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Abstract 

 
 

Electric drives are used in many industrial and commercial applications. High 

performance control of electric drives requires the accurate modeling of the motor and 

mechanical load.  In many industrial applications, it is desirable that the electric drive has 

the capability of self-tuning controller parameters to be able to drive different mechanical 

loads.  One way to achieve this flexibility is by direct identification of the drive and 

mechanical load.  Modeling and identification of Electric drive coupled to a load can be a 

challenging task.  This research investigates the use of gray box models to identify 

electric drive systems connected to an unknown load. 

In the proposed model, the electrical subsystem of the machine is modeled using 

physical principles while the mechanical subsystem is modeled using a black box model 

based on neural networks. A two-stage identification approach that separates electrical 

subsystem parameter estimation from mechanical subsystem identification is presented.  

At each stage the parameters are estimated using the linear least squares approach.  

Simulation results are presented to demonstrate the feasibility of the approach. 
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Resumen 

 

Los sistemas de accionamiento eléctrico se utilizan en varias aplicaciones 

industriales y comerciales.  El control de alto rendimiento de estos sistemas  requiere un 

alto grado de precisión en el modelaje del motor y la carga mecánica.  En muchas 

aplicaciones industriales, es deseable que el sistema de accionamiento contenga la 

capacidad the ajustar automaticamente los parametros del controlador, para que sea capáz 

de manejar diferented cargas mecánicas.  Una manera de obtener esta flexibilidad es por 

identificación directa del sistema de accionamiento eléctrico y de la carga mecánica.  El 

modelaje e identificación de sistemas de accionamiento acomplados a cargas mecánicas 

puede ser un gran reto.  Este trabajo investiga el uso de modelos de caja gris para 

identificar el sistema de accionamiento eléctrico conectado a una carga desconocida. 

En el modelo propuesto, el subsistema eléctrico the la máquina es modelado 

usando principios físicos mientras el subsistema mecánico es modelado usando modelos 

de caja negra basados en redes neurales.  La técnica presentada en este trabajo es la 

técnica de identificación the dos etapas que separa la estimación de parámetros eléctricos 

de la identificación de parámetros mecánicos.  En cada etapa los parámetros son 

estimados usando la técnica de los cuadrados mínimos.  Resultados de simulación son 

presentados para demostrar la viabilidad de esta técnica. 
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Chapter 1 

INTRODUCTION 

 

Electric drives are used in many industrial and commercial applications. High 

performance control of electric drives requires the accurate modeling of the motor and 

mechanical load.  In many industrial applications, it is desirable that the electric drive has 

the capability of self-tuning controller parameters to be able to drive different mechanical 

loads.  One way to achieve this flexibility is by direct identification of the drive and 

mechanical load.  Modeling and identification of Electric drive coupled to a load can be a 

challenging task.  This research investigates the use of gray box models to identify 

electric drive systems connected to an unknown load. 

In gray box modeling, the model is structured in two parts, a physical model (or 

white box) component that models the known part of the system and a black box 

component for the unknown part.  In our system, we know the model of the electric 

subsystem of the drive, but we don’t know the mechanical load model.  The use of gray-

box for modeling the electric drive system is a good alternative since it takes advantage 

of available system knowledge while leaving enough flexibility to deal with the unknown 

mechanical load. 
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The use of neural-network-based gray-box model for dc motor drives was 

investigated in [1]. However, no structure optimization was performed resulting in 

models that had a significantly large number of parameters when compared to physical 

models and used a nonlinear least squares approach for parameter estimation.  The large 

number of parameters turned the parameter estimation problem into an Ill-conditioned 

problem where network parameters are very sensitive to noise in the data and training 

algorithms converged quite slowly.  In [1], the network structure is fixed and deals with 

ill-conditioned using the Levenberg-Marquardt training algorithm to regularize the 

network training.  This work explored a different identification approach where used a 

radial basis function neural network for the black box resulting in a two-stage linear least 

squares method for the parameter estimation.  To optimize the network structure, 

orthogonal least squares pruning techniques are used.  With this approach, a lower 

dimension model with better-conditioned parameters improving their interpolation and 

extrapolation capabilities was obtained. 

1.1  Research Motivation 

The motivation of this work is directly related to the Center of Power Electronics 

Systems.  The industrial process has several components, as shown in Figure 1.  An 

important objective in the center is integrated drives for process control, improving 

reliability and reduce the system complexity, size and cost using several steps.  These 
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steps are the integrated design approach, sensorless control and adding system 

intelligence by self-commissioning, tuning and diagnostics.    

 

Figure 1 Basic Industrial Process 

 

1.2  Objectives  

The main objective of this work was to develop an automated methodology for 

the identification of models that can be used to tune the controller of electric drive 

systems for a wide range of mechanical loads.   

The specific objectives of this work were: 

• To develop an identification algorithm that optimized the model 

structure as well as the estimation of the parameters for a motor drive. 
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• To explore the use of radial basis function neural networks to model 

the unknown mechanical load instead of the multilayer perceptron 

used in [1].  

• Study capabilities of gray box modeling techniques for identification 

of electric drives. 

• To validate the approach. 

1.3  Contribution 

One of the contributions of this work is the development of a two-stage linear 

least squares parameter estimation process.  This method avoids the difficulties 

associated with the nonlinear least squares method to the parameter estimation.  The 

second contribution was the development and generalization of box models for 

mechanical load.  With this work we developed methodology for the identification of 

models that can be used to make self-commissioning of electric drive systems driving 

mechanical loads.  The last contribution of this work was implemented pruning method 

by orthogonal linear least square to reduce model complexity during the identification 

process.  

1.4  Outline 

This thesis is organized as follows.  In Chapter 2, the literature review is 

presented.  The Basic Concepts in Electric Drive Systems, System Identification, Gray 
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Box Models, Artificial Neural Networks, Parameter Estimation, Model Complexity and 

Pruning are also discussed.  Chapter 3 presents the Two - stage parameter estimation 

method.  Simulation results for identification and validation are presented in Chapter 4.  

Chapter 5 presents conclusions and recommendations for future work. 
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Chapter 2 

BACKGROUND 

 

This Chapter presents basic concepts in electric drives and drive commissioning, 

the use of the gray box model for the system identification, and the use of neural 

networks for the black box modeling.  Parameter estimation methods, model complexity 

and pruning techniques are also discussed here. 

2.1  Basic Concepts in Electric Drives 

About fifty percent of all electricity is used in electric drives.  An electric drive 

can be defined as a system that converts electrical energy to mechanical energy (in 

motoring) or vice versa (in regenerative braking) for running various process such as 

pumps, air compressors, disc drives, robots, etc.  Electrical drives are an integral part of 

many industrial applications.  A combination of a prime mover, transmission equipment 

and mechanical working load is what we call electric drive system.  More specifically, 

the electric drive system is composed of an electric machine, sensors, controller, a power 

electronics power-processing unit and the mechanical load.  A block diagram of a drive 

system is presented in Figure 2. 

