
A MODULAR DESIGN APPROACH FOR IMPROVING THE
LEARNING PROCESS OF UNDERGRADUATE STUDENTS IN THE

EMBEDDED SYSTEM DESIGN LABORATORY

By

Danilo Alfonso Rojas Méndez

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

December, 2016

Approved by:

Manuel Jiménez, Ph.D. Date
Chair, Graduate Committee

Aidsa I. Santiago-Román, Ph.D. Date
Co-Chair, Graduate Committee

Leyda León, Ph.D. Date
Member, Graduate Committee

Wilford Schmidt, Ph.D. Date
Member, Graduate Committee

Cecilio Ortiz, Ph.D. Date
Graduate Studies Representative

José Colom, Ph.D. Date
Department Chairperson



Abstract of Thesis Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

A MODULAR DESIGN APPROACH FOR IMPROVING THE
LEARNING PROCESS OF UNDERGRADUATE STUDENTS IN THE

EMBEDDED SYSTEM DESIGN LABORATORY

By

Danilo Alfonso Rojas Méndez

December 2016

Chair: Dr. Manuel Jiménez
Department: Electrical and Computer Engineering Department

Teaching embedded systems design concepts and enhancing student skills in this

area is an important task for universities in order to provide an up to date edu-

cation. Several methodologies have been developed and implemented to teach the

fundamental concepts and at the same time enhance students’ practical skills. The

purpose of this thesis was to develop a teaching methodology based on a modular

design approach, aided by an Outcome-Based educational framework. To achieve this

objective, the content, pedagogical methods, and assessment activities were aligned

to ensure a proper student learning. The modular approach was applied on the

pedagogical methods through the design of progressive laboratory experiments and

educational modules. Using this methodology, effective laboratory experiments, that

promoted better student learning in the area of embedded systems design, were de-

veloped. As a result, the overall laboratory student performance was improved and

therefore the proposed methodology was validated.

ii



Resumen de tesis presentado a la Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

requerimientos para el grado de Maestŕıa en Ciencias

UNA ESTRATEGIA DE DISEÑO MODULAR PARA MEJORAR EL
PROCESO DE APRENDIZAJE DE LOS ESTUDIANTES

SUBGRADUADOS EN EL LABORATORIO DE DISEÑO DE
SISTEMAS EMBEDIDOS

Por

Danilo Alfonso Rojas Méndez

Diciembre 2016

Consejero: Dr. Manuel Jiménez
Departamento: Ingenieŕıa Eléctrica y Computadoras

La enseñanza de conceptos relacionados al diseño de sistemas embebdidos y mejo-

rar las habilidades practicas de los estudiantes en esta área es un tarea importante

para las universidades con el fin de proporcionar una educacion actualizada. Varias

metodologias se han desarrollado e implementado para enseñar los conceptos funda-

mentales y al mismo tiempo mejorar las habilidades prácticas de los estudiante en esta

área. El propósito de esta tesis fue desarrollar una metodoloǵıa de enseñanza basada

en un diseño modular, ayudada por un marco educativo basado en resultados. Para

lograr este objetivo, el contenido, los métodos pedagógicos y las actividades de evalu-

ación se alinearon para asegurar un aprendizaje adecuado del estudiante. El enfoque

modular se aplicó a los métodos pedagógicos a través del diseño de experimentos de

laboratorio progresivos y módulos educativos. Utilizando esta metodoloǵıa, se desar-

rollaron experimentos de laboratorio eficaces que promovieron un mejor aprendizaje

de los estudiantes en el área del diseño de sistemas embebidos. Como resultado, el

rendimiento general de los estudiantes de laboratorio fue mejorado y por lo tanto la

metodoloǵıa propuesta fue validada.

iii



To my family, specially to my mother Carmen, my father Alfonso, and brother

Hector, who have always given me their love, affection and support to keep going.

iv



Acknowledgements

I would like to express my thanks to my advisors Professor Dr. Manuel Jiménez

and Dr. Aidsa Santiago, thank you for encouraging my research and for allowing me

to grow as a student, researcher, and professional. Also, thanks to my committee

members, professor Dr. Leyda León and professor Dr. Wilford Schmidt for serving

as my committee and for taking part in the review of my work. Thanks to MSc. Juan

Patarroyo for his work because it served a base for my research. I would especially like

to thank Sandy, the graduate academic counselor and friend, who guided and helped

me through this experience in a new university and country. Last but not least, I

want to thanks all my Puerto Rican and Colombian friends, who have encourage and

supported me to move forward during good and bad moments.

v



Contents

Abstract in English . . . . . . . . . . . . . . . . . . . . . ii

Abstract in Spanish . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . xii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . 3

2.1 Elements in an Embedded System Course . . . . . . . . . . 3

2.2 Embedded System Design Course (ICOM4217) . . . . . . . . 4

2.3 Definitions: Module, Modularity, and Modularization . . . . . 6

3 PREVIOUS WORK . . . . . . . . . . . . . . . . . . 8

3.1 Curriculum and Course Design . . . . . . . . . . . . . . 8

3.2 Engineering Education . . . . . . . . . . . . . . . . . 11

3.2.1 Embedded Systems Education . . . . . . . . . . . 11

3.2.2 Representatives Embedded System Teaching Approaches . 17

3.2.3 Modular Design Applied to Embedded Systems . . . . . 19

4 PROBLEM STATEMENT AND HYPOTHESIS . . . . . . 22

4.1 Problem Statement . . . . . . . . . . . . . . . . . . 22

4.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . 22

5 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . 24

5.1 General Objective . . . . . . . . . . . . . . . . . . 24

vi



5.2 Educational Objectives . . . . . . . . . . . . . . . . . 24

5.3 Technical Objectives . . . . . . . . . . . . . . . . . . 24

6 LABORATORY REDESIGN . . . . . . . . . . . . . . . 26

6.1 Laboratory Content Design . . . . . . . . . . . . . . . 26

6.1.1 Desired Student Profile . . . . . . . . . . . . . . 27

6.1.2 Laboratory Content . . . . . . . . . . . . . . . 29

6.2 Methodology Implementation . . . . . . . . . . . . . . 33

6.2.1 Laboratory Teaching Methodology . . . . . . . . . . 33

6.2.2 Laboratory Manual Design . . . . . . . . . . . . 36

6.2.3 Educational Modules Design . . . . . . . . . . . . 41

6.3 Assessment Methods . . . . . . . . . . . . . . . . . . 45

6.3.1 Assessment Groups . . . . . . . . . . . . . . . 46

6.3.2 Tests Validations . . . . . . . . . . . . . . . . 47

6.3.3 Assessment Laboratory Experiment . . . . . . . . . 49

6.3.4 Methodology Assessment . . . . . . . . . . . . . 50

6.4 Alignment . . . . . . . . . . . . . . . . . . . . . 51

6.5 Complementary Laboratory Material . . . . . . . . . . . 53

6.5.1 Tutorial Recommended Handouts Design . . . . . . . 53

6.5.2 Electronics Modules Reference Manual Design . . . . . 54

7 RESULTS AND ANALYSIS . . . . . . . . . . . . . . . 55

7.1 Test Analysis and Validation . . . . . . . . . . . . . . 55

7.1.1 Control Group Test Analysis . . . . . . . . . . . . 55

7.1.2 Experimental Group Test Analysis . . . . . . . . . . 57

7.2 Learning Gain Analysis . . . . . . . . . . . . . . . . 59

7.2.1 Control Group Gain Analysis . . . . . . . . . . . 60

7.2.2 Experimental Group Gain Analysis . . . . . . . . . 61

7.3 Performance Comparison . . . . . . . . . . . . . . . . 63

vii



7.3.1 Using Tests Grades . . . . . . . . . . . . . . . 63

7.3.2 Using Laboratory Exercises Grades . . . . . . . . . 65

8 CONCLUSIONS AND FUTURE WORK . . . . . . . . . 69

8.1 Future Work . . . . . . . . . . . . . . . . . . . . 71

9 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . 72

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendices . . . . . . . . . . . . . . . . . . . . . . . . 79

A Laboratory Experiment Manual . . . . . . . . . . . . . 80

B Laboratory Tests . . . . . . . . . . . . . . . . . . . . 192

B.1 Control Group Laboratory Pre- and Post-tests . . . . . . . . 192

B.2 Experimental Group Laboratory Pre- and Post-tests . . . . . . 197

C Laboratory Tutorial Presentations . . . . . . . . . . . . 205

D Laboratory Modules Reference Manual . . . . . . . . . . 206

E Students Grades . . . . . . . . . . . . . . . . . . . . 265

E.1 Control Group Student Grades . . . . . . . . . . . . . . 265

E.2 Experimental Group Student Grades . . . . . . . . . . . 276

F IRB Acceptance Letters . . . . . . . . . . . . . . . . . 290

viii



List of Tables

2.1 CE2004 Discipline Areas containing core material . . . . . . . . 4

2.2 CE-ESY knowledge units . . . . . . . . . . . . . . . . . 5

3.1 Summary of reviewed approaches for course design . . . . . . . . 11

3.2 Summary of reviewed teaching embedded systems approaches . . . . 16

6.1 ICOM 4217 course outcomes [1] . . . . . . . . . . . . . . . 29

6.2 Student Outcome Analysis . . . . . . . . . . . . . . . . . 30

6.3 Curricular Priorities of the Embedded System Design Course . . . . 31

6.4 Learning objectives related to levels of Bloom’s taxonomy . . . . . 33

6.5 Type of learner vs laboratory experience sections . . . . . . . . 36

6.6 Laboratory manual topics selected based on the current course topics . 38

6.7 Laboratory activities vs learning objectives . . . . . . . . . . . 52

6.8 Tests items vs learning objectives . . . . . . . . . . . . . . 53

7.1 Control group tests item analysis . . . . . . . . . . . . . . 56

7.2 Control group test topics . . . . . . . . . . . . . . . . . 56

7.3 Experimental group tests item analysis . . . . . . . . . . . . 58

7.4 Experimental group test topics . . . . . . . . . . . . . . . 58

7.5 Control and Experimental group tests item analysis . . . . . . . 59

7.6 Control group learning gain factors . . . . . . . . . . . . . . 60

7.7 Control group learning gain factors . . . . . . . . . . . . . . 62

7.8 Control and experimental group single-student gains . . . . . . . 64

7.9 Means, Sample size, standard deviation, and variance for control and
experimental group . . . . . . . . . . . . . . . . . . . . . 64

7.10 Control and experimental group laboratory grades . . . . . . . . 66

ix



7.11 Control and experimental group ranked grades . . . . . . . . . 68

C.1 Laboratory tutorials sections . . . . . . . . . . . . . . . . 205

E.1 Control group pre-tests grades . . . . . . . . . . . . . . . 265

E.2 Control group post-tests grades . . . . . . . . . . . . . . . 266

E.3 Control group pre-tests normalized grades . . . . . . . . . . . 267

E.4 Control group normalized post-tests grades . . . . . . . . . . . 268

E.5 Control group individual gain factors . . . . . . . . . . . . . 269

E.6 Control group Test 1 (High-Voltage Safety) discretized Grades . . . 270

E.7 Control group Test 2 (IDE, ASM/C Programming & IO) discretized
Grades . . . . . . . . . . . . . . . . . . . . . . . . . 271

E.8 Control group Test 3 (Interrupt & Switch Debouncing) discretized Grades 272

E.9 Control group Test 4 (Timers and Applications) discretized Grades . . 273

E.10 Control group Test 5 (Low-Power Modes, LED Display Techniques &
keypads) discretized Grades . . . . . . . . . . . . . . . . . 274

E.11 Control group Test 6 (Introduction to Serial Communications) discretized
Grades . . . . . . . . . . . . . . . . . . . . . . . . . 275

E.12 Experimental group pre-tests grades . . . . . . . . . . . . . 276

E.13 Experimental group post-tests grades . . . . . . . . . . . . . 277

E.14 Experimental group normalized pre-tests grades . . . . . . . . . 278

E.15 Experimental group normalized post-tests grades . . . . . . . . 279

E.16 Experimental group individual gain factors . . . . . . . . . . . 280

E.17 Experimental group individual gain factors (continuation) . . . . . 281

E.18 Experimental group Test 1 (High-Voltage Safety) discretized Grades . 282

E.19 Experimental group Test 2 (IDE, GPIOs, and LCD) discretized Grades 283

E.20 Experimental group Test 3 (Interrupts, Switch Debouncing, and Keypad)
discretized Grades . . . . . . . . . . . . . . . . . . . . . 284

E.21 Experimental group Test 4 (Timers and LEDs) discretized Grades . . 285

E.22 Experimental group Test 5 (Low-Power Modes and PWM) discretized
Grades . . . . . . . . . . . . . . . . . . . . . . . . . 286

x



E.23 Experimental group Test 6 (Motor Interfacing) discretized Grades . . 287

E.24 Experimental group Test 7 (Serial Communications) discretized Grades 288

E.25 Experimental group Test 8 (Data Converters (DAC & ADC)) discretized
Grades . . . . . . . . . . . . . . . . . . . . . . . . . 289

xi



List of Figures

2.1 Example of modular design . . . . . . . . . . . . . . . . 7

6.1 Progressive Design exemplification . . . . . . . . . . . . . . 35

6.2 Educational modules developed for the laboratory . . . . . . . . 42

6.3 Basic I/O module block diagram . . . . . . . . . . . . . . 43

6.4 Keypad module block diagram . . . . . . . . . . . . . . . 43

6.5 Seven-Segment module block diagram . . . . . . . . . . . . . 44

6.6 Motor Interface module block diagram . . . . . . . . . . . . 44

6.7 Serial Communications module block diagram . . . . . . . . . 45

6.8 Data Converters block diagram . . . . . . . . . . . . . . . 46

6.9 OBE Alignment . . . . . . . . . . . . . . . . . . . . . 51

7.1 Control group: Student learning gains . . . . . . . . . . . . 61

7.2 Experimental group: Student learning gains . . . . . . . . . . 63

xii



List of Abbreviations

ADC Analog-to-Digital Converter

BE Basic Exercise

CGUDPCE Curriculum Guidelines for Undergraduate Degree Programs in Com-

puter Engineering

CT Complementary Task

DAC Digital-to-Analog Converter

ECE Electrical and Computer Engineering

ESD Embedded System Design

ESDC Embedded System Design Course

FPGA Field Programmable Gate Array

GPIO General Purpose Input/Output

I2C Inter-Integrated Circuit

ICOM Ingenieria en Computadoras

IDE Integrated Development Environment

LCD Liquid Crystal Display

MCU Microcontroller Unit

OBE Outcome-Based Education

PWM Pulse-Width Modulation

UPRM University of Puerto Rico at Mayagüez

xiii



Chapter 1

INTRODUCTION

An embedded system is defined by Jiménez et. al., as “A device that contains

tightly coupled hardware and software components to perform a single function, forms

part of a larger system, is not intended to be independently programmable by the

user, and is expected to work with minimal or no human interaction” [2]. These

type of devices are extensively used in a wide range of applications (Automotive,

military/aerospace systems, home automation, and industrial control among others)

however its usage is continuously growing due to the integration technologies that have

been developed; denoting the relevance of embedded systems in our daily lives [3].

Due to the relevance of embedded systems, universities offer courses related to

this kind of devices as a part of their electrical and computer engineering curriculum.

Such courses cover fundamental aspects of embedded systems design, including ba-

sic topics such as microcontroller unit (MCU) architectures, peripherals interfacing,

and more advanced topics such as real-time operating systems, fault tolerant design,

among others [4–8].

Different methodologies have been developed and implemented to teach the fun-

damental concepts and at the same time enhance students’ practical skills in this area.

Some of these methods use problems [9–11], projects [12–14], video games [15,16] or

virtual labs [17,18], to attract and motivate students in their learning process. Once

there are several methodologies that have been developed, well-designed courses on

this area need to cover not only aspects related to embedded systems architecture

but also in the design process of these devices.

1



2

This work proposes a strategy based on modular design techniques and an

Outcome-Based Education (OBE) approach to teach embedded design concepts in

an applied laboratory. An OBE framework using a modular design approach at-

tempts to align the content, pedagogical, and assessment methods in the laboratory

experience. The course content was revised taking into consideration industrial and

social expectations, and guidelines for a computer engineering program. Moreover,

the pedagogical methods were implemented using modular design concepts for de-

signing progressive laboratory experiences and educational modules. The assessment

methods, for this work, were implemented through the use of pre- and post-tests to

validate student learning process. Finally, the implemented methodology was vali-

dated against the old methodology through a student performance comparison. The

results showed improvements in the students learning gains, test grades, and better

overall student performance in the development of the laboratory practices.

The rest of the document is organized as follows: Chapter 2 presents a back-

ground of the different elements that are part of an embedded system course. Also, it

introduces the Embedded System Design course (ESDC) currently taught at the Uni-

versity of Puerto Rico at Mayagüez (UPRM), and concepts related to modular design.

Chapter 3 presents a literature review of works related to a course design, embedded

system teaching methodologies, and initial efforts to apply a modular design approach

in a course. Chapter 4 presents a discussion of the problem statement and hypothesis

for this research. Chapter 5 shows the general and specific objectives defined for

this work. Chapter 6 details the methodology followed for structuring the labora-

tory based on modular design aided by an Outcome-based education framework. In

Chapter 7, obtained results for the students’ groups under study are analyzed and

detailed. The last chapters show the conclusions, contributions, and future work for

this research.



Chapter 2

BACKGROUND

In this chapter, reviews of the ESD Course at UPRM and terms related to

modular design are presented. The characteristics of the course and the laboratory

role are explained. Also, the module, modular, and modularity concepts are defined

to show how they are related to the development of embedded systems.

2.1 Elements in an Embedded System Course

According to The Curriculum Guidelines for Undergraduate Degree Programs in

Computer Engineering by the IEEE/ACM (CGUDPCE) the embedded system area

is recommended to be part of all computer engineering curricula due their expertise

and application area [19]. Table 2.1 shows the body of knowledge recommended

by the CGUDPCE for a computer engineering program in which embedded system

consist of a total of 20 hours period.

For the embedded system area (CE-ESY), the CGUDPCE recommend a series

of knowledge units that should be taught in order to ensure proficient knowledge in

this area. The topics are divided into a minimum of a core material and elective units

where the core material have specific hours and the elective units could be used as

a complementary material for the class. At the same time, each knowledge unit is

divided into a set of topics. Table 2.2 describe each knowledge unit to be part of an

embedded system area with a summary of their most relevant topics.

The course must provide student with a laboratory experience that allows con-

tact with real devices, system, and process. This experience is very important for

3



4

Table 2.1 : CE2004 Discipline Areas containing core material
Label Major Knowledge Area Hours

CE-ALG Algorithms 30
CE-CAO Computer Architecture and Organization 63
CE-CSE Computer Systems Engineering 18
CE-CSG Circuits and Signals 43
CE-DBS Database Systems 5
CE-DIG Digital Logic 57
CE-DSP Digital Signal processing 17
CE-ELE Electronics 40
CE-ESY Embedded Systems 20
CE-HCI Human-Computer Interaction 8
CE-NWK Computer Networks 21
CE-OPS Operating Systems 20
CE-PRF Programming Fundamentals 39
CE-SPR Social and Professional Issues 16
CE-SWE Software Engineering 13
CE-VLS VLSI Design and Fabrication 10
CE-DSC Discrete Structures 33
CE-PRS Probability and Statistics 33

the student’ growth because this is the way in which they can design, implement,

test, and document hardware and software in a practical manner. The CGUDPCE

recommend laboratory practices should help students to improve their practical skills

and expertise while learning the importance of work teams and technical staff [19].

2.2 Embedded System Design Course (ICOM4217)

The Electrical and Computer Engineering Department in the University of Puerto

Rico at Mayagüez (UPRM) offers a 5-year program in Computer Engineering (CE).

This program, accredited by ABET (Accreditation Board for Engineering and Tech-

nology) since 1990, is based on student learning outcomes [20] where the outcomes

defined by ABET have to be achieved by the students at the end of their careers. The

program has 167 credits, 15 of which are devoted to technical electives courses which

allow students to delve in one of three areas of emphasis: Hardware and Embedded

Systems, Computing Systems, and Communications and Signal Processing [21].

The Embedded System Design Course (ESDC) ICOM4217 is a major technical

elective in the CE curriculum and a prerequisite for the Capstone Design course. Also,



5

Table 2.2 : CE-ESY knowledge units
Cod Unit Name Hours Unit Topics

CE-ESY0 History and overview 1 Reason for studying embedded
systems - contrast between an
embedded system and other
computer system

CE-ESY1 Embedded microcontrollers 6 Structure of a basic computer
system - Basic I/O devices -
Polled vs Interrupt - Interrupts
structures

CE-ESY2 Embedded programs 3 Program translation process -
Representation of programs -
Fundamental concepts of assem-
bly language

CE-ESY3 Real-Time operating systems 3 Scheduling policies - Priority in-
version - Message passing vs
shared memory

CE-ESY4 Low-power computing 2 Source of energy consumption
- power consumption with mul-
tiple processors - system level
power management

CE-ESY5 Reliable system design 2 Transient vs permanent fail-
ures - Fault tolerant techniques
- famous failures of embedded
computers

CE-ESY6 Design Methodologies 3 Multi-person design projects
- Design reviews - Change
management

CE-ESY7 Tool support Elective Compiler and programming en-
vironments - power analysis -
logic analyzers - software and
management tools

CE-ESY8 Embedded multiprocessors Elective Importance of multiprocessors -
Hardware/software partitioning

CE-ESY9 Networked embedded system Elective Why networked embedded sys-
tem - The OSI reference model
- Basic principles of internet
protocol

CE-ESY10 Interfacing and mixed-signal system Elective Digital to analog conversion -
Analog to digital conversion -
Digital processing

it is a required course for those who decide to emphasize in Hardware & Embedded

Systems. While in the Embedded System Introduction (prerequisite for ESDC) stu-

dents learns about microprocessor architecture, organization, and operation, in the

ESDC students learn how to interface and manage I/O ports, interrupts, timers,



6

pulse width modulation (PWM), motors, analog-to-digital (ADC) and digital-to-

analog (DAC) converters, and memories to develop applications based on embed-

ded systems. The topics are covered through class lectures (3 hours per week) and

their implementation and practical knowledge are covered through weekly laboratory

experiences within the ESDC laboratory (2 hours). The laboratory objectives are

covered in two steps: (1) Guided Exercise section that guide students with step-by-

step on the fundamental experiment tasks and (2) a Homework section that provides

a complementary task to deepen in the laboratory topic teaches in the week. The

laboratory also works as a complementary learning tool that helps students develop

fundamental modules that facilitate the construction of their course projects.

The ESD course project consists in the development of a functional embedded

system prototype where the prototype is designed with the objective to satisfy a

client necessity (research group, organization, or external person to the class). Each

project must be composed of the following 4 elements: (1) communications, (2) user

interface, (3) control scheme, and a (4) microprocessor unit. The project begins with

the idea that students bring to the class and therefore with the professor and teach-

ing assistant (T.A.) meetings the idea is transformed into a correct proposal with

defined requirements. Then, during the class period, students work in the develop-

ment of their prototypes while several progress reports are required to follow students

progress.

2.3 Definitions: Module, Modularity, and Modularization

During the design process of a system, equipment, or device there are several

methods that define the structure, constructions, and functionality of a product.

One of the methods corresponds to the modular design. A modular design approach

allows for developing a product from a set of different smaller modules where each

module represents a functionality component of the entire system. Each module in a

modular design can be easily replaced by another module with similar characteristics



7

without affecting the final functionality [22]. This characteristic is exemplified in

Figure 2.1 where a Power Supply module can be replaced by another while keeping

the system functionality intact. To help the comprehension of the modular design

process, we adopt the following definitions [23–25]:

Modularization: is the action of separating or organizing the parts of a product or

process in specific functions or tasks.

Module: A module is a component formed by one or more elements, which has one

or several specific functions and can work independently or with other elements or

modules to construct a system.

Modularity: is related to a product feature, where each module achieves one or

few main functions, it provides some advantages such as flexibility and reduction

of the complexity. Additionally, modularity allows for replacing a module without

affecting the system functionality.

WIFI Transceiver

Module

16X2 LCD Display

Module

Temperature 

Sensor

Module

MCU

Battery Module Rev. 1 Battery Module Rev. 2

Data Acquisition System

Figure 2.1 : Example of modular design



Chapter 3

PREVIOUS WORK

In this Chapter, a summary of relevant publications found in course design,

embedded system teaching approaches, and modular design in embedded systems

are presented and discussed. Important approaches in how to design or redesign a

course were analyzed to identify their main concepts. Also, strengths and weaknesses

of different embedded systems teaching methodologies, and similar courses in other

universities were studied to learn about their class and laboratory structure.

3.1 Curriculum and Course Design

Duffy et al. proposed a learning methodology based on a Learning-Centered

Approach (LCA) focus in the course syllabus [26]. The authors explained that a

syllabus is one of the most important parts when a professor creates a course because

it defines all the content that has to be taught and learned. The syllabus has to

include information about topics, define course limits, all the material needed by

students, and the assessment methods to be applied. Although a syllabus has all

the information needed for a course, the authors proposed the creation of a syllabus

based only in what the professor considers is necessary material for students. Also,

the methodology does not necessarily take into account the current necessities for the

industry at the moment of the curriculum creation because it is not required.

Fink explained that the most common methodology to structure a class is the

content-centered approach also named List Of Topics (LOT) [27]. In this approach,

the professor creates a list of topics that he considers are the more suitable to be

8



9

learned by students. Topics must have relation to the class and are chosen based only

on the professor’s criteria. Then, the professor establishes the time for each topic and

decides the form in which each will be evaluated. A drawback of this methodology

is that the professor is only focused in completing the topics previously established

without considering the students’ learning process. Also, this methodology did not

implement a feedback process to know the students’ perception about the course.

Fink also proposed a methodology called Integrated Course Design (ICD) [27,28].

This method consists of four main interrelated elements: (1) situational factors re-

lated with the number of students in the course and their prior knowledge, (2) learning

goals that define the knowledge and abilities the student must learn and retain af-

ter they take the course, (3) feedback and assessment, used to validate if students

achieve learning goals and (4) teaching/learning activities, to ensure students’ learn-

ing process. Elements had to be developed in a specific order and each must be

taken into account for the design of the next element. As this methodology defines

the assessment methods before the learning activities, the feedback is only about the

topics learned by students excluding the teaching methods selected for the class. For

this reason, the professor does not receive any feedback about the effectiveness of the

methods selected and can not determine whether the methods are appropriate for the

class or not.

Pellegrino proposed a Curriculum-Instruction-Assessment Triad (CIAT) in which

the three elements in the triad have to be aligned to ensure a proper education

process [29]. Curriculum refers to the knowledge and skills to be learned by students.

Instructions refer to methods how the topics shall be taught; and assessment refers

to the measurement of the outcomes achieved by students. The author explains that

the three elements in the triad must have the same objectives and reinforce each

other. Otherwise, the assessment could be carried out in an incorrect manner and

the instructions could be inadequate and ineffective.



10

Based on the work by Pellegrino, Streveler et al. proposed an approach called

Outcome-Based Education (OBE) in which the content, assessment, and pedagogy

must be aligned to achieve the requirements (outcomes) desired by the students [30].

The authors explained step-by-step how these elements must be aligned to ensure a

correct and complete student’s learning process. The process begins establishing the

desired profile for students and continues with the determination of the methodology

to teach students according to the course characteristics. Finally, the process ends

with the methods to assess students’ progress and acquired level of knowledge. This

work follows the “Backward Design Approach” proposed by Wiggins and McTighe

[31], in which the process to create a course begins in the end defining the learning

goals and continues backward to create the lesson and methods to achieve those goals.

The authors also used the “How People Learn” framework proposed by Bransford et

al. [32] that explain how individuals build their knowledge in an education institution

and during their life.

In this section, we can observe that several efforts have been performed to design

a course or curriculum. However, some methodologies present significant limitations

that have been identified. Table 3.1 shows relevant aspects of the process to design

a course that will be addressed in this research. To ensure a well-structured course,

the three fundamental components of a course (Topics, pedagogy, and the assessment

methods) must be linked. We can see that some of the reviewed approaches did

not meet this requirement. Also, the majority of the approaches did not measure

students’ progress in terms of outcomes to be achieved or did not take into account

the current industrial and social necessities to create the desired student profile. But,

one approach did take into account all the aspects mentioned before. The approach

was proposed by Streveler et al. and consist in an outcomes-based education [30].

For this reason, this approach will be used as a guide to structure the laboratory for

the ESDC.



11

Table 3.1 : Summary of reviewed approaches for course design

Approach Outcomes
Learning
goals

Desired
characteristics

Content and
assessments

Pedagogy
Link
C&A&P

LCA [26] No Yes Yes Yes No No

LOT [28] No Yes No Yes No No

ICD [27] No Yes No Yes Yes Yes

CIAT [29] Yes No No Yes Yes Yes

OBE [30] Yes Yes Yes Yes Yes Yes

Note: C&A&P means Content&Assessment&Pedagogy

3.2 Engineering Education

3.2.1 Embedded Systems Education

During the past years, various methodologies have been developed to enhance

the learning process in embedded system. These methodologies used a great variety of

resources to attract students and to motivate them to learn about embedded systems

inspired from textbooks to daily life issues.

Torroja et al. proposed a Scale Model methodology in which, students devel-

oped the code and the necessary hardware to control a scale garage and a car wash

model using the Motorola 68HC11 [33]. The fundamentals topic were taught through

lecture sections before the development of the scale models. These models contained

sensors and actuators that allowed for replicating the complete functionality of real

systems and their associated problems, like noise, bad connections, and sensor signal

compatibilities. The authors explained that this methodology generated strong mo-

tivation among students because they worked in scale real systems and had to solve

real system problems. Although students rated the method as very positive (based

on a survey developed at the end of the course) it had limitations because only one

copy of each scale model existed and the price for its maintenance was high. It was

also difficult to use the scale models in large groups of students (more than 20).

Doug et al. proposed a multidisciplinary cooperative Problem-Based learning

approach also using the Motorola 68HC11 [9]. This methodology exposed students



12

to a problem situation that they had not encountered before to conduct the learning

activities and, therefore, improve their technical skills. The class had a lecture session

and a session on how to use CAD-Tools that ran in parallel with the problem session

causing timing constraints. Also, the course’s evaluation survey was conducted before

the completion of the course, providing an incomplete assessment about the course

perception by the students as the last part of the class was not evaluated. Finally, all

projects ran with the same processor, and therefore students did not learn about other

architectures and the process to select a processor according to the specifications of

the problem to be solved.

Bruce et al. used a problem-based approach with progressive design experiences

to teach embedded systems [10]. In this methodology, students had to develop small

electronic systems in each laboratory experiment. Each subsystem built in the previ-

ous laboratory was required to be built in the new subsystem. The proposed problem

was designed to incorporate industrial requirements defined by the authors and the

prototype was constructed bit by bit with each design experiment. All the projects

and practices were based on an 8-bit microcontroller. This approach limited the skills

developed by the students as they did not work in the process to conceptualize, define

objectives, and scopes for their designs.

Ordinez and Alimenti proposed a constructivist and problem-based approach to

conduct their course [11]. In this approach, students develop all their knowledge

based on a problem to be solved that had to be attractive and included a wide range

of topics. The main drawback of this approach was that the problem did not cover a

basic knowledge in embedded systems for all the cases because the problem in each

semester was not the same. For this reason, the skills mastered by students in each

semester were not the same, generating groups of students each term with inconsistent

levels of preparation.



13

Nooshabadi and Garside proposed a teaching method based on an International

Collaborative project with universities in Australia and the United Kingdom [34].

This approach used Laboratory Experiences that replicated industrial design prac-

tices. The authors expressed that the best way to teach embedded systems was using

constant development practices. These practices also included the use of devices such

as mobile phones, web phones, televisions, digital cameras, and personal digital assis-

tants. All the practices were conducted using a DSLMU (Digital System Laboratory

at Manchester University) hardware development board designed by the authors. In

this approach, students worked with a predefined hardware platform and software

(IDE and Compilers), documentation, and scripts provided by the professors. This

strategy limited the students’ skill in areas or topics such as MCU and compiler

selection, and design process.

Gonzalez et al. used Video-Game devices to enhance the learning process, ex-

ploiting the connection students developed with these type of devices [15]. The ap-

proach used a Nintendo DS (NDS) as teaching platform, as it is built with a multi-

processor architecture. The authors use development tools such as GNU compilers,

VisualBoy advance simulator (VBA-M), C libraries and insight debugger to carry

out the laboratory experiences. All laboratories consisted of two sections: one intro-

ductory and another with exercises. The main drawback of this approach was that

the authors focused only on the software of the embedded systems neglecting the

knowledge about hardware design and implementation.

Münz et al. proposed the use of Educational Games as a learning tool to teach

the theoretical material to students [16]. This strategy only focused on solving prac-

tical problems. To achieve this objective, the authors developed a game to teach

the principles of automatic control. The game consisted on a submarine that had

to follow a given trajectory controlled by the student or by automatic controllers.

Students had to develop the controller for the system using the previous knowledge



14

learned in class. This approach only taught control in a theoretical way and did

not provide the knowledge to implement a physical controller. Therefore, students

did not learn concepts like signal conditioning, MCU implementations, timers, and

interrupts, among others.

Kodoma et al. proposed a Remote virtual laboratory approach [17]. The au-

thors developed a remote control system for an embedded board to facilitate the

self-learning process at home. The board consisted of an MPU and CPLD as proces-

sors with common electronic elements. The system could be accessed at any time,

but each session was only five minutes long, making it difficult for the development

and debugging of a large task. In addition, students could do multiple reservations

but it resulted in a tedious process. Furthermore, it was difficult to check high-speed

process and clicking input sequential signals on the web page.

Büchner and Jaschke developed a virtual-machine-based environment laboratory

to foster the preparation outside of the laboratory [18]. Their approach consists of

the virtualization of different applications related to the development of embedded

systems on a USB flash drive. The installed software allowed for programming dif-

ferent devices like FPGAs, ATXmega, android devices, and provided access to a

reference manual for hardware elements and simulators. Once students finished their

programs, they could go to the laboratory to test their solutions in a real hardware

platform. To get students motivated, all applications and projects were based on

home automation. Although, this model facilitated working outside the laboratory,

not all the devices had simulation tools limiting the debugging and testing process of

the code. Also, they did not develop or improve their abilities to interface hardware

components because the hardware used was on a pre-built platform.

Lee et al. implemented a project-based laboratory with industry support to

improve the abilities of the students in specific peripherals and topics [12]. The

project consisted of developing a line-following robot using a quadratic interpolation



15

technique to predict the line position. The hardware platform and C-compilers were

supported by the local branch Microchip Inc., and consisted of a vehicle composed

mainly by a dsPIC4011 microcontroller. The class was conducted through two lecture

hours and one laboratory hour per week. In each class, students had to answer

questions related to their work and turn-in reports about their work. Since the

hardware structure was provided by a company, students only focused their work

on programming the robot and calibrating the sensors, while keeping the hardware

design skills in a second plane.

Kumar et al. used an FPGA-based platform with a Project-Based methodology

to teach students in two different courses [13]. The project for the first course was

related to real-time embedded systems and consisted of developing a five versus five

soccer system on multiple FPGA. For the second course, the project was devoted to

the hardware aspects of embedded systems. The main task consisted of decrypting a

block encrypted image, accelerated through a custom co-processor. In both projects

students had to learn topics related to real-time performance, timing behavior, HDL,

and design methodologies for embedded systems from course lectures. This approach

only focused on the programming aspect of the FPGA, using the resources attached

to the board and did not teach how to interface electronic components to the board.

Couvertier et al. implemented a approach in which students propose a project

to be solved [14]. All projects and hardware platform are freely selected by students

but the majority of them used the MSP-FET430P120 as hardware platform. In this

methodology, students learned the basic principles of MSP and microcontroller in a

course where learning was conducted in parallel with the project. Some laboratory

practices are also provided to enhance the students skills in the embedded system

area. Although, this model provided some laboratory practices, the course did not

have an appropriate laboratory section with predefined hours and a well established

laboratory manual to conduct the laboratory practices.



16

In this section, we could observe that some efforts have been performed to en-

hance the learning process in embedded systems. However, significant limitations

have been identified. Table 3.2 shows the relevant aspects of embedded systems

teaching approaches addressed in this research.

To ensure a proper education in the design of embedded systems, it is necessary

that students pass trough all the stages of a product development, where the MCU to

be used is selected according to the application characteristics. This conditioning is

not fulfilled by the majority of the approaches because they use predefined hardware

platforms. Also, some of the approaches are applied to the class in the form of a final

project but are not applied to structure the laboratory content. Although authors

describe how they designed and implemented their approaches, they do not describe

or develop formal assessment methods that allow for measuring the level progress by

students and their acquired skills. Finally, neither of the authors developed assess-

ment methods to verify the effectiveness of their implemented approaches. All the

aspects mentioned before reveal important challenges that we will need to address.

Table 3.2 : Summary of reviewed teaching embedded systems approaches

Approach Author
Applied to Predefined

hardware
platform

Final
project

Formal
AssessmentLaboratory

section
Lecture
section

Scale Model [33] Torroja Yes Yes Yes Yes No

Problem-Based [9] Doug No Yes Yes Yes No

Problem-Based [10] Bruce Yes No Yes Yes No

Problem-Based [11] Ordinez Yes No Yes Yes No

Laboratory [34] Nooshabadi Yes No Yes No No

Games [15] Gonzales No Yes Yes Yes No

Games [16] Münz Yes Yes N/A No No

Virtual-Labs [17] Kodoma Yes No Yes No No

Virtual-Labs [18] Büchner Yes No Yes No No

Project-Based [12] Lee No Yes Yes Yes No

Project-Based [13] Kumar No Yes Yes Yes No

Project-Based [14] Couvertier Yes Yes No Yes No

Note: N/A means Not applied



17

3.2.2 Representatives Embedded System Teaching Approaches

Each university and program offer their courses according to their characteristics

and desired approach. Furthermore, it is important to know about their embedded

systems courses. Two top-ten universities in computer engineering and two UPRM-

equivalent universities in terms of student population and academic program were

studied.

The Massachusetts Institute of Technology (MIT) has The Microcomputer Project

Laboratory (6.115) [35] as a course to introduce students in the analysis and design of

embedded systems. The course is a laboratory required in the Electrical Engineering

and Computer Science department. The laboratory emphasizes in the construction

of electronics systems. It also introduces the usage of basic electronic tools, and

teaches fundamental principles about microcontroller peripherals such as A/D con-

verters, communication schemes, motors, and power electronic converters, among

others. The laboratory is conducted through weekly experiments with a final project

selected by the students. The project proposal is presented during the week 10 of

classes and the final product 5 weeks later. The main microcontroller used is the Intel

8051. This laboratory has as prerequisites the courses: 6.002 Circuits and electronics,

6.003 Signals and Systems, and 6.004 Computation Structures.

The University of California at Berkeley has the course Introduction to Embed-

ded Systems (EECS149) [36] where they introduce students to the design and analysis

of computational systems that interact with physical processes. The course has an

emphasis on finite state machines, basic control systems, physical world interfaces,

mapping, and distributed embedded systems. The course is conducted through a

weekly lecture session (3 hours), a weekly laboratory (3 hours), and a team project

with a final paper and poster presentation. Each laboratory has a pre-lab work, a

laboratory demonstration, and a laboratory report. A project proposal is presented

during the week 8 of classes and the final presentation is due 5 weeks later. Students



18

are suggested to use the FRDM-K64F or the NUCLEO-F411RE platform as embed-

ded boards to develop their projects. This course has as prerequisites the courses:

(EECS 16B) Designing information devices and systems I, (CS 61C) Great ideas in

computer architecture, and (EECS 70) Discrete Math & Probability.

The University of Texas at El Paso (UTEP) offers and Embedded Systems

(EE3376) [37] course that covers the fundamental aspects of designing embedded

systems. The course is part of the computer engineer program and teaches how to

use the main peripherals that can be found in a microcontroller system. The course

content includes interrupts, peripherals interfacing, timers, Analog-to-Digital Con-

verter (ADC), and program structures, among others. The course combines class

lectures and laboratory sessions (EE3176) in which a final project has to be devel-

oped as a part of the laboratory. Each laboratory has one week to be developed

and uses the MSP430 launchpad as a hardware platform. Exams and quizzes are

carried-out in the course and laboratory to assess the level of knowledge acquired by

the students. The final project is defined by the professor and has to be developed in

the last 3 weeks of the semester. This course has a prerequisite the course: (EE2372)

Software Design I.

The University of New Mexico offers a Microprocessors course (ECE344L) [38] to

teach students the topics related with the architecture and use of embedded systems.

The course is part of the computer engineering program and is focused mainly on the

MIPS architecture, although all covered topics can be applied to other microprocessor

systems as well. The course covers fundamental topics like overview of computer

systems, information representation, instruction sets, memories, interrupts, and I/O

methods. The course is conducted in the form of class lectures (3 hours) per week and

laboratory session with a class/lab final project. The project needs to be developed

from scratch and has to integrate hardware and software components. Also, two

midterms and a final exam are given to assess the level of knowledge gained by the



19

students. This course has as prerequisites the courses: (ECE 206L) Instrumentation,

(ECE 238L) Computer Logic Design, and (ECE 321L) Electronics I.

3.2.3 Modular Design Applied to Embedded Systems

Kamal [22] and Zurawski [39] agreed that the modular design is one of the

techniques currently used to design and construct embedded systems because with

this technique, an entire system is constructed from small parts (modules), where

each module represents a feature. Also, they argument that the embedded systems

constructed in the form of modular designs allow for the reuse of elements (hardware

or software components from other projects), risk reduction (design is based on tested

components), migration (change between new or older hardware/software versions),

and cost reduction through the use of standardize components.

Valvano [40] explained that modular design can be applied to develop software

components for an embedded system. This concept is called modular programming

and it refers a program structure that allows for using software modules from multiple

locations, and divide a highly complex task into smaller less complicated tasks. It

also includes the possibility of using software modules developed for one machine in

another with different I/O ports. With this programming style, the system can be

easily tested because each module can be independently debugged.

Meng et al. used a modular approach for constructing a generic architecture

based on embedded systems for miniature mobile robots [41]. The authors con-

structed an architecture called SMARboot with different modules in which each mod-

ule could be replaced by another with the objective of improving the capabilities and

function to be executed. The modules included a high-performance microprocessor,

reconfigurable hardware, wireless communication, sensors, and actuators. The main

processor was composed by an ARM7TDMI microprocessor and an FPGA module.

The communication was carried out through synchronous/asynchronous serial and



20

CANbus protocols. Also, the software was designed to be modular on a real-time

operating system.

Li used a modular approach to teaching embedded systems [42]. He only fo-

cused the approach on designing a modular microcontroller training kit to improve

students’ learning process. The kit was composed by an ATmega127 microcontroller

with different modules (USB interface, I/O, expansion ports, and user interface) and

could be used by students in their projects. Özgü developed a modular embedded

system to teach students in mechatronic engineering [43]. The system was composed

by four modules: USB, AIDO (Analog and digital I/O), motor, and LCD boards. All

communication processes were carried out through SPI protocol controlled by PIC

microcontrollers. Both authors were concentrated on incorporating the modular ap-

proach to design an electronic platform but not on how to design a course or teaching

methodology based on modular design.

Hu et al. developed a courseware based on modular design to teach embedded

system design [44]. The authors focused their work on developing and organizing

different teaching modules, where each module was based on a specific topic and

included all the related material (lectures, laboratory experiments, and assignments).

The courseware constructed in this form allowed for the professor to adopt all the

course material or integrate the modules that he considered necessary in his current

course. The courseware also used a predefined portable hardware platform based on

the C8051F005DK microcontroller to conduct the experiments. Although the authors

used a modular approach to design the courseware, they did not incorporate modular

design concepts in the course’s topics and laboratory experiments.

In this section, we analyzed several efforts that have been performed to enhance

students learning processes and skills usign modular design. The authors introduced

the modular approach in different ways, some used it to design and construct mod-

ular hardware platforms and others to design courseware material. Although they



21

incorporated the approach in their courses, neither of the authors incorporated the

modular design in their class topics and neither of them used the modular approach

as a base to design the course laboratory experiments’ content. This reveals an im-

portant challenge that we will need to address.



