Stochastic Fatigue Failure Prediction of Adhesive Bonded Joints

by
Sergio Candelario

A thesis submitted in partial fulfillment of the requirements for the degree of

Master in Science
in
Mechanical Engineering
UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

May 2017

Approved by:

David Serrano, Sc.D.
Date
President, Graduate Committee

Ricky Valentín, Ph.D.
Date
Member, Graduate Committee

Paul Sundaram, Ph.D.
Date
Member, Graduate Committee

Paul Sundaram, Ph.D.
Date
Chairperson of the Department

Roberto Seijo, Ph.D.
Date
Representative of Graduate Studies

A Dissertation
by Sergio Candelario

The author used his best effort in preparing this thesis. These efforts include the development, research, and testing of the theories and formulas to determine their effectiveness in fatigue failure prediction of adhesive bonded joints. The author shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these formulas.

Type Set in Times Roman 12 pt using $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

Stochastic Fatigue Failure Prediction of Adhesive Bonded Joints

Sergio Candelario
Master in Science in Mechanical Engineering
University of Puerto Rico at Mayagüez
Dr. David Serrano, Faculty Advisor, Mechanical Engineering

Abstract

(ABSTRACT) This work describes the implementation of the Extended Finite Element Method (a partition of unity finite element method) for the study of fatigue failure of adhesive bonded joints when subjected to variable loading. The main advantage of the Extended Finite Element Method (XFEM) is the independence of the finite element mesh to describe the delamination hence, it eliminates the need of re-meshing when the delamination front is propagated. This advantage is particularly useful when modeling delamination under fatigue as no remeshing is needed for each loading cycle. Also in this work, the Extended Finite Element Method is extended to include incompatible elements, with the addition of internal degrees of freedom that allow nonlinear mathematical distortion of a four node bilinear element. These elements are used to model a composite double cantilever beams to study fatigue delamination due to fatigue under random loading. The YangManning's stochastic model for fatigue delamination was modified and good agreement with experimental data was observed.

Predicción de Falla en Fatiga Estocástica de Uniones Adhesivas

Sergio Candelario
Maestría en Ciencia en Ingeniería Mecánica
Universidad de Puerto Rico en Mayagüez
Dr. David Serrano, Profesor Consejero, Ingeniería Mecánica

(RESUMEN)

Este trabajo describe la implementación del Método de Elementos Finitos Extendidos (un método de partición de unidad en elementos finitos) para el estudio de la falla en fatiga de las juntas en unió adhesiva cuando se someten a cargas aleatorias. La principal ventaja del Método de Elementos Finitos Extendidos (XFEM) es la independencia de la malla de elementos finitos para describir la delaminació, por lo tanto, elimina la necesidad de generar una malla nueva cada vé que se propaga el frente de delaminación. Esta ventaja es particularmente útil cuando se modela la delaminación bajo fatiga, ya que no se necesita generar una malla para cada ciclo de carga. También en este trabajo, el Método de Elementos Finitos Extendidos se amplía para incluir elementos incompatibles, que es la adición de grados internos de libertad que permiten la distorsión matemática no lineal de un elemento bilineal de cuatro nodos. Estos elementos se usan para modelar una doble viga en voladizo de material compuesto para estudiar la delaminación por fatiga debido a la fatiga en carga aleatoria. Se modificó el modelo estocástico de Yang-Manning para la delaminación por fatiga y se observó un buen acuerdo con los datos experimentales.

Dedication

To my family, my girlfriend Frances, and above all to God.

This page has been intentionally left blank.

Acknowledgments

First and foremost, I am grateful to God for helping, guiding and providing the strength through this journey. Next, I would like to thank my parents, Guillermo and Marisol, who supported me through these years. Also, to María S. Vázquez, mother of Frances, who also supported me through these years. But my greatest strength came from Frances M. Guerrero, my girlfriend from many years who helped me go through this journey.

I am grateful for Dr. Goyal's dedication during the research leading to this thesis. Dr. Goyal supervised much of the work presented here. After his departure from the University, Dr. Serrano kindly stepped in, supervising the final stages of the thesis defense. In order to recognize Dr. Goyal's efforts in this research endeavor the author will list him as the second co-author of any forthcoming publications of the work.

I want to thank the Department of Mechanical Engineering of the University of Puerto Rico (UPRM) for this opportunity and support through the years and for providing me with the Graduate Teaching Assistantship during the first years of my graduate studies.

I am thankful for my graduate committee members Dr. Serrano, Dr. Valentín and Dr. Sundaram for their support. Lastly, I would like to thank all my colleagues at the Mechanical Engineering Department for their support.

Sergio Candelario

This page has been intentionally left blank.

Table of Contents

List of Figures xi
List of Tables xiii
List of Symbols xiv
Chapter 1. Preliminary Remarks 1
1.1 Motivation 1
1.1.1 Current State of the art and downfalls 1
1.1.2 The Need for a New Computational Technique 4
1.2 Project Description 6
1.2.1 Problem Description 6
1.2.2 Assumptions 7
1.2.3 Overall Goals 7
1.2.4 Intellectual Merit 8
1.2.5 Broader Impacts 8
1.3 Approach 9
1.3.1 Technical Approach 9
1.3.2 Overview 11
1.3.3 Thesis Outline 12
Chapter 2. Numerical Simulation Details 13
2.1 Modeling adhesive bonded joints 13
2.2 Finite element formulation 14
2.2.1 Incompatible elements 17
2.3 The Extended Finite Element formulation 18
2.3.1 Discontinuity field description 19
2.3.2 Level set method 22
2.3.3 Blending elements 24
2.3.4 Degrees of freedom 25
2.3.5 Element integration 26
2.4 Fracture Mechanics 28
2.4.1 Crack tip near fields 30
2.5 Case study: Double Cantilever Beam 32
2.5.1 Analytical solution 32
2.5.2 Convergence study 33
Chapter 3. Implementation and Results 36
3.1 Fracture mechanics for the adhesive 36
3.1.1 Fatigue and crack propagation 37
3.1.2 Stochastic fatigue model 37
3.1.3 Simulation by loading cycles 38
3.1.4 Code structure 40
3.2 Benchmark example: graphite epoxy DCB 42
3.2.1 Constant amplitude loading 42
3.2.2 Implementation with random loading 47
3.2.3 Evaluation of load variation 50
3.2.4 Evaluation of seed influence in random data generation 55
Chapter 4. Final Remarks 57
4.1 Conclusion 57
4.2 Recommendations 58
4.3 Future Work 59
Appendix A. MATLAB scripts 60
References 144
Vita 150

List of Figures

Figure 1.1 Adhesive bonded joint example 2
Figure 1.2 XFEM mesh representation 5
Figure 1.3 Mesh comparison between XFEM and FEM 6
Figure 1.4 2D analysis of a double cantilever beam 10
Figure 1.5 Overview of the research process 12
Figure 2.1 Some examples of adhesive bonded joints 14
Figure 2.2 Body with prescribed displacement and loads 15
Figure 2.3 Node coordinates for the quadrilateral element in the computa- tional space 17
Figure 2.4 Q4 element in bending 18
Figure 2.5 Crack coordinate convention 21
Figure 2.6 Level sets 22
Figure 2.7 Enrichment space example 24
Figure 2.8 Example of element sub-triangulation 26
Figure 2.9 Example of element partitioning using sub-quadrilaterals 28
Figure 2.10 J integral area of integration 30
Figure 2.11 Fracture modes 31
Figure 2.12 Double cantilever beam in displacement control 33
Figure 2.13 Energy release rate mesh convergence test 34
Figure 2.14 Mesh example for convergence study 35
Figure 3.1 Loading history example 39
Figure 3.2 Flowchart for crack propagation 41
Figure 3.3 Test configuration 42
Figure 3.4 Mesh for fatigue simulation of DCB (initial delamination in red color) 44
Figure 3.5 Delamination growth rate comparison with experimental data 45
Figure 3.6 Von Mises stresses contour plot (Constant amplitude loading) 46
Figure 3.7 Delamination length results per cycles for constant amplitude stochas- tic fatigue 47
Figure 3.8 Delamination growth rate comparison with random loading 48

Figure 3.9 Delamination length results per cycle for random amplitude load
stochastic fatigue 49
Figure 3.10 Energy release rate for low deviation test case 50
Figure 3.11 Energy release rate for medium deviation test case 51
Figure 3.12 Energy release rate for high deviation test case 52
Figure 3.13 Final cycles to failure for low deviation test case 53
Figure 3.14 Final cycles to failure for medium deviation test case 54
Figure 3.15 Final cycles to failure for high deviation test case 55
Figure 3.16 Cycles to failure prediction comparison by seed 56

List of Tables

Table 1.1 Literature survey overview of XFEM implementations in the anal- ysis of adhesive bonded joints 3
Table 1.2 Commercial softwares comparison 4
Table 3.1 Material properties for unidirectional Graphite/Epoxy Prepreg 43
Table 3.2 Material properties for epoxy resin 43
Table 3.3 Benchmark loading parameters 43
Table 3.4 Geometry of DCB for benchmark example 43
Table 3.5 One-way ANOVA for comparison of seed variation 56

List of Symbols

H	Heaviside enrichment function
F^{k}	Near-tip asymptotic field enrichment function
u	Displacement (standard finite element) degree of freedom
a	Heaviside degree of freedom
b^{k}	Near-tip degree of freedom for the k-th function
ζ	Signed distance function
$\phi(x, t)$	Crack orthogonal level set
$\psi(x, t)$	Crack normal level set
ξ	Abscissa local coordinate in the reference element space
η	Ordinate local coordinate in the reference element space
$\mathbf{N}(\xi, \eta)$	Element shape function matrix
$\mathbf{B}(\xi, \eta)_{m p}$	Strain-displacement matrix (shape function derivatives); m and p indexes represent the u, a and b degrees of freedom
J	Jacobian matrix
σ	Stress vector
ε	Strain tensor
$k \kappa$	Kolosov's constant
E	Young's modulus
$k \mu$	Shear modulus
K	Stiffness matrix
$R(\xi, \eta)$	Ramp function
$K_{I}, K_{\text {II }}$	Stress intensity factors for mode I and II respectively

G	Energy release rate
D	Material stiffness matrix
β	Loading ratio
Δa	Delamination increment
ΔN	Cycles in a loading block
$\frac{d a}{d N}$	Delamination growth rate
J	J-contour integral (elastic-plastic parameter)

Chapter 1

 Preliminary RemarksThis work pertains to the application of the Extended Finite Element Method (XFEM) to predict fatigue failure of adhesive bonded joints when subjected to cyclic loading. The Extended Finite Element Method is coupled with the Level Set Method (LSM) and Linear Elastic Fracture Mechanics (LEFM) theory to describe the delamination of the adhesive joint. The main goal of this work is to develop a numerical tool to describe the fatigue failure prediction of adhesive bonded joints using the Extended Finite Element Method. This methodology is developed in MATLAB which, although a high level language, is widely known and used by engineers and researchers.

1.1 Motivation

1.1.1 Current State of the art and downfalls

Currently, aerospace industries are opting to utilize composites materials to build aircraft components and fuselages. The next generation of aircraft will probably be all built out of composites because of their higher strength to weight ratio compared to the metallic materials currently used. Nonetheless, these materials have to pass regulations and certifications which increase costs. This situation drives the motivation to replace the numerous expensive testing methods with reliable and accurate predictive models (Lord and Ngah 2005)

Several methods exist for joining or fastening materials together to form a structure e.g. welding, bolting, riveting, etc. When compared to some of these methods, the adhesion of materials provides both economical and performance advantage. These advantages range from the ability to form lightweight joints, the possibility to join dissimilar materials and improved stress distribution, which can improve fatigue life, among other benefits (Tong and Steven 1999). Due to these benefits, naval and aerospace industries
are utilizing adhesive bonded joints more. As an example, such as the Boeing 787 Dreamliner commercial passenger aircraft uses 50% advanced composites. And the Boeing 777 proved that composite structures require less scheduled maintenance in comparison with non-composite materials (Boeing Commercial Airplanes 2006). Hence, with the increase in use of composites and adhesive joints, more efficient ways to model damage in adhesive bonded materials is of great importance.

An efficient predictive model must conform to the shapes and configurations of the parts designed in the aerospace industry. In the early stages of bonded structure analyses, theoretical studies were popular among scholars (Campilho et. al 2011). The analytical methods had the advantage of analysing a structure quickly but comprised multiple assumptions which make them inadequate to accurately predict complex real life situations. Because of this, the Finite Element Method is a more attractive method of simulation.

Composite structures are commonly comprised of layers of adherents bonded by an adhesive to form a solid structure. The adhesive bonds are advantageous because they distribute the loads over a wider area and therefore, the stresses over the bonded area are less critical when compared to other fastening techniques (Frostig et. al 1999 and Hart et. al 2002). Therefore, the stress distribution on the adherents is improved by using adhesive bonded joints which avoids point stress concentrations. Figure 1.1 shows a schematic of the adherent and the adhesive interacting with each other.

Figure 1.1: Adhesive bonded joint example

Delamination is the separation of the adherents due to cracking of the adhesive and is one of the major failure modes encountered in composites (de Borst and Remmes
2006). The majority of the composite materials use some type of adhesive that when dry, behaves in a brittle manner. It is known that brittle materials do not yield but fail rapidly for which reason this type of failure is of much concern. Nevertheless, failure of the adhesive layer does not mean that the whole composite structure has failed but rather that it degrades the reliability of the component or structure. Therefore, a predictive model for failure of composite structures must take into account failure of the adhesive layer.

A common test to determine the strength of a bond is by using double cantilever beam or single lap joints among others. Some examples of joint classifications are single and double slab, single cover plate or double cover plate (See Figure 2.1). In this figure, the arrows represent the direction of pull on the tests. In this configuration the adherent is being sheared or a Mode II or shear stress condition is created (Figure 2.1, 2a and 2b) but other configurations such as simple tension (Figure 2.1, 2c), compression or a mixed mode in the adherent (Mode I, Mode III and mixed) can also be developed and tested.

Several researchers have devoted time in the implementation of new FEM techniques for the modeling of adhesive bonded joints. Campilho et. al 2011 used the XFEM with strong enrichment functions (refer to Section 2.3.1) to test adhesive strength in a double cantilever beam analysis. de Borst and Remmers 2006 studied the delamination of Glare in a DCB using a cohesive interphase to model the adhesive layer. Motamedi et. al. 2013 studied the delamination process of Polyphenylene sulfide/Glass fiber reinforced polymer DCB and performed a 3D analysis in Abaqus/MATLAB. A summary of the current XFEM implementations in the analysis of adhesive bonded joints and model capabilities is provided in Table 1.1.

Table 1.1: Literature survey overview of XFEM implementations in the analysis of adhesive bonded joints

Authors	Fatigue analysis	Near-tip field	Stochas- ticity	Cohesive model	3D analysis
de Borst and Remmers 2006				\checkmark	
Campilho et. al 2011				\checkmark	
Campilho et. al 2011				\checkmark	
Motamedi et. al 2013			\checkmark	\checkmark	\checkmark
Motamedi et. al 2014			\checkmark	\checkmark	\checkmark
Sosa and Karapurath 2012		\checkmark			
This dissertation	\checkmark	\checkmark	\checkmark		

The fatigue failure is known to be statistical in nature (Wu and Ni 2003). Some
commercially available finite element programs are capable of performing probabilistic analysis. For instance, LSTC's LS-OPT software is a standalone design optimization and probabilistic analysis package that can interface with LS-DYNA and ANSYS has released the Probabilistic Design System and the ANSYS DesignXplorer tools. However, not all finite element commercial softwares are capable of performing a probabilistic analysis as shown in Table 1.2.

Table 1.2: Commercial softwares comparison

Softwares	XFEM	Fatigue analysis	Near-tip field growth simulation	Probabilistic capabilities	$3 D$ analysis
LS DYNA	\checkmark		\checkmark	\checkmark	
ANSYS	(plug-in)	\checkmark		\checkmark	\checkmark
ABAQUS	\checkmark	\checkmark			\checkmark
Nastran		\checkmark			\checkmark
This dissertation	\checkmark	\checkmark	\checkmark	\checkmark	

1.1.2 The Need for a New Computational Technique

The Extended Finite Element Method (XFEM) originated with the work by Belytschko and Black in 1999 in which discontinuous functions where added to the finite element approximation (trial or interpolation functions) to include the presence of the crack into the finite element (refer to Equation 2.16). In their work, the authors applied an extrinsic approximation for the addition of the discontinuous (enrichment) functions. Their method was further enhanced by the works of Moes et. al 1999 with the inclusion of enrichment functions to model the discontinuous field of the crack away from the crack tip (Haar function) thus incorporating both Crack and Near-tip enrichment functions; see also Dolbow et. al 2000; refer to Figure 1.2.

Several advantages of the XFEM over FEM can be identified:

- mesh boundaries do not have to coincide with the discontinuity (i.e. discontinuous fields can be modeled within an element), refer to Figure 1.3; (Moës et. al 1999)
- discontinuities are modeled independently from the mesh thus there is no need for re-meshing for evolving discontinuities (e.g propagating cracks); (Belytschko and Black 1999)
- due to the inclusion of known analytical solutions to the shape functions, accurate finite element solutions can be achieved even for relatively coarse meshes (e.g asymptotic stress near a crack tip can be modeled with a relatively coarse mesh); (Moës et. al 1999)

Figure 1.2: XFEM mesh representation

Figure 1.3: (a) XFEM mesh, delamination is embedded within the mesh; (b) FEM mesh, delamination is modeled between element boundaries (from Kuna 2013)

However, current commercial implementations of the XFEM do not take into account the near-tip enrichment functions during crack propagation. A model which takes into account the random nature of fatigue failure and random loading in composite adhesive bonded joints have not been coupled with the XFEM. Moreover, in this work, a complete energetic approach for delamination characterization has been implemented (i.e. fracture based on energy release rate). Hence, a model that incorporate these features will be attractive as it provides a more realistic approach to fatigue simulation.

1.2 Project Description

1.2.1 Problem Description

The composite adhesive bonded joints are modeled as orthotropic adherends (plies) adhered by an isotropic linear elastic adhesive layer. The load is applied to the adherends with constant magnitude for one loading cycle. The simulation is then repeated several times to simulate cyclic loading under service. For variable amplitude loading, the amplitude is changed after each loading cycle. Small deformations are imposed into the model; this will allow to describe the deformation using linear relationships, i.e. infinitesimal strain theory.

1.2.2 Assumptions

In order to provide a manageable system for analysis, the following assumptions were made:

- The adhesive material is assumed to be sufficiently brittle as to be able to be modeled as a linear elastic material hence, Linear Elastic Fracture Mechanics (LEFM) theory is applicable for the description of the crack near-field. This assumption implies that the stress field near the crack tip is asymptotic and plastic deformation is confined within a small area near the crack tip (small scale yielding). However, due to the utilization of higher order terms in the William's expansion, the system can deviate from the small scale yielding assumption.
- The adhesive is modeled as a linear elastic material and the crack is allowed to propagate only in the adhesive. By this assumption, a cohesive delamination type of failure is induced and a Mode I type of failure is approximated.
- The composite adherends are modeled as orthotropic linear elastic materials. This assumption reduces the discontinuity present between composite layers and allows the plies to be modeled as a continuum. This reduces the need to model each ply independently and thus simplifying the numerical model.
- The joint transverse dimension is assumed to be very small compared to the joint depth thus, the system is modeled as a two dimensional mesh in plane strain condition in the transverse dimension of the bonded joint. This allows for reduction of a three-dimensional problem into a two-dimensional one, thus simplifying the analysis.

1.2.3 Overall Goals

The goal of this work is to develop an Extended Finite Element Method based algorithm for the modeling of adhesive bonded joint failure under fatigue loading. The following tasks will be achieved in this work:

1. Develop an algorithm to predict the delamination process of a double cantilever beam
(a) Include the stochastic nature of the fatigue process into the simulation
(b) Model the adherends as orthotropic materials to simulate composite construction
2. Simulate the delamination process of a double cantilever beam under fatigue loading
(a) Understand the effects of fatigue loading under constant and variable (random) loading conditions
(b) Perform several experiments with different levels of load variation
3. Validate the delamination results with available data in the literature

The development of the computer algorithm will then be provided as a contribution to further develop the Extended Finite Element Method in the scientific community.

1.2.4 Intellectual Merit

Due to the increase in composite adhesive bonded joints in the aerospace industry, there is a high interest in modeling the failure process in these joints. There is a need to study the failure of such joints as there is currently limited knowledge available in their behavior during flight. As these structures are subjected to random loading scenarios during flight, a numerical analysis considering the random nature of such scenarios and the inherent random nature of the fatigue process is highly desirable. The development of an efficient computational technique to study such scenarios will benefit greatly the aerospace industry.

A code that is both efficient for the delamination modeling of adhesive bonded joints in fatigue loading and that takes into account the stochastic nature of the fatigue process has not been developed yet. This work will provide an efficient tool for the simulation of adhesive bonded joints in fatigue loading coupling variable loads and stochastic fatigue modeling. The implemented code is developed in MATLAB as it is a very flexible scripting language that can be coupled with other finite element softwares.

1.2.5 Broader Impacts

The immediate beneficiaries of the work presented here are the scientists in the field of fracture mechanics and material science as the stochasticity of real life bonded joints can be assessed with the developed tool. As the algorithm was developed in MATLAB,
it can easily be coupled with other commercial finite element programs to enhance its capabilities like more complex meshes and faster processing times.

An area of application of this work is in the reduction of test costs during the development process of aircraft parts. A reduction in testing can be done as the developed algorithm is capable of simulating and predicting the fatigue delamination process of adhesive bonded joints. Thus, different levels of loading and fatigue variations can be tested numerically thus reducing the testing size. This will in turn translate into a reduction of costs at the development stage.

1.3 Approach

1.3.1 Technical Approach

It is of interest in this research to develop a tool to predict the fatigue failure of adhesive bonded joints capable of simulation of real life behavior of joint failure under fatigue loading. Therefore, the basic approach taken is as follows:

- Construct an efficient finite element code to run fatigue analysis in an adhesive bonded joint hence, the use of the Extended Finite Element Method is proposed to efficiently model the delamination process without remeshing.
- Account for the stochastic nature of the fatigue in order to simulate real life behavior of the fatigue process
- Evaluate the effects of random loading on cycles to failure of the adhesive bonded joint
- Validate model using published data
- Propose areas of future work

In this work, a double cantilever beam (DCB) composed of composite adherends and epoxy adhesive is analyzed within the framework of the Extended Finite Element Method. A DCB was selected for the analysis as it is a commonly used configuration to study delamination in composites and strength of the adhesive (Banea and da Silva 2009, Biel and Stigh 2007). The DCB will be analyzed in a two dimensional space and
discretized using a Lagrangian mesh. Hence, they will be analyzed in their transverse cross section (i.e. only length and thickness dimensions are meshed) and as such, plane strain conditions are imposed in the analysis (refer to Figure 1.4). The Lagrangian mesh will be enriched with partition of unity functions utilizing in the level set functions to describe the discontinuity fields in the mesh i.e. delamination and delamination front asymptotic field. The delamination will be advanced in each analysis step with a selected delamination increment until the predefined final delamination length, maximum allowable cycles or sudden fracture occurs.

Figure 1.4: 2D analysis of a double cantilever beam

In the algorithm developed, an initial crack is embedded in the adhesive layer. The structure, in this context the DCB , is subjected to prescribed displacements or to random sampled displacements from a normal probability density function. Afterwards, the structure displacements and hence the stresses are found via the Extended Finite Element Method. The crack is then advanced using a modified Paris-Erdogan power model to determine the cycles needed to propagate the crack to the prescribed crack extension. The modified Paris-Erdogan equation is modified via the Yang-Manning's model to induce stochasticity. Comparison with experimental and computer simulation results extracted from the literature is performed to evaluate the validity of the model.

From the above established test case, a computer based algorithm in MATLAB for the delamination prediction of a DCB will be created. From this computer code, the cycles until failure will be calculated and compared with data in the literature. Furthermore, the cycles to failure during random loading will be evaluated for different degrees of relative standard deviations and analyzed to see the impact on the average cycles to failure due to random loading and stochastic fatigue law.

1.3.2 Overview

The first step into the research process for this work was to select the computational technique for analysis. In this study, the XFEM was selected as no remeshing is needed for the simulation thus lowering the computational cost. After the numerical method was selected, a survey of the implementations of the XFEM was performed to study the details of the method, current implementation practices and limitations of the technique.

After general knowledge of the computational technique was attained, the development process for the computer code was started. Initially, bilinear quadrilateral elements were used for the analysis but convergence issues were present thus, instead of increasing the element amount in the analysis, and thus increasing the computational cost, incompatibility elements were introduced. Also, at the beginning of the development process, a sub triangulation technique for integration of the element was utilized. However, its use was discontinued as this technique will require remapping of the integration points during delamination increasing the computational cost.

A graphical representation of the research process is shown in Figure 1.5 below. As shown, the study focuses in the development of a tool for simulation of stochastic fatigue delamination in: 1) constant load simulation and 2) random loading simulation.

Figure 1.5: Overview of the research process

1.3.3 Thesis Outline

This thesis is divided into four chapters. Chapter 1 is an introduction with an overview of the methodology used, motivation and goals. Chapter 2 provides an in-depth look at the finite element formulation and convergence study. Chapter 3 provides the implementation of the model and comparison of simulation results. Lastly, Chapter 4 contains the conclusion of this work and suggestions to various areas of improvement and future work.

Chapter 2

 Numerical Simulation DetailsDelamination initiation and propagation can occur at the interface of the adherent and the adhesive due to the high magnitude of stresses developed parallel and perpendicular to the interface. Failures in adhesively bonded joints can occur by peeling or shearing of the adhesive, delamination of an adherent or by tension or compression failure of the adherents. Cohesive failure through the adhesive can also occur due to existing voids or cavities. In this chapter, the mathematical foundations of the Extended and Standard Finite Element Method and fracture theory for the simulation of adhesive bonded joints are provided.

2.1 Modeling adhesive bonded joints

Adhesive bonded joints have been previously studied numerically through the XFEM and experimentally compared using single and double lap joint (see Figure 2.1 (Campilho et al. 2011 and 2011). Their work was based in coupling the extended finite element method with the cohesive zone model (CZM). However, although the CZM allows for modeling of the fracture phenomena as a degradation process, by virtue of a cohesive law, the cohesize elements must be placed were the delamination is expected hence, the delamination path must be known a priori. Prediction of delamination of bonded joints can be classified into four (4) categories: traditional stress/strain methods, fracture mechanics based methods, cohesive zone models and the extended finite element method (Pascoe et. al 2013). de Borst and Remmers 2006 studied the delamination of Glare in a DCB using a cohesive interphase to model the adhesive layer and exploiting the partition of unity property (XFEM). Motamedi et. al. 2013 studied the delamination process of Polyphenylene sulfide/Glass fiber reinforced polymer DCB and performed a 3D analysis in Abaqus/MATLAB using XFEM capabilities. Stochasticity was incorporated into the model via material properties.

