
be

-t -j2n* ;) S -
yt)y =2 ae 1 =Ng(t)+ n(te
k=0 k=0

. k.d
j27(==Fo) - N¢0(t) + no(t)+ nl(t)+....+ nN_l(t)

(SNR ). = E N ¢, ()
TUE @+ n )+ L (O
(SNR ), = N P,
> Y el mnim]
(SNR ), = N ZP; = N (SNR ), - (4.12)

Thus a simple phase shifting and adding operatioong the sensor outputs results in an

improvement in the signal-to-noise ratio by a faegual to the number of sensdts

4.3 Near and Far Waves Field

Based on the distance away from the face of thecepwhere the radiated wave
is measured, two important regions are identifié. the near field region the
electromagnetic waves emitted from the source tspherical waveforms (equi-phase
fronts). In the far field region, the wavefrontsndae represented by plane waves [12].
We are interested in modeling the electromagnetwes in the far field, taking the
following criterion. Considering Figure 4.2 whegieradiating source at poi@ emits
spherical waves. A receiving array of sensors oftled is at distance away of the

source.
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~ = mm o
=1

Figure 4.2 Spherical front Wave and Plane front Wave diffesen
The phase difference between a spherical wave dochlly plane wave at the receiving

array of sensors can be expressed in terms ofiskende), . The distance), is given by

the difference equation (4.13)

2
6. = AO - OB :\/r2+(d2TJ - I (4.13)

and since in the far fieldir<<r, the equation (4.5) is approximated via binomial

expansion by

2 2
5r=r[ 1+(de '1]2 d,” (4.14)
2r 8r

It is customary to assume far field when the distad) corresponds to less than 1/16 of

the wavelength. More precisely, if
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2
s =49 . 4 (4.15)

then a useful expression for far field is

2
r> ZjT . (4.16)

Note that a far sound wave is a function of bota #mtenna size and the operating

wavelength.

4.4 Toolbox for Array Sensor Evaluation

The main objective of this section, is the use mbl@ation DOA (detection of
arriving angle) in radar and, the correspond comatprtal implementation using a signal
processing Matlab® Toolbox for radar DBT [13]. Theolbox is especially suited for
processing in the spatial dimension using signasifan antenna array. Both simulated
and measured signals can be used. The objective8®fare to help us in the research
on array processing; to perform these on measadar isignals that support cooperation
in development of software tools, and to serve aofavare demonstrator. DBT was

under development at FOA (Defense Research Edtaiist of Sweden).

4.4.1 Definition of the computational application sing the DBT Toolbox

We used this Toolbox to determine the number oSsenrequired when two

signals arrive from two different positions. We wémlearn about how many sensors we
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need if the differences between arrive angles areoif close. This Toolbox help us to
determine and simulate a possible model of sensay aharacterized by the number of

sensors, and the distance between sensors fonue¢esignal to be received.

4.4.2 How to use the Toolbox

DBT is an extension of Matlab® programming languagth data types and
functions for signal processing in radar, especiahtenna array processing. This

constitutes a language on a higher level than atandatlab® [13].

4.4.2.1 Sequence of Commands
A typical main program using DBT has the followisgquence of commands,

some of which can be omitted.

» Definition of receiver antenna.

» Acquire a signal, simulated or measured.

» Calibration compensation of signal or set the camp&on method to be used.

» Conventional processing.

» Select data for model based processing.

» Estimate and modify a spatial correlation matrix.

* Model based detection and estimation.

* Present the result.

An example program with a (unit dimensional arfdi A antenna with distance



55

d = 0.45%, where A represent the wave length, and two signalg a2’ and g, =40°.
The output plot is based on the number of sensolsetused for correct discrimination
between this two (direction of arrive) DOA. A bagtep for running this example is

shown on Figure 4.3.

% Definition of constants. Create elements and
calculate element positions:

% Create the array:
ant? = defant('array',elemPos,[],elen?);
% Generate simulated received antenna signals:
sig = compsimd{ant2, lambda, 100, 'rndnw', ...
[theta, .phi, SNR, alpha, dalpha, dist, ...
eye(size(theta,1))], 'rndnw');
% DOA-spectrum with beamforms
spectl = sdoaspc('cbf',sig, smplPoints);
Plot DOA spectra:
splot2(spectl)

Figure 4.3Programming steps for Beamforming using DBT Toal[8].

Figure 4.4 shows the output beam for an array»ofsensors. We only observe a main
lobule with the maximum &4°, but the two original signals h&2° and40° degree of
angle incidence. Figure 4.5 shows the output bearari array of twelve sensors, where
we only see a main lobule with the maximun83at, but the two original signals h82°
and 40° degree of angle incidence. Figure 4.6 shows thpubuteam for an array of
twenty-four sensors, where we detect two lobuldah Wie maximum aB2°and 40°, but

the resolution is not enough, they are mixed.
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Figure 4.4 Output beam using a six sensor array.
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Figure 4.50utput beam using a twelve sensor array.
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Figure 4.6 Output beam using a twenty-four sensor array.

Figure 4.7 shows the output beam for an array diyfeight sensors; where we can

observe two lobules with the maximum3&°and40° with good resolution.
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Figure 4.7 Output beam using a forty-eight sensor array.

Finally on Appendix B all Matlab® code to run tl@sample is shown.
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Chapter 5

Time-Frequency (TF) Representations

In the real world it is not common to find statiopaignals. For that reason a
joint representation TF, of this kind of signalsg anore efficient than time or frequency
domain representations alone. The disadvantageoiat this representation TF is
computationally intensive, because the algorithmsetbped are more complex to map
from time domain into the joint TF representatidd][ Nowadays with the development
of new powerful digital signal processors the rigak could be reached. The following
real implementations based on short time Fourian3form and Ambiguity function will

be explained on this chapter.

5.1 Short Time Fourier Transform (STFT)

The theoretical key that describes computing spewter finite time intervals is
the STFT. Calculating this quantity means that pglyato a signal at tima a window of

durationM (window-points), then evaluate the Fourier Transfa@f the product:

X[n], = 3 h(n - m)x(mW,;™ . (5.1)

Hereh(n-m)denotes the finite window defined o@rM]. The window duration defines

the frequency resolution of the short-time Foureralysis, becauseX[n], equals to
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Fourier Transform of the product between the sersgnal x(m) and the original

window atn, the signal’s spectrum is smoothed by the windapsctrum [15].
From (5.1) we can define STFT as follows

X[n] = Y h(n=m)[x(mWy™]

m=—oo

X[n]jc =[X(MWyy™] Ch(m) (5.2)

_j27km
where w,™represent e M , [ represent convolution and the product

[x(mW,,™] represent the modulation of x(m)with wk:%. The last equation (5.2)

defines the filter method to compute the STFT [@d$khown in Figure 5.1

*w hm) [P X, = Xm,w)

-jw, m

Figure 5.1Filter method to compute STFT

Figure 5.2 show$i(m) as a Hanning window of 256 points, ax(@n) as a chirp signal
with two seconds of duration and frequency 0-5Q0H® result of the STFT Figure 5.3
shows the spectral content of the chirp signalifeerént intervals of time with step size
of 126 points. The filter method has a deficienewtow frequencies want to be detected

because the first window does not overlap.
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Figure 5.2Hanning window 256 points and Chirp Signal twoosets 0-500Hz

Figure 5.3STFT belongs to Chirp signal.
Figure 5.4 shows a more realistic application oF$Tising a trumpet sound with six
seconds of duration, we can observe a main frequeext to 1500Hz and different

harmonics separated 500Hz, here we observe tha@B[A representation of STFT.
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Figure 5.42D and 3D STFT that belongs to trumpet sound.

5.2 Ambiguity Function (AF)

Another way to compute join TF is based in the Fouffransform of cross
correlation between transmitted signal and recesigdal. The name of this function
Ambiguity, explains if a poor correlation was fountithe ambiguity between that two
signals is high, and vice versa, if the correlat®tigh, the ambiguity is poor between

transmitted and received signal. The AF evaludtes-burier Transform of the product

_j2rkn

AS, SIMK =Y SISt Je " |

let
St =[St[(n+m) ], (5.3)

then
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SerlM =S,[NIS [, (5.4)

_j2nkn

AS, SImK=>'S, [rle * 55)

Where S,and S are transmitted and received signal respectivalyjeans the index for

move in object spacek means frequency spectral sht..[n njeans a family of

received signals with different time shiftimg and this shift are cyclic (5.3)S,,[n]
means a signal family of windows equal to Hadanpaatluct betweerg,[n ttansmitted

signal andS+.m[n Jthe family conjugate of received signals shiftime for eachm (5.4).
Finally (5.5) shows the Fourier Transform of eacfnal family’'s windowS,  [n].

Equation (5.5) also shows, the Fourier Transforrmattiplication of two signals that

means the correlation of the spectral signal miigtlp The last method to compute the
AF is called Frequency Correlation. Figure 5.5 shdahe 3-D plot of the AF versus
frequency and time delay. The AF is normally usgddnar designers to study different
waveforms. In this example we simulate a chirp asigransmitted and received for a
bandwidth of 3Khz, and the difference between tiamel frequency is plotted using
Matlab®. The algorithms to compute this AF are ieménted on of the TMS320C6711

DSP.
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Figure 5.5 AF for Tx and Rx Chirp signal.

5.3 Time-Frequency Hardware Implementation using te DSK320C6711

In order to use a real DSP processor for TF reptaens, we implemented the
STFT and the AF for different signals size on tiSB20C6711 of T.l. and the Code
Composer Studio CCS v2.1. These implementationssed to compute the capability of
processing and storage of the DSP processors, dsimge precision variables (64-bits)
[14]. We will determine the capabilities of this PSprocessor using the time of
execution, size of the signal processed and memongumption; these results will be
summarized on Table land Table 2. For next sectibeasSTFT and the AF will be

implemented.
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5.3.1 Short Time Frequency Transform (STFT) implematation on the
TMS320C6711
For implement this function we will use the follmg routines implemented using
the Code Composer Studio CCS v.2.1 and C langudgs.algorithm is a modification

of the equations explained before using the FFThatktor cascade of filters bank.