In an electric drive system, the power processing unit delivers appropriate form of 

voltage and frequency to the motor, the motor is used for speed or position control 

applications, and the controller with the help of the sensors, controls the motor and power 
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converter to meet the load requirements.  The objective of the electric drive systems is to 

make an efficient electric to the mechanic power conversion. 

A reason to use electric drive system is the advantages that they offer.  Some of 

these advantages are the availability of drives over a wide range of power, the lower 

noise level, the high efficiency, there are available in a variety of design rating to meet 

different types of loads, drives operate in first, second or fourth quadrants, which offer a 

variety of applications, reliability and versatility. 

 

Figure 2 Basic Electric Drive System Schematic 

 

2.1.1 DC Motor Drives 

DC motor drives are very versatile for purposes of speed control.  Fast response 

and smooth speed control is possible by varying the armature voltage and or field current.  

The converter technology is well established and the power converter is simple and 

inexpensive.  A special feature of dc motor drives is that it is possible to connect the field 

and armature windings in several ways so as to achieve a variety of torque-speed 
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characteristics.  By properly adjusting the relative field of the dc motor, a speed-torque 

curve with desired speed regulation may be obtained.  The speed-torque characteristic of 

an electric motor drive is very significant since it sets the application of the motor [3]. 

The principal reference for this work is “Gray-Box Modeling of Electric 

Machines Using Neural Networks” [1].  Like in [1], the capabilities of the gray-box 

modeling approach for electric drive modeling are studied.  For this purpose, an 

identification of a simulated drive system was performed.  The simulated system was a 

permanent magnet DC motor driving a nonlinear load.  For simulation purposes, we used 

a permanent magnet DC Motor with the following characteristics: 1hp, 220 volts and 550 

rpm.  Figure 3 presents the schematic of the system.   

 
Figure 3 Schematic for DC Motor and Load System 

 

The general equations that model the electrical and mechanical parts of the system 

are the following: 
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( )tKtiRtV
dt

tdi
L aaaa

a
a ω−−= )()(

)(
 (2. 1) 

( )( )ttBt
dt

td
J Lmemm ωτωτ

ω
−−= )()(

)(
 (2. 2) 

)()( tiKt aaem =τ  (2. 3) 

 
Where: aL  is the armature inductance, aR  is armature resistance, ( )tVa  is the input 

voltage, aK  is the armature constant, mJ  is the combined load and motor inertia of the 

motor, mB  is the damping coefficient, ( )tω  is the motor speed, ( )tia  is the armature 

current and Lτ  is the load.  The numerical values for the parameters used in the 

simulations are shown in Table 1. 

 

Table 1 Parameters of the DC Motor Drive. 

Parameter Value 

Jm 0.06 Kg.m2 

Ka 3.475 Nm.A-1 

Ra 7.56 Ω 

La 0.055 H 

Bm 0.03475 

 

Here we consider two mechanical loads.  These loads are simples and can be 

found in multiple mechanical applications as in pumps, variable speed drives, etc.  The 

load parameters in both cases are such that the load torque equals rated torque at rated 
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speed.  The inertia of the system always results in the same value.  The load equations 

and their parameter values are presented in Table 2. 

Table 2 Torque Loads and their parameter values. 

Case Torque Equation Parameter 
Values 
µ=1N.m 

α=1Rad/s Nonlinear Friction 







+








= β

α
µωτ

))((
arctan))(()(

twabs
tsigntl  

β=3N.m 

Fan Load )())(()( 2 ttsigntl ωωµτ =  µ=1N.m 

 

2.1.2 Mechanical Modeling for Electric Drives 

For modeling mechanical systems for electric Drives, some prior knowledge has 

been used.  Beineke [4] present a method for commissioning the speed and position 

control system of an electric drive.  In this case, the system includes identification of the 

mechanical load.  This is an easy example to understand the concept. Beineke identify the 

mechanical system assuming it behaves like a one mass system; then use extracted 

characteristics features from acquired data to determine the validity of the system when 

we compare with a two mass model for the system.  The features used in this case for 

structure selection are based on knowledge of the ideal response of the system when it is 

assume to be a one mass or two masses. 

In [5], Beineke develops models for nonlinear loads on electric drives system.  In 

this case, the authors integrated radial basis function networks in a physics based model 

for the load.  The physical model estimates position and speed, measured current and the 
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radial basis function estimates friction.  This work is a good reference because the 

authors implement the work in an actual system, which produces a good performance in 

the parameter estimation task.  The deal in this work is the modeling of the mechanical 

part.  The representation of the basis model is: 

),( uxNLBuAxx ++=&  (2. 4) 

 
Where ),( uxNL is the nonlinear representation of the equation (2.4). 

Only some works have made the use of gray-box modeling approach for 

electromechanical systems.  For example, in [6] a neural network is used in gray-box 

model of a rotating arm unknown friction torque component driven by an induction 

motor described by angular displacement, velocity, effective inertia, friction, motor gain, 

input voltage of the motor and the parameters associated to the friction characteristic 

function.  In this work, the authors used white-box for the physics of the model and used 

black box for the unknown friction characteristic.  The unknown part is modeled by an 

artificial neural network, which corresponds to the mechanical part of the system. 

2.2  Commissioning of Electric Drives 

As result of the fast development in automation technology, the demand for drives 

has been increasing. It is important for the drives to be able to overcome the influence of 

load variations and keep the performance of the overall system unchanged.  An important 

problem in drive systems is controller tuning prior to system operation.  Drives controller 

tuning is needed to ensure that the drive system will meet the system performance 

requirements.  Drive commissioning is the tuning of system parameters before it is put to 
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operation.  During this process, different test are applied to the drive system to calibrate 

the drive controller [7].  The steps during drive commissioning are: 

• Initial setting of necessary control parameters 

• Identification of electrical and mechanical parameters 

• Selection of controller 

• Tuning of control parameters 

The commissioning process is usually performed by a trained technician or field 

engineer, which involved costly and time consuming.  Self-commissioning has been 

proposed as a solution to the problem. 

Self-commissioning is the automation of the commissioning process.  Some of the 

benefits with self-commissioning is that it facilitates system installation and assures 

proper drive tuning before the system is fully operational and achieve significant 

improvements in reliability of drive systems by increasing the intelligence of their control 

systems.  Some of the issues is self-commissioning are the load identification and the 

controller tuning.  The load identification can be performed by direct or indirect form.  