Other researchers have also implemented the extended finite element method for the analysis of carbon fiber composite laminates (Cahill et. al 2014), metal fiber laminates
(Sosa and Karapurath 2012) and particle-reinforced composites (Ye et. al 2012). Cahill et. al 2014 utilized an orthotropic variation of Equation 2.16 proposed by Asadpoure and Mohammadi in 2007 alongside with the Heaviside and bi-material interface enrichment functions and demonstrated that the maximum hoop stress criterion, for the determination of delamination propagation direction, is unsuitable for fracture of orthotropic materials. Sosa and Karapurath 2012 modelled a DCB using a bimaterial definition for Equation 2.16 proposed by Sukumar et. al in 2004 however, only incremental loading was tested. Ye et. al 2012 utilized the XFEM capabilities of ABAQUS with user-defined subroutines to model a plate with reinforcing inclusions and used the Paris equation in Equation 3.5 to simulate fatigue loading. These research show the versatility of the XFEM when modeling fracture.

Figure 2.1: Single lap joint (a), double lap joint (b) and double cantilever beam (c); arrows indicate loading conditions

2.2 Finite element formulation

The structural deformation of the adhesive bonded joint can be described by the Principle of Virtual Work where the external work due to external forces must be balanced by the structure due to internal forces (stresses); refer to Kuna 2013. Let the external virtual work be defined by $\delta W_{e x t}$ and the internal work by $\delta W_{\text {int }}$. The external work $\delta W_{e x t}$ is comprised by the contribution of point loads \mathbf{f}^{p} applied at the mesh nodes, body force per unit volume \mathbf{f}^{b} (e.g. material weight) acting on the element differential volume $d V$ and traction forces per unit area \mathbf{f}^{t} acting on the differential surface $d S$. Moreover, let
us denote the internal work $\delta W_{\text {int }}$ as equal to the strain energy δU which arises due to the material response to the mechanical loading. Hence, both the expressions for $\delta W_{\text {ext }}$ and $\delta W_{\text {int }}$ can be written as:

$$
\begin{align*}
& \delta W_{e x t}=\oint_{S} \delta \widetilde{\mathbf{d}} \cdot \mathbf{f}^{t} d S+\int_{V} \delta \widetilde{\mathbf{d}} \cdot \mathbf{f}^{b} d V+\delta \widetilde{\mathbf{d}} \cdot \mathbf{f}^{p} \\
& \delta W_{\text {int }}=\delta U=\int_{V} \boldsymbol{\sigma}: \delta \boldsymbol{\varepsilon} d V=\int_{V} \sigma_{i j} \delta \varepsilon_{j i} d V \tag{2.1}
\end{align*}
$$

were σ represents the structure stresses and ε the strains. The displacement vector $\tilde{\mathbf{d}}$ represents the nodal displacements which are interpolated from the calculated displacements at the integration (Gauss) points by an expression of the form $\widetilde{\mathbf{d}}(\mathbf{X})=\mathbf{N d}$. In the standard FEM formulation, \mathbf{N} represents the shape function matrix and \mathbf{d} the nodal displacements.

Figure 2.2: Body with prescribed displacement and loads

Application of the Principle of Virtual Work, which result in $\delta W_{\text {int }}=\delta W_{\text {ext }}$, neglecting traction and body forces for simplicity and reducing the system to a two dimensional space results in:

$$
\begin{equation*}
h \int_{\Omega} \boldsymbol{\sigma}: \delta \boldsymbol{\varepsilon} d \Omega=\delta \mathbf{d} \cdot \mathbf{f}^{p} \tag{2.2}
\end{equation*}
$$

were $d \Omega$ is the element differential surface and h the through-the-thickness distance.
Assuming small displacements and rotations of the structure, a linear approximation of strains can be used. Furthermore, if a linear relationship between stresses and strains is assumed, Hooke's law can be implemented $(\boldsymbol{\sigma}=\mathbf{D}: \boldsymbol{\varepsilon})$. Application of the compatibility condition for small deformations $\left(\varepsilon=\partial d_{i} / \partial x_{j}\right)$ results in the following system of equations:

$$
\begin{equation*}
\left[\left(h \int_{\Omega} \mathbf{B}(X, Y)^{\top} \mathbf{D B}(X, Y) d \Omega\right) \mathbf{d}-\mathbf{f}^{p}\right] \delta \mathbf{d}=0 \tag{2.3}
\end{equation*}
$$

Because $\delta \mathbf{d}$ is an arbitrary virtual nodal displacement, for the equation to hold true the term in brackets must vanish. Therefore, the term within brackets represent the differential boundary value problem to solve. Furthermore, the term in parenthesis is the stiffness matrix of the structure. Given by:

$$
\begin{equation*}
\mathbf{K}=h \cdot \bigcup_{\Omega} \int_{\Omega} \mathbf{B}(X, Y)^{\top} \mathbf{D B}(X, Y) d \Omega=h \cdot \bigcup_{\Omega} \mathbf{B}(\xi, \eta)^{\top} \mathbf{D B}(\xi, \eta)|\mathbf{J}| w \tag{2.4}
\end{equation*}
$$

were w is a weight value for numerical integration, $|\mathbf{J}|$ is the Jacobian matrix determinant and \mathbf{B} is the matrix of shape function derivatives or the so called strain/displacement matrix:

$$
\mathbf{J}=\left[\begin{array}{cc}
\frac{\partial X}{\partial \xi} & \frac{\partial Y}{\partial \xi} \tag{2.5}\\
\frac{\partial X}{\partial \eta} & \frac{\partial Y}{\partial \eta}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cc}
\frac{\partial N_{i}}{\partial X} & 0 \\
0 & \frac{\partial N_{i}}{\partial Y} \\
\frac{\partial N_{i}}{\partial Y} & \frac{\partial N_{i}}{\partial X}
\end{array}\right]
$$

and transformation of $\mathbf{B}(X, Y)$, in terms of global coordinate system (X, Y), to $\mathbf{B}(\xi, \eta)$, in terms of element reference coordinate system (ξ, η) (refer to Figure 2.3):

$$
\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial X} \tag{2.6}\\
\frac{\partial N_{i}}{\partial Y}
\end{array}\right\}=\mathbf{J}^{-1}\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}
$$

where (ξ, η) are customarily used to accurately simulate irregularities in the elements (e.g. curved elements).

Hence, the system of equation to solve for the structure displacement is:

$$
\begin{equation*}
\mathbf{K}(\xi, \eta) \mathbf{d}=\mathbf{F} \tag{2.7}
\end{equation*}
$$

where the imposed boundary conditions are point loads in the surface of the structure,
crack surfaces are traction free and prescribed displacements in the boundary. In equation form these can be written as:

$$
\begin{align*}
& \boldsymbol{\sigma} \cdot \mathbf{n}=0 \\
& \text { crack surface } \tag{2.8}\\
& \mathbf{d}=0 \text { prescribed surface }
\end{align*}
$$

2.2.1 Incompatible elements

The classical bilinear finite elements (commonly referred to as Q4 elements), provides linear variation of the strain within its volume. The element has been widely used for many structural problems and within the Extended Finite Element Method. It employs the following set of bilinear shape functions to describe the displacement within its area:

$$
\begin{equation*}
N(\eta, \xi)_{i}=\frac{1}{4}\left(1+\xi_{i} \xi\right)\left(1+\eta_{i} \eta\right) \tag{2.9}
\end{equation*}
$$

where $\left(\xi_{i}, \eta_{i}\right)$ represent the natural coordinate values at each node (see Figure 2.3 bellow).

Figure 2.3: Node coordinates for the quadrilateral element in the computational space
In the bilinear quadrilateral element, quantities of interest can be linearly interpolated from known values at the node via the shape functions as follows:

$$
\begin{equation*}
z(\xi, \eta)=\sum_{i=1}^{4} N_{i}(\xi, \eta) z_{i} \tag{2.10}
\end{equation*}
$$

However, the element is known to be too stiff in bending and even suffer from shear locking for elements with big aspect ratios (Logan 2011); refer to Figure 2.4. This becomes an inconvenience when studying long narrow structures, as in adhesive bonded joints as these structures are commonly subjected to bending. Of course, to circumvent this limitation, a large number of elements can be used along the bonded joint (Logan
2011). However, this increases the computational time, and more so for the XFEM as each node has an increased number of degrees of freedom. As such, in this work an improved bilinear quadratic element known as Q6 is employed. This element was first introduced by Wilson et. al. in 1973. The procedure is to add quadratic terms to the interpolation in Equation 2.10. The interpolation is then expanded to:

$$
\begin{equation*}
z(\xi, \eta)=\sum_{i=1}^{4} N_{i}(\xi, \eta) z_{i}+\left(1-\xi^{2}\right) g_{1}+\left(1-\eta^{2}\right) g_{2} \tag{2.11}
\end{equation*}
$$

The additional degrees g_{1} and g_{2} are internal and thus do not contribute to the global stiffness matrix.

Figure 2.4: Q4 element in bending, from Logan 2011

2.3 The Extended Finite Element formulation

The Extended Finite Element Method is based on the Partition from Unity method (Belytschko and Black 1999). Two distinct approaches can be followed, intrinsic or extrinsic. The former approach deals with the addition of information from the analytical solution to the basis function thus increasing the order of completeness (Mohammadi 2008 and 2012). The latter approach deals with the addition of additional unknowns (degrees of freedom) to add the information from the analytical solution. The method has been used for description of cracks in isotropic media (Belytschko and Black 1999), for cracks in a bimaterial interphase (Sukumar et. al 2004), for orthotropic media (Asadpoure and

Mohammadi 2007)

2.3.1 Discontinuity field description

The strong discontinuity enrichment function is used to model the cracked elements (i.e the strong discontinuity field). Many definitions of the Heaviside function have been adopted through the years (Mohammadi 2008). Definitions such as step functions and smoothed step functions have also been proposed. The selected version of Heaviside function in this work is the signed distance function which has the form of:

$$
\mathcal{H}(\psi)=\operatorname{sign}(\psi)=\left\{\begin{array}{l}
+1 \tag{2.12}\\
-1
\end{array}\right.
$$

were ψ is the normal level set of the delamination which in turn is defined as the normal distance from the crack face (refer to Section 2.3.2).

It is also important to note that the derivative of the Heaviside function is the Dirac delta function which becomes zero except at the strong discontinuity:

$$
\frac{\partial \mathcal{H}(\psi)}{\partial X_{i}}= \begin{cases}1 & \text { when } \phi=0 \tag{2.13}\\ 0 & \text { when } \phi \neq 0\end{cases}
$$

Now the strong discontinuity enrichment function and its derivative can be defined as:

$$
\begin{align*}
H & =N_{k}\left(\mathcal{H}-\mathcal{H}_{k}\right) \tag{2.14}\\
\frac{\partial H}{\partial X_{i}} & =\frac{\partial N_{k}}{\partial X_{i}}\left(\mathcal{H}-\mathcal{H}_{k}\right) \tag{2.15}
\end{align*}
$$

Note that k is a nodal index and X_{i} is the spatial coordinate of the real space.
To describe the asymptotic field near the delamination front (crack tip), several enrichment functions exist in the literature. These enrichment functions are derived from asymptotic crack tip displacement fields and are thus dependent on the material definition inside the domain where these are applied (i.e. isotropic or orthotropic and linear or non-linear elastic for the scope of this study). Similar to the above enrichment functions, a shifting procedure is also needed to preserve interpolation.

The near-tip field equations for isotropic media wre originally proposed in the framework of XFEM by Belytschko and Black 1999. However. these were first introduced by Fleming in 1997 (see also Fleming et. al 1997).

$$
\begin{equation*}
f^{l}(r, \theta)=\left(\sqrt{r} \sin \frac{\theta}{2}, \sqrt{r} \cos \frac{\theta}{2}, \sqrt{r} \sin \frac{\theta}{2} \sin \theta, \sqrt{r} \cos \frac{\theta}{2} \sin \theta,\right) \tag{2.16}
\end{equation*}
$$

These functions span the asymptotic field close to the crack tip 'near-tip field' which are based on a first order approximation of the stress field solution by William in 1957. The complete solution of the stress field is given by a infinite series expansion of eigenvalues and eigenfunctions. Hence, this expansion results in a non-singular higher order stress field. The first order terms in the William expansion represent the stress singularity (\sqrt{r}) and thus contain the stress intensity factors. However, the second order terms describe a uniform non-singular stress parallel to the crack tip. This stress is commonly known in the fracture mechanics literature as the 'T-stress'. As a consequence, two new crack tip enrichment functions are used to increase the accuracy of the model:

$$
\begin{equation*}
f^{5,6}(r, \theta)=(r \cos \theta, r \sin \theta) \tag{2.17}
\end{equation*}
$$

Higher order terms have been reportedly used in the literature by Xiao and Karihaloo (2006) however, no clear definition was provided for the enrichment functions. Nevertheless, the inclusion of the second terms in the William's expansion does improve the accuracy of the stress field near the crack tip.

The functions in Equations 2.16 and 2.17 describe the asymptotic strain field in the vicinity of the crack tip were θ and r are the polar coordinates to the material point (integration point) in the structure relative to the crack plane. The coordinate convention is shown in Figure 2.5.

Figure 2.5: Crack coordinate convention

These enrichment functions are known to produce inaccuracies in the blending elements thus (Fries 2008) hence, in this work the corrected model developed by Fries in 2008 is employed. In their general form, the near-tip enrichment functions can be expressed as:

$$
\begin{equation*}
F^{l}=N_{k}\left(f^{l}-f_{k}^{l}\right) R \tag{2.18}
\end{equation*}
$$

were $R(x)$ is a ramp function. The derivative of f^{l} near tip functions can be computed from the chain rule as:

$$
\begin{equation*}
\frac{\partial F^{l}}{\partial X_{i}}=\frac{\partial N_{k}}{\partial X_{i}}\left(f^{l}-f_{k}^{l}\right) R+N_{k}\left(\frac{\partial f^{l}}{\partial X_{i}}-\frac{\partial f_{k}^{l}}{\partial X_{i}}\right) R+N_{k}\left(f^{l}-f_{k}^{l}\right) \frac{\partial R}{\partial X_{i}} \tag{2.19}
\end{equation*}
$$

Therefore, the complete displacement approximation of the solution for a quadrilateral element can be expressed as:

$$
\begin{equation*}
d\left(x_{j}\right)=\sum_{i=1}^{4} N_{i} u_{i}+\sum_{i=1}^{4} N_{i}\left(\mathcal{H}-\mathcal{H}_{i}\right) a_{i}+\sum_{l=1}^{k} \sum_{i=1}^{4} R\left(x_{j}\right) N_{i}\left(F^{l}-F_{i}^{l}\right) b_{i}^{l} \tag{2.20}
\end{equation*}
$$

were $R\left(x_{j}\right)$ is a ramp function and N_{i} the interpolation functions for the quadrilateral
element.

2.3.2 Level set method

The level set method (LSM) was first proposed by Osher and Sethian in 1988 for tracking of moving surfaces. Functions of higher order than the interface being modeled are used to track the evolution of the crack. This method of representing interfaces has been proven to be effective in modeling of inclusions in the mesh (Sukumar et. al 2001) (closed interfaces). Modeling of open interfaces such as cracks requires an extension of the LSM. Stolarska et. al (2001) extended the LSM for the purpose of describing open surfaces by tracking the crack as a combination of two level set functions. A tangential level set function ψ describes the crack interface whereas a orthogonal level set function ϕ describes the location of the crack tip. Both functions describe the location at its zero level set as shown in Figure 2.6.

Figure 2.6: Level sets

The normal distance level set is constructed from values from a signed distance function $\chi(x)$ (Sukumar and Prévost 2003). This function has its value defined at point x for a distance measured from boundary x_{Γ} (crack). Both the tangential level set ψ and
normal level set ϕ can then be defined via the signed distance function as:

$$
\begin{align*}
\psi & =\min \left\|\mathbf{X}-\mathbf{X}_{\Gamma}\right\| \cdot \operatorname{sign}\left(\mathbf{n}_{n} \cdot\left(\mathbf{X}-\mathbf{X}_{\Gamma}\right)\right) \tag{2.21}\\
\phi & =\min \left\|\mathbf{X}-\mathbf{X}_{\Gamma}\right\| \cdot \operatorname{sign}\left(\mathbf{n}_{t} \cdot\left(\mathbf{X}-\mathbf{X}_{\Gamma}\right)\right)
\end{align*}
$$

were \mathbf{n}_{n} and \mathbf{n}_{t} are the normal and tangential unit vectors, for the crack segment.
Stolarska et. al (2001) also provided a method for updating the level sets for propagating cracks. Furthermore, they also provided a method for node classification for enrichment and polar coordinate computation based on level set values. Nevertheless, both the node identification and polar coordinate schemes have been proven to be inaccurate (Ahmed 2009). However, inaccuracies in element enrichment can be fixed by evaluating each enriched element for containment of the crack tip geometrically in the subset identified as near-tip elements. The method is explained below.

For the vector of the new crack segment \mathbf{F} and the vector of the previous crack segment \mathbf{V}, the angle α can be computed. The normal level sets for the nodes ahead of the crack front $(\phi>0)$ are updated by:

$$
\begin{equation*}
\psi^{n+1}=-\operatorname{sign}(\alpha)\left(\mathbf{x}-\mathbf{x}_{\text {crack tip }}\right) \times \frac{\mathbf{F}}{\|\mathbf{F}\|} \tag{2.22}
\end{equation*}
$$

Note that ψ is only updated if $\alpha \neq 0$. Now ϕ is updated via:

$$
\begin{equation*}
\phi^{n+1}=\left(x-x_{\text {crack tip }}\right) \frac{F_{x}}{\|\mathbf{F}\|}+\left(y-y_{\text {crack tip }}\right) \frac{F_{y}}{\|\mathbf{F}\|} \tag{2.23}
\end{equation*}
$$

The procedure for node selection for enrichment follows the same procedure as established by Stolarska (2001). If the nodes in an element with $\phi<0$ and $\phi_{\min } \cdot \phi_{\max } \leq 0$ the element is classified as Heaviside elements (completely cut by the crack). If $\psi_{\min } \cdot \psi_{\max } \leq 0$ and $\phi_{\min } \cdot \phi_{\max } \leq 0$, the crack tip might be within the element. As shown by Ahmed in 2009, this procedure has its flaws, specifically for the condition of crack tip enrichment. This can be remedied by doing a simple geometric query on the crack tip enriched elements (following the above criteria). If the crack tip is found within the element area, the enrichment is preserved, if not, the enrichment is dropped.

The element enrichment scheme is adopted here as it is accurate for cohesive failure of the adhesive layer. However, calculation of polar coordinates for use in near-tip enrichment functions are computed geometrically to avoid inaccuracies. Impact to the computational time is minimal as polar coordinates need only to be calculated at near-tip
enriched nodes.
With the aid of the level sets, the enriched space can be defined around the crack and the discontinuity functions for crack description embedded into the analysis. An example of an enriched space is represented in Figure 2.7

Figure 2.7: Enrichment space example

2.3.3 Blending elements

Fries 2008 addresses the issue of blending elements by using a Ramp Function built using standard shape functions. In standard un-enriched elements the partition of unity holds (see Eq 2.24). For blending elements, which have some of their nodes enriched, the opposite occurs; the sum of the shape function does not equal 1 .

$$
\begin{align*}
& \sum_{i \in I} N_{i}(\mathbf{x})=1 \tag{2.24}\\
R(\mathbf{x})= & \sum_{i \in J} N_{i}(\mathbf{x})
\end{align*}
$$

Strong discontinuities in this work do not pose a problem in blending elements. As explained in Fries work, the functions used for strong discontinuity enrichment are of constant value as long as the shape functions used for the enrichment are of equal or less order as those of the standard FEM part of the approximation. This is the case for Heaviside and Sign enrichment functions used in this thesis.

2.3.4 Degrees of freedom

In the framework of the standard FEM, the nodal degrees of freedom correspond to the x and y displacements of the structure (for two dimensional general analysis). In the XFEM framework, the displacement field is enriched with functions that describe the phenomenological fields of interest. Modeling of the discontinuous field of a crack, the Heaviside function H is introduced. To describe the asymptotic field produced by the delamination front (crack tip) the Near-tip functions F^{l} are introduced. The displacement field is then the linear combination of the physical x and y displacements with the enrichment functions. In equation form, this is described as:

$$
d=\left\{\begin{array}{lllllll}
u_{k_{x}} & u_{k_{y}} & a_{k_{x}} & a_{k_{y}} & b_{k_{x}}^{l} & b_{k_{y}}^{l} \tag{2.25}
\end{array}\right\}^{\top}
$$

were u represents the displacements DoFs, a the strong discontinuity DoFs and b^{l} the DoFs for the near-tip discontinuity for l enrichment function. Note that the incompatible degrees of freedom, as introduced in Section 2.2.1, are not included as these are internal DoFs that are condensed out before assembly of the global stiffness matrix \mathbf{K}

Now that all the enrichment functions have been introduced, the continuum and energy concepts presented in Section 2.2 are presented in the framework of the extended finite element method. The strain displacement matrix for the element is now a combination of the contribution of each enrichment function in x and y coordinates. In equation form this is expressed as:

$$
\mathbf{B}=\left[\begin{array}{lll}
B_{i}^{u} & B_{i}^{a} & B_{i}^{b} \tag{2.26}
\end{array}\right]
$$

were B^{u} are the strain/displacement matrix for the quadrilateral element as provided in Section 2.2

$$
\begin{gather*}
\mathbf{B}^{a}=\left[\begin{array}{cc}
\frac{\partial}{\partial \xi}\left(N_{i}\left(H-H_{i}\right)\right) & 0 \\
0 & \frac{\partial}{\partial \eta}\left(N_{i}\left(H-H_{i}\right)\right) \\
\frac{\partial}{\partial \xi}\left(N_{i}\left(H-H_{i}\right)\right) & \frac{\partial}{\partial \eta}\left(N_{i}\left(H-H_{i}\right)\right)
\end{array}\right] \tag{2.27}\\
\mathbf{B}^{b}=\left[\begin{array}{cc}
\frac{\partial}{\partial \xi}\left(N_{i}\left(F-F_{i}\right) R(X)\right) & 0 \\
0 & \frac{\partial}{\partial \eta}\left(N_{i}\left(F-F_{i}\right) R(X)\right) \\
\frac{\partial}{\partial \xi}\left(N_{i}\left(F-F_{i}\right) R(X)\right) & \frac{\partial}{\partial \eta}\left(N_{i}\left(F-F_{i}\right) R(X)\right)
\end{array}\right] \tag{2.28}
\end{gather*}
$$

2.3.5 Element integration

In this work, the integration scheme proposed by Dolbow 1999 is implemented. Here, the enriched elements are subdivided into integration sub-cells. This subdivision does not introduce additional degrees of freedom as they are only used for integration. Several advantages are identified on this scheme when compared to the sub-triangulation (see example in Figure 2.8), the later technique well explained in the work of Nguyen 2005.

Figure 2.8: Example of element sub-triangulation
Sub-tessellation using triangles requires the isoparametric mapping of the Gauss points from each triangle into the element space Ω. As no close form equation exists for this mapping, an iterative solution (e.g. Newton-Raphson) has to be performed
which imposes additional burdens to the computer code. Another disadvantage of subtessellation using triangulation arises when handling delamination propagation. As the delamination front moves during the simulation, the integration points might have to be moved (re-subtriangulation) and the computed integration point quantities have to be recalculated.

Sub-tessellation using quadrilaterals does come with its disadvantages. As the integration is now performed in quadrants that do not conform to the discontinuity, the equivalence between the weak and strong form of the finite element formulation is lost (Sukumar and Prèvost 2003). However, if sufficient quadrilaterals are used, the errors introduced by this method of integration is reduced.

Take into consideration the stiffness equation for a linear elastic formulation were \mathbf{B} is the strain/displacement matrix and \mathbf{D} the material matrix:

$$
\begin{equation*}
\mathbf{K}=\int_{\Omega} \mathbf{B}^{\top} \mathbf{D B} d \Omega \tag{2.29}
\end{equation*}
$$

The Gauss/Legendre approximation in two dimensions for the above formula takes the following form:

$$
\begin{equation*}
\mathbf{K}=\sum_{j=1}^{s}\left(\sum_{i=1}^{g} \mathbf{B}_{i}^{\top} \mathbf{D} \mathbf{B}_{i} w_{i}\right)_{j} \tag{2.30}
\end{equation*}
$$

were s is the total number of subcells within the element and g the number of Gauss points.

The procedure for this integration scheme is as follows: The element is subdivided into quadrilaterals and 4 point integration is adopted on each sub-quadrilateral (see Figure 2.9). The integration points on each sub-quadrilateral mapped from the reference ([-1 1],[-1 11$])$ domain are mapped to the element Ω space via Equation 2.10. The integration points in Ω are then mapped back to the reference space of the element for integration. It is customary to use an iterative solution (e.g. Newton-Raphson) to perform the inverse mapping of the integration points. However, to decrease the computational burden, the inverse mapping proposed by Hua in 1990 is employed. Note that also the blending elements around the crack tip are partitioned into quadrilaterals (see Figure 2.7). After the integration points are mapped, the weights are also mapped using the equation below as described by Nguyen in 2008:

$$
\begin{equation*}
w_{\text {in element }}=w_{\text {in sub-quad }} \cdot\|\mathbf{J}\|_{\text {in sub-quad }} \tag{2.31}
\end{equation*}
$$

Figure 2.9: Example of element partitioning using sub-quadrilaterals

2.4 Fracture Mechanics

The first law of thermodynamics, which is an expression of the conservation of energy principle, states that energy in a system must be conserved. Hence, when a system goes from a state of imbalance to a state of equilibrium, there will be a net decrease in energy. Griffith (1921) applied this principle to the formation of a crack. Application of this principle to through-thickness crack in an infinitely wide plate in tension yields the following expression:

$$
\begin{equation*}
G=\frac{\pi \sigma^{2} a}{E} \tag{2.32}
\end{equation*}
$$

were G is the energy for crack formation per unit area known as the energy release rate as introduced by Irwin (1957). The energy release rate is a measure of the available energy for crack extension. Therefore, a critical value of this parameter provides a material fracture property, known as fracture toughness G_{c}. Note that the expression in 2.32 shows that the energy available for crack formation or extension depends on the material elastic modulus E, the stress state σ and crack length a.