Chapter 4

PROBLEM STATEMENT AND HYPOTHESIS

4.1 Problem Statement

The average American interacts with al least 100 embedded systems per day [3]

giving us an idea of their relevance. Furthermore, it is important that universities

provide students with proficient knowledge in embedded systems design to meet in-

dustrial and societal expectations [45–47].

The problem addressed in this research was that of developing a methodology

to improve students’ design skills in the embedded system area while also taking

advantage of contemporary modular technologies. Methodologies used in similar

courses in other universities implement different tools to motivate students and help

them in their learning process. Furthermore, most of these methodologies use pre-

built platforms or modules that do not allow students to follow through the design

process.

Our research questions was: What is the effectiveness of using a class/laboratory

structure based on a backward design with a learning methodology based on modular

design? How can these be used to ensure strengthening and improving the skills

acquired by students in an embedded system design laboratory?

4.2 Hypothesis

This work was developed under the hypothesis that an OBE-based laboratory

with a teaching methodology based on a modular design will improve student learning

by incorporating contemporary design skills aided by progressive lab experiments and

22



23

module design strategies. These should provide a focus on modularity and how to

build embedded systems from a basic idea (necessity), passing through design consid-

erations (module and system design) to the final conception (functional prototype).



Chapter 5

OBJECTIVES

This section describes the objectives that were formulated for this work. First,

the general objective is presented and then the specific objectives which are composed

of educational and technical objectives.

5.1 General Objective

The main goal of this research was to design and implement a backward design

teaching methodology to teach students in the Embedded System Design Laboratory

using a modular design approach.

5.2 Educational Objectives

1. To establish and determine a laboratory content based on a predetermined student

profile.

2. To design and implement a laboratory teaching methodology in embedded systems.

3. To develop assessment methods to verify student’s learning progress and proposed

teaching methodology.

4. To develop a laboratory manual to improve students’ design skills in an embedded

system design laboratory.

5.3 Technical Objectives

1. To recommend and evaluate suitable electronic modules that can support the edu-

cational activities recommended as part of the teaching methodology derived from

this work.

24



25

2. To design and document student handouts, tutorials, and reference guides about

the necessary laboratory equipment and educational electronic modules to be made

as part of the proposed teaching activities.



Chapter 6

LABORATORY REDESIGN

This Chapter presents the research methodology used in this thesis. It was based

on a modular design approach and guided by an educational framework referred to as

the “outcome based-education”. In this work the laboratory content, the methodol-

ogy, and the assessment methods were designed and integrated to impact the student

learning experience.

The first part of this chapter introduces the developed laboratory content based

on the desired student profile and the topics required in the course. Next, we explain

the methodology applied based on a modular approach and the assessment methods

developed to validate the proposed methodology. In the last section, complementary

materials used to aid in the laboratory learning process are described.

6.1 Laboratory Content Design

Streveler et al. [30] developed a pedagogical approach called Outcome Based-

Education which search for aligning course content, pedagogical methods, and assess-

ment methods in an education process. In this approach it is strongly recommended

to begin with the desired student profile, because it works as a base for the estab-

lishment of the laboratory content and learning objectives. Also, the content design

process, for an applied laboratory, presented by Patarroyo et al. [48] was use as a

reference.

26



27

6.1.1 Desired Student Profile

To define the course content, Wiggins and McTighe [31] explained that it was

crucial to know what we want about our students and how we want our students to

be. To accomplish these objectives it is important to define the desired profile for

our students in embedded systems. For our student’s desired profile, we took as a

base The Curriculum Guidelines for Undergraduate Degree Programs in Computer

Engineering (CE) by IEEE/ACM in which the characteristics of a computer engineer

graduate are specified [19]. This curriculum divided the characteristics for a CE

graduate in four principal aspects: (1) distinctions, (2) professionalism, (3) ability to

design, and (4) breadth of knowledge.

Taking the division mentioned before and the course characteristics that are

focused on the design of embedded systems, our students are expected to have [19]:

Distinction: possess the ability to design embedded systems that include hardware

and software components that allow solving engineering problems.

Professionalism: students must be responsible and must take into account the ef-

fects of their designs on the surrounding community. Also, they have to be conscious

of the ethical and social responsibilities related to property rights, security, and pri-

vacy.

Ability to design: students must have abilities for the development of new devices

and products based on embedded systems. They must have the capability of iden-

tifying a necessity or problem and produce a reliable solution based on desired

specifications.

Breadth of knowledge: students are expected to know about embedded systems

organization and architecture, algorithms, and programming skills. Also, they are

also expected to have:



28

• A system level perspective that allows them to appreciate the concept of an

embedded system and their hardware and software components. They should

understand the embedded system applications in the society and industry.

• Design experiences that allow them to develop an entire system or prototype

as an embedded systems application. The design could address a real problem

or yield a functional product.

• Ability to use different computer-based and microcontroller-based tools for

embedded systems analysis and design.

• Communication skills to express their work in a written, oral, or graphical way.

Also, students must develop critical analysis skills to provide feedback in that

format and team-work abilities to contribute in an active way to the design

process of a system.

Also, according to Henzinger and Sifakis [45] industry requires that a person with

knowledge on embedded systems possess abilities to work in problems related to the

design of software and hardware components. They must also have, the capability to

produce novel ideas that would result in a final embedded system prototype/product.

Jing et al. [49] expressed that the knowledge required by the industry in an embed-

ded developer can de divided into three categories: the first referred to technology

elements such as compilers, programming, measurement and control, user interface,

and multimedia. The second is related to the development and management skills

to be used to develop systems and processes. Those abilities include programming,

system design, and testing skills. In the management skills area, industry requires

abilities such as time, cost, and risk management. Finally, the third category is re-

ferred as personal abilities such as leadership and teamwork because these skills have

an influence in the success of a project.



29

6.1.2 Laboratory Content

In this work, the laboratory content was developed to improve the design abilities

of students through a set of laboratory experiments. Also, the content was established

to help students accomplish outcomes for the Embedded System Design course. Table

6.1 presents the class outcomes selected to be accomplished in the laboratory aligned

with accreditation criteria.

Table 6.1 : ICOM 4217 course outcomes [1]

Activity
Program

Outcomes

1. Students conduct laboratory work to implement a working prototype of
their project.

b

2. Students perform a project of an original idea proposed by their group.
Project implementation is a course requirement.

b

4. Each group must show originality in their work, the procedure of partitioning
a complex problem into parts, and combining peer work into the final solution.

d

6. The project idea, along with a plausible procedure, is submitted by the
working group as a proposal.

e

13. Students must be able to program a microcontroller using a development
environment that includes debuggers, editing tools, and compilers, among oth-
ers. The microcontrollers used in class are considered state of the art.

k

Taking as a reference the procedure presented by Streveler et al., [30] in the

OBE, the laboratory content was re-designed along these three guidelines: (1) desired

outcomes, (2) curricular priorities, and (3) learning objectives. The first two steps

worked as a baseline for Step 3.

Desired Outcomes

According to Streveler et al., [30] the first step in the OBE model is to determine

the desired laboratory outcomes by answering the three following questions: (1) What

do we want students to know? (2) What do we want students to be able to do? and (3)

Who do we want students to be?. The answer to these questions gave us the values



30

and the attitudes shared by students and a guideline for our learning objectives,

teaching methodology, and assessments.

The laboratory desired outcomes shown in Table 6.2 were identified and de-

fined according to the course topics and characteristics and general objective. The

outcomes were concentrated in enhancing the practical skills of students for embedded

systems’ designing, assembling, testing, and constructing. The outcomes were writ-

ten based on the cognitive domain of Bloom’s taxonomy which involvs the knowledge

and the development of intellectual abilities and skills [50].

Table 6.2 : Student Outcome Analysis

What do we want students to know? (A) Students should:

• A1: Identify the uses and advantages of embedded systems.

• A2: Identify the main components of an embedded system.

• A3: Know the steps in the hardware design and building process for an embedded system
prototype.

• A4: Know the software structures to create functional programs to govern the operation
of electronics modules or embedded systems prototypes.

• A5: Recognize the social and industrial necessities or problems in which an embedded
system can be implemented.

What do we want students to be able to do? (B) Students should be able to:

• B1: Configure the main components of an embedded system.

• B2: Use Assembly and C language to develop the software for a project based on em-
bedded systems.

• B3: Design electronics modules that will help in the construction of an embedded system
prototype.

• B4: Interface different electronics modules to a main controller.

• B5: Design a product, device, or prototype based on embedded systems.

What do we want students to be? (C) Students should be:

• C1: Self-learners.

• C2: Curious persons about how an embedded systems works and its applications.

• C3: Active members in a workgroup.



31

Curricular Priorities

Once student outcomes were determined, the next step consisted of defining

the curricular priorities. These outcomes gave us the basic idea in terms of student

necessities that have to be covered during the laboratory. According to Streveler et.

al., the curricular priorities have to be organized in three levels of content: Enduring

Understanding, Important Elements to Know&Do, and Worth Being Familiar With

[30].

The curricular priorities shown in Table 6.3 were established taking into account

the knowledge, skills, and the abilities that students are expected to learn by the end

of the laboratory.

Table 6.3 : Curricular Priorities of the Embedded System Design Course

Enduring Understanding

• Identify the main component and peripherals of an embedded system.

• Known the steps for designing prototypes based on embedded systems.

• Implement an embedded system for solving a necessity or project.

Important Elements to Know&Do

• How to structure and present project proposals in which an embedded systems proto-
type should be used.

• How to design an embedded system prototype based on microcontrollers and micropro-
cessors.

• How to identify the electronics modules needed for constructing an embedded system.

• How to interface different elements that are part of an embedded system prototype.

• How to employ datasheets to design electronics systems modules.

Worth Being Familiar With

• Design process of an electronic prototype.

• Embedded systems development tools.

• Hardware design, verification, and integration for an embedded system.

• Develop flowcharts and Block diagrams for an embedded system based prototype.

• Microcontroller and microprocessor programming.



32

Learning Objectives

The final step consisted of determining the learning objectives that would guide

students in their learning process. These objectives were established taking into ac-

count the student outcomes analysis and the curricular priorities previously defined.

The learning objectives were established based on the cognitive domain of Bloom’s

Taxonomy which divides the cognitive knowledge into six levels or categories (knowl-

edge, comprehension, application, analysis, evaluation, and synthesis) that can be

thought as degrees of difficulties [50]. Therefore, before transitioning to a new, higher

level, the preceding levels have to be completed. Based on our analysis, at the end of

the laboratory, students are expected to complete the following learning objectives:

1. Identifying the main components that form an embedded system.

2. Identifying the steps in the design process of an embedded system prototype.

3. Explaining the basic functionality of the main peripheral modules incorporated in

a microcontroller chip.

4. Interfacing external electronic elements and modules to a microcontroller to man-

age different types of sensors, actuators, graphical user interfaces, and data.

5. Sketching block diagrams and schematics that allows understanding the architec-

ture and electronic structure of an embedded system or electronic module.

6. Creating software plans and flow diagrams that allow for planning the software of

an embedded system application.

7. Integrating the hardware and software components that make-up an embedded

system prototype.

8. Designing a functional embedded system-based prototype.

9. Testing the functionality of an embedded system prototype.

Table 6.4 shows the relation of each learning objective with each cognitive level

in the Bloom’s taxonomy.



33

Table 6.4 : Learning objectives related to levels of Bloom’s taxonomy

Cognitive Level L
.
O
b
j.

1

L
.
O
b
j.

2

L
.
O
b
j.

3

L
.
O
b
j.

4

L
.
O
b
j.

5

L
.
O
b
j.

6

L
.
O
b
j.

7

L
.
O
b
j.

8

L
.
O
b
j.

9

Knowledge • •

Comprehension •

Application •

Analysis •

Synthesis • • •

Evaluation •

6.2 Methodology Implementation

According to Streveler et al. the methodology refers to the methods or ap-

proaches to be used in the teaching process [30]. The authors explained that the

methodology must take into account the characteristics of the course/laboratory and

desired student profile. It should also select the appropriate teaching mechanisms

that could positively impact the student learning process. A laboratory teaching

methodology was implemented based on a modular design approach in conjunction

with the use of progressive laboratory experiments and module design.

6.2.1 Laboratory Teaching Methodology

To improve the student’s abilities and design skills of embedded systems, a modu-

lar design approach was selected to be implemented as a part of the laboratory teach-

ing methodology. An experiment structure, to guide the students in the fulfilment

of their activities, was designed to ensure a proper student learning independently of

the type of learner as explained later.

Modular Design Approach

A modular design technique, as mentioned in Section 2.3, allows for the de-

velopment of a product from a set of different smaller modules where each module



34

represents a functional component of an entire system. This approach was imple-

mented in the embedded system design laboratory through a set of guided laboratory

experiences, incorporated in a structured laboratory manual, and a set of educational

modules.

With the objective to improve student’s design techniques, the modular approach

was implemented in the laboratory experiments through the development of a set of

small circuits and short programs that allowed students to acquire a base knowl-

edge about their MCU’s internal peripherals. Some experiences included progressive

designs that required previously designed and tested circuits (in past experiment’s

sections) for the fulfillment of a new design. Figure 6.1 shows a progressive de-

sign example in which one system was built in three steps and the other system

required the abilities learned and circuits tested in past experiments. This process

provided students with the knowledge to design and construct their own embedded

system prototype from incremental steps and small functional modules. Furthermore,

a structured laboratory manual containing the experiments developed for the course

was designed to provide the student with a step-by-step guide. This manual also

provided fundamental theoretical background of each experiment and a description

of each laboratory activity.

As part of the proposed approach implementation, a set of educational modules

were developed to help students in their learning process (see Section 6.2.3 for the

complete description of the modules developed). These modules were designed taking

in consideration the different topics discussed in each experiment. Their design was

included as complementary material to the laboratory manual and experiment. Each

designed circuit module is composed of a set of components placed on a printed circuit

board (PCB) where each PCB could work as a single experimental module or com-

bined with other modules to provide the desired functionality. These modules were

designed to work with either 3.3V or 5V microcontrollers, facilitating their usage with



35

Concepts Learned:

· GPIOs

· Switchs and LEDS

· LCD

Application:

Scrolling List using two 

pushbuttons to scroll 

messages on an LCD

Concepts Learned:

· Interrupts

Scrolling List using two 

optocouplers and a wheel 

to scroll messages on the 

LCD

Application:

Concepts Learned:

· Timers

Digital tachometer using 

two optocouplers to 

display the wheel’s speed 

on an LCD

Application:

App

L
A

B
 2

L
A

B
 3

L
A

B
 4

(a) Digital Tachometer

Concepts Learned:

· GPIOs

· LCD

Concepts Learned:

· Interrupts

· Keypad

Concepts Learned:

· PWM

A digital Dimmer with 

pre-sets intensities 

selected by a keypad. 

Current intensity is 

displayed on the LCD

Application:

L
A

B
 2

L
A

B
 3

L
A

B
 5

ts LeaLearne

(b) Digital Dimmer

Figure 6.1 : Progressive Design exemplification

a wide range of MCUs and their incorporation in different students’ class projects.

Modules can then be combined with the target microcontroller unit (MCU) to de-

velop embedded applications. These modules also provided students with an example

of how electronic modules are structured including functional diagrams, schematics,

board design, and software usage guidelines. Even though, the modules were designed

based on the circuits provided in the manual, they could or could not be used in the

development of each experiment and their usage depends on the instructor’s criteria.

Laboratory Experiment Structure

According to Felder and Silverman [51] there are different types of learners (sens-

ing, intuitive, visual, verbal, active, reflective, sequential, and global) that represent

the different ways in which a student could learn or understand a topic. Based on

these types of learners, the laboratory experiences were designed and implemented

to provide a good understanding of each topic, independently of the type of learner.



36

Each experiment consists of four sections: (1) objectives, (2) lecture, (3) basic exer-

cises, and (4) complementary tasks. Sections 2, 3, and 4 possess different types of

elements that facilitate the student’s understanding process, such as flow diagrams,

block diagrams, and pseudo-codes, among others.

The objective section provides an explanation of what students should do and

learn in the experiment while the lecture section provides a short review about the

topics treated in the experiment.

The guided exercises section provides students with a step-by-step explanation

on how they develop the proposed activity. Finally, the complementary tasks give

students an implementation task with a set of predefined rubrics.

The implemented laboratory experiences covered each learning style through the

activities described in Table 6.5 .

Table 6.5 : Type of learner vs laboratory experience sections

Learner Type Activities

Sensing
Lecture sections at the beginning of each experiment

Intuitive

Visual
Laboratory presentations and different diagrams (flowcharts,
schematics)

Active Development of each experiment (building circuits in
breadboards and developing codes for MCUs)Reflective

Sequential Basic exercises and progressive designs

Global Full development of the whole experience

6.2.2 Laboratory Manual Design

The laboratory manual was designed with the objective of providing students

with a tool that guides them in their learning process and laboratory experiences de-

velopment. This manual was designed based on the experiment structure described

previously and a set of topics selected from the course syllabus. Each topic was



37

described as a laboratory experiment with a set of basic exercises (BE) and a com-

plementary task (CT).

Topics Covered by the Manual

Once the experiment structure, learning objectives, and methodology were iden-

tified, the topics to be taught in the laboratory were selected. Based on the current

class topics, the laboratory topics were chosen with the objective to help in the ac-

complishment of student’s learning objectives as defined in Section 6.1.2. Also, the

topics selected were those that provided enough material for a hands-on exercise that

could be developed independently from the MCU platform to be used by students.

Another important aspect taken into consideration was the course topics schedule

because it was important to provide a period in which students could concentrate

only on their class project. Table 6.6 shows the current course topics and those

included in the laboratory manual.

An additional topic related to High-Voltage Safety was selected to be included in

the manual due their importance for the laboratory work and students’ safety. This

topic was include in the manual as the first laboratory experiment.

Manual Experiment Descriptions

The topics included in the laboratory were organized in dedicated sections that

provided: (1) a set of objectives to be met by students, (2) a bill of materials used

for the experiment, (3) a lecture that provides a review of the current topic, and

(4) exercises to be developed. Each experiment also includes schematics and block

diagrams of every circuit to be used by students, and some of them included pseudo-

codes and flowcharts as a guide for their software implementation.

The experiments developed are described below while the developed manual is

include in Appendix A:



38

Table 6.6 : Laboratory manual topics selected based on the current course topics

Class topics Selected

1. Introduction to embedded system

2. Embedded microcontroller architecture

3. Life cycle of embedded

4. Constraints in the design of embedded systems

5. Basic interface and I/O fundamentals X

6. Switches, keypads, and display X

7. Interrupts X

8. Timers and event counters X

9. Pulse width modulation and event counter X

10. Stepper motor interface X

11. Serial communication X

12. Analog-to-digital and digital-to-analog converters X

13. Standard bus systems

14. Synchronization schemes

15. Memories

16. DMA controllers

17. Design technology in embedded systems

Experiment 1. High-Voltage Safety: this experiment introduces students into

the risk associated of working with high voltage. It also provides an understanding of

how the electrical current could affect the human body, depending on their level and

circulation path. The experiment ends with recommendations on how electrical risks

could be reduced and describes a procedure to be followed in case of an emergency.

Experiment 2. IDE, GPIOs, and LCDs: this experiment introduces students to

the process of creating and debugging a program for an MCU, while providing an

understanding of how the General Purpose Input/Outputs (GPIOs) work. The

experiment also provides the opportunity to learn how these GPIOs could be inter-

faced with other electronics components such as resistors, LEDs, and LCD displays.

The list of activities are described below:

• Blinking LED



39

• Polling a switch

• LCD configuration

• Scrolling List (complementary task)← (GPIOs, switches, and LCDs concepts)

Experiment 3. Interrupts, Switch Debouncing, and Keypad: this experiment

provides students with an explanation of how interrupts in an MCU work and what

are the functionalities of this MCU resource. The experiment also explains the

bouncing phenomena associated with mechanical switches and the mechanisms used

to mitigate it. Finally, it introduces students to the use of a keypad via interrupts.

The list of activities include:

• Reading a key using interrupts

• Hardware debouncing

• Software debouncing

• Reading keypads through interrupts ← (Switches, LCDs, and interrupt con-

cepts)

• Scrolling list with wheel (complementary task)← (Laboratory 2 and interrupts

concepts)

Experiment 4. Timers and LEDs: this experiment provides students with an ex-

planation of how a timer works and how it can be used in typical embedded ap-

plications. The experiment also allows students to understand and apply display

techniques to use multiplexed 7-segment displays. The list of activities are described

below:

• Timer by polling

• Timer by interrupt

• 7-segment display

• Multiplexed display using a dual 7-segment ← (LEDs and timer concepts)

• Digital Tachometer (complementary task) ← (Laboratories 2, 3, and timer

concepts)



40

Experiment 5. Low-Power Modes and PWM: this experiment explains how a

low power mode could impact the power consumption and performance of an MCU.

It also illustrates the typical architecture of a Pulsed-width Modulation (PWM)

module and how it could be used in conjunction with another MCU resource to

develop an embedded system application. The list of activities include:

• Low-power modes

• PWM signal generation

• Generating colors with an RGB LED ← (Laboratories 2, 3, and PWM con-

cepts)

• Digital dimmer (complementary task) ← (Laboratories 2, 3, and PWM con-

cepts)

Experiment 6. Motor Interfacing: this experiment provides access to three dif-

ferent types of direct current (DC) motors commonly used in embedded applications.

The experiment provides a basic explanation of how motors work and standard

techniques and circuits used to interface them. The list of activities are described

below:

• DC motor driven with transistors

• DC motor controlled through driver Integrated-Circuit (IC)

• Servo-motor interfaces ← (Laboratory 5, and servo-motor concepts)

• Stepper motor interfaces

• Stepper motor characterization (complementary task)← (Laboratories 2, 3, 4,

and stepper motor concepts)

Experiment 7. Serial Communication: this experiment introduces students to

the different types of serial communication protocols. It promotes the use of an

asynchronous communication to establish a connection with a PC and synchronous

communication to establish a connection with a real-time clock-calendar device.

The list of activities include:



41

• Asynchronous serial communication (UART)

• Sending and receiving characters via UART

• Synchronous serial communication (I2C) ← (Laboratories 2, 3, 4, and I2C

concepts)

• Digital alarm clock (complementary task) ← (Laboratories 2, 3, 4, and I2C

concepts)

Experiment 8. Data Converters (DAC & ADC): this experiment provides stu-

dents with the opportunity of working with Digital-to-Analog converters (DACs)

and Analog-to-Digital Converters (ADCs). The DAC is introduced through the

use of external components and the ADC through the use of MCU’s internal re-

sources. This experiment also introduces students to the use of signal conditioners

to interface analog devices. The list of activities are described below:

• Generating voltages using a DAC ← (Laboratory 4, and DAC concepts)

• Reading Voltages

• Analog-digital dimmer ← (Laboratories 2, 3, 5, and ADC concepts)

• Digital temperature meter (complementary task) ← (Laboratories 2, 4, and

ADC concepts)

6.2.3 Educational Modules Design

The educational modules were designed to provide students with examples of

how an electronic module for an embedded system could be implemented. These

modules were constructed based on the circuits that are part of the manual labora-

tory experiments, where each module could be used with at least one experiment.

With the modules, students can develop each experiment while learning how a func-

tional module is designed, interfaced with an MCU, and how contemporary design

techniques could be used in the development of embedded systems applications.

Due to the wide range of existing MCU, the elements for the module were selected

to work with either 3.3V or 5.0V DC. Figure 6.2 shows pictures of the six modules



42

developed. The physical characteristics and components of each PCB can also be

observed.

Module 2

Module e 4 Module 6

Module 1

Module 3
Module e 5

Figure 6.2 : Educational modules developed for the laboratory

The description and main characteristics of each module are provided below:

Basic I/O Module (Module 1)

The Basic I/O module is composed of four main blocks that provide access to

common electronic peripherals that include pushbuttons, LEDs, LCD displays , and

Buzzers. Figure 6.3 shows a block diagram of the Basic I/O module and its four

blocks. This module is introduced in experiments 2, 3, 4, 5, 6, 7, and 8.



43

16X2 LCD Display
4 LEDS

R R Y G

BUZZER
4 PushButtons

1 UP 1 DO 2 FREE

LED_En

Control

Data

PB_Conn

Buzz_En

LEDS_Control

VCC GND +5V

3

8

4

6

MODULE 1

Figure 6.3 : Basic I/O module block diagram

Keypad Module (Module 2)

The keypad module provides access to one key matrix (keypad). Figure 6.4

shows a block diagram of the Keypad module and its 3x4 keypad. This module is

used in experiments 3 and 5.

3X4 Keypad

3

4

VCC
GND

Select

3R

VCC GND

Row

Column

MODULE 2

Figure 6.4 : Keypad module block diagram

Seven-Segment Module (Module 3)

The seven segment module is composed of three main blocks that provide ac-

cess to optoelectronic peripherals such as 7-segment displays, RGB LEDs, and opto-

switches. Figure 6.5 shows a block diagram of the seven segment module and its

three blocks. This module is used in experiment 4.



44

Dual 7-Segment 

Display

OptoSwitch

RPR-220

RGB LED

9

2

Seg_Control

Display_En

RED  BLUE GREEN

VCC GND

MODULE 3

Figure 6.5 : Seven-Segment module block diagram

Motor Interface Module (Module 4)

The motor interface module is composed of four main blocks that provide access

to common motor drivers such as H-bridges, relays, and stepper motors. Figure

6.6 shows a block diagram of the motor interface module and its four blocks. This

module is used in experiment 6.

H-Bridge 

Transistor
Relay

IC Motor 

Driver

Stepper 

Driver

Is
o

la
to

r

VCC GND +5V

HB_In1

HB_In2

M_In1

M_In2

M_En

M2

M1 M

4

4

R_In

SM_Ins

C
O

M

N
C

N
O

L293D ULN2803

Motor_Coils

MODULE 4

Motor_Coils

Motor_Coils

Figure 6.6 : Motor Interface module block diagram



45

Serial Communications Module (Module 5)

The serial communications module is composed of two main blocks that provide

access to devices that use serial communication protocols such as RS232 and I2C.

Figure 6.7 shows a block diagram of the serial communication module and its two

blocks. This module is used in experiment 7.

Serial-to-RS232

Converter

MAX3232 Real-Time

Clock

DS1307

VCC

VCC GND +5V

S
e

le
c
t

DB9

SDA

SCL

TX

RX

R
S

2
3

2
-T

X

R
S

2
3

2
-R

X

MODULE 5

I
2
C

UART

Figure 6.7 : Serial Communications module block diagram

Data Converters Module (Module 6)

The data converters module is composed of three main blocks that provide access

to common analog devices and digital-to-analog converters. Figure 6.8 shows a block

diagram of the data converter module and its three blocks. This module is used in

experiment 8.

6.3 Assessment Methods

Following the Outcome Based-Education by Streveler et al. the assessment meth-

ods must allow to evaluate students’ performance and the methodology implemented

in class [30]. These evaluation methods were designed taking into consideration the

learning objectives established for the class in order provide an alignment between



46

Digital-to-Analog

Converter

DAC0808

8
Temperature 

Sensor

Potentiometers

Linear Precision

S_Out

LP_Out PP_Out

Data_In

V_out

VCC GND +5V+15V -15V

LM35

MODULE 6

Figure 6.8 : Data Converters block diagram

the laboratory content and learning objectives. The assessment instruments devel-

oped included: a series of pre- and post- laboratory tests and a set of laboratory

experiment activities.

6.3.1 Assessment Groups

With the objective of determining if the proposed methodology for the laboratory

was successful, two groups of students were identified and compared. These two

groups consisted of a representation of the laboratory methodology used in past years

and the newly implemented methodology (Modular approach). Student results and

data were divided into the following categories:

1. Students from Fall 2015 and Spring 2016 who took the laboratory without the

implementation of the modular approach (control group)

2. Students from Fall 2016 who took the laboratory with the proposed modular design

approach implemented (experimental group)

Due the implementation of the proposed modular design approach, some of the

assessment activities implemented in the experimental group were slightly different

in comparison with the control group. Also, some activities were valid only for the

experimental group.



47

6.3.2 Tests Validations

A series of tests (pre- and post- laboratory tests) were designed in order to

determine if the laboratory experiments developed positively impacted the student.

Each test was composed of four questions, where the pre-test was given to students

before the initiation of the experiment with the aim of identifying prior knowledge

they had. Later on, after the experiment completition, students received a post-test,

with the same questions as in the pre-test in order to assess the knowledge acquired

during the experiment. See Appendix B for the actual tests developed for the control

and experimental groups.

A validation test procedure was carried out for each test. The procedure took

place before the use of their results to determine if the laboratory methodology applied

was successful or not. This validation process consisted of an item analysis and a

test reliability evaluation. The test reliability allowed us to determine if the tests

implemented were appropriately designed while the item analysis is a procedure that

allowed us to know the difficulty and discrimination of each item (question) [52, 53].

In the item analysis, the item difficulty index gave us an idea of how hard or

easy a question was. This parameter was calculated based on Equation 6.1.

IDifficulty =
#SWAC

#SWA
∗ 100%, (6.1)

where #SWAC is the number of students who answered the question correctly

and the #SWA is the number of students who took the test. A value lower than

30% is considered as a high difficulty, a value between 30% and 80% is considered as

a medium difficulty, and a value higher than 80% is considered as low difficulty [52].

The discrimination index, on the other hand, gave us an idea of how each question

distinguishes the students who did well on the exam from the students who did poorly.

The index was calculated using the Equation 6.2.



48

IDiscrimination =
#TSWAC

#TSWA
−

#BSWAC

#BSWA
, (6.2)

where #TSWAC and #BSWAC are the students who correctly answered the

question in the upper and lower student groups respectively, and #TSWA and

#BSWA are the number of students who answered the question in the upper and

lower student groups respectively. The number of students in the upper and lower

groups was selected based on the criteria explained by Kelly [54] who mentioned that

27% from the extremes is an optimum value to define the upper and lower groups.

In this index, a negative value indicates that the item or question does not allow to

distinguish students who did well from students who did poorly in the test. Values

near 1 are preferred.

For the test reliability, an internal-reliability factor was calculated to determine

if the items that measure the same concept presented homogeneous responses. To

calculate this factor for each test a Kuder-Richarson formula 20 (KR-20) was used

because it is valid when items on an exam have different levels of difficulty and when

they are discriminated in a dichotomous way [55,56]. For our test responses, a factor

of 70% was used to decide if the response for a question was correct or not because

70% is the current threshold value used by the ECE department to decided is a

student passes or not a courses.

The KR-20 applied was:

KR-20 =

(

K

K − 1

)









1−

K
∑

i=1

piqi

S2









(6.3)

Where K is the number of items on the test, p is the probability of correctly

answering a question (known as item difficulty), q is the probability of answering that

question incorrectly, and S2 is the overall students result variance. For this index,



49

values between 1 and 0.5 are preferred while values below 0.5 suggest that the items

in the tests need to be revised or re-evaluated [57].

6.3.3 Assessment Laboratory Experiment

To assess the laboratory experiments, a set of pre- and post- laboratory tests

were given to the student in each experiment. To determine a relation between

the results of the pre- and post-tests, learning gain factors were computed for each

test. These factors allowed to establish the students’ performance at two different

times or moments in their studies and also know if the laboratory experiences helped

them in their learning process [58]. A individual gain factor (Gi = post test score−

pre test score) was calculated for each student while for each test an absolute gain

(GA = average( Gi

Maximun score achievable
)) and relative factors (GR = average( Gi

pre test score
))

were calculated. Also, a test average normalized gain (〈g〉) and average of single-

student normalized gain (〈gi〉ave) were calculated to measure the tests’ effectiveness.

The angle brackets “〈〉” indicate class average. The normalized gain was calculated

using Equation 6.4 [59, 60]:

〈g〉=
〈%post test〉 − 〈%pre test〉

100% − 〈%pre test〉
, (6.4)

where 〈%pre test〉 is the average pre-test grades and 〈%post test〉 is the average post-

test grades. For the single-student normalized gain calculation, the pre- and post-test

grades correspond to each individual grade, without average. A predefined score of

30% was taken as the minimum value to define if the test was effective [60]. A positive

value in the factors means that students presented a better performance in the post-

test in comparison with the pre-test score or mean that the test had a positive impact

on students’ learning. The results for each pre- and post-test are presented in Section

7.2.



50

6.3.4 Methodology Assessment

To assess the methodology implemented, a comparison between the performances

of the two students groups was carried out using an unpaired t-statistic (see Equation

6.6). This statistic allowed us to determine if there was a significance difference

between the use of the old laboratory methodology and the proposed methodology.

With the statistic, a t0 was calculated using the mean of the students’ performance.

Finally, this value was compared against the t distribution that use a significance

level (α) in order to infer if the students’ performance was statistically different, by

rejecting the null hypothesis.

H0 : µ = µo, (6.5)

H0 is our null hypothesis that assumes the mean students’ performance for both

groups are equal.

The unpaired t-statistic formula used was:

t0 =
x̄1 − x̄2

SE(x̄1 − x̄2)
, (6.6)

where x̄1 and x̄2 are the means of the two groups (1 for the experimental group

and 2 for the control group), and the SE(x̄1−x̄2) is the standard error of the difference

between the means. The standard error calculation may varies depending on whether

the variances between the samples are similar or not. Equation 6.7 denotes the

formula for approximately equal variances while Equation 6.8 denotes the formula

for unequal variances.

SE(x̄1 − x̄2) =

√

(

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

)

∗

(

1

n1

+
1

n2

)

(6.7)

SE(x̄1 − x̄2) =

√

S2
1

n1

+
S2
2

n2

, (6.8)



51

where S2
i and ni are the variance and sample size of each group respectively.

6.4 Alignment

In the OBE approach, the course content, pedagogical methodology, and as-

sessment activities must be aligned. Figure 6.9 shows the process carried for the

alignment of the OBE in which the laboratory learning objectives were established in

first place to later select the appropriate teaching methods according to the labora-

tory. Finally, assessment methods were developed to verify if the learning objectives

were met and verify if the methods selected to teach students were satisfactory. Also,

this alignment allows us knowing the level of accomplishment that each student has

with each learning objective.

Course Content

■ Desired Outcomes

■ Curricular Priorities

■ Learning Objectives

Pedagogy 

■ Modular Approach

Assessment Activities

■ Data Collection 

■ Statistic

Are met?

Effective?

Figure 6.9 : OBE Alignment

Table 6.7 shows the relationship established between the laboratory manual

activities and the learning objectives while Table 6.8 shows the relation between

the test items and learning objectives. With this correlation, a complete profile for

each student was created from the grades acquired during the semester. Each activity



52

marked for an objective contributes to the same weight in the accomplishment of the

objective. Each objective was discriminated in levels based on the final result where

a low level was assigned to grades under 70 pts, a medium level to grades between 70

and 85 pts, and high level of accomplishment for grades above of 85.

Table 6.7 : Laboratory activities vs learning objectives

Activities L
.
O
b
j.

1

L
.
O
b
j.

2

L
.
O
b
j.

3

L
.
O
b
j.

4

L
.
O
b
j.

5

L
.
O
b
j.

6

L
.
O
b
j.

7

L
.
O
b
j.

8

L
.
O
b
j.

9

Exp. 2

BE-1 • • •
BE-2 • •
BE-3 • •
CT-4 • • • • • • •

Exp. 3

BE-1 • • •
BE-2 • •
BE-3 •
BE-4 • •
CT-5 • • • • • • •

Exp. 4

BE-1 • • •
BE-2 •
BE-3 • •
BE-4 •
CT-5 • • • • • • •

Exp. 5

BE-1 • •
BE-2 • •
BE-3 • • •
CT-4 • • • • • • •

Exp. 6

BE-1 • • •
BE-2 •
BE-3 • • • •
CT-4 • • • • • •

Exp. 7

BE-1 • •
BE-2 • •
BE-3 • •
BE-4 • •
CT-5 • • • • • • •

Exp. 8

BE-1 • • •
BE-2 • • •
BE-3 • •
CT-4 • • • • • • •



53

Table 6.8 : Tests items vs learning objectives

Items L
.
O
b
j.

1

L
.
O
b
j.

2

L
.
O
b
j.

3

L
.
O
b
j.

4

L
.
O
b
j.

5

L
.
O
b
j.

6

L
.
O
b
j.

7

L
.
O
b
j.

8

L
.
O
b
j.

9

Test 2

IT-1 • •
IT-2 • • •
IT-3 • •
IT-4 • •

Test 3

IT-1 • •
IT-2 • •
IT-3 • •
IT-4 • •

Test 4

IT-1 • •
IT-2 • • •
IT-3 • •
IT-4 • • •

Test 5

IT-1 • •
IT-2 • •
IT-3 • •
IT-4 • • •

Test 6

IT-1 • • •
IT-2 •
IT-3 •
IT-4 • •

Test 7

IT-1 • •
IT-2 •
IT-3 • •
IT-4 • •

Test 8

IT-1 • •
IT-2 • • •
IT-3 • •
IT-4 • •

6.5 Complementary Laboratory Material

To help in the improvement of the students’ design skills a set of tutorials were

designed. Also, a manual reference for the educational modules was developed.

6.5.1 Tutorial Recommended Handouts Design

The tutorial topics were chosen based on a group of topics considered to be

important for students that work with embedded systems. These tutorials were im-

plemented through handouts that could be taught at any moment during the class.

Some of the tutorials were developed in past semesters but they were modified to



54

introduce changes or adapting them to the current format used in the laboratory.

Instructor decides the order and time for the tutorials. The topics also include the

use of software and measurement equipments.

The handouts developed are listed below (see Appendix C):

• High Voltage Safety: This tutorial goes with the laboratory experiment 1 and it

explains how to work with high voltage and its most important considerations.

• Soldering: This tutorial teaches the procedure to solder through hole and surface-

mount device (SMD) components using a soldering iron and rework stations. It also

explains the characteristic of a good soldering finish and the procedure to desolder

components.

• EagleCAD: With this tutorial students learn how to use the essential features of the

PCB design software EagleCAD. The students learn how to create schematic and

board layout for a design. Also, they learn how to design library-entries for new

components.

• Logic Analyzer: The tutorial introduces student in the utilization of a logic analyzer

for debugging their circuits. It explains how to use the essential features of the

laboratory oscilloscope and their main operation modes.

6.5.2 Electronics Modules Reference Manual Design

A modules manual was designed to provide students with the documentation

necessary for the assembly and use of the educational modules. The manual includes

a description, block diagram, schematic, and PCB layout of each module. It also

contains a bill of materials with part numbers and suppliers for each component used

in the development of the modules. The manual is divided into six chapters, where

each chapter corresponds to a module. See Appendix D for the manual developed.



Chapter 7

RESULTS AND ANALYSIS

This chapter presents the results obtained from this work and their analysis. The

first Section discusses the validation of each test through the use of an item analysis

procedure. The second Section presents the comparison, in terms of learning gain

factors, between the two student groups under study. The comparison was based on

the pre- and post-test grades. Finally, a performance comparison between the groups

using a t-statistic is presented. This last analysis took into consideration the tests

and laboratory exercises grades.

7.1 Test Analysis and Validation

Before using the test results to determine whether the proposed methodology

positively impacted student’s performance or not, an item analysis for each test was

performed. This analysis helped ascertain the item difficulty and discrimination for

each test. Also, an inter-reliability factor was calculated to determine if different

items, in the same test, presented homogeneous responses. These factors were used

to determine how well the test was developed. For these calculations, only post-test

grades were taken into consideration. The pre-tests were not used as the students

had not yet been exposed to the material.

7.1.1 Control Group Test Analysis

The control group consisting of 16 students, was administered a total of six

different tests. Table 7.1 shows the item analysis results for the control group, while

Table 7.2 lists the topics for those tests.

55



56

Table 7.1 : Control group tests item analysis

Item Difficulty Item Discrimination Reliability

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 (KR-20)

Test 1 75% 75% 38% 44% 0.60 0.80 0.80 1.00 0.752

Test 2 38% 50% 88% 69% 0.60 0.80 0.40 0.80 0.596

Test 3 75% 6% 38% 25% 0.60 0.20 0.80 0.40 0.375

Test 4 38% 31% 38% 75% 0.80 0.20 1.00 0.40 0.388

Test 5 50% 25% 56% 13% 0.60 0.20 1.00 0.40 0.338

Test 6 50% 19% 19% 81% 0.80 0.60 0.60 0.60 0.674

Table 7.2 : Control group test topics

Test Topic

Test 1 High-Voltage Safety

Test 2 IDE, ASM/C Programming & IO

Test 3 Interrupt & Switch Debouncing

Test 4 Timers and Applications

Test 5 Low-Power Modes, LED Display Techniques & keypads

Test 6 Introduction to Serial Communications

From Table 7.1 , in the case of Test 1, it was observed that the items (questions

in a test) were between 38% and 75% in terms of difficulty. Furthermore, these items

are considered as medium difficulty questions. It is worth says that values below

30% are for items considered as hard and values over 80% are for items considered

as easy. In this test, the average difficulty expected (near to 50%) was achieved. In

the case of item discrimination, all the items presented values near to 1 (above 0.5)

allowing to distinguish students who did well from those who did poorly on the test.

A KR-20 value above 0.5 was obtained for this test which indicates that the test was

well designed. For Test 2, the items difficulty were in acceptable values, however, the

discrimination factor for Q3 was low. The KR-20 value for this test was above 0.5

(can be considered well designed). For Test 3, only Q2 resulted too difficult (6%)



57

and the others were in the expected values. Q2 and Q4 obtained low values in the

discrimination factor (0.20 and 0.4 respectively). These two questions (Q2 and Q4)

could be revised to improve the test performance and reliability. Similar behavior

was obtained for Tests 4 and 5. The item difficulties produced acceptable values but

the discrimination index for Q2 and Q4 (in both tests) were low. In the case of Test

6, the item difficulties were appropriate and the discrimination index was above 0.5.

The KR-20 value for this test was as expected.

Although three tests obtained values above 0.5 in the reliability factor, the aver-

age tests reliability was of 0.52. This general low value was attributed to the results

obtained in Tests 3, 4, and 5 which obtained values below 0.4 in the KR-20.

7.1.2 Experimental Group Test Analysis

The experimental group consisting of 25 students, was administered a total of

eight different tests. The difference between the number of tests applied to the control

and experimental groups was determined by the number of laboratory topics included

in the new modular teaching approach, which covered two new topics in the laboratory

schedule. For this reason, some items (questions) had to be reorganized. All tests

were revised by the class professor to ensure correlation between the items and the

topic of each test. Tables 7.3 and 7.4 show the analysis and test topics for the

experimental group.

Although small changes to the tests were introduced, the results changed signif-

icantly. In the case of Test 1, the average difficulty was of 84% with lower discrimi-

nation index on two items (Q1 and Q4). Unfortunately, results showed that this test

obtained a reduced KR-20 factor of 0.135 and it can not be considered well designed.

Similar results were obtained for Test 2. In the case of Tests 3 and 4, although the

difficulty and correlation were low in both indexes, the KR-20 factors were in the ex-

pected values and therefore these tests can be considered well designed. For Tests 5,

6, and 7, the items had acceptable difficulty values. For these tests, only one question



58

Table 7.3 : Experimental group tests item analysis

Item Difficulty Item Discrimination
Reliability

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Test 1 96% 80% 76% 84% 0.17 0.50 0.83 0.17 0.135

Test 2 92% 56% 92% 96% 0.17 0.83 0.33 0.17 0.329

Test 3 84% 84% 24% 84% 0.67 0.67 1.00 0.33 0.628

Test 4 60% 88% 84% 88% 0.83 0.50 0.33 0.50 0.613

Test 5 72% 76% 76% 68% 0.67 0.83 0.50 0.33 0.281

Test 6 76% 68% 76% 32% 0.67 0.17 0.83 0.67 0.182

Test 7 76% 92% 52% 68% 0.67 0.33 0.83 0.67 0.394

Test 8 76% 56% 60% 28% 0.50 1.00 1.00 0.67 0.600

Table 7.4 : Experimental group test topics

Test Topic

Test 1 High-Voltage Safety

Test 2 IDE, GPIOs, and LCD

Test 3 Interrupts, Switch Debouncing, and Keypad

Test 4 Timers and LEDs

Test 5 Low-Power Modes and PWM

Test 6 Motors Interfacing

Test 7 Serial Communications

Test 8 Data Converters (DAC & ADC)

obtained a value below 0.5 in the discrimination index but the tests had lower KR-20

values, thus can not be considered well designed. In the case of Test 8, the average

item difficulty was as expected (near to 50%), the discrimination and reliability were

over 0.5. Furthermore, this test can be considered well designed.

