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Stochastic Fatigue Failure Prediction of Adhesive Bonded
Joints

Sergio Candelario
Master in Science in Mechanical Engineering

University of Puerto Rico at Mayagüez
Dr. David Serrano, Faculty Advisor, Mechanical Engineering

(ABSTRACT)

This work describes the implementation of the Extended Finite Element Method (a par-
tition of unity finite element method) for the study of fatigue failure of adhesive bonded
joints when subjected to variable loading. The main advantage of the Extended Finite
Element Method (XFEM) is the independence of the finite element mesh to describe the
delamination hence, it eliminates the need of re-meshing when the delamination front
is propagated. This advantage is particularly useful when modeling delamination under
fatigue as no remeshing is needed for each loading cycle. Also in this work, the Extended
Finite Element Method is extended to include incompatible elements, with the addition
of internal degrees of freedom that allow nonlinear mathematical distortion of a four
node bilinear element. These elements are used to model a composite double cantilever
beams to study fatigue delamination due to fatigue under random loading. The Yang-
Manning’s stochastic model for fatigue delamination was modified and good agreement
with experimental data was observed.

iii



Predicción de Falla en Fatiga Estocástica de Uniones Adhesivas

Sergio Candelario
Maestría en Ciencia en Ingeniería Mecánica
Universidad de Puerto Rico en Mayagüez

Dr. David Serrano, Profesor Consejero, Ingeniería Mecánica

(RESUMEN)

Este trabajo describe la implementación del Método de Elementos Finitos Extendidos (un
método de partición de unidad en elementos finitos) para el estudio de la falla en fatiga de
las juntas en unió adhesiva cuando se someten a cargas aleatorias. La principal ventaja
del Método de Elementos Finitos Extendidos (XFEM) es la independencia de la malla
de elementos finitos para describir la delaminació, por lo tanto, elimina la necesidad de
generar una malla nueva cada vé que se propaga el frente de delaminación. Esta ventaja es
particularmente útil cuando se modela la delaminación bajo fatiga, ya que no se necesita
generar una malla para cada ciclo de carga. También en este trabajo, el Método de
Elementos Finitos Extendidos se amplía para incluir elementos incompatibles, que es la
adición de grados internos de libertad que permiten la distorsión matemática no lineal de
un elemento bilineal de cuatro nodos. Estos elementos se usan para modelar una doble
viga en voladizo de material compuesto para estudiar la delaminación por fatiga debido
a la fatiga en carga aleatoria. Se modificó el modelo estocástico de Yang-Manning para
la delaminación por fatiga y se observó un buen acuerdo con los datos experimentales.
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Chapter 1
Preliminary Remarks

This work pertains to the application of the Extended Finite Element Method (XFEM)
to predict fatigue failure of adhesive bonded joints when subjected to cyclic loading. The
Extended Finite Element Method is coupled with the Level Set Method (LSM) and Linear
Elastic Fracture Mechanics (LEFM) theory to describe the delamination of the adhesive
joint. The main goal of this work is to develop a numerical tool to describe the fatigue
failure prediction of adhesive bonded joints using the Extended Finite Element Method.
This methodology is developed in MATLAB which, although a high level language, is
widely known and used by engineers and researchers.

1.1 Motivation

1.1.1 Current State of the art and downfalls

Currently, aerospace industries are opting to utilize composites materials to build aircraft
components and fuselages. The next generation of aircraft will probably be all built out
of composites because of their higher strength to weight ratio compared to the metal-
lic materials currently used. Nonetheless, these materials have to pass regulations and
certifications which increase costs. This situation drives the motivation to replace the
numerous expensive testing methods with reliable and accurate predictive models (Lord
and Ngah 2005)

Several methods exist for joining or fastening materials together to form a structure
e.g. welding, bolting, riveting, etc. When compared to some of these methods, the
adhesion of materials provides both economical and performance advantage. These ad-
vantages range from the ability to form lightweight joints, the possibility to join dissimilar
materials and improved stress distribution, which can improve fatigue life, among other
benefits (Tong and Steven 1999). Due to these benefits, naval and aerospace industries

1



1.1. MOTIVATION 2

are utilizing adhesive bonded joints more. As an example, such as the Boeing 787 Dream-
liner commercial passenger aircraft uses 50% advanced composites. And the Boeing 777
proved that composite structures require less scheduled maintenance in comparison with
non-composite materials (Boeing Commercial Airplanes 2006). Hence, with the increase
in use of composites and adhesive joints, more efficient ways to model damage in adhesive
bonded materials is of great importance.

An efficient predictive model must conform to the shapes and configurations of the
parts designed in the aerospace industry. In the early stages of bonded structure analyses,
theoretical studies were popular among scholars (Campilho et. al 2011). The analytical
methods had the advantage of analysing a structure quickly but comprised multiple as-
sumptions which make them inadequate to accurately predict complex real life situations.
Because of this, the Finite Element Method is a more attractive method of simulation.

Composite structures are commonly comprised of layers of adherents bonded by an
adhesive to form a solid structure. The adhesive bonds are advantageous because they
distribute the loads over a wider area and therefore, the stresses over the bonded area
are less critical when compared to other fastening techniques (Frostig et. al 1999 and
Hart et. al 2002). Therefore, the stress distribution on the adherents is improved by
using adhesive bonded joints which avoids point stress concentrations. Figure 1.1 shows
a schematic of the adherent and the adhesive interacting with each other.

Figure 1.1: Adhesive bonded joint example

Delamination is the separation of the adherents due to cracking of the adhesive and
is one of the major failure modes encountered in composites (de Borst and Remmes
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2006). The majority of the composite materials use some type of adhesive that when
dry, behaves in a brittle manner. It is known that brittle materials do not yield but fail
rapidly for which reason this type of failure is of much concern. Nevertheless, failure of
the adhesive layer does not mean that the whole composite structure has failed but rather
that it degrades the reliability of the component or structure. Therefore, a predictive
model for failure of composite structures must take into account failure of the adhesive
layer.

A common test to determine the strength of a bond is by using double cantilever
beam or single lap joints among others. Some examples of joint classifications are single
and double slab, single cover plate or double cover plate (See Figure 2.1). In this figure,
the arrows represent the direction of pull on the tests. In this configuration the adherent
is being sheared or a Mode II or shear stress condition is created (Figure 2.1, 2a and 2b)
but other configurations such as simple tension (Figure 2.1, 2c), compression or a mixed
mode in the adherent (Mode I, Mode III and mixed) can also be developed and tested.

Several researchers have devoted time in the implementation of new FEM techniques
for the modeling of adhesive bonded joints. Campilho et. al 2011 used the XFEM with
strong enrichment functions (refer to Section 2.3.1) to test adhesive strength in a double
cantilever beam analysis. de Borst and Remmers 2006 studied the delamination of Glare
in a DCB using a cohesive interphase to model the adhesive layer. Motamedi et. al. 2013
studied the delamination process of Polyphenylene sulfide/Glass fiber reinforced polymer
DCB and performed a 3D analysis in Abaqus/MATLAB. A summary of the current
XFEM implementations in the analysis of adhesive bonded joints and model capabilities
is provided in Table 1.1.

Table 1.1: Literature survey overview of XFEM implementations in the analysis of ad-
hesive bonded joints

Authors Fatigue
analysis

Near-tip
field

Stochas-
ticity

Cohesive
model

3D
analysis

de Borst and Remmers 2006 X
Campilho et. al 2011 X
Campilho et. al 2011 X
Motamedi et. al 2013 X X X
Motamedi et. al 2014 X X X
Sosa and Karapurath 2012 X
This dissertation X X X

The fatigue failure is known to be statistical in nature (Wu and Ni 2003). Some
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commercially available finite element programs are capable of performing probabilistic
analysis. For instance, LSTC’s LS-OPT software is a standalone design optimization and
probabilistic analysis package that can interface with LS-DYNA and ANSYS has released
the Probabilistic Design System and the ANSYS DesignXplorer tools. However, not all
finite element commercial softwares are capable of performing a probabilistic analysis as
shown in Table 1.2.

Table 1.2: Commercial softwares comparison

Softwares XFEM Fatigue
analysis

Near-tip
field

growth
simulation

Probabilistic
capabilities

3D
analysis

LS DYNA X X X
ANSYS (plug-in) X X X
ABAQUS X X X
Nastran X X
This dissertation X X X X

1.1.2 The Need for a New Computational Technique

The Extended Finite Element Method (XFEM) originated with the work by Belytschko
and Black in 1999 in which discontinuous functions where added to the finite element
approximation (trial or interpolation functions) to include the presence of the crack
into the finite element (refer to Equation 2.16). In their work, the authors applied an
extrinsic approximation for the addition of the discontinuous (enrichment) functions.
Their method was further enhanced by the works of Moes et. al 1999 with the inclusion
of enrichment functions to model the discontinuous field of the crack away from the crack
tip (Haar function) thus incorporating both Crack and Near-tip enrichment functions;
see also Dolbow et. al 2000; refer to Figure 1.2.

Several advantages of the XFEM over FEM can be identified:

• mesh boundaries do not have to coincide with the discontinuity (i.e. discontinuous
fields can be modeled within an element), refer to Figure 1.3; (Moës et. al 1999)

• discontinuities are modeled independently from the mesh thus there is no need for
re-meshing for evolving discontinuities (e.g propagating cracks); (Belytschko and
Black 1999)
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• due to the inclusion of known analytical solutions to the shape functions, accu-
rate finite element solutions can be achieved even for relatively coarse meshes (e.g
asymptotic stress near a crack tip can be modeled with a relatively coarse mesh);
(Moës et. al 1999)

Figure 1.2: XFEM mesh representation
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Figure 1.3: (a) XFEM mesh, delamination is embedded within the mesh; (b) FEM mesh,
delamination is modeled between element boundaries (from Kuna 2013)

However, current commercial implementations of the XFEM do not take into account
the near-tip enrichment functions during crack propagation. A model which takes into
account the random nature of fatigue failure and random loading in composite adhesive
bonded joints have not been coupled with the XFEM. Moreover, in this work, a complete
energetic approach for delamination characterization has been implemented (i.e. fracture
based on energy release rate). Hence, a model that incorporate these features will be
attractive as it provides a more realistic approach to fatigue simulation.

1.2 Project Description

1.2.1 Problem Description

The composite adhesive bonded joints are modeled as orthotropic adherends (plies) ad-
hered by an isotropic linear elastic adhesive layer. The load is applied to the adherends
with constant magnitude for one loading cycle. The simulation is then repeated several
times to simulate cyclic loading under service. For variable amplitude loading, the ampli-
tude is changed after each loading cycle. Small deformations are imposed into the model;
this will allow to describe the deformation using linear relationships, i.e. infinitesimal
strain theory.
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1.2.2 Assumptions

In order to provide a manageable system for analysis, the following assumptions were
made:

• The adhesive material is assumed to be sufficiently brittle as to be able to be mod-
eled as a linear elastic material hence, Linear Elastic Fracture Mechanics (LEFM)
theory is applicable for the description of the crack near-field. This assumption im-
plies that the stress field near the crack tip is asymptotic and plastic deformation
is confined within a small area near the crack tip (small scale yielding). However,
due to the utilization of higher order terms in the William’s expansion, the system
can deviate from the small scale yielding assumption.

• The adhesive is modeled as a linear elastic material and the crack is allowed to
propagate only in the adhesive. By this assumption, a cohesive delamination type
of failure is induced and a Mode I type of failure is approximated.

• The composite adherends are modeled as orthotropic linear elastic materials. This
assumption reduces the discontinuity present between composite layers and allows
the plies to be modeled as a continuum. This reduces the need to model each ply
independently and thus simplifying the numerical model.

• The joint transverse dimension is assumed to be very small compared to the joint
depth thus, the system is modeled as a two dimensional mesh in plane strain con-
dition in the transverse dimension of the bonded joint. This allows for reduction
of a three-dimensional problem into a two-dimensional one, thus simplifying the
analysis.

1.2.3 Overall Goals

The goal of this work is to develop an Extended Finite Element Method based algorithm
for the modeling of adhesive bonded joint failure under fatigue loading. The following
tasks will be achieved in this work:

1. Develop an algorithm to predict the delamination process of a double cantilever
beam

(a) Include the stochastic nature of the fatigue process into the simulation
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(b) Model the adherends as orthotropic materials to simulate composite construc-
tion

2. Simulate the delamination process of a double cantilever beam under fatigue loading

(a) Understand the effects of fatigue loading under constant and variable (random)
loading conditions

(b) Perform several experiments with different levels of load variation

3. Validate the delamination results with available data in the literature

The development of the computer algorithm will then be provided as a contribution
to further develop the Extended Finite Element Method in the scientific community.

1.2.4 Intellectual Merit

Due to the increase in composite adhesive bonded joints in the aerospace industry, there
is a high interest in modeling the failure process in these joints. There is a need to
study the failure of such joints as there is currently limited knowledge available in their
behavior during flight. As these structures are subjected to random loading scenarios
during flight, a numerical analysis considering the random nature of such scenarios and
the inherent random nature of the fatigue process is highly desirable. The development
of an efficient computational technique to study such scenarios will benefit greatly the
aerospace industry.

A code that is both efficient for the delamination modeling of adhesive bonded joints
in fatigue loading and that takes into account the stochastic nature of the fatigue process
has not been developed yet. This work will provide an efficient tool for the simulation
of adhesive bonded joints in fatigue loading coupling variable loads and stochastic fa-
tigue modeling. The implemented code is developed in MATLAB as it is a very flexible
scripting language that can be coupled with other finite element softwares.

1.2.5 Broader Impacts

The immediate beneficiaries of the work presented here are the scientists in the field of
fracture mechanics and material science as the stochasticity of real life bonded joints
can be assessed with the developed tool. As the algorithm was developed in MATLAB,
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it can easily be coupled with other commercial finite element programs to enhance its
capabilities like more complex meshes and faster processing times.

An area of application of this work is in the reduction of test costs during the devel-
opment process of aircraft parts. A reduction in testing can be done as the developed
algorithm is capable of simulating and predicting the fatigue delamination process of ad-
hesive bonded joints. Thus, different levels of loading and fatigue variations can be tested
numerically thus reducing the testing size. This will in turn translate into a reduction of
costs at the development stage.

1.3 Approach

1.3.1 Technical Approach

It is of interest in this research to develop a tool to predict the fatigue failure of adhesive
bonded joints capable of simulation of real life behavior of joint failure under fatigue
loading. Therefore, the basic approach taken is as follows:

• Construct an efficient finite element code to run fatigue analysis in an adhesive
bonded joint hence, the use of the Extended Finite Element Method is proposed to
efficiently model the delamination process without remeshing.

• Account for the stochastic nature of the fatigue in order to simulate real life behavior
of the fatigue process

• Evaluate the effects of random loading on cycles to failure of the adhesive bonded
joint

• Validate model using published data

• Propose areas of future work

In this work, a double cantilever beam (DCB) composed of composite adherends
and epoxy adhesive is analyzed within the framework of the Extended Finite Element
Method. A DCB was selected for the analysis as it is a commonly used configuration
to study delamination in composites and strength of the adhesive (Banea and da Silva
2009, Biel and Stigh 2007). The DCB will be analyzed in a two dimensional space and
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discretized using a Lagrangian mesh. Hence, they will be analyzed in their transverse
cross section (i.e. only length and thickness dimensions are meshed) and as such, plane
strain conditions are imposed in the analysis (refer to Figure 1.4). The Lagrangian mesh
will be enriched with partition of unity functions utilizing in the level set functions to
describe the discontinuity fields in the mesh i.e. delamination and delamination front
asymptotic field. The delamination will be advanced in each analysis step with a se-
lected delamination increment until the predefined final delamination length, maximum
allowable cycles or sudden fracture occurs.

Figure 1.4: 2D analysis of a double cantilever beam

In the algorithm developed, an initial crack is embedded in the adhesive layer. The
structure, in this context the DCB, is subjected to prescribed displacements or to ran-
dom sampled displacements from a normal probability density function. Afterwards, the
structure displacements and hence the stresses are found via the Extended Finite Ele-
ment Method. The crack is then advanced using a modified Paris-Erdogan power model
to determine the cycles needed to propagate the crack to the prescribed crack exten-
sion. The modified Paris-Erdogan equation is modified via the Yang-Manning’s model
to induce stochasticity. Comparison with experimental and computer simulation results
extracted from the literature is performed to evaluate the validity of the model.
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From the above established test case, a computer based algorithm in MATLAB for the
delamination prediction of a DCB will be created. From this computer code, the cycles
until failure will be calculated and compared with data in the literature. Furthermore, the
cycles to failure during random loading will be evaluated for different degrees of relative
standard deviations and analyzed to see the impact on the average cycles to failure due
to random loading and stochastic fatigue law.

1.3.2 Overview

The first step into the research process for this work was to select the computational
technique for analysis. In this study, the XFEM was selected as no remeshing is needed
for the simulation thus lowering the computational cost. After the numerical method
was selected, a survey of the implementations of the XFEM was performed to study the
details of the method, current implementation practices and limitations of the technique.

After general knowledge of the computational technique was attained, the develop-
ment process for the computer code was started. Initially, bilinear quadrilateral elements
were used for the analysis but convergence issues were present thus, instead of increasing
the element amount in the analysis, and thus increasing the computational cost, incom-
patibility elements were introduced. Also, at the beginning of the development process,
a sub triangulation technique for integration of the element was utilized. However, its
use was discontinued as this technique will require remapping of the integration points
during delamination increasing the computational cost.

A graphical representation of the research process is shown in Figure 1.5 below. As
shown, the study focuses in the development of a tool for simulation of stochastic fatigue
delamination in: 1) constant load simulation and 2) random loading simulation.
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Figure 1.5: Overview of the research process

1.3.3 Thesis Outline

This thesis is divided into four chapters. Chapter 1 is an introduction with an overview
of the methodology used, motivation and goals. Chapter 2 provides an in-depth look at
the finite element formulation and convergence study. Chapter 3 provides the implemen-
tation of the model and comparison of simulation results. Lastly, Chapter 4 contains the
conclusion of this work and suggestions to various areas of improvement and future work.



Chapter 2
Numerical Simulation Details

Delamination initiation and propagation can occur at the interface of the adherent and
the adhesive due to the high magnitude of stresses developed parallel and perpendicular
to the interface. Failures in adhesively bonded joints can occur by peeling or shearing
of the adhesive, delamination of an adherent or by tension or compression failure of the
adherents. Cohesive failure through the adhesive can also occur due to existing voids or
cavities. In this chapter, the mathematical foundations of the Extended and Standard
Finite Element Method and fracture theory for the simulation of adhesive bonded joints
are provided.

2.1 Modeling adhesive bonded joints

Adhesive bonded joints have been previously studied numerically through the XFEM and
experimentally compared using single and double lap joint (see Figure 2.1 (Campilho et
al. 2011 and 2011). Their work was based in coupling the extended finite element
method with the cohesive zone model (CZM). However, although the CZM allows for
modeling of the fracture phenomena as a degradation process, by virtue of a cohesive
law, the cohesize elements must be placed were the delamination is expected hence,
the delamination path must be known a priori. Prediction of delamination of bonded
joints can be classified into four (4) categories: traditional stress/strain methods, fracture
mechanics based methods, cohesive zone models and the extended finite element method
(Pascoe et. al 2013). de Borst and Remmers 2006 studied the delamination of Glare in a
DCB using a cohesive interphase to model the adhesive layer and exploiting the partition
of unity property (XFEM). Motamedi et. al. 2013 studied the delamination process of
Polyphenylene sulfide/Glass fiber reinforced polymer DCB and performed a 3D analysis
in Abaqus/MATLAB using XFEM capabilities. Stochasticity was incorporated into the
model via material properties.

Other researchers have also implemented the extended finite element method for the
analysis of carbon fiber composite laminates (Cahill et. al 2014), metal fiber laminates

13
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(Sosa and Karapurath 2012) and particle-reinforced composites (Ye et. al 2012). Cahill
et. al 2014 utilized an orthotropic variation of Equation 2.16 proposed by Asadpoure and
Mohammadi in 2007 alongside with the Heaviside and bi-material interface enrichment
functions and demonstrated that the maximum hoop stress criterion, for the determi-
nation of delamination propagation direction, is unsuitable for fracture of orthotropic
materials. Sosa and Karapurath 2012 modelled a DCB using a bimaterial definition for
Equation 2.16 proposed by Sukumar et. al in 2004 however, only incremental loading
was tested. Ye et. al 2012 utilized the XFEM capabilities of ABAQUS with user-defined
subroutines to model a plate with reinforcing inclusions and used the Paris equation
in Equation 3.5 to simulate fatigue loading. These research show the versatility of the
XFEM when modeling fracture.

(a) 

(c) 

(b) 

Figure 2.1: Single lap joint (a), double lap joint (b) and double cantilever beam (c);
arrows indicate loading conditions

2.2 Finite element formulation

The structural deformation of the adhesive bonded joint can be described by the Principle
of Virtual Work where the external work due to external forces must be balanced by the
structure due to internal forces (stresses); refer to Kuna 2013. Let the external virtual
work be defined by δWext and the internal work by δWint. The external work δWext is
comprised by the contribution of point loads fp applied at the mesh nodes, body force
per unit volume f b (e.g. material weight) acting on the element differential volume dV
and traction forces per unit area f t acting on the differential surface dS. Moreover, let
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us denote the internal work δWint as equal to the strain energy δU which arises due to
the material response to the mechanical loading. Hence, both the expressions for δWext

and δWint can be written as:

δWext =
∮
S

δd̃ · f tdS +
∫
V

δd̃ · f bdV + δd̃ · fp

δWint = δU =
∫
V

σ : δεdV =
∫
V

σijδεjidV
(2.1)

were σ represents the structure stresses and ε the strains. The displacement vector d̃
represents the nodal displacements which are interpolated from the calculated displace-
ments at the integration (Gauss) points by an expression of the form d̃(X) = Nd. In
the standard FEM formulation, N represents the shape function matrix and d the nodal
displacements.

Figure 2.2: Body with prescribed displacement and loads

Application of the Principle of Virtual Work, which result in δWint = δWext, neglect-
ing traction and body forces for simplicity and reducing the system to a two dimensional
space results in:

h
∫
Ω

σ : δεdΩ = δd · fp (2.2)
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were dΩ is the element differential surface and h the through-the-thickness distance.

Assuming small displacements and rotations of the structure, a linear approximation
of strains can be used. Furthermore, if a linear relationship between stresses and strains
is assumed, Hooke’s law can be implemented (σ = D : ε). Application of the compati-
bility condition for small deformations (ε = ∂di/∂xj) results in the following system of
equations: h ∫

Ω

B(X, Y )ᵀDB(X, Y )dΩ
d− fp

 δd = 0 (2.3)

Because δd is an arbitrary virtual nodal displacement, for the equation to hold true
the term in brackets must vanish. Therefore, the term within brackets represent the
differential boundary value problem to solve. Furthermore, the term in parenthesis is the
stiffness matrix of the structure. Given by:

K = h ·
⋃
Ω

∫
Ω

B(X, Y )ᵀDB(X, Y )dΩ = h ·
⋃
Ω

B(ξ, η)ᵀDB(ξ, η)|J|w (2.4)

were w is a weight value for numerical integration, |J| is the Jacobian matrix determinant
and B is the matrix of shape function derivatives or the so called strain/displacement
matrix:

J =
∂X∂ξ ∂Y

∂ξ

∂X
∂η

∂Y
∂η

 B =


∂Ni

∂X
0

0 ∂Ni

∂Y

∂Ni

∂Y
∂Ni

∂X

 (2.5)

and transformation of B(X, Y ), in terms of global coordinate system (X, Y ), to B(ξ, η),
in terms of element reference coordinate system (ξ, η) (refer to Figure 2.3):

∂Ni

∂X

∂Ni

∂Y

 = J−1


∂Ni

∂ξ

∂Ni

∂η

 (2.6)

where (ξ, η) are customarily used to accurately simulate irregularities in the elements
(e.g. curved elements).