/* Main program */

void main()

{

Input_signal_Padding((double*) X);  // Data indypadding to M+L-1
Matrix_modulation((double*) x_padd); //Data inputhirp modulated

FFET_TI(; I/ fft of rows
Haddamart ((double*) h); /I haddamartquuct with the fft(filter)
In_FFT_TI(); I Inverse fft

}.

5.3.1.1 Short Time Frequency Transform (STFT) foN filters bank x 1024

Signal points

For hardware implementation we simulated a Chignali (897-points) using
Maltlab®, as shown in Figure 5.6a) and the filtendow Figure 5.6 b) correspond a
Hanning window (128-points). The computation of t8&FT using the filter bank
method is performed using the TMS320C6711 proce$sgure 5.7a) represents a STFT
of 8 filter banks, Figure 5.7b) represent a STFL@filters bank, Figure 5.7c) represent
a STFT of 32 filters bank, Figure 5.7d) represe&T&T of 64, Figure 5.7¢e) represent a
STFT of 128 filters bank filters bank, Figure 5.vépresent a STFT of 256 filters bank,
Figure 5.79g) represent a STFT of 512 filters bafRkgure 5.7h) represent the maximum
STFT implemented on the DSP320C6711 a STFT of Iiieés bank. All the last filters

banks had an output matrix N-filter by 1024 poivith double precision variables.
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a) b)

Figure 5.6. Signals to implement the STFT a)Linear ChirpHanning window filter

b) d)
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9) h)

Figure 5.7. STFT for Chirp Signal of 924 points and differeguiantity of Filters Banks

5.3.1.2 Short Time Fourier Tranform (STFT) Time Implementations

The table 1 shows the summary of signal pointsterChirp signal, the matrix
points for the STFT, the Twiddle Factors spend tmpute the FFT , the time

consumption of STFT and finally the memory spentytes.
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STFT Execution Times
SIGNAL POINTS MATRIX POINTS Twiddle Factors AF Time sec External Memory Consuption Bytes
897 8 x 1024 512 15 sec 131072
897 16 x 1024 512 31 sec 262144
897 32 x 1024 512 62 sec 524288
897 64 x 1024 512 126 sec 1048576
897 128 x 1024 512 252 sec 2097152
897 256x 1024 512 508 sec 4194304
897 512 x 1024 512 1024 sec 8388608
897 1020 x 1024 512 -out-time- 16711680

Table 1. Summary of STFT implementations on the DSP320C6711

5.3.2 Ambiguity Function (AF) implementation on theTMS320C6711

To implement this function we will use the followimoutines implemented using the

Code Composer Studio CCS v.2.1 and C language:

/* Main program */

void main()

{

Corr(Sigtx, Sigrx ); /I Cross Correlatio

Shift_Signal (Sigrx); /I Matrix of ciclyc shih received signal. Equation (5.3)
Haddamart (Sigtx); /I Matrix of Haddamaproduct with the transmitted signal.

Equation (5.4)
Complex_Complement(); // Complex part introduced to thethita

FFT_TI(); /I FFT of the Matri’'s Rows . Equation (5.5)
}

5.3.2.1 Ambiguity Function (AF) for 256x256 points

For a real implementation we simulated using Mbf&laa Chirp signal (256-

points) for transmition and the delayed receptigna as used on radar applications. The
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computation of the Cross-Correlation and the Afpasformed on the TMS320C6711
processor. Figure 5.8a) represent a 256 pointsrréied (Tx) chirp signal. Figure 5.8b)
represent a 256 received (Rx) chirp signal. Fig&8s) and 5.8d) represent the power
spectrum of the Tx and Rx signal. Figure 5.8e) shttve Cross—Correlation between Tx
and Rx signal. Finally Figure 5.8f) represent thEé matrix 256x256where time and
frequency maximum represent the difference in tand frequency between the Tx and

Rx signal.
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e) f)

Figure 5.8 Time frequency representation of 256 Tx and RxiCBignal.

5.3.2.2 Ambiguity Function (AF) for 512x512 points

For a real implementation we simulated using Mbfflaa Chirp signal (512-
points) for transmition and the delayed receptigna as used on radar applications. The
computation of the Cross-Correlation and the Afpasformed on the TMS320C6711
processor. Figure 5.7a) represent a 512 pointsriréited (Tx) chirp signal. Figure 5.7b)
represent a 512 received (Rx) chirp signal. Fig&.&s) and 5.7d) represent the power
spectrum of the Tx and Rx signal. Figure 5.7¢e) shtive Cross—Correlation between Tx
and Rx signal. Finally Figure 5.7f) represent the matrix 512x512 where time and
frequency maximum represent the difference in tand frequency between the Tx and

Rx signal.
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a) b)
c) d)
d) f)

Figure 5.7 Time frequency representation of 512 Tx and RxCBignal.



71

5.3.2.3 Ambiguity Function (AF) for 1020x1024 poirg

For a real implementation we simulated using Maf#laa Chirp signal (1024-
points) for transmition and the delayed receptigna as used on radar applications. The
computation of the Cross-Correlation and the Afpasformed on the TMS320C6711
processor. Figure 5.8a) represent a 512 pointsrrdited (Tx) chirp signal. Figure 5.8b)
represent a 512 received (Rx) chirp signal. Fig&.8s) and 5.8d) represent the power
spectrum of the Tx and Rx signal. Figure 5.8e) shtive Cross—Correlation between Tx
and Rx signal. Finally Figure 5.8f) represent the matrix 1020x1024 where time and
frequency maximum represent the difference in tand frequency between the Tx and

Rx signal. This is the maximum capability of staragext to 16-Mbytes.
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e) e)

Figure 5.8 Time frequency representation of 1024 Tx and RxpgC8ignal.

5.3.2.4 Ambiguity Function (AF) Time Implementatiors

The Table 2., shows the summary of signal poiotstie Tx signal and Rx, the

matrix points for the AF, the Twiddle Factors spandcompute the FFT , the time
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consumption for the Cross-Correlation, the time stonption of AF and finally the

memory spent in bytes.

Ambiguity Function Times

SIGNAL POINTS | MATRIX POINTS | Twiddle Factors | Cross-Correlation Time sec | AF Time sec | External Memory Consumption Bytes
256 256 x 256 128 0.217 5.8 1048576
512 512 x 512 256 0.871 20 4194304
1024 1020x1024 512 3.502 80 16777216

Table 2. Summary of AF implementations on the DSP320C6711

Finally on Appendix C, the routines for STFT and AFe shown in C programation

language.
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Chapter 6

Multirate Sensor Array System based on Kronecker Roducts

This chapter shows the implementation of multiradecepts (down-sampling)
using sensor arrays on digital signal processoP{DBits such as TMS320C6711 DSK.
This implementation based on Kronecker productsnédation for mapping from
hardware configurations to software algorithms, teen on a scalable and modular
approach. The scalable approaohthis implementation implies that the functiondan
structure of each algorithmic formulation shoulégpidto changes in the size of the sensor
array and on the length and dimensions of the bignae processed. The modularity
approach implies that each system can be composeddet of modules with flexible

interconnectivity, and reconfigurability will be t@ined.

6.1 Computational Sensor Array System

When individual sensors are placed in a regulat gsi shown in Figure 6.1, this

produces a sample array aperture of the receivatdssignal (6.1):
S, (1) =[S, (1)1 (1).... Sy 1 (V)] (6.1)

whereN means the number of sensors. The row vector ofnmdtionS, (t), stores the

intensity of the front sound wave at different argst, transducer from the respectively

microphone through the A/D converter. For a spedifnet we obtain a row vector of
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information corresponding of space sampling difieee distancesd. For last

considerations, let us work in terms of vectors aratrixes to introduce the Kronecker
products, in order to develop algorithms for comapiohal structures such as DSP
processors. Other important consideration when seearray of sensors consists in the

improvement of th&&NR as demonstrated in (4.12). The origiggNR, is enhanced by

the number of sensoh&

Microphant Sarsor
Buriay

E-AD COMNVERTER

<L

DEFP TS 3200CE711
DFT |H-TFT | A I FILT | M

d:hlﬂj]]]ln:l:h

MATLAE
COUTPLUT
PLOT

— — . (1
Bt (B =

Figure 6.1 Computational Sensor Array System
The computational sensor array system Figure énsists on the initial concept
to develop a physical implementation using a sixsee array of microphones (Appendix
F. for tools utilized). After that, a six-chann@&#D converter, and then a DSP processor
receive all the digitalized six-channels signalsl grerform different signal processing

operations such as Discrete Fourier Transform (Dl )spectral analysis, Short Time
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Frequency Tranform (STFT) for time-frequency repreations, Ambiguity Function
(AF) for radar applications, Filter and Convolutidor signal analysis. Then a PC
interface for final storage, and output plots udihgtlab®.

In this Chapter we will implement a physical Beamiing application defined
for detecting the direction of arriving (DOA) sidria an array of sensors. The following

sections explain a block diagram for the actuallementation of this system.

6.1.1 Data Acquisition Configuration

This system, Figure 6.2, assumes a sound wavearayrio the unit linear array
(ULA) of sensors with defined distandeAfter that, the signal conditioner circuit put the
correct offset voltages to the A/D daughter candntthe digitalized signals are obtained
for the DSK320C6711 microprocessor, and finallyoatputfile.h is stored on PC to be

read for Matlab® and plot [15].
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Figure 6.2 Computational Unit Linear Array (ULA) sensor system

- TMS-320C6711

T

—
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6.1.2 Data Acquisition Implementation

Figure 6.3 shows the physical implementation ot dimensional array (ULA)
using six microphones 6.3a), six analogs input®)6.8 signal conditioner circuit 6.3c),
the daughter card ADS8364 with 6 A/D converters ati DSK320C6711

microcontroller 6.3d).
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b) Analog Data Input 6ch a) Unit Dimensional Linear Array

c) Signal Conditioner AIP-0404-01 d) A/D andio$IICROPROCESSOR

Figure 6.3Physical computational implementation of unit dirsienal array
(ULA)

6.1.3 Six channels A/D of sine wave sound

This is a probe sound signal to determine the fanatity of the unit dimensional

array (ULA) system implemented using the configoratof Figure 6.3. The A/D
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converter ADS8364 of Texas Instruments offers éaoké (A0, Al, BO, B1, CO, C1) of
analog to digital conversion, Figure 6.4 showsdixechannels sampling at 128Ksps and
256 points, the six channels perform the samplindpe same time, and the storage data
of each channel was plotted using a Matlab® asaVisuerface Figure 6.4a), and Beam

pattern Figure 6.4b).

a) Output plot from 6 channels, 128Ksps, 256 points

BEAM PATTERN FORMATION

35

IY@®)l

B=sin(theta)

b) Output detected for conventional Beamforming

Figure 6.4 Six-sensor array Beam forming
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6.2 Kronecker products for Multirate Sensor Array Beamforming

Beamforming is a signal processing operation usedelw in wireless
Communication, Radar, and Sound applications tonast the DOA of a propagating
waveform source when the waveform is received bgreay of sensors [19].