The low values obtained for the different factors, in both student groups, could

be associated with the sample size. As previously indicated, the sample size for the

control group was of only sixteen students while for the experimental group had 25.

Table 7.5 presents the KR-20 factors obtained for Tests 1 and 2 when students



59

for both groups were used in the same calculation (sample size of 41 students). In

the aforementioned Table, we can observe that the two tests can be considered well

designed by getting KR-20 factors above 0.5.

Table 7.5 : Control and Experimental group tests item analysis

Item Difficulty Item Discrimination
Reliability

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Test 1 88% 78% 61% 68% 0.27 0.63 1 0.72 0.61

Test 2 70% 53% 90% 85% 0.82 0.82 0.27 0.54 0.52

Finally, we can conclude that a total of three tests in each group, Tests 1, 2, and

6 for the control group and Tests 3, 4, and 8 for the experimental group, obtained

reliability factors over 0.5. Furthermore these tests can be considered well developed.

Although the other tests in both groups did not reach the minimum value necessary

to be considered well designed, the data obtained from these tests can still be used to

analyze the students’ learning gains and making the performance comparison needed.

This was concluded when an analysis for Tests 1 and 2 using both student groups

together was held. The results allowed attributing the low values obtained to the

sample size because the reliability factors for both tests increased from 0.135 and

0.329 to 0.61 and 0.52 respectively (sample size of 41).

7.2 Learning Gain Analysis

Once the tests were validated, the pre- and post-test scores were used to analyze

if the tests had a positive impact on the students’ learning. For each test, learning

factors were computed to determine the effectiveness of the test using a score threshold

as a reference. According to Hake [60], a predefined value of 30% could be taken as the

minimum value to define if a test was effective or not. Also, learning gain factors for

each student were calculated to individually identify the performance of each student.



60

7.2.1 Control Group Gain Analysis

Table 7.6 summarizes the results for test learning factors. Figure 7.2 illustrates

student results. The detailed grades for each student for each test are presented in

Appendix E - Section E.1

Table 7.6 : Control group learning gain factors

µ Pre-Test µ Post-Test µ Gi GA GR 〈g〉 〈gi〉ave

Test 1 27.7% 61.6% 34.0% 34% 123% 47% 49.28%
Test 2 56.9% 70.0% 13.1% 13% 23% 30% 37.04%
Test 3 44.3% 53.5% 9.2% 9% 21% 17% 20.68%
Test 4 47.4% 56.3% 8.8% 9% 19% 17% 24.95%
Test 5 41.0% 44.1% 3.1% 3% 8% 5% 14.93%
Test 6 25.0% 52.7% 27.7% 28% 111% 37% 36.64%

From Table 7.6 , in the case of Test 1, it was observed that the absolute learning

gain (GA) was of 34%, which means that students presented a better performance

in the post-test in comparison with the pre-test. We can also reach this conclusion

by noting that the average normalized grade for the post-test was higher than for

the pre-test. The relative gain factor (GR) for this test was 123%, which means that

students significantly increased their grades from the pre-test to the post-test. Fi-

nally, the average of single-student normalized gain (〈gi〉) and test average normalized

gain factor (〈g〉) were above 45% meaning that this laboratory experience promoted

student learning. For Test 2, the GA was of 13% meaning that students did better

on the post-test than the pre-test. Although the values for the average individual

gain (Gi) and GR were below 30% due to the proximity between pre- and post-test

grades, the 〈g〉 and 〈gi〉 obtained values above 30% meaning that this test can also be

considered effective. For Tests 3, 4, and 5, the gain factors were below 30%. Although

the pre- and post-test grades for these tests were near the 50% of the maximum score

achievable, these tests can not be considered effective. In the case of Test 6, the GA

was of 28% which indicates that students did well in the post-test. The GR was of



61

111% meaning that students significantly increased their grades. The 〈g〉 and 〈gi〉

obtained values above 30%, for this reason the test can also be considered effective.

Although three of the six tests are considered effective in terms of the learning

gain factors, only Test 2 reached the minimum score in the post-test grade for success

in a class or examination, as established by the ECE department. The other post-tests

obtained values near to 50%.

Figure 7.2 represents the average learning gain for each student. From this

figure, we can observe that nine students obtained a learning gain factor above 30%

and only three students, from those nine students, obtained gains above 40%. This

means that the remaining students did not have a significant learning gain from the

current laboratory experiments.

31%
35%

32%

60%

40%

12%

33%
38%

44%

32%
29%

17% 18%
14%

25%
29%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N°1 N°2 N°3 N°4 N°5 N°6 N°7 N°8 N°9 N°10 N°11 N°12 N°13 N°14 N°15 N°16

A
v

e
ra

g
e

 G
a

in

Student

NORMALIZED LEARNING STUDENT GAIN

Figure 7.1 : Control group: Student learning gains

7.2.2 Experimental Group Gain Analysis

In the case of the experimental group, Table 7.7 summarizes the results for the

test learning factors. Figure 7.2 also illustrates the student’s results. The detailed

grade distribution for each student for each test are presented in Appendix E - Section

E.2



62

Table 7.7 : Control group learning gain factors

µ Pre-Test µ Post-Test µ Gi GA GR 〈g〉 〈gi〉ave

Test 1 22.1% 88.6% 66.5% 66% 301% 85% 83.60%
Test 2 50.2% 82.5% 32.3% 32% 64% 65% 61.19%
Test 3 38.6% 76.3% 37.7% 38% 98% 61% 59.52%
Test 4 51.6% 83.3% 31.7% 32% 62% 66% 59.99%
Test 5 40.4% 79.7% 39.3% 39% 97% 66% 64.41%
Test 6 22.0% 75.8% 53.8% 54% 244% 69% 67.61%
Test 7 21.9% 73.0% 51.1% 51% 234% 65% 63.89%
Test 8 27.3% 64.1% 36.8% 37% 135% 51% 51.65%

From Table 7.7 , in the case of Test 1, it was observed that the absolute learning

gain (GA) was of 66%, which means that students presented a better performance in

the post-test in comparison with the pre-test. We can also reach this conclusion by

nothing that the post-test average grade was higher than the pre-test average grade.

The relative gain factor (GR) for this test presented a value of 301%, which means

that students significantly increased their grades from the pre-test to the post-test.

Finally, the average single-student normalized gain (〈gi〉) and test average normalized

gain were over 30%, which means that this lab experiment promoted student learning.

For tests 2-8, similar results were obtained. These tests achieved absolute, relative,

and test average gains over 30% which means that these tests can also be considered

effective.

In the case of the experimental group, only Test 8 scores (post-test) were below

the threshold defined by the ECE department (70%). This means that students had

a good performance solving the given problems in almost all tests.

Figure 7.2 represents the average gain learning for each student. From this

figure, we can observe that all students obtained a learning gain above 30% and also,

six students had gain values above 70%. This means that the laboratories, with the

proposed methodology, positively impacted the student learning process.



63

56%

51%

71%

75%

46%

83%

68%

58%

63%

69%

44%

78%

57%

69% 69%

63%

79%

57%
59%

67%
64% 65%

64%

53%

73%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N°1 N°2 N°3 N°4 N°5 N°6 N°7 N°8 N°9 N°10 N°11 N°12 N°13 N°14 N°15 N°16 N°17 N°18 N°19 N°20 N°21 N°22 N°23 N°24 N°25

A
v

e
ra

g
e

 G
a

in

Student

NORMALIZED LEARNING STUDENT GAIN

Figure 7.2 : Experimental group: Student learning gains

Finally, we can conclude that the laboratory tests and experiences developed

with the proposed methodology promote a better student learning. This can be

demonstrated by obtaining eight tests that can be considered effective, tests with

grades over 64%, and students with a gain average above 63%.

7.3 Performance Comparison

In order to validate the proposed methodology, a set of performance comparisons

between the two students groups were carried out. These comparison were developed

using the students grades to the tests and laboratory exercises.

7.3.1 Using Tests Grades

For the tests grades comparison, an unpaired t-statistic formula was used because

the sample size for both groups were different. The data used for this comparison

was the average single-student normalized gain of each student. Table 7.8 shows

the students gains for both the control and experimental group.

The first step was determining if the variance of both groups were similar to

define which SE(x̄1 − x̄2) formula needs to be used. Table 7.9 shows the results



64

Table 7.8 : Control and experimental group single-student gains

Control Group Experimental Group
Student 〈gi〉ave Student 〈gi〉ave

N◦1 30.93 N◦1 56.16
N◦2 35.39 N◦2 50.94
N◦3 32.32 N◦3 71.06
N◦4 59.65 N◦4 74.71
N◦5 40.04 N◦5 45.76
N◦6 11.90 N◦6 82.53
N◦7 33.46 N◦7 68.10
N◦8 37.59 N◦8 57.86
N◦9 43.53 N◦9 62.67
N◦10 32.08 N◦10 68.87
N◦11 28.71 N◦11 43.54
N◦12 16.81 N◦12 77.59
N◦13 18.28 N◦13 57.27
N◦14 14.15 N◦14 68.92
N◦15 25.27 N◦15 69.13
N◦16 29.26 N◦16 62.71

N◦17 78.87
N◦18 56.89
N◦19 59.49
N◦20 67.29
N◦21 64.21
N◦22 64.90
N◦23 63.51
N◦24 53.15
N◦25 73.43

obtained in which we can conclude that the variances were completely different and

therefore the formula for unequal variances was selected. The control group had a

value of 145.432 which is grater than 98.4932 obtained by the experimental group.

Table 7.9 : Means, Sample size, standard deviation, and variance for control and
experimental group

Group Sample size (n) Mean (x̄i) Std (Si) Var (S2
i )

Experimental 25 63.98 9.924373 98.49317
Control 16 30.59 12.05954 145.4325



65

The second step was to calculate SE(x̄1 − x̄2) which had a value of 3.61.

SE(x̄1 − x̄2) =

√

98.49317

25
+

145.4325

16
= 3.61 (7.1)

Finally, the t-statistic was calculated.

t0 =
x̄1 − x̄2

SE(x̄1 − x̄2)
=

63.98− 30.59

3.61
= 9.25 (7.2)

For rejecting or accepting the null hypothesis, the t0 value calculated was com-

pared against the critical t distribution value. This critical value was obtained using

the degree of freedom for our analysis (28) and a significance value of α = 0.05. The

critical value obtained, from the t statistic table, was of 1.70 which is lower than the

t0 value calculated, therefore the null hypothesis was rejected. Furthermore, there is

strong evidence that the experimental group performance was statistically different

from the control group. Also, we can conclude that the experimental group had a

better performance, therefore the proposed methodology promotes a better student

learning.

7.3.2 Using Laboratory Exercises Grades

For the laboratory exercises grades comparison, a Mann-Whitney statistic was

used instead of the t-statistic previously used. This change occurred because at

the moment of analyzing the data, using the average laboratory exercise grades, it

was found that these values were not normally distributed. For this statistic, a null

hypothesis (H0) that assumes “the medians of the students’ grades for both groups

are equal”, was raised. Table 7.10 shows the student’s laboratory grades for both

the control and experimental group.

The first step was organizing the grades (including both groups) from the lower

to the highest value, assigning a rank number to each value. If two or more grades



66

Table 7.10 : Control and experimental group laboratory grades

Control Group Experimental Group
Student Grade Student Grade

N◦1 84.13 N◦1 96.70
N◦2 76.15 N◦2 87.51
N◦3 68.02 N◦3 96.86
N◦4 84.13 N◦4 88.00
N◦5 77.22 N◦5 70.09
N◦6 77.22 N◦6 88.00
N◦7 76.75 N◦7 68.34
N◦8 84.13 N◦8 68.34
N◦9 68.02 N◦9 87.51
N◦10 68.58 N◦10 96.70
N◦11 82.76 N◦11 87.51
N◦12 82.76 N◦12 70.09
N◦13 68.58 N◦13 88.00
N◦14 73.83 N◦14 97.14
N◦15 73.83 N◦15 96.96
N◦16 82.76 N◦16 89.09

N◦17 97.14
N◦18 96.75
N◦19 96.86
N◦20 96.75
N◦21 75.66
N◦22 96.75
N◦23 96.96
N◦24 89.09
N◦25 44.34

had the same value, a shared rank was determined for those numbers. Table 7.11

shows the organized grades and the ranks assigned.

The second step was to calculate the sum of the ranks for each group (Ri), calcu-

lated the Ui values using the Equation 7.3 and Equation 7.4, and choosing the lowest

Ui value for the “Z” approximation (Equation 7.5). The Z statistic approximation

was necessary because one of the groups had a sample size larger than 20.

U1 = n1 · n2 +
n1(n1 + 1)

2
−R1 (7.3)



67

U2 = n1 · n2 +
n2(n2 + 1)

2
−R2 (7.4)

Z =
Umin − ((n1 · n2)/2)
√

n1·n2(n1+n2+1)
12

(7.5)

where n1 and n2 represents the sample size for each group.

Having into account the sample sizes (n1 = 16 for the control group and n2 = 25

for the experimental group), the sum of ranks (R1 = 214 and R2 = 647), and the Ui

values calculated (U1 = 322 and U2 = 78); the Z value was of:

Z =
78− ((16 · 25)/2)
√

16·25(16+25+1)
12

=
−122

37.4165
= −3.2605 (7.6)

For rejecting or accepting the null hypothesis, the |Z| value calculated was com-

pared against the critical Z distribution value. This critical value was obtained using

a significance value of α = 0.05. The critical value obtained, from the Z statistic

table, was 1.96 which is lower than the |Z| value calculated, therefore the null hy-

pothesis was rejected. Furthermore, there is strong evidence that the experimental

group performance was statistically different from the control group performance.

In addition, with this result we can reaffirm the conclusion raised previously “The

experimental group had a better performance, therefore the proposed methodology

promotes a better student learning”.



68

Table 7.11 : Control and experimental group ranked grades

Groups

Control Experimental Rank

44.34 1
68.02 2.5
68.02 2.5

68.34 4.5
68.34 4.5

68.58 6.5
68.58 6.5

70.09 8.5
70.09 8.5

73.83 10.5
73.83 10.5

75.66 12
76.15 13
76.75 14
77.22 15.5
77.22 15.5
82.76 18
82.76 18
82.76 18
84.13 21
84.13 21
84.13 21

87.51 24
87.51 24
87.51 24
88.00 27
88.00 27
88.00 27
89.09 29.5
89.09 29.5
96.70 31.5
96.70 31.5
96.75 34
96.75 34
96.75 34
96.86 36.5
96.86 36.5
96.96 38.5
96.96 38.5
97.14 40.5
97.14 40.5



Chapter 8

CONCLUSIONS AND FUTURE WORK

A methodology to teach embedded system design concepts in a laboratory course

was developed. It consisted of two main parts, a methodology for establishing the

course structure (define the content and related activities) and an educational ap-

proach (based on modular design) for teaching the concepts related to the course.

Several methodologies for structuring a course or laboratory presented by other

authors were initially discussed. General benefits and limitations of these method-

ologies were analyzed and compared. An OBE approach was selected because it is

based on outcomes (same focus of the engineering department courses) and it search

for aligning the laboratory content, pedagogical methods, and assessment activities.

Also, approaches for teaching embedded systems design concepts were carefully ana-

lyzed. Strengths and weaknesses were identified. A modular approach was selected

and implementations of this methodology were discussed. These implementations

were taken as a base to propose a new teaching methodology.

The OBE framework was implemented in four steps. In the first step, the labora-

tory content was revised and designed taking into consideration the current Curricu-

lum Guidelines for Undergraduate Degree Programs in Computer Engineering, social

and industrial expectations, and current departmental focus for the computer engi-

neering program. Later, the pedagogical methods were implemented using a modular

approach as bases. This implementation was carried out through a laboratory man-

ual with a set of progressive experiments and a set of educational modules. The

educational modules provided students with an example of how small circuits could

69



70

be grouped to create functional electronic modules and how they can be incorpo-

rated into an MCU to create functional embedded prototypes. Assessment methods

that consisted in a series of pre- and post-tests were designed to validate the pro-

posed methodology. These tests were given to the students in past semesters (control

group) and students with the proposed methodology (experimental group). Finally, a

correlation between the activities developed and learning objectives were established

(student profile).

A validation process for the tests was carried out. This validation consisted on

determining the item difficulty and discrimination index for each question, and re-

liability and learning gain factors for each test. In the case of the control group, it

was observed that only three tests (Tests 1, 2, and 6) obtained results over the ex-

pected values in terms of reliability factor and only the same tests can be considered

effective. Instead, for the experimental group, Tests 3, 4, and 8 obtained reliability

factors above the expected value (0.5). Furthermore, these tests can be considered

well developed. Although the remaining tests in both groups were considered not

well developed, the low values were associate to the sample size. This was evident

when the analysis for Tests 1 and 2 using both student groups together was held.

Reliability factors for these tests improved from 0.135 and 0.329 to 0.61 and 0.52

respectively (values over 0.5). These results indicated that these tests can be consid-

ered well developed. For the experimental group, all tests were considered effective

by obtaining gain scores above 51%. These results allowed to conclude that the labo-

ratory experiences developed with the proposed methodology were correctly designed

and promoted a successful learning experience for students.

Finally, a comparison between the both student’s groups, in terms of test perfor-

mance and laboratory exercises, was carried out. The results demonstrated that the

performance obtained by the experimental group was statistically different from the

performance obtained by the control group. In addition, the analysis showed that the



71

performance of the experimental group was better allowing to validate the proposed

methodology which promotes a significant impact on the student learning.

8.1 Future Work

To expand and improve the current state of the presented work, the following

directions were identified:

1. To collect data during two or more semesters using the proposed methodology.

These data would be used to obtain more accurate statistical results.

2. To identify other suitable circuits that could be implemented in the form of modules.

These modules could become part of the actual set of educational modules.



Chapter 9

CONTRIBUTIONS

The main contribution of this work was the implementation of an outcome-

based education framework together with a modular design approach for teaching

embedded systems design concepts in the ESD laboratory at the University of Puerto

Rico Mayagüez campus. Others contributions of this work include:

1. A formal methodology based on modular design and an OBE framework for struc-

turing an applied Laboratory.

2. A set of six different educational modules to be used by the students in the devel-

opment of their laboratory practices.

3. A total of eighty-four electronic modules (fourteen copies of each module developed)

to be used by the fourteen laboratory stations.

4. A laboratory manual composed of eight laboratory experiences to be used in next

semesters to teach the embedded system design laboratory.

5. A set of tutorials, in the format of PowerPoint presentations, to enhance students

abilities in the embedded systems design area and the usage of laboratory equipment.

6. A documentation package for the educational modules that include a set-up manual

and blueprints. This documentation will allow others to replicate the educational

modules.

7. A set of assessment tools that will help instructors to measure students performance

and accomplishment of the learning objectives defined for the laboratory.

8. A better knowledge of how modular teaching techniques can aid in an Embedded

System Design laboratory.

72



73

9. A poster presentation in the 2016 HENAAC Conference, Anaheim, CA (Presented).

Third place award in the Engineering Category.

10. A publication pending in the ASEE Zone 2 Anual Conference (paper submitted)



Bibliography

[1] M. Jiménez, Syllabus INEL4217: Course Outcomes. Mayagüez, PR: UPRM
Electrical and Computer Engineering Departement, 2015. [Online]. Available:
http://ece.uprm.edu/∼mjimenez/icom4217/

[2] M. Jimenez, R. Palomera, and I. Couvertier, Introduction to Embedded Systems
using Microcontrollers and the MSP430. Springer, 2014.

[3] W. Wolf and J. Madsen, “Embedded systems education for the future,” Proceed-
ings of the IEEE, vol. 88, no. 1, pp. 23–30, Jan 2000.

[4] M. Jimenez, R. Palomera, and I. Couvertier, Introduction to Embedded Systems
using Microcontrollers and the MSP430. Springer, 2014.

[5] C. Nagy, Embedded systems design using the TI MSP430 series. Elsevier, 2003.

[6] E. Palacios Municio, F. Remiro Domı́nguez, and L. J. López Pérez, Microcon-
trolador PIC16F84: desarrollo de proyectos. México, DF:. Alfaomega;, 2009.

[7] J. H. Davies, MSP430 microcontroller basics. Elsevier, 2008.

[8] E. White, Making Embedded Systems: Design patterns for great software.
O’Reilly Media, Inc., 2011.

[9] D. L. Maskell and P. J. Grabau, “A multidisciplinary cooperative problem-based
learning approach to embedded systems design,” Education, IEEE Transactions
on, vol. 41, no. 2, pp. 101–103, 1998.

[10] J. W. Bruce, J. C. Harden, and R. B. Reese, “Cooperative and progressive design
experience for embedded systems,” Education, IEEE Transactions on, vol. 47,
no. 1, pp. 83–92, 2004.

[11] L. Ordinez and O. Alimenti, “A constructivist approach for teaching embedded
systems,” Latin America Transactions, IEEE (Revista IEEE America Latina),
vol. 11, no. 1, pp. 572–578, Feb 2013.

[12] C.-S. Lee, J.-H. Su, K.-E. Lin, J.-H. Chang, and G.-H. Lin, “A project-based lab-
oratory for learning embedded system design with industry support,” Education,
IEEE Transactions on, vol. 53, no. 2, pp. 173–181, May 2010.

74



[13] A. Kumar, S. Fernando, and R. Panicker, “Project-based learning in embedded
systems education using an fpga platform,” Education, IEEE Transactions on,
vol. 56, no. 4, pp. 407–415, Nov 2013.

[14] I. Couvertier, M. Jiménez, R. Palomera, and M. Toledo, “Integrating concepts
and practice in teaching embedded systems design,” in Proceedings of the Inter-
national Conference on Engineering Education (ICEE 2004), Gainesville, FL,
2004.

[15] J. Gonzalez, P. Pomares, M. Damas, P. Garcia-Sanchez, M. Rodriguez-Alvarez,
and J. M. Palomares, “The use of video-gaming devices as a motivation for
learning embedded systems programming,” Education, IEEE Transactions on,
vol. 56, no. 2, pp. 199–207, 2013.

[16] U. Münz, P. Schumm, A. Wiesebrock, and F. Allgöwer, “Motivation and learning
progress through educational games,” Industrial Electronics, IEEE Transactions
on, vol. 54, no. 6, pp. 3141–3144, 2007.

[17] T. Kodama, Y. Suzuki, and S. Chiba, “Development of a remote practice system
for embedded system education,” in Mechatronics and Embedded Systems and
Applications (MESA), 2010 IEEE/ASME International Conference on. IEEE,
2010, pp. 53–58.

[18] S. Buchner and S. Jaschke, “Preparation for embedded systems laboratories
the virtual workspace approach,” in Global Engineering Education Conference
(EDUCON), 2013 IEEE, March 2013, pp. 171–175.

[19] D. Soldan, J. Hughes, J. Impagliazzo, A. McGettrick, V. P. Nelson, P. K. Srimani,
and M. D. Theys, “Curriculum guidelines for undergraduate degree programs in
computer engineering,” Retrieved December, 2004.

[20] L. R. Lattuca, P. T. Terenzini, and J. F. Volkwein, Engineering Change: A Study
of the Impact of EC2000: Executive Summary. ABET, Incorporated, 2006.

[21] Electrical and C. E. Department, Manual Informativo INEL ICOM INSO
CIIC 2015-2016. Mayagüez, PR: UPRM Electrical and Computer Engineering
Departement, 2015. [Online]. Available: http://136.145.34.25/wp-content/
uploads/Manual-Informativo-INEL-ICOM-INSO-INCO-2015-2016.pdf

[22] R. Kamal, Embedded systems 2E. Tata McGraw-Hill Education, 2008.

[23] M. S. Salerno and A. V. C. Dias, “Product design modularity, modular pro-
duction, modular organization: the evolution of modular concepts,” Automotive
Industries, 1999.

75



[24] T. Lehtonen, Designing modular product architecture in the new product devel-
opment, 2007.

[25] T. D. Miller and P. Elgard, “Defining modules, modularity and modularization,”
in Proceedings of the 13th IPS research seminar, Fuglsoe, 1998.

[26] D. K. Duffy and J. W. Jones, Teaching within the Rhythms of the Semester. The
Jossey-Bass Higher and Adult Education Series. ERIC, 1995.

[27] D. Fink, “Integrated course design,” Idea paper, vol. 42, 2005.

[28] L. D. Fink, “A self-directed guide to designing courses for significant learning,”
University of Oklahoma, vol. 27, 2003.

[29] J. W. Pellegrino, “Rethinking and redesigning curriculum, instruction and as-
sessment: What contemporary research and theory suggests,” commissioned by
the National Center on Education and the Economy for the New Commission on
the Skills of the American Workforce, 2006.

[30] R. A. Streveler, K. A. Smith, and M. Pilotte, “Aligning course content, assess-
ment, and delivery: Creating a context for outcome-based education,” Hershey,
Pennsylvania: IGI Global, 2012.

[31] G. P. Wiggins, J. McTighe, L. J. Kiernan, and F. Frost, Understanding by design.
Association for Supervision and Curriculum Development Alexandria, VA, 1998.

[32] J. D. Bransford, A. L. Brown, R. R. Cocking et al., “How people learn,” 2000.

[33] Y. Torroja, O. Garcia, T. Riesgo, and E. de la Torre, “Teaching embedded sys-
tems and microcontrollers using scale models,” in Industrial Electronics Society,
2005. IECON 2005. 31st Annual Conference of IEEE. IEEE, 2005, pp. 4–pp.

[34] S. Nooshabadi and J. Garside, “Modernization of teaching in embedded systems
design-an international collaborative project,” Education, IEEE Transactions
on, vol. 49, no. 2, pp. 254–262, 2006.

[35] E. E. . C. S. Department, Microcomputer Project Laboratory (6.115). Cam-
bridge, MA: Massachusetts Institute of Technology (MIT), 2015.

[36] ——, Embedded Systems (EECS149). Berkeley, CA: Berkeley University of
California, 2015.

[37] Electrical and C. E. Department, Embedded Systems (EE3376). El Paso, TX:
University of Texas at El Paso (UTEP), 2015.

76



[38] ——, Microprocessors (ECE344L). Albuquerque, NM: University of New Mex-
ico, 2015.

[39] R. Zurwaski, Embedded Systems Handbook: Networked Embedded Systems. CRC
Press, 2009.

[40] J. Valvano, Introduction to Embedded Systems: Interfacing to the Freescale 9S12.
Cengage Learning, 2009.

[41] Y. Meng, K. Johnson, B. Simms, and M. Conforth, “A generic architecture of
modular embedded system for miniature mobile robots,” in Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, Sept
2008, pp. 3725–3730.

[42] Y. Li, “Teaching embedded systems using a modular-approach microcontroller
training kit,” World Transactions on Engineering and Technology Education,
vol. 6, no. 1, p. 135, 2007.

[43] A. Nursal, “Modular embedded system design for mechatronic education 2010
ieee/asme international conference on mechatronic and embedded systems
and applications,” in Mechatronics and Embedded Systems and Applications
(MESA), 2010 IEEE/ASME International Conference on, July 2010, pp. 109–
112.

[44] X. Hu, M. Wang, Y. Xu, and K. Qian, “Modular design and adoption of embed-
ded system courseware with portable labs in a box,” in Proc. World Congress
on Engineering and Computer Science (WCECS, 2012.

[45] T. Henzinger and J. Sifakis, “The discipline of embedded systems design,” Com-
puter, vol. 40, no. 10, pp. 32–40, Oct 2007.

[46] A. Möller, J. Fröberg, and M. Nolin, “Industrial requirements on component
technologies for embedded systems,” in Component-Based Software Engineering.
Springer, 2004, pp. 146–161.

[47] E. Sikora, B. Tenbergen, and K. Pohl, “Requirements engineering for embed-
ded systems: An investigation of industry needs,” in Requirements Engineering:
Foundation for Software Quality. Springer, 2011, pp. 151–165.

[48] J. Patarroyo, G. Beauchamp, and S.-R. Aidsa, “A methodology to teach students
to implement digital controllers using embedded systems,” in 2015 ASEE Annual
Conference & Exposition, no. 10.18260/p.23407. Seattle, Washington: ASEE
Conferences, June 2015, https://peer.asee.org/23407.

77



[49] L. Jing, Z. Cheng, J. Wang, and Y. Zhou, “A spiral step-by-step educational
method for cultivating competent embedded system engineers to meet industry
demands,” Education, IEEE Transactions on, vol. 54, no. 3, pp. 356–365, 2011.

[50] B. S. Bloom, Taxonomy of Educational Objectives: The Classification of Educa-
tion Goals. Cognitive Domain. Handbook 1. Longman, 1956.

[51] R. M. Felder and L. K. Silverman, “Learning and teaching styles in engineering
education,” Engineering education, vol. 78, no. 7, pp. 674–681, 1988.

[52] A. Oosterhof, Classroom applications of educational measurement. ERIC, 2001.

[53] R. M. Osman, Educational Evaluation and Testing. African Virtual University,
2010.

[54] T. L. Kelley, “The selection of upper and lower groups for the validation of test
items.” Journal of Educational Psychology, vol. 30, no. 1, p. 17, 1939.

[55] G. F. Kuder and M. W. Richardson, “The theory of the estimation of test
reliability,” Psychometrika, vol. 2, no. 3, pp. 151–160, 1937. [Online]. Available:
http://dx.doi.org/10.1007/BF02288391

[56] C. S. Wells and J. A. Wollack, “An instructor’s guide to understanding test
reliability,” Testing & Evaluation Services publication, University of Wisconsin.
Retrieved January, vol. 4, p. 2006, 2003.

[57] G. C. Helmstadter, “Principles of psychological measurement.” 1964.

[58] C. H. McGrath, B. Guerin, E. Harte, M. Frearson, and C. Manville, “Learning
gain in higher education,” 2015.

[59] H. G. Colt, M. Davoudi, S. Murgu, and N. Z. Rohani, “Measuring learning gain
during a one-day introductory bronchoscopy course,” Surgical endoscopy, vol. 25,
no. 1, pp. 207–216, 2011.

[60] R. R. Hake, “Interactive-engagement versus traditional methods: A six-
thousand-student survey of mechanics test data for introductory physics
courses,” American Journal of Physics, vol. 66, no. 1, 1998.

78



Appendices

79



Appendix A

Laboratory Experiment Manual

80



Embedded Systems Design
Laboratory Manual

ICOM4217

Electrical & Computer Engineering Department

University of Puerto Rico at Mayagüez

Mayagüez, PR 00681-9000

Danilo Rojas Luis Francisco Manuel Jiménez

2016



Embedded Systems Design Laboratory Manual

c© 2016 by D. Rojas, L. Francisco, M Jiménez
Electrical and Computer Engineering Department
University of Puerto Rico at Mayagüez

ACKNOWLEDGMENT

The authors would like to thank Cesar A. Aceros, for his help creating the Latex
template for the manual.

DISCLAIMER

Although the authors have made every effort to verify the correctness of this Exper-
iment’s Manual, the materials contained herein are provided “as is”. Any express or
implied warranties, including, but not limited to, the implied warranties of fitness
for any particular purpose are disclaimed. Under no circumstance or event shall
the authors or the copyright owners be liable for any direct, indirect, incidental,
exemplary, or consequential damages arising from the use of this materials.

ii



Table Of Contents

Laboratory Rules vii

1 High-Voltage Safety 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Human Body Impedance . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Current Flow Through the Human Body . . . . . . . . . . . . . . . . 4

1.5 Risk Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Emergency Response Procedure . . . . . . . . . . . . . . . . . . . . . 8

2 IDE, GPIOs, and LCD 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Microcontroller IDE . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 General Purpose Input/Output (GPIO) . . . . . . . . . . . . 11

2.2 Basic Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Blinking LED . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Polling a Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 LCD Configuration . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Complementary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Scrolling List . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Interrupts, Switch Debouncing, and Keypad 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



Embedded Systems Design Laboratory Manual

3.1.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Switch Bouncing . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Basic Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Read a Key Using Interrupts . . . . . . . . . . . . . . . . . . . 23

3.2.2 Hardware Debouncing . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Software Debouncing . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Reading Keypads Through Interrupts . . . . . . . . . . . . . . 26

3.3 Complementary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Scrolling List With Wheel . . . . . . . . . . . . . . . . . . . . 29

4 Timers and LEDs 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Basic Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Timer by Polling . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Timer by Interrupt . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.3 7-Segment Display . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.4 Multiplexed Display Using a dual 7-segment display . . . . . . 40

4.3 Complementary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Digital Tachometer . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Low-Power Modes and PWM 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Pulse Width Modulation . . . . . . . . . . . . . . . . . . . . . 47

5.2 Basic Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . 51

5.2.3 Generating colors with an RGB LED . . . . . . . . . . . . . . 52

5.3 Complementary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



TABLE OF CONTENTS

5.3.1 Digital Dimer . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Motor Interfacing 57

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.1 Direct Current Motors . . . . . . . . . . . . . . . . . . . . . . 58

6.1.2 Servo-Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.3 Stepper Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Basic Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 DC Motor Driven with Transistors . . . . . . . . . . . . . . . 62

6.2.2 DC Motor Controlled Through Driver IC . . . . . . . . . . . . 64

6.2.3 Servo-motor Interfaces . . . . . . . . . . . . . . . . . . . . . . 65

6.2.4 Stepper Motor Interfaces . . . . . . . . . . . . . . . . . . . . . 66

6.3 Complementary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 Stepper Motor Characterization . . . . . . . . . . . . . . . . . 68

7 Serial Communication 71

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.1 Types of Serial Channels . . . . . . . . . . . . . . . . . . . . . 72

7.1.2 Synchronous Vs. Asynchronous Serial Communication . . . . 73

7.1.3 Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Basic Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.1 Asynchronous Serial Communication (UART) . . . . . . . . . 77

7.2.2 Sending and Receiving Characters via UART . . . . . . . . . 78

7.2.3 Synchronous Serial Communication (I2C) . . . . . . . . . . . . 79

7.3 Complementary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.1 Digital Alarm Clock . . . . . . . . . . . . . . . . . . . . . . . 81

8 Data Converters (DAC & ADC) 83

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1.1 Data Converters . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1.2 Digital-To-Analog Converters (DAC) . . . . . . . . . . . . . . 85

v



Embedded Systems Design Laboratory Manual

8.1.3 Analog-To-Digital Converters (ADC) . . . . . . . . . . . . . . 86

8.2 Basic Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.1 Generating Voltages Using a DAC . . . . . . . . . . . . . . . . 89

8.2.2 Reading Voltages . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2.3 Analog-Digital Dimmer . . . . . . . . . . . . . . . . . . . . . . 92

8.3 Complementary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.3.1 Digital Temperature Meter . . . . . . . . . . . . . . . . . . . . 93

A Using an MCU to Read Incremental Encoders 95

vi



Laboratory Rules

Usage of the Microprocessor Interfacing Lab facilities is subject to the abidance of
the rules listed below:

1. The entrance to the facilities is reserved exclusively for students enrolled in
the ICOM 4217 course or approved projects. Any authorization for the use
of facilities shall be designated by the Laboratory Director. Persons autho-
rized to access the laboratory facilities and resources shall follow the rules and
procedures established for the University of Puerto Rico system.

2. Students projects are performed in groups. Each group will be assigned a
workspace with a computer and resources for the development of their project.
It is the responsibility of each group to maintain and return those resources
in good condition. The lab assistant will perform periodic inventory checks to
ensure the integrity of loaned laboratory resources.

3. The University maintains a limited stock of resources to support project de-
velopment. Resources requests can be made via a ”Materials Request Form”.
Requests are granted subject to availability. It is the responsibility of each
work group to acquire any materials that could not be provided from the
laboratory stock. Materials and resources brought into the lab for the per-
formance of a project must be removed from the premises at the end of the
project performance period.

4. The laboratory is monitored 24/7 by security cameras . Anyone agreeing using
the laboratory also agrees to the monitoring and recording their behavior by
the security cameras.

5. Each authorized user will have access to the facilities using his or her provided
access card. The access log will be used as a user registry. This registry could
be used to establish responsibilities, if necessary.

6. The laboratory will remain open as long as a lab assistant is present. In
his/her absence, authorized students can stop by the campus security office
to request that the laboratory wooden door be opened. A student requesting
such a service must present his or her student card at the office. The requester
will be registered as the person in charge of the lab. If the person in charge
leaves the laboratory, he or she must close the lab wooden door and notify the
professor via email. If another student wants to stay in the lab, the outgoing
student must transfer the responsibility by notifying the campus security office

vii



Embedded Systems Design Laboratory Manual

or the professor via email. Any incident must be reported by the person in
charge. The published schedule indicates the availability of a lab assistant in
the facilities.

7. The consumption of beverages and/or food within the laboratory facilities is
prohibited. This prohibition includes depositing waste food or drinks into the
lab trash cans.

8. It is the responsibility of each group to maintain their work space neat and
organized. The cutting, grinding or machining of materials that generate
particulate is prohibited within the laboratory facilities.

9. Dress code: Students in the laboratory facilities should use proper attire for
a sensitive electronics laboratory and particularly clothing that minimizes the
generation of static electricity. Refrain from using vinyl clothing, rubber shoes
(eg. Crocks) or other parts known to generate high levels of static electricity.

10. The entry of pets into the facilities is prohibited. This restriction excludes
guide dogs used by blind people.

11. Removing any resource from the laboratory without written permission of the
laboratory director or department director is prohibited.

12. It is forbidden to temporarily or permanently add or bring any type of re-
source to the lab without prior authorization of the laboratory director or
department head. This rule excludes the use of laptop computers for personal
use provided they are with their owner, and electronic components used in
projects prototypes.

13. Accessing the network must always be done wirelessly. Plugging personal
computers to the wired network is a violation of the Laboratory Regulations
and will carry penalties.

14. The usage of the laboratory printer is subject to the institutional rules estab-
lished for computer center printers. The system will deduct the number of
printed pages from your print quota.

15. The transfer (loan) of accounts among students is strictly prohibited. If this
were the case, the loaned account could be deactivated.

16. Any software installation requires prior authorization from the system admin-
istrator. The use, installation, or storage of programs or resources that violate
current copyright law is not allowed.

viii



Laboratory Rules

17. Unnecessary noise within the laboratory is prohibited. Using external com-
puter speakers is prohibited, except for projects that require so. In such cases,
moderation is advised. The use of hearing aids will be permitted provided
that their volume is moderate and does not disrupt the work environment.

18. The act of locking computers is limited to a maximum of ten minutes. If the
computer were not unlocked before the timer expires the work session will be
automatically terminated and the logged user logged-out without notice.

19. Students must respect the workspaces of their peers and refrain from assessing
restricted access areas in the laboratory. Under no circumstances should a
student sabotage or modify in any way the project area of other groups or
access unauthorized areas.

20. The laboratory has designated seats for people who require special accommo-
dations. Such individuals will have priority in using such resources.

21. It is the duty of every student to report any violation to the rules established
herein. Violation of the dispositions contained in this regulation will be suf-
ficient cause to initiate a disciplinary action against the offender; including
denial of access to resources, removal from the facilities, and/or any other
applicable legal action.

Students with special needs or requiring reasonable accomodation, please contact
the laboratory coordinator, the class professor, or the laboratory teaching assistant.

ix



Embedded Systems Design Laboratory Manual

x



Experiment 1

High-Voltage Safety

Objectives

• Understanding the concept of high voltage and its implications to the human
body

• Recognizing dangerous current and voltages levels for the human body and
their effects

• Computing the human body impedance and understanding its role in the levels
of current flowing trough the human body

• Identifying the potential electric hazards in a laboratory space

• Learning and applying safe practices in a laboratory environment

• Learning how to apply emergency procedures in case an electric shock

Duration

• 2 Hours in the laboratory and extra time for complementary tasks

1.1 Introduction

Common electrical and electronic devices require the use of electrical energy to oper-
ate. The very same energy that makes them work can reach levels that could become
harmful or even lethal for humans. Electric and electronic devices are commonly
enclosed, but in some cases, this enclosure needs to be opened to make adjustments
or to perform repair procedures, exposing areas that might be subjected to harmful.
Moreover, when working in the development and prototyping of new applications
and circuits, such activities expose developers to the same type of risks.

1



Embedded Systems Design Laboratory Manual

This experiment has as an objective creating awareness of the levels of voltages and
currents that could cause harm, how to identify hazards situations, minimize the
risk of accidents, and how to responds in the event of an accident.

1.2 Terms and Definitions

The term High Voltage refers to electrical energy at a voltage high enough to
cause injury or death. In a formal definition “High Voltage is any voltage exceeding
1000V rms or 1000V dc with current capability exceeding 2mA as or 3mA dc, or for
an impulse voltage generator having a stored energy in excess of 10mJ” according
to the IEEE Trans.Power App . Sys., vol PAS-97, no. 6, 2243, November, 1978.
Although, in a relative sense 50Volts might not be considered strictly a high voltage,
it represents the threshold where harmful effects occur in a adult body. For this
reason, 50Volts is considered as a danger high voltage for the human body.

High voltages can be found in form of AC (Alternating Current), DC (Direct Cur-
rent), or momentary pulsed signals. These signals can injure the human body de-
pending on their voltage and current levels, being the AC voltage at 60Hz the worst
possible voltage type and frequency for humans. At this frequency the human body
is 5 times more sensitive than to direct current. Also, keep in mind that, although
some voltage levels in DC are not supposed to be dangerous for the human, in AC,
those levels can be fatal.

Other important definitions suitable for electrical and laboratory applications in-
clude:

• Moderate Voltage: Refers to voltages greater than 120 V rms or 120V dc but
less than 1000V. With current capabilities of 2mA ac and 3mA dc respectively.

• Temporary Setups: System assembled generally for measurement over a
time period that not exceeds three months.

• Troubleshooting: Temporarily procedure carried out to repair or diagnose
problems in a device or circuit energized with any voltage level.

• Bare Conductor: A conductor without covering or electrical insulation.

• Covered Conductor: A conductor enclosed within a material not necessarily
electrical insulation.

• Insulated Conductor: A conductor enclosed within electrical insulation ma-
terial.

2



EXPERIMENT 1. HIGH-VOLTAGE SAFETY

• Exposed Conductor: Refers to parts that are not suitable guarded, isolated,
or insulated.

• Enclosed: An object surrounded by a case, housing, fence, or walls that
prevents persons to enter in contact with energized parts.

1.3 Human Body Impedance

The human body has his own resistance, allowing us to interact in some cases
with electricity without suffering any type of damage. But, when this resistance
is overcome, a current flow can pass through the entire body causing external or
internal injuries. Although, on average, the skin resistance has a value between
the 1,000 ohms and 100,000 ohms, the internal body resistance is lower with values
between 25 to 1,000 ohms. Table 1.1 shows the different skin resistance values
depending of the part of the body and some specific conditions.

Table 1.1: Human skin resistance (Source: Electric Safety Manual, Berkley Labo-
ratory)

Condition
Resistance (Ohms)
Dry Wet

Finger touch 40,000 to 1,000,000 4,000 to 15,000
Hand holding wire 15,000 to 50,000 3,000 to 6,000
Finger-thumb gasp 10,000 to 30,000 2,000 to 5,000
Hand holding pliers 5,000 to 10,000 1,000 to 3,000
Palm touch 3,000 to 8,000 1,000 to 2,000
Hand around 1.5 in pipe or drill handle 1,000 to 3,000 500 to 1,500
Two hands around 1.5 in pipe 500 to 1,500 250 to 750
Hand immersed – 200 to 500
Foot immersed – 100 to 300
Human body, internal, excluding skin
ohms

200 to 1,000

The skin resistance depends mainly of the parameters that include:

• Area of contact

• Pressure applied

• Amount of current

3



Embedded Systems Design Laboratory Manual

• Waveform of the current (AC, DC)

• Duration of the shock

• Environmental conditions such as humidity, temperature, and pressure, among
others.