Hence, the system of equation to solve for the structure displacement is:

K(ξ, η)d = F (2.7)

where the imposed boundary conditions are point loads in the surface of the structure,
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crack surfaces are traction free and prescribed displacements in the boundary. In equation
form these can be written as:

σ · n = 0 crack surface
d = 0 prescribed surface

(2.8)

2.2.1 Incompatible elements

The classical bilinear finite elements (commonly referred to as Q4 elements), provides
linear variation of the strain within its volume. The element has been widely used for
many structural problems and within the Extended Finite Element Method. It employs
the following set of bilinear shape functions to describe the displacement within its area:

N(η, ξ)i = 1
4(1 + ξiξ)(1 + ηiη) (2.9)

where (ξi, ηi) represent the natural coordinate values at each node (see Figure 2.3 bellow).

-

6

(−1,−1) (+1,−1)

(+1,+1)(−1,+1)

ξ

η

r r

rr

Figure 2.3: Node coordinates for the quadrilateral element in the computational space

In the bilinear quadrilateral element, quantities of interest can be linearly interpolated
from known values at the node via the shape functions as follows:

z(ξ, η) =
4∑
i=1

Ni(ξ, η)zi (2.10)

However, the element is known to be too stiff in bending and even suffer from shear
locking for elements with big aspect ratios (Logan 2011); refer to Figure 2.4. This
becomes an inconvenience when studying long narrow structures, as in adhesive bonded
joints as these structures are commonly subjected to bending. Of course, to circumvent
this limitation, a large number of elements can be used along the bonded joint (Logan
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2011). However, this increases the computational time, and more so for the XFEM as
each node has an increased number of degrees of freedom. As such, in this work an
improved bilinear quadratic element known as Q6 is employed. This element was first
introduced by Wilson et. al. in 1973. The procedure is to add quadratic terms to the
interpolation in Equation 2.10. The interpolation is then expanded to:

z(ξ, η) =
4∑
i=1

Ni(ξ, η)zi + (1− ξ2)g1 + (1− η2)g2 (2.11)

The additional degrees g1 and g2 are internal and thus do not contribute to the global
stiffness matrix.

Figure 2.4: Q4 element in bending, from Logan 2011

2.3 The Extended Finite Element formulation

The Extended Finite Element Method is based on the Partition from Unity method
(Belytschko and Black 1999). Two distinct approaches can be followed, intrinsic or
extrinsic. The former approach deals with the addition of information from the analytical
solution to the basis function thus increasing the order of completeness (Mohammadi 2008
and 2012). The latter approach deals with the addition of additional unknowns (degrees
of freedom) to add the information from the analytical solution. The method has been
used for description of cracks in isotropic media (Belytschko and Black 1999), for cracks
in a bimaterial interphase (Sukumar et. al 2004), for orthotropic media (Asadpoure and
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Mohammadi 2007)

2.3.1 Discontinuity field description

The strong discontinuity enrichment function is used to model the cracked elements (i.e
the strong discontinuity field). Many definitions of the Heaviside function have been
adopted through the years (Mohammadi 2008). Definitions such as step functions and
smoothed step functions have also been proposed. The selected version of Heaviside
function in this work is the signed distance function which has the form of:

H(ψ) = sign(ψ) =
+1
−1

(2.12)

were ψ is the normal level set of the delamination which in turn is defined as the normal
distance from the crack face (refer to Section 2.3.2).

It is also important to note that the derivative of the Heaviside function is the Dirac
delta function which becomes zero except at the strong discontinuity:

∂H(ψ)
∂Xi

=
1 when φ = 0

0 when φ 6= 0
(2.13)

Now the strong discontinuity enrichment function and its derivative can be defined
as:

H = Nk (H−Hk) (2.14)
∂H

∂Xi

= ∂Nk

∂Xi

(H−Hk) (2.15)

Note that k is a nodal index and Xi is the spatial coordinate of the real space.

To describe the asymptotic field near the delamination front (crack tip), several en-
richment functions exist in the literature. These enrichment functions are derived from
asymptotic crack tip displacement fields and are thus dependent on the material defini-
tion inside the domain where these are applied (i.e. isotropic or orthotropic and linear or
non-linear elastic for the scope of this study). Similar to the above enrichment functions,
a shifting procedure is also needed to preserve interpolation.
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The near-tip field equations for isotropic media wre originally proposed in the frame-
work of XFEM by Belytschko and Black 1999. However. these were first introduced by
Fleming in 1997 (see also Fleming et. al 1997).

f l(r, θ) =
(
√
r sin θ2 ,

√
r cos θ2 ,

√
r sin θ2 sin θ,

√
r cos θ2 sin θ,

)
(2.16)

These functions span the asymptotic field close to the crack tip ’near-tip field’ which
are based on a first order approximation of the stress field solution by William in 1957.
The complete solution of the stress field is given by a infinite series expansion of eigen-
values and eigenfunctions. Hence, this expansion results in a non-singular higher order
stress field. The first order terms in the William expansion represent the stress singular-
ity (
√
r) and thus contain the stress intensity factors. However, the second order terms

describe a uniform non-singular stress parallel to the crack tip. This stress is commonly
known in the fracture mechanics literature as the ’T-stress’. As a consequence, two new
crack tip enrichment functions are used to increase the accuracy of the model:

f 5,6(r, θ) = (r cos θ, r sin θ) (2.17)

Higher order terms have been reportedly used in the literature by Xiao and Karihaloo
(2006) however, no clear definition was provided for the enrichment functions. Never-
theless, the inclusion of the second terms in the William’s expansion does improve the
accuracy of the stress field near the crack tip.

The functions in Equations 2.16 and 2.17 describe the asymptotic strain field in
the vicinity of the crack tip were θ and r are the polar coordinates to the material point
(integration point) in the structure relative to the crack plane. The coordinate convention
is shown in Figure 2.5.
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Figure 2.5: Crack coordinate convention

These enrichment functions are known to produce inaccuracies in the blending el-
ements thus (Fries 2008) hence, in this work the corrected model developed by Fries
in 2008 is employed. In their general form, the near-tip enrichment functions can be
expressed as:

F l = Nk

(
f l − f lk

)
R (2.18)

were R(x) is a ramp function. The derivative of f l near tip functions can be computed
from the chain rule as:

∂F l

∂Xi

= ∂Nk

∂Xi

(
f l − f lk

)
R +Nk

(
∂f l

∂Xi

− ∂f lk
∂Xi

)
R +Nk

(
f l − f lk

) ∂R
∂Xi

(2.19)

Therefore, the complete displacement approximation of the solution for a quadrilateral
element can be expressed as:

d(xj) =
4∑
i=1

Niui +
4∑
i=1

Ni (H−Hi) ai +
k∑
l=1

4∑
i=1

R(xj)Ni

(
F l − F l

i

)
bli (2.20)

were R(xj) is a ramp function and Ni the interpolation functions for the quadrilateral
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element.

2.3.2 Level set method

The level set method (LSM) was first proposed by Osher and Sethian in 1988 for tracking
of moving surfaces. Functions of higher order than the interface being modeled are used
to track the evolution of the crack. This method of representing interfaces has been
proven to be effective in modeling of inclusions in the mesh (Sukumar et. al 2001)
(closed interfaces). Modeling of open interfaces such as cracks requires an extension of
the LSM. Stolarska et. al (2001) extended the LSM for the purpose of describing open
surfaces by tracking the crack as a combination of two level set functions. A tangential
level set function ψ describes the crack interface whereas a orthogonal level set function
φ describes the location of the crack tip. Both functions describe the location at its zero
level set as shown in Figure 2.6.

Figure 2.6: Level sets

The normal distance level set is constructed from values from a signed distance func-
tion χ(x) (Sukumar and Prévost 2003). This function has its value defined at point x
for a distance measured from boundary xΓ (crack). Both the tangential level set ψ and
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normal level set φ can then be defined via the signed distance function as:

ψ = min||X−XΓ|| · sign (nn · (X−XΓ))
φ = min||X−XΓ|| · sign (nt · (X−XΓ))

(2.21)

were nn and nt are the normal and tangential unit vectors, for the crack segment.

Stolarska et. al (2001) also provided a method for updating the level sets for prop-
agating cracks. Furthermore, they also provided a method for node classification for
enrichment and polar coordinate computation based on level set values. Nevertheless,
both the node identification and polar coordinate schemes have been proven to be in-
accurate (Ahmed 2009). However, inaccuracies in element enrichment can be fixed by
evaluating each enriched element for containment of the crack tip geometrically in the
subset identified as near-tip elements. The method is explained below.

For the vector of the new crack segment F and the vector of the previous crack
segment V, the angle α can be computed. The normal level sets for the nodes ahead of
the crack front (φ > 0) are updated by:

ψn+1 = −sign(α) (x− xcrack tip)× F
||F||

(2.22)

Note that ψ is only updated if α 6= 0. Now φ is updated via:

φn+1 = (x− xcrack tip) Fx
||F||

+ (y − ycrack tip) Fy
||F||

(2.23)

The procedure for node selection for enrichment follows the same procedure as estab-
lished by Stolarska (2001). If the nodes in an element with φ < 0 and φmin ·φmax ≤ 0 the
element is classified as Heaviside elements (completely cut by the crack). If ψmin·ψmax ≤ 0
and φmin · φmax ≤ 0, the crack tip might be within the element. As shown by Ahmed in
2009, this procedure has its flaws, specifically for the condition of crack tip enrichment.
This can be remedied by doing a simple geometric query on the crack tip enriched ele-
ments (following the above criteria). If the crack tip is found within the element area,
the enrichment is preserved, if not, the enrichment is dropped.

The element enrichment scheme is adopted here as it is accurate for cohesive fail-
ure of the adhesive layer. However, calculation of polar coordinates for use in near-tip
enrichment functions are computed geometrically to avoid inaccuracies. Impact to the
computational time is minimal as polar coordinates need only to be calculated at near-tip



2.3. THE EXTENDED FINITE ELEMENT FORMULATION 24

enriched nodes.

With the aid of the level sets, the enriched space can be defined around the crack and
the discontinuity functions for crack description embedded into the analysis. An example
of an enriched space is represented in Figure 2.7

Figure 2.7: Enrichment space example

2.3.3 Blending elements

Fries 2008 addresses the issue of blending elements by using a Ramp Function built using
standard shape functions. In standard un-enriched elements the partition of unity holds
(see Eq 2.24). For blending elements, which have some of their nodes enriched, the
opposite occurs; the sum of the shape function does not equal 1.
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∑
i∈I

Ni(x) = 1

R(x) =
∑
i∈J

Ni(x)
(2.24)

Strong discontinuities in this work do not pose a problem in blending elements. As
explained in Fries work, the functions used for strong discontinuity enrichment are of
constant value as long as the shape functions used for the enrichment are of equal or
less order as those of the standard FEM part of the approximation. This is the case for
Heaviside and Sign enrichment functions used in this thesis.

2.3.4 Degrees of freedom

In the framework of the standard FEM, the nodal degrees of freedom correspond to the
x and y displacements of the structure (for two dimensional general analysis). In the
XFEM framework, the displacement field is enriched with functions that describe the
phenomenological fields of interest. Modeling of the discontinuous field of a crack, the
Heaviside function H is introduced. To describe the asymptotic field produced by the
delamination front (crack tip) the Near-tip functions F l are introduced. The displace-
ment field is then the linear combination of the physical x and y displacements with the
enrichment functions. In equation form, this is described as:

d = {ukx uky akx aky blkx
blky
}ᵀ (2.25)

were u represents the displacements DoFs, a the strong discontinuity DoFs and bl the
DoFs for the near-tip discontinuity for l enrichment function. Note that the incompatible
degrees of freedom, as introduced in Section 2.2.1, are not included as these are internal
DoFs that are condensed out before assembly of the global stiffness matrix K

Now that all the enrichment functions have been introduced, the continuum and en-
ergy concepts presented in Section 2.2 are presented in the framework of the extended
finite element method. The strain displacement matrix for the element is now a combina-
tion of the contribution of each enrichment function in x and y coordinates. In equation
form this is expressed as:

B =
[
Bu
i Ba

i Bb
i

]
(2.26)

were Bu are the strain/displacement matrix for the quadrilateral element as provided in
Section 2.2
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Ba =


∂
∂ξ

(Ni(H −Hi)) 0
0 ∂

∂η
(Ni(H −Hi))

∂
∂ξ

(Ni(H −Hi)) ∂
∂η

(Ni(H −Hi))

 (2.27)

Bb =


∂
∂ξ

(Ni(F − Fi)R(X)) 0
0 ∂

∂η
(Ni(F − Fi)R(X))

∂
∂ξ

(Ni(F − Fi)R(X)) ∂
∂η

(Ni(F − Fi)R(X))

 (2.28)

2.3.5 Element integration

In this work, the integration scheme proposed by Dolbow 1999 is implemented. Here,
the enriched elements are subdivided into integration sub-cells. This subdivision does
not introduce additional degrees of freedom as they are only used for integration. Several
advantages are identified on this scheme when compared to the sub-triangulation (see
example in Figure 2.8), the later technique well explained in the work of Nguyen 2005.
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Figure 2.8: Example of element sub-triangulation

Sub-tessellation using triangles requires the isoparametric mapping of the Gauss
points from each triangle into the element space Ω. As no close form equation exists
for this mapping, an iterative solution (e.g. Newton-Raphson) has to be performed
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which imposes additional burdens to the computer code. Another disadvantage of sub-
tessellation using triangulation arises when handling delamination propagation. As the
delamination front moves during the simulation, the integration points might have to be
moved (re-subtriangulation) and the computed integration point quantities have to be
recalculated.

Sub-tessellation using quadrilaterals does come with its disadvantages. As the in-
tegration is now performed in quadrants that do not conform to the discontinuity, the
equivalence between the weak and strong form of the finite element formulation is lost
(Sukumar and Prèvost 2003). However, if sufficient quadrilaterals are used, the errors
introduced by this method of integration is reduced.

Take into consideration the stiffness equation for a linear elastic formulation were B
is the strain/displacement matrix and D the material matrix:

K =
∫

Ω
BᵀDBdΩ (2.29)

The Gauss/Legendre approximation in two dimensions for the above formula takes the
following form:

K =
s∑
j=1

( g∑
i=1

Bᵀ
iDBiwi

)
j

(2.30)

were s is the total number of subcells within the element and g the number of Gauss
points.

The procedure for this integration scheme is as follows: The element is subdivided into
quadrilaterals and 4 point integration is adopted on each sub-quadrilateral (see Figure
2.9). The integration points on each sub-quadrilateral mapped from the reference ([-1
1],[-1 1]) domain are mapped to the element Ω space via Equation 2.10. The integration
points in Ω are then mapped back to the reference space of the element for integration. It
is customary to use an iterative solution (e.g. Newton-Raphson) to perform the inverse
mapping of the integration points. However, to decrease the computational burden, the
inverse mapping proposed by Hua in 1990 is employed. Note that also the blending
elements around the crack tip are partitioned into quadrilaterals (see Figure 2.7). After
the integration points are mapped, the weights are also mapped using the equation below
as described by Nguyen in 2008:

win element = win sub-quad · ||J||in sub-quad (2.31)
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Figure 2.9: Example of element partitioning using sub-quadrilaterals

2.4 Fracture Mechanics

The first law of thermodynamics, which is an expression of the conservation of energy
principle, states that energy in a system must be conserved. Hence, when a system
goes from a state of imbalance to a state of equilibrium, there will be a net decrease in
energy. Griffith (1921) applied this principle to the formation of a crack. Application of
this principle to through-thickness crack in an infinitely wide plate in tension yields the
following expression:

G = πσ2a

E
(2.32)

were G is the energy for crack formation per unit area known as the energy release rate as
introduced by Irwin (1957). The energy release rate is a measure of the available energy
for crack extension. Therefore, a critical value of this parameter provides a material
fracture property, known as fracture toughness Gc. Note that the expression in 2.32
shows that the energy available for crack formation or extension depends on the material
elastic modulus E, the stress state σ and crack length a.

The expression in 2.32 is limited to both loading configuration, material model and
crack-tip plasticity (crack plasticity is contained in a small region). The path-independent
contour integral, independently introduced by Cherepanov in 1967 and Rice in 1968 can
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then be used to define a non-linear energy release rate. As introduced by Rice, the path
independent integral takes the form of:

J =
∫

Γ

(
wdy − T · ∂u

∂x
ds

)
(2.33)

were ds is the differential path in Γ, T corresponds to the traction acting normal to the
integration path and w is the strain energy:

w =
∫ εij

0
σijdεij (2.34)

In order to facilitate the computation of energy release rate J in the finite element
framework, an equivalent domain integral is implemented (Shih et al. 1986). The at-
tractiveness of the equivalent domain integral is its versatility and its simplicity when
implemented in a finite element code. The integral in equation 2.33 then becomes the
following equivalent domain integral:

J =
∑
Ω

∑
n

[(
σij

∂uj
∂x1
− wδ1i

)
∂q

∂xi

]
n

|J|nwn (2.35)

Note that the equivalent domain integral in 2.35 does not take into account traction
forces at the crack surface, body forces, thermal or inelastic strains or nonlinearities
which are in accordance with this work assumptions (refer to Kuna 2013 for a more
general expression). In equation 2.35, q is an arbitrary continuous differentiable weighing
function that becomes zero outside of the integration area. As it is arbitrary, the following
definition is applicable:

q =
0 on Γ

1 on Γε
(2.36)

The weighing function q above is computed at the nodes. Interpolation into the integra-
tion points is then performed similar to other quantities by using the shape functions of
the isoparametric element:

q(x) = Niqi

∂q(x)
∂xj

= ∂Ni

∂ξj

∂ξj
∂xk

qi
(2.37)

The contribution to the elasto-plastic J-integral is only on elements on which there
is a gradient of the weighing function q, (0 < q < 1). Figure 2.10 depicts the area of
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integration for the double cantilever beam used for analysis. The yellow colored area
represents the area where the weight function q has a value of 1 and the blue area where
it has a value of 0, as defined in Equation 2.36. The equivalent domain integral is
calculated where q is not equal to 0 as defined in Equation 2.35 but only the elements in
the periphery of the yellow area (where 0 < q < 1) contribute to the calculation of the
energy release rate J .

Figure 2.10: J integral area of integration

2.4.1 Crack tip near fields

Several closed-form expressions for stresses in a body have been published for isotropic
linear elastic material behavior (Anderson 2005 and Perez 2004). For the coordinate
system defined in Figure 2.5, the stress field in a linear elastic fractured body can be
defined by:

σkij = Kk√
2πr

fkij(θ) +
inf∑
m=0

Amr
m
2 gmij (θ) (2.38)

were the term fkij(θ) represent a dimensionless term dependent of the crack tip angle θ
with respect to the query point. Also, Kk is the stress intensity factor (SIF) were the
subscript k denotes the mode of loading i.e. KI ,KII or KIII ; see Figure 2.11.
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The first term in the expansion associates the stress field around the crack tip with
the stress intensity factor, a measurement of the stress state. Normally, based on the
small scale yielding assumption (small plastic zone when compared with crack length),
only the first term of the expansion is used (William 1957).

Figure 2.11: Fracture modes

In Equation 2.38, fkij(θ) is a trigonometric function that has to be derived analytically
(Perez 2004). Derivation of the stress field ahead of the crack tip can be found through
the literature. However, a more general expression of the stresses and displacements
(needed for the definition of the near-tip enrichment functions in Equations 2.16 and
2.17) can be found in the work of Xiao et. al. in 2004.

Hence, for isotropic media, the displacement field ahead of the crack tip (using only
the first two terms in the expansion) is described by:

ux =
√
r

2µ

a1 cos
(
θ

2

)κ+ 1− 2 cos
(
θ

2

)2
− b1 sin

(
θ

2

)κ+ 1 + 2 cos
(
θ

2

)2
+

r

2µ {a2 cos(θ)− b2 sin(θ)} (κ+ 1)

uy =
√
r

2µ

a1 sin
(
θ

2

)κ+ 1− 2 cos
(
θ

2

)2
− b1 cos

(
θ

2

)κ− 3 + 2 cos
(
θ

2

)2
+

r

2µ {a2 sin(θ)(3− κ)− b2 cos(θ)(1 + κ)}
(2.39)
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were µ is the shear modulus and κ the Kolosov’s constant given by:

κ =
3− 4ν plane strain

3−ν
1+ν plane stress

(2.40)

Note that a1 and b1 are related to the stress intensity factors by:

a1 = KI√
2π

b1 = − KII√
2π

(2.41)

and a2 related to the T-stress which accounts for a constant stress parallel to the crack.

The near field displacement equations presented above are the basis for the near-
tip enrichment functions in Equations 2.16 and 2.17 used for modeling of the near field
stresses around the delamination front in the adhesive.

2.5 Case study: Double Cantilever Beam

2.5.1 Analytical solution

A typical test configuration for fracture toughness (delamination) in composites and
strength of the adhesive layer is the double cantilever beam (DCB) (Banea and da Silva
2009, Biel and Stigh (2007)). An example of a double cantilever beam is shown in
Figure 2.12. The displacement δ (which coincides with the displacement of the loading
point) can be computed using beam theory. According to Timoshenko beam theory, the
displacement can be calculated analytically by:

δ = 2Pa3

3EI + Ph2a

4µI (2.42)

In the above equation, P is the applied load, I the second moment of inertia, and E and
µ the Young’s and shear modulus respectively. Note that if Euler-Bernoulli beam theory
is used, the second term in Equation 2.42 is neglected. To obtain the deflection of one
of the cantilever end, δ is divided by 2.
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Figure 2.12: Double cantilever beam in displacement control

Analytical solutions for the energy release rate exists through the literature. For the
classical beam theory, the following expression can be obtained (Anderson 2005):

G = 12P 2a2

w2h3E
(2.43)

or from the modified beam theory method (Prasad et. al 2011):

GI = 3Pδ
2ta (2.44)

However, these equations will overestimate the energy release rate as they do not
account for the rotations at the loaded ends of the double cantilever beam. This can be
corrected by introduction of an effective crack length (Nairn 2000).

2.5.2 Convergence study

A convergence study was performed to determine the minimum required number of ele-
ments needed for the solution of adhesive fatigue failure of the double cantilever beam.
This configuration is selected as close form analytical solutions exist and because it is a
common test setup to evaluate adhesive strength. The test case is selected so that it com-
pares to the benchmark double cantilever beam setup as in Krueger’s report (2010). The
material properties selected for benchmark are: E = 70, 000N/mm2, ν = 0.33 (material
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properties for isotropic media for convergence study only) and the analysis carried out
in plane strain conditions (here, the epoxy presence is ignored in the analitical solution
but modeled in the XFEM framework). This assumption is valid due to the thin section
of the adhesive layer.

As shown in Figure 2.13 the finite element solution starts to oscillates between 2%
of the analytical solution at about 750 elements, with refinement at the loading end and
near the delamination as depicted in Figure 2.14. As shown, the incompatible element
can be used to predict the energy release rate. However, the incompatible element tends
to be significantly less stiffer thus, a higher number of elements must be used in the
transverse direction of the beam. Figure 2.14 shows an example of the mesh used where
the red colored line represent the crack or initial delamination.
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Figure 2.13: Energy release rate mesh convergence test
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Figure 2.14: Mesh example for convergence study; convergence is improved by adding elements in the X direction



Chapter 3
Implementation and Results

Failure prediction of an adhesive bonded double cantilever beam is performed within
the framework of the Extended Finite Element Method. An initial delamination is embed-
ded within the adhesive layer and modeled independently from the mesh via a Heaviside
function (strong discontinuity). The asymptotic near-tip field is modeled with Linear
Elastic Fracture Mechanic based enrichment functions. A stochastic fatigue propagation
model based on the Paris-Erdogan equation with the maximum strain energy as a frac-
ture parameter is used to simulate delamination growth data. Two cases are studied, a
constant and random amplitude fatigue test cases.