When the input array sensors grown to large scabwplementations a partial
Beamforming is performed decomposing the input arest of length L=NM in M

segments of lengtN, as

(F, O, )[x_ 6.1)
Thus, we define a Kronecker parallel factor asagainal matrix
F, O 0
£ Ol = 0 F, O
¢ I
o -~ 0 Fy| . (6.2)

Multi-Beamforming is performed collecting and comibig the output information,
channel by channel, of every DFT, on this procdss ihcreasing factor o6NR is

obtained as demonstrated in equation (4.12). Texbtain a matrix of sizdM

1 0 0O 1 0 0 0
T 0O 1 : 0 1 Lo 0O 1 Lo
I, OU v = .. ) . .
0 .0 .00 . .0
0 o1 o0 -1 O 0 -~ 1| . (6.3

The mathematical formulation using Kronecker praguior the multi-beamforming

(MB) operation becomes
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Me = (0, oug)o(F, o, )as syox, (6.4)

where NS means the down sampling process performed byviiiéirate block. Figure

6.5 shows the implementations of the last formafegti The specific block of Multirate

pre-processing is shown on Figure 6.6, where thdymt[! S].x is implemented.

— — Partial
— MUt | — N-Point Ew Beamforming
Rate| DFT .
M L M u lti-
— ] Beamforming
+— Mut N-Point i
Rate DFT g B (50)
._ L
e 58,)
Modules s— — ——
of N a—{Mul. N-Point i S0m of
i B
Sensors Rate| . DFT . : Partial _.(ﬁ’)
— | Beams i
£F53 :
B (5.}
] —
{1 —— N -Point iy f
a : DET . (1youv ;;)
£FSM —
(Fy ®1y)

Figure 6.5Kronecker Multirate Beamforming implementation dke.
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Murtirate Preprocessing
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Figure 6.6 Block diagram of Multirate Pre-processing

6.3 Multirate Beamforming with 32 Sensors Array using Kronecker products

and implemented on the DSK320C6711 processor.

The implementation of the Beamforming using 32sses array (ULA) Figure
6.7, is based on the concepts explained in théose@t2. The large scale implementation
of sensors, in this case 32 sensors, cannot bacghysiplemented using an array of
microphones. For that reason, we simulated themimg data from 32 sensors using
Matlab® and stored on the DSK320C6711 to performl reomputation of the
Beamforming. The computation performed by the D$&tgssor, the output matrB
stored on the memory of the DSK320C6711 is traedléihen to the PC and the output

Beamforming could be plot using Matlab® as vismétiface.
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Figure 6.7 Kronecker Multirate Beamforming implementationngsB2 Sensors Array

Figure 6.8 shows the output plot of the Beamfogrior 32 sensors array without

down sampling orS=0, the number of samples vectors &86 each one with32

positions to built an input matrix &256x32, then each input vectoBZ positions) is

divided in 4 modules of 8 sensors to perform theoBws Discrete Fourier Transform
(DFT) and finally a coherent sum for partial beaifise dimensions of the output matrix

B is 256x8 , the plot of each entire column (256-length) foé tmatrix represent each of

the beams (8 in total) detected as shown in Fi§8e
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256-Samples, 32-Sensors Array, 8-Beams

35 T

[Y(ch)|

B=sin{theta)

Figure 6.8 Beam Pattern Detected without down samplBrf).

The output means that the detected beams had tf becidence angle with
respect of sensor array such & 05°,30°, 45°,90°, 135°,15(°, 165°.To diminish the
computational effort we can use a down samplingSby2 in order to reduce the input
sample vectors fror@56 to 128, each one witl82 positions to built an input matrix of
128x32, then each input vectoBZ positions) is divided in 4 modules of 8 sensors to
perform the 8-points Discrete Fourier Transform {PRand finally a coherent sum for
partial beams. The dimensions of the output mddrace 128x8. The plot of each entire
column (128-length) of this matrix represent eatlthe beams (8 in total) detected as

shown in Figure 6.9.
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Figure 6.9Beam Pattern Detected with down sampliag?2.

The output means that the detected beams had @ becidence angle with
respect of sensor array such & 05°,30°, 45°,90°, 135°,150°or 165°. This output
shows the same incidence angles as Figure 6.7. otk, Figure 6.7 and Figure 6.8
have the same amplitu|d’e£ch)| and the same angles detected, for that reasodotha
sampling process offers a way to reduce computaiime without extremely final

resolution affected of the Beamforming system. Feg6.10 and 6.11 plot the output

beam using a down sampling fac®r4,andS=8.



Figure 6.10Beam Pattern Detected with down sampligg4.

Figure 6.11Beam Pattern Detected with down sampliag8.

86
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Table 3 shows the different time of executiondown sampling reduction b§=0,2,4,8

anddifferent size of the input matrix.

Beamforming Time of Execution

S INPUT CLOCK
SENSOR ARRAY MATRIX L = M*N PERIODS BF TIME sec
32 0 256x32 8*4 214007410 0.214
32 2| 128x32 8*4 107001190 0.107
32 4 64 X 32 8*4 53482606 0.053
32 8 32 X 32 8*4 26741810 0.027

Table 3. Execution Times for 32 Sensor Array wikO0,2,4,8Down samples

Finally, Appendix D shows the algorithm used to poe the Beamforming application

on the TMS320C671 DSP processor.
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Chapter 7
Conclusions and Future Work

7.1 Conclusions

This work presented Kronecker Structures for Maté Sensor Array signal
processing systems. The concepts of Multirate aeds& array were studied to be
implemented on an actual DSP floating point prooedMS320C6711 from T.I. The
mathematical framework of this work is based onr€tker products that shown an
important tool to develop and implement modularégd scalability hardware and
software on signal processing systems.

The hardware and software tools utilized on thiskaaffered a practical way to
evaluate the maximum capabilities of the first flog point (32 bits) DSP processor
TMS320C6711 from T.I. in the field of Multirate, @or Array and Time-Frequency
representations. Tables 1, 2, and 3 summarizegh#xémum capabilities on memory and
time execution utilized by the DSP processor. TiBl ool box for Matlab® offers an
interesting approach in the field of Radar appiccad and sensor array system to use
Matlab® as a developed environment.

The scalability and modularity approach based omnkcker products to
formulate software and hardware implementationthenfield of Sensor Array shown a
useful tool, because the quantity and configurgbdf Unit Linear Arrays (ULA) sensors
could be changed for specific applications or pwesexternal damage of sensors,

without change DSP routines.
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A complete hardware and software physical impldatéon using an array of six-
microphones was performed with the six channelditd6A/D converter, ADS8364
evaluation module of T.l. and the AIP-0404-1 cowdier signal. In order to probe the
concepts for a realistic application, a 32 seraway signal was simulated using
Matlab®, and the total evaluation was performed tthe DSP to obtain an 8
Beamforming plot. To reduce execution time, a Daampling processing was
implemented to reduce the data computational effatle 3.

Different time-frequency algorithms such as Shomne Fourier Transform
(STFT) and Ambiguity Function (AF) for complete cheterization of Chirp (Radar)
signals were implemented using C language and dquigcision variables (64-bits) for
code execution and storage respectively. In ordeurtderstand the advantages and
disadvantages of this implementation, differentglasf signals were utilized and the
Tables 1 and 2, showed the maximum capability forage and output matrixes,
obtained with the last transforms.

The floating point architecture of the DSP prooeddMS320C6711, offers a new
broadband field for applications were computatiomaturacy is required. This was the
case of the STFT, AF and, Cyclic Correlation altjonis. The rising number of bits
utilized from Analog to Digital converter opens thessibility to conjugate embedded
DSP processors with enough computational power ted accuracy required for

specialized applications on signal processing.
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7.2 Future Work

In order to compute actual applications using DSBcgssor, increasing the
number of sensors for high scale implementationMatiirate Sensor Array Systems, a
multi-DSP processor boards can be studied to oltaigher computational and memory
resource for real time applications in the fieldTofme frequency representations, and

Sensor Array processing.

The rising embedded applications on digital sigor@cessing and sensor array
systems open the development possibility of newliegdons in the field of Power
Quiality, Automotive Control and, Sound Systemsngsivell known signal processing
techniques. This is because some years ago the utatomal requirements, the

algorithm complexity and A/D’s resolution, were rmdficient.
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A. User Guide to Multirate System

Introduction

This project consists in the utilization of the TSROC6711 DSP processor and
the PCM3003 audio daughter card to implement nmate-system. The project consists
of a fractional rate change by 2/3 and 3/2 samfotes the input signal. Based on the
concepts of up-sampling, down-sampling and FIRi{Eihmpulse Response) filters, we

are going to develop the following processes whighthe base of a Multi-rate system.