The internal body resistance is affected by factors such as:

• Body mass (weight & height)

• Age

• Diseases

• Tissue type and amount

Once the factors that could affect the body resistance are known, the total body re-
sistance can be estimated. The total resistance in the human body can be calculated
as:

Rtotal = Rskin(in) +Rinternal +Rskin(out), (1.1)

where Rskin(in) denotes the skin resistance where the electric current enters the
body, Rinternal refers to the resistance where the current flows, and Rskin(out) is the
resistance where the current leaves the body.

1.4 Current Flow Through the Human Body

When a person receives an electric shock or is electrocuted, it is because the human
body works in that moment as a conductor. Whenever a person comes in contact
with an energized bare conductor while also in contact with a grounded surface, a
conduction path is established and current passes through his or her body.

The current can flow through the body affecting or not the organs in it’s path.
Although, some organs could be affected due to the current, there are some paths
more dangerous than others. One of the most lethal paths is when current passes
through the chest affecting the heart. This is usually the worst case scenario as
it might interfere with electrical impulses of the heart making it stop. Current
through the body can also cause severe injuries such as internal burns resulting
the heat generated by the current flow. Table 1.2 shows different injuries caused
by different current values. These values are not the same for every person due
physiology and environmental factors.

4



EXPERIMENT 1. HIGH-VOLTAGE SAFETY

Table 1.2: Electric current effects on the human body (Source: High Voltage Safety
Manual, Colorado State University)

Effect/feeling
Direct Alternating Current (mA)

Incident SeverityCurrent (mA) 60 Hz 10,000 Hz
150 lb 115 lb 150 lb 115 lb 150 lb 115 lb

Slight sensation 1 0.6 0.4 0.3 7 5 None
Perception
threshold

5.2 3.5 1.1 0.7 12 8 None

Shock not
painful

9 6 1.8 1.2 17 11 Minor

Shock painful 62 41 9 6 55 37 Spasm, indirect in-
jury

Muscle clamps
source

76 51 16 10.5 75 50 Possibly fatal

Respiratory ar-
rest

170 109 30 19 180 95 Frequently fatal

≥0.03-s vent.
fibril.

1300 870 1000 670 1100 740 Probably fatal

≥3-s vent. fibril. 500 370 100 67 500 340 Probably Fatal
≥5-s vent. fibril. 375 250 75 50 375 250 Probably fatal
Cardiac arrest – – 4000 4000 – – Possibly fatal
Organs burn – – 5000 5000 – – Fatal if it is a vital

organ

To have an idea of how severe a voltage shock can be, consider the following scenario.
Let’s suppose that our hands are sweaty and we touch with one hand an energized
circuit with 50V and accidentally with the other hand a ground surface (Lethal
path!). With the hands sweaty, the skin’s resistance can drop to 1,000 ohms. Using
the ohms law and supposing an internal resistance of 200Ω, we can calculate a
current of:

I =
V

Rtotal

=
V

Rskin(in) +Rinternal +Rskin(out)

=
50V

1000Ω + 200Ω + 1000Ω
= 22.7mA

(1.2)
This current level as we can see in Table 1.2 can be potentially harmful for us because
it can case us a cardiac arrest.

1.5 Risk Mitigation

To try to avoid electrical risks and hazards we need to take into consideration not
only behavioral aspects but also our own senses. They can help us detect possible
electric hazards in different ways. Typical indications, depending on the type of
sense, include:

5



Embedded Systems Design Laboratory Manual

Visual indicators:

• High voltage warning signs & labels

• Flashes, arcs, corona discharge

• Cables with damaged insulation

• Burn marks on circuit

• Tripped breakers or GFCIs

• Dim or flickering lights

Audible indicators:

• Sizzles

• Buzzes

Tactile indicators:

• Tingling sensation

• Hot or burning wires, connectors, junctions, or other components

Odor indicators:

• Smell of burning wire or other components

Also, observing safety precautions during the assembly, testing, and debugging pro-
cess, helps in the prevention of possible hazards. Some tips that could help you
during the laboratory work and prototype construction are mentioned below:

• Before energizing your circuit:

– Make all connections and configurations

– Have someone else inspect your circuit

– Locate all breakers and workstation power switches

• When energizing your circuit:

– Observe: For arcs, sparks, smoke, or sings of heat

6



EXPERIMENT 1. HIGH-VOLTAGE SAFETY

– Listen: For cracking sounds, pops, or hisses

– Smell: Odor to smoke or burning electronics

– check: Current and voltage levels into the power supply. Recall the signs
of a short circuit. I → ∞ and V → 0.

• Work with energized circuits only for debugging and testing purpose

– Always be careful

General Measures include:

• Maintain an illuminated and organized workstation

• Keep the floor in your workspace completely dry

• Avoid exposed connections

• Set up your work area away from possible grounds that you may accidentally
contact

• Do not reach for something you cannot see (Within an energized circuit or
panel)

• Avoid working alone

• Never ignore high voltage warning signs

• Never enter alone into an area containing exposed electrical energy sources

• Wear personal protective equipment associated with the voltage you are han-
dling

– Goggles

– Gloves if needed, specially to work with high voltage

– Insulated shoes and tools

– Do not wear conductive jewelry

• Use the buddy system

– It is best to work with someone that has knowledge about what you are
doing

• One hand in a pocket rule

7



Embedded Systems Design Laboratory Manual

– Never touch an energized circuit with both hands

• Know your equipment’s limitations

– Do not exceed your equipment’s insulation capabilities

– Locate your equipment’s power switches

– Use and electrostatic discharge wrist wrap

• Connect/disconnect any test leads with the equipment unpowered and un-
plugged. Use clips leads or solder temporary wires to reach cramped locations
or difficult to access locations

• Perform as many tests as possible with the power off and the equipment un-
plugged

• Use only the test instruments, and insulated tools rated for the voltage and
current specified

• Keep all electrical cords away from areas where they may be pinched, such as
off the floor, out of walkways, and out of doorways.

• Know the emergency procedures to follow in case of an accident

1.6 Emergency Response Procedure

In case of an emergency, there are some step procedures that you have to follow in
order to guarantee, not only the life of the affected person, but also your own life.
Follow this steps in order:

• Shut off the power source

– Breakers, power strips, etc

– Never touch a victim with bare hands before shutting off power the source.
Use a nonconductive rod or something similar

• Call for help

• Pry the victim from the circuit

• Use CPR if you are trained or find help

8



Experiment 2

IDE, GPIOs, and LCD

Objectives

• Understanding the process of assembling, debugging, and executing a program
with your microcontroller’s IDE

• Identifying the basic structure of an assembly or C program

• Identifying and understanding your microcontroller architecture and main fea-
tures

• Using I/O ports to interface the MCU to different electronics components

• Interfacing and using an LCD with a microcontroller

Duration

• 2 Hours in the laboratory and extra time for complementary tasks

Materials

Table 2.1: Bill of materials for completing Lab. 2

Item # Qty Description Reference
1 1 Development board
2 1 IDE application
3 1 LCD display: 2 lines, 16 characters W/HD 44780 Controller
4 2 Light Emitting Diode 5mm Red LED
5 2 1/4W Carbon fill resistor 330 Ω
6 2 1/4W Carbon fill resistor 4.7 KΩ
7 2 Momentary switch Pusbutton

9



Embedded Systems Design Laboratory Manual

2.1 Introduction

2.1.1 Microcontroller IDE

IDE stands for Integrated Development Environment also called Integrated Design
Environment or Integrated Debugging Environment.

For all upcoming experiments, the IDE of your choseen microcontroller will be used
as the compiler, assembler, linker, and code debugger. Some Microcontroller Units
(MCU) have more than one IDE choice. Choosing an IDE depends on the main
language used to program your microcontroller (assembly, C or another language).
Although the main languages to be used will be assembly and C, some IDEs allow
you to add compilers for different languages.

Normally an IDE for programming microcontrollers consist of the following tools:

• A code editor: The code editor is a type of text editor used to enter and
modify the source code in a programming language. It is basically the text
processor in an IDE and provides, in the majority of the cases, cross references
to the elements in the code.

• A compiler or/and assembler: A compiler is a program that translates/-
transforms a source code (written typically in high-level) to a target code
(typically in low-level). The target code in our case refers to an executable
code in machine language that governs the behavior in our MCU.

• A debugger: Is a software program used to test other programs and find bugs
(errors). The debugger warns the programmer about what types of errors it
finds and the exact line number where they are found. Also, it allows to run
the source code step by step to help determining execution and logic errors.

• A download tool to program the MCU flash memory.

• Built-in automation options.

When an IDE is selected, it is important to know the maximum limit of code you can
write on it. Most demo versions of IDEs limit the code size to only a few kilobytes
of length. Also, it is important to know if your IDE supports the type of JTAG or
programming tool available in your MCU. The JTAG interface is used for debugging
your code in your embedded system.

10



EXPERIMENT 2. IDE, GPIOS, AND LCD

2.1.2 General Purpose Input/Output (GPIO)

To communicate with the external world, microcontrollers use input and outputs
pins known as General Purpose Input/Outputs (GPIOs) that are part of the
Peripheral Subsystem. GPIOs have the capability of exchanging information in the
form of digital signals (0 or 1) to other devices or systems.

GPIO pins in an MCU are grouped as ports commonly made of 8 pins. Each I/O pin
can be programmed independently as an input or output. Generally, each port has a
couple of associated registers that allow for configuring the function of the pin (input
or output) and determining the logic level that it is reading-in or sending-out. Some
ports have specialized capabilities to perform other functions such as internal and
external oscillator options, timers functions, hardware for pulse width modulation
(PWM), watchdog timer, USART, SPI, I2C, data converters, and brownout reset
circuitry, among others.

An input port always transfers data towards the CPU. Input ports can be either
buffered or latched. A buffered input only reads the current status present in the
input. A latched input uses a latch to hold the input data until it is read by the
CPU. Output ports are in most cases is latched, holding the output data until the
next output operation is executed. Figure 2.1 shows the general structure of an
I/O pin. The Port Direction latch is used to select the pin direction (through the
P Dir bit) and the latch Output is used to determine the output value (through the
P Out bit). The P In signal is used to read the data present in the pin. Dir En and
Data En allowing for a physical connection to the processor bus line.

Figure 2.1: Basic structure of an Input/Output pin driver (Source: Introduction to
Embedded Systems, M. Jiménez, R. Palomera, I. Couvertier)

GPIOs have electrical characteristics that define the currents and voltages that can
be safely managed by the pin as either input or output. These characteristics and

11



Embedded Systems Design Laboratory Manual

descriptions include:

• VIL Input-low voltage. Establishes the maximum voltage level that can be
interpreted as a low by the pin input buffer.

• VIH Input-high voltage. Represents the minimum voltage level that can be
interpreted as a high by the I/O pin.

• VOH Output-high voltage. The voltage level used to represent a logic “High”
on an output pin.

• VOL Output-low voltage. The voltage level used to represent a logic “low”
on an output pin.

These characteristics must be taken into consideration when you are designing in-
terfaces to be connected to I/O pins. Failing to observe such limits can cause
malfunction or irreparable damage to the port electronics. See class’s book Section
8.2.1 (Electrical Characteristic in I/O pins) for a detailed and extra explanation
about electrical pins characteristics.

2.2 Basic Exercises

2.2.1 Blinking LED

Make an LED turn On and Off intermittently. The delay time to keep the LED On
and OFF shall be about 100ms.

Follow the steps outlined below:

1. Identify the Port and Pin of your MCU that will be used to connect to the
LED.

2. Connect the LED to the pin in one of the two possible configurations presented
in Figure 2.2. Be sure to use a resistor that limits the current through the
LED to a value below its current capacity. Take into account that when the
LED is connected as illustrate in Figure 2.2(a) the MCU pin is sinking current,
while when connected in as in Figure 2.2(b) the MCU pin is sourcing current.
Be sure also, to not exceed the GPIO pin current limitations in terms of the
maximum current the pin can source or sink.

3. Open your IDE.

12



EXPERIMENT 2. IDE, GPIOS, AND LCD

(a) Pull-Up LED (b) Pull-Down LED

Figure 2.2: Pull-up vs. pull-down LED

4. Set the selected port and pin as output. If your are using configuration in
2.2(b), you should send a logic ’1’ to your pin to turn On the LED and ’0’ to
turn it Off. Use a delay value that allows you to see the LED blinking. Use
the inverse logic if you decided to use the configuration Figure 2.2(a). You can
use the pseudocode in Listing 2.1 as a guide.

Listing 2.1: Blinking LED Pseudocode

1 ;--------------------------------------------------------

2 ; Program Start

3 ; INIT RESET VECTOR

4 ; INIT STACK POINT , WDT

5 ;--------------------------------------------------------

6 Port_bit = output ;Set port pin as output

7 Port_pin = 0 ;Initialize pin to ‘‘low ’’

8
9 While TRUE

10 Port_pin = NOT(Port_pin) ;Toogle pin

11 wait = 2000h

12 While wait >0 ;Delay loop

13 wait = wait - 1

14 Endwhile

15 Endwhile

16 ;--------------------------------------------------------

5. Assemble or compile your code and verify that it does not contain errors.

6. To run the code, select ’Run → Debug active project’. The progress informa-
tion is displayed while the code downloads. Once the download is completed,
the debug perspective shall open automatically.

7. Select ’Run’ from the ’Run menu’ and verify that the LED is blinking.

13



Embedded Systems Design Laboratory Manual

8. Pause the running programm and use the debugger options to place a break
point in the instruction where the pin is toggled. Run the program, and see
how the LED state changes.

9. Using the debugging tool to run your code step by step and see the hardware’s
reaction. Examine the contents of the count register and the port output
register as you step through your program.

2.2.2 Polling a Switch

Read the state of an input Pin and make your LED turn On and Off accordingly.

Follow the steps outlined below:

1. Identify the Port and Pin of your MCU that will be used to connect the
pushbutton.

2. Connect the pushbutton to the selected pin according to the configuration in
Figure 2.3. Taking into account that when the pushbutton is connected as
shown in Figure 2.3(a) the pin it reads a logic ’1’ while not depressed and “0”
when depressed. The connection in Figure 2.3(b), it will revert the logic values
read.

(a) Pull-Up Resistor (b) Pull-Down Resis-
tor

Figure 2.3: Pull-up vs. pull-down resistor

3. Open your IDE.

4. Set the selected port and pin as input. In configuration (a) you should receive
a ’0’ when the pushbutton is depressed, in that moment you have to turn the
LED On and keep it in that state while the pushbutton is depressed. Once the

14



EXPERIMENT 2. IDE, GPIOS, AND LCD

START

Set pin Button as 

input

Set pin LED as 

output

Button is 

pressed?

Turn ON LED

Turn OFF LED
No

Yes

Figure 2.4: Polling a switch flow diagram

pushbutton is released, it should turn Off the LED. You can use the flowchart
in the Figure 2.4 as a guide to write your code.

5. Compile your code and verify it does not contain errors.

6. Run your code and verify if the pushbutton is working.

7. Now, connect a second pushbutton and LED to your MCU. For the second
pushbutton use configuration (b) and repeat from step 4, making the respective
changes in the code for working with this pushbutton configuration.

2.2.3 LCD Configuration

Connect and configure the LCD (LM016L) to work with your MCU.

Follow the steps outlined below:

1. Using the LCD part number search on the web for the LCD’s datasheet. Open
it and find the device timing diagram.

2. Try to understand the signal sequences, commands, and timing metrics for
your LCD and verify it’s requirements. Ask your instructor in case of difficulty
understanding the datasheet.

15



Embedded Systems Design Laboratory Manual

3. Connect your MCU to the LCD according to the following block diagram
(Figure 2.5). Read the datasheet in order to get a better understanding of the
LCD pins meaning.

Figure 2.5: LCD block diagram connection

4. Open your IDE.

5. First, write a code to initialize the LCD with: Display ON, two line, 5x8-
dot character font,and blinking cursor position character. You can use the
flowchart presented in Figure 2.6 as a guide to write your code.

6. Compile your code and verify it does not contain errors.

7. Run your code and verify if the LCD is working as expected. At this point,
you should see a blinking cursor on the LCD.

8. Create subroutines for each one of the LCD commands. The subroutines have
to perform the following operations:

• Clear the LCD

• Set the Cursor to a Position

• Write a Character

• Write a Command

• Write a Message (Use write a character function)

9. Test all your LCD subroutines.

16



EXPERIMENT 2. IDE, GPIOS, AND LCD

Power On

Wait for more than 40 ms 

after VDD rise

Wait for more than 4.1 ms

Wait for more than 100 us

Initialization ends

Function Set command

Function Set command

Display ON/OFF Control 

command

Display Clear command

Entry mode Set command

Function Set command

Figure 2.6: LCD initialization procedure (Source: HD44780U (LCD-II), Hitachi)

2.3 Complementary Tasks

2.3.1 Scrolling List

The activity consists of generating a circular scrolling list of messages and display
them on the LCD. The list must consist of a minimum of 16 messages. For scrolling
through the list you shall provide two pushbuttons connected to the MCU as shown
in Figure 2.7. Two consecutive messages have to be displayed at the same time on
the LCD; use the first line of the LCD for the first message and the second line for
the following message.

Presentation and Report

Each basic exercise and complementary task must be presented to the TA before
the initiation of the next laboratory experiment. The demonstration must be made
personally in the lab and including the hardware and software components needed

17



Embedded Systems Design Laboratory Manual

Figure 2.7: Scroll list connection diagram

for its completion.

An electronic report that includes the following information about the complemen-
tary task must be presented to the TA:

• Software plan and explanation (pseudocode or flowchart)

• Connection schematic with relevant component calculations (current, voltage,
timing values, etc.)

• Code listing with comments.

• Additional information used to complete the task (Web pages, datasheets,
books, etc.)

18



Experiment 3

Interrupts, Switch Debouncing,
and Keypad

Objectives

• Understanding the bouncing phenomena and the issues related

• Identifying the main differences between hardware and software debouncing
techniques

• Understanding how an interrupt process is carried out in an MCU

• Using interrupt to read keys

• Interfacing and using keypads with a microcontroller

Duration

• 2 Hours in the laboratory and extra time for complementary tasks

Materials

Table 3.1: Bill of materials for completing Lab. 3

Item # Qty Description Reference
1 1 Development board
2 1 IDE application
3 1 LCD display: 2 lines, 16 characters W/HD 44780 Controller
4 1 1/4W Carbon fill resistor 220 Ω
5 1 1/4W Carbon fill resistor 2.7 KΩ
6 1 1/4W Carbon fill resistor 3.3 KΩ
7 2 1/4W Carbon fill resistor 4.7 KΩ

19



Embedded Systems Design Laboratory Manual

Table 3.1: Continued

8 2 1/4W Carbon fill resistor 12 KΩ
9 1 Polarized electrolytic capacitor 4.7 uF
10 2 Momentary switch Pusbutton
11 1 3 columns by 4 rows Buttons array Keypad 3x4
12 2 Optoswitch RPR-220
13 1 Schmitt trigger array 74LS14N

3.1 Introduction

3.1.1 Interrupts

An interrupt is an asynchronous signal produced by an external or internal event in a
device that generates an interruption in the execution of a program. At the moment
when an interrupt is executed, the processor executes a jump to an interrupt handler
routine defined by the programmer. This routine is responsible for serving the
interruption. Once the interruption is served, the processor returns to the execution
of the interrupted program in the same position where the interrupt was executed.
For this reason, interrupts provide one of the most useful features in microprocessors.

Interrupts provide an efficient mechanism to handle the service request from periph-
eral devices and external events in a computer system, allowing for a much more
efficient use of the CPU when compared to polling. In addition, interrupt servicing
also provides the following advantages:

• Compact and modular code: An Interrupt Service Routine (ISR) induces
software modularity and software reusability.

• Reduce energy consumption: As ISRs lead to less CPU cycles, this reduces
the energy consumed by the application.

• Faster response time: Provide a quick response to the triggering event.

To configure interrupts in a typical MCU it is important to follow these steps:

• Setup the Stack: If you are using assembly language, you will need to
allocate stack space in memory and initialize the stack pointer (this is also
necessary when you use call instructions). You do not have to do this if your
MCU has a hardware stack or if you are programming in C language (the
compiler makes this for you).

20



EXPERIMENT 3. INTERRUPTS, SWITCH DEBOUNCING, AND KEYPAD

• Write the ISR: This is the code executed by the CPU to serve the interrupt.
Avoid loops or calling subroutines from inside an ISR. Just write a simple
and short code. It is important when you use ASM to write the ISR to keep
register transparency (push all registers used in the ISR onto the stack at the
beginning and pop them at the end of the ISR). If you are using C language
the compiler does this for you.

• Set-up the interrupt table: Once your ISR is written, enter the ISR location
in the interrupt table. This is how the CPU will know where the ISR is located.
All MCUs have a table with entries for each interrupt source. In assembly,
all you need to do is take the label from the ISR and write an absolute jump
instruction to this label in the corresponding table entry.

• Enable Interrupts: Make sure that you have enabled the CPU global in-
terrupt flag and the particular enable flag of the service. First set the flags
corresponding to each device and then enable the CPU global interrupt flag.
Many devices require re-enabling their interrupt flags at the end of the ISR to
ensure it can be triggered again.

Interrupts are mainly triggered by hardware events knows as hardware interrupts
such as a push-button depression, a threshold reached, and timer expiration. Their
occurrence is asynchronous, making it impossible to know when it may occur. In
contrast, software interrupts are predictable and become part of the normal pro-
gram sequence. These are triggered by software instructions within a program.

Due to the number of different mechanisms able to trigger produce an interrupts in
an MCU, they have levels of priorities to determine which interrupt will be served
first in the case of two or more interrupts request simultaneously arrive to the CPU.
See class’s book Section 7.1 (Fundamental Interrupt Concepts) for a detailed and
deep explanation about Interrupts.

3.1.2 Switch Bouncing

Switch contacts are usually made of springy metals that are forced into contact by
an actuator. When the contacts strike together, their momentum and elasticity act
together, causing a bounce phenomena. The result is rapidly sequenced electrical
pulses instead of a clean transition from 0 to a logical 1 as we can see in Figure 3.1.
The problem may occur in switch closures and openings. The maximum time taken
by the contacts in a switch to reach the steady state, is called switch bounce time.

Bouncing causes that a single switch throw be interpreted as multiple operations,
causing, in many cases, incorrect system operation particulary when managed by

21



Embedded Systems Design Laboratory Manual

Figure 3.1: Bouncy behavior of a mechanical switch (Source: Introduction to Em-
bedded Systems, M. Jiménez, R. Palomera, I. Couvertier)

interrupts. However, even when a polling technique is used to read the switch,
the process might be affected by bouncing if the polling interval were shorter than
the bounce time. To try to avoid or reduce this problem, hardware or software
techniques can be implemented.

A hardware technique is implemented through the insertion of circuit components
such as filters or some form of digital delay to suppress the transient pulses. The
implementation of these techniques depends mainly on the type of switch used and
the characteristics of the application. The most commonly used techniques include:

• An SR debouncing circuit: Consists of a set-reset (SR) latch between the
switch and the digital pin.

• An RC debouncing circuit: Is a cost-effective solution that consists of a
Resistor-capacitance network to implement a delay in the switch line.

• An IC debouncer circuit: Consists of a commercial integrated-circuit (IC)
such as the MC14490 (Hex contact bounce eliminator). This IC contains six
independent debouncing circuits for an equal number of switches.

Software techniques are implemented through the use of extra code lines (sub-
routines) instead of external components. This code uses CPU cycles to remove the
bouncy portion from the switch signal. The most common used techniques include:

• A polling debouncer: This is a simple technique that polls the switch port
with a constant polling period longer than the expected switch bouncing time.

• A counter debouncer: This technique consists of assuming the contacts have
settled if they have not bounced for a certain number of samples.

22



EXPERIMENT 3. INTERRUPTS, SWITCH DEBOUNCING, AND KEYPAD

See class’s book Section 8.3 (Interfacing Switches and Switch Arrays) for a detailed
and deep explanation about the bounce phenomena in switches and the techniques
used to minimize its effects.

3.2 Basic Exercises

3.2.1 Read a Key Using Interrupts

Read the input state of a pin through an interrupt service routine. The interrupt
has to increment the value of an internal variable. This value must be displayed
constantly on the LCD screen.

Follow the steps outlined below:

1. Use the set-up developed in Experiment 2 that connects an LCD screen and
a switch to build your circuit.

2. Verify if the I/O port, where the switch is connected, has interrupt capabilities.
If not, move the switch to an interrupt capable input port.

3. Open your IDE.

4. Create a main program to setup and initialize the stack pointer (if necessary).

5. Write the code for your ISR. The ISR only needs to increment the value of
a (global) variable each time it is executed. Remember to make your ISR
register transparent. You can use the flowchart in Figure 3.2 as a guide to
writing your code.

6. Identify which entry in the MCU jump table corresponds to the port where
the switch is connected. Use the label of your ISR filling the interrupt table
entry.

7. Insert instructions in your main program to enable interrupts: To do so, first,
clear the interrupt flag, enable the PORT interrupt, and then enable the CPU
global interrupts.

8. Modify your main program so that every time the global variable is incre-
mented, it’s value is displayed on the LCD. You can use the flowchart in
Figure 3.3 as a guide to write your code.

9. Compile your code and verify that it does not contain errors.

23



Embedded Systems Design Laboratory Manual

PORT Interrupt

Save working 

registers in stack

INC Push 

button 

interrupt?

Increment Number

Restore working 

registers

Re-enable PORT 

interrupt flag (If 

needed)

Return

Yes

No

Clear interrupt flag 

(If needed)

Figure 3.2: ISR flowchart

START

Initialize stack

Configure interrupt 

for port

Enable interrupts
Number 

changed?

Display number 

on LCD

No

Yes

Figure 3.3: Flowchart for the main loop in read a key using interrupts

10. Run your code and verify if the number is incremented when you depress the
pushbutton.

3.2.2 Hardware Debouncing

Read the input state of a pin using a hardware debouncing technique.

Follow the steps outlined below:

24



EXPERIMENT 3. INTERRUPTS, SWITCH DEBOUNCING, AND KEYPAD

1. Assemble the circuit shown in Figure 3.4, with R1=2.7KΩ, R2=3.3KΩ and
C1=4.7uF. These values were chosen assuming that the push button used,
has a bouncing period of about 20ms. Take into account that the inverter
buffer has a Schmitt triggered input. If your MCU has Schmitt triggers in it’s
input ports, the inverter is not needed; otherwise, provide one externally. See
class’s book Section 8.3.7 (Hardware Debouncing Techniques) for a detailed
explanation in how calculate the resistors and capacitors values for the RC
debouncing circuit.

Figure 3.4: Schematic for hardware debouncing circuit

2. Replace the switch used in the previous exercise with the circuit shown in step
1.

3. Open your IDE and run the code created in the previous exercise.

4. Verify if the bounce effect of the switch disappears. If not, determine new
values for R1 and R2 using a larger capacitor C1.

3.2.3 Software Debouncing

Read the input state of a pin using a software debouncing technique.

Follow the steps outlined below:

1. Restore to the circuit used in the first Basic Exercise (Pushbutton without
hardware debouncing).

2. Open your IDE.

25



Embedded Systems Design Laboratory Manual

PORT Interrupt

Save working 

registers in stack

INC Push 

button 

interrupt?

Push_Flag=1

Re-enable PORT 

interrupt flag (If 

needed)

Restore working 

registers
Return

No

Yes

Clear interrupt flag 

(if needed)

Figure 3.5: Software debouncing ISR flowchart

3. Write a code for your ISR to set a flag when an interrupt is generated. You
can use the flowchart in Figure 3.5 as a guide.

4. Modify your main program so that when it confirms that the Push Flag is
set, it waits 30ms and then resets the Push Flag. Finally, the program has to
increment the value and display it on the LCD. You can use the flowchart in
Figure 3.6 as a guide to write your code. This routine can be optimized using
a timer interrupt to count the 30ms. You will learn this technique in the next
experiment.

5. Compile your code and verify that it does not contain errors.

6. Run your code and verify that the number is incremented when you depress
the pushbutton.

3.2.4 Reading Keypads Through Interrupts

Read the input state of a keypad using a scan algorithm and display it on the LCD.

Follow the steps outlined below:

1. Identify the ports and pins of your MCU that will be used to connect to the

26



EXPERIMENT 3. INTERRUPTS, SWITCH DEBOUNCING, AND KEYPAD

Start

Initialize stack

Configure interrupt 

for port

PUSH FLAG ==1? Delay 30ms PUSH FLAG=0

Increment number

Display number 

on LCD

No Yes

Figure 3.6: Flowchart for the main loop in software debouncing

keypad. Be sure that the pins used in the columns (inputs) have interrupt
capabilities. If not, move the connections to an interrupt capable input port.

2. Connect the keypad according to the block diagram shown in Figure 3.7. You
can configure and use the pull-down resistors of your MCU instead of the
external resistors (You have to verify if your MCU has this capability).

Figure 3.7: Block diagram for keypad connection

3. Open your IDE.

27



Embedded Systems Design Laboratory Manual

4. Set the pins connected to the rows as outputs and the pins connected to the
columns as inputs.

5. Write a code for your ISR which once a key has been depressed performs the
scanning keypad algorithm to read the key. You can use the flowchart in
Figure 3.8 to write the scanning algorithm. Read the note section at the end
of this exercise to have a better understanding on how the scanning method
works.

Get Key Interrupt

ScanCode = 01h

Index = 0h

Send ScanCode to 

scan port

Shift Right (ReturnCode)

Yes

No

GLOBAL VARIABLES

Lookup : Table to decode keys. 

Lookup={1, 2, 3, 4, 5, 6, 7, 8, 9, *, 0, #}

Get ReturnCode

ReturnCode = 0?

ReturnCode > 4? ReturnCode = 2

Index = Index + ReturnCode

Shift Left (ScanCode)

Index=Index+3

ScanCode > 08h?

Index = NULL

Return Index

Yes

No

No Yes

Figure 3.8: Read keypad Flowchart (Source: Introduction to Embedded Systems,
M. Jiménez, R. Palomera, I. Couvertier)

6. Insert instructions in your main program to enable interrupts: PORT interrupt
and CPU global interrupts.

28



EXPERIMENT 3. INTERRUPTS, SWITCH DEBOUNCING, AND KEYPAD

7. Initialize the port configured as output to have its lines in high. This procedure
will ensure the activation of the interrupts independently of the key depressed.
Be sure to maintain the output pins in high once the interrupt have been
served.

8. Write a main code to display the keys obtained from the interrupt on the
LCD. Each new number has to be displayed on the LCD without erasing the
previous number.

9. Write a function for the ”∗” key. This function has to clear the LCD.

10. Write a function for the ”#” key. This function has to change the line in the
LCD in which the numbers are being displayed.

11. Compile your code and verify that it does not contain errors.

12. Run your code and verify the functionality of your keypad.

Note: The scanning method for keypads consists in setting a scan code with a
”Logic high” to the row (Rx) we want to scan and ”logic low” the rest of the
rows (ScanCode). All columns are read at once (ReturnCode). If a logic 1
is detected in a particular column line (Cy) it means that the key in position
(Rx, Cy) is depressed. At the end of the cycle, the returned “Index” will
contain a binary number between 00h and 0Bh that represent the key depressed
in the keypad. Where the binary numbers represent the keys in the order
“123456789*0#”. The “Null” character is assigned by the user. These steps
are sequentially repeated for each column until the entire keypad is scanned.
If several keystrokes are expected, the scanning algorithm is executed in a loop
until all keystrokes are received. This explanation assumes pull-down resistors
are connected in the return lines. See class’s book Section 8.3.11 (Interfacing
Keypads) for a detailed explanation about the scanning algorithm.

3.3 Complementary Tasks

3.3.1 Scrolling List With Wheel

The activity consists of generating a scrolling list of messages and display them
on the LCD (similar to the Experiment 2 but using a scrolling wheel instead of
switches). To detect the movement direction, build an encoder wheel (an optical
encoder can convert the angular movement and direction of the wheel into a set of
digital pulses). For the wheel encoding pattern use the diagram shown in the Figure

29



Embedded Systems Design Laboratory Manual

3.11 and affix the pattern to one side of the wheel. Mount the wheel in a base as
shown in Figure 3.9. Connect two opto-switches aligned vertically with the two sets
of marks in the wheel. You can use the schematic in Figure 3.10 as a reference to
connect the opto-switches. Also, investigate how to read a quadrate encoder using
a look up table technique or read the Appendix A at the end of the document.

Figure 3.9: Suggested mounting base for encoding wheel

Figure 3.10: Schematic for hardware debouncing circuit

Presentation and Report

Each basic exercise and complementary task must be presented to the TA before
the initiation of the next laboratory experiment. The demonstration must be made
personally in the lab and including the hardware and software components needed
for its completion.

An electronic report that includes the following information about the complemen-
tary task must be presented to the TA:

30



EXPERIMENT 3. INTERRUPTS, SWITCH DEBOUNCING, AND KEYPAD

Figure 3.11: Layout of quadrature encoding patterns to be attached to the wheel

• Software plan and explanation (pseudocode or flowchart)

• Connection schematic with relevant component calculations (current, voltage,
timing values, etc.)

• Code listing with comments.

• Additional information used to complete the task (Web pages, datasheets,
books, etc.)

31



Embedded Systems Design Laboratory Manual

32



Experiment 4

Timers and LEDs

Objectives

• Understanding the uses of timers in embedded applications

• Identifying and understand timer architectures and operating modes

• Configuring and using the timer modules

• Interfacing 7-segment displays to microcontrollers

• Implementing software techniques to display information in 7-segment displays
modules

Duration

• 2 Hours in the laboratory and extra time for complementary tasks

Materials

Table 4.1: Bill of materials for completing Lab. 4

Item # Qty Description Reference
1 1 Development board
2 1 IDE application
3 1 Dual 7-Segment Common Anode DA56-11EWA
5 10 1/4W Carbon fill resistor 220 Ω
6 3 1/4W Carbon fill resistor 1 KΩ
7 1 1/4W Carbon fill resistor 4.7 KΩ
8 2 1/4W Carbon fill resistor 12 KΩ
9 1 Momentary switch Pusbutton
10 2 Optoswitch RPR-220

33



Embedded Systems Design Laboratory Manual

Table 4.1: Continued

11 1 Piezoelectric buzzer Buzzer
12 2 BJT PNP transistor 2N3906

4.1 Introduction

4.1.1 Timers

In its most basic form, a timer is a counter driven by a know clock signal that increase
its count with each clock cycle. When the count reaches its maximum value (2n−1)
the timer generates an overflow signal and restarts counting at 0. The overflow signal
can be polled by software or used to trigger an interrupt request (Timer Overflow).
The Figure 4.1 shows the basic structure of a timer. Timers are important in MCU
systems because they can be used to: implement time-bases, count time between
events, an to develop real-time clocks, watchdog timers, pulse-width modulators,
and baud rate generation, among many others applications. Microcontrollers may
include one or more configurable timer modules among their peripherals.

Timer modules can be found in different number of bits such as 8-, 16-, 24-bit, etc.
The number of bits in the timer’s counter determines the maximum value it can
count to, i.e., the maximum value the timer count register can hold.

Figure 4.1: Timer overflow structure

As CPU clock frequencies are considered high for most practical applications, timers
also include a pre-scaler. A pre-scaler is just a chain of flip-flops that can divide the
source clock frequency by values specified through a configuration register. Most
typical values are 1, 2, 4, and 8, although this might change from one timer to
another. Pre-scalers are useful when you need to extend the length of time between
timer overflows.

Another important part of a timer module is the terminal count register. This
register, typically of n bits as the timer’s binary count, can be loaded with any value
≤ 2n−1. When the timer’s Binary Counter reaches Compare Register, a reset signal

34



EXPERIMENT 4. TIMERS AND LEDS

is generate that restart the binary counter and a Top count signal is generated. The
Top signal can be polled by software or configured to generate an interrupt request.
This is a very useful feature in a timer that can be used for many applications,
such as generating periodic signals or pulses of predetermined width. Usually, timer
modules include a clock multiplexer that allows to select a clock source from a set of
internal or external clock sources through a selector signals (clock source selector).
Figure 4.2 shows a complete timer block diagram with both, pre-scaler and terminal
count registers.

Figure 4.2: Timer basic structure (Source: Introduction to Embedded Systems, M.
Jiménez, R. Palomera, I. Couvertier)

Timers have two basic modes of operations used in the majority of application:
Event counter and Interval timer. When operated as an event counter, a timer
simply counts the number of events it detects in its clock input. This clock signal
does not necessarily have a periodic behavior. But, when the input clock signal is
periodic with a frequency f , the timer can be used to measure time intervals between
two events See class’s book Section 7.4.2 (Fundamental Operation: Interval Timer
vs. Event Counter) for a detailed explanation. Furthermore, if the frequency is f
Hz, then the period will be:

PERIOD T =
1

f
seconds (4.1)

Therefore, when the counter shows k pulses, it has registered a duration of kT = k/f
seconds.

35



Embedded Systems Design Laboratory Manual

4.2 Basic Exercises

4.2.1 Timer by Polling

Produce an audible sound using delays generated by polling the timer’s Top count
flag. Read the note section at the end of this exercise to understand other timer
architectures.

Follow the steps outlined below:

1. Connect the buzzer according to the schematic shown in Figure 4.3. Choose
R to not exceed your MCU’s pin current capacity.

Figure 4.3: Schematic for buzzer connection

2. Open your IDE.

3. First, calculate the compare register value that produces a delay to generate
an audible frequency (f=1000Hz). Take into account in your calculation that
the signal to be produced must have a duty cycle of 50%.

4. Look into the architecture of your MCU Timer to determine the appropriate
timer operation mode to generate the above frequency, and produce a code to
configure the timer in that mode.

5. Next, load the compare register value calculated into the timer’s configuration
registers required.

6. Write a code that continuously is checking the Top count flag and when it is
detected, toggle the buzzer pin. You can use the flowchart in the Figure 4.4
as a guide to write your code.

7. Compile your code and verify that it does not contain any errors.

8. Run your code and verify if the buzzer produces an audible sound.

9. After the completion of Table 4.2, modify your code to produce the frequencies
listed on the table. To change between the frequencies use a pushbutton
connected to the MCU.

36



EXPERIMENT 4. TIMERS AND LEDS

Start

Configure Timer

Load compare 

register value

Timer Count 

Top Flag?

Clear Timer Count 

Top FLAG
Toggle buzzer pin

No

Yes

Figure 4.4: Timer by polling flowchart

Complete Table 4.2. Specify the clock period, number of timer bits, and the prescaler
currently used.

Table 4.2: Timer MCU values

Clock Frequency:
Timer’s Bits:
Preescaler used:

Frequency Period Period/2 Compare register value nedded
500 Hz
1 KHz
1.5 KHz
2 KHz
3 KHz

Note: The timer architecture presented is commonly used in MSP430 and ARM
MCU architectures but other types of MCUs possess different timer architec-
tures. These other architectures allows to pre-load a initial value in the timer’s
binary count that modify the quantity of clock cycles needed to reach it max-
imum value and restart in instead of using a value in the compare register to
generate a reset in the timer.

4.2.2 Timer by Interrupt

Produce an audible sound using delays generated by the timer’s interrupt.

Follow the steps outlined below:

1. Use the same setup as the basic exercise developed before “Timer By Poling”.

37



Embedded Systems Design Laboratory Manual

2. Open your IDE.

3. First, calculate the terminal count value that produces a delay to generate an
audible frequency (f=1000Hz). Take into account in your calculation that the
signal to be produced must have a duty cycle of 50%.

4. Configure the timer mode necessary to generate the frequency calculate before
and load the terminal count value calculated.

5. Write a timer ISR code to generate the audible frequency on the buzzer. You
can use the flowchart in the Figure 4.5(a) as a guide to write your code.

6. Next, enable timer and global interrupts.

7. Compile your code and verify that it does not contain any errors.

8. Run your code and verify if the buzzer produces a sound.

9. Now, modify your code to produce the frequencies listed in Table 4.2. To
change between the frequencies, use a pushbutton connected to the MCU.

4.2.3 7-Segment Display

Generate a counter from 0 to F displaying the number on a 7-segment display.

Follow the steps outlined below:

1. Connect a 7-segment display according to the schematic shown in Figure 4.6.

2. Calculate the value of the series resistor to limit the current through the seg-
ment to not overload your MCU I/O pin and satisfy the 7-segment require-
ments. Also, calculate the transistor base resistor to ensure it would saturate
with the maximum 7-segment current.

3. Make a table to decode the digits from 0 to F into 7-segment codes. Remember,
that if you are using a common anode 7-segment, a logic low value is needed
on the data line to power-on the segment. Complete the table 4.3 using as
reference the 7-segment labels shown in Figure 4.7.

4. Open your IDE.

5. Make a look-up table with the data completed in Table 4.3.

38



EXPERIMENT 4. TIMERS AND LEDS

Start

Set-up interrupt 

table

Initialize stack

Configure Timer

Load terminal count 

value

Enable Timer and 

global interrupts

While=1?
YesNo

(a) Main Program

TIMER_ISR

Save working 

registers in stacks

Toggle buzzer pin

Restore working 

registers

Clear interrupt Timer 

FLAG  if is need

End

(b) Service Routine (ISR)

Figure 4.5: Timer by polling flowcharts

6. Write a program that sends the appropriate code to the 7-segment port to
display the digits between 0 and 9 every 1 second. Use a timer ISR to produce
a delay time of 1 second and increment the value that will count the numbers.
Use the pseudocode listed below as a guide to your main code:

Listing 4.1: 7-segment display Pseudocode

1 ;--------------------------------------------------------

2 ; Program Start

3 ; INIT RESET VECTOR

4 ; INIT STACK POINT , WDT

5 ;--------------------------------------------------------

6 lookup = C0h , F9h ,....

39



Embedded Systems Design Laboratory Manual

7 Number = 0

8
9 While TRUE

10 Port = @lookup + number

11 Pin_control = 0

12 Endwhile

13 ;--------------------------------------------------------

7. Compile your code and verify that it does not contain any errors.

8. Run your code and verify if the numbers in the 7-segments are appearing.

Figure 4.6: Schematic for 7-segment

Figure 4.7: Segments names

4.2.4 Multiplexed Display Using a dual 7-segment display

The objective of this section is to generate a counter from 00 to FF using dynamic
display techniques. Read the note section at the end of this exercise to have a better
understanding on how the dynamic display works and its implications.

40



EXPERIMENT 4. TIMERS AND LEDS

Table 4.3: Codes for 7-segment display of digits from 0 to F

# dp g f e d c b a 7-seg
0 1 1 0 0 0 0 0 0 C0h
1 1 1 1 1 1 0 0 1 F9h
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Follow the steps outlined below:

1. Connect two 7-segment displays according to the schematic shown in Figure
4.8 taking into account the electrical consideration explained before for a 7-
segment connection.

Figure 4.8: Schematic two 7-segments displays

2. Open your IDE.

41



Embedded Systems Design Laboratory Manual

3. Make a code to implement a dynamic visualization technique to display the two
numbers into the 7-segment displays. Use the following steps and pseudocode
to produce the your main code:

(a) Turn off the control signal for both 7-segments

(b) Send the data to appear in the first 7-segment

(c) Turn on the first 7-segment control signal

(d) Delay loop

(e) Turn off the control signal for both 7-segment

(f) Send the data to appear in the second 7-segment

(g) Turn on the second 7-segment control signal

(h) Delay loop

(i) Back to step a

Listing 4.2: Dynamic display Pseudocode

1 ;--------------------------------------------------------

2 ; Program Start

3 ; INIT RESET VECTOR

4 ; INIT STACK POINT , WDT

5 ;--------------------------------------------------------

6 lookup = 2Fh , 06h ,....