3.1 Fracture mechanics for the adhesive

As previously stated, the adhesive layer is modeled as a linear elastic material. The near
tip functions for enriched are based on linear elastic fracture mechanics theory. However,
an energy approach is used in this work to characterize the fracture state of the double
cantilever beam. As such, the maximum energy release rate criteria (introduced by
Nuismer in 1975) is used. According to the criteria, delamination propagation will start
after the maximum energy release rate reaches a critical value (i.e. Fracture Toughness
Gcr). The delamination will propagate in a radial direction where the energy release rate
is at its maximum. However, its criteria is based on stress intensity factors.

In 1983, Nishioka proposed an equation for the energy release rate as a function of
the J-integral. The energy release rate is then given by the following expression:

G = J1 cos θ + J2 sin θ (3.1)

were the propagation angle can be derived by maximizing the above expression thus, the
propagation angle is given by:

θ = arctan
(
J2

J1

)
(3.2)

36
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From the previous definition of the equivalent domain J-integral, the following ex-
pression for J1 and J2 can be derived:

Jk =
∑
Ω

∑
n

[(
σij

∂uj
∂xk
− wδki

)
∂q

∂xi

]
n

|J|nwn (3.3)

3.1.1 Fatigue and crack propagation

Fracture mechanics has been used for characterization of crack propagation under cyclic
loading since the 1960’s with the work of Paris and Erdogan 1960 and Paris et. al. 1961.
Fatigue behavior of adhesive and bonded joints using fracture mechanics has been studied
since the 1970’s from the works of Roderick 1975. Fatigue crack propagation was first
introduced by Paris in the form of:

∆a
∆N = f(Kmax, β) (3.4)

where K is the stress intensity factor, N the number of cycles, a the crack length and
β = Kmin/Kmax. Expressions in the literature range from (Pascoe et. al 2016):

da

dN
= C∆Km or da

dN
= C∆Gm or da

dN
= CGm

max (3.5)

where C and m are material constants.

From the above relations, the delamination extension ∆a can be computed and the
crack extended. To do so, the stress intensity factor range ∆K, the energy release rate
range or max (∆G or Gmax) needs to be computed. Furthermore, other researchers have
also proposed to normalize the energy release rate by the fracture toughness (∆G/Gc or
Gmax/Gc) (Pascoe et. al 2013).

3.1.2 Stochastic fatigue model

It is known that fatigue crack growth is stochastic in nature (Li et. al. 2011). Where
here, stochastic pertains to the random nature of the fatigue process. Hence, a stochastic
approach is embedded within the code to simulate the random nature of fatigue. In this
work, the Yang-Manning’s model (1990) is implemented but with the modification of
using the maximum strain energy instead of the stress intensity factor range (∆K =
Kmax −Kmin). The model is described as follows:
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The Paris-Erdogan model is assumed for delamination propagation with the strain
energy as the fracture parameter (see Equation 3.5). However, the delamination propa-
gation rate is multiplied by a correlation time parameter to account for the stationary
random process per number of loading cycles.

da

dN
= X(N)CGm

max (3.6)

The function X(N) is sometimes reduced to a log-normal random variable and as
such, the delamination propagation function can be rewritten as:

da

dN
= xpCG

m
max (3.7)

where:
xp = lg−1(−λµpsz) (3.8)

In the above equations, λ is the correction factor of the standard deviation as a
function of the number of samples the model is based on and is defined as:

λ =
√
n− 1

2 ·
Γ
(
n−1

2

)
Γ
(
n
2

) (3.9)

µp a standard normal variate for a probability p and sz is the mean square of the exper-
imental fatigue data defined for the experiment at hand as:

sz =

√√√√ n∑
i=1
{lg

(
da

dN

)
i

− lg [C(Gmaxi
)m]}2/(n− 2) (3.10)

The calculation for sz was estimated from the plotted data in König et. al. 1997 for
a double cantilever beam.

3.1.3 Simulation by loading cycles

In the present study, the simulations are performed via loading cycles. This means
that the entire loading spectrum is subdivided into small spectra on which a delamina-
tion increment ∆a is tested. In this dissertation, the simulation scheme selected is by
preselecting a delamination increment and determine the cycles needed to achieve that
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delamination increment by inverting the Paris-Erdogan power equation to characterize
fatigue.

∆Ni = X(N)−1

C
G−mmax∆a (3.11)

In each loading cycle, the finite element simulation is performed for two load cases (a
maximum and minimum load). From these solution (the maximum energy release rate
Gmax is calculated). It is important to note that crack closure effects are not considered
in the present study (high loading ratios β).

The total crack extension for a delamination increment technique is a summation of
crack extensions for each loading cycle or in equation form:

a = a0 + ki∆a (3.12)

were ki is the loading cycle number and ∆a is the delamination increment which is a
simulation input parameter. For clarification, an example of a simulation loading history
for a variable amplitude case is provided in Figure 3.1 below.

Figure 3.1: Loading history example
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3.1.4 Code structure

The structure of the constructed code is shown in Figure 3.2. As previously stated, an
initial delamination is embedded into the adhesive. The enriched space is then determined
based on the initial delamination position. The global stiffness matrix is then determined
and the energy release rate computed. If the energy release rate attains a threshold value,
delamination will occur. If the energy release rate is above a critical value, failure of the
adhesive will occur and the simulation is stopped. Furthermore, if the cycles computed
do not attain an onset value, delamination will not occur. The simulation is stopped
after final delamination length is attained or if the total number of cycles is obtained.
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Figure 3.2: Flowchart for crack propagation
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3.2 Benchmark example: graphite epoxy DCB

3.2.1 Constant amplitude loading

The developed finite element code was compared with experimental results by König et.
al (1997) and numerical results published by Krueger in 2010. The material properties
for the plies are the same as published in their work and summarized in Table 3.1 below
for a unidirectional Graphite/Epoxy prepreg with a [0]24 stacking sequence. However, the
material properties for the adhesive were not provided in their study, thus the material
properties published for the epoxy resin by Car et. al. in 2000. Refer to Tables 3.1 and
3.2 for the material properties used in the analysis.

In the benchmark example by Krueger, a displacement controlled experiment was
performed with loading parameters provided in Table 3.3. Similarly, a delamination
increment of ∆a = 0.50 mm was selected for the simulation as it provided stable results
in the developed MATLAB script. The test configuration is depicted below for clarity.

Figure 3.3: Test configuration
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Table 3.1: Material properties for unidirectional Graphite/Epoxy Prepreg
Young’s modulus E11 E22 E33

[GPa] 139.40 10.16 10.16
Shear modulus µ12 µ13 µ23

[GPa] 4.60 4.60 3.54

Poisson’s ratio ν12 ν13 ν23

0.300 0.300 0.436

Table 3.2: Material properties for epoxy resin
Young’s modulus E

[GPa] 13

Poison’s ratio ν

0.325

Table 3.3: Benchmark loading parameters
Maximum displacement [mm] (δmax) 0.67
Minimum displacement [mm] (δmin) β · δmax

The delamination growth rate is computed with Equation 3.6. The double cantilever
geometry, as defined in Figure 3.3, has the following geometric values provided in Table
3.4 which are the same geometric parameters as provided by Krueger (2010).

Table 3.4: Geometry of DCB for benchmark example
Width (w) [mm] 25.0
Thickness (h) [mm] 3.0
Length (l) [mm] 150.0
adhesive thickness [mm] 0.1
Initial delamination (a0) [mm] 30.0

As with the work of Krueger in 2010, delamination propagation values were extracted
from the results published in 1997 by König et. al. The model proposed here is limited
to region II of the fatigue delamination growth plot, which is the region governed by the
Paris-Erdogan power law.
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A Cutoff or threshold energy release rate of 0.060 kJ/m2 and fracture toughness of
0.17 kJ/m2 were also adopted into the analysis. A delamination growth increment of 0.5
mm was selected to compare the results with those published by Krueger and a maxi-
mum delamination length of 40 mm and 10,000,000 cycles were also incorporated into
the analysis. The analysis was performed as a plane strain linear extended finite element
simulation in MATLAB (developed code provided in the Appendix). A depiction of the
mesh used for the analysis is shown in Figure 3.5. The delamination (shown in red in Fig-
ure 3.5) is mathematically embedded into the finite element via the enrichment functions.
The elements depicted in blue represent the carbon/epoxy unidirectional adherends and
the gray elements represent the adhesive layer.

Figure 3.4: Mesh for fatigue simulation of DCB (initial delamination in red color)

The delamination growth rate closely resembles the data fit in König et. al. 1997
as plotted in Figure 3.5. The analysis consisted of 20 loading cycles for the selected
delamination increment of 0.50 mm.
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Figure 3.5: Delamination growth rate comparison with experimental data

A Von Mises contour plot of the final loaded beam is shown in Figure 3.6. It can be
observed the stress distribution round the delamination front (crack tip) which compares
to the expected stress distribution of a plane strain state of stress for an elastic material
(Anderson 2005). However, it is important to note the effect the adherends have in the
stress distribution where the stress propagates to the adherends in a considerable area.
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Figure 3.6: Von Mises stresses contour plot (Constant amplitude loading)

The delamination length vs. cycle are provided in Figure 3.7. The results of the
stochastic constant amplitude fatigue simulation are plotted along with the results re-
ported by Krueger in 2010 for the simulation performed in ABAQUS software with CPE4
plane strain elements. The stochastic results obtained by the constant amplitude con-
dition compares with the delamination data for the simulation with CPE4 elements.
Hence, the numerical results produced by the numerical approach in this dissertation are
comparable to the numerical results using ABAQUS.
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Figure 3.7: Delamination length results per cycles for constant amplitude stochastic
fatigue

3.2.2 Implementation with random loading

Variable loading fatigue simulation is modeled by subjecting the structure to consecutive
small constant amplitude loading spectra that differ in amplitude between each other,
thus the loading spectrum can be considered of variable amplitude (Anderson 2005).
If the loading values are not fixed but randomly extracted from a probability density
function, it is considered in this sense random loading. The assumption being that a
structure is designed for a type or magnitude of loading, but in reality, unpredicted or
stochastic processes can subject the structure to random loading. For the case at hand,
a simple normal distribution is selected as the probability density function of which



3.2. BENCHMARK EXAMPLE: GRAPHITE EPOXY DCB 48

random data points will be extracted at each loading cycle. The average load and ratio
β values are provided in Table 3.3. Several standard deviations are selected as to observe
their effect on the simulation. The results of the simulation are provided in Figure
3.8. It is important to note that as the uncertainty of the input load (displacements)
increases, a larger number of simulations must be carried out as some of the cycles do
not produce contribute to delamination as the strain energy release rate does not exceeds
the threshold release rate. Another important feature from the analysis is the limitation
to model correctly regions I and III for the delamination growth plots. This can be
overcome by adopting an equation for delamination growth rate that characterizes the
complete sigmoidal curve. However, empirical data is needed to feed this information to
the stochastic function.
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Figure 3.8: Delamination growth rate comparison with random loading

Figure 3.9 below shows a comparison of the delamination length per cycle with varying
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load and load ratio standard deviations. From the figure, an increase in randomness can
be seen as higher standard deviations of input parameters is increased as expected. An
important feature is that a retardation effect is produced with an increase in the standard
deviation of the input load meaning that the slope of the cycles vs. displacement tends to
increase at the end of the delamination. This can be explained as the double cantilever
beam is subjected to a larger number of loading cycles. However, a number of these
loading cycles do not contribute to delamination as the energy release rates produced
are below the threshold value as can be seen in Figure 3.8. However, these cycles do
accumulate in the structure and thus we observe the increase in slope at the end of the
delamination simulation.
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Figure 3.9: Delamination length results per cycle for random amplitude load stochastic
fatigue
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3.2.3 Evaluation of load variation

The impact of random loading was further evaluated by selecting three test cases: low,
medium and high variation from load mean and load ratio. The amounts of deviation
were selected as 1%, 5% and 10% for both load and ratio for low, medium and high test
cases respectively. However, the test case scenario remains the same as for the benchmark
example.

A total of 15 experiments were performed for each test case. The strain energy release
results for these experiments is shown in Figures 3.10, 3.11 and 3.12 for low, medium and
high load variations, respectively. For a load variation of 10%, catastrophic delamination
was observed for 5 of the 15 experiments run. This indicates that unstable delamination
can occur for random loads above 10% of the selected configuration.
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Figure 3.10: Energy release rate for low deviation test case
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Figure 3.11: Energy release rate for medium deviation test case
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Figure 3.12: Energy release rate for high deviation test case

The final cycles to failure obtained for each test case were extracted from the result
data set and plotted in a probability plot, refer to Figures 3.13, 3.14 and 3.15 for the
low, medium and high variable loading cases respectively. The obtained values follow a
normal distribution as shown for the high p-values and low Anderson-Darling statistics.
However, the results for the high variable loading test case are marginally described by
a normal distribution due to its low p-value. This might be attributed to the extreme
cases of catastrophic failure (i.e. low cycles to failure observed for 5 samples).
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Figure 3.13: Final cycles to failure for low deviation test case

Low variability in load test results are shown in Figure 3.13. The predicted cycles
to failure by the developed code for the low variability test follow a normal distribution.
The cycles to adhesive failure are estimated to be 4,767,253 cycles for the sample set.
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Figure 3.14: Final cycles to failure for medium deviation test case

Medium variability in load test results are shown in Figure 3.14. The predicted
cycles to failure by the developed code for the medium variability test follow a normal
distribution. The cycles to adhesive failure are estimated to be around 3,894,302 cycles
for the sample set.
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Figure 3.15: Final cycles to failure for high deviation test case

High variability in load test results are shown in Figure 3.15. The cycles to adhesive
failure are estimated to be around 2,382,616 cycles for the sample set which is significantly
less than for the low and medium variability test cases. However, the test shows that
the data do not follow a normal distribution due to the low p-value (< 0.05). This
is attributed to sudden or catastrophic failure of the adhesive as observed for 5 of the
samples.

3.2.4 Evaluation of seed influence in random data generation

The previously presented data was based on default random number generation settings
within MATLAB. In order to evaluate the influence in the simulated random data, two
different seeds were randomly selected using the rng function within MATLAB with the
’shuffle’ input argument. This sets the seed for random number generation to a value
based on the current computer time. The two cases selected were ran at 5% deviation
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from loading and loading ratio input means. Figure 3.16 shows a box plot of the data
with the default seed of 0 and the seeds randomly selected. A one-way ANOVA test was
performed to determine if there is a statistical difference for the predicted cycles to failure
due to a change in seed. The results shown in Table 3.5 shows a p-value greater than
0.05 thus there is no statistical difference between the average cycles to failure between
the tested seed values. Therefore, the influence of the seed selection for random analysis
is deemed not statistically significant.

Figure 3.16: Cycles to failure prediction comparison by seed

Table 3.5: One-way ANOVA for comparison of seed variation

Source Degrees of
Freedom

Adj. Sum of
Squares

Adj. Mean
Square F-Value P-Value

Factor 2 2.40060× 1012 1.20030× 1012 0.90 0.415
Error 42 5.61838× 1013 1.33771× 1012

Total 44 5.85844× 1013



Chapter 4
Final Remarks

4.1 Conclusion

In this work, the Extended Finite Element Method was used to study the stochastic
fatigue delamination in a composite adhesive bonded joint. The configuration selected
was a double cantilever beam made of graphite/epoxy (T300/914C) unidirectional com-
posite with a [0]24 stacking sequence. A double cantilever beam is a commonly used
configuration to study delamination in composites and strength of the adhesive (Banea
and da Silva 2009, Biel and Stigh 2007). The adhesive was modeled as an isotropic,
linear elastic material confined between two orthotropic linear elastic adherends. The
cohesive delamination was modeled by enriching the adhesive layer with extra degrees
of freedom to include the crack influence, independently from the mesh. The stochastic
nature of the fracture process was modeled using a modification of the Yang-Manning’s
model but using the maximum strain energy release rate as the fracture parameter with
good estimates when compared with the experimental data by Krueger in 2010.

The implementation of incompatible element "Q6" (first introduced by Wilson et. al.
in 1973) was successfully tested with the Extended Finite Element Method. The devel-
oped code in MATLAB was tested against the benchmark results published by Krueger in
2010 and experimental data published by König et. al. in 1997 with comparable results.
Finally, the double cantilever system was subjected to random loading conditions in which
both the stress ratio and load are randomly extracted values from a normal probability
distribution. The random load values are determined given an average load, load ratio
and standard deviation. The stochastic fatigue analysis is carried out in loading blocks
with a predetermined delamination increment and damage accumulation calculated. The
use of quadrilateral finite elements for modeling of the DCB proved to be, albeit possi-
ble, inefficient as they become overly stiff in bending simulation and thus require a larger
number of elements in the longitudinal direction for the solution to converge.

57



4.2. RECOMMENDATIONS 58

The work presented here provides a unique combination of the XFEM with both a
stochastic model for fatigue delamination and random loading scheme. Testing of differ-
ent levels of deviation from average loading shows a reduction in average cycles to failure
with an increase in deviation. These results are in accordance with the expected behav-
ior as high loads can be produced with an increase in deviation from the average load
that will induce high energy release rates. This will in turn translate to a delamination
process for relatively low number of cycles.

Normal distributions for cycles to failure were found for 1%, 5% and 10% load devi-
ations. However, marginal normality test results were observed for high load deviations
(10%). This is attributed to the high number of tests (5 of 15) on which the adhesive
bonded joint failed catastrophically (sudden delamination with low number of cycles).
Hence for high load variations, the average cycles to failures is found to be significantly
lower than for the other load deviations tested (in the order of 2,000,000 cycles lower
than for the 1% deviation case).

The developed tool will prove valuable for cost reductions in the development process
of bonded joints. A reduction in test samples is foresee as numerous tests cases, with
different levels of load dispersion and mean values can be tested numerically. Thus, this
reduction in cost in testing can be beneficial to companies in the aerospace industries
as they rely more through the years in composites and adhesive bonded joints for the
construction of aircrafts.

4.2 Recommendations

The algorithm was successful in simulating delamination of a double cantilever beam
in fatigue loading. However, this code was developed using a linear formulation of the
extended finite element. Relatively high deformation due to bending can be present
for higher load magnitudes hence, it is recommended to reformulate the code for non-
linear analysis if higher loads are to be tested. Furthermore, it was demonstrated that a
change in seed for the randomization of the load produces comparable average life cycle
predictions. However, it is recommended to randomize the seed selection every time a
new session is started to minimize the influence of the seed when generating random
data.
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4.3 Future Work

There are many areas of improvement in this work to model the strength of the adhesive
layer. One improvement would be to include the adhesive force as a model parameter
thus allowing the delamination to propagate between the adhesive and adherend. As
the model is limited by Linear Elastic Fracture Mechanics, future work should focus
on studying plastic deformation of the adhesive layer. Furthermore, the simulation was
limited to linear finite element theory hence, a great area of opportunity exists to expand
the model to nonlinear simulations. Another area of improvement is to implement higher
order elements to study their effect in a double cantilever beam configuration and to
improve convergence.

This work can be expanded to Mode II failure or mixed mode between Mode I and
II (refer to Figure 2.11) as minimal work may be required for the generalization of the
code to other bonded joint configurations (Figure 2.1). Furthermore, other materials,
e.g. different adhesives and metallic adherends can be tested to evaluate their effect in
stress distribution and consequently in their fatigue life.

The analysis performed in this work could be improved by establishing a joint effort
with a materials testing laboratory to obtain real results and compare them with the finite
element model. A good stochastic model needs to be fed analytical data to successfully
simulate the variability in fatigue simulation.



Appendix A
MATLAB scripts

Input geometry script

1 function [NODE ,ELEMENT ,BC ,CRACK ,SIM , MATERIAL ] = finput_DCB ()
2 % finput_DCB DCB test case.
3 % This function is a test case for an aluminum Double

Cantilever beam wth
4 % an embeded crack.
5 %
6 % * +F
7 % |
8 % |
9 % o - - - - - - - - - - - - - - - - - - - - - - o<|

10 % | Material 3 |
11 % |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~|
12 % | |
13 % + - - - - - - - Material 1 |
14 % | |
15 % |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~|
16 % | Material 2 |
17 % o - - - - - - - - - - - - - - - - - - - - - - o<|
18 % |
19 % |
20 % * -F
21 %
22 % Node numbering scheme
23 % 4 3
24 % o - - - - o
25 % | |
26 % | |
27 % | |

60
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28 % o - - - - o
29 % 1 2
30

31 % Space discretisation
32 adhesive = [1.45 1.55];
33 a0 = 30; % initial crack
34 SIM.a0 = a0;
35

36 x_1 = linspace (0 ,70 ,60);
37 x_2 = linspace (70 ,150 ,2);
38 y_1 = linspace (0, adhesive (1) ,10);
39 y_2 = linspace ( adhesive (1) ,adhesive (2) ,6);
40 y_3 = linspace ( adhesive (2) ,3,10);
41

42 % Space characterization
43 x = unique ([ x_1 x_2 ]);
44 y = unique ([ y_1 y_2 y_3 ]);
45 nn_x = length(x);
46 nn_y = length(y);
47 ne_x = nn_x - 1;
48 ne_y = nn_y - 1;
49 nn = nn_x*nn_y; % number of nodes
50 ne = ne_x*ne_y; % number of elements
51 fprintf (’(!) Model with %i elements in X direction .\n’,

length(x) -1);
52 fprintf (’(!) Model with %i elements in Y direction .\n’,

length(y) -1);
53

54 % Generate mesh
55 [xn ,yn ,CMAT] = mesher(x,y);
56

57 % Elements in material 2
58 x1 = [0 max(x) max(x) 0 0];
59 y1 = [0 0 1.4 1.4 0];
60

61 % Elements in material 3
62 x3 = [0 max(x) max(x) 0 0 ];
63 y3 = [1.6 1.6 max(y) max(y) 1.6];
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64

65 % Elements in material 1
66 x2 = [0 max(x) max(x) 0 0 ];
67 y2 = [max(y1) max(y1) min(y3) min(y3) max(y1)];
68

69 % Element centroid
70 if size(CMAT ,1) == 1
71 mean_dim = 1;
72 else
73 mean_dim = 2;
74 end
75 elem.xc = mean(xn(CMAT),mean_dim );
76 elem.yc = mean(yn(CMAT),mean_dim );
77

78 % Topology matrix (used for plotting solutions )
79 topo = zeros(nn_y ,nn_x);
80 c1 = -nn_x;
81 for n1 = nn_y : -1:1
82 c1 = c1 + nn_x;
83 topo(n1 ,:) = (1: nn_x) + c1;
84 end
85

86 % Find elements in material
87 in1 = inpolygon (elem.xc ,elem.yc ,x1 ,y1);
88 in2 = inpolygon (elem.xc ,elem.yc ,x2 ,y2);
89 in3 = inpolygon (elem.xc ,elem.yc ,x3 ,y3);
90

91 % Storing mesh solutions
92 NODE.X = xn;
93 NODE.Y = yn;
94 NODE.ID = (1: nn) ’;
95 SIM.CONMAT = CMAT;
96 SIM. TOPOGRAPHY = topo;
97