The expression in 2.32 is limited to both loading configuration, material model and crack-tip plasticity (crack plasticity is contained in a small region). The path-independent contour integral, independently introduced by Cherepanov in 1967 and Rice in 1968 can
then be used to define a non-linear energy release rate. As introduced by Rice, the path independent integral takes the form of:

$$
\begin{equation*}
J=\int_{\Gamma}\left(w d y-T \cdot \frac{\partial u}{\partial x} d s\right) \tag{2.33}
\end{equation*}
$$

were $d s$ is the differential path in Γ, T corresponds to the traction acting normal to the integration path and w is the strain energy:

$$
\begin{equation*}
w=\int_{0}^{\varepsilon_{i j}} \sigma_{i j} d \varepsilon_{i j} \tag{2.34}
\end{equation*}
$$

In order to facilitate the computation of energy release rate J in the finite element framework, an equivalent domain integral is implemented (Shih et al. 1986). The attractiveness of the equivalent domain integral is its versatility and its simplicity when implemented in a finite element code. The integral in equation 2.33 then becomes the following equivalent domain integral:

$$
\begin{equation*}
J=\sum_{\Omega} \sum_{n}\left[\left(\sigma_{i j} \frac{\partial u_{j}}{\partial x_{1}}-w \delta_{1 i}\right) \frac{\partial q}{\partial x_{i}}\right]_{n}|\mathbf{J}|_{n} w_{n} \tag{2.35}
\end{equation*}
$$

Note that the equivalent domain integral in 2.35 does not take into account traction forces at the crack surface, body forces, thermal or inelastic strains or nonlinearities which are in accordance with this work assumptions (refer to Kuna 2013 for a more general expression). In equation $2.35, q$ is an arbitrary continuous differentiable weighing function that becomes zero outside of the integration area. As it is arbitrary, the following definition is applicable:

$$
q= \begin{cases}0 & \text { on } \Gamma \tag{2.36}\\ 1 & \text { on } \Gamma_{\epsilon}\end{cases}
$$

The weighing function q above is computed at the nodes. Interpolation into the integration points is then performed similar to other quantities by using the shape functions of the isoparametric element:

$$
\begin{align*}
q(x) & =N_{i} q_{i} \\
\frac{\partial q(x)}{\partial x_{j}} & =\frac{\partial N_{i}}{\partial \xi_{j}} \frac{\partial \xi_{j}}{\partial x_{k}} q_{i} \tag{2.37}
\end{align*}
$$

The contribution to the elasto-plastic J-integral is only on elements on which there is a gradient of the weighing function $q,(0<q<1)$. Figure 2.10 depicts the area of
integration for the double cantilever beam used for analysis. The yellow colored area represents the area where the weight function q has a value of 1 and the blue area where it has a value of 0 , as defined in Equation 2.36. The equivalent domain integral is calculated where q is not equal to 0 as defined in Equation 2.35 but only the elements in the periphery of the yellow area (where $0<q<1$) contribute to the calculation of the energy release rate J.

Figure 2.10: J integral area of integration

2.4.1 Crack tip near fields

Several closed-form expressions for stresses in a body have been published for isotropic linear elastic material behavior (Anderson 2005 and Perez 2004). For the coordinate system defined in Figure 2.5, the stress field in a linear elastic fractured body can be defined by:

$$
\begin{equation*}
\sigma_{i j}^{k}=\frac{K_{k}}{\sqrt{2 \pi r}} f_{i j}^{k}(\theta)+\sum_{m=0}^{\mathrm{inf}} A_{m} r^{\frac{m}{2}} g_{i j}^{m}(\theta) \tag{2.38}
\end{equation*}
$$

were the term $f_{i j}^{k}(\theta)$ represent a dimensionless term dependent of the crack tip angle θ with respect to the query point. Also, K_{k} is the stress intensity factor (SIF) were the subscript k denotes the mode of loading i.e. $K_{I}, K_{I I}$ or $K_{I I I}$; see Figure 2.11.

The first term in the expansion associates the stress field around the crack tip with the stress intensity factor, a measurement of the stress state. Normally, based on the small scale yielding assumption (small plastic zone when compared with crack length), only the first term of the expansion is used (William 1957).

Figure 2.11: Fracture modes

In Equation 2.38, $f_{i j}^{k}(\theta)$ is a trigonometric function that has to be derived analytically (Perez 2004). Derivation of the stress field ahead of the crack tip can be found through the literature. However, a more general expression of the stresses and displacements (needed for the definition of the near-tip enrichment functions in Equations 2.16 and 2.17) can be found in the work of Xiao et. al. in 2004.

Hence, for isotropic media, the displacement field ahead of the crack tip (using only the first two terms in the expansion) is described by:

$$
\begin{align*}
u_{x}= & \frac{\sqrt{r}}{2 \mu}\left\{a_{1} \cos \left(\frac{\theta}{2}\right)\left[\kappa+1-2 \cos \left(\frac{\theta}{2}\right)^{2}\right]-b_{1} \sin \left(\frac{\theta}{2}\right)\left[\kappa+1+2 \cos \left(\frac{\theta}{2}\right)^{2}\right]\right\}+ \\
& \frac{r}{2 \mu}\left\{a_{2} \cos (\theta)-b_{2} \sin (\theta)\right\}(\kappa+1) \\
u_{y}= & \frac{\sqrt{r}}{2 \mu}\left\{a_{1} \sin \left(\frac{\theta}{2}\right)\left[\kappa+1-2 \cos \left(\frac{\theta}{2}\right)^{2}\right]-b_{1} \cos \left(\frac{\theta}{2}\right)\left[\kappa-3+2 \cos \left(\frac{\theta}{2}\right)^{2}\right]\right\}+ \\
& \frac{r}{2 \mu}\left\{a_{2} \sin (\theta)(3-\kappa)-b_{2} \cos (\theta)(1+\kappa)\right\} \tag{2.39}
\end{align*}
$$

were μ is the shear modulus and κ the Kolosov's constant given by:

$$
\kappa= \begin{cases}3-4 \nu & \text { plane strain } \tag{2.40}\\ \frac{3-\nu}{1+\nu} & \text { plane stress }\end{cases}
$$

Note that a_{1} and b_{1} are related to the stress intensity factors by:

$$
\begin{equation*}
a_{1}=\frac{K_{I}}{\sqrt{2 \pi}} \quad b_{1}=-\frac{K_{I I}}{\sqrt{2 \pi}} \tag{2.41}
\end{equation*}
$$

and a_{2} related to the T-stress which accounts for a constant stress parallel to the crack.
The near field displacement equations presented above are the basis for the neartip enrichment functions in Equations 2.16 and 2.17 used for modeling of the near field stresses around the delamination front in the adhesive.

2.5 Case study: Double Cantilever Beam

2.5.1 Analytical solution

A typical test configuration for fracture toughness (delamination) in composites and strength of the adhesive layer is the double cantilever beam (DCB) (Banea and da Silva 2009, Biel and Stigh (2007)). An example of a double cantilever beam is shown in Figure 2.12. The displacement δ (which coincides with the displacement of the loading point) can be computed using beam theory. According to Timoshenko beam theory, the displacement can be calculated analytically by:

$$
\begin{equation*}
\delta=\frac{2 P a^{3}}{3 E I}+\frac{P h^{2} a}{4 \mu I} \tag{2.42}
\end{equation*}
$$

In the above equation, P is the applied load, I the second moment of inertia, and E and μ the Young's and shear modulus respectively. Note that if Euler-Bernoulli beam theory is used, the second term in Equation 2.42 is neglected. To obtain the deflection of one of the cantilever end, δ is divided by 2 .

Figure 2.12: Double cantilever beam in displacement control

Analytical solutions for the energy release rate exists through the literature. For the classical beam theory, the following expression can be obtained (Anderson 2005):

$$
\begin{equation*}
G=\frac{12 P^{2} a^{2}}{w^{2} h^{3} E} \tag{2.43}
\end{equation*}
$$

or from the modified beam theory method (Prasad et. al 2011):

$$
\begin{equation*}
G_{I}=\frac{3 P \delta}{2 t a} \tag{2.44}
\end{equation*}
$$

However, these equations will overestimate the energy release rate as they do not account for the rotations at the loaded ends of the double cantilever beam. This can be corrected by introduction of an effective crack length (Nairn 2000).

2.5.2 Convergence study

A convergence study was performed to determine the minimum required number of elements needed for the solution of adhesive fatigue failure of the double cantilever beam. This configuration is selected as close form analytical solutions exist and because it is a common test setup to evaluate adhesive strength. The test case is selected so that it compares to the benchmark double cantilever beam setup as in Krueger's report (2010). The material properties selected for benchmark are: $E=70,000 \mathrm{~N} / \mathrm{mm}^{2}, \nu=0.33$ (material
properties for isotropic media for convergence study only) and the analysis carried out in plane strain conditions (here, the epoxy presence is ignored in the analitical solution but modeled in the XFEM framework). This assumption is valid due to the thin section of the adhesive layer.

As shown in Figure 2.13 the finite element solution starts to oscillates between 2% of the analytical solution at about 750 elements, with refinement at the loading end and near the delamination as depicted in Figure 2.14. As shown, the incompatible element can be used to predict the energy release rate. However, the incompatible element tends to be significantly less stiffer thus, a higher number of elements must be used in the transverse direction of the beam. Figure 2.14 shows an example of the mesh used where the red colored line represent the crack or initial delamination.

Figure 2.13: Energy release rate mesh convergence test

Figure 2.14: Mesh example for convergence study; convergence is improved by adding elements in the X direction

Chapter 3

 Implementation and ResultsFailure prediction of an adhesive bonded double cantilever beam is performed within the framework of the Extended Finite Element Method. An initial delamination is embedded within the adhesive layer and modeled independently from the mesh via a Heaviside function (strong discontinuity). The asymptotic near-tip field is modeled with Linear Elastic Fracture Mechanic based enrichment functions. A stochastic fatigue propagation model based on the Paris-Erdogan equation with the maximum strain energy as a fracture parameter is used to simulate delamination growth data. Two cases are studied, a constant and random amplitude fatigue test cases.

3.1 Fracture mechanics for the adhesive

As previously stated, the adhesive layer is modeled as a linear elastic material. The near tip functions for enriched are based on linear elastic fracture mechanics theory. However, an energy approach is used in this work to characterize the fracture state of the double cantilever beam. As such, the maximum energy release rate criteria (introduced by Nuismer in 1975) is used. According to the criteria, delamination propagation will start after the maximum energy release rate reaches a critical value (i.e. Fracture Toughness $\left.G_{c r}\right)$. The delamination will propagate in a radial direction where the energy release rate is at its maximum. However, its criteria is based on stress intensity factors.

In 1983, Nishioka proposed an equation for the energy release rate as a function of the J-integral. The energy release rate is then given by the following expression:

$$
\begin{equation*}
G=J_{1} \cos \theta+J_{2} \sin \theta \tag{3.1}
\end{equation*}
$$

were the propagation angle can be derived by maximizing the above expression thus, the propagation angle is given by:

$$
\begin{equation*}
\theta=\arctan \left(\frac{J_{2}}{J_{1}}\right) \tag{3.2}
\end{equation*}
$$

From the previous definition of the equivalent domain J-integral, the following expression for J_{1} and J_{2} can be derived:

$$
\begin{equation*}
J_{k}=\sum_{\Omega} \sum_{n}\left[\left(\sigma_{i j} \frac{\partial u_{j}}{\partial x_{k}}-w \delta_{k i}\right) \frac{\partial q}{\partial x_{i}}\right]_{n}|\mathbf{J}|_{n} w_{n} \tag{3.3}
\end{equation*}
$$

3.1.1 Fatigue and crack propagation

Fracture mechanics has been used for characterization of crack propagation under cyclic loading since the 1960's with the work of Paris and Erdogan 1960 and Paris et. al. 1961. Fatigue behavior of adhesive and bonded joints using fracture mechanics has been studied since the 1970's from the works of Roderick 1975. Fatigue crack propagation was first introduced by Paris in the form of:

$$
\begin{equation*}
\frac{\Delta a}{\Delta N}=f\left(K_{\max }, \beta\right) \tag{3.4}
\end{equation*}
$$

where K is the stress intensity factor, N the number of cycles, a the crack length and $\beta=K_{\min } / K_{\max }$. Expressions in the literature range from (Pascoe et. al 2016):

$$
\begin{equation*}
\frac{d a}{d N}=C \Delta K^{m} \quad \text { or } \quad \frac{d a}{d N}=C \Delta G^{m} \quad \text { or } \quad \frac{d a}{d N}=C G_{\max }^{m} \tag{3.5}
\end{equation*}
$$

where C and m are material constants.
From the above relations, the delamination extension Δa can be computed and the crack extended. To do so, the stress intensity factor range ΔK, the energy release rate range or $\max \left(\Delta G\right.$ or $\left.G_{\max }\right)$ needs to be computed. Furthermore, other researchers have also proposed to normalize the energy release rate by the fracture toughness $\left(\Delta G / G_{c}\right.$ or $G_{\max } / G_{c}$) (Pascoe et. al 2013).

3.1.2 Stochastic fatigue model

It is known that fatigue crack growth is stochastic in nature (Li et. al. 2011). Where here, stochastic pertains to the random nature of the fatigue process. Hence, a stochastic approach is embedded within the code to simulate the random nature of fatigue. In this work, the Yang-Manning's model (1990) is implemented but with the modification of using the maximum strain energy instead of the stress intensity factor range ($\Delta K=$ $\left.K_{\max }-K_{\min }\right)$. The model is described as follows:

The Paris-Erdogan model is assumed for delamination propagation with the strain energy as the fracture parameter (see Equation 3.5). However, the delamination propagation rate is multiplied by a correlation time parameter to account for the stationary random process per number of loading cycles.

$$
\begin{equation*}
\frac{d a}{d N}=X(N) C G_{\max }^{m} \tag{3.6}
\end{equation*}
$$

The function $X(N)$ is sometimes reduced to a log-normal random variable and as such, the delamination propagation function can be rewritten as:

$$
\begin{equation*}
\frac{d a}{d N}=x_{p} C G_{\max }^{m} \tag{3.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
x_{p}=\lg ^{-1}\left(-\lambda \mu_{p} s_{z}\right) \tag{3.8}
\end{equation*}
$$

In the above equations, λ is the correction factor of the standard deviation as a function of the number of samples the model is based on and is defined as:

$$
\begin{equation*}
\lambda=\sqrt{\frac{n-1}{2}} \cdot \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \tag{3.9}
\end{equation*}
$$

μ_{p} a standard normal variate for a probability p and s_{z} is the mean square of the experimental fatigue data defined for the experiment at hand as:

$$
\begin{equation*}
s_{z}=\sqrt{\sum_{i=1}^{n}\left\{\lg \left(\frac{d a}{d N}\right)_{i}-\lg \left[C\left(G_{\max _{i}}\right)^{m}\right]\right\}^{2} /(n-2)} \tag{3.10}
\end{equation*}
$$

The calculation for s_{z} was estimated from the plotted data in König et. al. 1997 for a double cantilever beam.

3.1.3 Simulation by loading cycles

In the present study, the simulations are performed via loading cycles. This means that the entire loading spectrum is subdivided into small spectra on which a delamination increment Δa is tested. In this dissertation, the simulation scheme selected is by preselecting a delamination increment and determine the cycles needed to achieve that
delamination increment by inverting the Paris-Erdogan power equation to characterize fatigue.

$$
\begin{equation*}
\Delta N_{i}=\frac{X(N)^{-1}}{C} G_{\max }^{-m} \Delta a \tag{3.11}
\end{equation*}
$$

In each loading cycle, the finite element simulation is performed for two load cases (a maximum and minimum load). From these solution (the maximum energy release rate $G_{\max }$ is calculated). It is important to note that crack closure effects are not considered in the present study (high loading ratios β).

The total crack extension for a delamination increment technique is a summation of crack extensions for each loading cycle or in equation form:

$$
\begin{equation*}
a=a_{0}+k_{i} \Delta a \tag{3.12}
\end{equation*}
$$

were k_{i} is the loading cycle number and Δa is the delamination increment which is a simulation input parameter. For clarification, an example of a simulation loading history for a variable amplitude case is provided in Figure 3.1 below.

Figure 3.1: Loading history example

3.1.4 Code structure

The structure of the constructed code is shown in Figure 3.2. As previously stated, an initial delamination is embedded into the adhesive. The enriched space is then determined based on the initial delamination position. The global stiffness matrix is then determined and the energy release rate computed. If the energy release rate attains a threshold value, delamination will occur. If the energy release rate is above a critical value, failure of the adhesive will occur and the simulation is stopped. Furthermore, if the cycles computed do not attain an onset value, delamination will not occur. The simulation is stopped after final delamination length is attained or if the total number of cycles is obtained.

Figure 3.2: Flowchart for crack propagation

3.2 Benchmark example: graphite epoxy DCB

3.2.1 Constant amplitude loading

The developed finite element code was compared with experimental results by König et. al (1997) and numerical results published by Krueger in 2010. The material properties for the plies are the same as published in their work and summarized in Table 3.1 below for a unidirectional Graphite/Epoxy prepreg with a $[0]_{24}$ stacking sequence. However, the material properties for the adhesive were not provided in their study, thus the material properties published for the epoxy resin by Car et. al. in 2000. Refer to Tables 3.1 and 3.2 for the material properties used in the analysis.

In the benchmark example by Krueger, a displacement controlled experiment was performed with loading parameters provided in Table 3.3. Similarly, a delamination increment of $\Delta a=0.50 \mathrm{~mm}$ was selected for the simulation as it provided stable results in the developed MATLAB script. The test configuration is depicted below for clarity.

Figure 3.3: Test configuration

Table 3.1: Material properties for unidirectional Graphite/Epoxy Prepreg

Young's modulus	E_{11}	E_{22}	E_{33}
[GPa]	139.40	10.16	10.16
Shear modulus	μ_{12}	μ_{13}	μ_{23}
$[\mathrm{GPa}]$	4.60	4.60	3.54
Poisson's ratio	ν_{12}	ν_{13}	ν_{23}
	0.300	0.300	0.436

Table 3.2: Material properties for epoxy resin

Young's modulus	E
$[\mathrm{GPa}]$	13
Poison's ratio	ν
	0.325

Table 3.3: Benchmark loading parameters
Maximum displacement [mm] ($\delta_{\max }$) 0.67 Minimum displacement $[\mathrm{mm}]\left(\delta_{\min }\right) \quad \beta \cdot \delta_{\max }$

The delamination growth rate is computed with Equation 3.6. The double cantilever geometry, as defined in Figure 3.3, has the following geometric values provided in Table 3.4 which are the same geometric parameters as provided by Krueger (2010).

Table 3.4: Geometry of DCB for benchmark example

Width $(w)[\mathrm{mm}]$	25.0
Thickness $(h)[\mathrm{mm}]$	3.0
Length $(l)[\mathrm{mm}]$	150.0
adhesive thickness $[\mathrm{mm}]$	0.1
Initial delamination $\left(a_{0}\right)[\mathrm{mm}]$	30.0

As with the work of Krueger in 2010, delamination propagation values were extracted from the results published in 1997 by König et. al. The model proposed here is limited to region II of the fatigue delamination growth plot, which is the region governed by the Paris-Erdogan power law.

A Cutoff or threshold energy release rate of $0.060 \mathrm{~kJ} / \mathrm{m}^{2}$ and fracture toughness of $0.17 \mathrm{~kJ} / \mathrm{m}^{2}$ were also adopted into the analysis. A delamination growth increment of 0.5 mm was selected to compare the results with those published by Krueger and a maximum delamination length of 40 mm and $10,000,000$ cycles were also incorporated into the analysis. The analysis was performed as a plane strain linear extended finite element simulation in MATLAB (developed code provided in the Appendix). A depiction of the mesh used for the analysis is shown in Figure 3.5. The delamination (shown in red in Figure 3.5) is mathematically embedded into the finite element via the enrichment functions. The elements depicted in blue represent the carbon/epoxy unidirectional adherends and the gray elements represent the adhesive layer.

Figure 3.4: Mesh for fatigue simulation of DCB (initial delamination in red color)

The delamination growth rate closely resembles the data fit in König et. al. 1997 as plotted in Figure 3.5. The analysis consisted of 20 loading cycles for the selected delamination increment of 0.50 mm .

Figure 3.5: Delamination growth rate comparison with experimental data

A Von Mises contour plot of the final loaded beam is shown in Figure 3.6. It can be observed the stress distribution round the delamination front (crack tip) which compares to the expected stress distribution of a plane strain state of stress for an elastic material (Anderson 2005). However, it is important to note the effect the adherends have in the stress distribution where the stress propagates to the adherends in a considerable area.

Figure 3.6: Von Mises stresses contour plot (Constant amplitude loading)

The delamination length vs. cycle are provided in Figure 3.7. The results of the stochastic constant amplitude fatigue simulation are plotted along with the results reported by Krueger in 2010 for the simulation performed in ABAQUS software with CPE4 plane strain elements. The stochastic results obtained by the constant amplitude condition compares with the delamination data for the simulation with CPE4 elements. Hence, the numerical results produced by the numerical approach in this dissertation are comparable to the numerical results using ABAQUS.

Figure 3.7: Delamination length results per cycles for constant amplitude stochastic fatigue

3.2.2 Implementation with random loading

Variable loading fatigue simulation is modeled by subjecting the structure to consecutive small constant amplitude loading spectra that differ in amplitude between each other, thus the loading spectrum can be considered of variable amplitude (Anderson 2005). If the loading values are not fixed but randomly extracted from a probability density function, it is considered in this sense random loading. The assumption being that a structure is designed for a type or magnitude of loading, but in reality, unpredicted or stochastic processes can subject the structure to random loading. For the case at hand, a simple normal distribution is selected as the probability density function of which
random data points will be extracted at each loading cycle. The average load and ratio β values are provided in Table 3.3. Several standard deviations are selected as to observe their effect on the simulation. The results of the simulation are provided in Figure 3.8. It is important to note that as the uncertainty of the input load (displacements) increases, a larger number of simulations must be carried out as some of the cycles do not produce contribute to delamination as the strain energy release rate does not exceeds the threshold release rate. Another important feature from the analysis is the limitation to model correctly regions I and III for the delamination growth plots. This can be overcome by adopting an equation for delamination growth rate that characterizes the complete sigmoidal curve. However, empirical data is needed to feed this information to the stochastic function.

Figure 3.8: Delamination growth rate comparison with random loading

Figure 3.9 below shows a comparison of the delamination length per cycle with varying
load and load ratio standard deviations. From the figure, an increase in randomness can be seen as higher standard deviations of input parameters is increased as expected. An important feature is that a retardation effect is produced with an increase in the standard deviation of the input load meaning that the slope of the cycles vs. displacement tends to increase at the end of the delamination. This can be explained as the double cantilever beam is subjected to a larger number of loading cycles. However, a number of these loading cycles do not contribute to delamination as the energy release rates produced are below the threshold value as can be seen in Figure 3.8. However, these cycles do accumulate in the structure and thus we observe the increase in slope at the end of the delamination simulation.

Figure 3.9: Delamination length results per cycle for random amplitude load stochastic fatigue

3.2.3 Evaluation of load variation

The impact of random loading was further evaluated by selecting three test cases: low, medium and high variation from load mean and load ratio. The amounts of deviation were selected as $1 \%, 5 \%$ and 10% for both load and ratio for low, medium and high test cases respectively. However, the test case scenario remains the same as for the benchmark example.

A total of 15 experiments were performed for each test case. The strain energy release results for these experiments is shown in Figures 3.10, 3.11 and 3.12 for low, medium and high load variations, respectively. For a load variation of 10%, catastrophic delamination was observed for 5 of the 15 experiments run. This indicates that unstable delamination can occur for random loads above 10% of the selected configuration.

Figure 3.10: Energy release rate for low deviation test case

Figure 3.11: Energy release rate for medium deviation test case

Figure 3.12: Energy release rate for high deviation test case

The final cycles to failure obtained for each test case were extracted from the result data set and plotted in a probability plot, refer to Figures $3.13,3.14$ and 3.15 for the low, medium and high variable loading cases respectively. The obtained values follow a normal distribution as shown for the high p-values and low Anderson-Darling statistics. However, the results for the high variable loading test case are marginally described by a normal distribution due to its low p-value. This might be attributed to the extreme cases of catastrophic failure (i.e. low cycles to failure observed for 5 samples).

Probability Plot for low load variability test Normal - $95 \% \mathrm{Cl}$

Mean	4767253
StDev	1125059
N	15
AD	0.186
P -Value	0.888

Figure 3.13: Final cycles to failure for low deviation test case

Low variability in load test results are shown in Figure 3.13. The predicted cycles to failure by the developed code for the low variability test follow a normal distribution. The cycles to adhesive failure are estimated to be $4,767,253$ cycles for the sample set.

Probability Plot for medium load variability test
 Normal - 95\% Cl

Mean	3894302
StDev	1573246
N	15
AD	0.516
P-Value	0.159

Figure 3.14: Final cycles to failure for medium deviation test case

Medium variability in load test results are shown in Figure 3.14. The predicted cycles to failure by the developed code for the medium variability test follow a normal distribution. The cycles to adhesive failure are estimated to be around 3,894,302 cycles for the sample set.

Probability Plot for high load variability test Normal - 95\% Cl

Mean	2382616
StDev	2420063
N	15
AD	0.917
P-Value	0.014

Figure 3.15: Final cycles to failure for high deviation test case

High variability in load test results are shown in Figure 3.15. The cycles to adhesive failure are estimated to be around 2,382,616 cycles for the sample set which is significantly less than for the low and medium variability test cases. However, the test shows that the data do not follow a normal distribution due to the low p-value (<0.05). This is attributed to sudden or catastrophic failure of the adhesive as observed for 5 of the samples.

3.2.4 Evaluation of seed influence in random data generation

The previously presented data was based on default random number generation settings within MATLAB. In order to evaluate the influence in the simulated random data, two different seeds were randomly selected using the rng function within MATLAB with the 'shuffle' input argument. This sets the seed for random number generation to a value based on the current computer time. The two cases selected were ran at 5% deviation
from loading and loading ratio input means. Figure 3.16 shows a box plot of the data with the default seed of 0 and the seeds randomly selected. A one-way ANOVA test was performed to determine if there is a statistical difference for the predicted cycles to failure due to a change in seed. The results shown in Table 3.5 shows a p-value greater than 0.05 thus there is no statistical difference between the average cycles to failure between the tested seed values. Therefore, the influence of the seed selection for random analysis is deemed not statistically significant.

Figure 3.16: Cycles to failure prediction comparison by seed

Table 3.5: One-way ANOVA for comparison of seed variation

Source	Degrees of Freedom	Adj. Sum of Squares	Adj. Mean Square	F-Value	P-Value
Factor	2	2.40060×10^{12}	1.20030×10^{12}	0.90	0.415
Error	42	5.61838×10^{13}	1.33771×10^{12}		
Total	44	5.85844×10^{13}			

Chapter 4 Final Remarks

4.1 Conclusion

In this work, the Extended Finite Element Method was used to study the stochastic fatigue delamination in a composite adhesive bonded joint. The configuration selected was a double cantilever beam made of graphite/epoxy (T300/914C) unidirectional composite with a $[0]_{24}$ stacking sequence. A double cantilever beam is a commonly used configuration to study delamination in composites and strength of the adhesive (Banea and da Silva 2009, Biel and Stigh 2007). The adhesive was modeled as an isotropic, linear elastic material confined between two orthotropic linear elastic adherends. The cohesive delamination was modeled by enriching the adhesive layer with extra degrees of freedom to include the crack influence, independently from the mesh. The stochastic nature of the fracture process was modeled using a modification of the Yang-Manning's model but using the maximum strain energy release rate as the fracture parameter with good estimates when compared with the experimental data by Krueger in 2010.

The implementation of incompatible element "Q6" (first introduced by Wilson et. al. in 1973) was successfully tested with the Extended Finite Element Method. The developed code in MATLAB was tested against the benchmark results published by Krueger in 2010 and experimental data published by König et. al. in 1997 with comparable results. Finally, the double cantilever system was subjected to random loading conditions in which both the stress ratio and load are randomly extracted values from a normal probability distribution. The random load values are determined given an average load, load ratio and standard deviation. The stochastic fatigue analysis is carried out in loading blocks with a predetermined delamination increment and damage accumulation calculated. The use of quadrilateral finite elements for modeling of the DCB proved to be, albeit possible, inefficient as they become overly stiff in bending simulation and thus require a larger number of elements in the longitudinal direction for the solution to converge.