System Flow Chart

input signal

S .,
Control_’
Data flow
1. A/ID output signal
Fs=36KHz/24KHz AN
\t:I; 7y

8.
D/A
Fs=24KHz
/36KHz

DSP
Processor

7.
Down
sampling

by L
N

6.
Record Up-
Sampled

arra

Up
sampling
by M

5,
LPF
Fc={pi/3}

9. Input signal: Generator, microphone or music wi@ximum frequency of

4KHz.
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10.A/D converter: Sampler input signal at a rate dB@ or 24KHz.
11.Record Memory: It stores the sampled signal inboiffer array of size 36Ksps or
24Ksps * 8sec.
12.Read from Memory: With a pointer we are able twoxer the samples stored in
the buffer memory.
13.Up-sampling by M: introduces (M-1) zeros betweanhesample read from the
buffer-memory.
14.LPF: It removes spectral images, interpolatesliamits frequency for the down-
sampling stage.
15.Down-sampling by L: Reads every L sample fromdbgut memory.
16.D/A converter: it converts from digital to analagh a sampling rate of 24 KHz
or 36 KHz.
The output signal is going to be reproduced withgame frequency as the original if the
D/A converter operates at frequency 24 KHz or 36KHhis is obtained from the

* *
following relation:Fsout= %L?’Zz =24KHz. Fsout= % = 36KHz

We are going to implement all of the above mentibsiages in the DSP board and the

Code Composer Studio development software.

Hardware Settings

1. The DSK board, TMS 320c6711, should be condettethe computer through the

parallel port and be connected to the power supply.
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2. The DSK board should have installed the Audau@hter Card, PCM3003, for this
particular project. The Audio Daughter Card shdmddinstalled on the DSK according

to the instruction of the manufacturer.

3. The Audio Daughter Card should have the follmyjumper configuration:
JP1, JP2, JP4, JP9, JP10 disabled
JP3 connection from the Audio Daughter Card whih DSK.
JP5 MCLK short pins 1 and 2.
JP6 FSCTRL short pins 3 and 4.
JP7 DGND short pins 1 and 2.
JP8 DVDD short pins 1 and 2.
JP11 BITRATE short pins 5 and 6.
JP12 SAMPLERATE short pins 3 and 4.
Note:
The jumper configuration depends on the squareesad the bottom side of the Audio
Daughter Card. It should be noted that the piris#the square solder. The complete

jumper configuration is illustrated Figure 1.
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Figure 1 Audio Daughter Card jumper configuration.

4. The project uses standard stereo plugs with bght and left channels connected to

the Audio Daughter Card.

Project Creation

There are two ways to create tMeltirate project from an acquired file.

Fast and Easy Way

1. Select the given folder nambBtlilirate and save it on the following path:
c:\tiimyprojects\
the final path to the stored file is:

c:\ti\myprojects\Multirate
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2. Open the CCS and Select Project => Open Pr@adtsearch for the Multirate folder

and open it. Then choose the fiMultirate.pjt and open it.

3. Now jump to the sectiorBuilding and Running the Project for building and

running theMultirate project.

Step by step project creation

1. To create the project filklultirate.pjt. Select Project => New. Typdultirate for
project name as shown in figure 2a. This projdetif saved ifMultirate (the folder you
created in c:\timyprojects). The .pjt file storpmject information on build options,

source file names, and dependencies.

2. To add files to project. Select Project => Adds to Project. Look irMultirate.
Files of type C Source Files. Open the C sourtesFilter.c , interrupts.c , mcbspl.c,
Miltirate System.c , stereo.c and, switchesQpen (to add to project) one file at a time;
or place the cursor to one of these files, thetliéoother while holding the Shift key, and
press Open. Click on the “+” symbol on the leftlod Project Files window within CCS

to expand and verify that the C sources files hmen added to the project.

3. Select Project => Add Files to Project. LookMultirate. Use the pulldown menu
for Files of type: and select ASM Source Files.uble-click on the assembly source file

vectors.asnto open/add it to the project.
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4. Repeat step 3 but select Files of type: Linkemmand File, and add the linker

command fildnk.cmd to the project.

5. Verify that the linker command (.cmd) file, theoject (.pjt) file, the C (.c) files, and

the assembly (.asm) files have been added to theqbr

6. Note that there are no “includes” files yekele€st Project => Scan All Dependencies.
This add/includes the headers file8211dsk.h , COEF_CLPF.h, interrupts. , mcbspl.h,
stereo.h , switches.h , and c6x.fihe last one is included in the CCS files, thigers
have to be copied (transferred) from the accompangisk supplied by us. finally the

figure 2b shows all the included files of this @i

Compiler Option: Select Project => Build OptionsFigure 3 shows CCS window
Build Options for the compiler. Look at the figuend fill with the exact values

presented at theigure 3a

Linker Option: Click on Linker (from CCS Build Options) and sele&bsolute
Executable (for Output ModuleMultirate.out for Output Filename), and Run-time
Autoinitialization (for Autoinit Model). The outpgdilename defaults to the name of the

.pjt filename. The linker option should be displaysdreEigure 3b.
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(@)

(b)

Figure 2 CCS Project View window fokultiraet: (a) creating project; (b) project files
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(@)

(b)

Figure 3 CCSBuild options: (a) compiler; (b) linker
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Building and Running the Project

The projectMultirate can now be built and run.

1. Build this project aMultirate. Select Project => Rebuild All. Or press the baol
with the three down arrows. This compiles and médes all the C files and assembles
the assembly filevectors.asm. If the compilation was successful, the executabke f
Multirate.outis created that can be loaded into the C6711 psocemd run. Note that
the commands for compiling, assembling, and linkarg performed with the Build

option. Figure 4 shows several windows within CSS for the pro)daittirate.

Figure 4 Windows for projecMultirate.pjt
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2. Select Debug => Reset CPU in order to cleariniticlize all the registers on the
DSK. Then Select File => Load Program in ordeloex Multirate.outby clicking on it.
It should be in the projedfultirate folder. Connect an input signal from the signal

generator or audio source to the IN connector)(gh theDaughter Board of the DSK,

also connect a speaker and the oscilloscope tOthE connector ( j2 ) on thBaughter

Board of the DSK. This prepares the Multirate implenagioin on the DSK for use.

NOTE: Before the Run command on the CCS, the user dipuilall the user switches
on the DSK to zero, or to the down position. Detieg on the multi-rate desired, the
user may select switches (USER_SW1) = ‘1’, (USER2p5W ‘0’ and (USER_SW3) =
‘0’ for 2/3 rate, Fs(in) = 36 KHz and Fs(out) = R#Hz. Or select switches (USER_SW1)
='0", (USER_SW2) = ‘1’ and (USER_SW3) = ‘0’ for B/rate, Fs(in) = 24 KHz and
Fs(out) = 36 KHz . If the program is run with theitch = O the rate will be selected as

default as 2/3 and Fs = 24 KHz.

3. Select Debug => Run. Or use the toolbar with ‘running man”. Now track the
following routine for the switches in the DSK tonrthe Multi-rate system. It should be
noted that the User Selectable Switches represgmits binary number where the LSB,
(Lowest Significant Bit), is the switch (USER_SW1nd the MSB, (Maximum

Significant Bit), is the switch (USER_SW3).
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Follow the next steps and compare them withRigeire 5 .

a. Select switches (USER_SW1) = ‘0’, (USER_SW2)'=and (USER_SW3) =

‘o for “Straight through, no recordifigstate. This switch value correspond

to the “0” value in decimal base. This routinege back the input signal to the
output of the DSK Daughter board.
b. Select switches (USER_SW1) = ‘1", (USER_SW2p'=and (USER_SWS3) =

‘0’ for “Manual recording in progre8sstate. This switch value correspond

to the “1” value in decimal base. This routinkets the digital out of the ADC
and stores it on the RAM memory, called “recordagl, on the DSK.Wait with
the switch in that state until the message “Buffell” appears in theStdout
window on the CCS.

c. Select switches (USER_SW1) = ‘0’, (USER_SW2)'=and (USER_SW3) =

‘0’ to return to the “Straight through, no recardi state.

d. Select switches (USER_SW1) = ‘1’, (USER_SW2)'=and (USER_SWS3) =

‘0’ for “Normal playback state. This switch value correspond to the “@lue

in decimal base. This routine plays back the neé@d sound from the memory,
“record_array”, of the DSK at the same Samplingguency as the input
sampling rate.

e. Select switches (USER_SW1) = ‘0, (USER_SW2)'zand (USER_SW3) =

‘O'to return to the “Straight through, no redorg’ state.

f. Select switches (USER_SW1) = ‘0, (USER_SW2)l=and (USER_SWS3) =

‘0’ for “Up-Sampling Procedsstate. This switch value correspond to the “2”
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value in the decimal base. This routine perfothes Up-sampling process and
filter the stored samples on the “record_arrayd atores the results on the
memory called “record_array_out”.

g. Select switches (USER_SW1) = ‘0", (USER_SW2)'-and (USER_SW3) =

‘O’ to return to the “Straight through, no recomgl’ state.

h. Select switches (USER_SW1) = ‘0’, (USER_SW2p'=and (USER_SW3) =

‘1’ for “Playback Up_Samplingstate. This switch value correspond to the “4”

value in the decimal base. This routine playskithe recorded sound from the
memory “record_array_out”of the DSK at the samenlang Frequency as the

input sampling rate.

I. Select switches (USER_SW1) = ‘1’, (USER_SW2P=and (USER_SWS3) =

‘1’ for “Playback Down_Samplingstate. This switch value correspond to the

“5”  value in the decimal base. This routinefpans the Down-sampling
process and plays the result at the new samfleguency corresponding to
the desired Up/Down sampling rate chosen at tgenhang.

j. Select switches (USER_SW1) = ‘1’, (USER_SW?2)’ and (USER_SWS3) =

‘1’ for “record_arrays_cledrstate. This switch value correspond to the “7”

value in the decimal base. This routine perfoancéean-up of the memory used
in the process, “record_array” and “record_array”.o
k. Select switches (USER_SW1) = ‘0", (USER_SW2)'=and (USER_SW3) =

‘O’to return to the “Straight through, no recimgl’ state. Now the DSK is

ready for another recording and Multi-rate preoegh the same selected rate.
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NOTE: If the user wants to use the other rate, the omest stop the program and re-
load theMultirate.outfile again. Follow thestep 2used earlier. Here the user may select

the rate again.