98 ELEMENT (ne) = struct(’ID’,0,’NODES ’ ,[0,0,0,0],’MATERIAL ’,
uint16 (0));

99 for n1 = 1 : ne
100 ELEMENT (n1).NODES = SIM.CONMAT(n1 ,:);
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101 ELEMENT (n1).ID = n1;
102 end
103

104 % Assigning material to elements
105 [ ELEMENT (in1). MATERIAL ] = deal (2);
106 [ ELEMENT (in2). MATERIAL ] = deal (1); % Adhesive
107 [ ELEMENT (in3). MATERIAL ] = deal (3);
108

109 % Crack
110 CRACK.POINT = [1 1]’;
111 CRACK.X = [min(x) min(x)+a0]’;
112 CRACK.Y = [1 1] ’*( max(y)+min(y))/2;
113

114 % Boundary conditions
115 f1 = NODE.ID(NODE.X == max(x) & NODE.Y == min(y));
116 f2 = NODE.ID(NODE.X == max(x) & NODE.Y == max(y));
117 f3 = NODE.ID(NODE.X == min(x) & NODE.Y == min(y));
118 f4 = NODE.ID(NODE.X == min(x) & NODE.Y == max(y));
119

120 BC.DISP.NODE = [f1;f2]’;
121 BC.DISP.UX = zeros (1, length ([f1;f2]’)); % m
122 BC.DISP.UY = zeros (1, length ([f1;f2]’)); % m
123

124 BC.FORCE.NODE = [f3 f4];
125 BC.FORCE.FX = [ 0 0 ]; % N
126 BC.FORCE.FY = [-1 1 ]; % N
127

128 % Simulation values
129 SIM. THICKNESS = 100; % mm
130 SIM. LOADING = ’plane strain ’;
131 SIM.NODES = nn;
132 SIM. ELEMENTS = ne;
133

134 % Material 4 ( reference material )
135 MATERIAL (4).NAME = ’aluminum ’;
136 MATERIAL (4).TYPE = ’isotropic ’;
137 MATERIAL (4).V = 0.33;
138 MATERIAL (4).E = 70000; % MPa
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139 MATERIAL (4).C = 1.5E -10;
140 MATERIAL (4).m = 3.8;
141

142 % Material 1
143 % Epoxy resin
144 % Material properties from:
145 % An anisotropic elasto - plastic constitutive model for large

strain
146 % analysis of fiber reinforced composite material " E. Car

2000
147 MATERIAL (1).NAME = ’epoxy ’;
148 MATERIAL (1).TYPE = ’isotropic ’;
149 MATERIAL (1).V = 0.325;
150 MATERIAL (1).E = 26E3;
151 MATERIAL (1).C = 2.44 E6;
152 MATERIAL (1).m = 10.61;
153 MATERIAL (1).Gcri = 0.17; % N/mm
154

155 % Material 2
156 MATERIAL (2).NAME = ’graphite /epoxy ’;
157 MATERIAL (2).TYPE = ’orthotropic ’;
158 MATERIAL (2).V12 = 0.30;
159 MATERIAL (2).V21 = 0.30;
160 MATERIAL (2).V13 = 0.30;
161 MATERIAL (2).V31 = 0.30;
162 MATERIAL (2).V23 = 0.436;
163 MATERIAL (2).V32 = 0.436;
164 MATERIAL (2).E1 = 139.4 e3;
165 MATERIAL (2).E2 = 10.16 e3;
166 MATERIAL (2).E3 = 10.16 e3;
167 MATERIAL (2).G12 = 4.6 e3;
168

169 % Material 3
170 MATERIAL (3).NAME = ’graphite /epoxy ’;
171 MATERIAL (3).TYPE = ’orthotropic ’;
172 MATERIAL (3).V12 = 0.30;
173 MATERIAL (3).V21 = 0.30;
174 MATERIAL (3).V13 = 0.30;
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175 MATERIAL (3).V31 = 0.30;
176 MATERIAL (3).V23 = 0.436;
177 MATERIAL (3).V32 = 0.436;
178 MATERIAL (3).E1 = 139.4 e3;
179 MATERIAL (3).E2 = 10.16 e3;
180 MATERIAL (3).E3 = 10.16 e3;
181 MATERIAL (3).G12 = 4.6 e3;
182

183 % Defining material matrices for analysis
184 for n1 = 1 : size(MATERIAL ,2)
185 switch MATERIAL (n1).TYPE
186 case(’isotropic ’)
187 E = MATERIAL (n1).E;
188 v = MATERIAL (n1).V;
189 G = E /(2*(1+ v));
190 switch SIM. LOADING
191 case(’plane stress ’)
192 E1 = E/(1-v^2);
193 E2 = v*E1;
194 case(’plane strain ’)
195 E1 = E*(1-v)/((1+v)*(1 -2*v));
196 E2 = v*E1/(1-v);
197 otherwise
198 error(’Undefined test case ’)
199 end
200 MATERIAL (n1).G = G; % Shear modulus
201 MATERIAL (n1).D = [E1 E2 0;E2 E1 0;0 0 G]; %

Material matrix
202 case(’orthotropic ’)
203 EX = MATERIAL (n1).E1;
204 EY = MATERIAL (n1).E2;
205 vXY = MATERIAL (n1).V12;
206 vYX = MATERIAL (n1).V21;
207 vYZ = MATERIAL (n1).V23;
208 vZY = MATERIAL (n1).V32;
209 vXZ = MATERIAL (n1).V13;
210 vZX = MATERIAL (n1).V31;
211 GXY = MATERIAL (n1).G12;
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212 switch SIM. LOADING
213 case(’plane stress ’)
214 d = 1-vXY*vYX;
215 E1 = EX;
216 E2 = vXY*EX;
217 E3 = vYX*EY;
218 E4 = EY;
219 E5 = d*GXY;
220 case(’plane strain ’)
221 d = (1-vXZ*vZX)*(1- vYZ*vZY) -(vXY+vXZ*vZY)*(

vYX+vYZ*vZX);
222 E1 = (1-vYZ*vZY)*EX;
223 E2 = (vXY+vXZ*vZY)*EX;
224 E3 = (vYX+vYZ*vZX)*EY;
225 E4 = (1-vXZ*vZX)*EY;
226 E5 = d*GXY;
227 otherwise
228 error(’Undefined test case ’)
229 end
230 MATERIAL (n1).G = (1+ vYX)/EX + (1+ vXY)/EY; %

Approximated
231 MATERIAL (n1).D = 1/d*[E1 E2 0;E3 E4 0;0 0 E5];
232 otherwise
233 error(’Undefined material type ’)
234 end
235 end
236

237 % Plotting mesh
238 XY = [xn yn];
239 clear figure
240 patch(’Faces ’,CMAT(in2 ,:) ,’Vertices ’,XY ,’FaceColor ’ ,[1 1

1]*0.9) ;
241 hold on
242 patch(’Faces ’,CMAT(in1 ,:) ,’Vertices ’,XY ,’FaceColor ’ ,[0 0

1]*0.5) ;
243 patch(’Faces ’,CMAT(in3 ,:) ,’Vertices ’,XY ,’FaceColor ’ ,[0 0

1]*0.9) ;
244 plot(CRACK.X,CRACK.Y,’-r’)
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245 hold off
246 xlabel(’Length(mm)’)
247 ylabel(’Thickness (mm)’)
248 %axis equal
249 end
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Main script

1 % Clear memory and command window
2 clc; clear all; close all; format short;
3 fprintf (’(!) Program started .\n’)
4 time = tic;
5

6 % Extracting input mesh and materials and simulation
parameters

7 fprintf (’(P) Extracting domain inputs ...\n’)
8 [NODE ,ELEMENT ,BC ,CRACK ,SIM , MATERIAL ] = finput_DCB ();
9 pause (2)

10

11 % Test case parameters
12 SIM.RSD = 5;
13 % Load input value [N]
14 SIM.LOAD.AVG = 50;
15 SIM.LOAD.STD = SIM.LOAD.AVG * SIM.RSD /100;
16

17 % Displacement load input [mm]
18 SIM.DISP.AVG = 0.3;
19 SIM.DISP.STD = SIM.DISP.AVG * SIM.RSD /100;
20

21 % Loading ratio input
22 SIM.R.AVG = 0.1;
23 SIM.R.STD = SIM.R.AVG * SIM.RSD /100;
24

25 % Mode mixity
26 SIM.MIXITY = 1;
27

28 % Fatigue parameters
29 SIM.CASE = ’displacement control ’;
30 SIM.da = .5; % mm
31 SIM.a_end = 40; % final crack

length
32 SIM. N_onset = 150; % cycles
33 SIM.Fail = 10E6; % cycles
34 SIM.Gth = 0.06; % N/mm 0.06
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35 SIM. stochastic = 0;
36 % Optimization parameters
37 SIM. SUBCELLS = 10; % Subcell

parameter
38 SIM. enrichr = 0; % Radius or

periphery levels for tip enrichment
39 SIM. ELEMENT_TYPE = ’Q4’;
40

41 total_blocks = (SIM.a_end - SIM.a0)/SIM.da;
42

43 % Initialization of variables
44 ERR = 0;
45 theta = 0;
46 SIM.lock = 0;
47

48 % Dirichlet BC
49 d0_x = BC.DISP.UX;
50 d0_y = BC.DISP.UY;
51

52 %% Determination of the enriched space
53 % First the level sets for the crack based on the last

segment of the crack
54 % in CRACK sturcture are calculated . A new field within NODE

called PSI is
55 % created to store the Psi level set values at the nodes (

Normal distance ).
56 % Similarly , a new field called PHI is created to store the

nodal Phi
57 % values ( tangential distance ).
58 fprintf (’(P) Finding enriched space ...\n’)
59 [NODE.PSI ,NODE.PHI] = fgeo_signed (NODE.X,NODE.Y,CRACK.X([1

end ]),CRACK.Y([1 end ]));
60 [NODE.R,NODE.O] = fgeo_polarmap (NODE.X,NODE.Y,CRACK.X([1

end ]),CRACK.Y([1 end ]));
61

62 %The node identification is based
63 % on the following convention :
64 % Standard node = 0
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65 % Heaviside node = 1
66 % Near -tip node = 2
67 % The element identification is then based on the following

convention :
68 % Standard element = 0
69 % Heaviside element = 1
70 % Near -tip element = 2
71 % Blending element = 3
72 [ ELEMENT (:).TYPE] = deal (0); % Setting all elements to

standard FEM
73 NODE.TYPE = zeros(SIM.NODES ,1); % All nodes to 0
74 [NODE , ELEMENT ] = fxfem_enrich (SIM ,NODE ,ELEMENT ,CRACK ,’

periphery ’,SIM. enrichr );
75

76 %% Plot the enriched domain
77 figure (1)
78 hold on
79 fplot_nodes (NODE ,ELEMENT ,SIM);
80 hold off
81 hold on
82 plot(CRACK.X,CRACK.Y,’-xr’)
83 hold off
84 pause (5)
85 %% Calculation of Degrees of Freedom and connectivity

vectors
86 for n1 = 1 : SIM. ELEMENTS
87 ELEMENT (n1).CONVEC = fxfem_dofs ( ELEMENT (n1).NODES ,SIM.

NODES ,’all ’);
88 ELEMENT (n1).DOF.U = fxfem_dofs ( ELEMENT (n1).NODES ,SIM.

NODES ,’standard ’) ’;
89 ELEMENT (n1).DOF.A = fxfem_dofs ( ELEMENT (n1).NODES ,SIM.

NODES ,’heaviside ’) ’;
90 ELEMENT (n1).DOF.B = fxfem_dofs ( ELEMENT (n1).NODES ,SIM.

NODES ,’neartip ’) ’;
91 end
92 SIM.a = SIM.a0;
93 SIM.N = 0;
94 nblocks = 0;
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95 DATA = struct(’ID’,zeros(total_blocks ,1) ,...
96 ’Damage ’ ,0,...
97 ’D’,zeros(total_blocks ,1) ,...
98 ’Di’,zeros(total_blocks ,1) ,...
99 ’Ni’,zeros(total_blocks ,1) ,...

100 ’dN’,zeros(total_blocks ,1) ,...
101 ’ai’,zeros(total_blocks ,1) ,...
102 ’da’,zeros(total_blocks ,1) ,...
103 ’dadN ’,zeros(total_blocks ,1) ,...
104 ’Gmax ’,zeros(total_blocks ,1) ,...
105 ’avgangle ’,zeros(total_blocks ,1) ,...
106 ’Force ’,zeros(total_blocks ,1) ,...
107 ’MAXLOAD ’,zeros(total_blocks ,1) ,...
108 ’R’,zeros(total_blocks ,1));
109

110 while SIM.a < SIM.a_end % Loop over loading blocks
111 nblocks = nblocks + 1;
112

113 % Test variables (inputs)
114 R = normrnd (SIM.R.AVG ,SIM.R.STD);
115 switch SIM.CASE
116 case(’load control ’)
117 Pavg = normrnd (SIM.LOAD.AVG ,SIM.LOAD.STD);
118 TEST.MINL = 2*R/(1-R) .* Pavg;
119 TEST.MAXL = 2 /(1-R) .* Pavg;
120

121 case(’displacement control ’)
122 Davg = normrnd (SIM.DISP.AVG ,SIM.DISP.STD);
123 TEST.MIND = 2*R/(1-R) * Davg;
124 TEST.MAXD = 2 /(1-R) * Davg;
125

126 otherwise
127 error(’Undefined loading control ’)
128 end
129

130 % Updating level sets
131 if nblocks > 1 && size(CRACK.X ,1) > 2
132 cx_1 = CRACK.X(end -2);
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133 cx_2 = CRACK.X(end -1);
134 cx_3 = CRACK.X(end);
135 cy_1 = CRACK.Y(end -2);
136 cy_2 = CRACK.Y(end -1);
137 cy_3 = CRACK.Y(end);
138 x = NODE.X;
139 y = NODE.Y;
140 F = [cx_3 - cx_2; cy_3 - cy_2; 0];
141 V = [cx_2 - cx_1; cy_2 - cy_1; 0];
142 a = cross(V,F);
143 phi_rotated = (x-cx_3)*F(1)/norm(F) + (y-cy_3)*F(2)/

norm(F);
144 for n1 = 1 : SIM.NODES
145 if NODE.PHI(n1) > 0 && F(2) ~= 0
146 NODE.PSI(n1) = -sign(a(3))*((x(n1)-cx_3)*F

(1)/norm(F) - (y(n1)-cy_3)*F(2)/norm(F));
147 end
148 NODE.PHI(n1) = phi_rotated (n1);
149 end
150 clear cx_1 cx_2 cx_3 cy_1 cy_2 cy_3 x y
151 end
152 [NODE , ELEMENT ] = fxfem_enrich (SIM ,NODE ,ELEMENT ,CRACK ,’

periphery ’,SIM. enrichr );
153

154 % Domain integration
155 fprintf (’(P) Integrating ...\n’)
156 [ELEMENT ,IP] = stiffness (SIM ,ELEMENT ,NODE ,CRACK , MATERIAL

);
157

158 %% Determination of maximum load
159 fprintf (’(M) Block %i/%i...\n’,nblocks , total_blocks )
160 switch SIM.CASE
161 case(’load control ’)
162 if TEST.MAXL > TEST.MINL
163 maxload = TEST.MAXL;
164 else
165 maxload = TEST.MINL;
166 end
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167 BC.FORCE.FY = [-SIM.MIXITY 1]* maxload ;
168

169 case(’displacement control ’)
170 if TEST.MAXD > TEST.MIND;
171 maxload = TEST.MAXD;
172 else
173 maxload = TEST.MIND;
174 end
175 d = [-SIM.MIXITY 1]* maxload ;
176 BC.DISP.NODE = [BC.DISP.NODE BC.FORCE.NODE ];
177 BC.DISP.UX = [d0_x [0 0]];
178 BC.DISP.UY = [d0_y d];
179 BC.FORCE.NODE = [];
180 BC.FORCE.FY = [];
181 BC.FORCE.FX = [];
182 end
183

184 % Activating nodes and sloving the system of equations
185 fprintf (’(P) Solving system of equations ...\n’)
186 NODE.STATE = ones(SIM.NODES ,1); % All

nodes active
187 NODE.STATE(BC.DISP.NODE) = 0; %

Dirichlet BC ’oned nodes
188 SIM = fxfem_solver (ELEMENT ,NODE ,BC ,

SIM);
189 fprintf (’(*) Norm of the residual : %0.2e\n’,norm(SIM.K*

SIM.d - SIM.f))
190

191 %% Extracting elemental and nodal displacement , stress
and strain values

192 fprintf (’(P) Calculating stresses ...\n’)
193 IP = fxfem_StrainStressIP (SIM ,IP ,ELEMENT , MATERIAL );
194 [NODE] = fxfem_disp (SIM ,NODE ,ELEMENT ,CRACK , MATERIAL );
195

196 %% Calculating fracture mechanics quantities
197 fprintf (’(P) Solving LEFM ...\n’)
198 SIM.Jintr = 3;
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199 [NODE ,ERR ,theta ,J1 ,J2] = Jintegrals (SIM ,ELEMENT ,NODE ,
CRACK ,IP ,’periphery ’,SIM.Jintr);

200 if SIM.lock == 1; theta = 0; end;
201

202 %% Crack propagation
203 C = MATERIAL (1).C;
204 m = MATERIAL (1).m;
205 switch SIM. stochastic
206 case (1)
207 dadN = stochastic () * C * ERR^m; % [mm/cycle]
208 case (0)
209 dadN = C * ERR^m; % [mm/cycle]
210 end
211

212 if max(ERR) < SIM.Gth
213 fprintf (’(!) ERR below threshold value , (ERR = %0.4f

).\n’,ERR)
214 dai = 0;
215 else
216 dai = SIM.da;
217 end
218

219 if max(ERR) >= MATERIAL (1).Gcri
220 fprintf (’(!) ERR above critical value , (ERR = %0.4f)

.\n’,ERR)
221 dai = SIM.a_end;
222 end
223

224 if dai/dadN < SIM. N_onset && SIM.a == SIM.a0
225 fprintf (’(!) Below onset cycles .\n’)
226 dai = 0;
227 else
228 SIM.a = SIM.a + dai;
229 end
230 dNi = dai / dadN;
231 SIM.N = SIM.N + dNi;
232

233 DATA.Damage = DATA.Damage + dNi/SIM.Fail;
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234 DATA.D( nblocks ) = DATA.Damage;
235 DATA.Di( nblocks ) = dNi/SIM.Fail; % Palmgreen -Miner

rule
236 DATA.Ni( nblocks ) = SIM.N;
237 DATA.dN( nblocks ) = dNi;
238 DATA.ai( nblocks ) = SIM.a;
239 DATA.da( nblocks ) = dai;
240 DATA.ID( nblocks ) = nblocks ;
241 DATA.dadN( nblocks ) = dadN;
242 DATA.Gmax( nblocks ) = ERR;
243 DATA.angle( nblocks ) = theta;
244 DATA.Force( nblocks ) = abs(SIM.f(1));
245

246 switch SIM.CASE
247 case(’load control ’)
248 DATA. MAXLOAD ( nblocks ) = TEST.MAXL;
249 case(’displacement control ’)
250 DATA. MAXLOAD ( nblocks ) = TEST.MAXD;
251 end
252 DATA.R( nblocks ) = R;
253

254 % Crack extension
255 if dai ~= 0
256 CRACK.X = [CRACK.X ; SIM.da*cos(mean(theta))+

CRACK.X(end)];
257 CRACK.Y = [CRACK.Y ; SIM.da*sin(mean(theta))+

CRACK.Y(end)];
258 CRACK.POINT = nblocks + 1;
259 end
260

261 if ERR >= MATERIAL (1).Gcri
262 fprintf (’(!) System fractured , (ERR = %0.4f).\n’,ERR

)
263 break;
264 elseif ERR >= SIM.Fail
265 fprintf (’(!) Maximum number of cycles reached .\n’)
266 break;
267 elseif nblocks > 50



APPENDIX A. 76

268 fprintf (’(!) Maximum number of loading blocks
reached .\n’)

269 break;
270 end
271 end
272 SIM.TIME = toc(time);
273 fprintf (’(M) Simulation ended with %i number of blocks .\n’,

nblocks )
274 fprintf (’(M) Analysis runtime : %i minutes .\n’,SIM.TIME /60);
275

276 %%
277 figure (1)
278 fplot_generalmesh (SIM.CONMAT ,NODE.X,NODE.Y ,0);
279 hold on
280 plot(CRACK.X,CRACK.Y,’.r-’)
281 hold off
282 hold on
283 fplot_nodes (NODE ,ELEMENT ,SIM);
284 hold off
285

286

287 %%
288 figure (2)
289 X = NODE.X + NODE.dx;
290 Y = NODE.Y + NODE.dy;
291 NODE = fxfem_StrainStressNODE (IP ,ELEMENT ,NODE ,SIM ,’SYY ’);
292 [~,h] = contourf (X(SIM. TOPOGRAPHY ) ,...
293 Y(SIM. TOPOGRAPHY ) ,...
294 NODE.SYY(SIM. TOPOGRAPHY ) ,100);
295

296 hc = colorbar ; xlabel(hc ,’Stress in Y (MPa)’);
297 set(h,’LineColor ’,’flat ’);
298 axis ([ min(NODE.X) -10 max(NODE.X)+10 min(NODE.Y) -1 max(NODE.Y

)+1]);
299 axis off
300

301 %%
302 figure (3)
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303 NODE = fxfem_StrainStressNODE (IP ,ELEMENT ,NODE ,SIM ,’SVM ’);
304 VecPlot = NODE.SVM; VecPlot (NODE.TYPE == 1) = NaN;
305 [~,h] = contourf (X(SIM. TOPOGRAPHY ) ,...
306 Y(SIM. TOPOGRAPHY ) ,...
307 VecPlot (SIM. TOPOGRAPHY ) ,50);
308 hc = colorbar ; xlabel(hc ,’Von Mises stress (MPa)’);
309 set(h,’LineColor ’,’flat ’);
310 axis ([ min(NODE.X) -10 max(NODE.X)+10 min(NODE.Y) -1 max(NODE.Y

)+1]);
311 axis off
312

313 %%
314 figure (4)
315 [~,h] = contourf (X(SIM. TOPOGRAPHY ),Y(SIM. TOPOGRAPHY ),NODE.q(

SIM. TOPOGRAPHY ));
316 set(h,’LineColor ’,’flat ’);
317 hold on
318 fplot_generalmesh (SIM.CONMAT ,X,Y ,0);
319 hold off
320 hc = colorbar ; xlabel(hc ,’Weight factor for J- integral

evaluation (q)’);
321 %axis ([ min(NODE.X) -10 max(NODE.X)+10 min(NODE.Y) -1 max(NODE.