The direct form estimates the parameters directly for the load and the indirect form set 

the parameters in the controller.  For this process to be applicable to a wide range of 

mechanical loads the model structure needs to be quite flexible while still incorporating 

the physical knowledge about the electric motor.  The solution presented here is based on 

gray box models.  The proposed load identification methodology is applied to the 

identification of a permanent magnet DC motor drive system driving an unknown static 

load. 
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2.3  System Identification 

A model is a very useful and compact way to summarize the knowledge about a 

process.  Mathematical model building can be based on physical laws that govern the 

system.  In most cases, it is not possible to make a complete model of the system only 

from physical knowledge.  Some parameters must be determined from experimental data.  

This approach is called system identification, in other words, system identification is the 

experimental approach to process modeling. A complete example of this system 

identification process is presented in [8, 9].  System identification process includes the 

following steps: 

• Experimental planning 

• Selection of model structures 

• Criteria 

• Parameter estimation 

• Model validation 

For the selection of model structure generally, load model consist of static and 

dynamic load model.  When formulating and identification problem, a criterion is 

postulated to give a measure of how well a model fits the experimental data.  For 

example, one criterion recommended by Astrom and Wittenmark [9] was the principle of 

least squares, linear least square is explained in more details is section 2.5.1.  The 

parameter estimation problem can be formulated as and optimization problem, where the 

best model is one that best fits the data according to the given criterion.  The model 
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validation is useful to determine such factors as step responses, impulse response and 

prediction errors. 

The key problem in system identification is finding a suitable model structure in 

which a good model is to be found.  In this work with the electric machines, the electric 

subsystem is fully understood, however, the model of the mechanical load could be 

uncertainly and we don’t know the equations that describe the system load exactly.  To 

solve this problem, we are going to model the unknown load using black box models. 

The modeling approaches for dynamic systems are physical-based modeling, 

empirical models and the combination of both [10,11]. 

The physical model known as white box structure is based on the physical laws 

governing the phenomena.  The system is perfectly known and the entire system can be 

constructed from physical approach.  This model required a good knowledge of the 

system structure and parameters.  However, this structure is difficult to derive for many 

physical systems.  Good extrapolation performance can be found using this structure. 

The empirical models known as black box models are based on available 

measurements of the system output observations, in this case there is no need for good 

insight of the system.  One advantage of this structure is the flexible model structure.  

The drawbacks of the black box structure are the lack of physical meaning requires 

intensive study of the model quality and the poor extrapolation performance. 

The gray box model represents the tradeoff between the white box and the black 

box models integrating some aspects from both.  The structure of gray box relies strongly 

on prior knowledge (white box) and the model parameters are mainly determined by 
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measurement data (black box).  It is the case when some physical knowledge is available 

but several components remain to be determined from observed data.   The structure of 

gray box combines the flexibility of black box structure with the physical insight of white 

box structures.  With the gray box model we have partial knowledge of the model 

structure.   

The gray box model used here is presented in equation (2.5).  This equation has 

two parts: the known part, which is the electrical equation of the system ( )( )( )txh  and the 

unknown part, which is the mechanical load ( )( )( )txg .  The black box model represents 

the unknown part, which is based on artificial neural networks. 

( ) ( )( ) ( ) ( )( )ttxttx uguhx ,, +=&  (2. 5) 

 
Where ( ) ( )( )ttx uh , is white box and ( ) ( )( )ttx ug ,  is black box  

 

2.4  Artificial Neural Networks 

An artificial neural network is a system composed of many simple processing 

elements operating in parallel whose function is determined by network structure.  The 

artificial neural network was motivated originally by the biological structures in the 

brains of humans and animals.  These structures are extremely powerful for such task as 

information processing, learning, and adaptation.  The most important characteristics of 

the neural networks are [10]: large number of simple units, the highly parallel units, 

strongly connected units, robustness against the failure of single units, and learning from 

data. 
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Artificial Neural Networks have proven to be valuable tool in exploiting ideas 

common to nonlinear dynamics and system identification [12,13].  It is the power of 

neural networks to represent non-linear mappings and hence to model nonlinear systems 

which is the feature of to be most readily exploited in the area of nonlinear controllers 

[14].  In addition the potential benefit of the artificial neural networks in the systems is to 

seek solutions to their complicated problems which is a great advantageous because it 

will adjust its parameters to reproduce the system in an input-output sense and an 

important advantageous in our case is because they do not require physical descriptions.  

Neural Networks are potential model structures candidates for electric drive system 

identification as shown in [1].  In some cases the appropriate neural network model set 

could reach a very large sized, therefore the size of the parameter set would become even 

larger.  This is a problem intrinsically related to the approximation problem using neural 

networks. 

The next Figure 4 presents the block diagram for the actual electric drive system.  

We have in the diagram all the constant and parameters that compound the equations for 

the system.  In this case we use in the toque ( )( )tL ϖτ , which can be substitute for the 

equation of the mechanical load under study, fan load.  But one of the objectives of this 

work was the use of neural networks for the load parameter estimation.  In this case we 

used instead of the toque equations the neural network algorithm.  This substitution is 

presented in Figure 5, in it can observe two biggest divisions, the first division is the 

physical known part of the system, which was compound of the electrical parameters and 
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the second division of the block diagram represent the black box part of the system 

included the neural network. 

 

Figure 4 Actual Drive System Block Diagram  

 

 
Figure 5 Gray – Box Model Block Diagram 

 

Another possible black box structure of the system is derived from the real 

physical model.  It is based on the fact that some models can be not identifiable.  There 

are multiple combinations of neural network parameters and viscous friction constant 

( )tVa

∫ ∫aK

aR mB

1−
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+ + 
aK

( )tω
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resulting in the same load characteristics.  For this reason, another model structure is 

form by the elimination of the viscous parameter, as shown in Figure 6. 

 
Figure 6 Gray – Box Model Block Diagram without viscous friction constant 

 

2.4.1 Multilayer Perceptron (MLP) 

The multiplayer perceptron is a feedforward neural network with hidden layers.  

MLP is one of the most widely used neural network architectures for function 

approximation.  One of the attractive feature of the being fitted data is flexible.  In MLP, 

the approximation function is determined by fitting the available data, which involves 

constructing an approximation function f(x) capable of mapping a collection of input 

vectors to a set of associated output vectors.  When we work in absence of noise, we hope 

to achieve an exact fit.  Example of this neural network is the sigmoid functions. 

2.4.2 Sigmoid Functions 

The sigmoid function was the activation function used in [1].  The sigmoid 

function has some important characteristics, is bounded, it is monotonically increasing 
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and it is continuous and smooth without gasps and corners.  One example of the sigmoid 

type function is the logistic function given by: 

( )
ue

ug
1

1

1

+
=  

(2. 6) 

 
This logistic function was the type of neural network activation function used by 

[1].  In this work, a single layer radial basis function was used.  The objective to using a 

different artificial neural network was to simplify the training and pruning of the network. 