Budio Daughter Card: Up-Samplig and Down-Sampling
Switch = 7. record_arrays_clear

Switch = 1. Actual rate = 2-3, Now Return to '0'
Switch = 0. Straight through, no recording

Switch = 1. Manual recording in progress
Buffer Fuall

Switch = 0. Straight through, no recording
Switch = 3. Normal plavbaclk
Switch = 0. Straight through, no recording

Switch = 2. Up-Sampliyg Process
Buffer Fuall

Switch = 0. Straight through, no recording
Switch = 4. Playback Up_Smpling

Switch = 5. Playback Down_Sampling

Switch = 7. record_arrays_clear
LA TEI, Bl 2, Stdout f
[P RUNNING | | For Help, press F1 Ln 1, Coll |

Figure 5 Standard Out window of thdultirate program.
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Routines Flow Chart

Routines Flow-chart
Far Multi-Rate System Implementation

By
Start William Sanchez

Rafael Hudo

HOTE 1:

i Rate =32 = hiL Fate =203 = i

’:‘ "‘r;,beg'_:“"_lngh‘“eld Fs(in)= 29Mhz Fs(in) = 3khz

SAR sl L Fs{out) = 3khz Fsfout) = 24khz

beplacedin'l ar'2'.

NOTEZ: Drefinitions:

Then the awitch should M = Up-sampling Order

be placed inzam to bagin L = Down-zampling Order

the multi-rate system. F=(in)= Input Sampling Freq.
Fa{out)= Output Sampling Freq.

an = anitch case value
record_array = input memony

/\ Record_array_out= output memony
If:

Mrhile == 1

.SW=':' =1 =2 =3 =4 =5 =7
Straight through then then then then then then
no recording l l l l l l
Ml anual recording Up-Sampling Marmal playbachk Flaybadk Up-Sampling Diown- Samipling
to record_aray B F(outy= Fsin) Ftouf)= Fstin) By L L Ve

é Cb Playback
( % :] Falout)

Record_array_out




108

Project Results

The Following figures shows, the final resultsloé Multirate Project.
Figure A

Channel 1: Original Input Signal (Vpp = 500mv anKHz).

Channel 2: Up-Sampled Signal by 2

Fs(in) = 36 KHz.

Fs(out) = 36 KHz.

The picture shows that the signal in channel 2sampled by 2, has half the frequency of
the original input signal, presented in channelbécause the Up_Sampling Process
increases the size of the original input signal2oy To show that the Up_Sampling

process works, we selected Fs (out) with equalevakiFs (in) so that the output signal,
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with two times the samples as the original signaimes out with half the frequency of
the original signal. It is important to know thhe output signal has been filtered by LPF
with cut frequency of pi/3 to interpolate the zewdue samples added with the original
samples and to eliminate the spectral images gexieby the Up-sampler.

Figure B

Channel 1: Original Input Signal (Vpp = 500mv ankHz ).

Channel 2: Signal after Up/Down sampling processes,= 2/3

Fs(in) = 36 KHz.

Fs(out) = 24 KHz.

.
.
"
7\
n \
4 LY
.

The picture shows that the signal in channel Zrdafte Up/Down sampling processes,
has the same frequency that of the original reabsilgnal. The reason for this is that the
input signal’'s sampling frequency, Fs(in) = 36 KHg, multiplied by the Up/Down

sampling rate = 2/3, resulting in a output sampliregjuency, Fs(out) = 24 KHz. To
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show that the Up/Down sampling processes workssatected Fs(out) = 24 KHz in
order to reproduce correctly the input signal. $igmal has been filtered to eliminate the
spectral images and possible aliasing created byUh-sampler and Down-sampler
respectively.

Figure C

Channel 1: Original Input Signal (Vpp = 500mv ankHz ).

Channel 2: Up-Sampled Signal by 3

Fs(in) = 24 KHz.

Fs(out) = 24 KHz.

The picture shows that the signal in channel 2saippled by 3, has 1/3 the frequency of
the Original Input Signal, presented in channebécause the Up_Sampling Process
increases the size of the Original Input Signal3by To show that the Up_Sampling

process works, we selected Fs (out) with equalevakiFs (in) so that the output signal,

with three times the samples as the original sige@hes out with 1/3 the frequency of
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the original signal. It is important to know thhe output signal has been filtered by LPF
with cut frequency of pi/3 to interpolate the zewdue samples added with the original
samples and to eliminate the spectral images gexieby the Up-sampler.

Figure D

Channel 1: Original Input Signal (Vpp = 500mv anKHz).

Channel 2: Signal after Up/Down sampling process#s,= 3/2

Fs(in) = 24 KHz.

Fs(out) = 36 KHz.

0. Q0s SO0
5
5
v |
8
'

PR . PRy |tn *

The picture shows that the signal in channel Zrafte Up/Down sampling processes,
has the same frequency that of the original reabsilgnal. The reason for this is that the
input signal’'s sampling frequency, Fs(in) = 24 KHg, multiplied by the Up/Down
sampling rate = 3/2, resulting in a output sampliregjuency, Fs(out) = 36 KHz. To

show that the Up/Down sampling processes workssatected Fs(out) = 36 KHz in
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order to reproduce correctly the input signal. $igmal has been filtered to eliminate the
spectral images and possible aliasing created byUp-sampler and Down-sampler
respectively.

Filter Design with MatLab

We used MatLab as a tool for the filter designhiis project for interpolation and spectral
images rejection and as anti-aliasing. We desidimige impulse response, FIR, filter
with order of 13 and a cut frequency at/3. We used the FIR1 command to generate

the coefficients used by the implementation thatlacated in the filCOEF_CLPF.h.
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Conclusion:

The Multi-rate system implementation on the TI's $820C6711 DSP board was
completed successfully. We were able to implengsiystem capable of adapting an
output signal from an initial system working atarpling frequency of 24 KHz, to a

system working at a sampling frequency of 36 Kiso the implementation is capable
of adapting the two systems, the sender systenttendeceiving system, with samples
frequencies of 36 KHz and 24 KHz respectively. sTisi proof that we could implement

successfully the Up-sampling and Down-sampling epis; also the interpolation by the

use of FIR filters.

We learned about the different features of the ®Krd like the User Switches,
the DSK Ram memory, the register for control iIK&/ERO and TIMERL1 to change the
sampling rate, and the Audio Daughter Card for Higlquency sampling and flexibility
with the sampling rates frequencies by controllingy software.

Most importantly we gained knowledge about the régramming for DSP
applications using the CCS, Code Composer Studftware tool, also the experience in
designing a complete DSP application, which will llpful on our development as

engineers.
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B. DBT Tool box Example

Ffunction dhtexl

(DETEX]1 A&n example of a main program using conventional beamforming on
tzimalated signals fromw an ULA.

% % DET, A Matlab Toolbox for Radar 3ignal Processing

(o) Foi 1994-2Z000. See the file dbtright.m for copyright notice.
Atartc : 951221 Swante Bijdrklund (swabij).

Latest change: gDate: 2000710516 15:39:42 § ghurthor: swabj g.

FRewvision: 1.2 &
e e i e i e e e i e i e e e e i e e e e i i e e i e i i e e e e e e i i i e e e e e i i e e

ELE

e

I i %
% Parameters
H e %
lambda = 0.03; % wawvelength.
D = 0.45%lambda; % Element separatiom.
T = 24d; % Mumber of snapshots.
K = 3Z: % Number of digital antenha channels.
theta = d2r([25 32])': % Target angles. The ruamber of targets is
% giwen by the mamber of target angles.
phi = zeros(=size(theta)); % Target angles.
SNE = [1l0 5]': % Signal to noise ratio in dB at each
% antenna element!?!
alrha = d2r ([0 1l&])1': % 4tart phases of the target signals.
dalpha = dZr([34 -13])': % A constant phase shift bhetweenh snapshots.
% Means targets mowvements at constant welocity.
dist=Inf*ones(size(theta)); % Distances to the sources.
tgtModel = 'const'; % Target type to simulate.
noiseModel = 'rndnw'; % Noise Type to simulate.
EnoizeModel = 'rndn': % Noise type Lo simulate.
MMu = 2: % Mumber of targets that MUOSIC beliewves in.
Y e 3
% Commands
Y e %
ant = defant('isotropULL' ,[E,D]): % Define the antenna.
3ig = compsimdiant, lamhda, T, tgtModel, [theta,
phi, SHNE, alpha, dalpha, dist, ... % Generate simulated receiwed
eye(size(theta,l1]1], noiseModel, eve(K)): Y antenna signals.
Zapectl = sdoaspc('muasic',sig,[].,.Ma): % Eztimare the DO4A-spectrum

% with MITZIC.

B = ecorrmi=ig) ; % Estimate the antenna signals
% correlation matrix.

apectl = sdoaspo('chf' R): % Eztimare the DOA-zpectrun
% with conventional beamform.
fiqure,splots(spectz) ;



C. Time Frequency Algorithms

[* * *% *% * *% *% * *% *% * * *% *% *

*

* AIP Laboratory

*

* AF.C

*
DESCRIPTION
This program compute the Ambiguity Function betw een the Tx and Rx
signals.

*

*

*

*

* DEVICE: DSK320C6711 T.I.
* CCSv.21
*
*
*
*
*

HISTORY
Rev 1.00 - Sep/2004 Created by MS. William D. Sanchez R.
Dr. Domingo Rodriguez - Advisor
R e e e s e e e o s e e s e e e e T e e e nnnnnnnn/

/I Included Files//

#include "math.h" /I math.h header for mathematical operations.

#include "dataTW256.h" /I Twiddle Factors to compute a N-point FFT.

#include "Sgtx256.h" /I Signal transmmitted.

#include "Sgrx256.h" /I Signal Received.

#include "Xcorr256.h" /I Correlation File initialized with "0.0".

#include "c6211dsk.h" /I c6211dsk. header for dsk function routines

[T T M

#define N 256 /I Points of the Signals and FFT points

/[Storage Matrix//

far double Ambiguity Mtx[N][2*N]; /[ far - location, of the Ambiguity

Function [Rows][ComplexColumns].