Y)+1]);
322 axis off
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Q6 element definition

1 function [Ni ,dNido ,dNidp ,N5 ,N6 ,dN5do ,dN5dp ,dN6do ,dN6dp] =
q6elem(o,p)

2 %q6elem: Four node incompatible quadrilateral element .
3 %
4 % INPUTS:
5 % o: (n x 1) column vector with x- coordinates of IPs in

REFERENCE space
6 % p: (n x 1) column vector with y- coordinates of IPs in

REFERENCE space
7 %
8 % OUTPUT:
9 % Ni : (n x 4) [N1 N2 N3 N4]

10 % dNido : (n x 4) [dN1do dN2do dN3do dN4do]
11 % dNidp : (n x 4) [dN1dp dN2dp dN3dp dN4dp]
12 % N5 : (n x 1)
13 % N6 : (n x 1)
14 % dN5do : (n x 1)
15 % dN5dp : (n x 1)
16 % dN6do : (n x 1)
17 % dN6dp : (n x 1)
18

19 % Check inputs
20 if isvector (o) == 0 || isvector (p) == 0
21 error(’Inputs are not vectors ’);
22 else
23 if size(o ,1) == 1; o = o’; end
24 if size(p ,1) == 1; p = p’; end
25 end
26

27 if length(o) ~= length(p)
28 error(’Inputs have unequal length ’)
29 end
30

31 % Element shape functions
32 Ni = 0.25*[(1 -o).*(1 -p) (1+o).*(1 -p) (1+o).*(1+p) (1-o).*(1+

p)];
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33 N5 = (1-o.^2);
34 N6 = (1-p.^2);
35

36 % Element shape function derivatives
37 dNido = 0.25*[ -(1 -p) (1-p) (1+p) -(1+p)];
38 dNidp = 0.25*[ -(1 -o) -(1+o) (1+o) (1-o)];
39 dN5do = -2*o;
40 dN5dp = 0*o;
41 dN6do = 0*p;
42 dN6dp = -2*p;
43 end
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J integral calculation

1 function [NODE ,G,theta ,J1 ,J2] = Jintegrals (SIM ,ELEMENT ,NODE ,
CRACK ,IP ,J_area ,r)

2 % Function computes J integrals 1 and 2 based on EDI and
Energy release

3 % rate criterion for angle of propagation
4

5

6 switch J_area
7 case(’radii ’)
8 q = (NODE.X - CRACK.X(end)).^2 + (NODE.Y - CRACK.Y(

end)).^2 < r^2;
9 case(’periphery ’)

10 q = double(NODE.TYPE ==2);
11 for n2 = 1 : r
12 q_test = zeros(SIM.NODES ,1);
13 for n1 = 1 : SIM. ELEMENTS
14 if sum(q( ELEMENT (n1).NODES)) > 0
15 q_test( ELEMENT (n1).NODES) = [1 1 1 1];
16 end
17 end
18 q = q_test;
19 end
20 otherwise
21 error(’Undefined J integral criteria ’)
22 end
23

24 NODE.q = q;
25 J1 = 0;
26 J2 = 0;
27 for n1 = 1 : SIM. ELEMENTS
28

29 qi = q( ELEMENT (n1).NODES);
30 dqdX = IP(n1).dNidX * qi;
31 dqdY = IP(n1).dNidY * qi;
32
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33 [Sxx ,Syy ,Sxy ,Exx ,Eyy ,Exy ,dqdx ,dqdy] =
fsub_localstressstrain (CRACK ,IP ,n1 ,dqdX ,dqdY);

34

35 U = sum (( Sxx .* Exx + Syy .* Eyy + Sxy .* Exy *2) .* IP(n1).W);
36

37 Q1 = U.* dqdx;
38 Q2 = (Sxx .* Exx + Sxy .* Exy).* dqdx + (Sxy .* Exx + Syy .* Exy)

.* dqdy;
39 J1 = sum ((Q1 - Q2) .* IP(n1).W .* IP(n1).detJ) + J1;
40

41 Q3 = U.* dqdy;
42 Q4 = (Sxx .* Exy + Sxy .* Eyy).* dqdx + (Sxy .* Exy + Syy .* Eyy)

.* dqdy;
43 J2 = sum ((Q3 - Q4) .* IP(n1).W .* IP(n1).detJ) + J2;
44 end
45

46 if abs(J1) < 1E -6; J1 = 0; elseif abs(J2) < 1E -6; J2 = 0;
end

47

48 theta = atan2(abs(J2),abs(J1));
49 G = abs(J1*cos(theta) + J2*sin(theta));
50

51

52 if abs(theta) < 1E -6; theta = 0; end
53 end
54

55

56 function [Sxx ,Syy ,Sxy ,Exx ,Eyy ,Exy ,dqdx ,dqdy] =
fsub_localstressstrain (CRACK ,IP ,eval ,dqdX ,dqdY)

57 % Transformation of stresses and strain from global
coordinate system to

58 % local crack tip coordinate system:
59 %
60 % y Y (global)
61 % ^ o ^
62 % | / |
63 % | / |
64 % + ------> x (crack) + - - > X
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65

66

67 % Crack segment vector
68 Cv = [CRACK.X(end) - CRACK.X(end -1) , CRACK.Y(end) - CRACK.Y

(end -1) , 0];
69 % Global X unit vector
70 Xv = [1 0 0];
71 % Angle between X axis and crack segment
72 CROSS = cross(Xv ,Cv);
73 a = atan2(CROSS (3) ,dot(Xv ,Cv));
74 % Rotation matrix
75 R = [cos(a) -sin(a);sin(a) cos(a)];
76

77 n_ips = length(IP(eval).EXX);
78 Exx = zeros(n_ips ,1);
79 Eyy = zeros(n_ips ,1);
80 Exy = zeros(n_ips ,1);
81 for n1 = 1 : n_ips % Loop over integration points
82 EE = R ’*[ IP(eval).EXX(n1) IP(eval).EXY(n1);...
83 IP(eval).EXY(n1) IP(eval).EYY(n1)]*R;
84 Exx(n1) = EE (1 ,1);
85 Exy(n1) = EE (1 ,2);
86 Eyy(n1) = EE (2 ,2);
87 end
88

89 SXX = IP(eval).SXX;
90 SYY = IP(eval).SYY;
91 SXY = IP(eval).SXY;
92

93 Sxx = (SXX+SYY)/2 + (SXX -SYY)/2* cos (2*a) + SXY*sin (2*a);
94 Syy = (SXX+SYY)/2 - (SXX -SYY)/2* cos (2*a) - SXY*sin (2*a);
95 Sxy = SXY*cos (2*a) - (SXX -SYY)/2* sin (2*a);
96

97 dqdx = dqdX*cos(a) + dqdY*sin(a);
98 dqdy = -dqdX*sin(a) + dqdY*cos(a);
99 end
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Code for element split

1 function [X,Y,conmat] = rgrid(x,y,div)
2 %rgrid(x,y,div) creates a rectangular grid in x, y based on

divisions in x
3 xvec = min(x):( max(x)-min(x))/div:max(x);
4 yvec = min(y):( max(y)-min(y))/div:max(y);
5 [xmat ,ymat] = meshgrid (xvec ,yvec);
6 X = reshape (xmat ’ ,[] ,1);
7 Y = reshape (ymat ’ ,[] ,1);
8 ne = div ^2;
9 nn = (div +1) ^2;

10

11 conmat = zeros(ne ,4);
12 c1 = -(div +1);
13 c2 = 0;
14 c3 = 0;
15 for n1 = 1 : div
16 c1 = c1 + (div +1);
17 c2 = c2 + (div +1);
18 for n2 = 1 : div
19 c3 = c3 + 1;
20 conmat(c3 ,1) = n2 + c1;
21 conmat(c3 ,2) = n2 + c1 + 1;
22 conmat(c3 ,3) = n2 + c2 + 1;
23 conmat(c3 ,4) = n2 + c2;
24 end
25 end
26 end
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Inverse mapping of quadrilateral elements

1 function [xi ,eta] = q4invmap (x,y,xq ,yq)
2 % q4invmap : Perform inver mapping of integration points
3 %
4 % INPUTS:
5 % x: (4 x 1) column vector with x- coordinates

quadrilateral nodes
6 % y: (4 x 1) column vector with y- coordinates

quadrilateral nodes
7 % xq: (n x 1) column vector with x- coordinates of IPs in

REAL space
8 % yq: (n x 1) column vector with y- coordinates of IPs in

REAL space
9 %

10 % OUTPUT:
11 % xi: (n x 1) column vector with x- coordinates of IPs in

REFERENCE space
12 % eta: (n x 1) column vector with y- coordinates of IPs in

REFERENCE space
13

14

15 % Check inputs
16 if isvector (x) == 0 || isvector (y) == 0 || isvector (xq) == 0

|| isvector (yq) == 0
17 error(’Inputs are not vectors ’);
18 else
19 if size(x ,1) == 1; x = x’; end
20 if size(y ,1) == 1; y = y’; end
21 end
22

23 if length(x) ~= length(y) || length(xq) ~= length(yq)
24 error(’x and y inputs have unequal length ’)
25 end
26

27 % Inverse map ( according to Chongyu Hua "An inverse
transformation for
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28 % quadrilateralisoparametric elements : Analysis and
application " Finite

29 % Elements in Analysis and Design , volume 7 (2) 1990 pp.
159 -166

30 % http :// www. sciencedirect .com/ science / article /pii /0168874
X90900072 ?via %3 Dihub

31 xi = zeros(length(xq) ,1);
32 eta = zeros(length(xq) ,1);
33 for i = 1 : length(xq) % loop over query points
34 d1 = 4*xq(i) - sum(x);
35 d2 = 4*yq(i) - sum(y);
36

37 XY = [x y];
38 I = [1 -1 1 -1;-1 1 1 -1;-1 -1 1 1];
39 ABC = I*XY;
40 a1 = ABC (1 ,1);
41 a2 = ABC (1 ,2);
42 b1 = ABC (2 ,1);
43 b2 = ABC (2 ,2);
44 c1 = ABC (3 ,1);
45 c2 = ABC (3 ,2);
46 ab = a1*b2 - a2*b1;
47 ac = a1*c2 - a2*c1;
48

49 if a1*a2*ab*ac ~= 0 || (a1 == 0 && a2*c1 ~= 0) || (a2 ==
0 && a1*b2 ~= 0)

50 ad = a1*d2 - a2*d1;
51 ba = b1*a2 - b2*a1;
52 cb = c1*b2 - c2*b1;
53 da = d1*a2 - d2*a1;
54 dc = d1*c2 - d2*c1;
55 a = ab;
56 b = (cb+da);
57 c = dc;
58 xi1 = (-b+sqrt(b^2 -4*a*c))/(2*a);
59 xi2 = (-b-sqrt(b^2 -4*a*c))/(2*a);
60 if xi1 >= -1 && xi1 <= 1
61 xi(i) = xi1;
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62 else
63 xi(i) = xi2;
64 end
65 eta(i) = (ad + ba*xi(i))/ac;
66

67 elseif a1*a2 ~= 0 && ab == 0
68 dc = d1*c2 - d2*c1;
69 ad = a1*d2 - a2*d1;
70 xi(i) = a1*dc/(b1*ac + a1*ad);
71 eta(i) = ad/ac;
72

73 elseif a1*a2 ~= 0 && ac == 0
74 ad = a1*d2 - a2*d1;
75 db = d1*b2 - d2*b1;
76 xi(i) = ad/ab;
77 eta(i) = a1*db/(c1*ab + a1*ad);
78

79 else
80 dc = d1*c2 - d2*c1;
81 bc = b1*c2 - b2*c1;
82 bd = b1*d2 - b2*d1;
83 xi(i) = dc/(a1*d2 + bc);
84 eta(i) = bd/(a2*d1 + bc);
85 end
86 end
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Legendre-Gauss quadrature in 2D

1 function [X,Y,WW] = gq2d ()
2

3 % 1D integration point coordinates
4 x = [ -0.577350269189626;0.577350269189626];
5 w = [1;1];
6 % Converting 1D coordinates into 2D space
7 X = repmat(x ,2 ,1);
8 Y = reshape (repmat(x’,2,1) ,[],1);
9 Wx = repmat(w ,2 ,1);

10 Wy = reshape (repmat(w’,2,1) ,[],1);
11 WW = Wx .* Wy;
12 end
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Algorithm for derivative conversion

1 function [dfdo ,dfdp] = ffem_dervconvert (mat ,dfdX ,dfdY)
2 % ffem_dervconvert maps derivatives functions to REFERENCE or

REAL domain.
3 % ffem_dervconvert (matJ ,dfdX ,dfdY ,ni ,nn) convert the

derivatives of the
4 % inputed functions to the REFERENCE or REAL domain. If

the Jacobian
5 % matrix is provided , the derivatives inputed must be with

respect to the
6 % REAL domain. If the inverse of the Jacobain is inputed ,

the inputed
7 % derivatives must be with respect to the REFERENCE domain

.
8 % J : (4,4,ni) Jacobian matrix or Jacobian inverse
9 % dfdX : (ni ,4,l) function x- derivative in REAL/

REFERENCE domain
10 % dfdY : (ni ,4,l) function y- derivative in REAL/

REFERENCE domain
11 % Note:
12 % l : number of functions
13 % ni : number of integration points
14 % nn : scalar , number of nodes
15 %
16

17 ni = size(dfdX ,1);
18 nn = size(dfdX ,2);
19 dfdo = zeros(size(dfdX));
20 dfdp = zeros(size(dfdY));
21 for n1 = 1 : size(dfdX ,3) % Loop over functions
22 for n2 = 1 : ni % Loop over integration points
23 MAT = mat (:,:,n2);
24 for n3 = 1 : nn % Loop over nodes
25 VEC = [dfdX(n2 ,n3 ,n1);dfdY(n2 ,n3 ,n1)

];
26 LHS = MAT*VEC;
27 dfdo(n2 ,n3 ,n1) = LHS (1);
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28 dfdp(n2 ,n3 ,n1) = LHS (2);
29 end
30 end
31 end
32 end
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Jacobian

1 function [ varargout ] = ffem_jacobian ( X,Y,dNido ,dNidp ,
request )

2 % ffem_jacobian Computes the Jacobian values in 2D space
3 % ffem_jacobian ( X,Y,dNido ,dNidp , request ) is capable of

computing the
4 % Jacobian matrix , its inverse and the determinant of both

matrises .
5 %
6 % INPUTS:
7 % X : (n x 1) vector with x- coordinates of the

element nodes
8 % Y : (n x 1) vector with y- coordinates of the

element nodes
9 % dNido : (n x q) matrix of shape function derivatives

with respect to
10 % the abscissa coordinate (xi) coordinate of an

integration
11 % point in the REFERENCE space
12 % dNidp : (n x q) matrix of shape function derivatives

with respect to
13 % the ordinate coordinate (eta) coordinate of an

integration
14 % point in the REFERENCE space
15 % request : argument to determine the output of the

function
16 % (1) = Jacobian matrix.
17 % (2) = Jacobian matrix determinant .
18 % (3) = Jacobian matrix and its determinant .
19 % (4) = Jacobian inverse matrix.
20 % (5) = Jacobian inverse matrix determinant .
21 % (6) = Jacobian inverse matrix and its

determinant .
22 % (7) = Both Jacobian and inverse matrix and

their
23 % determinants .
24 %
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25 % OUTPUT:
26 % Variable output function ; see ’request ’ input.
27

28

29

30 % PROCESS : Input check
31 if request < 1 || request > 7 || ceil( request ) ~= floor(

request )
32 error(’ffem_jacobian : unsupported ’’request ’’ value ’)
33 end
34

35 test (1) = sum(size(X) ~= size(Y));
36 test (2) = isvector (X);
37 test (3) = isvector (Y);
38

39 if sum(test) > 2
40 error(’Error in input coordinates .’)
41 end
42

43 if size(X ,1) == 1
44 X = X’;
45 end
46 if size(Y ,1) == 1
47 Y = Y’;
48 end
49

50 no_ip = size( dNido ,1 );
51 if request == 1
52 J = fsub_matrix ( X,Y,dNido ,dNidp ,no_ip );
53

54 elseif request == 2 || request == 3
55 J = fsub_matrix ( X,Y,dNido ,dNidp ,no_ip );
56 detJ = fsub_determinant (J, no_ip);
57

58 elseif request == 4
59 J = fsub_matrix ( X,Y,dNido ,dNidp ,no_ip );
60 detJ = fsub_determinant (J, no_ip);
61 invJ = fsub_inverse ( J, detJ , no_ip );
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62

63 elseif request >= 5
64 J = fsub_matrix ( X,Y,dNido ,dNidp ,no_ip );
65 detJ = fsub_determinant (J, no_ip);
66 invJ = fsub_inverse ( J, detJ , no_ip );
67 detinvJ = fsub_determinant (invJ , no_ip);
68

69 end
70

71

72

73 switch request
74 case (1) % Returns only the Jacobian matrix
75 varargout {1} = J;
76

77 case (2) % Returns only the Jacobian determinant
78 varargout {1} = detJ;
79

80 case (3) % Returns the Jacobian matrix and its
determinant

81 varargout {1} = J;
82 varargout {2} = detJ;
83

84 case (4) % Returns only the Jacobian inverse
85 varargout {1} = invJ;
86

87 case (5) % Returns the Jacobian inverse matrix
determinant

88 varargout {1} = detinvJ ;
89

90 case (6) % Returns both the Jacobian inverse and its
determinant

91 varargout {1} = invJ;
92 varargout {2} = detinvJ ;
93

94 case (7) % Returns all values
95 varargout {1} = J;
96 varargout {2} = detJ;
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97 varargout {3} = invJ;
98 varargout {4} = detinvJ ;
99 end

100 end
101

102

103

104 function [ J ] = fsub_matrix ( X,Y,dNido ,dNidp ,no_ip )
105

106 J = zeros( 2,2, no_ip);
107 for n1 = 1 : no_ip
108

109 % STEP: Calculate partial derivatives
110 J11 = dNido(n1 ,:) * X; % d(x)/d(xi)
111 J12 = dNido(n1 ,:) * Y; % d(x)/d(eta)
112 J21 = dNidp(n1 ,:) * X; % d(y)/d(xi)
113 J22 = dNidp(n1 ,:) * Y; % d(y)/d(eta)
114

115 % STEP: Generating Jacobian matrix
116 J(:,:,n1) = [J11 J12
117 J21 J22 ];
118 end
119 end
120

121

122

123 function [ invJ ] = fsub_inverse ( J, detJ , no_ip )
124

125 invJ = zeros( 2, 2, no_ip );
126 for n1 = 1 : no_ip
127 % PROCESS : Caculating Jacobian cofactors
128 cof_11 = J(2,2,n1);
129 cof_12 = -J(1,2,n1);
130 cof_21 = -J(2,1,n1);
131 cof_22 = J(1,1,n1);
132

133 % PROCESS : Caculating the Jacobian Adjoint matrix
134 AdjJ = [cof_11 cof_12
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135 cof_21 cof_22 ];
136

137 % PROCESS : Calculating the Jacobian inverse matrix
138 invJ (:,:,n1) = AdjJ / detJ(n1);
139 end
140 end
141

142

143

144 function [ det ] = fsub_determinant ( Mat , no_ip )
145

146 det = zeros( no_ip , 1);
147 for n1 = 1 : no_ip
148 Mat11 = Mat (1,1,n1);
149 Mat12 = Mat (1,2,n1);
150 Mat21 = Mat (2,1,n1);
151 Mat22 = Mat (2,2,n1);
152 det(n1) = Mat11 * Mat22 - Mat12 * Mat21;
153 end
154 end
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Polar mapping of integration points

1 function [ radii ,angle ,alpha ] = fgeo_polarmap ( xq ,yq ,xv ,yv
)

2 % fgeo_polarmap Computes the polar coordinate .
3 % fgeo_polarmap ( xq ,yq ,xv ,yv ) computes the polar

coordinates of a
4 % given set of query points (xq ,yq) for a polar radii

direction vector in
5 % (xv ,yv) were xv(end) and yv(end) describe the polar

space origin.
6 %
7 % INPUTS:
8 % xq : (q x 1) vector of query point x- coordinates
9 % yq : (q x 1) vector of query point y- coordinates

10 % xv : (2 x 1) vector with x- coordinates of radial
dimension vector of

11 % the polar space
12 % yv : (2 x 1) vector with y- coordinates of radial

dimension vector of
13 % the polar space
14 %
15 % OUTPUT:
16 % angle : (q x 1) vector with angle coordinates of the

query points
17 % radii : (q x 1) vector with radii coordinates of the

query points
18 % alpha : (1) scalar with the oriented angle of rotation

between the
19 % radial dimension vector and a horizontal unit

vector.
20

21 % STEP: Declaring radii function
22 r = @(x,y,xt ,yt) sqrt ((x-xt).^2+(y-yt).^2);
23

24 % STEP: Polar coordinate vector
25 cv = [xv(end) - xv(end -1)
26 yv(end) - yv(end -1) ];
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27

28 % STEP: Calculate angle between a regural Cartesian
coordinate system and

29 % vector of radial dimension in the polar space
30 av = [ 1 ; 0 ]; % x- coordinate unit vector
31 dot_product = cv ’ * av;
32 norm_product = norm( cv ) * norm( av );
33 cross_product = det( [cv av]’ ); % Simplyfied to yield the z

component
34 orientation = sign( cross_product );
35 alpha = acos( dot_product / norm_product ) *

orientation ;
36

37

38

39 % STEP: Declaring polar space origin
40 xt = xv(end);
41 yt = yv(end);
42

43 % STEP: Computing polar coordinates
44 radii = r( xq ,yq ,xt ,yt );
45

46 angle = wrapTo2Pi ( atan2( yq -yt ,xq -xt ) + alpha - pi );
47 %angle = atan2( yq -yt ,xq -xt ) + alpha;
48

49 %angle(angle <0) = angle(angle <0) + 2*pi;
50 %angle = wrapTo2Pi ( atan2( yq -yt ,xq -xt ) + alpha - pi ) + pi

; % Use this
51 %angle = atan2( yq -yt ,xq -xt ) + alpha;
52 end
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Level set definition

1 function [ Dn ,Dt ] = fgeo_signed ( xq ,yq ,xc ,yc )
2 % fxfem_signed : Calculates the signed distance between a

point and a line.
3 % fgeo_signed (xq ,yq ,xc ,yc) defines the signed distance

function between
4 % a query point and a line. Is based on a projection of

the point to the
5 % normal vector of the line defined 90 degrees

counterclockwise .
6 %
7 % INPUTS:
8 % xq : (n x 1) vector of x- coordinates of the query points
9 % yq : (n x 1) vector of y- coordinates of the query points

10 % xc : (2 x 1) vector of x- coordinates of the segment end
points

11 % yc : (2 x 1) vector of y- coordinates of the segment end
points

12 %
13 % OUTPUT:
14 % Dn : (n x 1) vector of the normal distances between the

query points
15 % and the segment
16 % Dt : (n x 1) vector of the tangential distances between

the query
17 % points and the segment
18 %
19

20 % LOCAL NOTES:
21 % Xo : Query points
22 % X : Segment edges
23 % xn : Number of query points
24 % Dn : Normal signed distance
25 % Dt : Tangential signed distance
26 % Nn : Unit normal vector
27 % Nt : Unit tangential vector
28 % Px : Projection points
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29 % Vx : Projection vectors
30

31 % PROCESS : Storing values in vectors
32 n_points = length(xq);
33 Xo = [ xq yq ];
34 X = [ xc (1) yc (1) ; xc (2) yc (2) ];
35

36 % PROCESS : Computing normal and tangential crack vectors
37 R = X(2 ,:) - X(1 ,:);
38 Rn = [-R(2) R(1) ]; % Normal vector
39 Nn = Rn/norm(Rn); % Unit normal vector
40 Nt = R/norm(R); % Unit tangent vector
41

42 % PROCESS : Computing normal and tangential distances
43 Dn = zeros(n_points ,1);
44 Dt = zeros(n_points ,1);
45 Px = zeros(n_points ,2 ,2);
46 Vx = zeros(n_points ,2 ,2);
47 for n1 = 1 : n_points
48 Rx = Xo(n1 ,:) - X(end ,:);
49 Dn(n1) = Rx*Nn ’; % Normal distance
50 Dt(n1) = Rx*Nt ’; % Tangential distance
51 Vx(n1 ,: ,1) = Dn(n1)*Nn;
52 Vx(n1 ,: ,2) = Dt(n1)*Nt;
53 Px(n1 ,: ,1) = Xo(n1 ,:) - Vx(n1 ,: ,1);
54 Px(n1 ,: ,2) = Xo(n1 ,:) - Vx(n1 ,: ,2);
55 end
56 end
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Script for plotting node enrichments