2.4.3 Radial Basis Function  

The radial basis function neural network was used to model the unknown static 

mechanical load of the drive system.  The radial basis function artificial neural network 

utilizes the radial construction mechanism presented in Figure 7. The output of the radial 

basis function is given by: 

( )∑
=

−=
M

i
iii cuy
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ˆ Fω  (2. 7) 

 
In Figure 6, the hidden layer nodes use the Gaussian Function as the basis 

function. The mathematical representation of the radial basis function neural network is 

given by: 

( )

∑
=










 −
−

==
N

i

ctx

i

i

exfy
1

)(
2
1

2

2

)( σ
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Where x is the input data, iC - is the center of the ith node and iσ - is the “variance” of the 

ith node. 
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Figure 7 Basic Structure of a Radial Basis Function Neural Network 

 

A radial basis function has three types of parameters 

• Output layer weights = are linear parameters and they determine 

the amplitude of the basis function. 

• Centers = are nonlinear parameters of the hidden layer neurons.  

They determine the position of the RBF. 

• Standard deviation = are nonlinear parameters of the hidden layer 

neurons.  They determine the width of the RBF. 

Radial basis functions are attracting a great deal of interest due to their rapid 

training, faster learning, generality and simplicity [15].  RBF train rapidly without local 

minima problems and approximate any continuous function with arbitrary accuracy.  

Radial Basis function neural networks are powerful techniques with a definite range of 

applicability; they greatly accelerate the development and evaluation process.  Their rapid 

training makes them suitable for situations where on-line learning is necessary.  The 

linearity in the radial basis function parameters implies that their values can be computed 

∑x y 
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using standard least-squares techniques, which is faster than the gradients methods used 

to solve sigmoid values.   

Some drawbacks of the radial basis functions are: the priori information needed to 

locate the centers and set the variances, and the principal drawback is that the number of 

basis functions increases exponentially with the dimension of the input space [16]. 

2.5  Parameter Estimation 

Parameter estimation is of primary importance in many areas of process 

modeling, both for on-line applications such as real time optimization and for off-line 

applications.  The objective is to determine estimates of model parameters that provide 

the best fit to measured data, generally based on some type of least squares criterion. In 

general case, this is a nonlinear optimization problem.  Because of the high 

dimensionality of the parameter vector in neural network, th eparameter estimation is an 

ill-conditioned problem where network parameters are very sensitive to noise in the data 

and training algorithms converge quite slowly to the estimate.  In [1], they fixed the 

network structure and dealt with Ill-conditioning problem using the Levenberg-

Marquardt training algorithm to regularize the estimates.  By using a radial basis 

function, we deal with the ill – conditioning by eliminating network nodes using pruning.  

So we can optimize the network structure in addition to compute optimal parameters 

estimates. 
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2.5.1 Linear Least Square Problem 

Least square is a method based on the minimization of the sum of the squares of 

the error. The goal of linear least square method is to find the model output ŷ  that the 

best approximates the process output y, with the minimal sum of squared error value.  In 

vector/matrix notation the model output can be written as 

2
2

ˆminargˆ yy? −= θ  (2. 9) 

 

?Xy ˆˆ =  (2. 10) 

 
Where the optimal solution to this problem is given by 

( ) yXXX? TT 1ˆ −
=  (2. 11) 

 

The difference y  and ŷ  is called the residual.  Ideally the residual should be zero, 

but, in practice, the examination of the residuals can reveal many details about the 

estimation quality. 

 Based on [17] Linear Least Squares has several attractive features for system 

identification: 

• Large errors are heavily penalized 

• Linear least square estimates can be obtained by straight forward 

matrix algebra  

• Linear least square criterion is related to statistical variance and 

the properties of the solution can be analyzed according to 

statistical criteria 
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2.5.2 Nonlinear Least Square Problem 

Physical parameter estimates, network weights and bias are computed by 

minimizing a cost function.  The nonlinear least squares parameter estimation problem 

can be formulated as [1]: 

)(minargˆ ?? Sθ=  (2. 12) 

 
Where 
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The two most popular algorithms for the nonlinear parameter estimation problem 

are the Gauss-Newton and Levenberg-Marquardt method, described in more detail next. 

2.5.3 Gauss-Newton 

The Gauss-Newton is an iterative algorithm.  
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and                                              ( ) yfr RR −= θ̂)(
 (2. 18) 

 

The problem with this method occurs if the matrix pJ  which is poorly 

conditioned or even singular.  This can happen when we have a large number of 

parameters as in neural network training. 

2.5.4 Levenberg-Marquardt 

The Levenberg-Marquardt is an extension of the Gauss-Newton method 

algorithm, where the search direction RP  is computed by solving the linear least squares 

problem. 

prP RpR
2minarg λ+−= J  (2. 19) 

 
 

Where pJ  is the Jacobian matrix and Rλ  is the regularization parameter, which solves the 

problem of a poorly conditioned matrix.  The advantages of this method are basically the 

same of the Gauss-Newton method, however, due to modified search direction, this 

algorithm is more robust. 

2.6  Model Complexity 

The model complexity is related to the number of parameters that the estimated 

model possesses.  A model becomes more complex if additional parameters are added 

and it becomes simpler if some parameters are removed [10].  Model complexity also 

represents the flexibility of the model.  For a good performance in a wide range of 

operation, a model should not be too simple, because it would not be capable of capturing 
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the process behavior with a reasonable degree of accuracy.  On the other hand, a model 

should not be too complex because it would possess too many parameters to be estimated 

with the available finite data set. 

The characteristic of the process, the amount and quality of the available data, the 

prior knowledge and the type of model imply an optimal model complexity.  Each 

additional parameter makes the model more flexible, however, it makes it harder to 

accurately estimate the optimal parameter values.  The technique used in this work to 

optimize the model complexity was pruning. 

2.7  Pruning 

When working with neural networks to solve real problems, we require the use of 

highly structured networks of large size.  Based on [18], the issue is minimizing the 

network size and yet achieved good approximation.  Pruning is a generic term for all 

kinds of neural networks training techniques that decrease the network complexity by 

removing parameters or nodes.  It is a method that decreases the capacity of the model in 

order to limit over-fitting of the system modeling [19].  The most important reason for 

performing this structure optimization was the possibility that the number of possible 

models and parameters was significantly reduced.  Pruning works iteratively discarding 

those nodes and parameters that have little influence and then re-estimate the values of 

the remaining ones.  Some of the pruning techniques are the followings: 

• Clustering – weight decay method and weight elimination method 

• Threshold pruning 
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• Hessian matrix of error surface – which includes optimal brain 

damage and optimal brain surgeon methods 

• Orthogonal Least Squares 

Based on [20] an effective way to prune an artificial neural network is to employ 

a clustering algorithm on weight matrices to perform an appropriate reduction.  This 

algorithm picks out the distinctive subsets of weights embedded in a high dimensional 

space and selects lower dimensional weight matrices.  The pruning algorithm presented 

in [20] applies a metric distance method to find the best way partition that the metric 

difference among the weights in a cluster is less that the error provided by the user, which 

eliminates the irrelevant links and redundant nodes from the trained neural network.   