[T T M

[ e e

* NAME: Coplex_Complement(void)

* DESCRIPTION: Perform the complementto R = (R +j 0) Real data stored

* in Ambiguity Mtx[m][n],

* ARGUMENTS: Uses the general Variable Ambiguity Mtx

*

*% *% *kkkkk *% *kkkkk *% *kkkkk *% *% *% *kkkkk /

void Complex_Complement( void )

{

int n,m;

for (m=0; m<N; m+=1)

{
for (n=(N-1); n>=0;n-=1)
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{

Ambiguity Mtx[m][2*n] = Ambiguity _Mtx[m][n];

Ambiguity_Mtx[m][2*n+1] = O;
}

} }
M T T

/*
* NAME: FFT_TI (void)
* DESCRIPTION: Perform the FFT of each row of the A

*

* ARGUMENTS: Uses the general Variable Ambiguity

*

* *% *% * *% *% * *% *% * *%

void FFT_TI( void )
{

int m;

double *pointerl;
/Ibit_rev((float *)w, N>>1);

for (m=0; m<N; m+=1)
{
pointerl = Ambiguity_Mtx[m];

DSPF_sp_cfftr2_dit(( double *) pointerl,(
bit_rev(( double *)pointerl, (2*N)>>1);

}

}
T

/*
* NAME: Haddamart (double Stx[])

* DESCRIPTION: Perform the Haddamart product betwee

family of
* shifthed Rx signal
* ARGUMENTS: The Tx signal vector.

*

kkkkkkkkkkkkkkkkkkkkkkkhhhhhkkkkkkkkkkkhkhhhhhhhhixx

void Haddamart ( double Stx]])
{

int n,m;

for (m=0; m<N; m+=1)

{

for (n=0; n<N;n+=1)

M

mbiguity Mtx[m]

Mtx

*) w, N);

Mt

n Tx and the Matrix

*******************/
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Ambiguity Mtx[m][n]=
(Ambiguity _Mtx[m][n]*Stx[n]); /[Fam_Shiftim][n]=
(Fam_Shift[m][n]*Stx[n]);

}

}

}
M T

/*
* NAME: Shift_Signal (double Srx[])

* DESCRIPTION: Create a Matrix of Cyclic Shifth Rx
* ARGUMENTS: The Rx signal vector

*

* *% *% * *% *% * *% *% * *%

void Shift_Signal ( double Srx[])
{

int n,m,i;

for (m=0; m<N; m+=1)

{
for (n=0; n<N;n+=1)
i=(n+m)%N;
Ambiguity Mtx[m][n]= (Srx[i]);
(Srx[i]);
}
}

}
T T

/*
* NAME: Corr(double Stx[], double Srx[])

* DESCRIPTION:Perform the Cross-correlation between
Signal.

* ARGUMENTS: The Tx signal vector and  the Rx sign

*

*% *% * *% *% * *% *% * *%

void Corr( double Stx]], double Srx[])
{

int n,m,i;

for (m=0; m<N; m+=1)

{

for (n=0; n<N;n+=1)

i=(n+m)%N;
Xcorr[m]= (Stx[n]*Srx[i])+Xcorr[m];
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M

/[Fam_Shift[m][n]=

M

the Tx and Rx

al vector.
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}

[T T ] M
/* Main program */

void main()

{

Corr(Sigtx, Sigrx ); /ICross-correlation between the Tx and Rx Signal.
Shift_Signal (Sigrx); /[Cyclic Shifth Rx signal

Haddamart (Sigtx); /I Haddamart Product

Complex_Complement(); /I R = (R+j0)

FFT_TI(); /[ FFT Matrix's rows Ambiguity Mtx.

}

T i
/************************************************** kkkkkkkkkhkkkkkhkkkkkik

*

* AIP, Laboratory.

*

*STFT.C

*

* DESCRIPTION

* This program compute the Short Time Fourier Tran sform
* (STFT)of a Shirp Signal, Using the method of ind irect

* filtering (FFT) .
*

* DEVICE: DSK320C6711 T.I.

*CCSv.2.1

*

* HISTORY

* Rev 1.00 - Sep/2004 Created by MS. William D. Sanchez R.

* Dr. Domingo Rodriguez -

Advisor

*

kkkkkkkkkkkkkkkkkkkkkkhhhhhhkkkkkkkkkkkhhhhhhhhhhix *******************/

/* Define Variables */

#define N 256 /I number of filters banks
#define P 1024 /I Points of the signal Padded
#define L 128 /I Points of the filter without
padding

#define M P-L /I Point of the input Chirp Signal
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#define s 1000 /I frequency sampling
#define D 1.024 /I time durantion in seconds
TN M

/[Storage Matrix//
far double xK[N][2*P]; /I far - location, of the STFT
/l[[Rows][ComplexColumns].

[T Ty i
/I Included Files//
#include "math.h" /I math.h header for mathematical
operations.
#include "c6211dsk.h" /I c6211dsk. header for dsk function
routines
#include "dataTwW1024.h" /I Twiddle Factors to compute a P-point
FFT.
#include "chirpSTFT_896.h" /I Chirp input Signal with M-points.
#include "fft_h_padd_128.h" /I FFT ( of the L-points filter with pading
Il /I to P-points).
i i
[ e e
* NAME: Haddamart (double *fft_h)
* DESCRIPTION: Perform the Haddamart product betwee n aech row of the
* modulated Array and fft_h. FFT(xk[m][n]) .* FFT_h
*
* ARGUMENTS: The fft_h coeficientes = FFT (h_padd ed).
* *% *% * *% *% * *% *% * *% * *% *% * /
void Haddamart ( double *fft_h)
{
int n,m;

double y1y2,y3,y4;
for (m=0; m<N; m+=1)

for (n=0; n<P;n+=1)

{

y1 = xk[m][2*n]*fft_h[2*n];

y2 = -1*(xk[m][2*n+1]*fft_h[2*n+1]);
y3 = xk[m][2*n]*fft_h[2*n+1];

y4 = xk[m][2*n+1]*fft_h[2*n];

xk[m][2*n]= y1+y2;
xk[m][2*n+1]= y3+y4;

}



}
i
/*
* NAME: FFT_TI (void)

* DESCRIPTION: Perform the FFT of each row on the m

M

odulated Array

* FFT(xk[row][n].
*
* ARGUMENTS: Uses the general variable matrix xk[ m][n].
* *% *% * *% *% * *% *% * *% * *% *% * /
void FFT_TI( void )
{
int m;
double *pointerl;
/Ibit_rev((float *)w, N>>1);
for (m=0; m<N; m+=1)
{
pointerl = xk[m]; /I pointer to the rows of the xk matrix.
DSPF_sp_cfftr2_dit(( double *) pointerl,( float *)w, P);
bit_rev(( double *)pointerl, (2*P)>>1);
}
}
T T i
e
* NAME: In_FFT_TI (void)
* DESCRIPTION: Inverse FFT, using the complex compl ement of the
* Twidel factor. IFFT(FFT(xk[m][n]) .* FFT_h)/P.
* ARGUMENTS: Uses the general variable matrix xk[ m][n].
*
kkkkkkkkkkkkkkkkkkkkkkhhhhhhhkkkkkkkkkkhhhhhhhhhrixx *******************/
void In_FFT_TI( void )
{
int m,n;
double *pointerl;
/Ibit_rev((float *)w, N>>1);
for (m=0; m<N; m+=1)
{
pointerl = xk[m]; /I pointer to the rows of the xk
matrix.
In_DSPF_sp_cfftr2_dit(( double *) pointerl,( float *) w, P);

bit_rev(( double *)pointerl, (2*P)>>1);

}
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for (m=0; m<N; m+=1) /I The output has to be divided by P-points.

{
for (n=0; n<2*P; n+=1)

{
xk[m][n]=(xk[m][n])/P;
}

}

}

T T M

o e
* NAME: Matrix_modulation(double *x)

* DESCRIPTION: Modulation of the input Chirp Signal with e”(wk)

*

* ARGUMENTS: Uses the input Chirp Signal stored o n x[n].

*

* *% * * * * * * *% * * * *% * * /

void Matrix_modulation( double *x)
i{nt k,n,t;
double wk;
double pi = 4.0*atan(1.0);
t =fs*D;
for (k=0; k<N; k+=1)
{ wk = (2*pi*k)/N;
for (n=0; n<t; n+=1)
xk[Kk][2*n] = cos(wk*n)*x[2*n];

xk[K][2*n+1] = (sin(wk*n)*x[2*n])*-1;
//Modulation Matrix

/* Main program */

void main()

{

Matrix_modulation(( double *) X); /IModulation of input Chirp Signal.
FFT_TI(); /I FFT of rows of the Modulation Matrix.
Haddamart (( double *) h); /I Haddamart product between each row
1l /I of Modulation Ma trix and fft_h.
In_FFT_TI(); /I inverse fft, we don't have magnitude

}



D. Multirate Beamforming Algorithm.

/************************************************** kkkkkkkkkkkkkkkhkkkkk
*

* AIP, Laboratory.

*

* BeamForming.C

*

* DESCRIPTION

* This program perform a "P" beam-forming from "N" sensor array.
* with the S Down-Sampling factor.

*

*

* DEVICE: DSK320C6711 T.I.

*CCSv.2.1

K e e e
* HISTORY

* Rev 1.00 - Sep/2004 Created by MS. William D. Sanchez R.
* Dr. Domingo Rodriguez -
Advisor

/* Define Variables */
#include "math.h"
#include "c6211dsk.h"”

/* Define sample rate */
float Fs=40000.0;

#define N 32 /[l number of Sensors Array.

#define L _d2 /I lambda/d (distance).

#define p 2 /I pth output of DFT.

#define BO p*L_d/N /I Covered beams, p =0,1,2,3,....N-1.

#define chp

#define rp

#define B 256 /I Number of vectors sampling over all sensors.
#define P8 /Ipoints of fft to evaluate the number of beams.
#define S1 /I Down-Sampling factor.

double FFT_Vec[2*P]; /I Vector for store rows and perform FFT.
[T T ] i
/I Included Files//

#include "dataTw8.h" /I Twiddle Factor to Compute the P-FFT
#include "Beam_256 32.h" /I Input Signal Simulated from Matlab

(Matrix_complex (B x N).