1 function [h0 ,h1 ,h2 ,h3] = fplot_nodes (NODE ,ELEMENT ,SIM)
2 % fplot_nodes : Plots the domain nodes.
3 % The function classify and store the node coordinates for

plotting
4 % purposes .
5 % INPUTS:
6 % NODE : Node structure
7 % OUTPUT:
8 % h0 : Plot handle for Standard nodes
9 % h1 : Plot handle for Heavyside nodes

10 % h2 : Plot handle for Near -Tip nodes
11 % NOTES:
12 % - Node flag standard :
13 % * (0) = Standard node
14 % * (1) = Heavyside node
15 % * (2) = Near -tip node
16 % * (3) = Bimaterial node
17

18 % Plot nodes
19 blend_n = unique(SIM.CONMAT(sum(NODE.TYPE(SIM.CONMAT)==2 ,2)

<4 & sum(NODE.TYPE(SIM.CONMAT)==2 ,2) >0,:));
20 hold on
21 %h0 = plot(NODE.X(NODE.TYPE ==0) ,NODE.Y(NODE.TYPE ==0) ,’.k’,’

LineWidth ’,1);
22 h1 = plot(NODE.X(NODE.TYPE ==1) ,NODE.Y(NODE.TYPE ==1) ,’ob’,’

LineWidth ’,1,’MarkerFaceColor ’,’b’,’MarkerSize ’ ,8);
23 h2 = plot(NODE.X(NODE.TYPE ==2) ,NODE.Y(NODE.TYPE ==2) ,’sb’,’

LineWidth ’,1,’MarkerFaceColor ’,’b’,’MarkerSize ’ ,8);
24 h3 = plot(NODE.X( blend_n ),NODE.Y( blend_n ),’xr’,’LineWidth ’

,1,’MarkerFaceColor ’,’none ’,’MarkerSize ’ ,8);
25 hold off
26 end



APPENDIX A. 100

Script for plotting a rectangular mesh

1 function [ h ] = fplot_generalmesh ( ConMat ,X,Y,shadow )
2 % fplot_mesh : Plot the given mesh
3

4 % Creating coordinate matrix
5 Mesh = [X Y];
6

7 % Plotting the mesh grid
8 h = patch(’Faces ’,ConMat ,’Vertices ’,Mesh);
9 if shadow == 1

10 set(h,’FaceColor ’ ,[0.9 0.9 0.9])
11 else
12 set(h,’FaceColor ’,’None ’,’LineWidth ’ ,0.1,’EdgeColor ’ ,[1

1 1]*0.2 , ’EdgeAlpha ’ ,0.2)
13 end
14

15 end
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Script to calculate stress and strain at integration
points

1 function [IP]= fxfem_StrainStressIP (SIM ,IP ,ELEMENT , MATERIAL )
2 % fxfem_StrainStressIP calculates the stress and strain at

the integration
3 %point.
4

5

6 for n1 = 1 : SIM. ELEMENTS % Loop over elements
7 n_ip = size(IP(n1).Ni ,1);
8 exx = zeros(n_ip ,1);
9 eyy = zeros(n_ip ,1);

10 ezz = zeros(n_ip ,1);
11 exy = zeros(n_ip ,1);
12 sxx = zeros(n_ip ,1);
13 syy = zeros(n_ip ,1);
14 szz = zeros(n_ip ,1);
15 sxy = zeros(n_ip ,1);
16 svm = zeros(n_ip ,1);
17 D = MATERIAL ( ELEMENT (n1). MATERIAL ).D;
18

19 for n2 = 1 : n_ip % Loop over integration points
20

21 % DoFs vectors
22 u = SIM.d( ELEMENT (n1).DOF.U);
23 a = SIM.d( ELEMENT (n1).DOF.A);
24 b = SIM.d( ELEMENT (n1).DOF.B);
25

26 % Strain/ displacement matrices
27 Bu = fxfem_Bmats (IP(n1).dNidX(n2 ,:) ,IP(n1).dNidY(

n2 ,:) ,’standard ’);
28 Ba = fxfem_Bmats (IP(n1).dM1dX(n2 ,:) ,IP(n1).dM1dY(

n2 ,:) ,’heaviside ’);
29 Bb = fxfem_Bmats (IP(n1).dM2dX(n2 ,: ,:) ,IP(n1).dM2dY(

n2 ,: ,:) ,’neartip ’);
30

31 % Strain and stress calculation
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32 e = Bu*u + Ba*a + Bb*b;
33 s = D*e;
34

35 % Plane strain/plane stress
36 exx(n2) = e(1);
37 eyy(n2) = e(2);
38 exy(n2) = e(3);
39 sxx(n2) = s(1);
40 syy(n2) = s(2);
41 sxy(n2) = s(3);
42

43 switch MATERIAL ( ELEMENT (n1). MATERIAL ).TYPE
44 case(’isotropic ’)
45 E = MATERIAL ( ELEMENT (n1). MATERIAL ).E;
46 v = MATERIAL ( ELEMENT (n1). MATERIAL ).V;
47 switch SIM. LOADING
48 case(’plane stress ’)
49 szz(n2) = 0;
50 ezz(n2) = -v/E*( sxx(n2) + syy(n2));
51 case(’plane strain ’)
52 szz(n2) = v*( sxx(n2) + syy(n2));
53 ezz(n2) = 0;
54 end
55 case(’orthotropic ’)
56 Exx = MATERIAL ( ELEMENT (n1). MATERIAL ).E1;
57 Eyy = MATERIAL ( ELEMENT (n1). MATERIAL ).E2;
58 Ezz = MATERIAL ( ELEMENT (n1). MATERIAL ).E3;
59 vzx = MATERIAL ( ELEMENT (n1). MATERIAL ).V31;
60 vzy = MATERIAL ( ELEMENT (n1). MATERIAL ).V32;
61 switch SIM. LOADING
62 case(’plane stress ’)
63 szz(n2) = 0;
64 ezz(n2) = -(vzx*sxx(n2)/Exx + vzy*

syy(n2)/Eyy) ;
65 case(’plane strain ’)
66 szz(n2) = Ezz *( vzx*sxx(n2)/Exx + vzy

*syy(n2)/Eyy);
67 ezz(n2) = 0;
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68 end
69 end
70

71 svm(n2) = sqrt (0.5*(( sxx(n2)-syy(n2))^2+( syy(n2)-szz
(n2))^2+( szz(n2)-sxx(n2))^2) +3* sxy(n2)^2);

72

73 end
74 IP(n1).EXX = exx;
75 IP(n1).EYY = eyy;
76 IP(n1).EZZ = ezz;
77 IP(n1).EXY = exy;
78 IP(n1).SXX = sxx;
79 IP(n1).SYY = syy;
80 IP(n1).SZZ = szz;
81 IP(n1).SXY = sxy;
82 IP(n1).SVM = svm;
83 clear exx eyy ezz exy sxx syy szz sxy svm
84 end
85 end
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Script for meshing

1 function [xn ,yn ,conmat] = mesher(x,y)
2 % Function creates conectivity matrix and nodal vectors
3

4

5 x = unique(x);
6 y = unique(y);
7 xn = repmat(x’,length(y) ,1);
8 yn = reshape (repmat(y,length(x) ,1) ,[],1);
9

10 % Connectivity matrix
11 nn_x = length(x);
12 nn_y = length(y);
13 ne_x = nn_x - 1;
14 ne_y = nn_y - 1;
15 c1 = -nn_x;
16 c2 = 0;
17 i = 0;
18 nn = nn_x*nn_y; % number of nodes
19 ne = ne_x*ne_y; % number of elements
20 conmat = zeros(ne ,4);
21 for n1 = 1 : ne_y
22 c1 = c1 + nn_x;
23 c2 = c2 + nn_x;
24 for n2 = 1 : ne_x
25 i = i + 1;
26 a = n2 + c1;
27 b = n2 + c1 + 1;
28 c = n2 + c2 + 1;
29 d = n2 + c2;
30 conmat(i ,:) = [a b c d];
31 end
32 end
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Script for enrichment assignment of nodes and ele-
ments

1 function [NODE , ELEMENT ] = fxfem_enrich (SIM ,NODE ,ELEMENT ,
CRACK , varargin )

2 % fxfem_enrich Node/ Element enrichment assignment
3 % fxfem_enrich (SIM ,NODE ,ELEMENT ,CRACK) assigns the
4 % element and node ID ’s as defined in SIM for XFEM

processing .
5 %
6 % INPUTS:
7 % SIM. ELEMENTS (i)
8 % NODE.ID(i)
9 % NODE.TYPE(i)

10 % NODE.X(i)
11 % NODE.Y(i)
12 % NODE.PSI(i)
13 % NODE.PHI(i)
14 % ELEMENT (i).NODES(i)
15 % ELEMENT (i).TYPE
16 % CRACK.X(i)
17 % CRACK.Y(i)
18 %
19 % OUTPUT:
20 % NODE.TYPE(i)
21 % ELEMENT (i).TYPE
22 %
23 % NOTES:
24 % - Function limited to 4 node quadrilateral elements .
25

26 if strcmp( varargin {1},’radius ’) == 0 && strcmp( varargin {1},’
periphery ’) == 0

27 error(’Undefined condition .’)
28 end
29 if strcmp( varargin {1},’radius ’) == 1 && length( varargin ) ==

1
30 error(’Radius factor not specified .’)
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31 elseif strcmp( varargin {1},’radius ’) == 1 && length( varargin )
== 2

32 rf = varargin {2};
33 else
34 rf = 1;
35 end
36

37 for n1 = 1 : SIM. ELEMENTS
38

39 x_e = NODE.X( ELEMENT (n1).NODES );
40 y_e = NODE.Y( ELEMENT (n1).NODES );
41 psi_e = NODE.PSI( ELEMENT (n1).NODES );

% normal level set
42 phi_e = NODE.PHI( ELEMENT (n1).NODES );

% tangential level set
43 x_vec = [x_e (2: end) ; x_e (1) ];
44 y_vec = [y_e (2: end) ; y_e (1) ];
45

46 % Test for crack influenced elements
47 if min(psi_e)*max(psi_e) <= 0 && max(phi_e) < 0

% definite crack splited
elements

48 NODE.TYPE( ELEMENT (n1).NODES) = 1;
49 elseif min(psi_e)*max(psi_e) <= 0 && min(phi_e)*max(

phi_e) <= 0 % possible crack tip elements
50 IN = inpolygon (CRACK.X(end),CRACK.Y(end),x_vec ,y_vec

);
51 if min(IN)*max(IN) == 1

% crack
tip inside element

52 NODE.TYPE( ELEMENT (n1).NODES) = 2;
53 area = polyarea ([ x_e ; x_e (1)],[y_e ; y_e (1) ]);
54 r = rf*sqrt(area); % Characteristic length
55 elseif isempty ( polyxpoly (CRACK.X,CRACK.Y,x_vec ,y_vec

)) ~= 0 % crack passes trough element
56 NODE.TYPE( ELEMENT (n1).NODES) = 1;
57 end
58 end
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59 end
60

61 switch varargin {1}
62 case(’radius ’)
63 % *** Find nodes within characteristic radius
64 within = (NODE.X - CRACK.X(end)).^2 + (NODE.Y - CRACK.Y(

end)).^2 < r^2;
65 if sum(within) ~= 0
66 NODE.TYPE( within ) = 2;
67 end
68 for n1 = 1 : SIM. ELEMENTS
69 if sum( ismember ( ELEMENT (n1).NODES ,NODE.ID(within)))

> 0
70 NODE.TYPE( ELEMENT (n1).NODES ) = 2;
71 end
72 end
73 % ***
74 case(’periphery ’)
75 for n1 = 1 : varargin {2} % loop over pheripheries
76 target_nodes = NODE.ID(NODE.TYPE == 2);
77 for n2 = 1 : SIM. ELEMENTS
78 test_nodes = ELEMENT (n2).NODES;
79 if sum( ismember (test_nodes , target_nodes )) >

0
80 for n3 = 1 : 4
81 if NODE.TYPE( ELEMENT (n2).NODES(n3))

~= 1
82 NODE.TYPE( ELEMENT (n2).NODES(n3))

= 2;
83 end
84 end
85 end
86 end
87 end
88 case(’none ’)
89 otherwise
90 error(’Undefined definition for ’’type ’’’)
91 end
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92

93 % Identifiying elements . The following convention for
element

94 % identification is used:
95 % Standard element = 0
96 % Heaviside element = 1
97 % Near -tip element = 2
98 % Blending element = 3
99 for n1 = 1 : SIM. ELEMENTS

100 n_types = NODE.TYPE( ELEMENT (n1).NODES);
101 if sum( ismember (n_types ,0)) == 4 % Standard

element
102 ELEMENT (n1).TYPE = 0;
103 elseif sum( ismember (n_types ,1)) == 4 % Heaviside

element
104 ELEMENT (n1).TYPE = 1;
105 elseif sum( ismember (n_types ,2)) == 4 % Near -tip

element
106 ELEMENT (n1).TYPE = 2;
107 elseif sum( ismember (n_types ,2)) >= 1 || sum( ismember (

n_types ,2)) < 4 % Blending element (on near -tips)
108 ELEMENT (n1).TYPE = 3;
109 end
110 end
111 end
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Script for element degrees of freedom assignment

1 function [ dof ,dof_x ,dof_y ] = fxfem_dofs ( nodes ,no_nodes ,
request )

2 % fxfem_dofs Computes the degrees of freedom for the given
node indexes

3 % fxfem_dofs (nodes ,no_nodes , request ) handles the Degrees
of Freedom

4 % indexes given the node indexes given in "nodes" row
vector.

5 %
6 % INPUTS:
7 % nodes : (1 x n) vector with nodal indexes
8 % no_nodes : Total number of nodes in the simulation
9 % request : Character input to request type of degree of

freedom
10 % > ’standard ’
11 % > ’heaviside ’
12 % > ’neartip ’
13 %
14 % OUTPUT:
15 % dof : (1 x q) vector with the degrees of freedom in

the element
16 % dof_x : (1 x p) vector with x- coordinate degrees of

freedom requested
17 % dof_y : (1 x p) vector with y- coordinate degrees of

freedom requested
18

19

20

21 % Test inputs
22 if isvector ( nodes ) == 0
23 error(’fxfem_dofs : input in "nodes" is not a vector ’);
24 elseif size( nodes ,2 ) == 1
25 nodes = nodes ’;
26 end
27

28 switch request
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29 case(’standard ’)
30 [dof ,dof_x ,dof_y] = fsub_standard (nodes);
31

32 case(’heaviside ’)
33 [dof ,dof_x ,dof_y] = fsub_heaviside (nodes , no_nodes );
34

35 case(’neartip ’)
36 [dof ,dof_x ,dof_y] = fsub_neartip (nodes , no_nodes );
37 %dof_x = dof_x (:) ’;
38 %dof_y = dof_y (:) ’;
39 %dof = dof (:) ’;
40

41 case(’all ’)
42 [u,u_x ,u_y] = fsub_standard (nodes);
43 [a,a_x ,a_y] = fsub_heaviside (nodes , no_nodes );
44 [b,b_x ,b_y] = fsub_neartip (nodes , no_nodes );
45

46 dof_x = [u_x a_x b_x (:) ’];
47 dof_y = [u_y a_y b_y (:) ’];
48 dof = [u a b(:) ’];
49

50 otherwise
51 error(’fxfem_dofs : unknown request type ’)
52 end
53

54 end
55

56

57

58 function [u,u_x ,u_y] = fsub_standard (nodes)
59 % Compute standard degrees of freedom
60 u_x = 2* nodes - 1; % ux
61 u_y = 2* nodes; % uy
62 u = reshape ( [ u_x ; u_y ] , 1 , [] );
63 end
64

65 function [a,a_x ,a_y] = fsub_heaviside (nodes , no_nodes )
66 % Compute Heaviside degrees of freedom



APPENDIX A. 111

67 a_x = 2* nodes + 2* no_nodes - 1; % ax
68 a_y = 2* nodes + 2* no_nodes ; % ay
69 a = reshape ( [ a_x ; a_y ] , 1 , [] );
70 end
71

72 function [b,b_x ,b_y] = fsub_neartip (nodes , no_nodes )
73 % Compute near tip enrichment degrees of freedom
74 b1x = 4* no_nodes + 2* nodes - 1;
75 b1y = 4* no_nodes + 2* nodes;
76 b1 = reshape ( [ b1x ; b1y ] , 1 , [] );
77

78 b2x = 6* no_nodes + 2* nodes - 1;
79 b2y = 6* no_nodes + 2* nodes;
80 b2 = reshape ( [ b2x ; b2y ] , 1 , [] );
81

82 b3x = 8* no_nodes + 2* nodes - 1;
83 b3y = 8* no_nodes + 2* nodes;
84 b3 = reshape ( [ b3x ; b3y ] , 1 , [] );
85

86 b4x = 10* no_nodes + 2* nodes - 1;
87 b4y = 10* no_nodes + 2* nodes;
88 b4 = reshape ( [ b4x ; b4y ] , 1 , [] );
89

90 b5x = 12* no_nodes + 2* nodes - 1;
91 b5y = 12* no_nodes + 2* nodes;
92 b5 = reshape ( [ b5x ; b5y ] , 1 , [] );
93

94 b6x = 14* no_nodes + 2* nodes - 1;
95 b6y = 14* no_nodes + 2* nodes;
96 b6 = reshape ( [ b6x ; b6y ] , 1 , [] );
97

98 b_x = [b1x b2x b3x b4x b5x b6x ];
99 b_y = [b1y b2y b3y b4y b5y b6y ];

100 b = [b1 b2 b3 b4 b5 b6 ];
101 end



APPENDIX A. 112

Script for element stiffness integration

1 function [ELEMENT ,IP] = stiffness (SIM ,ELEMENT ,NODE ,CRACK ,
MATERIAL )

2 % stiffness Performs element integrations .
3

4 % INPUTS:
5 % ELEM : current element structure
6 % IPOINT : integration point structure
7 % D : material matrix
8 % etype : element type
9 % OUTPUT:

10 % ELEM : current element structure
11 % NOTES:
12 % - The structure IPOINT is changed at enriched element

subroutine output
13 % - Only ’quad ’ elements supported .
14 %
15 % Numbering convention supported
16 %
17 % Quadrilateral
18 % (4) (3)
19 % o - - - o y
20 % | | ^
21 % | | |
22 % o - - - o + - > x
23 % (1) (2)
24

25 % Extracting crack quantities
26 Xc = CRACK.X( [1 end] );
27 Yc = CRACK.Y( [1 end] );
28 Cv = [ CRACK.X(end) - CRACK.X(end -1) ; CRACK.Y(end) - CRACK.

Y(end -1) ];
29

30 IP(SIM. ELEMENTS ) = struct(’X’ ,[],’Y’ ,[]);
31 for n1 = 1 : SIM. ELEMENTS % Loops over elements
32

33 if ELEMENT (n1).TYPE == 0 % Standard element
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34 [o,p,ww] = gq2d ();
35 else
36 [o,p,ww] = subcells (NODE.X(SIM.CONMAT(n1 ,:)) ,...
37 NODE.Y(SIM.CONMAT(n1 ,:)),SIM. SUBCELLS );
38 end
39 [Ni ,dNido ,dNidp ,~,~,dN5do ,dN5dp ,dN6do ,dN6dp] = q6elem(o,

p);
40

41 [~,detJ ,invJ] = ffem_jacobian (NODE.X(SIM.CONMAT(n1 ,:)
) ,...

42 NODE.Y(SIM.CONMAT(n1 ,:)),dNido ,dNidp
,7);

43 [dNidX ,dNidY] = ffem_dervconvert (invJ ,dNido ,dNidp);
44 [dN5dX ,dN5dY] = ffem_dervconvert (invJ ,dN5do ,dN5dp);
45 [dN6dX ,dN6dY] = ffem_dervconvert (invJ ,dN6do ,dN6dp);
46 xip = Ni*NODE.X(SIM.CONMAT(n1 ,:));
47 yip = Ni*NODE.Y(SIM.CONMAT(n1 ,:));
48 [rip ,oip] = fgeo_polarmap (xip ,yip ,Xc ,Yc);
49 D = MATERIAL ( ELEMENT (n1). MATERIAL ).D;
50

51 % Computing Heaviside enrichment functions
52 [~,dM1dX ,dM1dY] = fxfem_heaviside (’signed ’,’all ’ ,...
53 NODE.PSI(SIM.CONMAT(n1 ,:)),Ni ,dNidX ,

dNidY);
54

55 if ELEMENT (n1).TYPE == 0 || ELEMENT (n1).TYPE == 1
56 dM2dX = zeros(size(Ni ,1) ,length(SIM.CONMAT(n1 ,:)) ,6)

;
57 dM2dY = zeros(size(Ni ,1) ,length(SIM.CONMAT(n1 ,:)) ,6)

;
58 elseif ELEMENT (n1).TYPE == 2 || ELEMENT (n1).TYPE == 3
59 nt_vec = double(NODE.TYPE( ELEMENT (n1).NODES) == 2);
60 [rn ,on]= fgeo_polarmap (NODE.X(SIM.CONMAT(n1 ,:)) ,...
61 NODE.Y(SIM.CONMAT(n1 ,:)) ,...
62 CRACK.X([1 end ]),CRACK.Y([1 end ]));
63 [~,dM2dX ,dM2dY] = fxfem_neartip (Ni ,dNidX ,dNidY ,...
64 Cv ,on ,rn ,oip ,rip ,nt_vec);
65 end
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66 % Element integration
67 K_CC = zeros (2*4+2*4+2*4*6 ,2*4+2*4+2*4*6) ;
68 K_IC = zeros (4 ,2*4+2*4+2*4*6) ;
69 K_CI = zeros (2*4+2*4+2*4*6 ,4) ;
70 K_II = zeros (4 ,4);
71 B_Ii = zeros (3 ,4);
72 for n2 = 1 : size(Ni ,1) % Loop over integration points
73 B_I = [dN5dX(n2) 0 dN6dX(n2) 0
74 0 dN5dY(n2) 0 dN6dY(n2)
75 dN5dY(n2) dN5dX(n2) dN6dY(n2) dN6dX(n2)];
76 B_Ii = B_Ii + ww(n2) * B_I * detJ(n2);
77 end
78 V = ww ’ * detJ * SIM. THICKNESS ;
79 B_IC = -B_Ii /V;
80 for n2 = 1 : size(Ni ,1) % Loop over integration points
81 Bu = fxfem_Bmats (dNidX(n2 ,:) ,dNidY(n2 ,:) ,’

standard ’);
82 Ba = fxfem_Bmats (dM1dX(n2 ,:) ,dM1dY(n2 ,:) ,’

heaviside ’);
83 Bb = fxfem_Bmats (dM2dX(n2 ,: ,:) ,dM2dY(n2 ,: ,:) ,’

neartip ’);
84 B_I = [dN5dX(n2) 0 dN6dX(n2) 0
85 0 dN5dY(n2) 0 dN6dY(n2)
86 dN5dY(n2) dN5dX(n2) dN6dY(n2) dN6dX(n2)];
87

88 B_C = [Bu Ba Bb];
89 B_Ibar = B_I + B_IC;
90 K_CC = K_CC + ww(n2) * B_C ’ * D * B_C * detJ

(n2);
91

92 if strcmp(SIM.ELEMENT_TYPE ,’Q6’)
93 K_CI = K_CI + ww(n2) * B_C ’ * D * B_Ibar *

detJ(n2);
94 K_IC = K_IC + ww(n2) * B_Ibar ’ * D * B_C *

detJ(n2);
95 K_II = K_II + ww(n2) * B_Ibar ’ * D * B_Ibar *

detJ(n2);
96 else
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97 K_IC = zeros (4 ,48);
98 K_CI = zeros (48 ,4);
99 K_II = zeros (4 ,4);