7 Num_7Seg1 =0

8 Num_7Seg2 =0

9
10 While TRUE

11 Pin_control_1 = Pin_control_2 = 0 ;turn off both displays

12 Port = @lookup + Num_7Seg1 ;obtain 7-seg code for

13 ;upper digit

14 Pin_control_1 = 1 ;turn on display

15 call delay_loop ;delay loop

16
17 Pin_control_1 = 0 ;turn off display

18 Port = @lookup + Num_7Seg2 ;obtain 7-seg code for

19 ;lower digit

20 Pin_control_2 = 1 ;turn of display

21 call delay_loop ;delay loop

22 Endwhile

23 ;--------------------------------------------------------

4. Implement the delay loop using a timer ISR to refresh the two 7-segments with
a refresh rate of 60Hz. The number to be displayed in the 7-segments must be
increased every 1 second.

42



EXPERIMENT 4. TIMERS AND LEDS

5. Compile your code and verify that it does not contain any errors.

6. Run your code and verify if the numbers in the 7-segments are appearing.

Note: The dynamic display technique is a software technique that allows controlling
one or more 7-segment displays at time using the same segment lines for all the
display. Through a constantly blinking process in each display, the technique
generate a visual effect that allows to see all the displays in On at the same
time. This technique is commonly used in display applications because reduce
the amount if MCU pins to control serval display quantities. A drawback of
this method is the loss of brightness in the display due the display is not in
On all the time.

4.3 Complementary Tasks

4.3.1 Digital Tachometer

The activity consists of an implementation of a tachometer for the encoder wheel
built in Experiment 3. Use the LCD for displaying in the first line a message with
the speed: “Speed=####RPM” (Four units to represent the speed value must
be used). In the second line indicate whether the rotation direction is clockwise or
counterclockwise. Internally, use the timer and interrupts to determine the speed of
rotation of the wheel and its direction.

Presentation and Report

Each basic exercise and complementary task must be presented to the TA before
the initiation of the next laboratory experiment. The demonstration must be made
personally in the lab and including the hardware and software components needed
for its completion.

An electronic report that includes the following information about the complemen-
tary task must be presented to the TA:

• Software plan and explanation (pseudocode or flowchart)

• Connection schematic with relevant component calculations (current, voltage,
timing values, etc.)

• Code listing with comments.

43



Embedded Systems Design Laboratory Manual

• Additional information used to complete the task (Web pages, datasheets,
books, etc.)

44



Experiment 5

Low-Power Modes and PWM

Objectives

• Understanding how low-power modes help to reduce the energy consumption
of embedded system

• Using low-power modes to improve the power performance of an embedded
application

• Identifying and understanding PWM architectures and operating modes

• Using a PWM module to control electronic devices such as LEDs

Duration

• 2 Hours in the laboratory and extra time for complementary tasks

Materials

Table 5.1: Bill of materials for completing Lab. 5

Item # Qty Description Reference
1 1 Development board
2 1 IDE application
3 1 LCD display: 2 lines, 16 characters W/HD 44780 Controller
4 1 Light Emitting Diode 5mm Red LED
5 1 Light Emitting Diode 5mm RGB LED
6 1 1/4W Carbon fill resistor 220 Ω
7 3 1/4W Carbon fill resistor 510 Ω
8 4 1/4W Carbon fill resistor 4.7 KΩ
9 1 Momentary switch Pusbutton
10 1 3 columns by 4 rows Buttons array Keypad 3x4
11 1 Multimeter Fluke 179

45



Embedded Systems Design Laboratory Manual

5.1 Introduction

5.1.1 Low-Power Modes

Power consumption in embedded systems is an important design factor that affects
a wide range of aspects, from battery life in portable applications to issues such as
reliability, cost, size, and environmental impact. Therefore, using MCUs with low-
power modes and learning how and when to activate and use those modes becomes
of utmost importance in the design of embedded systems.

The activation and use of low-power modes in a microcontroller unit involves mini-
mization of the individual current consumption of its internal peripherals, minimiza-
tion of the CPU activity, and optimization of the code running during active periods.
Depending on the particular MCU, the activation of a low-power mode can involve:
disabling the CPU by turning it off or sending it to a standby mode, reducing the
CPU clock frequency and, changing the clock source, among other strategies.

An effective way of incorporating low-power modes into an application is by config-
uring the code running on the CPU to operate using interrupts. Figure 5.1 shows
a flowchart of a program that uses low-power modes. Basically, the program starts
with the initialization of peripherals and system components, continues enabling in-
terrupts of expected events and finally sends the CPU into a sleep mode. Every time
an enabled interrupt is triggered, it will wake-up the CPU to serve the event and
go back to sleep. This procedure saves more energy because instead of continuously
polling for the expected event to occur, the CPU is only active when the interrupts
mark the event that needs to be served.

Begin

Initialize: Peripheral modules, 

GPIO ports, and Memory 

variables

Enable Event1 interrupt

Activate Low-power Mode

Event1 ISR

Clear Event IFG (if needed) 

Rest of Event1 ISR Code

Return from 

Interrupt

Note: Can occur in any 

instant of time

Figure 5.1: Main Program using low-power mode and a single event ISR

46



EXPERIMENT 5. LOW-POWER MODES AND PWM

Low-power modes are of utmost importance in battery-powered applications due to
the dramatic reduction in power consumption they induce. As illustrated in Figure
5.2, depending on the low-power mode activated, the system could achieve different
levels of power consumption.

45

90

135

180

225

270

315

0

300

200

55
32

17 11
0.9 0.7 0.1 0.1

AM LPM0 LPM2 LPM3 LPM4

VCC = 3V

VCC = 2.2V

Operating Modes

I C
C
/µ

A
 a

t 
1

 M
H

z

Figure 5.2: Current Consumption of MSP430F21x1 devices in different operating
modes (Source: Introduction to Embedded Systems, M. Jiménez, R. Palomera, I.
Couvertier)

5.1.2 Pulse Width Modulation

Pulse Width Modulation (PWM) is another useful timer application in embed-
ded systems. A PWM module produces a square wave signal with a predefined and
controlled duty cycle, allowing the generation of a signal with different pulse widths
in different time periods as we can see in Figure 5.3.

Figure 5.3: PWM signal parameters

A basic PWM module structure is shown in Figure 5.4. This structure is similar to
the basic timer structure presented in the previous lab, with the difference that a

47



Embedded Systems Design Laboratory Manual

PWMmodule uses a High count register together with an n-bit hardware comparator
instead of the compare register to generate the square wave signal. It fundamentally
contains an n-bit timer (with clock selector and Prescaler), whose count is compared
in hardware to the contents of a “high-count register” (hc). Figure 5.5 illustrate the
behavior of a PWM module in which, while the timer has a value less than hc
the PWM output is high, otherwise, the output is low. This mode of operation
depends basically on the PWM module architecture. Some MCUs incorporate an
enhanced PWM architecture to allow the user to use different modes of operation
and interrupt sources.

Figure 5.4: PWM basic architecture (Source: Introduction to Embedded Systems,
M. Jiménez, R. Palomera, I. Couvertier)

Figure 5.5: PWM signal parameters

Applications like DC motor speed, heater’s temperature, light intensity in LEDs,

48



EXPERIMENT 5. LOW-POWER MODES AND PWM

and even musical tones can be implemented with PWM. These many applications
make PWM modules a useful addition to the list of MCU peripherals. See class’s
book Section 7.4.3 (Signature Timer Applications) for a detailed explanation about
the PWM architecture and applications.

5.2 Basic Exercises

5.2.1 Low-Power Modes

Compare the low-power current consumption of your MCU versus that in normal
mode.

Follow the steps outlined below:

1. Assemble the setup used for the scrolling list developed in Experiment 2 to
scroll messages in an LCD display using two keys.

2. Load the software version of your code that reads the switches by polling.
Make sure that your development board is only connected to the host com-
puter through the programming adapter, with no other external power supply
connected to it through the downloading process.

3. Remove the programming adapter and all connections to the host computer.
Your program will stay safely in the MCU flash memory.

4. Connect your development board with an external power supply allowing the
connection of an amp-meter to measure the MCU’s current consumption. Con-
nect the LCD to the power supply such that its current does not pass through
the MCU amp-meter. Make sure the multi-meter is in current mode and the
leads are connected to the amp-meter inputs. Use the block diagram shown
in Figure 5.6 as a guide to make the necessary connections.

5. Power-Up your development board and LCD, then measure the MCU current
several time and take the average value.

Average ICC1 :

6. Scroll the list up/down a few times to see the average load current measured
by the amp-meter.

49



Embedded Systems Design Laboratory Manual

Figure 5.6: Connection diagram for MCU with power supply and amp-meter

7. Turn the power supply off, remove the power supply cables from the board
and re-attach the programming adapter.

8. Edit your code to serve the keys by interrupts. Also, modify the main program
to make the MCU enter a low-power mode, right after the system set-up is
completed. Remember to enable global and peripheral interrupts.

9. Download the code to your system and with the programming adapter still
connected (do not connect your MCU to the power supply yet!), debug your
code and make sure it works as expected.

10. Once you have a working version of your code, remove the programming
adapter and re-connect the external power supply to the boards, making sure
to connect the multimeter as illustrate in Figure 5.6.

11. Measure the MCU’s current consumption using the amp-meter (again, make
multiple measurements and take the AVG).

Average ICC2 :

12. Compare the two current values measured, did you notice any change between
the two measurement? For the two current values measured calculate the
expected battery life for a 1500 mAh battery.

50



EXPERIMENT 5. LOW-POWER MODES AND PWM

5.2.2 PWM Signal Generation

Produce a square wave signal using a PWM module.

Follow the steps outlined below:

1. Connect the oscilloscope to your MCU according to the schematic shown in
Figure 5.7.

Figure 5.7: Block diagram for oscilloscope connection

2. Verify that the I/O port where the oscilloscope is connected to has PWM
capabilities, if not, move the oscilloscope probe to an appropriate pin.

3. Open your IDE.

4. Identify the PWM module to be configured according to the pin previously
selected and configure it to use one of the MCU’s clock sources. Look for the
register associated with the Period and Pulse width in your PWM module.

5. Calculate the terminal count value that produces a signal with frequency of
1000Hz, this value must be loaded into the period register. Also, calculate the
value to be loaded in the pulse width register to produce a duty cycle of 50%.

6. Determine the appropriate operating mode of your PWM module, and config-
ure the PWM registers necessary.

7. Next, enable your PWM module.

8. Compile your code and verify that it does not contain any errors.

9. Run your code and verify that a signal is visible on the oscilloscope.

51



Embedded Systems Design Laboratory Manual

10. Extract the waveform signal from the oscilloscope. Obtain the period and
duty cycle of the signal on the oscilloscope.

11. After the completion of Table 5.2, modify your code to produce each frequency
listed in the table. Use the oscilloscope to save each waveform observed. Do
not forget measuring the duty cycle and period of each signal.

Complete the following Table 5.2. Specify the clock period and the count values for
the PWM registers. Later, complete Table 5.3 with the values measured for each
signal and calculate the % of error in the duty cycle.

Table 5.2: Timer MCU values

Frequency Period (T) Period register value 50% Duty cycle (DC) register value
500 Hz
1 KHz
2 KHz
4 KHz
8 KHz

Table 5.3: Timer MCU values

Frequency Measured T Measured DC % Error DC
500 Hz
1 KHz
2 KHz
4 KHz
8 KHz

5.2.3 Generating colors with an RGB LED

The purpose of this section is generating different colors using an RGB LED with
PWM signals.

Follow the steps outlined below:

1. Connect the RGB LED according to the schematic shown in Figure 5.8. Be
sure that your MCU has three pins with PWM capabilities.

2. Calculate the series resistor value to obtain the maximum brightness possible
of each LED color without overloading the pin’s current.

52



EXPERIMENT 5. LOW-POWER MODES AND PWM

Figure 5.8: Schematic RGB LED Connection

3. Open your IDE.

4. Configure the PWM modules to produce the signals with a frequency of
1000Hz.

5. Make a look-up table with the duty cycle values of RED, BLUE, and GREEN
corresponding to each color shown in Table 5.4. Take into account that a value
of 255 in the color represents a 100% duty cycle for your output signal and a
value of 0 represents 0% duty cycle.

Table 5.4: RGB Color Values

R G B
1 0 0 255
2 0 255 0
3 255 0 0
4 255 30 217
5 30 222 252
6 240 200 40
7 255 123 33
8 255 255 255

6. Write an ISR code such that every time a pushbutton is depressed, changes
the values in the PWM signals to produce a different color.

7. Enable the interrupt flags and PWM modules.

53



Embedded Systems Design Laboratory Manual

8. Now, write a main code to make the MCU enter a low-power mode right after
the system set-up is completed and the interrupts have been enabled.

9. Compile your code and verify that it does not contain any errors.

10. Run your code and verify if the LED color changes when you depress the
pushbutton.

5.3 Complementary Tasks

5.3.1 Digital Dimer

The activity consists of making a digital dimer for an LED. The system must al-
low changing the LED brightness from 0% (LED Turn-Off) to 100% (Maximum
brightness), in increments of 10%, for a total of 11 levels of luminosity. The level
is selected by the user through a keypad where each key corresponds to one level
(e.g. 0 → 0%, 1 → 10%, 2 → 20%, · · · , 9 → 90%, and # → 100%) once the key
is depressed. The LCD must display the current level selected by the user and its
corresponding percentage of brightness. The LED must by driven by a PWM signal
generated from the MCU. Use the block diagram shown in Figure 5.9 as a reference
to connect your system.

Figure 5.9: Digital dimmer connection diagram

54



EXPERIMENT 5. LOW-POWER MODES AND PWM

Presentation and Report

Each basic exercise and complementary task must be presented to the TA before
the initiation of the next laboratory experiment. The demonstration must be made
personally in the lab and including the hardware and software components needed
for its completion.

An electronic report that includes the following information about the complemen-
tary task must be presented to the TA:

• Software plan and explanation (pseudocode or flowchart)

• Connection schematic with relevant component calculations (current, voltage,
timing values, etc.)

• Code listing with comments.

• Additional information used to complete the task (Web pages, datasheets,
books, etc.)

55



Embedded Systems Design Laboratory Manual

56



Experiment 6

Motor Interfacing

Objectives

• Understanding the operating principles of electric motors used in embedded
applications

• Recognizing electromechanical characteristics of DC motors, stepper motors,
and servomotors

• Employing H-bridges and current drivers to control DC and Stepper motors

• Employing PWM signals to control servomotor position angle

Duration

• 2 Hours in the laboratory and extra time for complementary tasks

Materials

Table 6.1: Bill of materials for completing Lab. 6

Item # Qty Description Reference
1 1 Development board Tool
2 1 IDE application Tool
3 1 LCD display: 2 lines, 16 characters W/HD 44780 Controller
4 2 1/4W Carbon fill resistor 22 Ω
5 4 1/4W Carbon fill resistor 330 Ω
6 2 1/4W Carbon fill resistor 4.7 KΩ
7 2 1/4W Carbon fill resistor 12 KΩ
8 4 P-N junction diode 1N4004
9 2 BJT NPN transistor MPSA42
10 2 BJT PNP transistor MPSA92

57



Embedded Systems Design Laboratory Manual

Table 6.1: Continued

11 2 Momentary Switch Pushbutton
12 2 Optocoupler 4N25
13 1 Half H-bridge Driver L293D
14 1 Darlington Transistor Array ULN2803
15 2 Optoswitch RPR-220
16 1 DC Motor, 6VDC, 9100rpm, 0.14Oz-in 711 Motor
17 1 Stepper, 5VDC, Unipolar, 11.25◦ step

angle
28BYJ-48

18 1 Servo, 6VDC, 38Oz-in, 180◦ Range 900-00005

6.1 Introduction

An electric motor can be defined as an electromechanical device capable of trans-
forming electrical power into mechanical power. This kind of devices is extensively
used in embedded systems applications where precise mechanical movement is re-
quired. Some examples include plotters, inkjet printers, and CNC (computer nu-
merical control) machines. Depending on the type of application, different types of
electric motors can be found. The three most common include: DC motor, servo-
motors, and stepper motors. Although these three types of motors all transform
electricity into mechanical power, there are fundamental differences among them in
terms of how they can be controlled.

6.1.1 Direct Current Motors

A direct current (DC) motor continuously spins when energy is applied to their
electrical terminals. The speed of a DC motor is generally a function of the applied
voltage. Thus, they can be used in applications where only the spinning speed is
important.

Due to the electrical limitations of MCU’s pins in terms of voltage and current, a
direct connection between an MCU and a motor can rarely be done. Motor drivers
are required to manage the motor load, speed, and the direction of rotation. These
motor drivers can be implemented using discrete components or acquired in the
form of integrated circuits (IC). See class’s book Section 8.10.1 (Working with DC
Motors) for a detailed explanation about the characteristic and interfacing of DC
motors.

A common motor driver is provided by an H-Bridge. A H-Bridge is composed of
NPN and PNP transistors as illustrated in Figure 6.1. The rotation direction is

58



EXPERIMENT 6. MOTOR INTERFACING

determined by the signal combination used to turn-on and turn-off the transistors.
When signal Rev is low and Fwd is high, transistors Q1 and Q3 are simultaneously
turned On, allowing the current to flow from left to right in the motor. Making Rev
high and Fwd low will activate transistor Q2 and Q4 instead, reversing the current
direction and, therefore, reversing the polarity of the voltage applied to the motor.
This causes a change in the direction of rotation. The transistors used to construct
an H-Bridge are selected to satisfy the motor specifications (current and voltage).

Figure 6.1: Transistor H-Bridge (Source: Introduction to Embedded Systems, M.
Jiménez, R. Palomera, I. Couvertier)

A L293D is a motor driver with four channels capable of supplying a current up
to 600mA per channel. This driver incorporates diode protection in each channel
to avoid damage by the inductive turn-off transient generated by the motor. Each
channel is controlled by TLL signals and each pair of channels has an enabling signal
to connect and disconnect the channels.

The DRV8833 is another IC driver composed by dual CMOS H-bridges. This chip
contains two full H-bridges capable of supplying a current up to 3A at a voltage up
to 10.8V. This driver also provides short circuit protection, thermal shutdown, and
supports low power modes.

6.1.2 Servo-Motors

A servo-motor is a DC motor with a feedback control that allows for a precise
position control. A servo-motor is composed of four main components as illustrated
in Figure 6.2: a DC motor that provides the basic electromechanical conversion, a
control board housing the feedback electronics, a set of gears that slow-down the

59



Embedded Systems Design Laboratory Manual

DC motor rotation speed and increases the torque, and a position sensor, typically
a potentiometer.

Figure 6.2: Servo-motor internal composition (Source: Introduction to Embedded
Systems, M. Jiménez, R. Palomera, I. Couvertier)

The operating voltage of a servo-motor is generally in the range of 4 to 8 volts.
A servo is controlled by a pulse-width modulation (PWM) signal that determines
the position of the servo. Basically, the duration of the signal in high (duty cycle)
determines the angular position of the motor, as illustrated in Figure 6.3. The
position sensor in the servo continuously indicates the shaft angular position to the
control board. A servo motor has a restricted travel angle of about 200◦ or less
(typically of 180◦) due the gearbox attached to the DC motor.

Figure 6.3: Servo-motor position determined by the signal pulse width (Source:
Microcontrolador PIC16F84. Desarrollo de Proyectos, E. Palacios)

60



EXPERIMENT 6. MOTOR INTERFACING

The external interface of a servo-motor has only three wires: VDD, GND, and a
Control signal. Power is applied trough the VDD and GND terminals while the
desired position is specified through the Control pin via a PWM signal. Each
servo-motor has his own operation range that corresponds to the maximum and
minimum pulse-width that the servo understands. See class’s book Section 8.10.2
(Servo Motor Interfacing) for a detailed explanation on how to interface and control
servo-motors.

6.1.3 Stepper Motor

A stepper motor is a type of electric motor that possesses a shaft which moves in
discrete increments. The movement is the product of digital pulse sequences applied
from a controller. Each pulse produces a precise angular displacement known as a
step. Rotation increments or steps are measured in degrees. The structure of a
stepper motor is different from of a DC motor, as it incorporates multiple windings
to make possible the stepping behavior. Depending on how the rotor and stator
are designed, stepper motors are classified in three types: variable reluctance,
permanent magnet, and hybrid. See class’s book Section 8.10.3 (Stepper Motor
Interfaces) for a detailed explanation about the types of stepper motors.

A variable reluctance stepper motor has a soft Iron, non-magnetized, multitoothed
rotor and a wounded stator with three to five windings (unipolar). The number of
poles in the stator is larger than the number of teeth in the rotor. Torque is developed
when the poles and teeth seek to minimize the length of the magnetic flux path
between the stator poles and rotor teeth. In a permanent magnet stepper, the rotor
is built using permanent magnets without teeth and the stator is constructed using
multiple windings. In this case torque occurs when the excited stator poles attract
opposite magnet poles in the rotor while repulsing similar poles. Hybrid steppers
combine features from variable reluctance and permanent magnet motors. Hybrid
motors have the ability of producing high torque at low and high speeds through the
use of two multi-toothed, soft iron disks with a permanent magnet between them.
See class’s book Section 8.10 (MCU Motor Interfacing) for a detailed explanation.

Stepper motors come in a variety of step resolutions, ranging from 0.72◦ to 22.5◦

per step (500 and 16 steps per revolution).

The most important parameters specifying stepper motors include:

• Working Torque: The maximum momentum that the motor can reach while
responding to an impulse excitation. If the torque of the load is larger than
the working torque, the motor will not move.

• Dynamic Torque: The torque that the motor possess at a defined speed.

61



Embedded Systems Design Laboratory Manual

This torque may vary depending on the load attached to the motor and the
driver used to control the motor.

• Holding Torque: Is the amount of torque needed to move the motor when
the windings are energized but the motor’s rotor is not moving.

• Maximum pull-in/out: Is defined as the maximum number of steps per
second that the motor can perform.

• Step resolution: Is the angular displacement experienced by the motor with
each excitation pulse, measured in degrees. This parameter can also be spec-
ified as the number of full steps per revolution. Table 6.2 shows common
stepper motors angles. To calculate the number of steps for a stepper motor,
the Equation 6.1 can be used:

SN =
360

α
, (6.1)

where SN is the number of steps per revolution and α is the step angle.

Table 6.2: Common resolution in commercial stepper motors

Degrees per excitation pulse N◦ steps per revolution
0.72◦ 500
1.80◦ 200
3.75◦ 96
7.50◦ 48
15.00◦ 24

6.2 Basic Exercises

6.2.1 DC Motor Driven with Transistors

In this exercise, you will implement a DC motor driver using discrete components
such as transistors. The control signals, to define the motor rotation direction, will
come from a set of pushbuttons.

Follow the steps outlined below:

1. Connect the DCmotor according to the schematic in Figure 6.4. This schematic
is an isolated H-drive that incorporates two optocouplers in the control signals

62



EXPERIMENT 6. MOTOR INTERFACING

to prevent propagating the noise generated by the motor into the MCU. Set
VCC according to the DC motor specifications. Two complementary transis-
tors were chosen with a collector current (IC) of 0.5Amp. This IC is required
to withstand the current peaks generated by the motor when an instantaneous
change of direction is required or when a load is applied to the motor. Verify
each connection twice before powering the circuit.

Figure 6.4: Isolated transistor H-Bridge schematic

2. Open your IDE.

3. Configure the I/O pins connected to the optocouplers as outputs.

4. Now, connect three pushbuttons and an LCD to the MCU. Each button must
perform one of the functions described in Table 6.3. The LCD must be used
to display the current motor state and the pushbutton depressed. S1 and S2
represent the logic values to be sent through the outputs connected to the
optocouplers.

Table 6.3: Motor States

Motor
Button Action S1 S2

1 Stop Free 0 0
2 Rot. Left 0 1
3 Rot. Right 1 0
X Stop Forced 1 1

Do not attempt to send this command
as it creates a short circuit in the H-
drive and burns ALL transistors

63



Embedded Systems Design Laboratory Manual

5. Make a program to continuously perform the function selected by each button
until another function is selected. The program must start with the motor in
the “stop free” condition.

6. Compile your code and verify that it does not contain any errors.

7. Run your code and verify if the DC motor performs the function selected.

6.2.2 DC Motor Controlled Through Driver IC

The objective of this exercise is controlling the direction of rotation and velocity of
a DC motor through a L293D IC driver. The L293D is an IC driver that contains
four half H-bridges designed to provide bidirectional drive currents up to 600mA.

Follow the steps outlined below:

1. Connect the DC motor according to the schematic in Figure 6.5. Set the VCC
voltage according to the DC motor specifications. The IC is designed to work
with 3.3V or 5V logic.

Figure 6.5: L293D H-Bridge schematic

2. Connect In1 to the pin where the S1 signal was generated in the previous
exercise. Repeat the same for In2 and S2.

3. Open your IDE and perform the steps, 2 through 5, describe in the basic
exercise 6.2.1.

4. Run your code and verify if the DC motor performs the function selected.

64



EXPERIMENT 6. MOTOR INTERFACING

5. Now, modify your program to increment or decrement the velocity of the motor
in steps of 20% using the first and second pushbutton. The third pushbutton
must be used to toggle between the motor states. The change in velocity
must be allowed in both directions of rotations. Hint: Use two PWM channels
instead of the GPIOs selected.

6.2.3 Servo-motor Interfaces

The purpose of this section is controlling a servo motor using a PWM signal.

Follow the steps outlined below:

1. Connect a 900-00005 servo-motor according to the schematic in Figure 6.6.

Figure 6.6: Servo-motor connection schematic

2. Verify that the I/O port where the servo-motor signal is connected has PWM
capabilities. Otherwise move it to a pin able to produce PWM signal from an
internal MCU timer.

3. Open your IDE.

4. Configure the PWM module to produce a square signal of 50Hz. Do not forget
to configure the Timer associated to the PWM module.

5. Make a program to produce the angle displacements listed in Table 6.4. Use a
timer function to change between the positions every 2 seconds. Complete the
missing information of the table. Remember do not exceeds the pulse-widths
values for the 0◦ (0.375ms) and 180◦ (2.1ms) in order to avoid damages and
excessive current consumption in the servomotor.

6. The system must start with the servomotor in 0◦ position. Take into account
that you have to permanently send the pulse width that corresponds to the

65



Embedded Systems Design Laboratory Manual

Table 6.4: Servo-motor angles routine

Angle Displacement Servo Angle position Necessary Pulse-width
22.5 to the left
90.0 to the left
22.5 to the right
45.0 to the left
90.0 to the right
135.0 to the left
22.5 to the right
90.0 to the right
67.5 to the right

position desired to hold the servo-motor in that position. Design a setup with
marks to verify if the servo reaches the desired angle.

7. Compile your code and verify that it does not contain any errors.

8. Run your code and verify if the servo performs the programmed routine.

6.2.4 Stepper Motor Interfaces

In this part, you will implement a full step and a half step sequence to control a
unipolar, two-winding stepper motor.

Follow the steps outlined below:

1. Search information related to unipolar stepper motors and how they work.
Also, search information about the 28YBJ-48 stepper motor and its charac-
teristics, and IC driver ULN2803.

2. Connect the stepper motor according to the schematic in Figure 6.7.

3. Open your IDE.

4. Configure the four MCU I/O pins connected to the ULN2803 as outputs.

5. Write a program to perform the signal sequence described in Table 6.5. Take
into account that the ULN2803 inverts the logic of its input signals (a high
voltage in the input produces a low voltage at the output). The sequence
is a one-phase activation that allows moving the motor shaft while saving
energy in comparison with a two-phase activation. See class’s book section

66



EXPERIMENT 6. MOTOR INTERFACING

Figure 6.7: Stepper motor connection schematic

8.10.5 (Permanent Magnet Stepper Motors) for a detailed explanation about
one-phase and two-phase activation.

Table 6.5: Full-Step Sequence

Motor Coils
Step (4) Orange (A) (3) Yellow (B) (2) Pink (A’) (1) Blue (B’)
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

Read Note section for full-step sequence explanation

6. Use a delay of 10ms between steps.

7. Compile your code and verify that it does not contain any errors.

8. Run your code and verify that the stepper motor works as expected.

9. Now, modify your code to implement the signal sequence describe in Table 6.6
that corresponds to a Half-step sequence.

10. Use the same delay established previously (10ms).

11. Run your code and verify if the stepper motor works as expected.

12. Finally, modify your code to rotate the stepper motor 270 to the left, later on
180 to the left, and finally 90 to the right. Use marks to verify if the stepper
reaches the desired angle.

67



Embedded Systems Design Laboratory Manual

Table 6.6: Half-Step Sequence

Motor Coils
Step (4) Orange (A) (3) Yellow (B) (2) Pink (A’) (1) Blue (B’)
1 1 0 0 0
2 1 1 0 0
3 0 1 0 0
4 0 1 1 0
5 0 0 1 0
6 0 0 1 1
7 0 0 0 1
8 1 0 0 1

Read Note section for half-step sequence explanation

Note: In stepper motors, a full-step sequence allows the motor to advance in angular
increments equal to its nominal resolution. In the case of a half-step sequence,
the motor resolution is double because the motor advances only half of its
nominal angular resolution. If a motor has an angular resolution of 11.25◦ per
step, with a half-step sequence the displacement will be 5.625◦ per step.

6.3 Complementary Tasks

6.3.1 Stepper Motor Characterization

The activity consists in determining the maximum input signal frequency in which
the stepper motor can work without missing steps. The system shall use keys UP
and DOWN to increase and reduce the motor speed, and START/STOP to turn
the motor on and off.

An oscilloscope shall be used to observe and measure the motor input signal. The
control signals must start at the 1st value in Table 6.7 as the initial speed of the
motor. When the START/STOP key is depressed the motor must perform two
complete rotations (720◦) at the selected speed, based on the # of steps required
for a revolution. A mark must be placed on the motor shaft to observe is the motor
is able to perform the two revolutions, see Figure 6.9 for an example on how to do
the angle measurements. Once the two rotations are completed, the following input
signal period shall be selected using the UP key. The input signal periods for the
motor tests are defined in Table 6.7. The missing information in Table 6.7 must
be completed and calculated for each test. The motor speed must be derived from
the input signal frequency. Plot a graph where the relationship between the motor

68



EXPERIMENT 6. MOTOR INTERFACING

velocity and input period signal can be observed. Be careful while the motor is
being tested; if the motor emits inappropriate sounds or the angular movement is
irregular, the test must be stopped using the STARt/STOP key and the frequency
should be marked unsuccessful in the Table (Critical Frequency column). You can
use the block diagram shown in Figure 6.8 as a reference to connect your system.

Table 6.7: Frequencies to be tested

Sig. Period Sig. Frequency Motor Speed Critical Frequency
(ms) (Hz) (rpm) (Yes/No)
100
50
20
10
5
2
1
0.5
0.2
0.1

Note: Sig. means Signal

Figure 6.8: Stepper motor input frequency measurement diagram

Presentation and Report

Each basic exercise and complementary task must be presented to the TA before
the initiation of the next laboratory experiment. The demonstration must be made

69



Embedded Systems Design Laboratory Manual

0°

90°

180°

270°

45°135°

225° 315°

Figure 6.9: Stepper motor measurement circle example

personally in the lab and including the hardware and software components needed
for its completion.

An electronic report that includes the following information about the complemen-
tary task must be presented to the TA:

• Software plan and explanation (pseudocode or flowchart)

• Connection schematic with component calculations

• Code listing with comments.

• Additional information used to complete the task (Web pages, datasheets,
books, etc.)

70



Experiment 7

Serial Communication

Objectives

• Identifying and understanding the standard formats for serial communications

• Recognizing the differences between synchronous and asynchronous serial com-
munications

• Understanding the physical requirements and operation of an USART interface

• Using an USART interface to transmit and receive information to/from a
personal computer and your MCU

• Understanding the connection and operation of an I2C interface

• Employing an I2C protocol to share data with a real-time clock device

Duration

• 2 Hours in the laboratory and extra time for complementary tasks

Materials

Table 7.1: Bill of materials for completing Lab. 7

Item # Qty Description Reference
1 1 Development board
2 1 IDE application
3 1 LCD display: 2 lines, 16 characters W/HD 44780 Controller
4 1 1/4W Carbon fill resistor 1 KΩ
5 5 1/4W Carbon fill resistor 4.7 KΩ
6 3 Momentary Switch Pusbutton
7 1 I2C Real-Time clock calendar DS1307

71



Embedded Systems Design Laboratory Manual

Table 7.1: Continued

8 1 Quartz crystal 32.768KHz
9 1 3V Lithium Battery CR2032
10 1 Piezoelectric buzzer Buzzer
11 1 USB-To-UART converter cable FTDI TTL-232R

7.1 Introduction

Serial channels are extensively used to establish communications between devices
and computers, working under different formats and protocols in a wide range of
applications, and transmitting information between points that can be from a few
centimeters to hundred or thousand of kilometers apart.

In a serial communication channel, data is sequentially transmitted, one bit at a
time, over a single data line. Each bit transmitted over a serial channel takes a
predetermined amount of time (tbit) to be transmitted. Thus, transmitting an
n− bit character will take n · tbit.

The number of bits transmitted in a serial channel per unit of time determines the
transmission rate of the channel. Two commonly used metrics include:

• Bit rate: Number of bits-per-seconds (bps) transmitted over the channel.

• Baud rate: Number of symbols per seconds transmitted over the channel.

When the channel modulation scheme assigns one bit to each signal transmitted over
the channel, the terms bit and baud rate are interchangeable. Modern modulation
schemes commonly assign multiple bits per signal. In such cases, the terms have
different meanings.

The most basic structure of serial channel calls for a transmit signal (TxD), a receive
signal (RxD), a ground reference, and some form of clock synchronization, as illus-
trated in Figure 7.1. Depending on the protocol, additional signals might also be
necessary for handshaking, synchronization, or data flow regulation. Common serial
protocols and physical standards include RS-232, RS-485, SPI, I2C, CAN-BUS, and
1-wired.

7.1.1 Types of Serial Channels

The serial channels could be Simplex, Half Duplex, or Full Duplex where the differ-
ence between them is the connectivity used to sent the information:

72



EXPERIMENT 7. SERIAL COMMUNICATION

Simplex serial channel: The transmission process is only in one direction.

Half duplex serial channel: The transmission process could be in either direc-
tion, but only in one direction at a time.

Full Duplex serial channel: The transmission process could be in either direc-
tion simultaneously due to the usage of separate links (one for transmitting
and one for receiving).

See class’s book Section 9.2 (Types of Serial Channels) for a detailed explanation
on this topic.

7.1.2 Synchronous Vs. Asynchronous Serial Communica-
tion

Generally, a serial channel requires the usage of a clock signal to synchronize the
data transmission and reception ends. Depending on how the transmission clock is
handled, the communication can be asynchronous or synchronous. In asynchronous
communications, individual clock generators are used on each end of the channel,
as shown in Figure 7.1(a). In synchronous communications, the clock signal is
transmitted through the channel, as illustrate in Figure 7.1(b).

Tx

Rx

GND

Tx

Rx

GND

Clock

Generator

Transmitter/Receiver A Transmitter/Receiver B

Clock

Generator

(a) Asynchronous

Tx

Rx

GND

Tx

Rx

GND

Clock

Generator

Transmitter/Receiver A Transmitter/Receiver B

CLK CLK

(b) Synchronous

Figure 7.1: Synchronous vs asynchronous serial communication.

In both cases, asynchronous and synchronous channels, the transmitted message
is divided into fundamental units known as packets or datagrams. Commonly, a
packet contains three parts:

• A header that indicates the beginning of the packet.

73



Embedded Systems Design Laboratory Manual

• A body that contains the information or message being transmitted.

• A footer that delimitates the data. In most cases, the footer also includes
redundant information that can be used for error checking & in some cases
error correction.

7.1.3 Serial Interfaces

A Universal Synchronous/Asynchronous Receiver/Transmitter (USART) controller
is a fundamental module that can generate the necessary signals for synchronous
or asynchronous communication, one mode at a time. In asynchronous mode, an
USART becomes an UART module. In synchronous mode, it can support one of
several synchronous protocols, such as SPI, I2C, and others.

USARTs contain multiple functional units and registers, which may vary from one
architecture to another. However, there are a few basic components, as illustrated
in Figure 7.2, that are fundamental to its operation. These includes:

PISO

TX Buffer

(write only)

Baud Rate

Generator

SIPO

RX Buffer

(read only)

Control

Register

Status

Register

fclk

n bits n bits

Q Q

CLK CLK

TxD RxD
CLK

(For synchronous

Communications)

n-bit 

MCU Bus

Din Dout

Figure 7.2: Minimum USART components

• A Baud Rate Generator: A timer that generates the clock frequency necessary
for setting the transmission and reception speed (baud rate). The clock signal
may be transmitted through the channel or generated at each end, depending
on whether the channel is synchronous or asynchronous.

• Parallel Input Serial Output Shift Register (PISO): Converts n-bit parallel
data from the CPU into a serial stream.

• Transmit Buffer (TX Buffer): Holds the data to be transmitted. Also called
“Data-out register”.

74



EXPERIMENT 7. SERIAL COMMUNICATION

• Serial Input Parallel Output Shift Register (SIPO): Converts the serial input
stream into parallel data.

• Receive Buffer (RX Buffer): Accommodates newly received characters for the
CPU to read. Also called “Data-in register”.

Two additional registers are necessary to operate a USART. These include a control
register and a status register. A control register allows configuring the USART
in the desired operating mode. For example, it allows choosing either synchronous
or asynchronous mode, enabling the transmitter or receiver, enabling USART in-
terrupts, setting number of bits to be transmitted, selecting error check, etc. The
status register contains information that indicates the current USART status. In-
dicators, such as when the TX Buffer can be written, when the RX Buffer can be
read, or when an error has occurred.

Status bits TxR (Transmitter ready) and RxR (Recover ready) are essential for a
UART operation. TxR signals are used when the Data-out register is empty in order
to accept new characters for transmission. RxR indicates that a new character has
been received and is ready for reading in the Data-in buffer. These flags can be
used in a polled fashion to operate the channel or be enabled to trigger interrupts,
alluding to a more efficient way to operate the UART.

The baud rate generator, as any timer, is configured using the system clock fre-
quency, a divider (n), and a prescaler value. The desired baud rate is obtained
as:

BaudRate =
fclk

PrescalerV alue ∗ (n+ 1)
(7.1)

UART Operation

An asynchronous frame is composed of a start bit, multiple data bits (five- to eight-
bit characters), an optional parity bit, and a stop bit as illustrated in Figure 7.3.
The parity check is a simple mechanism for detecting errors in the channel. See
class’s book Section 9.3.5 (UART Structure and Functionality) and Section 9.3.7
(UART configuration and Operation) for a detailed explanation of UART hardware
interface and operation.

I2C

The Inter-Integrated Circuit bus (I2C) is a synchronous serial protocol developed by
Philips in the early 1980s to support board-level interconnections.

75



Embedded Systems Design Laboratory Manual

LSB MSB

Data bits Parity 

Bit Stop BitStart Bit

idle idle

Timetbit

Figure 7.3: Typical asynchronous serial transmission frame (Source: Introduction
to Embedded Systems, M. Jiménez, R. Palomera, I. Couvertier)

I2C uses two signal lines to connect with other devices: Serial DAta line (SDA) and
Serial CLock line (SCL), both ground (GND) referenced. The SCL line synchronizes
all bus transfers while SDA carries the transferred data. Both SDA and SCL are
open collector lines, requiring external Pull-up resistors. Figure 7.4 shows a basic
I2C topology with two masters and three slaves interconnected.

VDD

SDA

SCL

Slave 1 Slave 2 Slave 3

SDA SCL SDA SCL SDA SCL

CLK1

Data1

CLK2

Data2

I
2
C

Master 1

I
2
C

Master 2

Rp Rp

Figure 7.4: I2C multimaster-multislave structure (Source: Introduction to Embed-
ded Systems, M. Jiménez, R. Palomera, I. Couvertier)

In an I2C protocol, the devices are software addressable, through a 7- or 10-bit
address field. These number denote the maximum quantity of devices that can be
accommodate on the bus but also, the number of devices is limited by the total
bus capacitance. This capacitance also limits the maximum speeds that can be
reached by the bus. Some predefined speeds for the protocol: are the standard
speed (100Kbps) and the fast speed (400Kbps).

In I2C, the master device controls the communication process. It defines the slave to
communicate with, whether the data will be transmitted or received, and generating
the necessary clock signals for the data transmission.

A typical structure of an I2C packet is shown in Figure 7.5. The Figure denotes the

76



EXPERIMENT 7. SERIAL COMMUNICATION

start condition sent by the master, the slave address field followed by the bit that
indicates the communication direction (read or write). Then, the ACK sent by the
slave, the data packets sent by the master, the ACK response from the slave in each
packet received, and the stop condition.

S

R

/

W

A

C

K

A

C

K

A

C

K

P
Slave Address

(by Master)

Character Data

(by transmitter)

Character Data

(by transmitter)

Acknowledgement Bit

(by receiver)
Stop

(by Master)

Start

(by Master)

Read/Write

(by Master)

msb msb msblsb lsb lsb

Figure 7.5: I2C message structure (Source: Introduction to Embedded Systems, M.
Jiménez, R. Palomera, I. Couvertier)

See class’s book Section 9.4.2 (The Inter-Integrated Circuit Bus: I2C) for a detailed
and deep explanation about an I2C architecture and interface.

7.2 Basic Exercises

7.2.1 Asynchronous Serial Communication (UART)

In this exercise, we will use a USB-to-UART cable for sending characters to a per-
sonal computer (PC) using asynchronous serial communication.

Follow the steps outlined below:

1. Locate the TX and RX signal pins in your MCU and connect them to the
computer using a USB-to-UART cable. Be sure that the voltage logic of the
cable corresponds to the operating voltage of your MCU. Do not forget to
connect the GND to the USB-to-UART cable.

2. Open a HyperTerminal on your computer or other RS-232 communication
program (Putty) and configure it for:

• Baud rate: 9600 bauds

• Data bits: 8

• Parity bit: none

• Flow control: none

3. Open your IDE.

77



Embedded Systems Design Laboratory Manual

4. First, configure the baud rate on your MCU (The serial configuration in the
MCU must match those of the other device we wish to communicate to):

• Configure the baud control register; that is, select the clock source and
specify the prescaler and divider values.

5. Next, configure the UART for asynchronous transmission:

• In the control register specify the mode to be asynchronous.

• Enable the transmitter and global USART module.

• Configure the pins selected on your MCU to work with the UARTmodule.

6. Write a program to write a character into the UART transmitter via polling.
You can use the flowchart in Figure 7.6 as a guide for your code.

Start

UART Empty?

TX BUFF = Character

End

No

Yes

Figure 7.6: UART data transmit flowchart (polling)

7. Compile your code and verify that it does not contain any errors.

8. Run your code and verify if the PC received the transmitted character.

9. Now, modify your code to send over the UART the string: “Hello World!”.
Develop a subroutine for your code. Use a delimiting character to denote the
end of the message (eg. EOT or CR).

7.2.2 Sending and Receiving Characters via UART

In this part, you will send and receive characters from a PC using an asynchronous
serial communication.

78



EXPERIMENT 7. SERIAL COMMUNICATION

Follow the steps outlined below:

1. Use the same setup as the basic exercise developed before “Asynchronous Serial
Communication (UART)”.

2. Connect an LCD to your MCU as you did in previous experiments.

3. Open your IDE.

4. Modify the configuration procedure outlined in the previous section to enable,
in the control register, the receiver side of the UART module.

5. Write a program that receives a character using interrupts and displays them
on the LCD. To complete this task, you could write the received character
directly onto the LCD upon reception. Another way could be using a memory
buffer, where received characters are stored in the buffer and having a function
to dump the buffer contents into the LCD.

6. Compile your code and verify that it does not contain any errors.

7. Run your code and verify if that the PC is able to send a character to your
MCU and the LCD shows the received character.

8. Now, modify your code to receive a 16-character-lower-case message from the
PC and display it on the LCD. The message must be returned to the PC via
UART in upper case.

7.2.3 Synchronous Serial Communication (I2C)

In this section you will use an I2C channel to read the time registers from a Real-
Time Clock (RTC) device (DS1307). The DS1307 is a real-time clock-calendar chip
that communicates with the MCU through I2C.

Follow the steps outlined below:

1. Identify and available I2C port in your MCU and connect the RTC to it ac-
cording to the schematic shown in Figure 7.7.