Other way to make pruning presented in [11,20] is threshold pruning.  The 

threshold pruning is applied to eliminate redundant links and possibly input or hidden 

nodes from the trained neural network architecture while preserving accuracy of the 

original network.  The idea is that links with low weights are not decisive for a neuron’s 

activation function and they are not contributing new information in the network, 

consequently these low weights links are not retained and they are labeled as irrelevant.  

After pruning, the network maintains high accuracy but lower dimension once all the 

redundant links and nodes are eliminated. 

The idea of the method using the Hessian matrix of error surface is to use 

information of the second order derivatives in order to make a trade-off between network 

complexity and training error performance.  The optimal brain damage (OBD) identifies 

a set of parameter whose deletion from the neural network will cause the least increase in 
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the value of the cost function.  Optimal brain surgeon (OBS) simplifies the computation 

making as an assumption that the Hessian matrix is a diagonal matrix. 

The orthogonal least squares method calculates the individual contribution to the 

desired output from each basis vector.  In other words, the algorithm selects the basis 

functions that produce a better fit of the model.   

The use of any of this method can assure better generalization, fewer training 

examples and improves the speed of learning of the neural network.  Also eliminates the 

ill – conditioning problem, which is related to the number of parameters in the estimation. 

2.8  Conclusions 

This Chapter provided the background on gray box modeling, DC drives systems 

and parameter estimation used in this work. 
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Chapter 3 

PARAMETER ESTIMATION: TWO STAGE METHOD 

 

Parameter estimation is a common problem in many areas of process modeling, 

both in on-line applications such as real time optimization and in off-line applications 

such as the modeling of electric drives loads.  The goal was to determine values of model 

parameters that provide the best fit to data.  This chapter presents the derivation of the 

two-stage linear least squares method for drive identification. 

 

3.1  Gray – Box Model Structure 

After knowing and understanding the complete mathematical model for the dc 

drive and load, a function for the load modeling was determined, assumed to be 

unknown.  The selection of artificial neural networks for modeling the load was not in an 

intuitive way.  The use of artificial neural networks was the model structure use on 

previous work [1], for which we conclude that the use of artificial neural networks was a 

good step in the parameter estimation technique tacking into account the purpose of this 

work.  Radial basis function was selected for used as artificial neural networks.  Equation 

(3.1) and equation (3.2) presents the mathematical expression for the gaussian radial basis 

function neural network introduced in Chapter 2.   
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The motor torque is known to be a linear function of the armature current.  

Furthermore it is known that friction and fan load, common characteristics of mechanical 

systems are nonlinear functions of speed.  These facts were used to further specify the 

mechanical subsystem model as in equation (3.3).  For this work, the gray box model 

included the terms in the load speed state function and the radial basis function artificial 

neural network.  The complete mathematical model for the mechanical equation of the 

system including the neural network is presented in equation (3.4).  
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Another possible gray box structure of the system was derived from the physical 

model [1].  It is based on the fact the models based in the structure of equation (3.3) may 

not be identifiable.  That is, multiple combinations of neural network parameters and 

loads constants, resulting in the same load characteristics are possible.  The second model 

structure under considerations was: 
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For training, the system was excited with a pre-selected voltage signal as shown 

in Figure 8.  The parameters of the neural network, centers and standard deviations were 

selected a priori.   
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Figure 8 Excitation voltage used for the training of the model 
 
 

3.2  Linear Regression Models for Drive Identification 

In our model we can group model parameters into the electrical parameters eθ  and 

the mechanical parameters mθ .  The mechanical ones include the parameters of the 
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artificial neural network.  For parameter estimation, two-stage method was used.  This 

method estimated the parameters in two independent steps, first the electrical parameters 

are estimated and second the mechanical parameters are estimated.  This method made 

the estimation process straightforward, because it reduces the problem from a complex 

non-linear system toward two simple estimation problems.  After simplifying the 

problem, solved it by the use of linear least squares to estimate both groups of 

parameters, electrical and mechanical.  The most important advantage of the used of the 

two-stage method was avoiding the used of the Gauss Newton method, which is 

computationally complex and time consuming.  

The method was used with two different model structures.  One with the viscosity 

parameter mB  and the other no viscosity term is explicitly present. 

Case 1: Mechanical Model without explicit viscosity term. 

The model studied here is described by the following equation where no 

viscosity term mB  appears explicitly in the mechanical equation. 

( ) ( ) ( ) ( )t
L
K

ti
L
R

tVa
Ldt

tdi

a

a
a

a

a

a

a ω−−=
1

 (3. 7) 

( ) ( ) ( )( )tT
J

ti
J
K

dt
td

L
m

a
m

a ω
ω 1

−=  (3. 8) 

 
The electrical equations can be arrange into the linear regression form as follows 
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Where the linear regression model for which eθ̂  is computed using linear least squares is 

presented in equation below. 

( ) ( )
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e =y  (3. 10) 

( ) ( )[ ]tiVt aae
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The actual electrical parameter estimations can be obtained from 1eθ , 2eθ  and 3eθ  

as follows 
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A linear regression model can be obtained with the mechanical equation (3.16), if 

the electromagnetic torque emT  is as shown in equation (3.17) 

( ) ( )( ) emm Tt
dt
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J =+ aF ω

ω
 (3. 16) 
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Where 

( ) aaemm iKTt ==y  (3. 18) 
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[ ]Tmm J a? =  (3. 20) 

 

Since emT is not available, we estimate it using the estimated aK̂ obtained from 

the electric regression model. 

Case 2: Mechanical Model with explicit viscosity 

The mechanical model used for this second case is 
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By the substitution of aaem iKT ˆˆ = and the artificial neural network for the load 

( )( ) ( )( )aF ttT L ωω = in previous equation (3.21), we obtained equation (3.22) 
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J =++ aF ωω

ω
 (3. 22) 

 

The corresponding linear regression model is given by 

( ) ( ) ( )tiKtTt aaemm
ˆ==y  (3. 23) 
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Parameter estimation is done using the linear least squares method as described 

previously where aK  is substituted by aK̂ . 
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3.3  State Variable Filters: Avoiding Differentiation 

The most obvious problem with the two-stage algorithm is the differentiation of 

the measured signals, ( )tω  and ( )tia .  The acceleration is a high bandwidth signal, which 

in practice is difficult to measure.  Therefore, this quantity is obtained by estimation 

techniques, such as observers, direct differentiation and state variable filters [21, 22].   