100 end
101 end
102 if strcmp(SIM.ELEMENT_TYPE ,’Q6’)
103 ELEMENT (n1). STIFFNESS = (K_CC - K_CI*inv(K_II)*K_IC)

* SIM. THICKNESS ;
104 else
105 ELEMENT (n1). STIFFNESS = K_CC * SIM. THICKNESS ;
106 end
107

108 % Storing values
109 IP(n1).X = xip;
110 IP(n1).Y = yip;
111 IP(n1).W = ww;
112 IP(n1).R = rip;
113 IP(n1).O = oip;
114 IP(n1).Ni = Ni;
115 IP(n1).dNidX = dNidX;
116 IP(n1).dNidY = dNidY;
117 IP(n1).dM1dX = dM1dX;
118 IP(n1).dM1dY = dM1dY;
119 IP(n1).dM2dX = dM2dX;
120 IP(n1).dM2dY = dM2dY;
121 IP(n1).detJ = detJ;
122 end
123 end
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Heaviside enrichment definition

1 function [ varargout ] = fxfem_heaviside (type ,request ,Psi ,
varargin )

2 % fxfem_heaviside : Heaviside enrichment definition .
3 % fxfem_heaviside (dNidX ,dNidY ,Ni ,Psi ,type) computes the

Heaviside shape
4 % functions and their derivatives .
5 %
6 % INPUTS: ( variable input)
7 % (1) type : defines the Heaviside definition to be

used:
8 % > ’standard ’ for standard definition of

the Heaviside
9 % funtion , it has a value of 0 below and

at the crack and
10 % 1 above the crack
11 % > ’signed ’ = uses the sign of the psi

level set function
12 % so that the Heaviside function can have

values of -1, 0
13 % and 1
14 % (2) request : defines the requested outputs .
15 % > ’function ’ request to return the M1

enrichment
16 % function at integration points (M1i)
17 % > ’derivatives ’ request to return the

derivatives of the
18 % M1 function (dM1dX & dM1dY) at

integration points
19 % (dM1idX & dM1idY)
20 % > ’all ’ request to return the enrichment

function M1 and
21 % its derivatives of the.
22 % (3) Psi : (q x 1) matrix of nodal Psi level set

values.
23 % (4) Ni : (n x q) matrix of shape function values.
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24 % (5) dNidX : (n x q) matrix of shape function
derivatives with respect

25 % to x- coordinate .
26 % (6) dNidY : (n x q) matrix of shape function

derivatives with respect
27 % to y- coordinate .
28 % OUTPUT: ( variable output)
29 % (1) Mi : (n x q) matrix of Heaviside enriched shape

function values
30 % (2) dMidX : (n x q) matrix of Heaviside enriched shape

function
31 % derivatives with respect to the x- coordinate
32 % (3) dMidY : (n x q) matrix of Heaviside enriched shape

function
33 % derivatives with respect to the y- coordinate
34 % (4) Hi : (n x q) matrix of shifted Heaviside function

value
35 % (5) H : (n x 1) matrix of Heaviside enrichment

functions at the
36 % integration points
37 % NOTES:
38 % (1) Request for ’function ’ will require inputs 1, 2, 3,

and 4. The
39 % function will output 1, 4 and 5.
40 % (2) Request for ’derivatives ’ will require inputs 1, 2,

3, 5 and 6. The
41 % function will output 2 & 3.
42 % (3) Request for ’all ’ will require inputs 1, 2, 3, 4, 5

and 6. The
43 % function will output 1, 2, 3 & 4.
44

45 % Read requested output
46 if strcmp( request ,’function ’ ) == 1 && length( varargin )

== 1
47 goto1 = 1;
48 Ni = varargin {1};
49 elseif strcmp( request ,’derivatives ’ ) == 1 && length(

varargin ) == 3
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50 goto1 = 2;
51 Ni = varargin {1};
52 dNidX = varargin {2};
53 dNidY = varargin {3};
54 elseif strcmp( request ,’all ’ ) == 1 && length( varargin ) ==

3
55 goto1 = 3;
56 Ni = varargin {1};
57 dNidX = varargin {2};
58 dNidY = varargin {3};
59 else
60 error(’Unknown request or inconsistent inputs.’)
61 end
62

63 % Test for heaviside function selection
64 if strcmp(type ,’standard ’) == 0 && strcmp(type ,’signed ’) ==

0
65 error(’Unknown function definition ’)
66 end
67

68 % Interpolation of PSI level set values to integration
points

69 Psi_ip = Ni * Psi;
70

71 % Heaviside values
72 switch type
73 case(’standard ’)
74 H_node = fsub_Hstandard ( Psi );
75 H_ip = fsub_Hstandard ( Psi_ip ) ’;
76 case(’signed ’)
77 H_node = fsub_Hsigned ( Psi );
78 H_ip = fsub_Hsigned ( Psi_ip ) ’;
79 end
80

81 % Computing totals
82 no_ip = length( Psi_ip );
83 no_nodes = length( Psi );
84
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85 % Rearranging Heaviside values
86 H_ip_rep = repmat( H_ip ,1, no_nodes );
87 H_node_rep = repmat( H_node ,no_ip ,1 );
88

89 % Computing shifted Heaviside matrix
90 Hmod = H_ip_rep - H_node_rep ;
91

92 % Computing Heaviside enriched matrises
93 switch goto1
94 case (1)
95 varargout {1} = Ni .* Hmod; % M1i
96 varargout {2} = Hmod;
97 varargout {3} = H_ip;
98 case (2)
99 varargout {1} = dNidX .* Hmod; % dM1idX

100 varargout {2} = dNidY .* Hmod; % dM1idY
101 case (3)
102 varargout {1} = Ni .* Hmod; % M1i
103 varargout {2} = dNidX .* Hmod; % dM1idX
104 varargout {3} = dNidY .* Hmod; % dM1idY
105 varargout {4} = Hmod; % H-Hk
106 end
107 end
108 function [H] = fsub_Hstandard (psi)
109 % fsub_Hstandard : Standard Heaviside function .
110 % Computation of the Heaviside function using the standard

definition .
111

112 % Calculating the number of points for evaluation
113 no_points = length( psi );
114

115 % Setting all values to 0
116 H = zeros( 1, no_points );
117

118 % Asigning a value of 1 to points above the crack
119 H( sign( psi ) > 0 ) = 1;
120 end
121 function [ H ] = fsub_Hsigned ( psi )
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122 % fsub_Hsigned : Standard Heaviside function .
123 % Computation of the Heaviside function using the signed

definition .
124

125 % Applying sign values to points
126 H = sign( psi ) ’;
127 end
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Script for strain/displacement matrix assembly

1 function [B] = fxfem_Bmats (dfdx ,dfdy ,eval)
2 % fxfem_Bmats Sub - function to construct the strain/

displacement matrices .
3 %
4 % Evaluation types:
5 % ’standard ’
6 % dfdx = size (1 ,4)
7 % dfdy = size (1 ,4)
8 % ’heaviside ’
9 % dfdx = size (1 ,4)

10 % dfdy = size (1 ,4)
11 % ’neartip ’
12 % dfdx = size (1 ,4 ,6)
13 % dfdy = size (1 ,4 ,6)
14

15 switch eval
16 case(’standard ’)
17 B = zeros (3 ,8);
18 B(1 ,1:2: end) = dfdx;
19 B(2 ,2:2: end) = dfdy;
20 B(3 ,1:2: end) = dfdy;
21 B(3 ,2:2: end) = dfdx;
22 case(’heaviside ’)
23 B = zeros (3 ,8);
24 B(1 ,1:2: end) = dfdx;
25 B(2 ,2:2: end) = dfdy;
26 B(3 ,1:2: end) = dfdy;
27 B(3 ,2:2: end) = dfdx;
28 case(’neartip ’)
29 Bbi = zeros (3 ,8 ,6);
30 for n1 = 1 : 6 % Loop over isotropic near -tip

functions
31 Bbi (1 ,1:2: end ,n1) = dfdx (:,:,n1);
32 Bbi (2 ,2:2: end ,n1) = dfdy (:,:,n1);
33 Bbi (3 ,1:2: end ,n1) = dfdy (:,:,n1);
34 Bbi (3 ,2:2: end ,n1) = dfdx (:,:,n1);



APPENDIX A. 122

35 end
36 B = [ Bbi (: ,: ,1) Bbi (: ,: ,2) Bbi (: ,: ,3) Bbi (: ,: ,4)

Bbi (: ,: ,5) Bbi (: ,: ,6) ];
37 otherwise
38 error(’Undefined evaluation ’)
39 end
40

41 end
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Script for element partitioning

1 function [xi ,eta ,WW ,Xip ,Yip] = subcells (x,y,div)
2 % subcells : tessellates a Q4 element and assign integration

points in
3 % REFERENCE space
4 %
5 % INPUTS:
6 % x: (4 x 1) column vector with x- coordinates

quadrilateral nodes
7 % y: (4 x 1) column vector with y- coordinates

quadrilateral nodes
8 % div: number of divisions in x or y coordinates .
9 %

10 % OUTPUT:
11 % xi: (n x 1) column vector with x- coordinates of IPs in

REFERENCE space
12 % eta: (n x 1) column vector with y- coordinates of IPs in

REFERENCE space
13 % WW: (n x 1) transformed integration weights
14 % Xip: (n x 1) column vector with y- coordinates of IPs in

REAL space
15 % Yip: (n x 1) column vector with y- coordinates of IPs in

REAL space
16

17 % Check inputs
18 if isvector (x) == 0 || isvector (y) == 0
19 error(’Inputs are not vectors ’);
20 else
21 if size(x ,2) == 1; x = x’; end
22 if size(y ,2) == 1; y = y’; end
23 end
24

25 if length(x) ~= length(y)
26 error(’Inputs have unequal length ’)
27 end
28

29 dop = 2; % Limited to 4 IP per cell!
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30 [X,Y,conmat] = rgrid(x,y,div);
31 [o,p,ww] = gq2d ();
32 [Ni ,dNido ,dNidp] = q6elem(o,p);
33 Xip = zeros(dop ^2* div ^2 ,1);
34 Yip = zeros(dop ^2* div ^2 ,1);
35 detJ = zeros(dop ^2* div ^2 ,1);
36 WW = zeros(dop ^2* div ^2 ,1);
37 c1 = 1;
38

39 for i = 1 : size(conmat ,1) % loop over cells
40 detJ(c1:c1+dop ^2 -1) = ffem_jacobian (X(conmat(i ,:)),Y(

conmat(i ,:)),dNido ,dNidp ,2);
41 Xip(c1:c1+dop ^2 -1) = Ni*X(conmat(i ,:));
42 Yip(c1:c1+dop ^2 -1) = Ni*Y(conmat(i ,:));
43 WW(c1:c1+dop ^2 -1) = ww.* detJ(c1:c1+dop ^2 -1);
44 c1 = c1 + dop ^2;
45 end
46 [xi ,eta] = q4invmap (x,y,Xip ,Yip);
47 end
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Near-tip enrichment definition

1 function [M2 ,dM2dX ,dM2dY] = fxfem_neartip (Ni ,dNidX ,dNidY ,Vc ,
On ,Rn ,Oip ,Rip ,n_type)

2

3 % Angle between X axis and crack segment
4 CROSS = cross ([1 0 0],[Vc ; 0]);
5 a = atan2(CROSS (3) ,dot ([1 0 0],[Vc ; 0]));
6 n_ip = length(Oip);
7

8 f1 = @(r,o) sqrt(r) * sin(o/2);
9 f2 = @(r,o) sqrt(r) * cos(o/2);

10 f3 = @(r,o) sqrt(r) * sin(o/2) * sin(o);
11 f4 = @(r,o) sqrt(r) * cos(o/2) * sin(o);
12 f5 = @(r,o) r*sin(o);
13 f6 = @(r,o) r*cos(o);
14

15 df1dr = @(r,o) 1/(2* sqrt(r)) * sin(o/2);
16 df1do = @(r,o) sqrt(r)/2 * cos(o/2);
17

18 df2dr = @(r,o) 1/(2* sqrt(r)) * cos(o/2);
19 df2do = @(r,o) -sqrt(r)/2 * sin(o/2);
20

21 df3dr = @(r,o) 1/(2* sqrt(r)) * sin(o/2) * sin(o);
22 df3do = @(r,o) sqrt(r) * (0.5* cos(o/2)*sin(o)+sin(o/2)

*cos(o));
23

24 df4dr = @(r,o) 1/(2* sqrt(r)) * cos(o/2) * sin(o);
25 df4do = @(r,o) sqrt(r) * (cos(o/2)*cos(o) - 0.5* sin(o

/2)*sin(o));
26

27 df5dr = @(r,o) sin(o);
28 df5do = @(r,o) r*cos(o);
29

30 df6dr = @(r,o) cos(o);
31 df6do = @(r,o) -r*sin(o);
32

33 T = @(r,o) [cos(o) -sin(o)/r ; sin(o) cos(o)/r];
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34 Q = @(a) [cos(a) -sin(a) ; sin(a) cos(a) ];
35

36

37 F11 = f1(Rn (1) ,On (1));
38 F12 = f1(Rn (2) ,On (2));
39 F13 = f1(Rn (3) ,On (3));
40 F14 = f1(Rn (4) ,On (4));
41 F21 = f2(Rn (1) ,On (1));
42 F22 = f2(Rn (2) ,On (2));
43 F23 = f2(Rn (3) ,On (3));
44 F24 = f2(Rn (4) ,On (4));
45 F31 = f3(Rn (1) ,On (1));
46 F32 = f3(Rn (2) ,On (2));
47 F33 = f3(Rn (3) ,On (3));
48 F34 = f3(Rn (4) ,On (4));
49 F41 = f4(Rn (1) ,On (1));
50 F42 = f4(Rn (2) ,On (2));
51 F43 = f4(Rn (3) ,On (3));
52 F44 = f4(Rn (4) ,On (4));
53 F51 = f5(Rn (1) ,On (1));
54 F52 = f5(Rn (2) ,On (2));
55 F53 = f5(Rn (3) ,On (3));
56 F54 = f5(Rn (4) ,On (4));
57 F61 = f6(Rn (1) ,On (1));
58 F62 = f6(Rn (2) ,On (2));
59 F63 = f6(Rn (3) ,On (3));
60 F64 = f6(Rn (4) ,On (4));
61

62

63 C1 = T(Rn (1) ,On (1)) * Q(a);
64 C2 = T(Rn (2) ,On (2)) * Q(a);
65 C3 = T(Rn (3) ,On (3)) * Q(a);
66 C4 = T(Rn (4) ,On (4)) * Q(a);
67

68 df1dX1 = C1 (1 ,:) * [df1dr(Rn (1) ,On (1)) df1do(Rn (1) ,On (1))]’;
69 df1dY1 = C1 (2 ,:) * [df1dr(Rn (1) ,On (1)) df1do(Rn (1) ,On (1))]’;
70 df2dX1 = C1 (1 ,:) * [df2dr(Rn (1) ,On (1)) df2do(Rn (1) ,On (1))]’;
71 df2dY1 = C1 (2 ,:) * [df2dr(Rn (1) ,On (1)) df2do(Rn (1) ,On (1))]’;
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72 df3dX1 = C1 (1 ,:) * [df3dr(Rn (1) ,On (1)) df3do(Rn (1) ,On (1))]’;
73 df3dY1 = C1 (2 ,:) * [df3dr(Rn (1) ,On (1)) df3do(Rn (1) ,On (1))]’;
74 df4dX1 = C1 (1 ,:) * [df4dr(Rn (1) ,On (1)) df4do(Rn (1) ,On (1))]’;
75 df4dY1 = C1 (2 ,:) * [df4dr(Rn (1) ,On (1)) df4do(Rn (1) ,On (1))]’;
76 df5dX1 = C1 (1 ,:) * [df5dr(Rn (1) ,On (1)) df5do(Rn (1) ,On (1))]’;
77 df5dY1 = C1 (2 ,:) * [df5dr(Rn (1) ,On (1)) df5do(Rn (1) ,On (1))]’;
78 df6dX1 = C1 (1 ,:) * [df6dr(Rn (1) ,On (1)) df6do(Rn (1) ,On (1))]’;
79 df6dY1 = C1 (2 ,:) * [df6dr(Rn (1) ,On (1)) df6do(Rn (1) ,On (1))]’;
80

81 df1dX2 = C2 (1 ,:) * [df1dr(Rn (2) ,On (2)) df1do(Rn (2) ,On (2))]’;
82 df1dY2 = C2 (2 ,:) * [df1dr(Rn (2) ,On (2)) df1do(Rn (2) ,On (2))]’;
83 df2dX2 = C2 (1 ,:) * [df2dr(Rn (2) ,On (2)) df2do(Rn (2) ,On (2))]’;
84 df2dY2 = C2 (2 ,:) * [df2dr(Rn (2) ,On (2)) df2do(Rn (2) ,On (2))]’;
85 df3dX2 = C2 (1 ,:) * [df3dr(Rn (2) ,On (2)) df3do(Rn (2) ,On (2))]’;
86 df3dY2 = C2 (2 ,:) * [df3dr(Rn (2) ,On (2)) df3do(Rn (2) ,On (2))]’;
87 df4dX2 = C2 (1 ,:) * [df4dr(Rn (2) ,On (2)) df4do(Rn (2) ,On (2))]’;
88 df4dY2 = C2 (2 ,:) * [df4dr(Rn (2) ,On (2)) df4do(Rn (2) ,On (2))]’;
89 df5dX2 = C2 (1 ,:) * [df5dr(Rn (2) ,On (2)) df5do(Rn (2) ,On (2))]’;
90 df5dY2 = C2 (2 ,:) * [df5dr(Rn (2) ,On (2)) df5do(Rn (2) ,On (2))]’;
91 df6dX2 = C2 (1 ,:) * [df6dr(Rn (2) ,On (2)) df6do(Rn (2) ,On (2))]’;
92 df6dY2 = C2 (2 ,:) * [df6dr(Rn (2) ,On (2)) df6do(Rn (2) ,On (2))]’;
93

94 df1dX3 = C3 (1 ,:) * [df1dr(Rn (3) ,On (3)) df1do(Rn (3) ,On (3))]’;
95 df1dY3 = C3 (2 ,:) * [df1dr(Rn (3) ,On (3)) df1do(Rn (3) ,On (3))]’;
96 df2dX3 = C3 (1 ,:) * [df2dr(Rn (3) ,On (3)) df2do(Rn (3) ,On (3))]’;
97 df2dY3 = C3 (2 ,:) * [df2dr(Rn (3) ,On (3)) df2do(Rn (3) ,On (3))]’;
98 df3dX3 = C3 (1 ,:) * [df3dr(Rn (3) ,On (3)) df3do(Rn (3) ,On (3))]’;
99 df3dY3 = C3 (2 ,:) * [df3dr(Rn (3) ,On (3)) df3do(Rn (3) ,On (3))]’;

100 df4dX3 = C3 (1 ,:) * [df4dr(Rn (3) ,On (3)) df4do(Rn (3) ,On (3))]’;
101 df4dY3 = C3 (2 ,:) * [df4dr(Rn (3) ,On (3)) df4do(Rn (3) ,On (3))]’;
102 df5dX3 = C3 (1 ,:) * [df5dr(Rn (3) ,On (3)) df5do(Rn (3) ,On (3))]’;
103 df5dY3 = C3 (2 ,:) * [df5dr(Rn (3) ,On (3)) df5do(Rn (3) ,On (3))]’;
104 df6dX3 = C3 (1 ,:) * [df6dr(Rn (3) ,On (3)) df6do(Rn (3) ,On (3))]’;
105 df6dY3 = C3 (2 ,:) * [df6dr(Rn (3) ,On (3)) df6do(Rn (3) ,On (3))]’;
106

107 df1dX4 = C4 (1 ,:) * [df1dr(Rn (4) ,On (4)) df1do(Rn (4) ,On (4))]’;
108 df1dY4 = C4 (2 ,:) * [df1dr(Rn (4) ,On (4)) df1do(Rn (4) ,On (4))]’;
109 df2dX4 = C4 (1 ,:) * [df2dr(Rn (4) ,On (4)) df2do(Rn (4) ,On (4))]’;
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110 df2dY4 = C4 (2 ,:) * [df2dr(Rn (4) ,On (4)) df2do(Rn (4) ,On (4))]’;
111 df3dX4 = C4 (1 ,:) * [df3dr(Rn (4) ,On (4)) df3do(Rn (4) ,On (4))]’;
112 df3dY4 = C4 (2 ,:) * [df3dr(Rn (4) ,On (4)) df3do(Rn (4) ,On (4))]’;
113 df4dX4 = C4 (1 ,:) * [df4dr(Rn (4) ,On (4)) df4do(Rn (4) ,On (4))]’;
114 df4dY4 = C4 (2 ,:) * [df4dr(Rn (4) ,On (4)) df4do(Rn (4) ,On (4))]’;
115 df5dX4 = C4 (1 ,:) * [df5dr(Rn (4) ,On (4)) df5do(Rn (4) ,On (4))]’;
116 df5dY4 = C4 (2 ,:) * [df5dr(Rn (4) ,On (4)) df5do(Rn (4) ,On (4))]’;
117 df6dX4 = C4 (1 ,:) * [df6dr(Rn (4) ,On (4)) df6do(Rn (4) ,On (4))]’;
118 df6dY4 = C4 (2 ,:) * [df6dr(Rn (4) ,On (4)) df6do(Rn (4) ,On (4))]’;
119

120 dM2dX = zeros(n_ip ,4 ,6);
121 dM2dY = zeros(n_ip ,4 ,6);
122 M2 = zeros(n_ip ,4 ,6);
123 for i = 1 : n_ip
124 N1 = Ni(i ,1);
125 N2 = Ni(i ,2);
126 N3 = Ni(i ,3);
127 N4 = Ni(i ,4);
128

129 dN1dX = dNidX(i ,1);
130 dN2dX = dNidX(i ,2);
131 dN3dX = dNidX(i ,3);
132 dN4dX = dNidX(i ,4);
133

134 dN1dY = dNidY(i ,1);
135 dN2dY = dNidY(i ,2);
136 dN3dY = dNidY(i ,3);
137 dN4dY = dNidY(i ,4);
138

139 R = sum(N1*n_type (1) + N2*n_type (2) + N3*n_type
(3) + N4*n_type (4) ,2);

140 dRdX = sum(dN1dX*n_type (1) + dN2dX*n_type (2) + dN3dX*
n_type (3) + dN4dX*n_type (4) ,2);

141 dRdY = sum(dN1dY*n_type (1) + dN2dY*n_type (2) + dN3dY*
n_type (3) + dN4dY*n_type (4) ,2);

142

143 r = Rip(i);
144 o = Oip(i);
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145 C = T(r,o) * Q(a);
146

147 F1 = f1(r,o);
148 F2 = f2(r,o);
149 F3 = f3(r,o);
150 F4 = f4(r,o);
151 F5 = f5(r,o);
152 F6 = f6(r,o);
153

154 M2(i ,1 ,1) = N1 * (F1 - F11) * R;
155 M2(i ,2 ,1) = N2 * (F1 - F12) * R;
156 M2(i ,3 ,1) = N3 * (F1 - F13) * R;
157 M2(i ,4 ,1) = N4 * (F1 - F14) * R;
158

159 M2(i ,1 ,2) = N1 * (F2 - F21) * R;
160 M2(i ,2 ,2) = N2 * (F2 - F22) * R;
161 M2(i ,3 ,2) = N3 * (F2 - F23) * R;
162 M2(i ,4 ,2) = N4 * (F2 - F24) * R;
163