#include "FFT_Sum_256_8.h"  // Output Matrix_complex (B x P). each
colomn represent a entire beam.

T T T i
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/* ____________________

* NAME: Sum_FFT_Coherent(double* x, int fila)

* DESCRIPTION: Perform the Coherent Sum for each ro w

*

* ARGUMENTS: Pointer to the row in after fft *x a nd, the column in
process.

void Sum_FFT_Coherent( double *x, int fila)
{

int m,n;
m= fila;
for (n=0; n<2*P; n+=1)

{
FFT_Sum[m][n]= X[N]+FFT_Sum[m][n];
}

}

T M
S,

* NAME: FFT_TI_Beam (void)

* DESCRIPTION: For each N-points rows divide by P-p oints and perform
the P-points fft.

with the S Down-Sampling factor. to reduce

computations.

* ARGUMENTS: Uses the general variable matrix Bea m_M and FFT_Vec.
*

kkkkkkkkkkhkkkkhkkkkkhkkhkkkhkkkhkkkhkkhkkhkkhkkhkkhkkhkkkkkhkkkkkhkkx *******************/

void FFT_TI_Beam ( void )

int  m,n,i,k,j;
double *pointerl;

/Ibit_rev((float *)w, N>>1);
for (m=0; m<B; m+=S)
for (n=i; n<N; n+=1)
iZFT_Vec[Z*j]: Beam_M[m][2*n];

FFT_Vec[2*+1]= Beam_M[m][2*n+1];
j+

123
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if (n==k*P-1)
{
j=0;
k++;
i+=k*P;
pointerl = FFT_Vec;
DSPF_sp_cfftr2_dit(( double *) pointerl,( float *)w, P);
bit_rev(( double *)pointerl, (2*P)>>1);
Sum_FFT_Coherent(( double *)pointerl, m);
b
}
i=0;
k=1;
}
}
[T T Ty i

/* Main program */
void main()

{

FFT_TI_Beam(); // Routine to compute the "B" sampling vectors to ¢ ompute
/[ "P" Beamforming. with the "S" Down-Sampling fact or.
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E. Kronecker Properties Examples

Let

A= |:a0,0 a0,1:| . B= |:b0,0 b01:| . C= |:C0,0 CO,li| D= |:d0,0 d0,1:|
bLo bLl c d],o dl,l

Scalar Multiplication: If a is a scalar, then

A (@B) = a(AD B)

Distributive Law: The Kronecker product is distributive with respecaddition

(A+B)0C=A0C+BOC

a'00 +b00 aOl +b01
NG In o
a1,0 + bl,O a'].,1 + bl,l




aOO + bOO aO,l + bO,l C a0,0 + b0,0
01

aLO + blO all + bll aLO + blO
+ bOO aOl + bOl 0,0 + b0,0
a,, +b, a;,+by, "la, +by,
aO 0 aO,l bO 0 bO 1 a0,0

CO,O + b b CO,l
Ao Qp o Py a0
aO 0 aO,l bO 0 bO 1 a0,0

Cio + b b Cia
L al,O a'l,l 1,0 11 al,O

a‘0,1 + bO,l
a'l,l + b1,1

a'0,1 + bO,l
a;, +by,

b
:| + |: .

bLO

b, b

bl,O bl,l A

a‘0,1
al,l

aO,l

a

Associative Law The Kronecker product is associative

AO(BOC)=(AOB)OC.

_C |:b0,0 b0,1:| c |:b0,0 b0,1:|_ _b |:a0,0 a‘0,1:| b |:a0,0
o b 10 bl,l o bl,O bl,l _ o a‘l,O a‘l,l o al,O

c b0,0 bO,l c b0,0 bO,l b a0,0 a‘O,l b a0,0
L w0 bl,O bl,l - bl,O bl,l N L - a'1,0 al,l - al,O

12

6

gc
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b C a'O 0 a'0,1 b c a0 0 aO 1 b Cc a'0,0 a0 1 b C a0,0 aO 1
1,0~0,0 11~0,0 1,0~0,1 11~01
T A, Ay || | a, 8y, By ||
b C Ao 8oy b.c Qo0 8o1 b. C Ao 8oy b c Qo0 o1
0,0~1,0 01%~1,0 0,0~11 01¥11
a, a, | ETE:T &, ay, a, a,

» Identity Product: Givenl ., ther x cidentity matrix,

l.=1.01,
l,=1,01,
1 0 0 O]
01002‘1 O}D{l o}
0010 [01 |01
0 0 0 1
1 0 0 O] {1 0} 0{1 o}
0100 |[01 01
0010 |[10] J1oO
0 0 0 1 0{0 1} ]{o 1}
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Transpose The transpose for both matrix and tensor oparatis useful for

manipulating symmetric matrices (e.g. the Fourieatrm), where the original

matrix and the transpose are equal.

(AB)" =BT A’
(AOB) =A"0OB'
- NT
Qoo Aoy Qoo Aoy
by by, T T
Ao Ay Qo ap | Qo0 o1 - oo Doy
Qoo Aoy Qoo Aoy o Qay b, by
by, by,
i Ao Ay Qo 8y |
- T
A50P00  891Poo 0001 9400,
P PRL a000;  a13P0; _{ao,o al,o} - {bo,o b1,0:|
QoD gy Qoob1  Agiby, o1 ap by, by
| auob,  aubig a by aby |
_ T r -
Q00Poo  A0iPoo  Agobos  8o1Do; b oo Ay b oo o
00 10
aobyy by, @by @by, _ Qo1 Ay o1 Ay
Qoobe  Apibiy @by agbyy b o0 Qo b oo o
01 11
b aubiy  aeby  aphy; | o1 1 o1 Ap
— T — -
Q00D @oiPop  Agoby; 8o 0, A0bo0 810Dy T SR T O
a0 by Aby; @by, B | 80sb00 @140y 85,00 ayby,
Agolio @il Ageby;  agby 0001 810D, APy aebyy
by apb,  apb;  apby; | | 8010o; 813D, ao.by;  aj by |
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Mixed Product Rule: Let A andC be M xM and B and D beN x N matrices.

Thus,

(AOB)(COD)=ACOBD

b b d d
- [aoo] ’ B = 0,0 01 ’ C = [Coo] D = 0,0 01
Y bl,O b1,1 Y d 1,0 d 11

{bo,oao,o b0,1a0,0:||:d0,0C0,0 do,lco,o}:[a ][C ]D{bo,o b0,1}|:d0,0 d0,1:|
b1,oao,o bl,la0,0 d1,0(30,0 dLlCO,O podoo bl,O bl,l d],o dl,l

(bl,O aO,O ) (d O,OCO,O ) + (bl,la'0,0 ) (d 1,OC0,0 ) (bl,O aO,O ) (d O,lCO,O ) + (bl,la'0,0 ) (d 1,1C0,0 )

[aOO][Coo] 0 {(bo,od 00) T (00,d15)  (Boodo,) + (b0,1d11)j|
, ’ (byodoo) +(bud; o) (bodo,) +(bydy,)

{(bo,oao,o)(do,oco,o) + (B51800)(d16C00)  (Pg0800)(dsCo0) + (bo,lao,o)(dl,lco,o)}

| (50800)(doCo0) + (Bo;800)(d10Co0)  (Po0@60)(dosCao) * (Bo1800)(AiiCo0) | _
_(bl,O aO,O ) (d O,OCO,O ) + (bl,la'0,0 ) (d 1,OC0,0 ) (bl,O aO,O ) (d O,lCO,O ) + (bl,la'0,0 ) (d 1,1C0,0 )

_((bo,o doo) +(by,d0) )(ao,oco,o ) ((bo,o do,) +(by,dy,) )(ao,oco,o )}
((b1od00) * (biyd0) N@0oCoo0)  ((Brobos) + (brydys) NBooCos)

One useful identity which follows (3.8), giveB(l xs), then

AOD =(Al,)O(I,D)=(AO1,)(I, OD)
1 0]dy, do, 1 0 doo  dos
1P P O I CE P
do, d, a,, 0|)[doy do,
SR P b (|
doo@oe  dos800 a,, O])[d,, dy,
(i | ) g
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F. Signal Processing Tools

This chapter concentrates on the main charact=isii hardware and software
tools utilized around the implementation processhas thesis. We will start explaining
the Digital Starter Kid DSK320C6711 of T.I. Aftdrat, we will review the most relevant
characteristics of the DSP processor TMS320C671T.bf In addition will see the
Daughter Card PCM3003 of T.I., the Analog to Dibittanverter ADS8364 of T.I., the
signal conditioner card AIP-0404-1 and the softwafedevelopment Code Composer

Studio based on C language CCS 2.1v.

1. Digital Starter Kit DSK320C6711

The TMS320C6711 DSP Starter Kit (DSK) Figure 6, eleged jointly
with Spectrum Digital, is a low-cost improvementagibrm designed to speed the
development of high precision applications based Toits TMS320C6000 floating
point DSP generation [17]. The kit uses a pargheft to connect to PC. The Code
Composer Studio v2.1 was utilized.

The C6711 DSK tools include the latest fast sinaktfrom TI and access to the
Analysis Toolkit via Update Advisor which featurg® Cache Analysis tool and Multi-
event Profiler.