• Observer - the response is faster than the system response, but include 

more parameters to the system, add additional and add a delay to the 

system. 

• Direct Differentiation (forward of backward) – From typical velocity 

signal derived from a pulse encoder output produces noisy estimates and 

amplifies inaccuracies to a level that cannot be accepted in practical high 

performance applications. 

• State Variable Filter – this estimation is relatively simple, involves only 

one gain and produce good performance of the results but its more 

sensitive to noise than the observer.  Some pre-filtering techniques could 

be applied to restore the corrupted velocity signal in order to facilitate the 

estimation of the acceleration.   

To avoid differentiation in this work, state variable filters were used.  The basic 

idea was to use filters reducing noise effects from the process signal by combining 

filtering and derivations [23].  It is important to keep in mind that the input – output 

process was applied to all the measures, current, voltage and velocity; in other words, the 

same type of state variable filter, filters all the measurements.  Figure 9 shows the basic 
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block diagram of the state variable filter.  This filter is a simple one that is composed of 

one integer, one gain and unitary feedback that keeps tracking of the original signal with 

a minimum error.   

 

Figure 9 State Variable Filter 

 

As example of the results of used state variable filters was presented in Figure 10, 

which showed the original and filtered velocities.   

 
Figure 10 Original velocity vs. filtered velocity 
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Figure 11 present how the state variable filters are used in algorithm 

implementation.  Using these filters, the original values, the filtered values and their 

derivatives values was obtained. 

 
Figure 11 Avoiding differentiation: State Variable Filters Process 

 

 

3.4  Two-Stage Algorithm 

The two-stage algorithm is as follows 

Stage 1: Compute eθ̂  solving the linear least squares problem. 

2
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Compute the electrical parameter estimates as follows 
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Stage 2: Compute the electromagnetic torque emT  using 

aaem iKT ˆˆ =  (3. 29) 

 

Compute mθ̂  solving the linear least squares problem 
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3.5       Pruning using Orthogonal Least Squares 

To explain the orthogonal least squares algorithm, let start by defining the linear 

model with equation (3.32) 

e+= F xy  (3. 32) 

 

The orthogonal least squares method is based on the transformation of the 

regression matrix F , to a set of orthogonal basis vectors.  This transformation would 

make possible the assessment of individual contributions of each basis vector. 

The fist step is the QR decomposition of the regression matrix F  into: 

QRF =  (3. 33) 

 

Where R is an upper triangular matrix and Q is a matrix with orthogonal columns. 
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 The second step is rearrange the equation (3.33) into (3.34), in where b is a 

transformed parameter vector satisfying bRx =  

e+= Qby  (3. 34) 

 

The solution of equation (3.34) is given by the least square represented in 

equations (3.35) and (3.36). 

( ) yQQQb TT 1−
=  (3. 35) 

i
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i
qq
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It is important to note that the previous equation is the part of the output variance 

described by the regressor iq .  Therefore the most influential regressors are chosen 

iteratively until a point is reach where adding a regressor contains no useful information.  

Finally the value of the regresors is estimated. 

3.6  Full Identification Algorithm 

The diagram in Figure 12 presented the full identification process algorithm.  The 

first step was the selection of the model structure.  The used of the radial basis function 

neural network for the black box was selected.  The second step was the used of two-

stage method to make the parameter estimation.  The electrical parameters are separated 

from the mechanical parameters and neural network parameters into two different groups.  

First the estimation of the electrical parameter using linear least squares and then the 

mechanical parameters and neural networks parameters estimated by linear least squares 

method.  The next step was the verification of the training data fitting.  If the fitting was 
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good continue to the next step, on the other hand, if the fitting was not to good, go back 

to the model structure and estimate the parameters again.  The next step was the pruning 

of the system to reduce the model complexity.  If the system needed pruning go back 

again to the model structure, on the other hand if the system do not need pruning continue 

to system validation.  Validation used the new values from the estimation with a new 

validation data in were the corroboration of the performance of the system was made.  If 

the results of the validations were not satisfactory, go back to the model selection step 

and start again.   

 

 

Figure 12 Full Identification Algorithm 
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3.7  Conclusions 

This chapter presented the identification process step by step.  The two-stage 

linear least squares method results in a simple technique for parameter estimation.  The 

state variable filter is a useful way to avoid the differentiation without adding noise to the 

system, producing good results.   
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Chapter 4 

SIMULATION RESULTS 

 

This Chapter presents the results of the algorithm implementation for the 

identification of the system.  The results are presented for two different models.  The first 

model is without implicit viscosity parameter and the second is with the implicit viscous 

parameter.  The results are presented with and without noise for the fan load.  Also the 

validation results are presented.  Finally, the pruning results by orthogonal least squares.  

 

4.1  Initialization 

Before present the estimation results is important to know how the simulation data 

was generated.  It is important to remark that here is assumed that the system may be 

operated over the entire nominal operation range.  In real implementation, this could be 

another source of ill-conditioning since it may be the case that operation constraints will 

limit how much excitation could be given to the system.  This is a major concern in the 

system identification process and even mote here since artificial neural networks are 

function approximators for which this capability depends on hoe representative of the real 

system is the data available for the parameter estimation phase [1]. 

  An important part of the identification is the training of the neural network in 

order to reduce the error.  The training input of the model is performed using Matlab, 
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which is an armature voltage curve.  The training armature voltage was selected a priori.  

This training armature voltage is shown in Figure 13.  The measure signals are the current 

and the velocity.  The parameter values of the permanent magnet DC Motor was obtained 

by [1], and they are presented in Table 1, Chapter 2.  There is some result noiseless free 

and results with noise, which is a gaussian noise of 0.1.  For the initial model, 121 points 

for radial basis function centers were selected.  This center distribution and the variances 

were selected a priori. 
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Figure 13 Excitation voltage used for the training of the model 
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Figure 14 Current and Velocity Data 
 

4.2  Mechanical Model Without Viscosity Parameter 

 
Table 3 shows the estimation results for the noise free case. 

 

Table 3 Parameter Estimation Results: Without Implicit Viscosity Parameter 

Parameter Real Value Estimated Value Error 

aR  7.56 7.5601 ~0.0 % 

aL  0.055 0.055 0.0 % 

aK  3.475 3.475 0.0 % 

mJ  0.06 0.056446 5.92 % 
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The following figures present results of the model identification.  Figure 15 shows 

the estimated load torque characteristics.  As we can see in Figure 15 the performance of 

the parameters estimation using the radial basis function artificial neural network in the 

black box for the identification process produces a good performance of the system.  