The work presented here provides a unique combination of the XFEM with both a stochastic model for fatigue delamination and random loading scheme. Testing of different levels of deviation from average loading shows a reduction in average cycles to failure with an increase in deviation. These results are in accordance with the expected behavior as high loads can be produced with an increase in deviation from the average load that will induce high energy release rates. This will in turn translate to a delamination process for relatively low number of cycles.

Normal distributions for cycles to failure were found for $1 \%, 5 \%$ and 10% load deviations. However, marginal normality test results were observed for high load deviations (10%). This is attributed to the high number of tests (5 of 15) on which the adhesive bonded joint failed catastrophically (sudden delamination with low number of cycles). Hence for high load variations, the average cycles to failures is found to be significantly lower than for the other load deviations tested (in the order of $2,000,000$ cycles lower than for the 1% deviation case).

The developed tool will prove valuable for cost reductions in the development process of bonded joints. A reduction in test samples is foresee as numerous tests cases, with different levels of load dispersion and mean values can be tested numerically. Thus, this reduction in cost in testing can be beneficial to companies in the aerospace industries as they rely more through the years in composites and adhesive bonded joints for the construction of aircrafts.

4.2 Recommendations

The algorithm was successful in simulating delamination of a double cantilever beam in fatigue loading. However, this code was developed using a linear formulation of the extended finite element. Relatively high deformation due to bending can be present for higher load magnitudes hence, it is recommended to reformulate the code for nonlinear analysis if higher loads are to be tested. Furthermore, it was demonstrated that a change in seed for the randomization of the load produces comparable average life cycle predictions. However, it is recommended to randomize the seed selection every time a new session is started to minimize the influence of the seed when generating random data.

4.3 Future Work

There are many areas of improvement in this work to model the strength of the adhesive layer. One improvement would be to include the adhesive force as a model parameter thus allowing the delamination to propagate between the adhesive and adherend. As the model is limited by Linear Elastic Fracture Mechanics, future work should focus on studying plastic deformation of the adhesive layer. Furthermore, the simulation was limited to linear finite element theory hence, a great area of opportunity exists to expand the model to nonlinear simulations. Another area of improvement is to implement higher order elements to study their effect in a double cantilever beam configuration and to improve convergence.

This work can be expanded to Mode II failure or mixed mode between Mode I and II (refer to Figure 2.11) as minimal work may be required for the generalization of the code to other bonded joint configurations (Figure 2.1). Furthermore, other materials, e.g. different adhesives and metallic adherends can be tested to evaluate their effect in stress distribution and consequently in their fatigue life.

The analysis performed in this work could be improved by establishing a joint effort with a materials testing laboratory to obtain real results and compare them with the finite element model. A good stochastic model needs to be fed analytical data to successfully simulate the variability in fatigue simulation.

Appendix A MATLAB scripts

Input geometry script

```
function [NODE,ELEMENT,BC,CRACK,SIM,MATERIAL] = finput_DCB()
%finput_DCB DCB test case
% This function is a test case for an aluminum Double
        Cantilever beam wth
4 % an embeded crack.
% * +F
% 0 - - - -
%
%
% * -F
%
% Node numbering scheme
% 4 3
4% ○ - - - - 
26 %
```

5%
7
8
9
10
${ }_{12}^{12}$
14
15
${ }_{17}$
25

```
% 0 - - - - o
% 1 2
% Space discretisation
adhesive = [1.45 1.55];
a0 = 30; % initial crack
SIM.a0 = a0;
x_1 = linspace(0,70,60);
x_2 = linspace (70,150,2);
y_1 = linspace(0,adhesive(1),10);
y_2 = linspace(adhesive(1), adhesive(2),6);
y_3 = linspace(adhesive(2),3,10);
% Space characterization
x = unique([x_1 x_2]);
y = unique([y_1 y_2 y_3]);
nn_x = length(x);
nn_y = length(y);
ne_x = nn_x - 1;
ne_y = nn_y - 1;
nn = nn_x*nn_y; % number of nodes
ne = ne_x*ne_y; % number of elements
fprintf('(!) Model with %i elements in X direction.\n',
    length(x)-1);
fprintf('(!) Model with %i elements in Y direction.\n',
    length(y)-1);
% Generate mesh
[xn,yn,CMAT] = mesher(x,y);
% Elements in material 2
x1 = [0 max(x) max(x) 0 0];
y1 = [0 0 1.4 1.4 0];
% Elements in material 3
x3 = [0 max (x) max (x) 0 0 ];
y3 = [1.6 1.6 max(y) max(y) 1.6];
```

```
% Elements in material 1
x2 = [0 max(x) max(x) 0 0 ];
y2 = [max(y1) max(y1) min(y3) min(y3) max(y1)];
% Element centroid
if size(CMAT,1) == 1
    mean_dim = 1;
else
    mean_dim = 2;
end
elem.xc = mean(xn(CMAT),mean_dim);
elem.yc = mean(yn(CMAT),mean_dim);
% Topology matrix (used for plotting solutions)
topo = zeros(nn_y,nn_x);
c1 = -nn_x;
for n1 = nn_y:-1:1
    c1 = c1 + nn_x;
    topo(n1,:) = (1:nn_x) + c1;
end
% Find elements in material
in1 = inpolygon(elem.xc,elem.yc,x1,y1);
in2 = inpolygon(elem.xc,elem.yc,x2,y2);
in3 = inpolygon(elem.xc,elem.yc,x3,y3);
% Storing mesh solutions
NODE.X = xn;
NODE.Y = yn;
NODE.ID = (1:nn)';
SIM.CONMAT = CMAT;
SIM.TOPOGRAPHY = topo;
ELEMENT(ne) = struct('ID',0,'NODES',[0,0,0,0],'MATERIAL',
    uint16(0));
for n1 = 1 : ne
    ELEMENT(n1).NODES = SIM.CONMAT(n1,:);
```

```
    ELEMENT(n1).ID = n1;
end
% Assigning material to elements
[ELEMENT(in1).MATERIAL] = deal(2);
[ELEMENT(in2).MATERIAL] = deal(1); % Adhesive
[ELEMENT(in3).MATERIAL] = deal(3);
% Crack
CRACK.POINT = [11 1]';
CRACK.X = [min(x) min (x) +a0]';
CRACK.Y = [1 1 1]'*(max (y) +min(y))/2;
% Boundary conditions
f1 = NODE.ID(NODE.X == max(x) & NODE.Y == min(y));
f2 = NODE.ID(NODE.X == max (x) & NODE.Y == max (y));
f3 = NODE.ID(NODE.X == min(x) & NODE.Y == min(y));
f4 = NODE.ID(NODE.X == min(x) & NODE.Y == max (y));
BC.DISP.NODE = [f1;f2]';
BC.DISP.UX = zeros(1,length([f1;f2]')); % m
BC.DISP.UY = zeros(1,length([f1;f2]')); % m
BC.FORCE.NODE = [f3 f4];
BC.FORCE.FX = [ 0 0 ] ; % N
BC.FORCE.FY = [-1 1 1 ]; % N
% Simulation values
SIM.THICKNESS = 100; % mm
SIM.LOADING = 'plane strain';
SIM.NODES = nn;
SIM.ELEMENTS = ne;
% Material 4 (reference material)
MATERIAL(4).NAME = 'aluminum';
MATERIAL(4).TYPE = 'isotropic';
MATERIAL(4).V = 0.33;
MATERIAL(4).E = 70000; % MPa
```

```
MATERIAL(4).C = 1.5E-10;
MATERIAL(4).m= = 3.8;
% Material 1
% Epoxy resin
% Material properties from:
% An anisotropic elasto-plastic constitutive model for large
        strain
% analysis of fiber reinforced composite material" E. Car
    2000
MATERIAL(1).NAME = 'epoxy';
MATERIAL(1).TYPE = 'isotropic';
MATERIAL(1).V = 0.325;
MATERIAL(1).E = 26E3;
MATERIAL(1).C = 2.44E6;
MATERIAL(1).m = 10.61;
MATERIAL(1).Gcri = 0.17; % N/mm
% Material 2
MATERIAL(2).NAME = 'graphite/epoxy';
MATERIAL(2).TYPE = 'orthotropic';
MATERIAL(2).V12 = 0.30;
MATERIAL (2).V21 = 0.30;
MATERIAL (2).V13 = 0.30;
MATERIAL(2).V31 = 0.30;
MATERIAL(2).V23 = 0.436;
MATERIAL(2).V32 = 0.436;
MATERIAL(2).E1 = 139.4e3;
MATERIAL (2).E2 = 10.16e3;
MATERIAL(2).E3 = 10.16e3;
MATERIAL(2).G12 = 4.6e3;
% Material 3
MATERIAL(3).NAME = 'graphite/epoxy';
MATERIAL(3).TYPE = 'orthotropic';
MATERIAL(3).V12 = 0.30;
MATERIAL (3).V21 = 0.30;
MATERIAL(3).V13 = 0.30;
```

```
MATERIAL(3).V31 = 0.30;
MATERIAL(3).V23 = 0.436;
MATERIAL(3).V32 = 0.436;
MATERIAL(3).E1 = 139.4e3;
MATERIAL(3).E2 = 10.16e3;
MATERIAL(3).E3 = 10.16e3;
MATERIAL(3).G12 = 4.6e3;
% Defining material matrices for analysis
for n1 = 1 : size(MATERIAL,2)
    switch MATERIAL(n1).TYPE
case('isotropic')
            E = MATERIAL(n1).E;
            v = MATERIAL(n1).V;
            G = E/(2*(1+v));
            switch SIM.LOADING
                case('plane stress')
                E1 = E/(1-v^2);
                E2 = v*E1;
                case('plane strain')
                E1 = E* (1-v)/((1+v)*(1-2*v));
                E2 = v*E1/(1-v);
                otherwise
                    error('Undefined test case')
            end
            MATERIAL(n1).G = G; % Shear modulus
            MATERIAL(n1).D = [E1 E2 0;E2 E1 0;0 0 G]; %
                Material matrix
            case('orthotropic')
            EX = MATERIAL(n1).E1;
            EY = MATERIAL(n1).E2;
            vXY = MATERIAL(n1).V12;
            vYX = MATERIAL(n1).V21;
            vYZ = MATERIAL(n1).V23;
            vZY = MATERIAL(n1).V32;
            vXZ = MATERIAL(n1).V13;
            vZX = MATERIAL(n1).V31;
            GXY = MATERIAL(n1).G12;
```

```
            switch SIM.LOADING
            case('plane stress')
            d = 1-vXY*vYX;
            E1 = EX;
            E2 = vXY*EX;
            E3 = vYX*EY;
            E4 = EY;
            E5 = d*GXY;
        case('plane strain')
            d = (1-vXZ*vZX)*(1-vYZ*vZY)-(vXY+vXZ*vZY)*(
                vYX+vYZ*vZX);
            E1 = (1-vYZ*vZY)*EX;
            E2 = (vXY+vXZ*vZY)*EX;
            E3 = (vYX+vYZ*vZX)*EY;
            E4 = (1-vXZ*vZX)*EY;
            E5 = d*GXY;
        otherwise
            error('Undefined test case')
            end
            MATERIAL(n1).G = (1+vYX)/EX + (1+vXY)/EY; %
            Approximated
                    MATERIAL(n1).D = 1/d*[E1 E2 0;E3 E4 0;0 0 E5];
                    otherwise
            error('Undefined material type')
    end
end
% Plotting mesh
XY = [xn yn];
clear figure
patch('Faces',CMAT(in2,:),'Vertices',XY,'FaceColor',[1 1
    1]*0.9);
hold on
patch('Faces',CMAT(in1,:),'Vertices',XY,'FaceColor',[0 0
    1]*0.5);
patch('Faces',CMAT(in3,:),'Vertices',XY,'FaceColor',[0 0
    1]*0.9);
plot(CRACK.X,CRACK.Y,'-r')
```

```
245 hold off
246 xlabel('Length(mm)')
247 ylabel('Thickness (mm)')
248 %axis equal
249 end
```


Main script

```
% Clear memory and command window
```

clc; clear all; close all; format short;
fprintf('(!) Program started. ${ }^{\prime}$ ')
time = tic;
\% Extracting input mesh and materials and simulation
parameters
fprintf('(P) Extracting domain inputs... ${ }^{\prime}$ ')
[NODE, ELEMENT, BC, CRACK,SIM, MATERIAL] = finput_DCB();
pause (2)
\% Test case parameters
SIM.RSD = 5;
\% Load input value [N]
SIM.LOAD.AVG = 50;
SIM.LOAD.STD $=$ SIM.LOAD.AVG * SIM.RSD/100;
\% Displacement load input [mm]
SIM.DISP.AVG = 0.3;
SIM.DISP.STD $=$ SIM.DISP.AVG * SIM.RSD/100;
\% Loading ratio input
SIM.R.AVG $=0.1$;
SIM.R.STD $=$ SIM.R.AVG * SIM.RSD/100;
\% Mode mixity
SIM.MIXITY = 1;
\% Fatigue parameters
SIM.CASE = 'displacement control';
SIM.da $=.5 ; \quad \% \mathrm{~mm}$
SIM.a_end $=40 ; \quad \%$ final crack
length
SIM.N_onset \quad 150; $\quad \%$ cycles
SIM.Fail $\quad=10 \mathrm{E} 6 ; \quad \%$ cycles
SIM.Gth $=0.06 ; \quad \% \mathrm{~N} / \mathrm{mm} 0.06$

```
SIM.stochastic = 0;
% Optimization parameters
SIM.SUBCELLS = 10; % Subcell
    parameter
SIM.enrichr = 0; % Radius or
    periphery levels for tip enrichment
SIM.ELEMENT_TYPE = 'Q4';
total_blocks = (SIM.a_end - SIM.a0)/SIM.da;
% Initialization of variables
ERR = 0;
theta = 0;
SIM.lock = 0;
% Dirichlet BC
dO_x = BC.DISP.UX;
dO_y = BC.DISP.UY;
%% Determination of the enriched space
% First the level sets for the crack based on the last
        segment of the crack
% in CRACK sturcture are calculated. A new field within NODE
        called PSI is
% created to store the Psi level set values at the nodes (
        Normal distance).
% Similarly, a new field called PHI is created to store the
        nodal Phi
% values (tangential distance).
fprintf('(P) Finding enriched space...\n')
[NODE.PSI,NODE.PHI] = fgeo_signed(NODE.X,NODE.Y,CRACK.X([1
        end]),CRACK.Y([1 end]));
[NODE.R,NODE.O] = fgeo_polarmap(NODE.X,NODE.Y,CRACK.X([1
        end]),CRACK.Y([1 end]));
%The node identification is based
% on the following convention:
% Standard node = 0
```

```
% Heaviside node = 1
% Near-tip node = 2
% The element identification is then based on the following
    convention:
% Standard element = 0
% Heaviside element = 1
% Near-tip element = 2
% Blending element = 3
[ELEMENT(:).TYPE] = deal(0); % Setting all elements to
    standard FEM
NODE.TYPE = zeros(SIM.NODES,1); % All nodes to 0
[NODE,ELEMENT] = fxfem_enrich(SIM,NODE,ELEMENT,CRACK,'
    periphery',SIM.enrichr);
%% Plot the enriched domain
figure(1)
hold on
fplot_nodes(NODE,ELEMENT,SIM);
hold off
hold on
plot(CRACK.X,CRACK.Y,'-xr')
hold off
pause(5)
%% Calculation of Degrees of Freedom and connectivity
    vectors
for n1 = 1 : SIM.ELEMENTS
    ELEMENT(n1).CONVEC = fxfem_dofs(ELEMENT(n1).NODES,SIM.
        NODES,'all');
    ELEMENT(n1).DOF.U = fxfem_dofs(ELEMENT(n1).NODES,SIM.
        NODES,'standard')';
    ELEMENT(n1).DOF.A = fxfem_dofs(ELEMENT(n1).NODES,SIM.
        NODES,'heaviside')';
    ELEMENT(n1).DOF.B = fxfem_dofs(ELEMENT(n1).NODES,SIM.
        NODES,'neartip')';
end
SIM.a = SIM.a0;
SIM.N = 0;
nblocks = 0;
```

```
DATA = struct('ID',zeros(total_blocks,1),...
    'Damage',0,...
    'D',zeros(total_blocks,1),...
    'Di',zeros(total_blocks,1),...
    'Ni',zeros(total_blocks,1),...
    'dN',zeros(total_blocks,1),...
    'ai',zeros(total_blocks,1),...
    'da',zeros(total_blocks,1),...
    'dadN',zeros(total_blocks,1),...
    'Gmax',zeros(total_blocks,1),...
    'avgangle',zeros(total_blocks,1),...
    'Force',zeros(total_blocks,1),...
    'MAXLOAD',zeros(total_blocks,1) ,...
    'R',zeros(total_blocks,1));
while SIM.a < SIM.a_end % Loop over loading blocks
    nblocks = nblocks + 1;
    % Test variables (inputs)
    R = normrnd(SIM.R.AVG,SIM.R.STD);
    switch SIM.CASE
            case('load control')
            Pavg = normrnd(SIM.LOAD.AVG,SIM.LOAD.STD);
            TEST.MINL = 2*R/(1-R) .* Pavg;
            TEST.MAXL = 2 /(1-R) .* Pavg;
        case('displacement control')
            Davg = normrnd(SIM.DISP.AVG,SIM.DISP.STD);
            TEST.MIND = 2*R/(1-R) * Davg;
            TEST.MAXD = 2 /(1-R) * Davg;
        otherwise
            error('Undefined loading control')
        end
    % Updating level sets
    if nblocks > 1 && size(CRACK.X,1) > 2
        cx_1 = CRACK.X(end-2);
```

```
        cx_2 = CRACK.X(end-1);
        cx_3 = CRACK.X(end);
        cy_1 = CRACK.Y(end-2);
        cy_2 = CRACK.Y(end-1);
        cy_3 = CRACK.Y(end);
        x = NODE.X;
        y = NODE.Y;
        F = [cx_3 - cx_2; cy_3 - cy_2; 0];
        V = [cx_2 - cx_1; cy_2 - cy_1; 0];
        a = cross(V,F);
        phi_rotated = (x-cx_3)*F(1)/norm(F) + (y-cy_3)*F(2)/
        norm(F);
        for n1 = 1 : SIM.NODES
        if NODE.PHI(n1) > 0 && F(2) ~= 0
            NODE.PSI(n1) = -sign(a(3))*((x(n1)-cx_3)*F
                    (1)/norm(F) - (y(n1)-cy_3)*F(2)/norm(F));
```

 end
 NODE.PHI(n1) = phi_rotated(n1);
 end
 clear cx_1 cx_2 cx_3 cy_1 cy_2 cy_3 x y
 end
 [NODE, ELEMENT] = fxfem_enrich(SIM,NODE,ELEMENT, CRACK,'
 periphery',SIM.enrichr);
 \% Domain integration
fprintf('(P) Integrating... ${ }^{\prime}$ ')
[ELEMENT,IP] = stiffness(SIM,ELEMENT,NODE,CRACK,MATERIAL
);
$\% \%$ Determination of maximum load
fprintf('(M) Block \%i/\%i... ${ }^{\prime}$ ', nblocks, total_blocks)
switch SIM.CASE
case('load control')
if TEST.MAXL > TEST.MINL
maxload = TEST.MAXL;
else
maxload = TEST.MINL;
end

```
            BC.FORCE.FY = [-SIM.MIXITY 1]*maxload;
        case('displacement control')
            if TEST.MAXD > TEST.MIND;
                maxload = TEST.MAXD;
            else
            maxload = TEST.MIND;
            end
            d = [-SIM.MIXITY 1]*maxload;
            BC.DISP.NODE = [BC.DISP.NODE BC.FORCE.NODE];
            BC.DISP.UX = [dO_x [0 0]];
            BC.DISP.UY = [d0_y d];
            BC.FORCE.NODE = [];
            BC.FORCE.FY = [];
            BC.FORCE.FX = [];
end
% Activating nodes and sloving the system of equations
fprintf('(P) Solving system of equations...\n')
NODE.STATE = ones(SIM.NODES,1); % All
    nodes active
NODE.STATE(BC.DISP.NODE) = 0; %
    Dirichlet BC'oned nodes
SIM = fxfem_solver(ELEMENT,NODE,BC,
    SIM);
fprintf('(*) Norm of the residual: %0.2e\n',norm(SIM.K*
    SIM.d - SIM.f))
%% Extracting elemental and nodal displacement, stress
    and strain values
fprintf('(P) Calculating stresses...\n')
IP = fxfem_StrainStressIP(SIM,IP,ELEMENT,MATERIAL);
[NODE] = fxfem_disp(SIM,NODE,ELEMENT,CRACK,MATERIAL);
%% Calculating fracture mechanics quantities
fprintf('(P) Solving LEFM...\n')
SIM.Jintr = 3;
```

[NODE,ERR,theta, J1, J2] = Jintegrals(SIM, ELEMENT, NODE,
CRACK, IP, 'periphery', SIM.Jintr);
if SIM.lock == 1; theta = 0; end;
\% \% Crack propagation
C = MATERIAL (1).C;
$\mathrm{m}=\mathrm{MATERIAL}(1) . \mathrm{m}$;
switch SIM.stochastic
case (1)
dadN = stochastic() * C * ERR^m; \% [mm/cycle]
case (0)
dadN $=C * E R R \wedge m ; \quad$ [mm/cycle]
end
if $\max (E R R)<$ SIM.Gth
fprintf('(!) ERR below threshold value, (ERR = \% 0.4f
). n^{\prime}, ERR)
dai $=0$;
else
dai $=$ SIM.da;
end
if max(ERR) >= MATERIAL(1).Gcri
fprintf('(!) ERR above critical value, (ERR = \% O. 4 f)
. nn^{\prime}, ERR)
dai = SIM.a_end;
end
if dai/dadN < SIM.N_onset \&\& SIM.a == SIM.a0
fprintf('(!) Below onset cycles. ${ }^{\prime}$ ')
dai = 0;
else
SIM.a = SIM.a + dai;
end
dNi = dai / dadN;
SIM.N = SIM.N + dNi;
DATA.Damage = DATA.Damage + dNi/SIM.Fail;

```
    DATA.D(nblocks) = DATA.Damage;
    DATA.Di(nblocks) = dNi/SIM.Fail; % Palmgreen-Miner
        rule
    DATA.Ni(nblocks) = SIM.N;
    DATA.dN(nblocks) = dNi;
    DATA.ai(nblocks) = SIM.a;
    DATA.da(nblocks) = dai;
    DATA.ID(nblocks) = nblocks;
    DATA.dadN(nblocks) = dadN;
    DATA.Gmax(nblocks) = ERR;
    DATA.angle(nblocks) = theta;
    DATA.Force(nblocks) = abs(SIM.f(1));
switch SIM.CASE
    case('load control')
        DATA.MAXLOAD(nblocks) = TEST.MAXL;
        case('displacement control')
        DATA.MAXLOAD(nblocks) = TEST.MAXD;
    end
    DATA.R(nblocks) = R;
% Crack extension
if dai ~= 0
    CRACK.X = [CRACK.X ; SIM.da*cos(mean(theta))+
        CRACK.X(end)];
    CRACK.Y = [CRACK.Y ; SIM.da*sin(mean(theta))+
        CRACK.Y(end)];
    CRACK.POINT = nblocks + 1;
end
if ERR >= MATERIAL(1).Gcri
    fprintf('(!) System fractured, (ERR = %0.4f).\n',ERR
        )
    break;
elseif ERR >= SIM.Fail
    fprintf('(!) Maximum number of cycles reached.\n')
    break;
elseif nblocks > 50
```

```
        fprintf('(!) Maximum number of loading blocks
            reached.\n')
        break;
        end
end
SIM.TIME = toc(time);
fprintf('(M) Simulation ended with %i number of blocks.\n',
        nblocks)
    fprintf('(M) Analysis runtime: %i minutes.\n',SIM.TIME/60);
%%
figure(1)
fplot_generalmesh(SIM.CONMAT,NODE.X,NODE.Y,0);
hold on
plot(CRACK.X,CRACK.Y,'.r-')
hold off
hold on
fplot_nodes(NODE,ELEMENT,SIM);
hold off
%%
figure(2)
X = NODE.X + NODE.dx;
Y = NODE.Y + NODE.dy;
NODE = fxfem_StrainStressNODE(IP,ELEMENT,NODE,SIM,'SYY');
[~,h] = contourf(X(SIM.TOPOGRAPHY),...
                                    Y(SIM.TOPOGRAPHY),...
                                    NODE.SYY(SIM.TOPOGRAPHY),100);
hc = colorbar; xlabel(hc,'Stress in Y (MPa)');
set(h,'LineColor','flat');
axis([min(NODE.X)-10 max(NODE.X)+10 min(NODE.Y)-1 max(NODE.Y
        )+1]);
axis off
%%
figure(3)
```

```
NODE = fxfem_StrainStressNODE(IP,ELEMENT,NODE,SIM,'SVM');
VecPlot = NODE.SVM; VecPlot(NODE.TYPE == 1) = NaN;
[~,h] = contourf(X(SIM.TOPOGRAPHY),...
    Y(SIM.TOPOGRAPHY),...
    VecPlot(SIM.TOPOGRAPHY),50);
hc = colorbar; xlabel(hc,'Von Mises stress (MPa)');
set(h,'LineColor','flat');
axis([min(NODE.X)-10 max(NODE.X)+10 min(NODE.Y)-1 max(NODE.Y
        )+1]);
    axis off
    %%
figure(4)
[~,h] = contourf(X(SIM.TOPOGRAPHY),Y(SIM.TOPOGRAPHY),NODE.q(
        SIM.TOPOGRAPHY));
    set(h,'LineColor','flat');
    hold on
    fplot_generalmesh(SIM.CONMAT,X,Y,0);
    hold off
    hc = colorbar; xlabel(hc,'Weight factor for J-integral
        evaluation (q)');
%axis([min(NODE.X)-10 max(NODE.X)+10 min(NODE.Y)-1 max(NODE.
        Y) +1]);
axis off
```


Q6 element definition

```
function [Ni,dNido,dNidp,N5,N6,dN5do,dN5dp,dN6do,dN6dp] =
    q6elem(o,p)
%q6elem: Four node incompatible quadrilateral element.
%
% INPUTS:
% o: (n x 1) column vector with x-coordinates of IPs in
    REFERENCE space
% p: (n x 1) column vector with y-coordinates of IPs in
    REFERENCE space
%
% OUTPUT:
% Ni:(n x 4) [N1 N2 N3 N4]
% dNido : (n x 4) [dN1do dN2do dN3do dN4do]
% dNidp : (n x 4) [dN1dp dN2dp dN3dp dN4dp]
% N5 : ( }n=x 1
% N6 : ( }n=
% dN5do : (n x 1)
% dN5dp : (n x 1)
% dN6do : (n x 1)
% dN6dp : ( }n\textrm{x}=1
% Check inputs
if isvector(o) == 0 || isvector(p) == 0
    error('Inputs are not vectors');
else
    if size(o,1) == 1; 0 = o'; end
    if size(p,1) == 1; p = p'; end
end
if length(o) ~= length(p)
    error('Inputs have unequal length')
end
% Element shape functions
Ni}=0.25*[(1-o).*(1-p) (1+o).*(1-p) (1+o).*(1+p) (1-o).*(1
    p)];
```

```
N5 = (1-o. `2);
N6 = (1-p. - 2);
% Element shape function derivatives
dNido = 0.25*[-(1-p) (1-p) (1+p) - (1+p)];
dNidp = 0.25*[-(1-o) -(1+o) (1+o) (1-o)];
dN5do = -2*o;
dN5dp = 0*o;
dN6do = 0*p;
dN6dp = -2*p;
end
```