164 M2(i ,1 ,3) = N1 * (F3 - F31) * R;
165 M2(i ,2 ,3) = N2 * (F3 - F32) * R;
166 M2(i ,3 ,3) = N3 * (F3 - F33) * R;
167 M2(i ,4 ,3) = N4 * (F3 - F34) * R;
168

169 M2(i ,1 ,4) = N1 * (F4 - F41) * R;
170 M2(i ,2 ,4) = N2 * (F4 - F42) * R;
171 M2(i ,3 ,4) = N3 * (F4 - F43) * R;
172 M2(i ,4 ,4) = N4 * (F4 - F44) * R;
173

174 M2(i ,1 ,5) = N1 * (F5 - F51) * R;
175 M2(i ,2 ,5) = N2 * (F5 - F52) * R;
176 M2(i ,3 ,5) = N3 * (F5 - F53) * R;
177 M2(i ,4 ,5) = N4 * (F5 - F54) * R;
178

179 M2(i ,1 ,6) = N1 * (F6 - F61) * R;
180 M2(i ,2 ,6) = N2 * (F6 - F62) * R;
181 M2(i ,3 ,6) = N3 * (F6 - F63) * R;
182 M2(i ,4 ,6) = N4 * (F6 - F64) * R;
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183

184 df1dX = C(1 ,:) * [df1dr(r,o) df1do(r,o)]’;
185 df1dY = C(2 ,:) * [df1dr(r,o) df1do(r,o)]’;
186

187 df2dX = C(1 ,:) * [df2dr(r,o) df2do(r,o)]’;
188 df2dY = C(2 ,:) * [df2dr(r,o) df2do(r,o)]’;
189

190 df3dX = C(1 ,:) * [df3dr(r,o) df3do(r,o)]’;
191 df3dY = C(2 ,:) * [df3dr(r,o) df3do(r,o)]’;
192

193 df4dX = C(1 ,:) * [df4dr(r,o) df4do(r,o)]’;
194 df4dY = C(2 ,:) * [df4dr(r,o) df4do(r,o)]’;
195

196 df5dX = C(1 ,:) * [df5dr(r,o) df5do(r,o)]’;
197 df5dY = C(2 ,:) * [df5dr(r,o) df5do(r,o)]’;
198

199 df6dX = C(1 ,:) * [df6dr(r,o) df6do(r,o)]’;
200 df6dY = C(2 ,:) * [df6dr(r,o) df6do(r,o)]’;
201

202 dF1dX1 = dN1dX *(F1 -F11)*R + N1*( df1dX -df1dX1)*R + N1*(F1
-F11)*dRdX;

203 dF1dX2 = dN2dX *(F1 -F12)*R + N2*( df1dX -df1dX2)*R + N2*(F1
-F12)*dRdX;

204 dF1dX3 = dN3dX *(F1 -F13)*R + N3*( df1dX -df1dX3)*R + N3*(F1
-F13)*dRdX;

205 dF1dX4 = dN4dX *(F1 -F14)*R + N4*( df1dX -df1dX4)*R + N4*(F1
-F14)*dRdX;

206 dF1dY1 = dN1dY *(F1 -F11)*R + N1*( df1dY -df1dY1)*R + N1*(F1
-F11)*dRdY;

207 dF1dY2 = dN2dY *(F1 -F12)*R + N2*( df1dY -df1dY2)*R + N2*(F1
-F12)*dRdY;

208 dF1dY3 = dN3dY *(F1 -F13)*R + N3*( df1dY -df1dY3)*R + N3*(F1
-F13)*dRdY;

209 dF1dY4 = dN4dY *(F1 -F14)*R + N4*( df1dY -df1dY4)*R + N4*(F1
-F14)*dRdY;

210

211 dF2dX1 = dN1dX *(F2 -F21)*R + N1*( df2dX -df2dX1)*R + N1*(F2
-F21)*dRdX;
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212 dF2dX2 = dN2dX *(F2 -F22)*R + N2*( df2dX -df2dX2)*R + N2*(F2
-F22)*dRdX;

213 dF2dX3 = dN3dX *(F2 -F23)*R + N3*( df2dX -df2dX3)*R + N3*(F2
-F23)*dRdX;

214 dF2dX4 = dN4dX *(F2 -F24)*R + N4*( df2dX -df2dX4)*R + N4*(F2
-F24)*dRdX;

215 dF2dY1 = dN1dY *(F2 -F21)*R + N1*( df2dY -df2dY1)*R + N1*(F2
-F21)*dRdY;

216 dF2dY2 = dN2dY *(F2 -F22)*R + N2*( df2dY -df2dY2)*R + N2*(F2
-F22)*dRdY;

217 dF2dY3 = dN3dY *(F2 -F23)*R + N3*( df2dY -df2dY3)*R + N3*(F2
-F23)*dRdY;

218 dF2dY4 = dN4dY *(F2 -F24)*R + N4*( df2dY -df2dY4)*R + N4*(F2
-F24)*dRdY;

219

220 dF3dX1 = dN1dX *(F3 -F31)*R + N1*( df3dX -df3dX1)*R + N1*(F3
-F31)*dRdX;

221 dF3dX2 = dN2dX *(F3 -F32)*R + N2*( df3dX -df3dX2)*R + N2*(F3
-F32)*dRdX;

222 dF3dX3 = dN3dX *(F3 -F33)*R + N3*( df3dX -df3dX3)*R + N3*(F3
-F33)*dRdX;

223 dF3dX4 = dN4dX *(F3 -F34)*R + N4*( df3dX -df3dX4)*R + N4*(F3
-F34)*dRdX;

224 dF3dY1 = dN1dY *(F3 -F31)*R + N1*( df3dY -df3dY1)*R + N1*(F3
-F31)*dRdY;

225 dF3dY2 = dN2dY *(F3 -F32)*R + N2*( df3dY -df3dY2)*R + N2*(F3
-F32)*dRdY;

226 dF3dY3 = dN3dY *(F3 -F33)*R + N3*( df3dY -df3dY3)*R + N3*(F3
-F33)*dRdY;

227 dF3dY4 = dN4dY *(F3 -F34)*R + N4*( df3dY -df3dY4)*R + N4*(F3
-F34)*dRdY;

228

229 dF4dX1 = dN1dX *(F4 -F41)*R + N1*( df4dX -df4dX1)*R + N1*(F4
-F41)*dRdX;

230 dF4dX2 = dN2dX *(F4 -F42)*R + N2*( df4dX -df4dX2)*R + N2*(F4
-F42)*dRdX;

231 dF4dX3 = dN3dX *(F4 -F43)*R + N3*( df4dX -df4dX3)*R + N3*(F4
-F43)*dRdX;
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232 dF4dX4 = dN4dX *(F4 -F44)*R + N4*( df4dX -df4dX4)*R + N4*(F4
-F44)*dRdX;

233 dF4dY1 = dN1dY *(F4 -F41)*R + N1*( df4dY -df4dY1)*R + N1*(F4
-F41)*dRdY;

234 dF4dY2 = dN2dY *(F4 -F42)*R + N2*( df4dY -df4dY2)*R + N2*(F4
-F42)*dRdY;

235 dF4dY3 = dN3dY *(F4 -F43)*R + N3*( df4dY -df4dY3)*R + N3*(F4
-F43)*dRdY;

236 dF4dY4 = dN4dY *(F4 -F44)*R + N4*( df4dY -df4dY4)*R + N4*(F4
-F44)*dRdY;

237

238 dF5dX1 = dN1dX *(F5 -F51)*R + N1*( df5dX -df5dX1)*R + N1*(F5
-F51)*dRdX;

239 dF5dX2 = dN2dX *(F5 -F52)*R + N2*( df5dX -df5dX2)*R + N2*(F5
-F52)*dRdX;

240 dF5dX3 = dN3dX *(F5 -F53)*R + N3*( df5dX -df5dX3)*R + N3*(F5
-F53)*dRdX;

241 dF5dX4 = dN4dX *(F5 -F54)*R + N4*( df5dX -df5dX4)*R + N4*(F5
-F54)*dRdX;

242 dF5dY1 = dN1dY *(F5 -F51)*R + N1*( df5dY -df5dY1)*R + N1*(F5
-F51)*dRdY;

243 dF5dY2 = dN2dY *(F5 -F52)*R + N2*( df5dY -df5dY2)*R + N2*(F5
-F52)*dRdY;

244 dF5dY3 = dN3dY *(F5 -F53)*R + N3*( df5dY -df5dY3)*R + N3*(F5
-F53)*dRdY;

245 dF5dY4 = dN4dY *(F5 -F54)*R + N4*( df5dY -df5dY4)*R + N4*(F5
-F54)*dRdY;

246

247 dF6dX1 = dN1dX *(F6 -F61)*R + N1*( df6dX -df6dX1)*R + N1*(F6
-F61)*dRdX;

248 dF6dX2 = dN2dX *(F6 -F62)*R + N2*( df6dX -df6dX2)*R + N2*(F6
-F62)*dRdX;

249 dF6dX3 = dN3dX *(F6 -F63)*R + N3*( df6dX -df6dX3)*R + N3*(F6
-F63)*dRdX;

250 dF6dX4 = dN4dX *(F6 -F64)*R + N4*( df6dX -df6dX4)*R + N4*(F6
-F64)*dRdX;

251 dF6dY1 = dN1dY *(F6 -F61)*R + N1*( df6dY -df6dY1)*R + N1*(F6
-F61)*dRdY;
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252 dF6dY2 = dN2dY *(F6 -F62)*R + N2*( df6dY -df6dY2)*R + N2*(F6
-F62)*dRdY;

253 dF6dY3 = dN3dY *(F6 -F63)*R + N3*( df6dY -df6dY3)*R + N3*(F6
-F63)*dRdY;

254 dF6dY4 = dN4dY *(F6 -F64)*R + N4*( df6dY -df6dY4)*R + N4*(F6
-F64)*dRdY;

255

256 dM2dX(i ,: ,1) = [dF1dX1 dF1dX2 dF1dX3 dF1dX4 ];
257 dM2dX(i ,: ,2) = [dF2dX1 dF2dX2 dF2dX3 dF2dX4 ];
258 dM2dX(i ,: ,3) = [dF3dX1 dF3dX2 dF3dX3 dF3dX4 ];
259 dM2dX(i ,: ,4) = [dF4dX1 dF4dX2 dF4dX3 dF4dX4 ];
260 dM2dX(i ,: ,5) = [dF5dX1 dF5dX2 dF5dX3 dF5dX4 ];
261 dM2dX(i ,: ,6) = [dF6dX1 dF6dX2 dF6dX3 dF6dX4 ];
262

263 dM2dY(i ,: ,1) = [dF1dY1 dF1dY2 dF1dY3 dF1dY4 ];
264 dM2dY(i ,: ,2) = [dF2dY1 dF2dY2 dF2dY3 dF2dY4 ];
265 dM2dY(i ,: ,3) = [dF3dY1 dF3dY2 dF3dY3 dF3dY4 ];
266 dM2dY(i ,: ,4) = [dF4dY1 dF4dY2 dF4dY3 dF4dY4 ];
267 dM2dY(i ,: ,5) = [dF5dY1 dF5dY2 dF5dY3 dF5dY4 ];
268 dM2dY(i ,: ,6) = [dF6dY1 dF6dY2 dF6dY3 dF6dY4 ];
269 end
270 end
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Script for XFEM solution

1 function [ SIM ] = fxfem_solver ( ELEMENT ,NODE ,BC ,SIM )
2 % fxfem_solver Solves the FEM problem
3

4 % Defining the total Degrees of Freedom (DOF) of the system
and the DOF

5 % vector
6 no_nodes = SIM.NODES;
7 dof = 2* SIM.NODES + 2* SIM.NODES + 2* SIM.NODES *6;
8 Vdof = ( 1 : dof ) ’;
9

10 % Initializing displacements
11 NODE.UX = zeros(SIM.NODES ,1);
12 NODE.UY = NODE.UX;
13 NODE.AX = zeros(SIM.NODES ,1);
14 NODE.AY = NODE.AX;
15 NODE.BX = zeros(SIM.NODES ,4);
16 NODE.BY = NODE.BX;
17

18 % Assembly of global stiffness matrix
19 Kg = zeros( dof ,dof );
20 for n1 = 1 : SIM. ELEMENTS % Loop over elements
21 i = ELEMENT (n1).CONVEC;
22 Kg(i,i) = Kg(i,i) + ELEMENT (n1). STIFFNESS ;
23

24 end
25

26 % Activating node Standard DOF
27 U_nodes = NODE.ID(NODE.STATE == 1);
28 [U_act] = fxfem_dofs (U_nodes ,no_nodes ,’standard ’);
29

30 % Activating node Heaviside DOF
31 A_nodes = NODE.ID(NODE.TYPE == 1);
32 [A_act] = fxfem_dofs (A_nodes ,no_nodes ,’heaviside ’);
33

34 % Activating node Isotropic Near -tip DOF
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35 B_nodes = unique(SIM.CONMAT(sum(NODE.TYPE(SIM.CONMAT)==2 ,2)
<4 & ...

36 sum(NODE.TYPE(SIM.CONMAT)==2 ,2) >0,:));
37 [B_act] = fxfem_dofs (B_nodes ,no_nodes ,’neartip ’);
38

39 % Declaring the ’active ’ and ’constrained ’ DOF
40 act_nodes = sort ([ U_act A_act B_act ]);
41 con_nodes = setdiff (Vdof , act_nodes );
42

43 Kcc = sparse( Kg( con_nodes , con_nodes ) );
44 Kca = sparse( Kg( con_nodes , act_nodes ) );
45 Kac = sparse( Kg( act_nodes , con_nodes ) );
46 Kaa = sparse( Kg( act_nodes , act_nodes ) );
47

48 % Initializing variables
49 f = zeros( dof , 1 );
50 U = zeros( dof , 1 );
51

52 % Determining node DOF with boundary conditions
53 U_nodes = BC.DISP.NODE;
54 [~,Ux_con ,Uy_con] = fxfem_dofs (U_nodes ,no_nodes ,’standard ’);
55

56 % Adding Dirichlet boundary conditions to the system
displacement

57 % vector
58 U(Ux_con) = BC.DISP.UX;
59 U(Uy_con) = BC.DISP.UY;
60

61 % Adding Newman boundary conditions to the system Force
vector

62 if isempty (BC.FORCE.NODE) == 0
63 [~,Ux_con ,Uy_con] = fxfem_dofs (BC.FORCE.NODE ,no_nodes ,’

standard ’);
64 f(Ux_con) = BC.FORCE.FX;
65 f(Uy_con) = BC.FORCE.FY;
66 end
67

68 % Reducing the system of equations
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69 Fa = f( act_nodes );
70 Uc = U( con_nodes );
71

72 % Solving the system of equations
73 Ua = Kaa \(Fa -Kac*Uc);
74 Fc = Kcc*Uc + Kca*Ua;
75

76 % Store solution values
77 U( act_nodes ) = Ua;
78 f( con_nodes ) = Fc;
79

80 SIM.d = U;
81 SIM.K = Kg;
82 SIM.f = f;
83 end
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Script for XFEM displacement solution

1 function [NODE ]= fxfem_disp (SIM ,NODE ,ELEMENT ,CRACK , MATERIAL )
2 % fxfem_disp calculates the displacements of the nodes
3

4 Cv = [ CRACK.X(end) - CRACK.X(end -1) ; CRACK.Y(end) - CRACK.
Y(end -1) ];

5 o = [-1 1 1 -1];
6 p = [-1 -1 1 1];
7 [Ni ,dNido ,dNidp] = ffem_q4elem (o,p);
8

9 MAT = zeros(SIM.NODES ,9);
10

11

12 for n1 = 1 : SIM. ELEMENTS % Loop over elements
13

14 X = NODE.X( ELEMENT (n1).NODES);
15 Y = NODE.Y( ELEMENT (n1).NODES);
16 invJ = ffem_jacobian (X,Y,dNido ,dNidp ,4);
17 matJ = ffem_jacobian (X,Y,dNido ,dNidp ,1);
18 di = SIM.d( ELEMENT (n1).CONVEC);
19 Psi = NODE.PSI( ELEMENT (n1).NODES);
20 r = NODE.R( ELEMENT (n1).NODES);
21 o = NODE.O( ELEMENT (n1).NODES);
22

23 [dNidX ,dNidY] = ffem_dervconvert (invJ ,dNido ,dNidp);
24

25 [M1 ,dM1dX ,dM1dY] = fxfem_heaviside (’signed ’,’all ’,Psi ,
Ni ,dNidX ,dNidY);

26 nt_vec = double(NODE.TYPE( ELEMENT (n1).NODES) == 2);
27 [M2 ,dM2dX ,dM2dY] = fxfem_neartip (Ni ,dNidX ,dNidY ,Cv ,o,r

,o,r,nt_vec);
28

29 [dM1do ,dM1dp] = ffem_dervconvert (matJ ,dM1dX ,dM1dY);
30 [dM2do ,dM2dp] = ffem_dervconvert (matJ ,dM2dX ,dM2dY);
31

32 for i = 1 : 4 % Loop over nodes
33 Bu = fxfem_Bmats (dNido(i ,:) ,dNidp(i ,:) ,’standard ’);
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34 Ba = fxfem_Bmats (dM1do(i ,:) ,dM1dp(i ,:) ,’heaviside ’);
35 Bb = fxfem_Bmats (dM2do(i ,: ,:) ,dM2dp(i ,: ,:) ,’neartip ’

);
36

37 u = fxfem_dofs ( ELEMENT (n1).NODES ,SIM.NODES ,’standard
’) ’;

38 a = fxfem_dofs ( ELEMENT (n1).NODES ,SIM.NODES ,’
heaviside ’) ’;

39 b = fxfem_dofs ( ELEMENT (n1).NODES ,SIM.NODES ,’neartip ’
) ’;

40

41 D = MATERIAL ( ELEMENT (n1). MATERIAL ).D;
42 e = Bu*u + Ba*a + Bb*b;
43 s = D*e;
44

45

46 Mi = [Ni(i ,:) M1(i ,:) M2(i ,: ,1) M2(i ,: ,2) M2(i ,: ,3)
M2(i ,: ,4) M2(i ,: ,5) M2(i ,: ,6) ];

47 dx = Mi * di (1:2: end);
48 dy = Mi * di (2:2: end);
49

50 MAT( ELEMENT (n1).NODES(i) ,1) = MAT( ELEMENT (n1).NODES(
i) ,1) + dx; % X displacement

51 MAT( ELEMENT (n1).NODES(i) ,2) = MAT( ELEMENT (n1).NODES(
i) ,2) + dy; % Y displacement

52 MAT( ELEMENT (n1).NODES(i) ,3) = MAT( ELEMENT (n1).NODES(
i) ,3) + e(1); % Strain in XX

53 MAT( ELEMENT (n1).NODES(i) ,4) = MAT( ELEMENT (n1).NODES(
i) ,4) + e(2); % Strain in YY

54 MAT( ELEMENT (n1).NODES(i) ,5) = MAT( ELEMENT (n1).NODES(
i) ,5) + e(3); % Strain in XY

55 MAT( ELEMENT (n1).NODES(i) ,6) = MAT( ELEMENT (n1).NODES(
i) ,6) + s(1); % Stress in XX

56 MAT( ELEMENT (n1).NODES(i) ,7) = MAT( ELEMENT (n1).NODES(
i) ,7) + s(2); % Stress in YY

57 MAT( ELEMENT (n1).NODES(i) ,8) = MAT( ELEMENT (n1).NODES(
i) ,8) + s(3); % Stress in XY
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58 MAT( ELEMENT (n1).NODES(i) ,9) = MAT( ELEMENT (n1).NODES(
i) ,9) + 1; % Counter

59 end
60 end
61

62 NODE.dx = MAT (: ,1) ./ MAT (: ,9);
63 NODE.dy = MAT (: ,2) ./ MAT (: ,9);
64 NODE.exx = MAT (: ,3) ./ MAT (: ,9);
65 NODE.eyy = MAT (: ,4) ./ MAT (: ,9);
66 NODE.exy = MAT (: ,5) ./ MAT (: ,9);
67 NODE.sxx = MAT (: ,6) ./ MAT (: ,9);
68 NODE.syy = MAT (: ,7) ./ MAT (: ,9);
69 NODE.sxy = MAT (: ,8) ./ MAT (: ,9);
70

71 end
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Script for XFEM stress/strain extrapolation to nodes

1 function [NODE ]= fxfem_StrainStressNODE (IP ,ELEMENT ,NODE ,SIM ,
request )

2 SOL = struct(’CUM ’,zeros(SIM.NODES ,1) ,’COUNT ’,zeros(SIM.
NODES ,1));

3 for n1 = 1 : SIM. ELEMENTS % loop over elements
4 x = IP(n1).X;
5 y = IP(n1).Y;
6 z = IP(n1).( request );
7

8 X = NODE.X( ELEMENT (n1).NODES);
9 Y = NODE.Y( ELEMENT (n1).NODES);

10 Z = griddata (x,y,z,X,Y,’v4’);
11

12 SOL.CUM( ELEMENT (n1).NODES) = SOL.CUM( ELEMENT (n1).NODES
) + Z;

13 SOL.COUNT( ELEMENT (n1).NODES) = SOL.COUNT( ELEMENT (n1).
NODES) + 1;

14 end
15 SOL.AVG = SOL.CUM ./ SOL.COUNT;
16

17 NODE .( request ) = SOL.AVG;
18 end
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Stochastic fatigue model

1 function [xp] = stochastic ()
2 % This function applies a stochastic correlation time

parameter to the
3 % Paris - Erdogan model. It is based on the Yang -Manning ’s

model.
4 Sz = 0.932334471; % Estimated from experimental data
5 n = 23; % Data points
6 lambda = sqrt ((n -1) /2)*gamma ((n -1) /2)/gamma(n/2);
7 mu_p = normrnd (0 ,1);
8 Zp = -lambda*mu_p*Sz;
9 xp = 2^Zp;

10 end
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Script to find intersection between two line segments

1 function [ Ipoint ] = fsintersect ( Line1 ,Line2 )
2 % fsintersect : Intersection between two finite line segments .
3 % fgeo_sintersect detects intersection points between two

finite line
4 % segments and returns the (x,y) coordinate of the

intersection point. If
5 % no intersection exists , the function returns a (NaN ,NaN)

point
6 % coordinate .
7 %
8 % INPUTS:
9 % Line1 : first line segment [xi ,yi]

10 % Line2 : second line segment [xi ,yi]
11 %
12 % OUTPUT:
13 % Ipoint : intersection point value [NaN ,NaN] if none , [x,

y] otherwise
14 %
15 % NOTES:
16 % - Only 2D space lines supported .
17

18 % PROCESS : Defining segment starting points
19 p = Line1 (1 ,:);
20 q = Line2 (1 ,:);
21

22 % PROCESS : Defining segment vectors
23 r = Line1 (2 ,:) - p;
24 s = Line2 (2 ,:) - q;
25

26 % PROCESS : Defining distance vector
27 qp = q-p;
28

29 % PROCESS : Calculating parameters
30 t = (qp (1)*s(2) -qp (2)*s(1))/(r(1)*s(2) -r(2)*s(1));
31 u = (qp (1)*r(2) -qp (2)*r(1))/(r(1)*s(2) -r(2)*s(1));
32
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33 % PROCESS : Finds if intersection exists
34 if (t >= 0) && (t <= 1) && (u >= 0) && (u <= 1)
35

36 Ipoint = p + t*r;
37 %Ipoint = q + u*s;
38

39 else
40

41 Ipoint = [NaN NaN ];
42

43 end
44 end
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