Figure 16, shows the estimation error between the real torque values versus the identified 

torque.  In the error in torque figure, can be observed that the greater error its at the ends 

of the response.  It may be seen that the approximation of the respective load 

characteristics by the artificial neural network is very good inside the nominal operations, 

but it start to lose performance outside this range. 

Figure 17, compares the measured and estimated current, while Figure 18 shows 

the estimation error for the real current values and the estimated ones.  Figure 17, clearly 

shows that both graphs are overlay, which means that good fitting performance was 

obtained by the identification.  As shown in Figure 18, the maximum error between the 

real value current and the results of the current with the estimated parameters was 

approximately 1.5 ampere, but the mean of the error was very small, near to cero.  

Basically, the error occurs in the transition of the steps in the current curve.  

Figures 19 presents the results of the real velocity values versus the estimated 

velocity, while Figure 20 presents the error of both velocities.  Figure 19 present the 

performance of the system with the estimate parameters.  Figure 20 presents that the 

velocity error was very small too.  So the error in torque estimation does not have a 

significant effect on the speed estimate. 
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Figure 15 Real Fan Load Torque vs. Estimated Fan Load Torque 

 

 
Figure 16 Torque error for the identified model 
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Figure 17 Real Current vs. Estimated Current 

 

 
Figure 18 Current error for the identified model 
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Figure 19 Real Velocity vs. Estimated Velocity 
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Figure 20 Velocity error for the identified model 
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We can conclude that the identified model has a satisfactory performance on the 

training data.  We still need to evaluate noise effects and validate the model, as we shall 

see later in this chapter. 

4.3  Mechanical Model With Explicit Viscosity Parameter 

The estimates of the physical parameters for the model based on equations (3.7) 

and (3.8) are shown in Table 4.  These results are for noise free data.   

 

Table 4 Parameter Estimation Results with second case 

Parameter Real Value Estimated Value Error 

aR  7.56 7.5601 0.001 % 

aL  0.055 0.055 0.0 % 

aK  3.475 3.475 0.0 % 

mJ  0.06 0.059937 0.105 % 

mB  0.03475 0.5252 93.3 % 
 
 

We obtain good estimates for the electrical parameters and for the load inertia 

parameter value.  On the other hand, the estimate of mB  has a very large error.  Based on 

[1], some models may not be identifiable, that is, maybe multiple combinations of the 

artificial neural networks and viscous friction constant resulting in the same load 

characteristics.  One reason for that error in the estimation of the viscosity parameter used 

in second case study, possibly is the fact that this model have more degrees of freedom 

and this could introduce a bias in the estimate of the parameter.  Another possibility of 
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the error presented in torque but not in the currents and voltages in case 2 can be the role 

of the neural networks.  Which means that maybe the artificial neural network in the 

gray-box model makes the arrangements that the parameter estimation failed and 

recovered in the current and voltage responses.   

Figure 21 present the real torque values versus the torque results for the estimated 

values for mechanical model with explicit viscosity parameter.  Figure 22 presents the 

error between both values, real versus estimated.  As presented in the next figures the 

error increase when the estimated value for the viscosity parameter was used. 

Figure 23, compares the measured and estimated current, while Figure 24 shows 

the estimation error for the real current values and the estimated ones.  Figure 23, clearly 

shows that both graphs are overlay, which means that good fitting performance was 

obtained by the identification.  As shown in Figure 24, the maximum error between the 

real value of the current and the results of the current with the estimated parameters was 

approximately 1.8 ampere, but the mean of the error was very small, near to cero.  

Basically, the error occurs in the transition of the steps in the current curve.  With this 

small current value error we can conclude that the error in the viscosity parameter do not 

have a significant effect in the current of the estimate model.  

Figures 25 presents the results of the real velocity values versus the estimated 

velocity, while Figure 26 presents the error of both velocities.  Figure 25 present the 

performance of the system with the estimate parameters.  Figure 26 presents that the 

velocity error was very small too.  So the error in torque estimation for the viscosity 

parameter does not have a significant effect on the speed estimate. 
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Figure 21 Real Torque vs. Estimated Torque 
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Figure 22 Torque error for identified model 
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Figure 23 Real Current vs. Estimated Current 
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Figure 24 Current error for the identification model 

 



 
 

52 
 

 

 
Figure 25 Real Velocity vs. Estimated Velocity 
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Figure 26 Velocity error for the identification model  
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Generally we obtain a good performance of the system using this mechanical 

model structure with explicit viscosity parameter for the currents and velocities estimated 

models.  However, the estimated value for the viscous parameter has a big estimation 

error.  Taking as base, the current and velocities results, we can conclude that we do not 

need the viscosity friction term to obtain good output results. 

4.4  Validation 

The simplest way to evaluate the quality of a model is to train it on a training data 

set and evaluate its performance of a different data set [10].  If the amount of available 

data is huge this causes no difficulties and is the most straightforward approach.  

However, we have to take care that both, training data and validation data, are 

representative and cover all considered operating regimes of the process.  If the training 

set lacks data from some regimes, the model cannot be expected to perform well in these 

regimes.  On the other hand, if important data is missing in the validation set the 

evaluation of the model performance becomes untrustworthy. 

For the validation test, a different input armature voltage was used and shown in 

Figure 27.  The voltage range is similar to the training input presented in Figure.  In the 

validation process the identified model is fed with the validation voltage and it response 

is compared to that of the real system. 

As conclude in previous section, the viscosity term mB is not necessary to obtain 

good identification results.  Based on this reason, we make the validation for the case 
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where the mechanical model does not have the explicit term of the viscosity.  The results 

for the current and the velocity outputs for the validation results are presented in Figure 

28 respectively.   
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Figure 27 Excitation voltage used for the validation of the model 
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Figure 28 Validation of the System Performance for the case when the viscosity term is 

not present: (a) current response and (b) velocity response 
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We can conclude that perform validation to the model is a good practice.  The 

validation results for the current and velocity plots presents the good performance of the 

estimated values, which produces good results with different validation data set. 

4.5  Pruning 

The problem that presents parameter estimation was the quantity of parameters 

that we need to make the load model a good one.  The principal issue to motivate pruning 

is the number of parameter, which is indicative of over fitting and redundant parameters, 

and at the same time results in ill-conditioned parameters.  Another issue is the 

bias/variance tradeoff, shown in Figure 29 from [10].   

 
Figure 29 Bias/variance tradeoff (from [10]).  

 

Figure 29 presents the effect of the bias and variance error on the model error.  A 

very simple model has a high bias but a low variance error, while a very complex model 
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has a low bias but high variance error.  A simple model can be improved by the 

incorporation of additional parameters, because the increase in the variance error is 

compensating by the decrease the bias error.  On the other hand, the model that is too 

complex can be improved by discarding parameters, because the increase in the bias error 

is compensated by the decrease in the variance error.  Somewhere between both models, 

simple and complex, lies the optimal model complexity, which do not have a lot of 

parameters but at the same time has a lower variance with a reasonable value of bias [10]. 