J integral calculation

```
function [NODE,G,theta,J1,J2] = Jintegrals(SIM,ELEMENT,NODE,
    CRACK,IP,J_area,r)
% Function computes J integrals 1 and 2 based on EDI and
    Energy release
% rate criterion for angle of propagation
switch J_area
        case('radii')
            q = (NODE.X - CRACK.X(end)).^2 + (NODE.Y - CRACK.Y(
            end)).`2 < r^2;
    case('periphery')
        q = double(NODE.TYPE==2);
        for n2 = 1 : r
            q_test = zeros(SIM.NODES,1);
            for n1 = 1 : SIM.ELEMENTS
                    if sum(q(ELEMENT(n1).NODES)) > 0
                q_test(ELEMENT(n1).NODES) = [1 [11 1 1 1];
                    end
            end
            q = q_test;
        end
    otherwise
        error('Undefined J integral criteria')
end
NODE.q = q;
J1 = 0;
J2 = 0;
for n1 = 1 : SIM.ELEMENTS
    qi = q(ELEMENT(n1).NODES);
    dqdX = IP(n1).dNidX * qi;
    dqdY = IP(n1).dNidY * qi;
```

 [Sxx,Syy,Sxy, Exx, Eyy, Exy,dqdx,dqdy] =
 fsub_localstressstrain(CRACK, IP, n1, dqdX, dqdY);
 \(U=\operatorname{sum}((S x x . * E x x+S y y . * E y y+S x y . * E x y * 2) . * I P(n 1) \cdot W) ;\)
 Q1 \(=\mathrm{U} . * \mathrm{dqdx}\);
 Q2 \(=(S x x . * \operatorname{Exx}+S x y . * \operatorname{Exy}) . * d q d x+(S x y . * \operatorname{Exx}+S y y . * E x y)\)
 .*dqdy;
 \(\mathrm{J} 1=\operatorname{sum}((\mathrm{Q} 1-\mathrm{Q} 2) . * \operatorname{IP}(\mathrm{n} 1) . W . * \operatorname{IP}(\mathrm{n} 1) . \operatorname{det} J)+\mathrm{J} 1\);
 Q3 \(=\mathrm{U} . * \mathrm{dqdy}\);
 Q4 \(=\) (Sxx.*Exy + Sxy.*Eyy).*dqdx + (Sxy.*Exy + Syy.*Eyy)
 .*dqdy ;
 \(\mathrm{J} 2=\operatorname{sum}((\mathrm{Q} 3-\mathrm{Q} 4) . * \operatorname{IP}(\mathrm{n} 1) \cdot \mathrm{W} . * \mathrm{IP}(\mathrm{n} 1) \cdot \operatorname{det} J)+\mathrm{J} 2 ;\)
 end
if abs(J1) < 1E-6; J1 = 0; elseif abs(J2) < 1E-6; J2 = 0;
end
theta $=\operatorname{atan} 2(a b s(J 2), a b s(J 1)) ;$
G $\quad=\operatorname{abs}(J 1 * \cos ($ theta) $+J 2 * \sin ($ theta));
if abs (theta) < 1E-6; theta $=0$; end
end
function [Sxx,Syy,Sxy,Exx,Eyy, Exy,dqdx,dqdy] =
fsub_localstressstrain(CRACK, IP, eval, dqdX, dqdY)
\% Transformation of stresses and strain from global
coordinate system to
\% local crack tip coordinate system:
\%
\% y Y (global)
$\%$ -
\% | / |
$\%$ | / |
$\%+----->x$ (crack) + - - X
\% Crack segment vector
$C v=$ [CRACK.X(end) - CRACK.X (end-1) , CRACK.Y(end) - CRACK.Y
(end-1) , 0];
\% Global X unit vector
$X_{V}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right] ;$
\% Angle between X axis and crack segment
CROSS $=$ cross (Xv, Cv) ;
$\mathrm{a}=\operatorname{atan} 2(\operatorname{CROSS}(3), \operatorname{dot}(X v, C v)) ;$
\% Rotation matrix
$R=[\cos (a)-\sin (a) ; \sin (a) \cos (a)] ;$
n_ips = length(IP(eval).EXX);
Exx $=$ zeros(n_ips,1);
Eyy = zeros(n_ips,1);
Exy = zeros (n_ips,1);

$E E=R^{\prime} *[I P(e v a l) . E X X(n 1) \quad I P(e v a l) . E X Y(n 1) ; \ldots$
$\operatorname{IP}(e v a l) . E X Y(n 1) \quad \operatorname{IP}(e v a l) . E Y Y(n 1)] * R ;$
$\operatorname{Exx}(\mathrm{n} 1)=\operatorname{EE}(1,1)$;
$\operatorname{Exy}(\mathrm{n} 1)=\operatorname{EE}(1,2)$;
Eyy $(\mathrm{n} 1)=\mathrm{EE}(2,2)$;
end
$S X X=I P(e v a l) \cdot S X X ;$
$S Y Y=I P(e v a l) . S Y Y ;$
$S X Y=I P(e v a l) . S X Y ;$
$S x x=(S X X+S Y Y) / 2+(S X X-S Y Y) / 2 * \cos (2 * a)+S X Y * \sin (2 * a) ;$
Syy $=(S X X+S Y Y) / 2-(S X X-S Y Y) / 2 * \cos (2 * a)-S X Y * \sin (2 * a) ;$
$S x y=S X Y * \cos (2 * a)-(S X X-S Y Y) / 2 * \sin (2 * a) ;$
$\operatorname{dqdx}=d q d X * \cos (a)+d q d Y * \sin (a) ;$
dqdy $=-d q d X * \sin (a)+d q d Y * \cos (a) ;$
end

Code for element split

```
function [X,Y,conmat] = rgrid(x,y,div)
%rgrid(x,y,div) creates a rectangular grid in x, y based on
    divisions in x
xvec = min(x):(max(x)-min(x))/div:max(x);
yvec = min(y):(max(y)-min(y))/div:max(y);
[xmat,ymat] = meshgrid(xvec,yvec);
X = reshape(xmat',[],1);
Y = reshape(ymat',[],1);
ne = div^2;
nn = (div+1)^2;
conmat = zeros(ne,4);
c1 = -(div+1);
c2 = 0;
c3 = 0;
for n1 = 1 : div
    c1 = c1 + (div+1);
    c2 = c2 + (div+1);
    for n2 = 1 : div
        c3 = c3 + 1;
        conmat (c3,1) = n2 + c1;
        conmat(c3,2) = n2 + c1 + 1;
        conmat (c3,3) = n2 + c2 + 1;
        conmat(c3,4) = n2 + c2;
    end
end
end
```


Inverse mapping of quadrilateral elements

```
function [xi,eta] = q4invmap(x,y,xq,yq)
%q4invmap: Perform inver mapping of integration points
%
% INPUTS:
% x: (4 x 1) column vector with x-coordinates
    quadrilateral nodes
% y: (4 x 1) column vector with y-coordinates
    quadrilateral nodes
% xq: ( n x 1) column vector with x-coordinates of IPs in
    REAL space
% yq: (n x 1) column vector with y-coordinates of IPs in
    REAL space
%
OUTPUT :
% xi: (n x 1) column vector with x-coordinates of IPs in
    REFERENCE space
% eta: (n x 1) column vector with y-coordinates of IPs in
    REFERENCE space
5 % Check inputs
if isvector (x) == 0 || isvector(y) == 0 || isvector(xq) == 0
    || isvector(yq) == 0
    error('Inputs are not vectors');
else
    if size(x,1) == 1; x = x'; end
    if size(y,1) == 1; y = y'; end
end
if length(x) ~= length(y) || length(xq) ~= length(yq)
    error('x and y inputs have unequal length')
end
% Inverse map (according to Chongyu Hua "An inverse
    transformation for
```

13
14

```
% quadrilateralisoparametric elements: Analysis and
    application" Finite
% Elements in Analysis and Design, volume 7 (2) 1990 pp.
        159-166
% http://www.sciencedirect.com/science/article/pii/0168874
    X90900072?via%3Dihub
xi = zeros(length(xq),1);
eta = zeros(length(xq),1);
for i = 1 : length(xq) % loop over query points
        d1 = 4*xq(i) - sum(x);
        d2 = 4*yq(i) - sum(y);
        XY = [x y];
        I = [1 [-1 1 1 -1;-1 1 1 1 -1;-1 -1 1 1];
        ABC = I*XY;
        a1 = ABC(1,1);
        a2 = ABC (1,2);
        b1 = ABC (2,1);
        b2 = ABC (2,2);
        c1 = ABC(3,1);
        c2 = ABC (3,2);
        ab = a1*b2 - a2*b1;
        ac = a1*c2 - a2*c1;
        if a1*a2*ab*ac ~= 0 || (a1 == 0 && a2*c1 ~= 0) || (a2 ==
        0 && a1*b2 ~= 0)
        ad = a1*d2 - a2*d1;
        ba = b1*a2 - b2*a1;
        cb = c1*b2 - c2*b1;
        da = d1*a2 - d2*a1;
        dc = d1*c2 - d2*c1;
        a = ab;
        b = (cb+da);
        c = dc;
        xi1 = (-b+sqrt(b^2-4*a*c))/(2*a);
        xi2 = (-b-sqrt(b^2-4*a*c))/(2*a);
        if xi1 >= -1 && xi1 <= 1
        xi(i) = xi1;
```


Legendre-Gauss quadrature in 2D

```
1 function [X,Y,WW] = gq2d()
% 1D integration point coordinates
x = [-0.577350269189626;0.577350269189626];
w = [1;1];
% Converting 1D coordinates into 2D space
X = repmat(x,2,1);
Y = reshape(repmat(x',2,1),[],1);
Wx = repmat(w,2,1);
Wy = reshape(repmat(w',2,1), [],1);
WW = Wx .* Wy;
end
```


Algorithm for derivative conversion

```
function [dfdo,dfdp] = ffem_dervconvert(mat,dfdX,dfdY)
%ffem_dervconvert maps derivatives functions to REFERENCE or
        REAL domain.
% ffem_dervconvert(matJ,dfdX,dfdY,ni,nn) convert the
        derivatives of the
% inputed functions to the REFERENCE or REAL domain. If
        the Jacobian
% matrix is provided, the derivatives inputed must be with
        respect to the
% REAL domain. If the inverse of the Jacobain is inputed,
        the inputed
% derivatives must be with respect to the REFERENCE domain
% J : (4,4,ni) Jacobian matrix or Jacobian inverse
% dfdX : (ni,4,l) function x-derivative in REAL/
        REFERENCE domain
% dfdY : (ni,4,l) function y-derivative in REAL/
        REFERENCE domain
% Note:
% l : number of functions
% ni : number of integration points
% nn : scalar, number of nodes
%
ni = size(dfdX,1);
nn = size(dfdX,2);
dfdo = zeros(size(dfdX));
dfdp = zeros(size(dfdY));
for n1 = 1 : size(dfdX,3) % Loop over functions
    for n2 = 1 : ni % Loop over integration points
    MAT = mat(:,:,n2);
    for n3 = 1 : nn % Loop over nodes
        VEC = [dfdX(n2,n3,n1);dfdY(n2,n3,n1)
            ];
        LHS = MAT*VEC;
        dfdo(n2,n3,n1) = LHS(1);
```

```
                dfdp(n2,n3,n1) = LHS(2);
            end
        end
end
end
```


Jacobian

1 function [varargout] = ffem_jacobian(X,Y,dNido,dNidp, request)
\%ffem_jacobian Computes the Jacobian values in 2D space
\% ffem_jacobian(X,Y,dNido,dNidp,request) is capable of computing the
\% Jacobian matrix, its inverse and the determinant of both matrises.
\%
\% INPUTS:
\% X : (n x 1) vector with x -coordinates of the element nodes
\% \quad : (n x 1) vector with y-coordinates of the element nodes
\% dNido : (n x q) matrix of shape function derivatives with respect to
\% the abscissa coordinate (xi) coordinate of an integration
\% point in the REFERENCE space
dNidp : (n x q) matrix of shape function derivatives with respect to
the ordinate coordinate (eta) coordinate of an integration
point in the REFERENCE space
request : argument to determine the output of the function
16%
(1) = Jacobian matrix.
(2) = Jacobian matrix determinant.
(3) = Jacobian matrix and its determinant.
(4) = Jacobian inverse matrix.
(5) = Jacobian inverse matrix determinant.
(6) = Jacobian inverse matrix and its determinant.
$\% \quad(7)=$ Both Jacobian and inverse matrix and their determinants.

```
% OUTPUT:
% Variable output function; see 'request' input.
% PROCESS: Input check
if request < 1 || request > 7 || ceil(request) ~= floor(
        request)
            error('ffem_jacobian : unsupported ''request'' value')
end
test(1) = sum(size(X) ~= size(Y));
test(2) = isvector(X);
test(3) = isvector(Y);
if sum(test) > 2
    error('Error in input coordinates.')
end
if size(X,1) == 1
    X = X';
end
if size(Y,1) == 1
    Y = Y';
end
no_ip = size( dNido,1 );
if request == 1
    J = fsub_matrix( X,Y,dNido,dNidp,no_ip );
elseif request == 2 || request == 3
    J = fsub_matrix( X,Y,dNido,dNidp,no_ip );
    detJ = fsub_determinant(J, no_ip);
elseif request == 4
    J = fsub_matrix( X,Y,dNido,dNidp,no_ip );
    detJ = fsub_determinant(J, no_ip);
    invJ = fsub_inverse( J, detJ, no_ip );
```

```
elseif request >= 5
    J = fsub_matrix( X,Y,dNido,dNidp,no_ip );
    detJ = fsub_determinant(J, no_ip);
    invJ = fsub_inverse( J, detJ, no_ip );
    detinvJ = fsub_determinant(invJ, no_ip);
end
switch request
    case(1) % Returns only the Jacobian matrix
        varargout{1}=J;
    case(2) % Returns only the Jacobian determinant
        varargout{1} = detJ;
    case(3) % Returns the Jacobian matrix and its
        determinant
        varargout{1}=J;
            varargout{2} = detJ;
    case(4) % Returns only the Jacobian inverse
        varargout{1} = invJ;
    case(5) % Returns the Jacobian inverse matrix
        determinant
            varargout{1}= detinvJ;
    case(6) % Returns both the Jacobian inverse and its
        determinant
            varargout{1} = invJ;
            varargout{2} = detinvJ;
    case(7) % Returns all values
            varargout {1} = J;
            varargout {2} = detJ;
```

```
varargout{3} = invJ;
varargout{4}= detinvJ;
end
end
function [ J ] = fsub_matrix( X,Y,dNido,dNidp,no_ip )
J = zeros( 2,2,no_ip);
for n1 = 1 : no_ip
% STEP: Calculate partial derivatives
    J11 = dNido(n1,:) * X; % d(x)/d(xi)
    J12 = dNido(n1,:) * Y; % d(x)/d(eta)
    J21 = dNidp(n1,:) * X; % d(y)/d(xi)
    J22 = dNidp(n1,:) * Y; % d(y)/d(eta)
% STEP: Generating Jacobian matrix
    J(:,:,n1) = [J11 J12
    J21 J22];
end
end
function [ invJ ] = fsub_inverse( J, detJ, no_ip )
invJ = zeros( 2, 2, no_ip );
for n1 = 1 : no_ip
% PROCESS: Caculating Jacobian cofactors
    cof_11=J (2, 2, n1);
    cof_12=-J (1, 2, n1);
    cof_21=-J (2,1, n1);
    cof_22=J(1,1,n1);
% PROCESS: Caculating the Jacobian Adjoint matrix
    AdjJ = [cof_11 cof_12
```

```
    cof_21 cof_22];
% PROCESS: Calculating the Jacobian inverse matrix
    invJ(:,:,n1) = AdjJ / detJ(n1);
end
end
function [ det ] = fsub_determinant( Mat, no_ip )
det = zeros( no_ip, 1);
for n1 = 1 : no_ip
    Mat11 = Mat (1,1,n1);
    Mat12 = Mat (1,2,n1);
    Mat21= Mat (2,1,n1);
    Mat22 = Mat (2,2,n1);
    det (n1) = Mat11 * Mat22 - Mat12 * Mat21;
end
end
```


Polar mapping of integration points

```
function [ radii,angle,alpha ] = fgeo_polarmap( xq,yq,xv,yv
    )
%fgeo_polarmap Computes the polar coordinate.
% fgeo_polarmap( xq,yq,xv,yv ) computes the polar
    coordinates of a
% given set of query points (xq,yq) for a polar radii
    direction vector in
% (xv,yv) were xv(end) and yv(end) describe the polar
        space origin.
    %
% INPUTS:
% xq : (q x 1) vector of query point x-coordinates
% yq : (q x 1) vector of query point y-coordinates
% xv : (2 x 1) vector with x-coordinates of radial
        dimension vector of
% the polar space
            yv : (2 x 1) vector with y-coordinates of radial
        dimension vector of
            the polar space
%
% OUTPUT:
% angle : (q x 1) vector with angle coordinates of the
        query points
% radii : (q x 1) vector with radii coordinates of the
        query points
% alpha : (1) scalar with the oriented angle of rotation
        between the
% radial dimension vector and a horizontal unit
    vector.
20
% STEP: Declaring radii function
r = @(x,y,xt,yt) sqrt((x-xt).^2+(y-yt).^2);
% STEP: Polar coordinate vector
cv = [xv(end) - xv(end-1)
    yv(end) - yv(end-1)];
```

27

```
% STEP: Calculate angle between a regural Cartesian
        coordinate system and
% vector of radial dimension in the polar space
av = [ 1 ; 0 ]; % x-coordinate unit vector
dot_product = cv' * av;
norm_product = norm( cv ) * norm( av );
cross_product = det( [cv av]' ); % Simplyfied to yield the z
        component
orientation = sign( cross_product );
alpha = acos( dot_product/norm_product ) *
    orientation;
% STEP: Declaring polar space origin
xt = xv(end);
yt = yv(end);
% STEP: Computing polar coordinates
radii = r( xq,yq,xt,yt );
angle = wrapTo2Pi( atan2( yq-yt,xq-xt ) + alpha - pi );
%angle = atan2( yq-yt,xq-xt ) + alpha;
%angle(angle<0) = angle(angle<0) + 2*pi;
%angle = wrapTo2Pi( atan2( yq-yt,xq-xt ) + alpha - pi ) + pi
    ; % Use this
%angle = atan2( yq-yt,xq-xt ) + alpha;
end
```


Level set definition

```
function [ Dn,Dt ] = fgeo_signed( xq,yq,xc,yc )
%fxfem_signed: Calculates the signed distance between a
point and a line.
% fgeo_signed(xq,yq,xc,yc) defines the signed distance
        function between
% a query point and a line. Is based on a projection of
        the point to the
% normal vector of the line defined 90 degrees
        counterclockwise.
%
% INPUTS:
% xq : ( n x 1) vector of x-coordinates of the query points
% yq : (n x 1) vector of y-coordinates of the query points
% xc : (2 x 1) vector of x-coordinates of the segment end
        points
% yc : (2 x 1) vector of y-coordinates of the segment end
        points
%
% OUTPUT:
% Dn : (n x 1) vector of the normal distances between the
        query points
% and the segment
        Dt : (n x 1) vector of the tangential distances between
        the query
% points and the segment
%
20 % LOCAL NOTES:
21 % Xo : Query points
2 % X : Segment edges
23 % xn : Number of query points
24 % Dn : Normal signed distance
25 % Dt : Tangential signed distance
26 % Nn : Unit normal vector
27 % Nt : Unit tangential vector
28 % Px : Projection points
```

19

```
% Vx : Projection vectors
% PROCESS: Storing values in vectors
n_points = length(xq);
Xo = [ xq yq ];
X = [ xc(1) yc(1) ; xc(2) yc(2) ];
% PROCESS: Computing normal and tangential crack vectors
R = X(2,:) - X(1,:);
Rn = [-R(2) R(1)]; % Normal vector
Nn = Rn/norm(Rn); % Unit normal vector
Nt = R/norm(R); % Unit tangent vector
% PROCESS: Computing normal and tangential distances
Dn = zeros(n_points,1);
Dt = zeros(n_points,1);
Px = zeros(n_points,2,2);
Vx = zeros(n_points,2,2);
for n1 = 1 : n_points
    Rx = Xo(n1,:) - X(end,:);
    Dn(n1) = Rx*Nn'; % Normal distance
    Dt(n1) = Rx*Nt'; % Tangential distance
    Vx(n1,:,1) = Dn(n1)*Nn;
    Vx(n1,:,2) = Dt(n1)*Nt;
    Px(n1,:,1) = Xo(n1,:) - Vx(n1,:,1);
    Px(n1,:,2) = Xo(n1,:) - Vx(n1,:,2);
end
end
```


Script for plotting node enrichments

```
function [h0,h1,h2,h3] = fplot_nodes(NODE,ELEMENT,SIM)
```

\%fplot_nodes: Plots the domain nodes.
\% The function classify and store the node coordinates for
plotting
\% purposes.
\% INPUTS:
\% NODE : Node structure
\% OUTPUT:
\% h0 : Plot handle for Standard nodes
\% h1 : Plot handle for Heavyside nodes
\% h2 : Plot handle for Near-Tip nodes
\% NOTES:
\% - Node flag standard:
$\% \quad *(0)=$ Standard node
$\% \quad *(1)=$ Heavyside node
$\% \quad *(2)=$ Near-tip node
\% * (3) = Bimaterial node
\% Plot nodes
blend_n = unique(SIM.CONMAT(sum(NODE.TYPE(SIM.CONMAT)==2,2)
$<4 \& \operatorname{sum}($ NODE.TYPE (SIM.CONMAT) $==2,2)>0,:)$);
hold on
$\% h 0=p l o t\left(N O D E \cdot X(N O D E \cdot T Y P E==0), N O D E \cdot Y(N O D E \cdot T Y P E==0),{ }^{\prime} \cdot \mathrm{k}^{\prime}, \quad\right.$,
LineWidth', 1);
$h 1=p l o t(N O D E \cdot X(N O D E . T Y P E==1), N O D E . Y(N O D E . T Y P E==1)$, 'ob','
LineWidth',1,'MarkerFaceColor', 'b','MarkerSize', 8);
$h 2=\operatorname{plot}(N O D E . X(N O D E . T Y P E==2), N O D E . Y(N O D E . T Y P E==2), ' s b ', '$
LineWidth',1,'MarkerFaceColor', 'b','MarkerSize', 8) ;
h3 = plot (NODE.X(blend_n), NODE.Y(blend_n), 'xr', 'LineWidth'
,1,'MarkerFaceColor','none','MarkerSize', 8) ;
hold off
end

Script for plotting a rectangular mesh

```
function [ h ] = fplot_generalmesh( ConMat,X,Y,shadow )
%fplot_mesh: Plot the given mesh
% Creating coordinate matrix
Mesh = [X Y];
% Plotting the mesh grid
h = patch('Faces',ConMat,'Vertices',Mesh);
if shadow == 1
    set(h,'FaceColor',[[0.9 0.9 0.9])
else
    set(h,'FaceColor','None','LineWidth',0.1,'EdgeColor', [1
        1 1]*0.2,'EdgeAlpha',0.2)
end
end
```