The C6711 DSK allows downloading and stepping thhocode quickly and uses

Real Time Data Exchange (RTDX™) for improved Hostl &arget communications.
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The DSK includes the Fast Run Time Support libsagard utilities, such as Flashburn to
program flash, Update Advisor to download tooldjti#s and software and a power on
self test and diagnostic utility to ensure the OSkperating correctly.
The full contents of the kit include:

e C6711 DSP Development Board with 64K Flash and 16IERAM

+ C6711 DSK Code Composer Studio™ v2.1

e Quick Start Guide

» Technical Reference

e Customer Support Guide

» Parallel Cable

» Universal Power Supply

* AC Power Cord(s)

Figure 6 Digital Starter Kid DSK320C6711 of Texas Instrungent
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1.2TMS320C6711 DSP Processor

The C6711 device, Figure 7, is based on the higfopeance, advanced
VelociTI™ very-long-instruction-word (VLIW) architdure developed by Texas
Instruments (TI) [17]. It makes this DSP an exadllehoice for multichannel and
multifunction applications. With performance of up 900 million floating-point
operations per second (MFLOPS) at a clock rate50f MHz, the C6711 device offers
cost-effective solutions to high-performance DSBgpamming challenges. The C6711
DSP possesses the operational flexibility of highesl controllers and the numerical
capability of array processors. This processor3fageneral-purpose registers of 32-bit
word length and eight highly independent functionalts. The eight functional units
provide four floating-/fixed-point ALUs, two fixe@oint ALUs, and two floating-/fixed-
point multipliers. The C6711 can produce two MAGar mycle for a total of 300
MMACS.

With performance of up to 1200 million floating-pbioperations per second
(MFLOPS) at a clock rate of 200 MHz or 1350 MFLO&S clock rate of 250 MHz (for
6711D), the C6711 device also offers cost-effectigkitions to high-performance DSP
programming challenges. The C6711 DSP also posséisseoperational flexibility of
high-speed controllers and the numerical capabdftyrray processors. This processor
has 32 general-purpose registers of 32-bit wordjtlerand eight highly independent
functional units. The eight functional units proitbur floating-/fixed-point ALUs, two
fixed-point ALUs, and two floating-/fixed-point ntigliers. The C6711 can produce two

MACs per cycle for a total of 400 MMACS.
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The C6711 DSP also has application-specific hareviegic, on-chip memory,
and additional on-chip peripherals. This C6711 w@s&so-level cache-based architecture
and has a powerful and diverse set of peripheféls.Level 1 program cache (L1P) is a
4-Kbit direct mapped cache and the Level 1 datdedtl1D) is a 64-Kbit 2-way set-
associative cache. The Level 2 memory/cache (LByists of a 64-Kbit memory space
that is shared between program and data spaceebiny can be configured as mapped

memory, cache, or combinations of the two.

functional block and CPU (DSP core) diagram

C6711/C6711B/C6711C/C6711D Digital Signal Processors
TR, External
32
I"‘°"‘r‘r°“’ ] L1P Cache
(EMIF) 4K Bytes Total
ROM/FLASH
¥0 Davioss
C6000™ CPU (DSP Core)
Instruction Fetch Control
M'g“;h““:"l e L2 Instruction Dispatch Registers
1 s pot 1 [+ Memory - Control
Fran;lllingo l.'::ﬂi‘pﬂal; ﬂ;:ﬂs; 5 4 Banks Instruction Decode Logic
A dobls Enhanced 64K Bytes Data Path A Data Path B
SCSA, T, E1 SR Total Test
ACS7 Davices, A e | A Register File B Register File | ImCiroult
SPI Devices, S {16 channel) Emulation [T 1"
Godecs + = Sarial Port 0 [+
Lit]stt]m1t] .o1]|].02 | mat].sat| Lot]| Interrupt Lelfs
(McBSPO) T r Conitrol
Heost Port
16 Interface |, | h i [
(HP1) L1D Cache
2-Way Set
Associative
I{r;ll?m:pt L] 4K Bytes Total
alector
Power-Dawn
PLL* Logic Boot
GPIO® [+ Configuration

Figure 7. Functional Block Diagram and CPU for DSP320C674fru190 source].
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The peripheral set includes two multichannel beffieserial ports (McBSPs), two
general-purpose timers, a host-port interface (HRNhd a glueless external memory
interface (EMIF) capable of interfacing to SDRAMydsasynchronous peripherals.

The C6711 has a complete set of development toblshwncludes: C compiler,
an assembly optimizer to simplify programming amhesiuling, and a Windows™

debugger interface for visibility into source casecution.

1.3 Audio Daughter Card PCM3003

PCM3003 Figure 8, shows a low cost single chipesterudio CODECs (analog-
to-digital and digital-to-analog converters) witingle-ended analog voltage input and
output. The ADCs and DACs employ delta-sigma modulatiorhv@#X oversampling.
The ADCs include a digital decimation filter, afgttDACs include an 8X oversampling
digital interpolation filter [17]. The DACs alsodlude digital attenuation, de-emphasis,
infinite zero detection and soft mute to form a ptete subsystem.

PCM3003 operates with left-justified and right-jtisti formats. PCM3003
provides a power-down mode that operates on the sSABd DACs independently.
Fabricated on a highly advanced CMOS process, POBI8)suitable for a wide variety
of cost-sensitive consumer applications where gpedformance is requiredThe

PCM3003’s functions include
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Figure 8. Audio Daughter Card PCM3003 of Texas Instruments

deemphasize, power down, and audio data format selections, which are controlled by hardware.

Hardware Features

* Board Size: 3.5" x 3" Inches

e« PCM3003 - Burr Brown 16-/20-Bit Single-Ended Analttgput/Output Stereo
Audio Codec (TI Lit. # SPAS079)

» Compatible with TI C31 and C6711 DSKs (attachesh@ader connector)

* Line-in/out stereo mini audio jacks

» 2 electrets microphones

» Sample rate controlled by 12.288 MHz OscillatobpDSP timer output pin.

» Separate Analog/Digital power regulators and groplashes for high-resolution
audio.

» Jumper Configurations

* 20/16-bit codec selection
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* Clock sample rates

» Jack/Microphone selection

» Line/Microphone input gain control selection
» Oscillator/DSP Timer selection

e Sampling rate Jumpers

* Software Features

1.4 Evaluation Module ADS8364EVM

ADS8364 Figure 9, shows a high-speed, low poweal d6-bit A/D converter
that operates from independent 5-V AVdd and DVdgapses [17]. The digital output is
delivered through a built-in buffer circuit thatrcée powered from DVdd or separate
2.7-V to 5.5-V (BVdd) sources. This allows for fibsity when designing within mixed
voltage environments.

The ADS8364EVM includes the following features:
* Full-featured evaluation board for the ADS8364 Xb{¥, 16-bit, 6-channel,
simultaneous sampling A/D converter
* Analog inputs can be configured as single-endetifterential
» Direct connection to C5000 and C6000 DSK platfortheough the 80-pin
interface connectors
* Built-in reference

» High-speed parallel interface
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Figure 9 Six-Analog to Digital Converter ADS8364

1.5 Signal Conditioner Adapter AlIP-0404-1

AIP-0404-1 Figure 10, shows a hardware prototypegeldped at the AIP-
Laboratory and fully implemented to perform thensigconditioner between the 6-
channels (A/D converters) of the ADS8364EVM and éxéernal analog signals in our
case a sensor array of 6-microphones [17]. It \®lbped to introduce a 2.5 V-DC offset
and gain factor of 5, in order to offer a corregput signal to the A/Ds converter
references. This allows the possibility to connddferent input sensors not only
microphones to the A/Ds converters. The device 84B4-1 is based on the LM3900
OpAmp (Operational Amplifier), this offers good cheteristics of input and output
impedances. The schematic connection is showiguré 11.

The AIP-0404-1 includes the following features:



138

Six-channels A/D signal conditioner adapter.

Six-Analog inputs and outputs.

Direct connection to the ADS8364EVM and extermadlag six-sensors.
Only one 5 VDC input supply.

Six input plug connectors.

Figure 10.Signal Conditional Adapter for six-channels AlP0@41
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2. Software Development Tool

Code Composer Studid (CCStudio) Development Tools are a key element of
the eXpressDSP Software and Development Toolsegiyafrom Texas Instruments.
CCStudio delivers all of the host tools and runtisodétware support for your TMS320
DSP based real-time embedded application to mddster [17]. Familiar tools and
interfaces allow users to get started faster thvan before and add functionality to their
application thanks to sophisticated productivityolso CCStudio's easy to use
development environment allows DSP designers abxalkerience levels to move quickly
through each phase of the application developmesttess including design, code and
build, debug, analyze and optimize. The fully imtggd development environment
includes real-time analysis capabilities, easy e webugger, C/C++ Compiler,
Assembler, linker, editor, visual project managamulators, XDS560 and XDS510
emulation drivers and DSP/BIOS support.

Code Composer Studio's fully integrated Host Tawodtude:

e TMS320 DSPs C/C++ compiler, assembler, linker ansual linker with
optimization feedback

+ XDS560™ high speed emulation drivers

+ XDS510™ emulation drivers

e Simulators for full devices, CPU only and CPU plogemory for optimal
performance

* Integrated Visual Project Manager with source caninterface, multi-project

support and the ability to handle 1000's of profies
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Editor with CodeMaestro™ technology to simplify tleeeation of C/C++
programs

Source Code Debugger common interface for bothlatmuand emulator targets
C/C++/Assembly language support

Simple breakpoints

Advanced and Hardware breakpoints (Hardware tangig)

Probe points for data injection/extraction

Pin Connect, Port Connect for simulating real wonrfaces (Simulator target
only)

Advanced Watch Window

Symbol Browser

DSP/BIOS™ Host Tooling Support (Configure, Realdianalysis and Debug)
RTDX™ data transfer for real time data exchangabeh host and target
Parallel Debug Manager to support multi-processart debug and analysis
Profiler to understand code performance

Update Advisor to keep your system current with kest releases from TI
(requires active subscription)

Data ConverterPlug-in to auto configure support Texas Instruments Mixed
Signal products

Online Context Sensitive help

Online Tutorial for getting started
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CCsStudio also delivers critical time saving softevdor your target application
consisting of:

DSP/BIOS™ Kernel for the TMS320C5000 DSPs (DSP/BMO&ense included
with purchase of Code Composer Studio)

Pre-emptive multi-threading

Interthread communication

Interrupt Handling

Chip Support Library

TMS320 DSP Algorithm Standard to enable softwausee

Chip Support Libraries to simplify device configtica

DSP Libraries for optimum DSP functionality

Reference Frameworks - production quality starbelecto get you coding faster
TMS320 DSP Algorithm Standard Developer Kit v2.1hwi

Analysis Toolkit to analyze code performance, idahg multi-event profiler,

code coverage and cache analysis