2. Open your IDE.

3. Configure the baud rate of your MCU in low speed mode (10 kbps):

• Configure the baud control registers with the prescaler value and baud
rate clock source.

79



Embedded Systems Design Laboratory Manual

Figure 7.7: Interface for a DS1307 to your MCU via I2C bus.

• Configure the baud rate generator number necessary for the desired baud
rate. If your MCU uses a timer for generating the baud rate, program-
ming that timer.

4. Configure the USART for synchronous I2C communication:

• In the USART control registers choose a synchronous operating mode.

• Program the corresponding pins to work with I2C protocol.

• Configure your MCU in Master Mode.

• Note that to read data from the DS1307 it is necessary to initially send
the device’s address byte with bit0 in 1. Then, send the register address
to be read. Figure 7.8 shows a timing diagram of the reception of a byte
from a slave device.

• Note that to write data on the DS1307 it is necessary to send the device’s
address byte with bit0 in 0. Then send the register address to be modified
and the data that will be stored in the register. Figure 7.9 shows a timing
diagram of the transmission of a byte to a slave device.

5. Now, write a program to ask the DS1307 for its current time and display it
constantly on the LCD in format “HH:MM:SS”. Note that this exercise did
not set the time (and date) on the chip, therefore the time value read will
correspond to the time elapsed after the last power-up.

6. Compile your code and verify that it does not contain any errors.

7. Run your code and verify if the LCD displays the read time.

8. Later, modify your code to show the time in the first line and the date in the
second line of your LCD.

80



EXPERIMENT 7. SERIAL COMMUNICATION

A7 A6 A5 A4 A3 A2 A1
R/W

1

0

1

0

SDA

SCL

READING ONE BYTE FROM A SLAVE

(0)

ACK

1

0
SDA

S

M
A

S
T

E
R

S
LA

V
E

D6 D5 D4 D3 D2 D1D7 D0

ACK

Slave Address Word Address

A7 A6 A5 A4 A3 A2 A1
R/W

P

1

0

1

0

SDA

SCL

(1)

D6 D5 D4 D3 D2 D1D7 D0ACK

1

0
SDA

S

M
A

S
T

E
R

S
LA

V
E

ACK

Slave Address

Data

P
1

st
 S

e
q

u
e

n
ce

2
n

d
 S

e
q

u
e

n
ce

Figure 7.8: Timing diagram to read a byte from a slave (Source: Mastering the I2C
Bus, V. Himpe)

A7 A6 A5 A4 A3 A2 A1 D6 D5 D4 D3 D2 D1D7 D0ACK
R/W

ACK P

1

0

1

0

SDA

SCL

WRITING ONE BYTE ON A SLAVE

(0)S D6 D5 D4 D3 D2 D1D7 D0 ACK

Slave Address Word Address Data

M
A

S
T

E
R

Figure 7.9: Timing diagram to write a byte to a slave (Source: Mastering the I2C
Bus, V. Himpe)

7.3 Complementary Tasks

7.3.1 Digital Alarm Clock

The activity consists of using a DS1307 to make a programmable alarm clock. The
clock shall use keys UP, DOWN, and ENTER to configure the current time, date,
and desired alarm upon reset. When the system turns-on, a user shall be able to
configure the alarm. Upon setup, the current date shall be displayed on the top line
of the LCD and the time on the bottom line. Use the ENTER key to toggle between
alarm and current time&date. When the current time matches the alarm time, an
audible sound must be produced through a buzzer to indicate that the set time has
been reached. The ENTER key must turn the alarm sound off. You can use the
block diagram shown in Figure 7.10 as a reference to connect your system.

81



Embedded Systems Design Laboratory Manual

Figure 7.10: Digital Alarm Clock Diagram

Presentation and Report

Each basic exercise and complementary task must be presented to the TA before
the initiation of the next laboratory experiment. The demonstration must be made
personally in the lab and including the hardware and software components needed
for its completion.

An electronic report that includes the following information about the complemen-
tary task must be presented to the TA:

• Software plan and explanation (pseudocode or flowchart)

• Connection schematic with component calculations

• Code listing with comments.

• Additional information used to complete the task (Web pages, datasheets,
books, etc.)

82



Experiment 8

Data Converters (DAC & ADC)

Objectives

• Understanding the uses of DAC and ADC in embedded applications

• Understanding how to operate a DAC

• Using a DAC to generate different voltages and signal waveforms

• Identifying and understanding the architecture of an ADC and how to operate
it from an MCU

• Using an ADC module to read analog signals that comes from electronic de-
vices such as sensors

Duration

• 2 Hours in the laboratory and extra time for complementary tasks

Materials

Table 8.1: Bill of materials for completing Lab. 8

Item # Qty Description Reference
1 1 Development board
2 1 IDE application
3 1 LCD display: 2 lines, 16 characters W/HD 44780 Controller
4 1 Light Emitting Diode 5mm Red LED
5 1 1/4W Carbon fill resistor 330 Ω
6 4 1/4W Carbon fill resistor 2.4 KΩ
7 1 1/4W Carbon fill resistor 4.7 KΩ
8 1 1/4W Carbon fill resistor 10 KΩ

83



Embedded Systems Design Laboratory Manual

Table 8.1: Continued

9 1 Non-polarized ceramic capacitor 0.1nF
10 1 Momentary switch Pushbutton
11 1 Operational amplifier LM358
12 1 Analog temperature sensor LM35
13 1 Digital-to-analog converter DAC0808

8.1 Introduction

8.1.1 Data Converters

Data converters allow for interfacing digital systems to the analog world. Many
embedded applications need to interact with analog processes to either receive in-
formation about their status, level, or behavior; or to control their status, level or
how they behave. In either case, the discrete nature of a digital system requires
converting the data format from or to the analog domain to enable operation. This
requirement calls for the usage of data converter circuits. Figure 8.1 illustrates a
typical signal processing chain denoting the position of the required data converters.

Figure 8.1: Signal Processing Chain

Data converters can be found in the form of Digital-to-Analog Converter or Analog-
to-Digital Converter where the first is used for transforming a digital code into a

84



EXPERIMENT 8. DATA CONVERTERS (DAC & ADC)

analog voltage and the second is used for converting an analog voltage into a digital
code.

8.1.2 Digital-To-Analog Converters (DAC)

A digital-to-analog converter (DAC) is a device that converts a binary code presented
to its input into a discrete voltage value. The specific voltage resulting from a
particular digital code will depend on the DAC resolution and the reference voltage
it uses. Embedded microcontrollers usually do not include DAC modules. DACs
are usually provided via external ICs interfaced to MCUs. A block representation
for an n-bit DAC is presented in Figure 8.2 where a digital input is transformed into
an analog output.

Figure 8.2: DAC Block Diagram

Internal DAC Structure

The internal structure of a DAC is conceptually simple. It includes a voltage ref-
erence, a resistor network to break down the reference voltage into binary-weighted
voltage values, and some form of analog accumulation to add up the binary-weighted
voltages according to the binary code being converted into analog. The most intu-
itive way of implementing a DAC is provided by a binary-weighted resistor network.

A Binary-Weighted resistor DAC uses an operational amplifier in adder configu-
ration to perform the accumulation of the voltages provided by the resistor network
as shown in Figure 8.3. In this configuration, the output voltage is composed of
the sum of the input voltages where each input uses a different resistor value to
represent the binary weights. The output voltage is:

V o =
2Rf

R
VRN, (8.1)

85



Embedded Systems Design Laboratory Manual

where N is the digital code represented by the inputs in the DAC and VR the
reference voltage. The major problem with this configuration is the wide range of
resistors needed for its construction.

Figure 8.3: Binary-Weighted resistor diagram

An R-2R or resistor ladder DAC uses a resistor network made-up of only two
different resistor values as shown in Figure 8.4. The set of switches S1 . . . Sn allow for
connecting each resistor to the Op-Amp adder inputs to generate an output voltage
that corresponds to the digital input code specified with lines a0 . . . an−1. In this
configuration the output voltage is:

V o =
VRef

2n
(

2n−1an−1 + 2n−2an−2 + · · ·+ 2a1 + a0
)

(8.2)

The advantage of this configuration with respect to the Binary-Weighted resistor
circuit is the use of only two resistor values independently from the number of
digital inputs.

8.1.3 Analog-To-Digital Converters (ADC)

An analog-to-digital converter (ADC) is a device that converts an input voltage
into a digital code. The specific code resulting from a particular analog voltage will
depend on the ADC resolution and the reference voltage it uses. Figure 8.5 shows
a basic block representation for an ADC module where an analog input, selected
through a multiplexer, is converted into a n-bit digital code. The ADC module uses

86



EXPERIMENT 8. DATA CONVERTERS (DAC & ADC)

Figure 8.4: R-2R diagram

an input signal to start the conversion (START) and it generates a flag when the
conversion has finished (EOC). Most microcontrollers include multi-channel ADC
modules among its embedded peripherals but commercial off-the-shelf ADC chips
are also available to be interfaced with MCUs.

Figure 8.5: ADC Block Diagram

ADC Topologies

ADCs have been implemented using different types of circuits topologies where each
topology has its own characteristics, advantages, and disadvantages. For example,
Flash ADCs are the fastest ones but consume a large amount of power due the usage
of 2n− 1 comparators. Likewise, there are other topologies such as two-steps ADC,
pipeline ADCs, Slope ADC, sigma-delta converters, among others.

87



Embedded Systems Design Laboratory Manual

One of the most popular ADC architecture, embedded as a module in many mi-
crocontrollers, is the Successive Approximation (SA) ADC. This module is
composed of a successive approximation register (SAR), a clock signal, a DAC mod-
ule, and an operational amplifier in comparative voltage mode, as shown in Figure
8.6. In a SA ADC, the n-bits are determined from MSB to LSB in n steps by
comparing the analog input with mid levels of successive region intervals.

Figure 8.6: Successive Approximation ADC block diagram

The main advantage of the SA ADC is that the circuit complexity and power dissi-
pation are less than those found in most other types of ADC topologies. One of its
drawbacks is that eventually the comparator must do a comparison within 1LSB of
precision, and precautions must be taken to deal with noise.

The sequential steps in a SA DAC to convert a voltage value is illustrated in Figure
8.7, which corresponds to 4-bit DAC. In step 1, the input voltage is compared with
the mid level 1000 of the full scale region. Due to the input voltage being lower than
the DAC output, the MSB is turned to 0. In step 2, the DAC output corresponds
to a 1/4 of the scale (mid level of the already determined region 0100) and as the
input voltage is greater, the third bit remains as 1. In step 3, the input voltage is
less than the DAC output (0110) converting the second bit from 1 to 0. Finally, in
step 4, as the input voltage is greater that the DAC output (0101), the LSB remains
1. This indicates that an N-bit SAR ADC will require N comparison periods. The
increment or decrement rate of the bits is controlled by the clock.

88



EXPERIMENT 8. DATA CONVERTERS (DAC & ADC)

Figure 8.7: SAR Operation

8.2 Basic Exercises

8.2.1 Generating Voltages Using a DAC

The purpose of this exercise is to demonstrate the operation of a DAC by generating
different voltage levels using the DAC0808. A DAC0808 is a 8-bits digital-to-analog
converter with an analog output current.

Follow the steps outlined below:

1. Connect the DAC to your MCU according to the schematic shown in Figure
8.8. Define the reference voltages for the DAC with VCC as the positive
voltage and GND for the negative. The circuit is composed by a DAC0808 that
requires a 5V, -15V, and a 8-bit input signal for its operation. An operational
amplifier, in current to voltage converter configuration, must be connected to
the DAC output to convert the output current in a voltage value.

2. Open your IDE.

3. Configure the MCU pins connected to the DAC as outputs.

4. Make a look-up table with the hexadecimal values in Table 8.2.

5. Write a program that sends the appropriate hexadecimal value to the DAC
using a timer function. The timer must change the value that appears in the
output port each one second. To handled the timer, you must created an ISR.
The binary value sent to the DAC must be displayed on the LCD.

6. Compile and verify that your code does not contain any errors.

89



Embedded Systems Design Laboratory Manual

Figure 8.8: Block diagram for DAC connection

7. Run your code and verify if the voltage in the DAC changes.

8. Measure the DAC output voltage in each case and compare it with the expected
value from the DAC according to binary number presented in its input. Cal-
culate the percentage of error for each measurement. Complete the Table 8.2
and plot the Vout. Investigate how to calculate the expected output voltage
from the DAC (Vout = f{Ai, V REF}).

Table 8.2: DAC Values

Hex Value Expected Voltage Measured Voltage % Error
00
17
2E
45
5C
73
8A
A1
B8
CF
E6
FF

9. Now, modify your code to produce a sinusoidal wave with a frequency of 500Hz
and peak-to-peak voltage of 3.3V.

90



EXPERIMENT 8. DATA CONVERTERS (DAC & ADC)

8.2.2 Reading Voltages

In this part, you will Read different voltages from analog devices such as poten-
tiometers using the MCU internal ADC peripheral.

Follow the steps outlined below:

1. Connect the potentiometer to your MCU according to the block diagram in
Figure 8.9. The voltage source to be connected to the potentiometer must
match the voltage range selected for your MCU ADC module.

Figure 8.9: Schematic Potentiometer to ADC

2. Verify if the I/O port where the potentiometer is connected has ADC capabil-
ities, if not, move it to an input that does.

3. Open your IDE.

4. Configure the ADC to use full resolution. Take into account the number of
bits of your ADC module.

5. Write a code to read the ADC and display the read value in hexadecimal
format into the LCD. Use a refresh ratio of 1 second to read the ADC value.

6. Compile and verify that your code does not contain any errors.

7. Run your code and verify if the value displayed in the LCD change when you
turn the potentiometer.

8. Now, modify your code to display in the second line of the LCD the decimal
voltage value that corresponds to the hexadecimal value being read. Complete
the Table 8.3 and compare the voltage that appears on the LCD with the
ADC input voltage for each case. Calculate the percentage of error for each
measurement and explain the mismatch.

91



Embedded Systems Design Laboratory Manual

Table 8.3: ADC Values

Input Voltage Decimal Value Measured Voltage % Error
VCC*0.1
VCC*0.2
VCC*0.3
VCC*0.4
VCC*0.5
VCC*0.6
VCC*0.7
VCC*0.8
VCC*0.9
VCC*1.0

8.2.3 Analog-Digital Dimmer

The objective of this part is controlling the brightness of an LED using a reference
voltage from a potentiometer.

Follow the steps outlined below:

1. Connect the potentiometer and the LED according to the schematic in Figure
8.10. Take into account the same consideration, mentioned in the previous
exercise, for the voltage source to be connected to the potentiometer.

Figure 8.10: Schematic Potentiometer and LED to the MCU

2. Verify if the I/O port where the LED is connected has PWM capabilities, if
not, move the LED to an output pin that has.

3. Open your IDE.

4. Configure the PWM module to produce a square signal of 1000Hz. Do not

92



EXPERIMENT 8. DATA CONVERTERS (DAC & ADC)

forget to configure the Timer associated and the correct PWM mode of oper-
ation.

5. Configure the ADC to use the full resolution. Take into account the number
of bits of your ADC Module.

6. Produce a code that modifies the LED brightness proportionally to the voltage
value being read by the ADC module in your MCU. When the ADC reads a
decimal value of 0V, the LED brightness must be set to 0% and when it reads
a value that corresponds to VCC, the brigthness must be set to 100%.

7. Compile your code and verify that it does not contain any errors.

8. Run your code and verify if the brightness in the LED changes with the cor-
responding reference voltage.

9. Now, modify your code and circuit to include an LCD. The LED brightness
level must appear on the first line and a warning message must appear on the
second line when the lower or maximum brightness level are reached.

8.3 Complementary Tasks

8.3.1 Digital Temperature Meter

The activity consists of using the ADC module in your MCU and the temperature
sensor LM35 to create a digital temperature meter. The system must have the
capability of displaying the current ambient temperature into an LCD in Celsius
(◦C) or Fahrenheit (◦F) units. To select the temperature unit, provide a pushbutton
that allows toggling between the two temperature units. Take into consideration that
the temperature range for the application is between 0◦C (32◦F) to 45◦C (113◦F).
You must use the full range of your ADC to measure the temperature; The minimum
value of your ADC must correspond to the lowest temperature and the maximum
value must correspond to the highest temperature. You shall use a signal conditioner
to adapt the signal from the temperature sensor to your ADC range. Investigate
how to implement a signal conditioner (sc) with operational amplifiers. You can use
the block diagram shown in Figure 8.11 as a reference for connecting your system.

93



Embedded Systems Design Laboratory Manual

Figure 8.11: Digital temperature meter diagram

Presentation and Report

Each basic exercise and complementary task must be presented to the TA before
the initiation of the next laboratory experiment. The demonstration must be made
personally in the lab and including the hardware and software components needed
for its completion.

An electronic report that includes the following information about the complemen-
tary task must be presented to the TA:

• Software plan and explanation (pseudocode or flowchart)

• Connection schematic with component calculations

• Code listing with comments.

• Additional information used to complete the task (Web pages, datasheets,
books, etc.)

94



Appendix A

Using an MCU to Read
Incremental Encoders

An incremental encoder is an electromechanical device that can be used to mea-
sure the movement, position, and displacement of a rotational or linearly moving
mechanical component. In rotations parts, an incremental encoder can measure
rotation directions and converts angular position and angular displacement into
digital pulses. An incremental encoder has two outputs in quadrature, i.e., two out-
puts with a 90◦ phase shift between them. These outputs results from the optical
or mechanical detection of two patterned tracks with a 90◦ geometric shift between
them. Sample tracks and pulse trains are illustrate in Figure A.1.

Track A

Track B

Stream A

Stream B

90°

Figure A.1: Output waveforms of an incremental encoder

Detecting movement in either direction from the signal stream only requires deter-
mining the order of signal edges in streams A and B and encoding them with a
binary code. The positions of the shaded regions generate a Gray binary code.

Figure A.2 shows the waveform streams A and B labeled for rotations sequences
in counter clockwise (CCW) and clockwise (CW) directions. Red and blue arrows
denote the edge sequences for each direction.

A sequence begins when signals A and B are in the same state. For example, in

95



Embedded Systems Design Laboratory Manual

A

B

1 2 3 4 1 2 3 4CCW 

sequence 

start

CW 

sequence 

start

Figure A.2: Rotation sequence for CCW and CW directions

Figure 2, the CCW sequence begins at state ’00’ while the CW begins at ’11’.
New sequence values are detected through signal edges in either of the streams.
A sequence ends when its four states have been generated. At this point a new
sequence begins by repeating the codes from the initial states. Measuring the time
between state changes allows obtaining the rotation speed. Tables A.1 and A.2
below show the sequences for CCW and CW rotations.

Table A.1: CCW sequence values

A B Value
0 0 0
0 1 1
1 1 3
1 0 2

Table A.2: CW sequence values

A B Value
1 1 3
0 1 1
0 0 0
1 0 2

To read the state values and detecting the sequence changes with an MCU it requires
using two interrupts enabled i/O lines. The I/O lines levels indicate the state code
and the interrupt capability allows detecting code changes. The interrupt needs to
be configured so that it is triggered by any change in the encoder lines. This shall
allow detecting both, the rising and falling edges of either signal. If the rotational
speed were also interest, a timer could be used to measure the time between edges.
Multiplying the time between edges (tedge) by the number of the steps in the wheel
yields the rotational period. For the sample wheel illustrated in Figure 1, two
consecutive interrupts represent 1/16 of the wheel rotation, thus 16 times tedge is
one revolution.

To determine the rotation direction it is required to know the state of A and B
before and after the occurrence of an edge. Combining the two two-bit codes, a
four-bit identifier is obtained, which provides for any possible result in the sequence.
Tables A.3 and A.4 list the values for the CCW and CW sequences. Not that each
4-bit code represents a state change in which only one bit changes before and after
the edge. Recall that the encoder produces a Gray sequence, and therefore only one

96



APPENDIX A. USING AN MCU TO READ INCREMENTAL ENCODERS

bit is allowed to change between consecutive states.

Table A.3: 4-bit codes for CCW
sequence

Aold Bold Anew Bnew #(old:new)
0 0 0 1 1
0 1 1 1 7
1 1 1 0 14
1 0 0 0 8

Table A.4: 4-bit codes for CW se-
quence

Aold Bold Anew Bnew #(old:new)
1 1 0 1 13
0 1 0 0 4
0 0 1 0 2
1 0 1 1 11

To write a software function for determining the rotation direction and wheel po-
sition, we could use a lookup table (LUT). The 4-bit values resulting from the
before and after codes could be used as to index the table, and the entries would
be either +1, -1, or 0 for representing CW, CCW or no movement conditions, re-
spectively. Table A.5 shows such a LUT. Assuming the wheel started moving form
a known “home” position (index hole and detector might be needed), adding the
value fetched from the lookup table on each edge interrupt, we can have the absolute
wheel position any time.

Table A.5: Lookup table to detect the direction of rotation and absolute position

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Value 0 +1 -1 0 -1 0 0 +1 +1 0 0 -1 0 -1 +1 0

97



Embedded Systems Design Laboratory Manual

98



Bibliography

[1] Enrique Palacios Municio, Fernando Remiro Domı́nguez, and Lucas J
López Pérez. Microcontrolador PIC16F84: desarrollo de proyectos. México,
DF:. Alfaomega;, 2009.

[2] Manuel Jimenez, Rogelio Palomera, and Isidoro Couvertier. Introduction to
Embedded Systems using Microcontrollers and the MSP430. Springer, 2014.

[3] Eduardo Garćıa Breijo. Compialdor C CCS y simulador Proteus para Micro-
controladores PIC. España, Barcelona: Marcombo S.A., 2009.

[4] Maxim Integrated. Understanding sar adcs: Their architecture and comparison
with other adcs. Technical report, 2001.

[5] Firas Mohammed Ali. Experiments in Computer and Microcontroller Applica-
tions. Department of Electrical Engineering, University of Technology, 2013.

[6] Berkley Lab. Electrical Safety Manual. Lawrence Berkley National Laboratory,
2015.

[7] EUV. High Voltage Safety Manual. Colorado State University.

[8] NIST. EEEL Safet Rules for Moderate and High Voltages. National Institution
of Standars and Technology, 2008.

[9] Environmental Health & Safety. Electrical Hazards. Standford University, 2004.

[10] Samuel M. Goldwasser. Safety Guidlines for High Voltage and/or Line Powered
Equipment, 2010.

[11] Raymond M Fish, Leslie Alexander Geddes, and Charles F Babbs. Medical
and bioengineering aspects of electrical injuries. Lawyers & Judges Publishing
Company, 2003.

99



Embedded Systems Design Laboratory Manual

[12] American Heart Association, International Liaison Committee on Resuscita-
tion, et al. Guidelines 2000 for cardiopulmonary resuscitation and emergency
cardiovascular care, an international consensus of science. Circulation, 102,
2000.

[13] Department of Physics and Astronomy. Electric Shock. Georgia State Univer-
sity, 2014.

[14] Hd44780u (lcd-ii). HITACHI. https://www.sparkfun.com/datasheets/LCD/
HD44780.pdf. Accessed: 2016-03-25.

[15] Lcd 16x2 (wh1602b2-tm1-et#). http://www.mouser.com/ds/2/272/

-364177.pdf. Accessed: 2016-03-25.

[16] Ps1240p02ct3. TDK. https://product.tdk.com/info/en/catalog/

datasheets/ef532_ps.pdf. Accessed: 2016-03-25.

[17] Dc56-11ewa. KINGBRIGHT. http://www.us.kingbright.com/images/

catalog/spec/DC56-11EWA.pdf. Accessed: 2016-03-25.

[18] Wp154a4sureqbfzw. KINGBRIGHT. https://www.kingbrightusa.com/

images/catalog/spec/WP154A4SUREQBFZGW.pdf. Accessed: 2016-03-25.

[19] Rpr-220. ROHM. http://rohmfs.rohm.com/en/products/databook/

datasheet/opto/optical_sensor/photosensor/rpr-220.pdf. Accessed:
2016-03-25.

[20] Ds1307. MAXIM INTEGRATED. http://datasheets.maximintegrated.

com/en/ds/DS1307.pdf. Accessed: 2016-03-25.

[21] Max3232. MAXIM INTEGRATED. http://pdfserv.maximintegrated.com/
en/ds/MAX3222-MAX3241.pdf. Accessed: 2016-03-25.

[22] Parallax standard servo (#900-00005). PARALLAX.
https://www.parallax.com/sites/default/files/downloads/

900-00005-Standard-Servo-Product-Documentation-v2.2.pdf. Accessed:
2016-03-25.

[23] L293d. TEXAS INSTRUMENTS. http://www.mouser.pr/ProductDetail/

Texas-Instruments/L293DNE/?qs=sGAEpiMZZMtYFXwiBRPs0wSafWlCmJbc.
Accessed: 2016-03-25.

[24] Dac0808. TEXAS INSTRUMENTS. http://www.ti.com/lit/ds/symlink/

dac0808.pdf. Accessed: 2016-03-25.

100



BIBLIOGRAPHY

[25] Lm35. TEXAS INSTRUMENTS. http://www.ti.com/lit/ds/symlink/

lm35.pdf. Accessed: 2016-03-25.

101



Appendix B

Laboratory Tests

B.1 Control Group Laboratory Pre- and Post-tests

192



PRE AND POST TEST  ICOM 4217 

LABORATORY N°1 

INTRODUCTION AND HIGH VOLTAGE SAFETY TUTORIAL 

 

1. Explain with your own words, what is high voltage? 

 

 

2. Indicate the average value of the human skin resistance. 

 

 

3. Write a formula to calculate the total human body resistance. 

 

 

4. Indicate at least two fatal high voltage injuries and briefly explain them. 

 

 

LABORATORY N°2 

IDE, ASM/C Programming & IO 

1. Explain with your own words: 

What is a code editor? 

 

What is a compiler? 

 

2. Illustrate the two basic configurations to connect a push button to a MCU 

input pin. 

Pull-Up Pull-Down 

  

 

3. Sketch a flow diagram to turn on and turn off an LED every 0.5 seconds. 

 

4. Complete the following information related with the LCD used in the 

laboratory experiment (Liquid Crystal Display). 

 

Number of Control Pins  

Number of Data Pins  

Number of screen lines  

Number of Character per line  

Number of operation modes  



PRE AND POST TEST  ICOM 4217 

LABORATORY N°3 

INTERRUPT & SWITCH DEBOUNCING 

 

1. Explain with your own words: 

What is an interrupt?  

 

 

2. Describe briefly the procedure to configure interrupts in a typical MCU. 

 

 

3. Explain one of the two techniques used to prevent the debouncing 

phenomena in a switch or button. 

 

 

4. Compare the two common techniques used to prevent the bouncing in term 

of external components needed. Which is better and explain why. 

 

 

 

 

LABORATORY N°4 

TIMERS AND APPLICATIONS 

 

1. Explain in your own words: 

What is a Timer and how does it works?  

 

 

2. If you have a source clock of 1MHz, estimate the maximum delay time that 

you can obtain if you are using a 10-bit timer? 

 

 

3. Sketch a flow diagram for the operation of a timer by polling. 

 

 

4. Taking into account the basic elements of a timer (Pre-scaler, counter, 

comparator and clock sources) sketch the block diagram of a timer module. 

 

 

  



PRE AND POST TEST  ICOM 4217 

LABORATORY N°5 

LOW-POWER MODES, LED DISPLAY TECHNIQUES & KEYPADS 

 

Random ID: _______________________ 

 

1. Explain in your own words: 

What is the function of the low-power mode? List three modules or parts of an 

MCU affected by the low-power mode. 

 

 

2. Given the following circuit, enclose the path that you consider the most 

suitable for measuring the MCU’s total current and explain your choice. 

 
3. Given the following circuit, list or deduct the sequence of steps to display the 

number 15 into the two 7-segments. 

 
a. 

b. 

c. 

d. 

e. 

f. 

g. 

h. 

i. 

 



PRE AND POST TEST  ICOM 4217 

4. Given a 3x4 keypad, sketch a schematic to properly connect a keypad to the 

MCU. 

 

 

LABORATORY N°6 

INTRODUCTION TO SERIAL COMMUNICATIONS 

 

Random ID: _______________________ 

 

1. Explain in your own words: 

What is the difference between Synchronous and Asynchronous Serial 

communications? Sketch the block diagram for both cases. 

 

 

2. List at least 4 serial communication protocols 

a.  

b.  

c.  

d.  

 

3. A communication process needs to be established between two devices that 

are separate by a distance of 50 meters. One device has 5 free pins to establish 

communications, but the other only have 3 pins. The wire connection is carried 

out with a low capacitance cable. Which serial communication protocol would 

you recommend to use, and why? 

 

 

4. In the SPI serial communication protocol, there are many necessary signals to 

establish a communication between two devices as shown in the figure below. 

Explain the function of each signal. 

 



B.2 Experimental Group Laboratory Pre- and Post-tests



Pre&Post TEST  ICOM 4217 

  1 

LABORATORY N°1 

HIGH VOLTAGE SAFETY TUTORIAL 

 

1. Explain with your own words, what is high voltage? 

 

 

 

2. Indicate the average value of the human skin resistance. 

 

 

 

3. Write a formula to calculate the total human body resistance. 

 

 

 

4. Indicate at least two fatal high voltage injuries and briefly, explain them. 

 

LABORATORY N°2 

IDE, GPIO, and LCD 

 

1. Explain with your own words: 

· What is a code editor? 

 

 

· What is a compiler? 

 

 

2. Illustrate the two basic configurations to connect a push button to an MCU input 

pin. 

 

Pull-Up Pull-Down 

  

 

3. Sketch a flow diagram to turn On a LED during 0.25 seconds and later turn Off 

the LED during 0.5 seconds. Do not forget the peripheral configuration phase. 

 

  



Pre&Post TEST  ICOM 4217 

  2 

4. Complete the following information related with the LCD used in the laboratory 

experience (Liquid Crystal Display). 

 

· Number of control pins  

· Number of data pins  

· Number of screen lines  

· Number of character per line  

· Number of operation modes  

 

 

LABORATORY N°3 

INTERRUPT, SWITCH DEBOUNCING, and KEYPAD 

 

1. Explain with your own words: 

· What is an interrupt? 

 

 

 

2. List the steps to configure interrupts in a typical MCU. 

a) __________________________ 

b) __________________________ 

c) __________________________ 

d) __________________________ 

 

3. Explain one of the two common techniques used to prevent the bouncing 

phenomena in a switch or button. 

 

 

 

 

 

4. Given a 4x3 keypad, sketch a block diagram that describe the connections to be 

made if the keypad will be connected to an MCU. Do not forget the supply voltages 

and extra components such as diodes and resistors. 

 

 

  



Pre&Post TEST  ICOM 4217 

  3 

LABORATORY N°4 

TIMERS and LEDs 

 

1. Explain in your own words: 

· What is a Timer and how does it work? 

 

 

2. Taking into account the basic elements of a timer (Pre-scaler, binary counter, 

comparator, compare register, and clock sources) sketch the block diagram of a 

Timer module. 

 

 

 

3. Sketch a flow diagram to turn On and turn Off a LED attached to a pin using a 

timer by polling. Do not forget the peripheral configuration phase. 

 

 

 

4. Given the following circuit, list or deduct a sequence of steps to display the 

number 15 using two 7-segments. 

 

 
 

a)  

b)  

c)  

d)  

e)  

f)  

g)  

h)  

i)  



Pre&Post TEST  ICOM 4217 

  4 

LABORATORY N°5 

LOW-POWER MODES and PWM 

 

1. Explain in your own words: 

· What is the function of the low-power mode? List three modules of an MCU 

affected by a low-power mode. 

 

 

 

 

 

 

2. Explain in your own words: 

· What is PWM? Explain the meaning of the acronym and the function of a PWM 

module 

 

 

 

 

 

3. Taking into account the basic structure of a Timer module, sketch the block 

diagram of a PWM module. Do not forget include the High count register and the 

n-bit hardware comparator. 

 

 

 

 

 

 

4. List three application that can be implemented with a PWM module. 
 

a) _________________________________________________________ 
 

b) _________________________________________________________ 
 

c) _________________________________________________________ 

 

 

  



Pre&Post TEST  ICOM 4217 

  5 

LABORATORY N°6 

MOTORS INTERFACING 

 

1. Explain in your own words: 

· What is an electric motor? Also, list three machines or applications that use 

electric motors. 

 

 

2. A DC motor can be controlled an H-bridge. Sketch the schematic of an H-

Bridge using transistors, diodes, and resistors. Do not forget the supply voltages, 

and input signals. 

 

 

 

 

 

 

3. List the four main components that are part of a Servo-motor and explain, 

briefly, how a servo-motor is controlled. 

a)  

b)  

c)  

d)  

 

4. Based on the given steps, deduct the missing steps for completing a half step 

sequence used in the control of a stepper motor. Also, sketch the schematic used 

to connect a stepper motor to an MCU. Do not forget the supply voltages, and 

input signals. 

 

 Steps 

Half Step 1 2 3 4 5 6 7 8 

(4) Coil 1  0     1 

(3) Coil 0  1     0 

(2) Coil 0  0     0 

(1) Coil 0  0     1 

 

 

  



Pre&Post TEST  ICOM 4217 

  6 

LABORATORY N°7 

COMMUNICATIONS & I2C 

 

1. Explain in your own words: 

· What is the difference between Synchronous and Asynchronous Serial 

communications? Sketch the block diagram for both cases. 

 

 

2. List at least 4 serial communication protocols 

a) ____________________________ 

b) ____________________________ 

c) ____________________________ 

d) ____________________________ 

 

3. A communication process needs to be established between two devices that are 

separate by a distance of 50 meters. One device has 5 free pins to establish 

communications, but the other only have 3 pins. The wire connection is carried out 

with a low capacitance cable. Which serial communication protocol would you 

recommend to use, and why? 

 

 

 

4. In the I2C serial communication protocol, there are many necessary signals to 

establish a communication between two devices as shown in the figure below. 

Explain the function of each signal. 

 

 
 

  



Pre&Post TEST  ICOM 4217 

  7 

LABORATORY N°8 

DATA CONVERTERS (DAC & ADC) 

 

1. Explain in your own words: 

· What is the importance of using DAC and ADC modules in embedded 

systems? explain the meaning of acronyms 

 

 

 

 

 

2. Explain the main difference between a DAC and an ADC. Sketch the respective 

block diagram for each one. 

 

 

 

 

 

 

3. An ADC module in an MCU is reading an analog voltage that comes from a 

temperature sensor that has a resolution of 10mV/°C. The MCU uses a 2.5V as a 

voltage reference for the ADC module. There are no intermediate components 

between the MCU and sensor. If the ADC module is generating the following 

binary number as output “0001 1101”, which is the temperature read by the 

sensor? Express your result in °C 

 

 

 

 

 

4. A pressure sensor needs to be interfaced with and MCU. The sensor has an 

output of 1V/KPa and the maximum expected value to be read is 2.5KPa. The 

requirements specify the uses of a non-inverter amplifier for conditioning the 

incoming signal. The ADC module is configured to use the full resolution. The MCU 

uses a 5V supply for its operation. The ADC reference voltages are 0V and 5V. 

Sketch the schematic for this implementation. 

 



Appendix C

Laboratory Tutorial Presentations

Table C.1 : Laboratory tutorials sections

Tutorials Sections

High-Voltage Safety

What is High Voltage?
Human impedance to current flow
High voltage risk and hazards
Hazard mitigation
Emergency response procedures

Soldering

Soldering gun
Soldering rework station
Soldering wire
Soldering and corrosion
Soldering flux
Keeping soldering tip clean
Preparing wires
Soldering throug hole
Soldering SMD
Desoldering

EagleCAD

Eagle interface
Design example
Creating a schematic
Creating a PCB layout
Creating a new component

Logic Analyzer

What is a logic analyzer?
Logic analyzer parts
Logic analyzer specifications
When to and not use logic analyzer
Trigger conditions
The logic analyzer architecture
The logic analyzer operation
Clock modes
The logic analyzer MS006112A
Using the MSO6012A as oscilloscope
Using the MSO612A as logic analyzer

205



Appendix D

Laboratory Modules Reference Manual

206



Embedded Systems Design
Modules Reference Manual

ICOM4217

Electrical & Computer Engineering Department

University of Puerto Rico at Mayagüez

Mayagüez, PR 00681-9000

Danilo Rojas Manuel Jiménez

2016



Embedded Systems Design Laboratory Manual

c© 2016 by D. Rojas, M Jiménez
Electrical and Computer Engineering Department
University of Puerto Rico at Mayagüez

ACKNOWLEDGMENT

The authors would like to thank Cesar A. Aceros, for his help creating the Latex
template for the manual.

DISCLAIMER

Although the authors have made every effort to verify the correctness of this Exper-
iment’s Manual, the materials contained herein are provided “as is”. Any express or
implied warranties, including, but not limited to, the implied warranties of fitness
for any particular purpose are disclaimed. Under no circumstance or event shall
the authors or the copyright owners be liable for any direct, indirect, incidental,
exemplary, or consequential damages arising from the use of this materials.

ii



Table Of Contents

1 Basic I/O Module 1

1.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Power Supply Setup . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 16X2 LCD Display . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 4 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 4 Pushbuttons . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.5 Buzzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Keypad Module 11

2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Power Supply Setup . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 3x4 Keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Seven Segment Module 17

3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Power Supply Setup . . . . . . . . . . . . . . . . . . . . . . . 18

iii



Embedded Systems Design Laboratory Manual

3.2.2 Dual 7-Segment Display . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 RGB LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.4 OptoSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Motor Interface Module 25

4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Power Supply Setup . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 H-Bridge Transistor . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.3 IC Motor Driver . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.4 Relay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.5 Stepper Driver . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Serial Communications Module 35

5.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Power Supply Setup . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Serial-To-RS232 Converter . . . . . . . . . . . . . . . . . . . . 37

5.2.3 Real-Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Data Converters Module 43

6.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Power Supply Setup . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.2 Digital-To-Analog Converter . . . . . . . . . . . . . . . . . . . 44

iv



Laboratory Rules

6.2.3 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.4 Potentiometers . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



Embedded Systems Design Laboratory Manual

vi



Module 1

Basic I/O Module

1.1 Materials

The materials needed to assembly the Data Converters module is listed in Table 1.1.

Table 1.1: Boom of materials Module 1

Item Qty Description P/N reference Supplier

1 4 Pushbutton Case SW259-ND DIGI-KEY
2 4 Jumper x5 970 POLOLU
3 2 Piezoelectric Buzzer 810-PS1240P02CT3 MOUSER
4 1 0.1uF Tantalum 581-TAP104K035SCS MOUSER
5 1 1x40 Male Header 965 POLOLU
6 1 2x40 Male Header 966 POLOLU
7 1 Diode 1N4004 512-1N4004 MOUSER
8 1 Display LCD 2x16 932-MIKROE-55 MOUSER
9 1 Green LED 5mm 67-1098-ND DIGI-KEY
10 1 Yellow LED 5mm 67-1111-ND DIGI-KEY
11 2 Red LED 5mm 67-1105-ND DIGI-KEY
12 1 10K Round Pot 652-3319P-1-103 MOUSER
13 1 1k Ohm Resistor 660-MF1/4LCT52R102J MOUSER
14 1 2.2k Ohm Resistor 660-MF1/4LCT52R222J MOUSER
15 1 510 Ohm Resistor 660-MF1/4LCT52R511J MOUSER
16 2 4.7k Ohm Resistor 660-MF1/4LCT52R472J MOUSER
17 4 330 Ohm Resistor 660-MF1/4LCT52R331J MOUSER
18 4 Pusbutton 653-B3F-4050 MOUSER
19 1 2N3904 NPN Transistor 512-2N3904BU MOUSER

1.2 Description

The basic I/O module is composed of 4 main blocks. It provides access to the
most common electronic peripherals such as pushbuttons, LEDS, display LCD, and
Buzzer. Figure 1.1 shows the block diagram of the basic I/O module and its four

1



Embedded Systems Design Laboratory Manual

blocks (16x2 LCD display, 4 LEDS, 4 Pushbuttons, and Buzzer). This module is
intended to work with either 3.3V and 5V microcontrollers and it is also designed
to allow direct interfacing to the MCU with no intermediate components.

16X2 LCD Display
4 LEDs

R R Y G

Buzzer
4 PushButtons

1 UP 1 DO 2 FREE

LED_En

Control

Data

PB_Conn

Buzz_En

LEDS_Control

VCC GND +5V

3

8

4

6

MODULE 1

Figure 1.1: Module 1 Block diagram

The schematic of the module is illustrated in Figure 1.7 where all the connections
between the different electronics components are depicted. In addition the board
layout, divided into components layer, top layer, and bottom layer, can be observed
in Figure 1.8, Figure 1.9, and Figure 1.10 respectively. Finally, a real board repre-
sentation of the EM is presented in Figure 1.11. This representation shows the real
board to be used in the development of the laboratory experiments.

1.2.1 Power Supply Setup

To setup the different voltages needed for the proper operation of the system, you
must take into account the operation voltage of your MCU. Although some compo-
nents in the module were chosen to work with both 3.3V and 5V microcontrollers,
some of them require a 5V power supply. If your MCU works at 3.3V, you must
connect all the power supply pins labeled on the board: 5V, VCC, and GND (using
3.3V for VCC). Also, the jumper in pinheader JP6 must be removed. But, if you are
using a 5V microcontroller, you only need to connect one of the two power supply
pins (5V or VCC) and put a jumper in pinheader JP6. The power supply pins are
highlighted in Figure 1.2. Remember to connect the GND, of your MCU, to the
GND in the module to establish the same reference voltage for the entire system.

2



MODULE 1. BASIC I/O MODULE

Figure 1.2: Module 1 Power supply pins

1.2.2 16X2 LCD Display

This block is provided with a removable LCD screen (2 lines x 16 characters), 1
10KΩ potentiometer, and a 2N3904 NPN transistor as depicted in Figure 1.3.

Figure 1.3: 16X2 LCD Display Schematic

To use this block, you need to adjust the LCD’s brightness, define the desired
operation of the LCD (4-bits or 8-bits), and determine if you want to control the
LCD’s back-light operation. Follow the steps outlined below to setup this block:

1. To adjust the LCD brightness, you must turn-right or turn-left the poten-
tiometer R3.

3



Embedded Systems Design Laboratory Manual

2. To define the operation of the back-light, you need to put a jumper between
2 of the three pins on the pinheader JP7. If you put the jumper between the
middle pin and the 5V pin, the back-light will permanently be On. But, if
you insert the jumper between the middle pin and the LED EN pin, it will
provide you control to the turn On/Off operation. This turn On/Off operation
is carried out by a 2N3904 NPN transistor (T1) and a 510Ω resistor (R2). This
interface allows to turn-On the back-light with a logic 1 and turn it Off with
a logic 0, through the LED EN pin.

3. To control the LCD display, you must define the desired operating mode. If
you want to use the 4-bit mode you must connect the control lines (RS, R/W
and E) and the four higher Data lines (D4-D7) to your MCU. But, if you want
to use the 8-bit mode you must connect the control lines and all Data lines.
The pinheader JP5 allow the connection between the LCD pins and your MCU
pins (see Figure 1.7).

1.2.3 4 LEDs

This block provides access to 4 LEDs, two in fixed configuration and two in re-
configurable configuration, as depicted in Figure 1.4.

Figure 1.4: 4 LEDs Schematic

To use this module you need to connect your MCU to all the LEDs and set the
operating mode of the two re-configurable LEDs. Follow the steps outline below to
setup this block:

1. To use the fixed LEDs you must connect your MCU to the pins LED DO
and LED UP located in pinheader JP5. The LED1 is wired in a pull-down

4



MODULE 1. BASIC I/O MODULE

configuration meaning that it needs a logic 1 to turn it On and logic 0 to turn
it Off. On the other hand, LED2 is wired in a pull-up configuration meaning
that it needs a logic 0 to turn it On and logic 1 to turn it Off.