Script to calculate stress and strain at integration points

```
function [IP]=fxfem_StrainStressIP(SIM,IP,ELEMENT,MATERIAL)
%fxfem_StrainStressIP calculates the stress and strain at
    the integration
%point.
for n1 = 1 : SIM.ELEMENTS % Loop over elements
    n_ip = size(IP(n1).Ni,1);
    exx = zeros(n_ip,1);
    eyy = zeros(n_ip,1);
    ezz = zeros(n_ip,1);
    exy = zeros(n_ip,1);
    sxx = zeros(n_ip,1);
    syy = zeros(n_ip,1);
    szz = zeros(n_ip,1);
    sxy = zeros(n_ip,1);
    svm = zeros(n_ip,1);
    D = MATERIAL(ELEMENT(n1).MATERIAL).D;
    for n2 = 1 : n_ip % Loop over integration points
        % DoFs vectors
        u = SIM.d(ELEMENT(n1).DOF.U);
        a = SIM.d(ELEMENT(n1).DOF.A);
        b = SIM.d(ELEMENT(n1).DOF.B);
        % Strain/displacement matrices
        Bu = fxfem_Bmats(IP(n1).dNidX(n2,:) ,IP(n1).dNidY(
        n2,:) ,'standard');
        Ba = fxfem_Bmats(IP(n1).dM1dX(n2,:) ,IP(n1).dM1dY(
            n2,:) ,'heaviside');
        Bb = fxfem_Bmats(IP(n1).dM2dX(n2,:,:),IP(n1).dM2dY(
            n2,:,:),'neartip');
        % Strain and stress calculation
```

```
e = Bu*u + Ba*a + Bb*b;
s = D*e;
    % Plane strain/plane stress
    exx(n2) = e(1);
    eyy(n2) = e(2);
    exy(n2) = e(3);
    sxx(n2) = s(1);
    syy(n2) = s(2);
    sxy(n2) = s(3);
    switch MATERIAL(ELEMENT(n1).MATERIAL).TYPE
        case('isotropic')
        E = MATERIAL(ELEMENT(n1).MATERIAL).E;
        v = MATERIAL(ELEMENT(n1).MATERIAL).V;
        switch SIM.LOADING
            case('plane stress')
                szz(n2) = 0;
                ezz(n2) = -v/E*(sxx(n2) + syy(n2));
            case('plane strain')
                szz(n2) = v*(sxx(n2) + syy(n2));
                ezz(n2) = 0;
        end
        case('orthotropic')
        Exx = MATERIAL(ELEMENT(n1).MATERIAL).E1;
        Eyy = MATERIAL(ELEMENT(n1).MATERIAL).E2;
        Ezz = MATERIAL(ELEMENT(n1).MATERIAL).E3;
        vZx = MATERIAL(ELEMENT(n1).MATERIAL).V31;
        vzy = MATERIAL(ELEMENT(n1).MATERIAL).V32;
        switch SIM.LOADING
            case('plane stress')
            szz(n2) = 0;
            ezz(n2) = - (vzx*sxx(n2)/Exx + vzy*
                syy(n2)/Eyy) ;
            case('plane strain')
                szz(n2) = Ezz*(vzx*sxx(n2)/Exx + vzy
                *syy(n2)/Eyy) ;
        ezz(n2) = 0;
```

```
            end
```

 end
 end
 end
 svm(n2) = sqrt(0.5*((sxx(n2)-syy(n2))^2+(syy(n2)-szz
 svm(n2) = sqrt(0.5*((sxx(n2)-syy(n2))^2+(syy(n2)-szz
 (n2))^2+(szz(n2)-sxx(n2))^2)+3*sxy(n2)^2);
 (n2))^2+(szz(n2)-sxx(n2))^2)+3*sxy(n2)^2);
 end
 IP(n1).EXX = exx;
 IP(n1).EYY = eyy;
 IP(n1).EZZ = ezz;
 IP(n1).EXY = exy;
 IP(n1).SXX = sxx;
 IP(n1).SYY = syy;
 IP(n1).SZZ = szz;
 IP(n1).SXY = sxy;
 IP(n1).SVM = svm;
 clear exx eyy ezz exy sxx syy szz sxy svm
 end
end

```

\section*{Script for meshing}
```

function [xn,yn, conmat] = mesher(x,y)
% Function creates conectivity matrix and nodal vectors
x = unique(x);
y = unique(y);
xn = repmat(}\mp@subsup{x}{}{\prime},\mp@code{length(y),1);
yn = reshape(repmat(y,length(x),1),[],1);
% Connectivity matrix
nn_x = length(x);
nn_y = length(y);
ne_x = nn_x - 1;
ne_y = nn_y - 1;
c1 = -nn_x;
c2 = 0;
i = 0;
nn = nn_x*nn_y; % number of nodes
ne = ne_x*ne_y; % number of elements
conmat = zeros(ne,4);
for n1 = 1 : ne_y
c1 = c1 + nn_x;
c2 = c2 + nn_x;
for n2 = 1 : ne_x
i = i + 1;
a = n2 + c1;
b = n2 + c1 + 1;
c = n2 + c2 + 1;
d = n2 + c2;
conmat(i,:) = [a b c d];
end
end

```

\section*{Script for enrichment assignment of nodes and elements}
```

function [NODE,ELEMENT] = fxfem_enrich(SIM,NODE,ELEMENT,
CRACK,varargin)
%fxfem_enrich Node/Element enrichment assignment
% fxfem_enrich(SIM,NODE,ELEMENT,CRACK) assigns the
% element and node ID's as defined in SIM for XFEM
processing.
%
% INPUTS:
% SIM.ELEMENTS(i)
% NODE.ID(i)
% NODE.TYPE(i)
% NODE.X(i)
% NODE.Y(i)
% NODE.PSI(i)
% NODE.PHI(i)
% ELEMENT(i).NODES(i)
% ELEMENT(i).TYPE
CRACK.X(i)
CRACK.Y(i)
OUTPUT:
NODE.TYPE(i)
ELEMENT(i).TYPE
%
% NOTES:
% - Function limited to 4 node quadrilateral elements.
if strcmp(varargin{1},'radius') == 0 \&\& strcmp(varargin{1},'
periphery') == 0
error('Undefined condition.')
end
if strcmp(varargin{1},'radius') == 1 \&\& length(varargin) ==
1
error('Radius factor not specified.')

```
```

elseif strcmp(varargin{1},'radius') == 1 \&\& length(varargin)
== 2
rf = varargin{2};
else
rf = 1;
end
for n1 = 1 : SIM.ELEMENTS
x_e = NODE.X(ELEMENT(n1).NODES);
y_e = NODE.Y(ELEMENT(n1).NODES);
psi_e = NODE.PSI(ELEMENT(n1).NODES);
% normal level set
phi_e = NODE.PHI(ELEMENT(n1).NODES);
% tangential level set
x_vec = [x_e(2:end) ; x_e(1)];
y_vec = [y_e(2:end) ; y_e(1)];
% Test for crack influenced elements
if min(psi_e)*max(psi_e) <= 0 \&\& max(phi_e) < 0
% definite crack splited
elements
NODE.TYPE(ELEMENT(n1).NODES) = 1;
elseif min(psi_e)*max(psi_e) <= 0 \&\& min(phi_e)*max(
phi_e) <= 0 % possible crack tip elements
IN = inpolygon(CRACK.X(end),CRACK.Y(end), x_vec,y_vec
);
if min(IN)*max(IN) == 1
% crack
tip inside element
NODE.TYPE(ELEMENT(n1).NODES) = 2;
area = polyarea([x_e ; x_e(1)],[y_e ; y_e(1)]);
r = rf*sqrt(area); % Characteristic length
elseif isempty(polyxpoly(CRACK.X,CRACK.Y,x_vec,y_vec
)) ~= 0 % crack passes trough element
NODE.TYPE(ELEMENT(n1).NODES) = 1;
end
end

```
```

end
switch varargin{1}
case('radius')
% *** Find nodes within characteristic radius
within = (NODE.X - CRACK.X(end)).^2 + (NODE.Y - CRACK.Y(
end)).^2 < r^2;
if sum(within) ~= 0
NODE.TYPE(within) = 2;
end
for n1 = 1 : SIM.ELEMENTS
if sum(ismember(ELEMENT(n1).NODES,NODE.ID(within)))
> 0
NODE.TYPE(ELEMENT(n1).NODES) = 2;
end
end
% ***
case('periphery')
for n1 = 1 : varargin{2} % loop over pheripheries
target_nodes = NODE.ID(NODE.TYPE == 2);
for n2 = 1 : SIM.ELEMENTS
test_nodes = ELEMENT(n2).NODES;
if sum(ismember(test_nodes,target_nodes)) >
0
for n3 = 1 : 4
if NODE.TYPE(ELEMENT(n2).NODES(n3))
~= 1
NODE.TYPE(ELEMENT(n2).NODES(n3))
= 2;
end
end
end
end
end
case('none')
otherwise
error('Undefined definition for ''type''')
end

```
```

92
% Identifiying elements. The following convention for
element
% identification is used:
% Standard element = 0
% Heaviside element = 1
% Near-tip element = 2
% Blending element = 3
for n1 = 1 : SIM.ELEMENTS
n_types = NODE.TYPE(ELEMENT(n1).NODES);
if sum(ismember(n_types,0)) == 4 % Standard
element
ELEMENT(n1).TYPE = 0;
elseif sum(ismember(n_types,1)) == 4 % Heaviside
element
ELEMENT(n1).TYPE = 1;
elseif sum(ismember(n_types,2)) == 4 % Near-tip
element
ELEMENT(n1).TYPE = 2;
elseif sum(ismember(n_types,2)) >= 1 || sum(ismember(
n_types,2)) < 4 % Blending element (on near-tips)
ELEMENT(n1).TYPE = 3;
end
end
end

```

\section*{Script for element degrees of freedom assignment}
```

function [dof,dof_x,dof_y] = fxfem_dofs(nodes,no_nodes,
request)
%fxfem_dofs Computes the degrees of freedom for the given
node indexes
% fxfem_dofs(nodes, no_nodes,request) handles the Degrees
of Freedom
% indexes given the node indexes given in "nodes" row
vector.
%
% INPUTS:
% nodes : (1 x n) vector with nodal indexes
% no_nodes : Total number of nodes in the simulation
% request : Character input to request type of degree of
freedom
% > 'standard'
> 'heaviside'
> 'neartip'
%
% OUTPUT:
% dof : (1 x q) vector with the degrees of freedom in
the element
% dof_x : (1 x p) vector with x-coordinate degrees of
freedom requested
% dof_y : (1 x p) vector with y-coordinate degrees of
freedom requested
% Test inputs
if isvector(nodes) == 0
error('fxfem_dofs: input in "nodes" is not a vector');
elseif size(nodes,2) == 1
nodes = nodes';
end
switch request

```
18
19
20
```

 case('standard')
 [dof,dof_x,dof_y] = fsub_standard(nodes);
 case('heaviside')
 [dof,dof_x,dof_y] = fsub_heaviside(nodes,no_nodes);
 case('neartip')
 [dof,dof_x,dof_y] = fsub_neartip(nodes,no_nodes);
 %dof_x = dof_x(:)';
 %dof_y = dof_y(:)';
 %dof = dof(:)';
 case('all')
 [u,u_x,u_y] = fsub_standard(nodes);
 [a,a_x,a_y] = fsub_heaviside(nodes,no_nodes);
 [b,b_x,b_y] = fsub_neartip(nodes,no_nodes);
 dof_x = [u_x a_x b_x(:)'];
 dof_y = [u_y a_y b_y(:)'];
 dof = [u a b(:)'];
 otherwise
 error('fxfem_dofs : unknown request type')
 end
end
function [u,u_x,u_y] = fsub_standard(nodes)
% Compute standard degrees of freedom
u_x = 2*nodes - 1; % ux
u_y = 2*nodes; % uy
u = reshape([u_x ; u_y] , 1 , []);
end
function [a,a_x,a_y] = fsub_heaviside(nodes,no_nodes)
% Compute Heaviside degrees of freedom

```
```

a_x = 2*nodes + 2*no_nodes - 1; % ax
a_y = 2*nodes + 2*no_nodes; % ay
a = reshape([a_x ; a_y] , 1 , []);
end
function [b,b_x,b_y] = fsub_neartip(nodes,no_nodes)
% Compute near tip enrichment degrees of freedom
b1x = 4*no_nodes + 2*nodes - 1;
b1y = 4*no_nodes + 2*nodes;
b1 = reshape([b1x ; b1y] , 1 , []);
b2x = 6*no_nodes + 2*nodes - 1;
b2y = 6*no_nodes + 2*nodes;
b2 = reshape([b2x ; b2y] , 1 , []);
b3x = 8*no_nodes + 2*nodes - 1;
b3y = 8*no_nodes + 2*nodes;
b3 = reshape([b3x ; b3y] , 1 , []);
b4x = 10*no_nodes + 2*nodes - 1;
b4y = 10*no_nodes + 2*nodes;
b4 = reshape([b4x ; b4y] , 1 , []);
b5x = 12*no_nodes + 2*nodes - 1;
b5y = 12*no_nodes + 2*nodes;
b5 = reshape([b5x ; b5y] , 1 , []);
b6x = 14*no_nodes + 2*nodes - 1;
b6y = 14*no_nodes + 2*nodes;
b6 = reshape([b6x ; b6y] , 1 , []);
b_x = [b1x b2x b3x b4x b5x b6x];
b_y = [b1y b2y b3y b4y b5y b6y];
b = [b1 b2 b3 b4 b5 b6];
end

```

\section*{Script for element stiffness integration}
```

function [ELEMENT,IP] = stiffness(SIM,ELEMENT,NODE,CRACK,
MATERIAL)
%stiffness Performs element integrations.
% INPUTS:
% ELEM : current element structure
% IPOINT : integration point structure
% D : material matrix
% etype : element type
% OUTPUT:
% ELEM : current element structure
% NOTES:
% - The structure IPOINT is changed at enriched element
subroutine output
% - Only 'quad' elements supported.
%
% Numbering convention supported
%
% Quadrilateral
% (4) (3)
% 0 - - - o y
lll
% 0 - - - 0 + - > x
% (1)
(2)
% Extracting crack quantities
Xc = CRACK.X([1 end]);
Yc = CRACK.Y([1 end]);
Cv = [CRACK.X(end) - CRACK.X(end-1) ; CRACK.Y(end) - CRACK.
Y(end-1)];
IP(SIM.ELEMENTS) = struct('X',[],'Y',[]);
for n1 = 1 : SIM.ELEMENTS % Loops over elements
if ELEMENT(n1).TYPE == 0 % Standard element

```
```

 [o,p,ww] = gq2d();
 else
[o,p,ww] = subcells(NODE.X(SIM.CONMAT(n1,:)) ,...
NODE.Y(SIM.CONMAT(n1,:)),SIM.SUBCELLS);
end
[Ni,dNido,dNidp,~,~,dN5do,dN5dp,dN6do,dN6dp] = q6elem(o,
p);
[~,detJ,invJ] = ffem_jacobian(NODE.X(SIM.CONMAT(n1,:)
),...
NODE.Y(SIM.CONMAT(n1,:)),dNido,dNidp
,7);
[dNidX,dNidY] = ffem_dervconvert(invJ,dNido,dNidp);
[dN5dX,dN5dY] = ffem_dervconvert(invJ,dN5do,dN5dp);
[dN6dX,dN6dY] = ffem_dervconvert(invJ,dN6do,dN6dp);
xip = Ni*NODE.X(SIM.CONMAT(n1,:));
yip = Ni*NODE.Y(SIM.CONMAT(n1,:));
[rip,oip] = fgeo_polarmap(xip,yip,Xc,Yc);
D = MATERIAL(ELEMENT(n1).MATERIAL).D;
% Computing Heaviside enrichment functions
[~,dM1dX,dM1dY] = fxfem_heaviside('signed','all',...
NODE.PSI(SIM.CONMAT(n1,:)),Ni,dNidX,
dNidY);
if ELEMENT(n1).TYPE == 0 || ELEMENT(n1).TYPE == 1
dM2dX = zeros(size(Ni,1),length(SIM.CONMAT(n1,:)),6)
;
dM2dY = zeros(size(Ni,1),length(SIM.CONMAT(n1,:)),6)
;
elseif ELEMENT(n1).TYPE == 2 || ELEMENT(n1).TYPE == 3
nt_vec = double(NODE.TYPE(ELEMENT(n1).NODES) == 2);
[rn,on]= fgeo_polarmap(NODE.X(SIM.CONMAT(n1,:)),···
NODE.Y(SIM.CONMAT(n1,:)),...
CRACK.X([1 end]),CRACK.Y([1 end]));
[~,dM2dX,dM2dY] = fxfem_neartip(Ni,dNidX,dNidY,...
Cv,on,rn,oip,rip,nt_vec);
end

```
\% Element integration
\(\mathrm{K}_{-} \mathrm{CC}=\mathrm{zeros}(2 * 4+2 * 4+2 * 4 * 6,2 * 4+2 * 4+2 * 4 * 6)\);
\(K_{\_} I C=z e r o s(4,2 * 4+2 * 4+2 * 4 * 6)\);
\(K_{\text {_ CI }}=\) zeros \((2 * 4+2 * 4+2 * 4 * 6,4)\);
K_II = zeros (4,4);
B_Ii \(=\) zeros \((3,4)\);
for n2 = 1 : size(Ni,1) \% Loop over integration points
B_I \(=[d N 5 d X(n 2) \quad 0 \quad d N 6 d X(n 2) \quad 0\)
\(0 \quad d N 5 d Y(n 2) \quad 0 \quad d N 6 d Y(n 2)\)
dN5dY(n2) dN5dX(n2) dN6dY(n2) dN6dX(n2)];
B_Ii = B_Ii + ww (n2) * B_I * detJ (n2) ;
end
V = ww' * detJ * SIM.THICKNESS;
B_IC = -B_Ii /V;
for \(n 2=1\) : size(Ni,1) \% Loop over integration points
\(\mathrm{Bu}=\mathrm{fxfem}\) Bmats(dNidX(n2,:) ,dNidY(n2,:),'
standard');
\(\mathrm{Ba}=\mathrm{fxfem}\) Bmats(dM1dX(n2,:) ,dM1dY(n2,:),' heaviside');
\(\mathrm{Bb}=\mathrm{fxfem}\) _Bmats(dM2dX(n2,:,:), dM2dY(n2,:,:),' neartip');
\(B_{-} I=[d N 5 d X(n 2) \quad 0 \quad d N 6 d X(n 2) \quad 0\)
\(0 \quad\) dN5dY(n2) \(0 \quad d N 6 d Y(n 2)\)
dN5dY(n2) dN5dX(n2) dN6dY(n2) dN6dX(n2)];
\(B_{\_} C=\left[\begin{array}{lll}\mathrm{Bu} & \mathrm{Ba} & \mathrm{Bb}\end{array}\right] ;\)
B_Ibar \(=B_{-} I+B \_I C ;\)
\(K_{-} C C=K_{-} C C+w w(n 2) * B_{-} C\) * \(\quad * B_{-} C \quad * \operatorname{detJ}\) (n2) ;
if strcmp(SIM.ELEMENT_TYPE,'Q6') K_CI \(=K_{-} C I+w w(n 2) * B_{-} C \quad * D * B \_I b a r *\) \(\operatorname{det} J(n 2) ;\)
\[
K_{-} I C=K_{-} I C+w w(n 2) * B_{-} I b a r, * D * B_{-} C \quad *
\] \(\operatorname{detJ}(\mathrm{n} 2)\); \(K_{-} I I=K_{-} I I+w w(n 2) * B_{-} I b a r\) * \(D * B_{-} I b a r *\) \(\operatorname{det} J(n 2) ;\)
else
```

 K_IC = zeros (4,48);
 \(K_{\text {_ }} C I=z e r o s(48,4)\);
 K_II = zeros (4,4);
 end
 end
 if strcmp(SIM.ELEMENT_TYPE,'Q6')
 ELEMENT (n1).STIFFNESS \(=\left(K_{_} C C-K _C I * i n v\left(K _I I\right) * K _I C\right)\)
 * SIM.THICKNESS;
 else
 ELEMENT(n1).STIFFNESS = K_CC * SIM.THICKNESS;
 end
 \% Storing values
 \(\operatorname{IP}(n 1) . X \quad=x i p ;\)
 \(\operatorname{IP}(n 1) . Y \quad=y i p ;\)
 IP(n1).W \(W=W w ;\)
 \(\operatorname{IP}(\mathrm{n} 1) . \mathrm{R} \quad=\mathrm{rip}\);
 \(\operatorname{IP}(\mathrm{n} 1) .0 \quad=\) oip;
 IP(n1).Ni = Ni;
 IP(n1). \(d N i d X=d N i d X ;\)
 IP(n1).dNidY = dNidY;
 \(\operatorname{IP}(n 1) \cdot d M 1 d X=d M 1 d X ;\)
 IP(n1).dM1dY = dM1dY;
 \(\operatorname{IP}(n 1) \cdot d M 2 d X=d M 2 d X ;\)
 IP(n1).dM2dY = dM2dY;
 IP(n1).detJ = detJ;
 end
end

```

\section*{Heaviside enrichment definition}

1 function [varargout] = fxfem_heaviside(type, request, Psi, varargin)
\%fxfem_heaviside: Heaviside enrichment definition.
\% fxfem_heaviside(dNidX,dNidY,Ni,Psi,type) computes the Heaviside shape
\% functions and their derivatives.
\%
\% INPUTS: (variable input)
\% (1) type : defines the Heaviside definition to be used:
\% > 'standard' for standard definition of the Heaviside
\% funtion, it has a value of 0 below and at the crack and
level set function
2 \% so that the Heaviside function can have values of -1, 0
13 \%
\%
(2) request : defines the requested outputs.
> 'function' request to return the M1
enrichment
6 \%
\(17 \%\)
> 'derivatives' request to return the derivatives of the

M1 function (dM1dX \& dM1dY) at
integration points
(dM1idX \& dM1idY)
> 'all' request to return the enrichment
function M1 and
\(21 \%\)
its derivatives of the.
\(22 \%\)
(3) Psi : (q x 1) matrix of nodal Psi level set values.
\(23 \%\)
(4) Ni
: ( \(n \mathrm{x}\) q) matrix of shape function values.

25
26
```

% (6) dNidY : (n x q) matrix of shape function

```
    derivatives with respect
\(\%\) to y-coordinate.
\% OUTPUT: (variable output)
\(\%\) (1) Mi ( \(n\) x q) matrix of Heaviside enriched shape
        function values
\% (2) dMidX : (n x q) matrix of Heaviside enriched shape
        function
\% derivatives with respect to the \(x\)-coordinate
    (3) dMidY : ( \(n\) x q) matrix of Heaviside enriched shape
        function
\% derivatives with respect to the y-coordinate
    (4) Hi : ( n x q) matrix of shifted Heaviside function
        value
\% (5) H : ( n x 1) matrix of Heaviside enrichment
        functions at the
\(\% \quad\) integration points
\% NOTES:
    (1) Request for 'function' will require inputs \(1,2,3\),
        and 4. The
            function will output 1,4 and 5.
            (2) Request for 'derivatives' will require inputs 1,2 ,
        3,5 and 6. The
\% function will output 2 \& 3.
    (3) Request for 'all' will require inputs \(1,2,3,4,5\)
        and 6. The
\(\% \quad\) function will output 1, 2, 3 \& 4.
\% Read requested output
if strcmp (request, 'function' ) == 1 \&\& length (varargin )
    == 1
        goto1 = 1 ;
        Ni \(=\operatorname{varargin}\{1\}\);
elseif strcmp( request,'derivatives' ) == 1 \&\& length (
    varargin ) == 3
```

 goto1 = 2;
 Ni = varargin{1};
 dNidX = varargin{2};
 dNidY = varargin{3};
 elseif strcmp(request,'all') == 1 \&\& length(varargin) ==
3
goto1 = 3;
Ni = varargin{1};
dNidX = varargin{2};
dNidY = varargin{3};
else
error('Unknown request or inconsistent inputs.')
end
% Test for heaviside function selection
if strcmp(type,'standard') == 0 \&\& strcmp(type,'signed') ==
0
error('Unknown function definition')
end
% Interpolation of PSI level set values to integration
points
Psi_ip = Ni * Psi;
% Heaviside values
switch type
case('standard')
H_node = fsub_Hstandard(Psi);
H_ip = fsub_Hstandard(Psi_ip)';
case('signed')
H_node = fsub_Hsigned(Psi);
H_ip = fsub_Hsigned(Psi_ip)';
end
% Computing totals
no_ip = length(Psi_ip);
no_nodes = length(Psi);

```
```

% Rearranging Heaviside values
H_ip_rep = repmat(H_ip,1,no_nodes);
H_node_rep = repmat(H_node,no_ip,1);
% Computing shifted Heaviside matrix
Hmod = H_ip_rep - H_node_rep;
% Computing Heaviside enriched matrises
switch goto1
case(1)
varargout{1} = Ni .* Hmod; % M1i
varargout{2} = Hmod;
varargout{3} = H_ip;
case(2)
varargout{1} = dNidX .* Hmod; % dM1idX
varargout{2} = dNidY .* Hmod; % dM1idY
case(3)
varargout{1} = Ni .* Hmod; % M1i
varargout{2} = dNidX .* Hmod; % dM1idX
varargout{3} = dNidY .* Hmod; % dM1idY
varargout{4} = Hmod; % H-Hk
end
end
function [H] = fsub_Hstandard(psi)
%fsub_Hstandard: Standard Heaviside function.
% Computation of the Heaviside function using the standard
definition.
% Calculating the number of points for evaluation
no_points = length(psi);
% Setting all values to 0
H = zeros(1, no_points);
% Asigning a value of 1 to points above the crack
H(sign(psi) > 0) = 1;
end
function [H] = fsub_Hsigned(psi)

```
```

122 %fsub_Hsigned: Standard Heaviside function.
% Computation of the Heaviside function using the signed
definition.
124
125 % Applying sign values to points
126 H = sign(psi)';
127 end

```

\section*{Script for strain/displacement matrix assembly}
```

function [B] = fxfem_Bmats(dfdx,dfdy,eval)
%fxfem_Bmats Sub-function to construct the strain/
displacement matrices.
%
% Evaluation types:
% 'standard'
dfdx = size(1,4)
dfdy = size(1,4)
'heaviside'
dfdx = size(1,4)
dfdy = size(1,4)
'neartip'
dfdx = size(1,4,6)
dfdy = size(1,4,6)
switch eval
case('standard')
B = zeros(3,8);
B(1,1:2:end) = dfdx;
B(2,2:2:end) = dfdy;
B(3,1:2:end) = dfdy;
B(3,2:2:end) = dfdx;
case('heaviside')
B = zeros (3,8);
B(1,1:2:end) = dfdx;
B(2,2:2:end) = dfdy;
B(3,1:2:end) = dfdy;
B(3,2:2:end) = dfdx;
case('neartip')
Bbi = zeros(3,8,6);
for n1 = 1 : 6 % Loop over isotropic near-tip
functions
Bbi(1,1:2:end,n1) = dfdx(:,:,n1);
Bbi(2,2:2:end,n1) = dfdy(:,:,n1);
Bbi(3,1:2:end,n1) = dfdy(:,:,n1);
Bbi(3,2:2:end,n1) = dfdx(:,:,n1);

```
end
41
```


end

```
\(\mathrm{B}=[\operatorname{Bbi}(:,:, 1) \operatorname{Bbi}(:,:, 2) \operatorname{Bbi}(:,:, 3) \operatorname{Bbi}(:,:, 4)\)
Bbi (: ,: ,5) Bbi (: , : ,6)];
otherwise
error('Undefined evaluation')
end
end
```


Script for element partitioning

```
function [xi,eta,WW,Xip,Yip] = subcells(x,y,div)
%subcells: tessellates a Q4 element and assign integration
    points in
%REFERENCE space
%
% INPUTS:
% x: (4 x 1) column vector with x-coordinates
    quadrilateral nodes
% y: (4 x 1) column vector with y-coordinates
    quadrilateral nodes
% div: number of divisions in x or y coordinates.
%
% OUTPUT:
% xi: (n x 1) column vector with x-coordinates of IPs in
    REFERENCE space
% eta: (n x 1) column vector with y-coordinates of IPs in
    REFERENCE space
% WW: (n x 1) transformed integration weights
% Xip: (n x 1) column vector with y-coordinates of IPs in
        REAL space
% Yip: (n x 1) column vector with y-coordinates of IPs in
        REAL space
% Check inputs
if isvector(x) == 0 || isvector(y) == 0
    error('Inputs are not vectors');
else
    if size(x,2) == 1; x = x'; end
    if size(y,2) == 1; y = y'; end
end
if length(x) ~= length(y)
    error('Inputs have unequal length')
end
dop = 2; % Limited to 4 IP per cell!
```

```
[X,Y,conmat] = rgrid(x,y,div);
[o,p,WW] = gq2d();
[Ni,dNido,dNidp] = q6elem(o,p);
Xip = zeros(dop^2*div^2,1);
Yip = zeros(dop^2*div^2,1);
detJ = zeros(dop^2*div^2,1);
WW = zeros(dop^2*div^2,1);
c1 = 1;
for i = 1 : size(conmat,1) % loop over cells
    detJ(c1:c1+dop^2-1) = ffem_jacobian(X(conmat (i, :) ),Y(
        conmat (i,:)),dNido,dNidp,2);
    Xip(c1:c1+dop^2-1) = Ni*X(conmat (i,:));
    Yip(c1:c1+dop^2-1) = Ni*Y(conmat (i,:));
    WW(c1:c1+dop^2-1) = WW.*detJ (c1:c1+dop^2-1);
    c1 = c1 + dop^2;
end
[xi,eta] = q4invmap(x,y,Xip,Yip);
end
```


Near-tip enrichment definition

```
function [M2,dM2dX,dM2dY] = fxfem_neartip(Ni,dNidX,dNidY,Vc,
    On,Rn,Oip,Rip,n_type)
% Angle between X axis and crack segment
CROSS = cross([1 0 0],[Vc ; 0]);
a = atan2(CROSS(3),dot([1 0 0],[Vc ; 0]));
n_ip = length(Oip);
f1 = @(r,o) sqrt(r) * sin(o/2);
f2 = @(r,o) sqrt(r) * cos(o/2);
f3 = @(r,o) sqrt(r) * sin(o/2) * sin(o);
f4 = @(r,o) sqrt(r) * cos(o/2) * sin(o);
f5 = @(r,o) r*sin(o);
f6 = @(r,o) r*\operatorname{cos(o);}
df1dr = @(r,o) 1/(2*sqrt(r)) * sin(o/2);
df1do = @(r,o) sqrt(r)/2 * cos(o/2);
df2dr = @(r,o) 1/(2*sqrt(r)) * cos(o/2);
df2do = @(r,o) -sqrt(r)/2 * sin(o/2);
df3dr = @(r,o) 1/(2*sqrt(r)) * sin(o/2) * sin(o);
df3do = @(r,o) sqrt(r) * (0.5*\operatorname{cos}(o/2)*\operatorname{sin}(o)+\operatorname{sin}(o/2)
        * cos(o));
df4dr = @(r,o) 1/(2*sqrt(r)) * cos(o/2) * sin(o);
df4do = @(r,o) sqrt(r) * (cos(o/2)*\operatorname{cos(o) - 0.5*sin(o}
    /2)*sin(o));
df5dr = @(r,o) sin(o);
df5do = @(r,o) r*cos(o);
df6dr = @(r,o) cos(o);
df6do = @(r,o) -r*sin(o);
T = @(r,0) [cos(o) - sin(o)/r ; sin(o) cos(o)/r];
```

```
Q = @(a) [cos(a) -sin(a) ; sin(a) cos(a) ];
```

$\mathrm{F} 11=\mathrm{f} 1(\mathrm{Rn}(1), \mathrm{On}(1))$;
$\mathrm{F} 12=\mathrm{f} 1(\mathrm{Rn}(2), 0 \mathrm{n}(2))$;
$\mathrm{F} 13=\mathrm{f} 1(\mathrm{Rn}(3), 0 \mathrm{n}(3))$;
F14 $=\mathrm{f} 1(\mathrm{Rn}(4), 0 \mathrm{n}(4))$;
$\mathrm{F} 21=\mathrm{f} 2(\mathrm{Rn}(1), 0 \mathrm{n}(1))$;
$\mathrm{F} 22=\mathrm{f} 2(\mathrm{Rn}(2), \mathrm{On}(2))$;
$\mathrm{F} 23=\mathrm{f} 2(\mathrm{Rn}(3), \mathrm{On}(3))$;
$\mathrm{F} 24=\mathrm{f} 2(\mathrm{Rn}(4), \mathrm{On}(4))$;
F31 = f3(Rn(1), On(1));
$\mathrm{F} 32=\mathrm{f} 3(\mathrm{Rn}(2), 0 \mathrm{n}(2))$;
F33 $=\mathrm{f} 3(\mathrm{Rn}(3), 0 \mathrm{n}(3))$;
F34 $=\mathrm{f} 3(\mathrm{Rn}(4), 0 \mathrm{n}(4))$;
$\mathrm{F} 41=\mathrm{f} 4(\mathrm{Rn}(1), 0 \mathrm{n}(1))$;
$\mathrm{F} 42=\mathrm{f} 4(\mathrm{Rn}(2), \mathrm{On}(2))$;
$\mathrm{F} 43=\mathrm{f} 4(\mathrm{Rn}(3), 0 \mathrm{n}(3))$;
F44 = f4 (Rn(4), On (4)) ;
$\mathrm{F} 51=\mathrm{f} 5(\mathrm{Rn}(1), 0 \mathrm{n}(1))$;
F52 = f5 (Rn(2), On (2)) ;
$\mathrm{F} 53=\mathrm{f} 5(\mathrm{Rn}(3), 0 \mathrm{n}(3))$;
F54 = f5 (Rn(4), On (4)) ;
$\mathrm{F} 61=\mathrm{f} 6(\mathrm{Rn}(1), 0 \mathrm{n}(1))$;
F62 $=\mathrm{f} 6(\mathrm{Rn}(2), 0 \mathrm{n}(2))$;
F63 $=\mathrm{f} 6(\mathrm{Rn}(3), 0 \mathrm{n}(3))$;
F64 $=\mathrm{f} 6(\mathrm{Rn}(4), 0 \mathrm{n}(4))$;
$\mathrm{C} 1=\mathrm{T}(\mathrm{Rn}(1), \mathrm{On}(1)) * \mathrm{Q}(\mathrm{a})$;
$\mathrm{C} 2=\mathrm{T}(\mathrm{Rn}(2), \mathrm{On}(2)) * \mathrm{Q}(\mathrm{a})$;
$\mathrm{C} 3=\mathrm{T}(\mathrm{Rn}(3), \mathrm{On}(3)) * \mathrm{Q}(\mathrm{a})$;
$\mathrm{C} 4=\mathrm{T}(\mathrm{Rn}(4), 0 \mathrm{n}(4)) * \mathrm{Q}(\mathrm{a})$;
$\operatorname{df} 1 \mathrm{dX} 1=\mathrm{C} 1(1,:) *[\operatorname{df} 1 \mathrm{dr}(\operatorname{Rn}(1), O n(1)) \operatorname{df} 1 \mathrm{do}(\operatorname{Rn}(1), O n(1))]^{\prime} ;$
$\mathrm{df} 1 \mathrm{dY} 1=\mathrm{C} 1(2,:) \quad$ * $[\mathrm{df} 1 \mathrm{dr}(\mathrm{Rn}(1), 0 \mathrm{n}(1)) \mathrm{df} 1 \mathrm{do}(\mathrm{Rn}(1), O n(1))]^{\prime} ;$
$\operatorname{df} 2 d X 1=C 1(1,:) *[d f 2 d r(R n(1), O n(1)) \operatorname{df} 2 d o(R n(1), O n(1))]^{\prime} ;$
$\operatorname{df} 2 \mathrm{dY} 1=\mathrm{C} 1(2,:) *[\operatorname{df} 2 \mathrm{dr}(\mathrm{Rn}(1), O n(1)) \operatorname{df} 2 \mathrm{do}(\mathrm{Rn}(1), O n(1))]^{\prime} ;$

```
df3dX1 = C1(1,:) * [df3dr(Rn(1),On(1)) df3do(Rn(1),On(1))]';
df3dY1 = C1(2,:) * [df3dr(Rn(1),On(1)) df3do(Rn(1),On(1))]';
df4dX1 = C1(1,:) * [df4dr(Rn(1),On(1)) df4do(Rn(1),On(1))]';
df4dY1 = C1(2,:) * [df4dr(Rn(1),On(1)) df4do(Rn(1),On(1))]';
df5dX1 = C1(1,:) * [df5dr(Rn(1),On(1)) df5do(Rn(1),On(1))]';
df5dY1 = C1(2,:) * [df5dr(Rn(1),On(1)) df5do(Rn(1),On(1))]';
df6dX1 = C1(1,:) * [df6dr(Rn(1),On(1)) df6do(Rn(1),On(1))]';
df6dY1 = C1(2,:) * [df6dr(Rn(1),On(1)) df6do(Rn(1),On(1))]';
df1dX2 = C2(1,:) * [df1dr(Rn(2),On(2)) df1do(Rn(2),On(2))]';
df1dY2 = C2(2,:) * [df1dr(Rn(2),On(2)) df1do(Rn(2),On(2))]';
df2dX2 = C2(1,:) * [df2dr(Rn(2),On(2)) df2do(Rn(2),On(2))]';
df2dY2 = C2(2,:) * [df2dr(Rn(2),On(2)) df2do(Rn(2),On(2))]';
df3dX2 = C2(1,:) * [df3dr(Rn(2),On(2)) df3do(Rn(2),On(2))]';
df3dY2 = C2(2,:) * [df3dr(Rn(2),On(2)) df3do(Rn(2),On(2))]';
df4dX2 = C2(1,:) * [df4dr(Rn(2),On(2)) df4do(Rn(2),On(2))]';
df4dY2 = C2(2,:) * [df4dr(Rn(2),On(2)) df4do(Rn(2),On(2))]';
df5dX2 = C2(1,:) * [df5dr(Rn(2),On(2)) df5do(Rn(2),On(2))]';
df5dY2 = C2(2,:) * [df5dr(Rn(2),On(2)) df5do(Rn(2),On(2))]';
df6dX2 = C2(1,:) * [df6dr(Rn(2),On(2)) df6do(Rn(2),On(2))]';
df6dY2 = C2(2,:) * [df6dr(Rn(2),On(2)) df6do(Rn(2),On(2))]';
df1dX3 = C3(1,:) * [df1dr(Rn(3),On(3)) df1do(Rn(3),On(3))]';
df1dY3 = C3(2,:) * [df1dr(Rn(3),On(3)) df1do(Rn(3),On(3))]';
df2dX3 = C3(1,:) * [df2dr(Rn(3),On(3)) df2do(Rn(3),On(3))]';
df2dY3 = C3(2,:) * [df2dr(Rn(3),On(3)) df2do(Rn(3),On(3))]';
df3dX3 = C3(1,:) * [df3dr(Rn(3),On(3)) df3do(Rn(3),On(3))]';
df3dY3 = C3(2,:) * [df3dr(Rn(3),On(3)) df3do(Rn(3),On(3))]';
df4dX3 = C3(1,:) * [df4dr(Rn(3),On(3)) df4do(Rn(3),On(3))]';
df4dY3 = C3(2,:) * [df4dr(Rn(3),On(3)) df4do(Rn(3),On(3))]';
df5dX3 = C3(1,:) * [df5dr(Rn(3),On(3)) df5do(Rn(3),On(3))]';
df5dY3 = C3(2,:) * [df5dr(Rn(3),On(3)) df5do(Rn(3),On(3))]';
df6dX3 = C3(1,:) * [df6dr(Rn(3),On(3)) df6do(Rn(3),On(3))]';
df6dY3 = C3(2,:) * [df6dr(Rn(3),On(3)) df6do(Rn(3),On(3))]';
df1dX4 = C4(1,:) * [df1dr(Rn(4),On(4)) df1do(Rn(4),On(4))]';
df1dY4 = C4(2,:) * [df1dr(Rn(4),On(4)) df1do(Rn(4),On(4))]';
df2dX4 = C4(1,:) * [df2dr(Rn(4),On(4)) df2do(Rn(4),On(4))]';
```

```
df2dY4 = C4(2,:) * [df2dr(Rn(4),On(4)) df2do(Rn(4),On(4))]';
df3dX4 = C4(1,:) * [df3dr(Rn(4),On(4)) df3do(Rn(4),On(4))]';
df3dY4 = C4(2,:) * [df3dr(Rn(4),On(4)) df3do(Rn(4),On(4))]';
df4dX4 = C4(1,:) * [df4dr(Rn(4),On(4)) df4do(Rn(4),On(4))]';
df4dY4 = C4(2,:) * [df4dr(Rn(4),On(4)) df4do(Rn(4),On(4))]';
df5dX4 = C4(1,:) * [df5dr(Rn(4),On(4)) df5do(Rn(4),On(4))]';
df5dY4 = C4(2,:) * [df5dr(Rn(4),On(4)) df5do(Rn(4),On(4))]';
df6dX4 = C4(1,:) * [df6dr(Rn(4),On(4)) df6do(Rn(4),On(4))]';
df6dY4 = C4(2,:) * [df6dr(Rn(4),On(4)) df6do(Rn(4),On(4))]';
dM2dX = zeros(n_ip,4,6);
dM2dY = zeros(n_ip,4,6);
M2 = zeros(n_ip,4,6);
for i = 1 : n_ip
    N1 = Ni(i,1);
    N2 = Ni(i,2);
    N3 = Ni(i,3);
    N4 = Ni(i,4);
    dN1dX = dNidX(i,1);
    dN2dX = dNidX(i,2);
    dN3dX = dNidX(i,3);
    dN4dX = dNidX(i,4);
    dN1dY = dNidY(i,1);
    dN2dY = dNidY(i,2);
    dN3dY = dNidY(i,3);
    dN4dY = dNidY(i,4);
    R = sum(N1*n_type(1) + N2*n_type(2) + N3*n_type
        (3) + N4*n_type(4),2);
    dRdX = sum(dN1dX*n_type(1) + dN2dX*n_type(2) + dN3dX*
            n_type(3) + dN4dX*n_type(4),2);
    dRdY = sum(dN1dY*n_type(1) + dN2dY*n_type(2) + dN3dY*
        n_type(3) + dN4dY*n_type(4),2);
    r = Rip(i);
    o = Oip(i);
```


184	$\mathrm{df} 1 \mathrm{dX}=\mathrm{C}(1,:) *[\mathrm{df} 1 \mathrm{dr}(\mathrm{r}, \mathrm{o}) \mathrm{df} 1 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime} ;$
185	$\mathrm{df} 1 \mathrm{~d} Y=\mathrm{C}(2,:) *[\mathrm{df} 1 \mathrm{dr}(\mathrm{r}, \mathrm{o}) \mathrm{df} 1 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime} ;$
186	
187	$\mathrm{df} 2 \mathrm{dX}=\mathrm{C}(1,:) *[\operatorname{df} 2 \mathrm{dr}(\mathrm{r}, \mathrm{o}) \mathrm{df} 2 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime} ;$
188	$\mathrm{df} 2 \mathrm{~d} Y=\mathrm{C}(2,:) *[\operatorname{df} 2 \mathrm{dr}(\mathrm{r}, \mathrm{o}) \mathrm{df} 2 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime} ;$
189	
190	$\mathrm{df} 3 \mathrm{dX}=\mathrm{C}(1,:) *\left[\operatorname{df} 3 \mathrm{dr}(\mathrm{r}, 0 \text {) } \mathrm{df} 3 \mathrm{do}(\mathrm{r}, 0)]^{\prime} ;\right.$
191	$\mathrm{df} 3 \mathrm{~d} Y=C(2,:) *[\operatorname{df3dr}(\mathrm{r}, \mathrm{o}) \mathrm{df} 3 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime}$;
192	
193	$\mathrm{df} 4 \mathrm{dX}=\mathrm{C}(1,:) *[\mathrm{df} 4 \mathrm{dr}(\mathrm{r}, \mathrm{o}) \mathrm{df} 4 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime} ;$
194	$\mathrm{df} 4 \mathrm{dY}=\mathrm{C}(2,:) *\left[\operatorname{df} 4 \mathrm{dr}(\mathrm{r}, 0 \text {) } \mathrm{df} 4 \mathrm{do}(\mathrm{r}, 0)]^{\prime} ;\right.$
195	
196	$\mathrm{df} 5 \mathrm{dX}=\mathrm{C}(1,:) *\left[\operatorname{df5dr}(\mathrm{r}, 0 \text {) } \mathrm{df} 5 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime} ;\right.$
197	$\mathrm{df} 5 \mathrm{~d} Y=C(2,:) *[\operatorname{df5dr}(\mathrm{r}, \mathrm{o}) \mathrm{df} 5 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime}$;
198	
199	$\mathrm{df} 6 \mathrm{dX}=\mathrm{C}(1,:) *\left[\operatorname{df6} \mathrm{dr}(\mathrm{r}, 0 \text {) } \mathrm{df} 6 \mathrm{do}(\mathrm{r}, \mathrm{o})]^{\prime} ;\right.$
200	$\mathrm{df} 6 \mathrm{~d} Y=C(2,:) *[\operatorname{df6dr}(\mathrm{r}, \mathrm{o}) \mathrm{df6do}(\mathrm{r}, \mathrm{o})]^{\prime} ;$
201	
$-\mathrm{F} 12) * \mathrm{dRdX} ;$	
204	$\begin{aligned} & \mathrm{dF} 1 \mathrm{dX} 3=\mathrm{dN} 3 \mathrm{dX} *(\mathrm{~F} 1-\mathrm{F} 13) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 1 \mathrm{dX}-\mathrm{df} 1 \mathrm{dX} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 1 \\ & \quad-\mathrm{F} 13) * \mathrm{dRdX} ; \end{aligned}$
$-\mathrm{F} 14) * \mathrm{dRdX} ;$	
206	```dF1dY1 = dN1dY*(F1-F11)*R + N1*(df1dY-df1dY1)*R + N1*(F1 -F11)*dRdY;```
$-\mathrm{F} 12) * \mathrm{dRd} \mathrm{Y} ;$	
$-\mathrm{F} 13) * \mathrm{dRdY} ;$	
$-\mathrm{F} 14) * \mathrm{dRdY} ;$	
211	```dF2dX1 = dN1dX*(F2-F21)*R + N1*(df2dX-df2dX1)*R + N1*(F2 -F21)*dRdX;```

$\mathrm{dF} 2 \mathrm{dX} 2=\mathrm{dN} 2 \mathrm{dX} *(\mathrm{~F} 2-\mathrm{F} 22) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 2 \mathrm{dX}-\mathrm{df} 2 \mathrm{dX} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 2$ $-\mathrm{F} 22) * \mathrm{dRdX}$;
$\mathrm{dF} 2 \mathrm{dX} 3=\mathrm{dN} 3 \mathrm{dX} *(\mathrm{~F} 2-\mathrm{F} 23) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 2 \mathrm{dX}-\mathrm{df} 2 \mathrm{dX} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 2$ $-\mathrm{F} 23) * \mathrm{dRdX}$;
$\mathrm{dF} 2 \mathrm{dX} 4=\mathrm{dN} 4 \mathrm{dX} *(\mathrm{~F} 2-\mathrm{F} 24) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 2 \mathrm{dX}-\mathrm{df} 2 \mathrm{dX} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 2$ $-\mathrm{F} 24) * \mathrm{dRdX}$;
$\mathrm{dF} 2 \mathrm{dY} 1=\mathrm{dN} 1 \mathrm{dY} *(\mathrm{~F} 2-\mathrm{F} 21) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 2 \mathrm{dY}-\mathrm{df} 2 \mathrm{dY} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 2$ -F21)*dRdY;
$\mathrm{dF} 2 \mathrm{dY} 2=\mathrm{dN} 2 \mathrm{dY} *(\mathrm{~F} 2-\mathrm{F} 22) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 2 \mathrm{dY}-\mathrm{df} 2 \mathrm{dY} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 2$ -F22) *dRdY;
$\mathrm{dF} 2 \mathrm{dY} 3=\mathrm{dN} 3 \mathrm{dY} *(\mathrm{~F} 2-\mathrm{F} 23) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 2 \mathrm{dY}-\mathrm{df} 2 \mathrm{dY} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 2$ -F23) *dRdY;
$\mathrm{dF} 2 \mathrm{dY} 4=\mathrm{dN} 4 \mathrm{dY} *(\mathrm{~F} 2-\mathrm{F} 24) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 2 \mathrm{dY}-\mathrm{df} 2 \mathrm{dY} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 2$ -F24)*dRdY;
$\mathrm{dF} 3 \mathrm{dX} 1=\mathrm{dN} 1 \mathrm{dX} *(\mathrm{~F} 3-\mathrm{F} 31) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 3 \mathrm{dX}-\mathrm{df} 3 \mathrm{dX} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 3$ $-\mathrm{F} 31) * \mathrm{dRdX}$;
$\mathrm{dF} 3 \mathrm{dX} 2=\mathrm{dN} 2 \mathrm{dX} *(\mathrm{~F} 3-\mathrm{F} 32) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 3 \mathrm{dX}-\mathrm{df} 3 \mathrm{dX} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 3$ -F32) * dRdX ;
$\mathrm{dF} 3 \mathrm{dX} 3=\mathrm{dN} 3 \mathrm{dX} *(\mathrm{~F} 3-\mathrm{F} 33) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 3 \mathrm{dX}-\mathrm{df} 3 \mathrm{dX} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 3$ -F33) *dRdX;
$\mathrm{dF} 3 \mathrm{dX} 4=\mathrm{dN} 4 \mathrm{dX} *(\mathrm{~F} 3-\mathrm{F} 34) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 3 \mathrm{dX}-\mathrm{df} 3 \mathrm{dX} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 3$ -F34)*dRdX;
$\mathrm{dF} 3 \mathrm{dY} 1=\mathrm{dN} 1 \mathrm{dY} *(\mathrm{~F} 3-\mathrm{F} 31) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 3 \mathrm{dY}-\mathrm{df} 3 \mathrm{dY} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 3$ -F31)*dRdY;
$\mathrm{dF} 3 \mathrm{dY} 2=\mathrm{dN} 2 \mathrm{dY} *(\mathrm{~F} 3-\mathrm{F} 32) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 3 \mathrm{dY}-\mathrm{df} 3 \mathrm{dY} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 3$ -F32) *dRdY;
$\mathrm{dF} 3 \mathrm{dY} 3=\mathrm{dN} 3 \mathrm{dY} *(\mathrm{~F} 3-\mathrm{F} 33) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 3 \mathrm{dY}-\mathrm{df} 3 \mathrm{dY} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 3$ -F33) *dRdY;
$\mathrm{dF} 3 \mathrm{dY} 4=\mathrm{dN} 4 \mathrm{dY} *(\mathrm{~F} 3-\mathrm{F} 34) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 3 \mathrm{dY}-\mathrm{df} 3 \mathrm{dY} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 3$ -F34)*dRdY;
$\mathrm{dF} 4 \mathrm{dX} 1=\mathrm{dN} 1 \mathrm{dX} *(\mathrm{~F} 4-\mathrm{F} 41) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 4 \mathrm{dX}-\mathrm{df} 4 \mathrm{dX} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 4$ -F41)*dRdX;
$\mathrm{dF} 4 \mathrm{dX} 2=\mathrm{dN} 2 \mathrm{dX} *(\mathrm{~F} 4-\mathrm{F} 42) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 4 \mathrm{dX}-\mathrm{df} 4 \mathrm{dX} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 4$ $-\mathrm{F} 42) * \mathrm{dRdX}$;
$\mathrm{dF} 4 \mathrm{dX} 3=\mathrm{dN} 3 \mathrm{dX} *(\mathrm{~F} 4-\mathrm{F} 43) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 4 \mathrm{dX}-\mathrm{df} 4 \mathrm{dX} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 4$ -F 43) * dRdX ;
$\mathrm{dF} 4 \mathrm{dX} 4=\mathrm{dN} 4 \mathrm{dX} *(\mathrm{~F} 4-\mathrm{F} 44) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 4 \mathrm{dX}-\mathrm{df} 4 \mathrm{dX} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 4$ $-\mathrm{F} 44) * \mathrm{dRdX}$;
$\mathrm{dF} 4 \mathrm{dY} 1=\mathrm{dN} 1 \mathrm{dY} *(\mathrm{~F} 4-\mathrm{F} 41) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 4 \mathrm{dY}-\mathrm{df} 4 \mathrm{dY} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 4$ -F41)*dRdY;
$\mathrm{dF} 4 \mathrm{dY} 2=\mathrm{dN} 2 \mathrm{dY} *(\mathrm{~F} 4-\mathrm{F} 42) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 4 \mathrm{dY}-\mathrm{df} 4 \mathrm{dY} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 4$ -F42) *dRdY;
$\mathrm{dF} 4 \mathrm{dY} 3=\mathrm{dN} 3 \mathrm{dY} *(\mathrm{~F} 4-\mathrm{F} 43) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 4 \mathrm{dY}-\mathrm{df} 4 \mathrm{dY} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 4$ -F43)*dRdY;
$\mathrm{dF} 4 \mathrm{dY} 4=\mathrm{dN} 4 \mathrm{dY} *(\mathrm{~F} 4-\mathrm{F} 44) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 4 \mathrm{dY}-\mathrm{df} 4 \mathrm{dY} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 4$ -F44)*dRdY;
$\mathrm{dF} 5 \mathrm{dX} 1=\mathrm{dN} 1 \mathrm{dX} *(\mathrm{~F} 5-\mathrm{F} 51) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 5 \mathrm{dX}-\mathrm{df} 5 \mathrm{dX} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 5$ $-\mathrm{F} 51) * \mathrm{dRdX}$;
$\mathrm{dF} 5 \mathrm{dX} 2=\mathrm{dN} 2 \mathrm{dX} *(\mathrm{~F} 5-\mathrm{F} 52) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 5 \mathrm{dX}-\mathrm{df} 5 \mathrm{dX} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 5$ -F52) *dRdX;
$\mathrm{dF} 5 \mathrm{dX} 3=\mathrm{dN} 3 \mathrm{dX} *(\mathrm{~F} 5-\mathrm{F} 53) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 5 \mathrm{dX}-\mathrm{df} 5 \mathrm{dX} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 5$ -F 53) $* \mathrm{dRdX}$;
$\mathrm{dF} 5 \mathrm{dX} 4=\mathrm{dN} 4 \mathrm{dX} *(\mathrm{~F} 5-\mathrm{F} 54) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 5 \mathrm{dX}-\mathrm{df} 5 \mathrm{dX} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 5$ -F54)*dRdX;
$\mathrm{dF} 5 \mathrm{dY} 1=\mathrm{dN} 1 \mathrm{dY} *(\mathrm{~F} 5-\mathrm{F} 51) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 5 \mathrm{dY}-\mathrm{df} 5 \mathrm{dY} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 5$ -F51)*dRdY;
$\mathrm{dF} 5 \mathrm{dY} 2=\mathrm{dN} 2 \mathrm{dY} *(\mathrm{~F} 5-\mathrm{F} 52) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 5 \mathrm{dY}-\mathrm{df} 5 \mathrm{dY} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 5$ -F52) *dRdY;
$\mathrm{dF} 5 \mathrm{dY} 3=\mathrm{dN} 3 \mathrm{dY} *(\mathrm{~F} 5-\mathrm{F} 53) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 5 \mathrm{dY}-\mathrm{df} 5 \mathrm{dY} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 5$ -F53)*dRdY;
$\mathrm{dF} 5 \mathrm{dY} 4=\mathrm{dN} 4 \mathrm{dY} *(\mathrm{~F} 5-\mathrm{F} 54) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 5 \mathrm{dY}-\mathrm{df} 5 \mathrm{dY} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 5$ -F54)*dRdY;
$\mathrm{dF} 6 \mathrm{dX} 1=\mathrm{dN} 1 \mathrm{dX} *(\mathrm{~F} 6-\mathrm{F} 61) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 6 \mathrm{dX}-\mathrm{df} 6 \mathrm{dX} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 6$ -F61) * dRdX ;
$\mathrm{dF} 6 \mathrm{dX} 2=\mathrm{dN} 2 \mathrm{dX} *(\mathrm{~F} 6-\mathrm{F} 62) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{df} 6 \mathrm{dX}-\mathrm{df} 6 \mathrm{dX} 2) * \mathrm{R}+\mathrm{N} 2 *(\mathrm{~F} 6$ -F62)*dRdX;
$\mathrm{dF} 6 \mathrm{dX} 3=\mathrm{dN} 3 \mathrm{dX} *(\mathrm{~F} 6-\mathrm{F} 63) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{df} 6 \mathrm{dX}-\mathrm{df} 6 \mathrm{dX} 3) * \mathrm{R}+\mathrm{N} 3 *(\mathrm{~F} 6$ -F63)*dRdX;
$\mathrm{dF} 6 \mathrm{dX} 4=\mathrm{dN} 4 \mathrm{dX} *(\mathrm{~F} 6-\mathrm{F} 64) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{df} 6 \mathrm{dX}-\mathrm{df} 6 \mathrm{dX} 4) * \mathrm{R}+\mathrm{N} 4 *(\mathrm{~F} 6$ -F64)*dRdX;
$\mathrm{dF} 6 \mathrm{dY} 1=\mathrm{dN} 1 \mathrm{dY} *(\mathrm{~F} 6-\mathrm{F} 61) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{df} 6 \mathrm{dY}-\mathrm{df} 6 \mathrm{dY} 1) * \mathrm{R}+\mathrm{N} 1 *(\mathrm{~F} 6$ -F61)*dRdY;

```
dF6dY2 = dN2dY*(F6-F62)*R + N2*(df6dY-df6dY2)*R + N2*(F6
        -F62)*dRdY;
dF6dY3 = dN3dY*(F6-F63)*R + N3*(df6dY-df6dY3)*R + N3*(F6
        -F63)*dRdY;
dF6dY4 = dN4dY*(F6-F64)*R + N4*(df6dY-df6dY4)*R + N4*(F6
        -F64)*dRdY;
```

dM2dX(i,:,1) $=$ [dF1dX1 dF1dX2 dF1dX3 dF1dX4];
dM2dX(i,:,2) $=[d F 2 d X 1$ dF2dX2 dF2dX3 dF2dX4];
dM2dX(i,:,3) = [dF3dX1 dF3dX2 dF3dX3 dF3dX4];
dM2dX(i,:,4) $=[d F 4 d X 1$ dF4dX2 dF4dX3 dF4dX4];
dM2dX(i,:,5) = [dF5dX1 dF5dX2 dF5dX3 dF5dX4];
dM2dX(i,:,6) $=[d F 6 d X 1$ dF6dX2 dF6dX3 dF6dX4];
dM2dY(i,:,1) = [dF1dY1 dF1dY2 dF1dY3 dF1dY4];
dM2dY(i,:,2) = [dF2dY1 dF2dY2 dF2dY3 dF2dY4];
dM2dY(i,:,3) = [dF3dY1 dF3dY2 dF3dY3 dF3dY4];
dM2dY(i,:,4) = [dF4dY1 dF4dY2 dF4dY3 dF4dY4];
dM2dY(i,:,5) = [dF5dY1 dF5dY2 dF5dY3 dF5dY4];
dM2dY(i,:,6) = [dF6dY1 dF6dY2 dF6dY3 dF6dY4];
end
end