2. To setup the re-configurable LED3 you need to insert jumpers in pinheaders
JP1 & JP2 and insert jumpers in JP3 & JP4 to setup the LED4. If you want
to use the LED3 in pull-down mode, you need to put a jumper between the
middle pin and the LED3 pin in pinheader JP1 and a jumper between the
middle pin and the GND pin in pinheader JP2. But, if you want to use the
LED in pull-up mode, you need to insert a jumper between the middle pin
and the VCC pin in JP1 and a jumper between the middle pin and LED3 pin
in JP2. To setup the LED4 you have to perform the same procedure outlined
to setup the LED3. Remember that the LED4 uses the pinheader JP3 and
JP4 in instead of JP1 and JP2.

1.2.4 4 Pushbuttons

This block provides access to 4 pushbuttons, two in fixed configuration and two in
free configuration, as depicted in Figure 1.5.

Figure 1.5: 4 Pushbuttons Schematic

To use this module, you need to connect your MCU to all the pushbuttons and set
the configuration for the two free pushbuttons. Follow the steps outline below to
setup this block:

1. To use the fixed pushbuttons (PBs) you must connect your MCU to the pins
PB1 OUT and PB2 OUT in pinheader JP5. The S1 is a PB with a pull-up
resistor that constantly sends a logic 1 when it is not depressed and a logic 0

5



Embedded Systems Design Laboratory Manual

when it is depressed. The output signal can be read in pin PB1 Out. On the
other hand, the S2 is a PB with a pull-down resistor meaning that it constantly
sends a logic 0 when it is not depressed and a logic 1 when it is depressed.
The output signal can be read through pin PB2 out.

2. The two remaining PBs are in free configuration, which means you have to
provide external components to use them. The connections pins for each PB
are located in JP7. The S3 uses pins PB3 1 and PB3 2 and the S4 uses pins
PB4 1 and the PB4 2 for their connections.

1.2.5 Buzzer

This block provides access to a buzzer as depicted in Figure 1.6.

Figure 1.6: BUZZER Schematic

To use this module, you need to connect a pin of your MCU to the BUZZ EN pin
in pinheader JP7, to drive the buzzer. The buzzer needs a sequence of pulses to
produce an audible sound. The VCC pin needs to be at the same voltage level of
your MCU’s operating voltage.

6



MODULE 1. BASIC I/O MODULE

1.3 Schematic

The Figure 1.7 shows the complete schematic of the module were all the connections
are described.

Figure 1.7: Module 1 Schematic

7



Embedded Systems Design Laboratory Manual

1.4 Board

The Figure 1.8 represent the component layer of the module. This Figure shows how
the different elements are arranged on the PCB. The measures are in millimeters.

Figure 1.8: Module 1 board - components layer

The Figure 1.9 and Figure 1.10 represents the Top and Bottom layer of the module
respectively. These images show the different physical connections between the
different components in the module.

Figure 1.9: Module 1 board - top layer

8



MODULE 1. BASIC I/O MODULE

Figure 1.10: Module 1 board - bottom layer

The Figure 1.11 illustrate a real representation of the module’s PCB.

Figure 1.11: Module 1 board

9



Embedded Systems Design Laboratory Manual

10



Module 2

Keypad Module

2.1 Materials

The materials needed to assembly the Data Converters module is listed in Table 2.1.

Table 2.1: Boom of materials Module 2

Item Qty Description P/N reference Supplier

1 1 Jumper x5 970 POLOLU
2 1 1x40 Male Header 965 POLOLU
3 1 1x7 Female Header 1017 POLOLU
4 4 Diode 1N4004 512-1N4004 MOUSER
5 3 4.7K Ohm Resistor 660-MF1/4LCT52R472J MOUSER
6 1 3x4 Button Keypad KP-22 All Electronics

2.2 Description

The 3X4 keypad module is composed of 1 main block. It provides access to a one key
matrix (keypad). Figure 2.1 shows the block diagram of 3X4 keypad module. This
module is intended to work with either 3.3V and 5V microcontrollers and it is also
designed to allow direct interfacing to the MCU with no intermediate components.

The schematic of the module is illustrated in Figure 2.4 where all the connections
between the different electronics components are depicted. In addition the board
layout, divided into components layer, top layer, and bottom layer, can be observed
in Figure 2.5, Figure 2.6, and Figure 2.7 respectively. Finally, a real board repre-
sentation of the EM is presented in Figure 2.8. This representation shows the real
board to be used in the development of the laboratory experiments.

2.2.1 Power Supply Setup

To setup the different voltages needed for the proper operation of the system, you
must have into account the operation voltage of your MCU. Although some compo-

11



Embedded Systems Design Laboratory Manual

3X4 Keypad

3

4

VCC
GND

Select

3R

VCC GND

Row

Column

MODULE 2

Figure 2.1: Module 2 Block Diagram

nents in the module were chosen to work with both 3.3V and 5V microcontrollers,
some of them require a 5V power supply. If your MCU works at 3.3V or 5V, you
must connect all the power supply pins labeled on the board: VVC and GND (using
the operation voltage of your MCU in VCC). The power supply pins are highlighted
in Figure 2.2. Remember to connect the GND, of your MCU, to the GND in the
module to establish the same reference voltage for the entire system.

Figure 2.2: Module 2 Power supply pins

2.2.2 3x4 Keypad

This block is provided with a removable 3X4 keypad with 3 pull-up/down resistors,
and 4 protection diodes as depicted in Figure 2.3.

To use this block, you need to connect your MCU to all the rows and column pins and
select the desired operation for the pull-up/down resistors. To define the operation
mode of the resistors, you need to insert a jumper between 2 of the three pins on
the pinheader JP1. If you put the jumper between the middle pin and the VCC pin,

12



MODULE 2. KEYPAD MODULE

Figure 2.3: 3x4 Keypad Schematic

the resistors will work as pull-up resistors. But, if you insert the jumper between
the middle pin and the GND pin, they will work as a pull-down.

Due the configuration of the keypad, if you want to use the resistor in pull-up mode,
the diodes (D1 to D4) need to be replaced by shortcuts in their terminals.

13



Embedded Systems Design Laboratory Manual

2.3 Schematic

The Figure 2.4 shows the complete schematic of the module were all the connections
are described.

Figure 2.4: Module 2 Schematic

14



MODULE 2. KEYPAD MODULE

2.4 Board

The Figure 2.5 represent the component layer of the module. This Figure shows how
the different elements are arranged on the PCB. The measures are in millimeters.

Figure 2.5: Module 2 board - components layer

The Figure 2.6 and Figure 2.7 represents the Top and Bottom layer of the module
respectively. These images show the different physical connections between the
different components in the module.

Figure 2.6: Module 2 board - top layer

15



Embedded Systems Design Laboratory Manual

Figure 2.7: Module 2 board - bottom layer

The Figure 2.8 illustrate a real representation of the module’s PCB.

Figure 2.8: Module 2 board

16



Module 3

Seven Segment Module

3.1 Materials

The materials needed to assembly the Data Converters module is listed in Table 3.1.

Table 3.1: Boom of materials Module 3

Item Qty Description P/N reference Supplier

1 1 Jumper x5 970 POLOLU
2 1 1x40 Male Header 965 POLOLU
3 1 2x40 Male Header 966 POLOLU
4 1 1x2 Female Header 1012 POLOLU
5 1 1x9 Female Header 1019 POLOLU
6 1 Double 7-Segment 604-DC56-11EWA MOUSER
7 1 RGB LED 5mm 604-WP154A4SUREQBFZW MOUSER
8 1 Green LED 3mm 1497-1022-ND DIGI-KEY
9 1 RPR-220 Optoswitch 755-RPR-220 MOUSER
10 1 12K Ohm Resistor 660-MF1/4LCT52R123J MOUSER
11 2 220 Ohm Resistor 660-MF1/4LCT52R221J MOUSER
12 2 1k Ohm Resistor 660-MF1/4LCT52R102J MOUSER
13 3 510 Ohm Resistor 660-MF1/4LCT52R511J MOUSER
14 9 330 Ohm Resistor 660-MF1/4LCT52R331J MOUSER
15 2 2N3906 PNP Transistor 512-2N3906BU MOUSER

3.2 Description

The seven-segment module is composed of 3 main blocks. It provides access to opto-
electronic peripherals such as 7-segment displays, RGB LED, and opto-switches.
Figure 3.1 shows the block diagram of the seven-segment module and its three
blocks (Dual 7-SEGMENT display, RGB LED, and OptoSwitch). This module is
intended to work with either 3.3V and 5V microcontrollers and it is also designed
to allow direct interfacing to the MCU with no intermediate components.

The schematic of the module is illustrated in Figure 3.6 where all the connections

17



Embedded Systems Design Laboratory Manual

Dual 7-Segment 

Display

OptoSwitch

RPR-220

RGB LED

9

2

Seg_Control

Display_En

RED  BLUE GREEN

VCC GND

MODULE 3

Figure 3.1: Module 3 Block Diagram

between the different electronics components are depicted. In addition the board
layout divided into components layer, top layer, and bottom layer, can be observed
in Figure 3.7, Figure 3.8, and Figure 3.9 respectively. Finally, a real board repre-
sentation of the EM is presented in Figure 3.10. This representation shows the real
board to be used in the development of the laboratory experiments.

3.2.1 Power Supply Setup

To setup the different voltages needed for the proper operation of the system, you
must have into account the operation voltage of your MCU. Although some compo-
nents in the module were chosen to work with both 3.3V and 5V microcontrollers,
some of them require a 5V power supply. If your MCU works at 3.3V or 5V, you
must connect all the power supply pins labeled on the board: VVC and GND (using
the operation voltage of your MCU in VCC). The power supply pins to be used are
highlighted in Figure 3.2. Remember to connect the GND, of your MCU, to the
GND in the module to establish the same reference voltage for the entire system.

3.2.2 Dual 7-Segment Display

This block is provided with a double 7-segment display, nine limiting current resis-
tors, and two 2N3906 PNP transistor as depicted in Figure 3.3.

To use this block you need to connect your MCU to all the 7-segment segments
and determine if you want to control the turn On/Off operation of both 7-segment
displays. Follow the steps outlined below to setup this block:

18



MODULE 3. SEVEN SEGMENT MODULE

Figure 3.2: Module 3 Power supply pins

Figure 3.3: Dual 7-Segment Display Schematic

1. To control the displays turn On/Off process, you need to put a jumper between
2 of the three pins in pinheader JP1 for the first display (LED1DIG1) and
JP2 for the second display (LED1DIG2). In the case of the LED1DIG1, if
you insert the jumper between the middle pin and the GND pin, the display
will permanently be On. But, if you insert the jumper between the middle pin
and the 7S 1 pin, it will provide you control to the turn On/Off operation.
This turn On/Off operation is carried out by a 2N3906 PNP transistors (T1)
and a 1 KΩ resistor (R10). This interface allows to turn-On the display with
a logic 0 and turn it Off with a logic 1, through the 7S 1 pin. To setup the
display LED1DIG2 you need to perform the same procedure used to setup the

19



Embedded Systems Design Laboratory Manual

LED1DIG1.

2. To activate the segments in both displays you must connect your MCC to
the segment pins in the pinheader JP3. The 7-segments displays are common
anodes that need a logic 0 to turn On a segment and a logical 1 to turn it Off.
The segments between the two displays are connected with the exception of
the DP segments pins (S DP1 and S DP2).

3.2.3 RGB LED

This block provides access to an RGB (RED-GREEN-BLUE) LED with three lim-
iting current resistors as depicted in Figure ??.

Figure 3.4: RGB Schematic

To use this block you need to connect your MCU to the color control pins BLUE,
GREEN, and RED in the pinheader JP3, to drive the RGB LED. The RGB LED
is made of common cathode LEDs that needs a logic 1 in one of the three pins to
turn-On a particular color and a logic 0 to turn it Off.

3.2.4 OptoSwitch

This block provides access to a standalone RPR-220 optoswitch with a 12KΩ resistor,
330Ω resistor, and a 3mm LED as depicted in Figure 3.5.

This block is used only for demonstrate how the RPR-220 works with the presences
of a black or white color object. The RPR-220 has in the transistor collector pin an
LED that will turn-On when the sensor detects a white color, otherwise, the LED
will turn it Off.

20



MODULE 3. SEVEN SEGMENT MODULE

Figure 3.5: Optoswitch Schematic

3.3 Schematic

The Figure 3.6 shows the complete schematic of the module were all the connections
are described.

21



Embedded Systems Design Laboratory Manual

Figure 3.6: Module 3 Schematic

22



MODULE 3. SEVEN SEGMENT MODULE

3.4 Board

The Figure 3.7 represent the component layer of the module. This Figure shows how
the different elements are arranged on the PCB. The measures are in millimeters.

Figure 3.7: Module 3 board - components layer

The Figure 3.8 and Figure 3.9 represents the Top and Bottom layer of the module
respectively. These images show the different physical connections between the
different components in the module.

Figure 3.8: Module 3 board - top layer

23



Embedded Systems Design Laboratory Manual

Figure 3.9: Module 3 board - bottom layer

The Figure 3.10 illustrate a real representation of the module’s PCB.

Figure 3.10: Module 3 board

24



Module 4

Motor Interface Module

4.1 Materials

The materials needed to assembly the Data Converters module is listed in Table 4.1.

Table 4.1: Boom of materials Module 4

Item Qty Description P/N reference Supplier

1 1 Jumper x5 970 POLOLU
2 1 0.1uF Tantalum Cap. 581-TAP104K035SCS MOUSER
3 1 2Pins Screw Con. 571-1776493-2 MOUSER
4 1 3Pins Screw Con. ED1976-ND DIGI-KEY
5 1 Fuse Holder 693-0031.8201 MOUSER
6 1 1x40 Male Header 965 POLOLU
7 1 Dip16 IC Base AE9992-ND DIGI-KEY
8 1 Dip18 IC Base AE9995-ND DIGI-KEY
9 1 Dip6 IC Base AE1485-ND DIGI-KEY
10 5 Diode 1N4004 512-1N4004 MOUSER
11 1 1.5 Amp Fuse 504-BK/GMC-1.5-R MOUSER
12 1 L293D Motor Driver 595-L293DNE MOUSER
13 1 ULN2803 Darlington Array 511-ULN2803A MOUSER
14 5 RED LED 3mm 754-1604-ND DIGI-KEY
15 1 DC Motor 1528-1150-ND DIGI-KEY
16 1 Servomotor 900-00005-ND DIGI-KEY
17 1 Stepper Motor 1528-1367-ND DIGI-KEY
18 2 4N25 Optocoupler 78-4N25 MOUSER
19 1 5V Relay 653-G5LE-14-DC5 MOUSER
20 1 1k Ohm Resistor 660-MF1/4LCT52R102J MOUSER
21 1 4.7K Ohm Resistor 660-MF1/4LCT52R472J MOUSER
22 2 22 Ohm Resistor 660-MF1/4LCT52R220J MOUSER
23 2 330 Ohm Resistor 660-MF1/4LCT52R331J MOUSER
24 5 2.2k Ohm Resistor 660-MF1/4LCT52R222J MOUSER
25 1 2N3904 NPN Transistor 512-2N3904BU MOUSER
26 2 MPSA42 NPN Transistor 512-MPSA42 MOUSER
27 2 MPSA92 PNP Transistor 610-MPSA92 MOUSER

25



Embedded Systems Design Laboratory Manual

4.2 Description

The motor interface module is composed of 4 main blocks. It provides access to
standard motor drivers such as H-bridges, relays, and stepper motor controller.
Figure 4.1 shows the block diagram of the motor interface module and its four
blocks (H-bridge transistor, IC motor driver, relay, and stepper driver). This module
is intended to work with either 3.3V and 5V microcontroller and it is also designed
to allow direct interfacing to the MCU with no intermediate components.

H-Bridge 

Transistor
Relay

IC Motor 

Driver

Stepper 

Driver

Is
o

la
to

r

VCC GND +5V

HB_In1

HB_In2

M_In1

M_In2

M_En

M2

M1 M

4

4

R_In

SM_Ins

C
O

M

N
C

N
O

L293D ULN2803

Motor_Coils

MODULE 4

Motor_Coils

Motor_Coils

Figure 4.1: Module 4 Block diagram

The schematic of the module is illustrated in Figure 4.7 where all the connection
between the different electronics components are depicted. In addition the board
layout divided into components layer, top layer, and bottom layer, can be observed
in Figure 4.8. Figure 4.9, and Figure 4.10 respectively. Finally, a real board repre-
sentation of the EM is presented in Figure 4.11. This representation shows the real
board to be used in the development of the laboratory experiments.

4.2.1 Power Supply Setup

To setup the different voltages needed for the proper operation of the system, you
must have into account the operation voltage of your MCU, motors, and IC drivers.

26



MODULE 4. MOTOR INTERFACE MODULE

Although some components in the modules were chosen to work with both 3.3V and
5V microcontrollers, some of them require a 5V power supply. In this module, the
most quantity of connections are data signals and motor operating voltages. If your
MCU works at 3.3V or 5V, you must connect all the power supply pins labeled on
the board: 5V and GND (connect the voltages only when they are required). The
power supply pins are highlighted in Figure 4.2. Remember to connect the GND, of
your MCU, to the GND in the module to establish the same reference voltage for
the entire system.

Figure 4.2: Module 4 Power supply pins

4.2.2 H-Bridge Transistor

This block is provide with 2 MPS42 NPN transistors, 2 MPS92 PNP transistors, 4
1N4004 Diodes, 2 4N25 optocouplers, 2 330Ω resistors, 2 22Ω resistors, and a 500mA
fuse as depicted in Figure 4.3.

To use this block you need to connect all the voltages requires and insert the fuse into
the fuse holder. The motor voltage needed will depend on of the specification of you
DC motor, and it will be connected in the pins VDD-M1 and GNDA in pinheader
JP4. Remember do not use a dc motor that could exceed the transistor’s maximum
current. The control signals that comes from your MCU must be connected to the
pins HB IN1 and HB IN2 in pinheader JP4. Also a ground connection between
your MCU and the block need to be carried out through the GND pin in the same
pinheader. The control inputs in this block are isolated to prevent noise problems.

4.2.3 IC Motor Driver

This block provides access to a L293D dc motor driver with 4.7 KΩ resistor as
depicted in Figure 4.4.

To use this block you need to connect all the controls signals, determine if you want

27



Embedded Systems Design Laboratory Manual

Figure 4.3: H-Bridge Transistor Schematic

Figure 4.4: IC Motor Driver Schematic

to control the driver enable pin, and connect the power supply to the module. Follow
the steps outlined below to setup this block:

1. To setup the power supply, you need to connect the motor voltage in the pins
VDD-M2 and GNDB in pinheader JP5, and connect the IC power supply in
the pins 5V and GND in pinheader JP6.

2. To define the operation of the enable pin you need to insert a jumper between
2 of the three pins on the pinheader JP1. If you put the jumper between the

28



MODULE 4. MOTOR INTERFACE MODULE

middle pin and the 5V pin, the motor driver will permanently be enabled and
whatever change presented in the inputs will be reflected on the outputs. But,
if you insert the jumper between the middle pin and the M En pin, it will
provide you control to the enable or disable the operation of the motor driver.
It will allow you to determine when the inputs will affect the outputs.

3. To control the rotation direction of the DC motor, you need to connect your
MCU to the M IN1 and M IN2 pins in pinheader JP5 and sends the appro-
priate sequence of signals.

4.2.4 Relay

This block is provided with a 5V coil relay, 1 1N4004 diode, 1 1KΩ resistor, 1 2.2KΩ
resistor, 1 2N3904 NPN transistor, and a 3mm RED LED as depicted in Figure 4.5.

Figure 4.5: Relay Schematic

To use this block, you need to connect the power supply in the pins 5V and GND
in the pinheader JP6. Also, you need to connect the control signal that comes from
your MCU in the pin R IN in pinheader JP6. This signal will turn On or Off the
relay. The turn On/Off process is carried out by a 2N3904 NPN transistor and a
1KΩ resistor. This interface allows to turn-On the relay with a logic 1 and turn it
Off when receives a logic 0. The 3mm LED will be On when the relay is activated.

4.2.5 Stepper Driver

This block is provided with a Darlington transistor array UNL2803, 4 3mm LEDs,
and 4 2.2KΩ resistors as depicted in Figure 4.6.

29



Embedded Systems Design Laboratory Manual

Figure 4.6: Stepper Driver block Schematic

To use this block, you need to connect the motor voltage in the pins VDD-M3 and
GND in the pinheader JP7. The motor voltage required will depend on of your
stepper motor specifications. To control the stepper motor, you need to connect
all the control signals in pins SM1 IN, SM2 IN, SM3 IN, and SM4 IN in pinheader
JP7. If you want to enable the turn On/Off process of the LEDs, you need to put a
jumper in pinheader JP2. To enable the stepper motor, you need to insert a jumper
in pinheader JP3. Each output of the driver will be in high impedance state while
the inputs are receiving a logic 0 and they will be at ground when the inputs receive
a logic 1.

30



MODULE 4. MOTOR INTERFACE MODULE

4.3 Schematic

The Figure 4.7 shows the complete schematic of the module were all the connections
are described.

Figure 4.7: Module 4 Schematic

31



Embedded Systems Design Laboratory Manual

4.4 Board

The Figure 4.8 represent the component layer of the module. This Figure shows how
the different elements are arranged on the PCB. The measures are in millimeters.

Figure 4.8: Module 4 board - components layer

The Figure 4.9 and Figure 4.10 represents the Top and Bottom layer of the module
respectively. These images show the different physical connections between the
different components in the module.

Figure 4.9: Module 4 board - top layer

32



MODULE 4. MOTOR INTERFACE MODULE

Figure 4.10: Module 4 board - bottom layer

The Figure 4.11 illustrate a real representation of the module’s PCB.

Figure 4.11: Module 4 board

33



Embedded Systems Design Laboratory Manual

34



Module 5

Serial Communications Module

5.1 Materials

The materials needed to assembly the Data Converters module is listed in Table 5.1.

Table 5.1: Boom of materials Module 5

Item Qty Description P/N reference Supplier

1 1 Jumper x5 970 POLOLU
2 1 3V Battery cr2032 P189-ND DIGI-KEY
3 1 0.1uF Tantalum Cap. 581-TAP104K035SCS MOUSER
4 3 0.47uF Capacitor 647-UHE1HR47MDD MOUSER
5 1 0.1uF Capacitor 647-UVR1H0R1MDD MOUSER
6 1 Female DB9 Connector AE10921-ND DIGI-KEY
7 1 1x40 Male Header 965 POLOLU
8 1 Battery Holder BS-3-ND DIGI-KEY
9 1 Dip16 IC base AE9992-ND DIGI-KEY
10 1 Dip8 IC base AE9986-ND DIGI-KEY
11 1 32.768KHz Crystal 732-C004R32.76K-APB MOUSER
12 1 Real-Time Clock DS1307 700-DS1307 MOUSER
13 1 MAX3232 RS-232 Transceiver 700-MAX3232CPE MOUSER
14 2 RED LED 3mm 754-1604-ND DIGI-KEY
15 2 1k Ohm Resistor 660-MF1/4LCT52R102J MOUSER
16 3 4.7K Ohm Resistor 660-MF1/4LCT52R472J MOUSER

5.2 Description

The serial communications module is composed of 2 main blocks. It provides access
to devices that use serial communication protocols such as RS232 and I2C. Figure
5.1 shows the block diagram of the serial communication module and its two blocks
(Serial-to-RS232 converter and Real-Time clock). This module is intended to work
with either 3.3V and 5V microcontrollers and it is also designed to allow direct
interfacing to the MCU with no intermediate components.

35



Embedded Systems Design Laboratory Manual

Serial-to-RS232

Converter

MAX3232 Real-Time

Clock

DS1307

VCC

VCC GND +5V

S
e

le
c
t

DB9

SDA

SCL

TX

RX

R
S

2
3

2
-T

X

R
S

2
3

2
-R

X

MODULE 5

I
2
C

UART

Figure 5.1: Module 5 Block Diagram

The schematic of the module is illustrated in Figure 5.5 where all the connection
between the different electronics components are depicted. In addition the board
layout divided into components layer, top layer, and bottom layer, can be observed
in Figure 5.6. Figure 5.7, and Figure 5.8 respectively. Finally, a real board repre-
sentation of the EM is presented in Figure 5.9. This representation shows the real
board to be used in the development of the laboratory experiments.

5.2.1 Power Supply Setup

To setup the different voltages needed for the proper operation of the system, you
must take into account the operation voltage of your MCU. Although some compo-
nents in the module were chosen to work with both 3.3V and 5V microcontrollers,
some of them require a 5V power supply. If your MCU works at 3.3V, you must
connect all the power supply pins labeled on the board: 5V, VCC, and GND (using
3.3V for VCC). Also, the jumper in pinheader JP3 must be removed. But, if you are
using a 5V microcontroller, you only need to connect one of the two power supply
pins (5V or VCC) and put a jumper in pinheader JP3. The power supply pins to be
used are highlighted in Figure 5.2. Remember to connect the GND, of your MCU,
to the GND in the module to establish the same reference voltage for the entire
system.

36



MODULE 5. SERIAL COMMUNICATIONS MODULE

Figure 5.2: Module 5 Power supply pins

5.2.2 Serial-To-RS232 Converter

This block is provided with a MAX3232, 1 0.47uF electrolytic capacitor, 3 0.1uF
electrolytic capacitor, 2 1KΩ resistor, 2 3mm LEDs, and a DB9 connector as depicted
in Figure 5.3.

Figure 5.3: Serial-To-RS232 Converter Schematic

To use this block, you need to connect the RX and TX pins of your MCU to the RX
and TX pins in pinheader JP4. Also, you need to plug in an RS232-to-USB cable
converter in the DB9 connector X1 to start the communication process between your
MCU and the PC. Internally, the driver (MAX3232) do the respective conversions
between the TTL logic levels and RS232 logic levels.

37



Embedded Systems Design Laboratory Manual

5.2.3 Real-Time Clock

This block provides access to a real-time clock DS1307 with a 32.768 KHz crystal,
three 3KΩ pull-up resistors, and a 3V lithium battery backup as depicted in Figure
5.4.

Figure 5.4: Serial-To-RS232 Converter Schematic

To use this block you need to connect the SDA and SCL pins of your MCU to
the module pins, determine the use or not of the pull-up resistors, and configure
DS1307’s OUT signal. Follow the steps outline below to setup this block:

1. The SCL and SDA pins of your MCU needs to be connected to SCL and SDA
pins in pinheader JP4 of the module. These pins will be used for establishing
the I2 communication between the devices. The OUT signal in the block is an
extra feature that can be activated or not on the DS1307 by configuring its
internal registers.

2. To setup the pull-up resistor for the I2C bus, you need to put jumpers in
pinheaders JP1 and JP2. If you want to use the pull-up resistor, for SDA
line, you need to insert a jumper between the middle pin and the R1 pin in
pinheader JP2. But, if you desired not use the pull-up resistor, you need to
insert the jumper between the middle pin and the SDA pin in pinheader JP2
and provide an external pull-up resistor attached to the operation voltage of
your MCU. To setup the another pull-up resistor you have to perform the same
procedure outlined to setup the SDA line.

38



MODULE 5. SERIAL COMMUNICATIONS MODULE

5.3 Schematic

The Figure 5.5 shows the complete schematic of the module were all the connections
are described.

Figure 5.5: Module 5 Schematic

39



Embedded Systems Design Laboratory Manual

5.4 Board

The Figure 5.6 represent the component layer of the module. This Figure shows how
the different elements are arranged on the PCB. The measures are in millimeters.

Figure 5.6: Module 5 board - components layer

The Figure 5.7 and Figure 5.8 represents the Top and Bottom layer of the module
respectively. These images show the different physical connections between the
different components in the module.

Figure 5.7: Module 5 board - top layer

40



MODULE 5. SERIAL COMMUNICATIONS MODULE

Figure 5.8: Module 5 board - bottom layer

The Figure 5.9 illustrate a real representation of the module’s PCB.

Figure 5.9: Module 5 board

41



Embedded Systems Design Laboratory Manual

42



Module 6

Data Converters Module

6.1 Materials

The materials needed to assembly the Data Converters module is listed in Table 6.1.

Table 6.1: Boom of materials Module 6

Item Qty Description P/N reference Supplier

1 1 0.1uF Tantalum 581-TAP104K035SC MOUSER
2 1 0.1uF Ceramic 594-D101K20Y5PL63L6R MOUSER
3 1 1x40 Male Header 965 POLOLU
4 1 2x40 Male Header 966 POLOLU
5 1 Dip16 AE9992-ND DIGI-KEY
6 1 Dip8 AE9986-ND DIGI-KEY
7 1 DAC0808 926-DAC0808LCN/NOPB MOUSER
8 1 LM35 926-LM35DZ/NOPB MOUSER
9 1 LM358 595-LM358P MOUSER
10 1 10k Ohm pot 688-RK09K1130AH1 MOUSER
11 1 10k Ohm Prec. Pot 72-T18-10K MOUSER
12 4 2.4k Ohm 660-MF1/4LCT52R242J MOUSER

6.2 Description

The data converters module is composed of 3 main blocks. It provides access to
common analog devices and digital-to-analog converters. Figure 6.1 shows the block
diagram of the data converter module and its three blocks (Digital-To-Analog Con-
verter, Temperature Sensor, and Potentiometers). This module is intended to work
with either 3.3V and 5V microcontroller and it is also designed to allow direct in-
terfacing to the MCU with no intermediate components.

The schematic of the module is illustrated in Figure 6.6 where all the connection
between the different electronics components are depicted. In addition, the board
layout divided into components layer, top layer, and bottom layer, can be observed

43



Embedded Systems Design Laboratory Manual

Digital-to-Analog

Converter

DAC0808

8
Temperature 

Sensor

Potentiometers

Linear Precision

S_Out

LP_Out PP_Out

Data_In

V_out

VCC GND +5V+15V -15V

LM35

MODULE 6

Figure 6.1: Module 6 Block diagram

in Figure 6.7. Figure 6.8, and Figure 6.9 respectively. Finally, a real board repre-
sentation of the EM is presented in Figure 6.10. This representation shows the real
board to be used in the development of the laboratory experiments.

6.2.1 Power Supply Setup

To setup the different voltages needed for the proper operation of the system, you
must take into account the operation voltage of your MCU. Although some compo-
nents in the module were chosen to work with both 3.3V and 5V microcontrollers,
some of them require a 5V power supply. If your MCU works at 3.3V, you must
connect all the power supply pins labeled on the board: 5V, VCC, and GND (using
3.3V for VCC). Also, the jumper in pinheader JP6 must be removed. But, if you are
using a 5V microcontroller, you only need to connect one of the two power supply
pins (5V or VCC), and put a jumper in pinheader JP3. The power supply pins to
are highlighted in Figure 6.2. Remember to connect the GND, of your MCU, to the
GND in the module to establish the same reference voltage for the entire system.

6.2.2 Digital-To-Analog Converter

This block is provided with a DAC0808 digital-to-analog converter, 1 LM358 oper-
ational amplifier, 4 2.4KΩ resistors, and a 0.1nF ceramic capacitor as depicted in
Figure 6.3.

To use this block you need to connect all the voltages requires by the ICs (+15V,
-15V, 5V, and VCC) in pinheader JP2 and JP1. Also, the data signals that comes

44



MODULE 6. DATA CONVERTERS MODULE

Figure 6.2: Module 6 Power supply pins

Figure 6.3: Digital-To-Analog Converter Schematic

from your MCU must be connected to D0 to D7 pins in pinheader JP2. The
DAC0808 is a data converter of 8 bits that uses the D0 for the LSB and D7 for
the MSB. The output voltage could be measured in the V OUT pin. The reference
voltage for the conversion could be the same of your MCU operation voltage but if
you need to select another voltage, connect the voltage to the VCC pin and remove
the jumper in pinheader JP3. Be sure that the reference voltage needed do not
exceed 10V DC.

6.2.3 Temperature Sensor

This block provides access to an LM35 analog temperature sensor as depicted in
Figure 6.4.

45



Embedded Systems Design Laboratory Manual

Figure 6.4: Temperature Sensor Schematic

To use this block you only need to connect the power supply to the 5V pin in
pinheader JP1 and measure the analog output voltage in the pin S Out. The sensor
has a conversion factor of 10mV for each 1◦C of temperature.

6.2.4 Potentiometers

This block provides access to a single turn potentiometer R5 (Linear) and an multi-
turn potentiometer R6 (Precision) as depicted in Figure 6.5.

Figure 6.5: Potentiometers Schematic

To use use this block you only need to connect the power supply to the VCC pin in
pinheader JP1 and measure the desired potentiometer output in LP OUT for the
R5 potentiometer or PP OUT for the R6 potentiometer. Be sure to use the same
operation voltage of your MCU or a voltage that is acceptable for the ADC module
of your MCU. Any other voltage could potentially damage your MCU.

46



MODULE 6. DATA CONVERTERS MODULE

6.3 Schematic

The Figure 6.6 shows the complete schematic of the module were all the connections
are described.

Figure 6.6: Module 6 Schematic

47



Embedded Systems Design Laboratory Manual

6.4 Board

The Figure 6.7 represent the component layer of the module. This Figure shows how
the different elements are arranged on the PCB. The measures are in millimeters.

Figure 6.7: Module 6 board - components layer

The Figure 6.8 and Figure 6.9 represents the Top and Bottom layer of the module
respectively. These images show the different physical connections between the
different components in the module.

Figure 6.8: Module 6 board - top layer

48



MODULE 6. DATA CONVERTERS MODULE

Figure 6.9: Module 6 board - bottom layer

The Figure 6.10 illustrate a real representation of the module’s PCB.

Figure 6.10: Module 6 board

49



Embedded Systems Design Laboratory Manual

50



Bibliography

[1] Hd44780u (lcd-ii). HITACHI. https://www.sparkfun.com/datasheets/LCD/
HD44780.pdf. Accessed: 2016-03-25.

[2] Lcd 16x2 (wh1602b2-tm1-et#). http://www.mouser.com/ds/2/272/

-364177.pdf. Accessed: 2016-03-25.

[3] Ps1240p02ct3. TDK. https://product.tdk.com/info/en/catalog/

datasheets/ef532_ps.pdf. Accessed: 2016-03-25.

[4] Dc56-11ewa. KINGBRIGHT. http://www.us.kingbright.com/images/

catalog/spec/DC56-11EWA.pdf. Accessed: 2016-03-25.

[5] Wp154a4sureqbfzw. KINGBRIGHT. https://www.kingbrightusa.com/

images/catalog/spec/WP154A4SUREQBFZGW.pdf. Accessed: 2016-03-25.

[6] Rpr-220. ROHM. http://rohmfs.rohm.com/en/products/databook/

datasheet/opto/optical_sensor/photosensor/rpr-220.pdf. Accessed:
2016-03-25.

[7] Ds1307. MAXIM INTEGRATED. http://datasheets.maximintegrated.

com/en/ds/DS1307.pdf. Accessed: 2016-03-25.

[8] Max3232. MAXIM INTEGRATED. http://pdfserv.maximintegrated.com/
en/ds/MAX3222-MAX3241.pdf. Accessed: 2016-03-25.

[9] Parallax standard servo (#900-00005). PARALLAX.
https://www.parallax.com/sites/default/files/downloads/

900-00005-Standard-Servo-Product-Documentation-v2.2.pdf. Accessed:
2016-03-25.

[10] L293d. TEXAS INSTRUMENTS. http://www.mouser.pr/ProductDetail/

Texas-Instruments/L293DNE/?qs=sGAEpiMZZMtYFXwiBRPs0wSafWlCmJbc.
Accessed: 2016-03-25.

51



Embedded Systems Design Laboratory Manual

[11] Dac0808. TEXAS INSTRUMENTS. http://www.ti.com/lit/ds/symlink/

dac0808.pdf. Accessed: 2016-03-25.

[12] Lm35. TEXAS INSTRUMENTS. http://www.ti.com/lit/ds/symlink/

lm35.pdf. Accessed: 2016-03-25.

52



Appendix E

Students Grades

E.1 Control Group Student Grades

Table E.1 : Control group pre-tests grades

Pre-Test

Student 1 2 3 4 5 6 µ Student

N1 15.0 11.5 12.5 5.0 27.5 15.0 14.4

N2 12.5 30.5 20.0 30.0 7.5 0.0 16.8

N3 5.0 12.5 15.0 15.0 15.0 2.5 10.8

N4 12.5 10.0 15.0 24.0 10.0 5.0 12.8

N5 12.5 15.0 17.5 15.0 10.0 7.5 12.9

N6 5.0 12.0 15.0 12.0 17.5 15.0 12.8

N7 15.0 17.5 12.5 20.0 22.5 27.5 19.2

N8 12.5 12.5 0.0 17.5 10.0 5.0 9.6

N9 10.0 5.0 25.0 22.5 10.0 15.0 14.6

N10 32.0 32.5 32.0 17.5 20.0 15.0 24.8

N11 15.0 33.0 25.0 20.0 27.5 12.5 22.2

N12 0.0 33.5 20.0 20.0 10.0 17.5 16.8

N13 10.0 38.0 17.5 32.5 22.5 5.0 20.9

N14 0.0 35.0 17.0 10.0 10.0 5.0 12.8

N15 0.0 28.0 14.5 5.0 25.0 7.5 13.3

N16 20.0 37.5 25.0 37.5 17.5 5.0 23.8

µ Test 11.1 22.8 17.7 19.0 16.4 10.0 16.2
σ 8.2 11.6 7.2 9.1 7.0 7.1

Note: The maximum grade achievable is 40 pts

265



Table E.2 : Control group post-tests grades

Post-Test

Student 1 2 3 4 5 6 µ Student

N1 32.5 30.0 22.5 10.0 10.0 7.5 18.8

N2 30.0 37.5 17.5 22.5 0.0 30.0 22.9

N3 40.0 20.0 22.5 15.0 22.5 5.0 20.8

N4 40.0 30.5 25.0 32.5 17.5 30.0 29.3

N5 35.0 23.5 20.0 35.0 20.0 7.5 23.5

N6 22.5 18.0 15.0 7.5 17.5 12.5 15.5

N7 35.0 28.0 15.0 25.0 20.0 32.5 25.9

N8 25.0 22.5 7.5 32.5 12.5 22.5 20.4

N9 37.5 2.5 32.5 30.0 15.0 30.0 24.6

N10 31.0 40.0 35.0 10.0 25.0 22.5 27.3

N11 5.0 40.0 20.0 25.0 30.0 20.0 23.3

N12 27.0 30.0 22.5 22.5 12.5 17.5 22.0

N13 11.0 31.0 27.5 35.0 20.0 15.0 23.3

N14 3.0 33.0 10.0 17.5 15.0 17.5 16.0

N15 11.0 23.5 25.0 12.5 15.0 27.5 19.1

N16 9.0 38.0 25.0 27.5 30.0 40.0 28.3

µ Test 24.7 28.0 21.4 22.5 17.7 21.1 22.6
σ 12.8 9.7 7.4 9.4 7.5 10.1

Note: The maximum grade achievable is 40 pts



Table E.3 : Control group pre-tests normalized grades

Pre-Test (%)

Student 1 2 3 4 5 6 µ Student

N1 37.50 28.75 31.25 12.50 68.75 37.50 36.0

N2 31.25 76.25 50.00 75.00 18.75 0.00 41.9

N3 12.50 31.25 37.50 37.50 37.50 6.25 27.1

N4 31.25 25.00 37.50 60.00 25.00 12.50 31.9

N5 31.25 37.50 43.75 37.50 25.00 18.75 32.3

N6 12.50 30.00 37.50 30.00 43.75 37.50 31.9

N7 37.50 43.75 31.25 50.00 56.25 68.75 47.9

N8 31.25 31.25 0.00 43.75 25.00 12.50 24.0

N9 25.00 12.50 62.50 56.25 25.00 37.50 36.5

N10 80.00 81.25 80.00 43.75 50.00 37.50 62.1

N11 37.50 82.50 62.50 50.00 68.75 31.25 55.4

N12 0.00 83.75 50.00 50.00 25.00 43.75 42.1

N13 25.00 95.00 43.75 81.25 56.25 12.50 52.3

N14 0.00 87.50 42.50 25.00 25.00 12.50 32.1

N15 0.00 70.00 36.25 12.50 62.50 18.75 33.3

N16 50.00 93.75 62.50 93.75 43.75 12.50 59.4

µ Test 27.7 56.9 44.3 47.4 41.0 25.0 40.4
σ 20.57 29.02 17.97 22.77 17.53 17.82

Note: The student grades were normalized to be presented in percentages



Table E.4 : Control group normalized post-tests grades

Post-Test (%)

Student 1 2 3 4 5 6 µ Student

N1 81.25 75.00 56.25 25.00 25.00 18.75 46.9

N2 75.00 93.75 43.75 56.25 0.00 75.00 57.3

N3 100.00 50.00 56.25 37.50 56.25 12.50 52.1

N4 100.00 76.25 62.50 81.25 43.75 75.00 73.1

N5 87.50 58.75 50.00 87.50 50.00 18.75 58.8

N6 56.25 45.00 37.50 18.75 43.75 31.25 38.8

N7 87.50 70.00 37.50 62.50 50.00 81.25 64.8

N8 62.50 56.25 18.75 81.25 31.25 56.25 51.0

N9 93.75 6.25 81.25 75.00 37.50 75.00 61.5

N10 77.50 100.00 87.50 25.00 62.50 56.25 68.1

N11 12.50 100.00 50.00 62.50 75.00 50.00 58.3

N12 67.50 75.00 56.25 56.25 31.25 43.75 55.0

N13 27.50 77.50 68.75 87.50 50.00 37.50 58.1

N14 7.50 82.50 25.00 43.75 37.50 43.75 40.0

N15 27.50 58.75 62.50 31.25 37.50 68.75 47.7

N16 22.50 95.00 62.50 68.75 75.00 100.00 70.6

µ Test 61.6 70.0 53.5 56.3 44.1 52.7 56.4
σ 32.04 24.25 18.40 23.50 18.75 25.31

Note: The student grades were normalized to be presented in percentages



Table E.5 : Control group individual gain factors

S
tu

d
e
n
t
(%

)