Script for XFEM solution

```
function [ SIM ] = fxfem_solver( ELEMENT,NODE,BC,SIM )
%fxfem_solver Solves the FEM problem
% Defining the total Degrees of Freedom (DOF) of the system
    and the DOF
% vector
no_nodes = SIM.NODES;
dof = 2*SIM.NODES + 2*SIM.NODES + 2*SIM.NODES*6;
Vdof = ( 1 : dof )';
% Initializing displacements
NODE.UX = zeros(SIM.NODES,1);
NODE.UY = NODE.UX;
NODE.AX = zeros(SIM.NODES,1);
NODE.AY = NODE.AX;
NODE.BX = zeros(SIM.NODES,4);
NODE.BY = NODE.BX;
% Assembly of global stiffness matrix
Kg = zeros( dof,dof );
for n1 = 1 : SIM.ELEMENTS % Loop over elements
    i = ELEMENT(n1).CONVEC;
    Kg(i,i) = Kg(i,i) + ELEMENT(n1).STIFFNESS;
end
% Activating node Standard DOF
U_nodes = NODE.ID(NODE.STATE == 1);
[U_act] = fxfem_dofs(U_nodes,no_nodes,'standard');
% Activating node Heaviside DOF
A_nodes = NODE.ID(NODE.TYPE == 1);
[A_act] = fxfem_dofs(A_nodes,no_nodes,'heaviside');
% Activating node Isotropic Near-tip DOF
```

```
B_nodes = unique(SIM.CONMAT(sum(NODE.TYPE(SIM.CONMAT)==2,2)
    <4 & ...
        sum(NODE.TYPE(SIM.CONMAT)==2,2)>0,:));
[B_act] = fxfem_dofs(B_nodes,no_nodes,'neartip');
% Declaring the 'active' and 'constrained' DOF
act_nodes = sort([U_act A_act B_act]);
con_nodes = setdiff(Vdof,act_nodes);
Kcc = sparse( Kg( con_nodes , con_nodes ) );
Kca = sparse( Kg( con_nodes , act_nodes ) );
Kac = sparse( Kg( act_nodes , con_nodes ) );
Kaa = sparse( Kg( act_nodes , act_nodes ) );
% Initializing variables
f = zeros( dof , 1 );
U = zeros( dof , 1 );
% Determining node DOF with boundary conditions
U_nodes = BC.DISP.NODE;
[~,Ux_con,Uy_con] = fxfem_dofs(U_nodes,no_nodes,'standard');
% Adding Dirichlet boundary conditions to the system
    displacement
% vector
U(Ux_con) = BC.DISP.UX;
U(Uy_con) = BC.DISP.UY;
% Adding Newman boundary conditions to the system Force
    vector
if isempty(BC.FORCE.NODE) == 0
        [~,Ux_con,Uy_con] = fxfem_dofs(BC.FORCE.NODE,no_nodes,'
            standard');
        f(Ux_con) = BC.FORCE.FX;
        f(Uy_con) = BC.FORCE.FY;
end
% Reducing the system of equations
```

```
Fa = f(act_nodes);
Uc = U(con_nodes);
% Solving the system of equations
Ua = Kaa\(Fa-Kac*Uc);
Fc = Kcc*Uc + Kca*Ua;
% Store solution values
U(act_nodes) = Ua;
f(con_nodes) = Fc;
SIM.d = U;
SIM.K = Kg;
SIM.f = f;
end
```


Script for XFEM displacement solution

```
function [NODE]=fxfem_disp(SIM,NODE,ELEMENT, CRACK,MATERIAL)
%fxfem_disp calculates the displacements of the nodes
Cv = [ CRACK.X(end) - CRACK.X(end-1) ; CRACK.Y(end) - CRACK.
    Y(end-1) ];
o = [l-1 1 1 1 -1];
p = [llllll
[Ni,dNido,dNidp] = ffem_q4elem(o,p);
MAT = zeros(SIM.NODES,9);
for n1 = 1 : SIM.ELEMENTS % Loop over elements
    X = NODE.X(ELEMENT(n1).NODES);
    Y = NODE.Y(ELEMENT(n1).NODES);
    invJ = ffem_jacobian(X,Y,dNido,dNidp,4);
    matJ = ffem_jacobian(X,Y,dNido,dNidp,1);
    di = SIM.d(ELEMENT(n1).CONVEC);
    Psi = NODE.PSI(ELEMENT(n1).NODES);
    r = NODE.R(ELEMENT(n1).NODES);
    O = NODE.O(ELEMENT(n1).NODES);
    [dNidX,dNidY] = ffem_dervconvert(invJ,dNido,dNidp);
    [M1,dM1dX,dM1dY] = fxfem_heaviside('signed','all',Psi,
        Ni,dNidX,dNidY);
    nt_vec = double(NODE.TYPE(ELEMENT(n1).NODES) == 2);
    [M2,dM2dX,dM2dY] = fxfem_neartip(Ni,dNidX,dNidY,Cv,o,r
        ,o,r,nt_vec);
    [dM1do,dM1dp] = ffem_dervconvert(matJ,dM1dX,dM1dY);
    [dM2do,dM2dp] = ffem_dervconvert(matJ,dM2dX,dM2dY);
    for i = 1 : 4 % Loop over nodes
        Bu = fxfem_Bmats(dNido(i,:),dNidp(i,:),'standard');
```

```
Ba = fxfem_Bmats(dM1do(i,:),dM1dp(i,:),'heaviside');
Bb = fxfem_Bmats(dM2do(i,:,:),dM2dp(i,:,:),'neartip'
    );
```

$u=f x f e m _d o f s(E L E M E N T(n 1) . N O D E S, S I M . N O D E S, ' s t a n d a r d$
')';
a = fxfem_dofs(ELEMENT(n1).NODES,SIM.NODES,'
heaviside')';
b = fxfem_dofs(ELEMENT(n1).NODES,SIM.NODES,'neartip'
)';
D = MATERIAL(ELEMENT(n1).MATERIAL).D;
$\mathrm{e}=\mathrm{Bu} * \mathrm{u}+\mathrm{Ba} * \mathrm{a}+\mathrm{Bb} * \mathrm{~b}$;
$\mathrm{s}=\mathrm{D} * \mathrm{e}$;
Mi $=[N i(i,:) ~ M 1(i,:) ~ M 2(i,:, 1) ~ M 2(i,:, 2) ~ M 2(i,:, 3)$
M2 (i,:,4) M2 (i,:,5) M2 (i,:,6)];
$d x=M i * d i(1: 2: e n d) ;$
dy $=M i * \operatorname{di}(2: 2:$ end);
MAT (ELEMENT (n1).NODES (i) , 1) = MAT (ELEMENT (n1).NODES (
i), 1$)+d x ; \quad \% \mathrm{X}$ displacement
MAT (ELEMENT (n1).NODES (i) , 2) $=$ MAT (ELEMENT (n1).NODES (
i) , 2) + dy; \% Y displacement
MAT (ELEMENT (n1).NODES (i) , 3) = MAT (ELEMENT (n1) .NODES (
i) ,3) + e(1); \% Strain in XX
MAT (ELEMENT (n1).NODES (i) , 4) = MAT (ELEMENT (n1).NODES (
i), 4$)+\mathrm{e}(2) ; \%$ Strain in YY
MAT (ELEMENT (n1).NODES (i) ,5) = MAT (ELEMENT (n1) .NODES (
i), 5$)+\mathrm{e}(3) ; \%$ Strain in XY
MAT (ELEMENT(n1).NODES(i), 6) = MAT(ELEMENT(n1).NODES (
i), 6$)+\mathrm{s}(1) ; \%$ Stress in XX
MAT (ELEMENT (n1).NODES (i) , 7) = MAT (ELEMENT (n1). NODES (
i) , 7) $+\mathrm{s}(2) ; \%$ Stress in YY
MAT (ELEMENT(n1).NODES(i), 8) = MAT(ELEMENT(n1).NODES (
i) , 8) $+\mathrm{s}(3) ; \%$ Stress in XY

9 end
end
${ }^{61}$
2 NODE.dx $=$ MAT (:, 1) ./ MAT (:,9) ;
NODE.dy $=$ MAT $(:, 2)$./ MAT (:,9);
NODE.exx = MAT (:,3) ./ MAT (:,9) ;
NODE.eyy = MAT (:,4) ./ MAT (:,9) ;
NODE.exy = MAT (:,5) ./ MAT (:,9);
NODE.sxx $=$ MAT (:,6) ./ MAT (:,9) ;
NODE.syy = MAT (:,7) ./ MAT (:,9) ;
NODE.sxy = MAT (:,8) ./ MAT (: , 9) ;
end

Script for XFEM stress/strain extrapolation to nodes

```
function [NODE]=fxfem_StrainStressNODE(IP,ELEMENT,NODE,SIM,
    request)
SOL = struct('CUM',zeros(SIM.NODES,1),'COUNT',zeros(SIM.
    NODES,1));
for n1 = 1 : SIM.ELEMENTS % loop over elements
    x = IP(n1).X;
    y = IP(n1).Y;
    z = IP(n1).(request);
    X = NODE.X(ELEMENT(n1).NODES);
    Y = NODE.Y(ELEMENT(n1).NODES);
    Z = griddata(x,y,z,X,Y,'v4');
    SOL.CUM(ELEMENT(n1).NODES) = SOL.CUM(ELEMENT(n1).NODES
        ) + Z;
    SOL.COUNT(ELEMENT(n1).NODES) = SOL.COUNT(ELEMENT(n1).
            NODES) + 1;
end
    SOL.AVG = SOL.CUM ./ SOL.COUNT;
    NODE.(request) = SOL.AVG;
end
```


Stochastic fatigue model

```
1 function [xp] = stochastic()
% This function applies a stochastic correlation time
    parameter to the
3 % Paris-Erdogan model. It is based on the Yang-Manning's
        model.
4 Sz = 0.932334471; % Estimated from experimental data
5 n = 23; % Data points
6 lambda = sqrt ((n-1)/2)*gamma((n-1)/2)/gamma(n/2);
7 mu_p = normrnd (0,1);
8 Zp = -lambda*mu_p*Sz;
9 xp = 2^ Zp;
10 end
```


Script to find intersection between two line segments

```
function [ Ipoint ] = fsintersect( Line1,Line2 )
%fsintersect: Intersection between two finite line segments.
% fgeo_sintersect detects intersection points between two
    finite line
% segments and returns the (x,y) coordinate of the
    intersection point. If
% no intersection exists, the function returns a (NaN,NaN)
    point
% coordinate.
%
% INPUTS:
% Line1 : first line segment [xi,yi]
% Line2 : second line segment [xi,yi]
%
% OUTPUT:
% Ipoint : intersection point value [NaN,NaN] if none, [x,
    y] otherwise
%
% NOTES:
% - Only 2D space lines supported.
% PROCESS: Defining segment starting points
p = Line1(1,:);
q = Line2(1,:);
% PROCESS: Defining segment vectors
r = Line1(2,:) - p;
s = Line2(2,:) - q;
% PROCESS: Defining distance vector
qp = q-p;
% PROCESS: Calculating parameters
t = (qp (1)*s(2)-qp (2)*s(1))/(r(1)*s(2)-r(2)*s (1));
u = (qp (1) *r(2) -qp (2) *r(1))/(r(1)*s(2)-r(2)*s(1));
```

```
% PROCESS: Finds if intersection exists
if (t >= 0) && (t <= 1) && (u >= 0) && (u <= 1)
    Ipoint = p + t*r;
    %Ipoint = q + u*s;
else
    Ipoint = [NaN NaN];
end
end
```


Bibliography

(2008). "Meshless methods: A review and computer implementation aspects". Mathematics and Computers in Simulation 79(3), 763-813. [Cited on page(s): 27]
Ahmed, A. (2009, April). "eXtended Finite Element Method(XFEM)-Modeling arbitrary discontinuities and Failure analysis". [Cited on page(s): 23]

Anderson, T. (2005). "Fracture Mechanics: Fundamentals and Applications, Third Edition". Taylor \& Francis. [Cited on page(s): 30, 33, 45, 47]

Asadpoure, A. and S. Mohammadi (2007). "Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method". International Journal for Numerical Methods in Engineering 69 (10), 2150-2172. [Cited on page(s): 14, 19]

Banea, M. D. and L. F. M. da Silva (2009). "Adhesively bonded joints in composite materials: An overview". Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223(1), 1-18. [Cited on page(s): 9, 32, 57]

Belytschko, T. and T. Black (1999). "Elastic crack growth in finite elements with minimal remeshing". International journal for numerical methods in engineering 45(5), 601-620. [Cited on page(s): 4, 18, 20]

Biel, A. and U. Stigh (2007). "An analysis of the evaluation of the fracture energy using the DCB-specimen". Archives of Mechanics 59(4-5), 311-327. [Cited on page(s): 9, 32, 57]
Boeing Commercial Airplanes (2006). AERO magazine (24). [Cited on page(s): 2]
Cahill, L., S. Natarajan, S. Bordas, R. O'Higgins, and C. McCarthy (2014). "An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae". Composite Structures 107, 119-130. [Cited on page(s): 13, 14]

Campilho, R., M. Banea, F. Chaves, and L. da Silva (2011). "eXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I". Computational Materials Science 50(4), 1543 - 1549. Proceedings of the 19th International Workshop on Computational Mechanics of Materials. [Cited on page(s): 3, 13]

Campilho, R., M. Banea, A. Pinto, L. da Silva, and A. de Jesus (2011). "Strength prediction of single- and double-lap joints by standard and extended finite element modelling". International Journal of Adhesion and Adhesives 31(5), 363-372. [Cited on page(s): 2, 3, 13]

Car, E., S. Oller, and E. Oñate (2000). "An anisotropic elastoplastic constitutive model for large strain analysis of fiber reinforced composite materials". Computer Methods in Applied Mechanics and Engineering 185(2), 245-277. [Cited on page(s): 42]

Cherepanov, G. P. (1967). "Crack propagation in continuous media: PMM vol. 31, no. 3, 1967, pp. 476-488". Journal of Applied Mathematics and Mechanics 31(3), 503-512. [Cited on page(s): 28]
de Borst, R. and J. J. Remmers (2006). "Computational modelling of delamination". Composites Science and Technology 66(6), 713-722. [Cited on page(s): 3, 13]

Dolbow, J. (1999, December). "An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics". Ph. D. thesis, Northwestern University. Field of Theoretical and Applied Mechanics. [Cited on page(s): 26]

Dolbow, J., N. Moës, and T. Belytschko (2000). "Discontinuous enrichment in finite elements with a partition of unity method". Finite Elements in Analysis and Design 36(3-4), 235-260. Robert J. Melosh Medal Competition, Duke University, Durham NC, USA, March 1999. [Cited on page(s): 4]

Fleming, M. (1997, June). "The Element-Free Galerkin Method for Fatigue and Quasistatic Fracture". Ph. D. thesis, Northwestern University. Field of Theoretical and Applied Mechanics. [Cited on page(s): 20]

Fleming, M., Y. Chu, B. Moran, T. Belytschko, Y. Lu, and L. Gu (1997). "Enriched element-free Galerkin methods for crack tip fields". International journal for numerical methods in engineering $40(8), 1483-1504$. [Cited on page(s): 20]

Fries, T.-P. (2008). "A Corrected XFEM Approximation Without Problems in Blending Elements". International Journal for Numerical Methods in Engineering 75(10), 503-532. [Cited on page(s): 21, 24]

Frostig, Y., O. T. Thomsen, and F. Mortensen (1999). "Analysis of adhesive-bonded joints, square-end, and spew-fillet-high-order theory approach". Journal of engineering mechanics 125(11), 1298-1307. [Cited on page(s): 2]

Griffith, A. A. (1921, January). "The Phenomena of Rupture and Flow in Solids". Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 221(582-593), 163-198. [Cited on page(s): 28]

Hart-Smith, L. (2002). "Adhesive bonding of composite structures: progress to date and some remaining challenges". Journal of composites technology $8 \mathcal{j}$ research 24 (3), 133-151. [Cited on page(s): 2]

Hua, C. (1990). "An inverse transformation for quadrilateral isoparametric elements: Analysis and application". Finite Elements in Analysis and Design 7(2), 159-166. [Cited on page(s): 27]
Irwin, G. R. (1957). "Analysis of stresses and strains near the end of a crack traversing a plate". Journal of Applied Mechanics 24, 361-364. [Cited on page(s): 28]

König, M., R. Krüger, K. Kussmaul, M. Von Alberti, and M. Gädke (1997). "Characterizing static and fatigue interlaminar fracture behavior of a first generation graphite/epoxy composite". In Composite Materials: Testing and Design, Thirteenth Volume. ASTM International. [Cited on page(s): 38, 42, 43, 44, 57]

Krueger, R. (2010). "Development of a benchmark example for delamination fatigue growth prediction". Technical Report NIA Report No. 2010-04, National Institute of Aerospace. [Cited on page(s): 33, 42, 43, 46, 57]

Kuna, M. (2013). "Finite Elements in Fracture Mechanics", Volume 201. Springer. [Cited on page(s): 6, 14, 29]

Li, W., T. Sakai, Q. Li, and P. Wang (2011). Statistical analysis of fatigue crack growth behavior for grade b cast steel. Materials \& Design 32(3), 1262-1272. [Cited on page(s): 37]

Logan, D. L. (2011). "A first course in the finite element method". Cengage Learning. [Cited on page(s): 17, 18]

Lord, S. J. and M. F. Ngah (2005). "On the Modelling of Impact Damage Growth in Composite Structures". In European Conference for Aerospace Sciences (EUCASS). [Cited on page(s): 1]

Moës, N., J. Dolbow, and T. Belytschko (1999). "A finite element method for crack growth without remeshing". International Journal for Numerical Methods in Engineering $46(1), 131-150$. [Cited on page(s): 4, 5]

Mohammadi, S. (2008). "Extended finite element method: for fracture analysis of structures". John Wiley \& Sons, Ltd. [Cited on page(s): 18, 19]

Mohammadi, S. (2012). "XFEM Fracture Analysis of Composites". John Wiley \& Sons, Ltd. [Cited on page(s): 18]

Motamedi, D., A. Milani, M. Komeili, M. Bureau, F. Thibault, and D. Trudel-Boucher (2014). "A stochastic XFEM model to study delamination in PPS/glass UD composites: effect of uncertain fracture properties". Applied Composite Materials 21 (2),

341-358. [Cited on page(s): 3]
Motamedi, D., A. S. Milani, et al. (2013). "3D Nonlinear XFEM Simulation of Delamination in Unidirectional Composite Laminates: A Sensitivity Analysis of Modeling Parameters". Open Journal of Composite Materials 3(04), 113. [Cited on page(s): 3, 13]
Nairn, J. A. (2000). "Energy release rate analysis for adhesive and laminate double cantilever beam specimens emphasizing the effect of residual stresses". International Journal of Adhesion and Adhesives 20(1), 59-70. [Cited on page(s): 33]

Nishioka, T. and S. Atluri (1983). "A numerical study of the use of path independent integrals in elasto-dynamic crack propagation". Engineering Fracture Mechanics 18(1), 23-33. [Cited on page(s): 36]

Nuismer, R. (1975). "An energy release rate criterion for mixed mode fracture". International journal of fracture 11(2), 245-250. [Cited on page(s): 36]

Osher, S. and J. A. Sethian (1988, November). "Fronts propagating with curvaturedependent speed: Algorithms based on Hamilton-Jacobi formulations". Journal of Computational Physics 79(1), 12-49. [Cited on page(s): 22]

Paris, P. and F. Erdogan (1960). "A Critical Analysis of Crack Propagation Laws". Journal of Basic Engineering 85(4), 528-533. [Cited on page(s): 37]

Paris, P. C., M. P. Gomez, and W. E. Anderson (1961). "A rational analytic theory of fatigue". The trend in engineering 13(1), 9-14. [Cited on page(s): 37]
Pascoe, J., R. Alderliesten, and R. Benedictus (2013). "Methods for the prediction of fatigue delamination growth in composites and adhesive bonds - A critical review". Engineering Fracture Mechanics 112-113, 72-96. [Cited on page(s): 13, 37]

Pascoe, J., R. Alderliesten, and R. Benedictus (2016). "Characterising resistance to fatigue crack growth in adhesive bonds by measuring release of strain energy". Procedia Structural Integrity 2, 80-87. [Cited on page(s): 37]

Perez, N. (2004). "Fracture Mechanics". Mathematics and Its Applications Series. Springer. [Cited on page(s): 30, 31]

Phu, N. V. (2005, November). "An Object Oriented Approach to the Extended Finite Element Method with Application to Fracture Mechanics". [Cited on page(s): 26]

Prasad, M. S., C. Venkatesha, T. Jayaraju, et al. (2011). "Experimental methods of determining fracture toughness of fiber reinforced polymer composites under various loading conditions". Journal of Minerals and Materials Characterization and Engineering 10(13), 1263-1275. [Cited on page(s): 33]

Rice, J. (1968). "A path independent integral and the approximate analysis of strain concentration by notches and cracks". Journal of applied mechanics 35(2), 379-386. [Cited on page(s): 28]

Roderick, G., R. Everett, and J. Crews (1975). "Debond propagation in compositereinforced metals". In Fatigue of Composite Materials. ASTM International. [Cited on page(s): 37]

Shih, C. F., B. Moran, and T. Nakamura (1986). "Energy release rate along a threedimensional crack front in a thermally stressed body". International Journal of Fracture 30(2), 79-102. [Cited on page(s): 29]
Sosa, J. C. and N. Karapurath (2012). "Delamination modelling of \{GLARE\} using the extended finite element method". Composites Science and Technology 72(7), 788-791. [Cited on page(s): 3, 14]
Stolarska, M., D. L. Chopp, N. MoÃńs, and T. Belytschko (2001). "Modelling crack growth by level sets in the extended finite element method". International Journal for Numerical Methods in Engineering 51(8), 943-960. [Cited on page(s): 22, 23]

Sukumar, N., D. Chopp, N. Moës, and T. Belytschko (2001). "Modeling holes and inclusions by level sets in the extended finite-element method". Computer Methods in Applied Mechanics and Engineering 190(46-47), 6183-6200. [Cited on page(s): 22]

Sukumar, N., Z. Y. Huang, J.-H. Prévost, and Z. Suo (2004). "Partition of unity enrichment for bimaterial interface cracks". International Journal for Numerical Methods in Engineering 59(8), 1075-1102. [Cited on page(s): 14, 18]

Sukumar, N. and J.-H. Prévost (2003). "Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation". International journal of solids and structures 40(26), 7513-7537. [Cited on page(s): 22, 27]
Tong, L. and G. Steven (1999, Apr). "Analysis and design of structural bonded joints". Kluwer Academic Publishers, Hingham, MA (US). [Cited on page(s): 1]
Williams, M. L. (1957). "On the stress distribution at the base of a stationary crack". Journal of Applied Mechanics 24, 109-114. [Cited on page(s): 20, 31]

Wilson, E., R. Taylor, W. Doherty, and J. Ghaboussi (1973). "Incompatible displacement models". In Numerical and computer methods in structural mechanics, Volume 43. Academic Press. [Cited on page(s): 18, 57]

Wu, W. and C. Ni (2003). "A study of stochastic fatigue crack growth modeling through experimental data". Probabilistic Engineering Mechanics 18(2), 107-118. [Cited on page(s): 3]

Xiao, Q., B. Karihaloo, and X. Liu (2004). "Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element". International Journal of Fracture 125(3), 207-225. [Cited on page(s): 31]

Xiao, Q.-Z. and B. L. Karihaloo (2006). "Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery". International Journal for Numerical Methods in Engineering 66(9), 1378-1410. [Cited on page(s): 20]

Yang, J. and S. Manning (1990). Stochastic crack growth analysis methodologies for metallic structures. Engineering Fracture Mechanics 37(5), 1105-1124. [Cited on page(s): 37]

Ye, C., J. Shi, and G. J. Cheng (2012). "An eXtended Finite Element Method (XFEM) study on the effect of reinforcing particles on the crack propagation behavior in a metal-matrix composite". International Journal of Fatigue 44, 151-156. [Cited on page(s): 14]

Sergio Candelario

Sergio Candelario was born in San Juan, Puerto Rico on June 24, 1987 but raised in Caguas, Puerto Rico. After completing his high school education, he was accepted at University of Puerto Rico Mayagüez campus (UPRM) mechanical engineering program.

In May of 2011, he graduated obtaining a Bachelor Science degree in Mechanical Engineering with Magna Cum Laude. He is a member of the Engineering Society Tau-Beta-Pi Alpha Chapter of Puerto Rico.

His interest in structural mechanics motivated him to join Dr. Goyal's research group in 2011 pursuing the masters degree in Mechanical Engineering at UPRM under the guidance of Dr. Vijay K. Goyal but later moved to work with Dr. David Serrano for the completion of his dissertation.

After two years into the master's program, he moved to Caguas to work as a validation scientist contractor at Janssen in Gurabo, Puerto Rico, a pharmaceutical manufacturing company. He has continuously worked in the technical services area focused in new product introduction and has worked in the characterization, registration and validation manufacturing process of several products.

He has been the recipient of the Departmental's Graduate Teaching Assistant for Mechanical Engineering undergraduate laboratories.

He expects to complete his M.S. degree on May of 2017.