N
1

N
2

N
3

N
4

N
5

N
6

N
7

N
8

N
9

N
1
0

N
1
1

N
1
2

N
1
3

N
1
4

N
1
5

N
1
6

Test1

P
re

37
.5

3
1.
3

1
2.
5

31
.3

31
.3

12
.5

37
.5

31
.3

25
.0

80
.0

37
.5

0.
0

25
.0

0.
0

0.
0

50
.0

P
o
st

8
1.
3

75
.0

10
0.
0

10
0
.0

87
.5

56
.3

87
.5

62
.5

93
.8

77
.5

12
.5

67
.5

27
.5

7.
5

27
.5

22
.5

G
i

43
.8

4
3.
8

87
.5

68
.8

56
.3

43
.8

50
.0

31
.3

68
.8

-2
.5

-2
5.
0

67
.5

2.
5

7.
5

27
.5

-2
7.
5

<
g
i>

70
.0

63
.6

10
0.
0

1
00

.0
81

.8
50

.0
80

.0
45

.5
91

.7
0.
0

0.
0

67
.5

3.
3

7.
5

27
.5

0.
0

Test2

P
re

28
.8

7
6.
3

3
1.
3

25
.0

37
.5

30
.0

43
.8

31
.3

12
.5

81
.3

82
.5

83
.8

95
.0

87
.5

70
.0

93
.8

P
o
st

7
5.
0

93
.8

50
.0

76
.3

58
.8

45
.0

70
.0

56
.3

6.
3

10
0.
0

10
0.
0

75
.0

77
.5

82
.5

58
.8

95
.0

G
i

46
.3

1
7.
5

18
.8

51
.3

21
.3

15
.0

26
.3

25
.0

-6
.3

18
.8

17
.5

-8
.8

-1
7.
5

-5
.0

-1
1.
3

1.
3

<
g
i>

64
.9

73
.7

2
7.
3

68
.3

34
.0

21
.4

46
.7

36
.4

0.
0

10
0.
0

10
0.
0

0.
0

0.
0

0.
0

0.
0

20
.0

Test3

P
re

31
.3

5
0.
0

3
7.
5

37
.5

43
.8

37
.5

31
.3

0.
0

62
.5

80
.0

62
.5

50
.0

43
.8

42
.5

36
.3

62
.5

P
o
st

5
6.
3

43
.8

56
.3

62
.5

50
.0

37
.5

37
.5

18
.8

81
.3

87
.5

50
.0

56
.3

68
.8

25
.0

62
.5

62
.5

G
i

25
.0

-6
.3

18
.8

25
.0

6.
3

0.
0

6.
3

18
.8

18
.8

7.
5

-1
2.
5

6.
3

25
.0

-1
7.
5

26
.3

0.
0

<
g
i>

36
.4

0.
0

30
.0

40
.0

11
.1

0.
0

9.
1

18
.8

50
.0

37
.5

0.
0

12
.5

44
.4

0.
0

41
.2

0.
0

Test4

P
re

12
.5

7
5.
0

3
7.
5

60
.0

37
.5

30
.0

50
.0

43
.8

56
.3

43
.8

50
.0

50
.0

81
.3

25
.0

12
.5

93
.8

P
o
st

2
5.
0

56
.3

37
.5

81
.3

87
.5

18
.8

62
.5

81
.3

75
.0

25
.0

62
.5

56
.3

87
.5

43
.8

31
.3

68
.8

G
i

12
.5

-1
8.
8

0
.0

21
.3

50
.0

-1
1.
3

12
.5

37
.5

18
.8

-1
8.
8

12
.5

6.
3

6.
3

18
.8

18
.8

-2
5.
0

<
g
i>

14
.3

0.
0

0.
0

53
.1

80
.0

0.
0

25
.0

66
.7

42
.9

0.
0

25
.0

12
.5

33
.3

25
.0

21
.4

0.
0

Test5

P
re

68
.8

1
8.
8

3
7.
5

25
.0

25
.0

43
.8

56
.3

25
.0

25
.0

50
.0

68
.8

25
.0

56
.3

25
.0

62
.5

43
.8

P
o
st

2
5.
0

0
.0

56
.3

43
.8

50
.0

43
.8

50
.0

31
.3

37
.5

62
.5

75
.0

31
.3

50
.0

37
.5

37
.5

75
.0

G
i

-4
3.
8

-1
8.
8

18
.8

18
.8

25
.0

0.
0

-6
.3

6.
3

12
.5

12
.5

6.
3

6.
3

-6
.3

12
.5

-2
5.
0

31
.3

<
g
i>

0.
0

0.
0

30
.0

25
.0

33
.3

0.
0

0.
0

8.
3

16
.7

25
.0

20
.0

8.
3

0.
0

16
.7

0.
0

55
.6

Test6

P
re

37
.5

0.
0

6.
3

1
2.
5

18
.8

37
.5

68
.8

12
.5

37
.5

37
.5

31
.3

43
.8

12
.5

12
.5

18
.8

12
.5

P
o
st

1
8.
8

75
.0

12
.5

75
.0

18
.8

31
.3

81
.3

56
.3

75
.0

56
.3

50
.0

43
.8

37
.5

43
.8

68
.8

10
0.
0

G
i

-1
8.
8

75
.0

6
.3

62
.5

0.
0

-6
.3

12
.5

43
.8

37
.5

18
.8

18
.8

0.
0

25
.0

31
.3

50
.0

87
.5

<
g
i>

0.
0

75
.0

6.
7

71
.4

0.
0

0.
0

40
.0

50
.0

60
.0

30
.0

27
.3

0.
0

28
.6

35
.7

61
.5

10
0.
0

N
ot
e:

T
h
e
p
re
-
an

d
p
os
t-
te
st

re
su
lt
s
ar
e
n
or
m
al
iz
ed

in
p
er
ce
n
ta
ge
s



Table E.6 : Control group Test 1 (High-Voltage Safety) discretized Grades

TEST 1 - High-Voltage Safety
Student Q1 Q2 Q3 Q4 TOTAL

N11 0 0 0 0 0
N14 0 0 0 0 0
N13 1 0 0 0 1
N15 0 1 0 0 1
N16 1 0 0 0 1

N6 1 1 0 0 2
N8 1 1 0 0 2
N12 1 1 0 0 2
N1 1 1 1 0 3
N2 1 1 0 1 3
N7 0 1 1 1 3

N10 1 1 0 1 3
N3 1 1 1 1 4
N4 1 1 1 1 4
N5 1 1 1 1 4
N9 1 1 1 1 4

µ 0.75 0.75 0.375 0.438 2.313
σ 0.447 0.447 0.5 0.512
IDiff 75% 75% 38% 44%
IDisc 0.60 0.80 0.80 1.00

S2 1.963
q 0.250 0.250 0.625 0.563
p*q 0.188 0.188 0.234 0.246
KR-20 0.752

Note: The student responses were discretized in 1s and 0s



Table E.7 : Control group Test 2 (IDE, ASM/C Programming & IO) discretized
Grades

TEST 2 - IDE, ASM/C Programming & IO

Student Q1 Q2 Q3 Q4 TOTAL

N9 0 0 0 0 0
N5 0 0 1 0 1
N15 0 0 1 0 1
N1 0 1 0 1 2
N3 1 0 1 0 2

N6 0 0 1 1 2
N8 0 0 1 1 2
N12 0 0 1 1 2
N13 0 1 1 0 2
N4 0 1 1 1 3
N7 1 0 1 1 3

N14 0 1 1 1 3
N2 1 1 1 1 4
N10 1 1 1 1 4
N11 1 1 1 1 4
N16 1 1 1 1 4

µ 0.375 0.5 0.875 0.688 2.438
σ 0.5 0.516 0.342 0.479
IDiff 38% 50% 88% 69%
IDisc 0.60 0.80 0.40 0.80

S2 1.463
q 0.625 0.500 0.125 0.313
p*q 0.234 0.250 0.109 0.215
KR-20 0.596

Note: The student responses were discretized in 1s and 0s



Table E.8 : Control group Test 3 (Interrupt & Switch Debouncing) discretized
Grades

TEST 3 - Interrupt & Switch Debouncing

Student Q1 Q2 Q3 Q4 TOTAL

N2 0 0 0 0 0
N7 0 0 0 0 0
N8 0 0 0 0 0
N3 1 0 0 0 1
N5 1 0 0 0 1

N6 1 0 0 0 1
N11 0 0 1 0 1
N14 1 0 0 0 1
N1 1 0 1 0 2
N4 1 0 0 1 2
N12 1 0 0 1 2

N13 1 0 1 0 2
N15 1 0 1 0 2
N16 1 0 1 0 2
N9 1 1 0 1 3
N10 1 0 1 1 3

µ 0.75 0.063 0.375 0.25 1.438
σ 0.447 0.25 0.5 0.447
IDiff 75% 6% 38% 25%
IDisc 0.60 0.20 0.80 0.40

S2 0.929
q 0.250 0.938 0.625 0.750
p*q 0.188 0.059 0.234 0.188
KR-20 0.375

Note: The student responses were discretized in 1s and 0s



Table E.9 : Control group Test 4 (Timers and Applications) discretized Grades

TEST 4 - Timers and Applications

Student Q1 Q2 Q3 Q4 TOTAL

N10 0 0 0 0 0
N1 0 0 0 1 1
N3 0 0 0 1 1
N6 0 0 0 1 1
N7 0 1 0 0 1

N12 0 0 0 1 1
N14 1 0 0 0 1
N15 0 1 0 0 1
N2 0 0 1 1 2
N9 0 1 0 1 2
N11 1 0 0 1 2

N4 0 1 1 1 3
N8 1 0 1 1 3
N13 1 0 1 1 3
N16 1 0 1 1 3
N5 1 1 1 1 4

µ 0.375 0.313 0.375 0.75 1.813
σ 0.5 0.479 0.5 0.447
IDiff 38% 31% 38% 75%
IDisc 0.80 0.20 1.00 0.40

S2 1.229
q 0.625 0.688 0.625 0.250
p*q 0.234 0.215 0.234 0.188
KR-20 0.388

Note: The student responses were discretized in 1s and 0s



Table E.10 : Control group Test 5 (Low-Power Modes, LED Display Techniques &
keypads) discretized Grades

TEST 5 - Low-Power Modes

Student Q1 Q2 Q3 Q4 TOTAL

N1 0 0 0 0 0
N2 0 0 0 0 0
N4 0 1 0 0 1
N5 1 0 0 0 1
N6 1 0 0 0 1

N7 0 1 0 0 1
N8 1 0 0 0 1
N9 0 0 1 0 1
N12 0 0 1 0 1
N14 0 0 1 0 1
N15 0 0 1 0 1

N13 1 0 1 0 2
N3 1 1 1 0 3
N10 1 0 1 1 3
N11 1 1 1 0 3
N16 1 0 1 1 3

µ 0.375 0.313 0.375 0.75 1.813
σ 0.5 0.479 0.5 0.447
IDiff 38% 31% 38% 75%
IDisc 0.80 0.20 1.00 0.40

S2 1.229
q 0.625 0.688 0.625 0.250
p*q 0.234 0.215 0.234 0.188
KR-20 0.388

Note: The student responses were discretized in 1s and 0s



Table E.11 : Control group Test 6 (Introduction to Serial Communications) dis-
cretized Grades

TEST 6 - Serial Communications

Student Q1 Q2 Q3 Q4 TOTAL

N1 0 0 0 0 0
N3 0 0 0 0 0
N5 0 0 0 0 0
N6 0 0 0 1 1
N12 0 0 0 1 1

N13 0 0 0 1 1
N14 0 0 0 1 1
N4 1 0 0 1 2
N8 1 0 0 1 2
N10 1 0 0 1 2
N11 1 0 0 1 2

N15 1 0 0 1 2
N2 0 1 1 1 3
N7 1 0 1 1 3
N9 1 1 0 1 3
N16 1 1 1 1 4

µ 0.5 0.188 0.188 0.813 1.688
σ 0.516 0.403 0.403 0.403
IDiff 50% 19% 19% 81%
IDisc 0.80 0.60 0.60 0.60

S2 1.429
q 0.500 0.813 0.813 0.188
p*q 0.250 0.152 0.152 0.152
KR-20 0.674

Note: The student responses were discretized in 1s and 0s



E.2 Experimental Group Student Grades

Table E.12 : Experimental group pre-tests grades

Pre-Test

Student 1 2 3 4 5 6 7 8 µ Student

N1 0.0 17.0 2.5 26.0 12.3 18.0 8.0 15.0 12.4

N2 5.0 22.5 30.0 22.0 10.8 5.0 20.0 7.5 15.4

N3 15.0 15.0 7.5 23.0 8.5 10.0 7.5 15.0 12.7

N4 17.0 15.0 15.5 5.0 2.5 8.5 0.0 6.0 8.7

N5 20.0 5.0 8.0 16.5 12.6 9.0 13.0 15.0 12.4

N6 0.0 15.0 7.0 17.5 7.5 5.0 4.5 7.5 8.0

N7 10.0 20.0 11.0 9.5 22.1 7.0 5.0 11.0 12.0

N8 12.0 15.0 21.0 24.5 34.0 10.0 7.5 12.5 17.1

N9 8.5 27.0 18.0 33.0 20.1 19.0 12.0 1.0 17.3

N10 0.0 6.0 11.0 12.0 11.5 0.0 10.0 0.0 6.3

N11 12.5 19.0 13.5 16.7 27.3 8.3 10.5 18.0 15.7

N12 5.0 15.5 15.5 28.0 15.3 7.0 7.5 10.5 13.0

N13 7.5 24.0 17.5 29.0 11.6 17.0 12.0 5.0 15.5

N14 15.0 20.0 22.0 29.0 12.8 5.0 2.5 15.0 15.2

N15 15.0 23.0 10.0 27.0 24.6 4.0 11.0 19.0 16.7

N16 2.5 34.0 10.0 31.0 30.0 10.3 20.0 12.5 18.8

N17 9.5 34.0 26.0 10.0 11.5 5.3 16.5 10.0 15.3

N18 18.0 27.0 24.5 14.0 16.6 8.5 2.5 9.0 15.0

N19 0.0 35.0 26.5 22.0 29.5 20.8 12.5 8.0 19.3

N20 10.0 24.0 16.5 18.0 15.8 15.3 0.0 21.0 15.1

N21 8.5 23.0 17.5 20.0 13.3 5.0 9.5 14.0 13.9

N22 2.5 24.0 15.0 14.0 13.3 0.0 0.0 11.5 10.0

N23 15.0 7.0 14.5 39.0 25.5 8.5 10.0 8.5 16.0

N24 7.5 15.0 9.0 13.0 12.5 0.0 14.5 5.0 9.6

N25 5.0 20.0 16.5 16.0 2.5 14.0 2.0 15.0 11.4

µ Test 8.8 20.1 15.4 20.6 16.2 8.8 8.7 10.9 13.7
σ 6.1 8.0 6.8 8.3 8.4 5.8 5.8 5.3

Note: The maximum grade achievable is 40 pts



Table E.13 : Experimental group post-tests grades

Post-Test

Student 1 2 3 4 5 6 7 8 µ Student

N1 32.5 36.0 24.0 31.5 24.3 25.0 29.0 27.0 28.7

N2 37.5 28.0 30.5 38.0 30.6 29.5 26.0 14.5 29.3

N3 40.0 29.0 35.0 38.0 35.5 33.0 30.0 17.0 32.2

N4 30.0 33.0 33.0 38.5 34.1 35.0 30.5 25.5 32.5

N5 30.0 31.0 25.0 20.0 26.5 27.0 30.0 15.5 25.6

N6 40.0 40.0 32.0 34.5 35.0 38.0 37.0 20.0 34.6

N7 30.0 38.0 32.5 35.0 25.0 24.0 36.0 32.5 31.6

N8 37.5 36.0 32.5 33.5 17.5 35.0 16.5 28.5 29.6

N9 40.0 34.0 30.0 35.0 38.5 35.0 20.5 26.5 32.4

N10 37.5 28.0 36.0 33.5 30.0 35.0 23.0 13.5 29.6

N11 37.5 24.0 25.0 36.5 31.6 29.3 12.0 13.5 26.2

N12 35.0 28.0 39.0 39.5 34.1 37.5 40.0 17.5 33.8

N13 40.0 38.0 32.0 33.0 26.1 32.8 20.5 12.0 29.3

N14 35.0 31.0 35.0 33.5 33.5 25.0 40.0 32.5 33.2

N15 22.5 34.0 33.0 37.5 37.5 28.5 28.0 38.0 32.4

N16 38.0 38.0 34.0 34.0 37.5 26.0 26.0 31.5 33.1

N17 35.0 38.0 36.0 31.5 33.5 35.5 40.0 32.0 35.2

N18 32.5 26.0 31.0 30.0 33.0 33.0 30.0 29.0 30.6

N19 35.0 35.0 34.5 32.0 33.5 31.8 40.0 33.0 34.4

N20 40.0 33.0 26.5 33.0 30.6 22.5 35.5 38.5 32.5

N21 35.0 34.0 25.0 30.0 33.0 27.5 38.0 27.0 31.2

N22 37.5 32.0 23.5 31.0 37.0 33.5 10.0 34.0 29.8

N23 40.0 25.0 29.0 39.0 36.0 28.6 31.0 37.0 33.2

N24 30.0 40.0 13.5 19.0 27.6 24.0 32.0 17.5 25.5

N25 37.5 36.0 35.0 36.0 35.5 26.5 28.0 27.0 32.7

µ Test 35.4 33.0 30.5 33.3 31.9 30.3 29.2 25.6 31.2
σ 4.4 4.7 5.5 5.0 5.0 4.6 8.5 8.4

Note: The maximum grade achievable is 40 pts



Table E.14 : Experimental group normalized pre-tests grades

Pre-Test (%)

Student 1 2 3 4 5 6 7 8 µ Student

N1 0.0 42.5 6.3 65.0 30.8 45.0 20.0 37.5 30.9

N2 12.5 56.3 75.0 55.0 27.0 12.5 50.0 18.8 38.4

N3 37.5 37.5 18.8 57.5 21.3 25.0 18.8 37.5 31.7

N4 42.5 37.5 38.8 12.5 6.3 21.3 0.0 15.0 21.7

N5 50.0 12.5 20.0 41.3 31.5 22.5 32.5 37.5 31.0

N6 0.0 37.5 17.5 43.8 18.8 12.5 11.3 18.8 20.0

N7 25.0 50.0 27.5 23.8 55.3 17.5 12.5 27.5 29.9

N8 30.0 37.5 52.5 61.3 85.0 25.0 18.8 31.3 42.7

N9 21.3 67.5 45.0 82.5 50.3 47.5 30.0 2.5 43.3

N10 0.0 15.0 27.5 30.0 28.8 0.0 25.0 0.0 15.8

N11 31.3 47.5 33.8 41.8 68.3 20.6 26.3 45.0 39.3

N12 12.5 38.8 38.8 70.0 38.3 17.5 18.8 26.3 32.6

N13 18.8 60.0 43.8 72.5 29.0 42.5 30.0 12.5 38.6

N14 37.5 50.0 55.0 72.5 32.0 12.5 6.3 37.5 37.9

N15 37.5 57.5 25.0 67.5 61.5 10.0 27.5 47.5 41.8

N16 6.3 85.0 25.0 77.5 75.0 25.6 50.0 31.3 47.0

N17 23.8 85.0 65.0 25.0 28.8 13.1 41.3 25.0 38.4

N18 45.0 67.5 61.3 35.0 41.5 21.3 6.3 22.5 37.5

N19 0.0 87.5 66.3 55.0 73.8 51.9 31.3 20.0 48.2

N20 25.0 60.0 41.3 45.0 39.5 38.1 0.0 52.5 37.7

N21 21.3 57.5 43.8 50.0 33.3 12.5 23.8 35.0 34.6

N22 6.3 60.0 37.5 35.0 33.3 0.0 0.0 28.8 25.1

N23 37.5 17.5 36.3 97.5 63.8 21.3 25.0 21.3 40.0

N24 18.8 37.5 22.5 32.5 31.3 0.0 36.3 12.5 23.9

N25 12.5 50.0 41.3 40.0 6.3 35.0 5.0 37.5 28.4

µ Test 22.1 50.2 38.6 51.6 40.4 22.0 21.9 27.3 34.2
σ 15.0 19.6 16.7 20.4 20.6 14.2 14.2 12.9

Note: The student grades were normalized to be presented in percentages



Table E.15 : Experimental group normalized post-tests grades

Post-Test (%)

Student 1 2 3 4 5 6 7 8 µ Student

N1 81.3 90.0 60.0 78.8 60.8 62.5 72.5 67.5 71.7
N2 93.8 70.0 76.3 95.0 76.5 73.8 65.0 73.8 73.3
N3 100.0 72.5 87.5 95.0 88.8 82.5 75.0 82.5 80.5
N4 75.0 82.5 82.5 96.3 85.3 87.5 76.3 87.5 81.1
N5 75.0 77.5 62.5 50.0 66.3 67.5 75.0 67.5 64.1
N6 100.0 100.0 80.0 86.3 87.5 95.0 92.5 95.0 86.4
N7 75.0 95.0 81.3 87.5 62.5 60.0 90.0 60.0 79.1
N8 93.8 90.0 81.3 83.8 43.8 87.5 41.3 87.5 74.1
N9 100.0 85.0 75.0 87.5 96.3 87.5 51.3 87.5 81.1
N10 93.8 70.0 90.0 83.8 75.0 87.5 57.5 87.5 73.9
N11 93.8 60.0 62.5 91.3 79.0 73.3 30.0 73.3 65.4
N12 87.5 70.0 97.5 98.8 85.3 93.8 100.0 93.8 84.6
N13 100.0 95.0 80.0 82.5 65.3 81.9 51.3 81.9 73.2
N14 87.5 77.5 87.5 83.8 83.8 62.5 100.0 62.5 83.0
N15 56.3 85.0 82.5 93.8 93.8 71.3 70.0 71.3 80.9
N16 95.0 95.0 85.0 85.0 93.8 65.0 65.0 65.0 82.8
N17 87.5 95.0 90.0 78.8 83.8 88.8 100.0 88.8 88.0
N18 81.3 65.0 77.5 75.0 82.5 82.5 75.0 82.5 76.4
N19 87.5 87.5 86.3 80.0 83.8 79.5 100.0 79.5 85.9
N20 100.0 82.5 66.3 82.5 76.5 56.3 88.8 56.3 81.1
N21 87.5 85.0 62.5 75.0 82.5 68.8 95.0 68.8 78.0
N22 93.8 80.0 58.8 77.5 92.5 83.8 25.0 83.8 74.5
N23 100.0 62.5 72.5 97.5 90.0 71.5 77.5 71.5 83.0
N24 75.0 100.0 33.8 47.5 69.0 60.0 80.0 60.0 63.6
N25 93.8 90.0 87.5 90.0 88.8 66.3 70.0 66.3 81.7

µ Test 88.6 82.5 76.3 83.3 79.7 75.8 73.0 64.1 77.9
σ 10.7 11.5 13.6 12.3 12.3 11.4 20.9 20.7

Note: The student grades were normalized to be presented in percentages



Table E.16 : Experimental group individual gain factors
S
tu

d
e
n
t
(%

)

N
1

N
2

N
3

N
4

N
5

N
6

N
7

N
8

N
9

N
1
0

N
1
1

N
1
2

N
1
3

N
1
4

N
1
5

N
1
6

Test1

P
re

0.
0

12
.5

37
.5

42
.5

50
.0

0.
0

25
.0

30
.0

21
.3

0.
0

31
.3

1
2
.5

1
8
.8

3
7
.5

3
7
.5

6.
3

P
os
t

81
.3

93
.8

10
0.
0

75
.0

75
.0

10
0.
0

75
.0

93
.8

10
0.
0

93
.8

93
.8

8
7
.5

1
0
0
.0

8
7
.5

5
6
.3

9
5.
0

G
i

81
.3

81
.3

62
.5

32
.5

25
.0

10
0.
0

50
.0

63
.8

78
.8

93
.8

62
.5

7
5
.0

8
1
.3

5
0
.0

1
8
.8

8
8.
8

<
g
i
>

81
.3

92
.9

10
0.
0

56
.5

50
.0

10
0.
0

66
.7

91
.1

10
0.
0

93
.8

90
.9

8
5
.7

1
0
0
.0

8
0
.0

3
0
.0

9
4.
7

Test2

P
re

42
.5

56
.3

37
.5

37
.5

12
.5

37
.5

50
.0

37
.5

67
.5

15
.0

47
.5

3
8
.8

6
0
.0

5
0
.0

5
7
.5

8
5.
0

P
os
t

90
.0

70
.0

72
.5

82
.5

77
.5

10
0.
0

95
.0

90
.0

85
.0

70
.0

60
.0

7
0
.0

9
5
.0

7
7
.5

8
5
.0

9
5.
0

G
i

47
.5

13
.8

35
.0

45
.0

65
.0

62
.5

45
.0

52
.5

17
.5

55
.0

12
.5

3
1
.3

3
5
.0

2
7
.5

2
7
.5

1
0.
0

<
g
i
>

82
.6

31
.4

56
.0

72
.0

74
.3

10
0.
0

90
.0

84
.0

53
.8

64
.7

23
.8

5
1
.0

8
7
.5

5
5
.0

6
4
.7

6
6.
7

Test3

6.
3

75
.0

18
.8

38
.8

20
.0

17
.5

27
.5

52
.5

45
.0

27
.5

33
.8

38
.8

4
3
.8

5
5
.0

2
5
.0

2
5
.0

P
os
t

60
.0

76
.3

87
.5

82
.5

62
.5

80
.0

81
.3

81
.3

75
.0

90
.0

62
.5

9
7
.5

8
0
.0

8
7
.5

8
2
.5

8
5.
0

G
i

53
.8

1.
3

68
.8

43
.8

42
.5

62
.5

53
.8

28
.8

30
.0

62
.5

28
.8

5
8
.8

3
6
.3

3
2
.5

5
7
.5

6
0.
0

<
g
i
>

57
.3

5.
0

84
.6

71
.4

53
.1

75
.8

74
.1

60
.5

54
.5

86
.2

43
.4

9
5
.9

6
4
.4

7
2
.2

7
6
.7

8
0.
0

Test4

P
re

65
.0

55
.0

57
.5

12
.5

41
.3

43
.8

23
.8

61
.3

82
.5

30
.0

41
.8

7
0
.0

7
2
.5

7
2
.5

6
7
.5

7
7.
5

P
os
t

78
.8

95
.0

95
.0

96
.3

50
.0

86
.3

87
.5

83
.8

87
.5

83
.8

91
.3

9
8
.8

8
2
.5

8
3
.8

9
3
.8

8
5.
0

G
i

13
.8

40
.0

37
.5

83
.8

8.
8

42
.5

63
.8

22
.5

5.
0

53
.8

49
.5

2
8
.8

1
0
.0

1
1
.3

2
6
.3

7.
5

<
g
i
>

39
.3

88
.9

88
.2

95
.7

14
.9

75
.6

83
.6

58
.1

28
.6

76
.8

85
.0

9
5
.8

3
6
.4

4
0
.9

8
0
.8

3
3.
3

Test5

P
re

30
.8

27
.0

21
.3

6.
3

31
.5

18
.8

55
.3

85
.0

50
.3

28
.8

68
.3

3
8
.3

2
9
.0

3
2
.0

6
1
.5

7
5.
0

P
os
t

60
.8

76
.5

88
.8

85
.3

66
.3

87
.5

62
.5

43
.8

96
.3

75
.0

79
.0

8
5
.3

6
5
.3

8
3
.8

9
3
.8

9
3.
8

G
i

30
.0

49
.5

67
.5

79
.0

34
.8

68
.8

7.
3

-4
1.
3

46
.0

46
.3

10
.8

4
7
.0

3
6
.3

5
1
.8

3
2
.3

1
8.
8

<
g
i
>

43
.3

67
.8

85
.7

84
.3

50
.7

84
.6

16
.2

0.
0

92
.5

64
.9

33
.9

7
6
.1

5
1
.1

7
6
.1

8
3
.8

7
5.
0

Test6

P
re

45
.0

12
.5

25
.0

21
.3

22
.5

12
.5

17
.5

25
.0

47
.5

0.
0

20
.6

1
7
.5

4
2
.5

1
2
.5

1
0
.0

2
5.
6

P
os
t

62
.5

73
.8

82
.5

87
.5

67
.5

95
.0

60
.0

87
.5

87
.5

87
.5

73
.3

9
3
.8

8
1
.9

6
2
.5

7
1
.3

6
5.
0

G
i

17
.5

61
.3

57
.5

66
.3

45
.0

82
.5

42
.5

62
.5

40
.0

87
.5

52
.6

7
6
.3

3
9
.4

5
0
.0

6
1
.3

3
9.
4

<
g
i
>

31
.8

70
.0

76
.7

84
.1

58
.1

94
.3

51
.5

83
.3

76
.2

87
.5

66
.3

9
2
.4

6
8
.5

5
7
.1

6
8
.1

5
2.
9

Test7

P
re

20
.0

50
.0

18
.8

0.
0

32
.5

11
.3

12
.5

18
.8

30
.0

25
.0

26
.3

1
8
.8

3
0
.0

6
.3

2
7
.5

5
0.
0

P
os
t

72
.5

65
.0

75
.0

76
.3

75
.0

92
.5

90
.0

41
.3

51
.3

57
.5

30
.0

1
0
0
.0

5
1
.3

1
0
0
.0

7
0
.0

6
5.
0

G
i

52
.5

15
.0

56
.3

76
.3

42
.5

81
.3

77
.5

22
.5

21
.3

32
.5

3.
8

8
1
.3

2
1
.3

9
3
.8

4
2
.5

1
5.
0

<
g
i
>

65
.6

30
.0

69
.2

76
.3

63
.0

91
.5

88
.6

27
.7

30
.4

43
.3

5.
1

1
0
0
.0

3
0
.4

1
0
0
.0

5
8
.6

3
0.
0

Test8

P
re

37
.5

18
.8

37
.5

15
.0

37
.5

18
.8

27
.5

31
.3

2.
5

0.
0

45
.0

2
6
.3

0
.0

3
7
.5

4
7
.5

3
1.
3

P
os
t

67
.5

36
.3

42
.5

63
.8

38
.8

50
.0

81
.3

71
.3

66
.3

33
.8

33
.8

4
3
.8

3
0
.0

8
1
.3

9
5
.0

7
8.
8

G
i

30
.0

17
.5

5.
0

48
.8

1.
3

31
.3

53
.8

40
.0

63
.8

33
.8

-1
1
.3

1
7
.5

1
7
.5

4
3
.8

4
7
.5

4
7.
5

<
g
i
>

48
.0

21
.5

8.
0

57
.4

2.
0

38
.5

74
.1

58
.2

65
.4

33
.8

0.
0

2
3
.7

2
0
.0

7
0
.0

9
0
.5

6
9.
1

N
ot
e:

T
h
e
p
re
-
an

d
p
os
t-
te
st

re
su
lt
s
ar
e
n
or
m
al
iz
ed

in
p
er
ce
n
ta
ge
s



Table E.17 : Experimental group individual gain factors (continuation)

S
tu

d
e
n
t
(%

)

N
1
7

N
1
8

N
1
9

N
2
0

N
2
1

N
2
2

N
2
3

N
2
4

N
2
5

Test1

P
re

23
.8

45
.0

0.
0

25
.0

21
.3

6.
3

37
.5

18
.8

1
2
.5

P
os
t

87
.5

81
.3

87
.5

10
0.
0

87
.5

93
.8

10
0
.0

75
.0

9
3
.8

G
i

63
.8

36
.3

87
.5

75
.0

66
.3

87
.5

62
.5

56
.3

8
1
.3

<
g
i
>

83
.6

65
.9

87
.5

10
0.
0

84
.1

93
.3

10
0.
0

69
.2

9
2
.9

Test2

P
re

85
.0

67
.5

87
.5

60
.0

57
.5

60
.0

17
.5

37
.5

5
0
.0

P
os
t

95
.0

65
.0

87
.5

82
.5

85
.0

80
.0

62
.5

10
0
.0

9
0
.0

G
i

10
.0

-2
.5

0.
0

22
.5

27
.5

20
.0

45
.0

62
.5

4
0
.0

<
g
i
>

66
.7

0.
0

0.
0

56
.3

64
.7

50
.0

54
.5

10
0
.0

8
0
.0

Test3

P
re

65
.0

61
.3

66
.3

41
.3

43
.8

37
.5

36
.3

22
.5

4
1
.3

P
os
t

90
.0

77
.5

86
.3

66
.3

62
.5

58
.8

72
.5

33
.8

8
7
.5

G
i

25
.0

16
.3

20
.0

25
.0

18
.8

21
.3

36
.3

11
.3

4
6
.3

<
g
i
>

71
.4

41
.9

59
.3

42
.6

33
.3

34
.0

56
.9

14
.5

7
8
.7

Test4

P
re

25
.0

35
.0

55
.0

45
.0

50
.0

35
.0

97
.5

32
.5

4
0
.0

P
os
t

78
.8

75
.0

80
.0

82
.5

75
.0

77
.5

97
.5

47
.5

9
0
.0

G
i

53
.8

40
.0

25
.0

37
.5

25
.0

42
.5

0.
0

15
.0

5
0
.0

<
g
i
>

71
.7

61
.5

55
.6

68
.2

50
.0

65
.4

0.
0

22
.2

8
3
.3

Test5

P
re

28
.8

41
.5

73
.8

39
.5

33
.3

33
.3

63
.8

31
.3

6
.3

P
os
t

83
.8

82
.5

83
.8

76
.5

82
.5

92
.5

90
.0

69
.0

8
8
.8

G
i

55
.0

41
.0

10
.0

37
.0

49
.3

59
.3

26
.3

37
.8

8
2
.5

<
g
i
>

77
.2

70
.1

38
.1

61
.2

73
.8

88
.8

72
.4

54
.9

8
8
.0

Test6

P
re

13
.1

21
.3

51
.9

38
.1

12
.5

0.
0

21
.3

0.
0

3
5
.0

P
os
t

88
.8

82
.5

79
.5

56
.3

68
.8

83
.8

71
.5

60
.0

6
6
.3

G
i

75
.6

61
.3

27
.6

18
.1

56
.3

83
.8

50
.3

60
.0

3
1
.3

<
g
i
>

87
.1

77
.8

57
.4

29
.3

64
.3

83
.8

63
.8

60
.0

4
8
.1

Test7

P
re

41
.3

6.
3

31
.3

0.
0

23
.8

0.
0

25
.0

36
.3

5
.0

P
os
t

10
0.
0

75
.0

10
0.
0

88
.8

95
.0

25
.0

77
.5

80
.0

7
0
.0

G
i

58
.8

68
.8

68
.8

88
.8

71
.3

25
.0

52
.5

43
.8

6
5
.0

<
g
i
>

10
0.
0

73
.3

10
0.
0

88
.8

93
.4

25
.0

70
.0

68
.6

6
8
.4

Test8

P
re

25
.0

22
.5

20
.0

52
.5

35
.0

28
.8

21
.3

12
.5

3
7
.5

P
os
t

80
.0

72
.5

82
.5

96
.3

67
.5

85
.0

92
.5

43
.8

6
7
.5

G
i

55
.0

50
.0

62
.5

43
.8

32
.5

56
.3

71
.3

31
.3

3
0
.0

<
g
i
>

73
.3

64
.5

78
.1

92
.1

50
.0

78
.9

90
.5

35
.7

4
8
.0

N
ot
e:

T
h
e
p
re
-
an

d
p
os
t-
te
st

re
su
lt
s
ar
e
n
or
m
al
iz
ed

in
p
er
ce
n
ta
ge
s



Table E.18 : Experimental group Test 1 (High-Voltage Safety) discretized Grades

TEST 1 - High-Voltage Safety
Student Q1 Q2 Q3 Q4 TOTAL

N5 1 0 0 1 2
N7 1 0 0 1 2
N15 1 0 0 1 2
N24 1 1 0 0 2
N1 1 1 0 1 3
N4 0 1 1 1 3

N12 1 0 1 1 3
N14 1 1 1 0 3
N17 1 1 1 0 3
N18 1 0 1 1 3
N19 1 1 1 0 3
N21 1 1 0 1 3
N2 1 1 1 1 4
N3 1 1 1 1 4
N6 1 1 1 1 4
N8 1 1 1 1 4
N9 1 1 1 1 4
N10 1 1 1 1 4
N11 1 1 1 1 4

N13 1 1 1 1 4
N16 1 1 1 1 4
N20 1 1 1 1 4
N22 1 1 1 1 4
N23 1 1 1 1 4
N25 1 1 1 1 4

µ 0.960 0.800 0.760 0.840 3.360
σ 0.200 0.408 0.436 0.374
IDiff 96% 80% 76% 84%
IDisc 0.167 0.500 0.833 0.167

S2 0.573
q 0.040 0.200 0.240 0.160
p*q 0.038 0.160 0.182 0.134
KR-20 0.135

Note: The student responses were discretized in 1s and 0s



Table E.19 : Experimental group Test 2 (IDE, GPIOs, and LCD) discretized Grades

TEST 2 - IDE, GPIOs, and LCD
Student Q1 Q2 Q3 Q4 TOTAL

N11 1 0 0 0 1
N22 0 0 1 1 2
N2 1 0 1 1 3
N3 1 0 1 1 3
N4 1 1 0 1 3
N5 1 0 1 1 3

N10 1 0 1 1 3
N12 1 0 1 1 3
N14 0 1 1 1 3
N18 1 0 1 1 3
N19 1 0 1 1 3
N20 1 0 1 1 3
N23 1 0 1 1 3
N1 1 1 1 1 4
N6 1 1 1 1 4
N7 1 1 1 1 4
N8 1 1 1 1 4
N9 1 1 1 1 4
N13 1 1 1 1 4

N15 1 1 1 1 4
N16 1 1 1 1 4
N17 1 1 1 1 4
N21 1 1 1 1 4
N24 1 1 1 1 4
N25 1 1 1 1 4

µ 0.920 0.560 0.920 0.960 3.360
σ 0.277 0.507 0.277 0.200
IDiff 92% 56% 92% 96%
IDisc 0.167 0.833 0.333 0.167

S2 0.573
q 0.080 0.440 0.080 0.040
p*q 0.074 0.246 0.074 0.038
KR-20 0.329

Note: The student responses were discretized in 1s and 0s



Table E.20 : Experimental group Test 3 (Interrupts, Switch Debouncing, and Key-
pad) discretized Grades

TEST 3 -
Interrupts, Switch Debouncing, and Keypad
Student Q1 Q2 Q3 Q4 TOTAL

N24 0 0 0 0 0
N5 1 0 0 0 1
N11 0 0 0 1 1
N1 1 0 0 1 2
N20 0 1 0 1 2
N21 0 1 0 1 2

N22 1 1 0 0 2
N23 1 1 0 0 2
N2 1 1 0 1 3
N4 1 1 0 1 3
N7 1 1 0 1 3
N9 1 1 0 1 3
N13 1 1 0 1 3
N14 1 1 0 1 3
N15 1 1 0 1 3
N16 1 1 0 1 3
N27 1 1 0 1 3
N18 1 1 0 1 3
N25 1 1 0 1 3

N3 1 1 1 1 4
N6 1 1 1 1 4
N8 1 1 1 1 4
N10 1 1 1 1 4
N12 1 1 1 1 4
N19 1 1 1 1 4

µ 0.840 0.840 0.240 0.840 2.760
σ 0.374 0.374 0.436 0.374
IDiff 84% 84% 24% 84%
IDisc 0.667 0.667 1.000 0.333

S2 1.107
q 0.160 0.160 0.760 0.160
p*q 0.134 0.134 0.182 0.134
KR-20 0.628

Note: The student responses were discretized in 1s and 0s



Table E.21 : Experimental group Test 4 (Timers and LEDs) discretized Grades

TEST 4 - Timers and LEDs
Student Q1 Q2 Q3 Q4 TOTAL

N5 0 0 0 0 0
N24 0 0 0 1 1
N17 0 1 1 0 2
N18 1 0 1 0 2
N1 0 1 1 1 3
N8 0 1 1 1 3

N10 0 1 1 1 3
N13 1 1 0 1 3
N14 1 1 0 1 3
N19 0 1 1 1 3
N20 0 1 1 1 3
N21 0 1 1 1 3
N22 0 1 1 1 3
N2 1 1 1 1 4
N3 1 1 1 1 4
N4 1 1 1 1 4
N6 1 1 1 1 4
N7 1 1 1 1 4
N9 1 1 1 1 4

N11 1 1 1 1 4
N12 1 1 1 1 4
N15 1 1 1 1 4
N16 1 1 1 1 4
N23 1 1 1 1 4
N25 1 1 1 1 4

µ 0.600 0.880 0.840 0.880 3.200
σ 0.500 0.332 0.374 0.332
IDiff 60% 88% 84% 88%
IDisc 0.833 0.500 0.333 0.500

S2 1.083
q 0.400 0.120 0.160 0.120
p*q 0.240 0.106 0.134 0.106
KR-20 0.613

Note: The student responses were discretized in 1s and 0s



Table E.22 : Experimental group Test 5 (Low-Power Modes and PWM) discretized
Grades

TEST 5 - Low-Power Modes and PWM
Student Q1 Q2 Q3 Q4 TOTAL

N7 0 0 0 1 1
N9 0 0 0 1 1
N1 1 1 0 0 2
N2 1 0 1 0 2
N5 0 0 1 1 2
N11 0 0 1 1 2

N12 0 1 1 0 2
N14 1 1 0 0 2
N27 1 1 0 0 2
N4 1 1 1 0 3
N13 1 1 1 0 3
N17 0 1 1 1 3
N20 0 1 1 1 3
N21 1 0 1 1 3
N22 1 1 0 1 3
N23 1 1 1 0 3
N3 1 1 1 1 4
N6 1 1 1 1 4
N10 1 1 1 1 4

N18 1 1 1 1 4
N19 1 1 1 1 4
N24 1 1 1 1 4
N25 1 1 1 1 4
N26 1 1 1 1 4
N28 1 1 1 1 4

µ 0.720 0.760 0.760 0.680 2.920
σ 0.458 0.436 0.436 0.476
IDiff 72% 76% 76% 68%
IDisc 0.667 0.833 0.500 0.333

S2 0.993
q 0.280 0.240 0.240 0.320
p*q 0.202 0.182 0.182 0.218
KR-20 0.281

Note: The student responses were discretized in 1s and 0s



Table E.23 : Experimental group Test 6 (Motor Interfacing) discretized Grades

TEST 6 - Motor Interfacing
Student Q1 Q2 Q3 Q4 TOTAL

N7 0 1 0 0 1
N23 0 1 0 0 1
N27 0 0 1 0 1
N28 1 0 0 0 1
N1 0 1 0 1 2
N5 1 1 0 0 2

N17 1 1 0 0 2
N18 1 0 1 0 2
N19 1 0 1 0 2
N21 1 0 1 0 2
N24 1 0 1 0 2
N26 0 1 1 0 2
N14 1 0 1 1 3
N2 1 1 1 0 3
N3 1 1 1 0 3
N4 1 1 1 0 3
N10 0 1 1 1 3
N11 1 1 1 0 3
N12 1 1 1 0 3

N22 1 1 1 0 3
N25 1 0 1 1 3
N6 1 1 1 1 4
N9 1 1 1 1 4
N13 1 1 1 1 4
N20 1 1 1 1 4

µ 0.760 0.680 0.760 0.320 2.520
σ 0.436 0.476 0.436 0.476
IDiff 76% 68% 76% 32%
IDisc 0.667 0.167 0.833 0.667

S2 0.927
q 0.240 0.320 0.240 0.680
p*q 0.182 0.218 0.182 0.218
KR-20 0.182

Note: The student responses were discretized in 1s and 0s



Table E.24 : Experimental group Test 7 (Serial Communications) discretized Grades

TEST 7 - Serial Communications
Student Q1 Q2 Q3 Q4 TOTAL

N9 0 1 0 0 1
N12 0 1 0 0 1
N25 1 0 0 0 1
N5 0 1 1 0 2
N10 1 0 0 1 2
N11 0 1 0 1 2

N14 1 1 0 0 2
N19 0 1 0 1 2
N1 1 1 0 1 3
N2 1 1 1 0 3
N3 1 1 0 1 3
N4 1 1 0 1 3
N18 1 1 0 1 3
N21 0 1 1 1 3
N26 1 1 1 0 3
N27 1 1 1 0 3
N28 1 1 0 1 3
N6 1 1 1 1 4
N7 1 1 1 1 4

N13 1 1 1 1 4
N17 1 1 1 1 4
N20 1 1 1 1 4
N22 1 1 1 1 4
N23 1 1 1 1 4
N24 1 1 1 1 4

µ 0.760 0.920 0.520 0.680 2.880
σ 0.436 0.277 0.510 0.476
IDiff 76% 92% 52% 68%
IDisc 0.667 0.333 0.833 0.667

S2 1.027
q 0.240 0.080 0.480 0.320
p*q 0.182 0.074 0.250 0.218
KR-20 0.394

Note: The student responses were discretized in 1s and 0s



Table E.25 : Experimental group Test 8 (Data Converters (DAC & ADC)) dis-
cretized Grades

TEST 8 - Data Converters (DAC & ADC)
Student Q1 Q2 Q3 Q4 TOTAL

N2 0 0 0 0 0
N11 0 0 0 0 0
N13 0 0 0 0 0
N3 1 0 0 0 1
N5 1 0 0 0 1
N10 1 0 0 0 1

N24 0 1 0 0 1
N4 0 1 1 0 2
N6 1 1 0 0 2
N8 1 0 1 0 2
N9 1 1 0 0 2
N12 1 1 0 0 2
N16 1 0 1 0 2
N25 0 0 1 1 2
N1 1 1 1 0 3
N14 1 0 1 1 3
N17 1 0 1 1 3
N18 1 1 1 0 3
N19 1 1 1 0 3
N21 1 1 1 0 3

N22 1 1 1 0 3
N7 1 1 1 1 4
N15 1 1 1 1 4
N20 1 1 1 1 4
N23 1 1 1 1 4

µ 0.760 0.560 0.600 0.280 2.200
σ 0.436 0.507 0.500 0.458
IDiff 76% 68% 76% 32%
IDisc 0.500 1.000 1.000 0.667

S2 1.583
q 0.240 0.440 0.400 0.720
p*q 0.182 0.246 0.240 0.202
KR-20 0.600

Note: The student responses were discretized in 1s and 0s



Appendix F

IRB Acceptance Letters

290