Orthogonal least square was the method implemented to avoid over-fitting and ill-

conditioned parameters of the system modeling.  This method involves the transformation 

of the set of regressors into a set of orthogonal basis vectors.  The regression matrix can 

be decomposed in a triangular matrix and in a matrix with orthogonal columns.  The 

space spanned by the set of orthogonal basis vectors is the same of this new orthogonal 

columns matrix.  With this transformation of the parameters vector we satisfy the 

solution.  The advantage of this method is that the algorithm makes it possible to 

calculate the individual contribution to the desired output variance from each basis 

vector.  In other words, the algorithm selects the basis functions that produce a better fit 

of the model.  In our case, we expect that the orthogonal least squares method make a 

considerably reduction on the dimension of the neural network.  

Using orthogonal least squares, the number of nodes was reduced from one 

hundred twenty-one basis functions to fifty basis functions for both cases.  We start 

reducing the basis function to the half and verify the current and velocity responses of the 

reduced model.  After this first reduction, we started to reduce the model slowly to see 



 
 

58 
 

 

the effects of the basis function reduction in the current and velocity responses.  During 

the reduction process, can be note that there is a range of basis function that does not 

affect the current and velocity response.  For example, if the reduction was made from 

121 basis functions to 55, produce the same results as if the model was reduced form 121 

to 57 basis functions.  With this information, the value of final basis function reduction 

model was selected.  Also taking care of the parameter estimation error. 

The estimates of the physical parameters for the model after model reduction by 

orthogonal least squares are shown in Table 5.  These results are for noise free data. 

Table 5 Parameter estimation results after pruning 

 

 

   Figure 30 shows the torque results after model reduction.  The error obtained in 

this reduction was approximately 11%.  Figure 31 present the performance of the velocity 

with the pruned model and Figure 32 present the performance of the current after model 

reduction.  The maximum error occurs at the ends of the model.  This can be clearly 

observed in Figure 32, were a difference between original current value and pruned 

current value is notable.      
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Figure 30 Torque results after pruning. 

 

V
el

oc
ity

 (r
ad

/s
ec

) 

 

 Time (sec) 

Figure 31 Pruned Velocity Results. 
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Figure 32 Pruned Current Results. 

 

 

There are some issues when parameter estimation is performed.  One of these 

issues is the tradeoff, in where to obtain an optimized model, the balance between 

number of parameters, bias and variance need to be found.  Pruning is a nice way to make 

model reduction.  Orthogonal least square is a good pruning technique for reduces the 

model complexity. 
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4.6 Mechanical Model With Implicit Viscosity Parameter: 

Results with noise. 

 
Table 6 shows the estimation results with the gaussian noise of 0.1. 

 

Table 6 Parameter Estimation Results: Without Implicit Viscosity Parameter 

Parameter Real Value Estimated Value Error 

aR  7.56 7.5616 0.02% 

aL  0.055 0.055 0.0% 

aK  3.475 3.4741 0.03% 

mJ  0.06 0.0564 6.0% 
 

The following figures present results of the model identification.  Figure 33 shows 

the estimated load torque characteristics.  As we can see in Figure 33 the performance of 

the parameters estimation using the radial basis function artificial neural network in the 

black box for the identification process produces a good performance of the system.  

Figure 34, shows the estimation error between the real torque values versus the identified 

torque.  In the error in torque figure, can be observed that the greater error its at the ends 

of the response.  It may be seen that the approximation of the respective load 

characteristics by the artificial neural network is very good inside the nominal operations, 

but it start to lose performance outside this range. 

Figure 35, compares the measured and estimated current, while Figure 36 shows 

the estimation error for the real current values and the estimated ones.  Figure 35, clearly 
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shows that both graphs are overlay, which means that good fitting performance was 

obtained by the identification.  As shown in Figure 36, the maximum error between the 

real value current and the results of the current with the estimated parameters was 

approximately 1.5 ampere, but the mean of the error was very small, near to cero.  

Basically, the error occurs in the transition of the steps in the current curve.  

Figures 37 presents the results of the real velocity values versus the estimated 

velocity, while Figure 38 presents the error of both velocities.  Figure 37 present the 

performance of the system with the estimate parameters.  Figure 38 presents that the 

velocity error was very small too.  So the error in torque estimation does not have a 

significant effect on the speed estimate.  If we compare the results without noise and 

these results, it possible observed that a good performance of the system was obtained. 
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Figure 33 Real Fan Load Torque vs. Estimated Fan Load Torque (Noise System) 
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Figure 34 Torque error for the identified model (Noise System) 
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Figure 35 Real Current vs. Estimated Current (Noise System) 
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Figure 36 Current error for the identified model (Noise System) 
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Figure 37 Real Velocity vs. Estimated Velocity (Noise System) 
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Figure 38 Velocity error for the identified model (Noise System) 

 

For the validation test, a different input armature voltage was used and shown in 

Figure 27.  In the validation process the identified model is fed with the validation 

voltage and it response is compared to that of the real system. 

The results for the current and the velocity outputs for the validation results are 

presented in Figure 39 respectively.  For the Figure 39 (a) it is possible to note that the 

difference between the results of the current without noise is the part between 12 to 15 

seconds.  The rest of the plot is overlay in the real system plot.    
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Figure 39 Validation of the System Performance for the case when the viscosity term is 

not present; system with noise: (a) current response and (b) velocity response 
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Using orthogonal least squares, the number of nodes was reduced from one 

hundred twenty-one basis functions to fifty basis functions.  The estimates of the physical 

parameters for the model after model reduction by orthogonal least squares are shown in 

Table 7.  These results are for gaussian noise of 0.1.  

Table 7 Parameter estimation results after pruning 

Parameter Real Value Estimated Value Error 

aR  7.56 7.5614 0.01% 

aL  0.055 0.055 0.0% 

aK  3.475 3.4738 0.03% 

mJ  0.06 0.0561 6.5% 
 

 

   Figure 40 shows the torque results after model reduction.  Figure 41 present the 

performance of the velocity with the pruned model and Figure 42 present the 

performance of the current after model reduction.  The maximum error occurs at the ends 

of the model.  This can be clearly observed in Figure 42, were a difference between 

original current value and pruned current value is notable.      
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Figure 40 Torque results after pruning (Noise System). 
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Figure 41 Pruned Velocity Results(Noise System). 
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Figure 42 Pruned Current Results (Noise System). 

 

4.7 Conclusions 

Simulation results showed that a good identification of electrical parameters and 

inertia is feasible.  Simulation results also showed that viscous damping coefficient is not 

observable which result in large estimation error, but the model predicted accurately the 

total mechanical load.  We conclude that the best structure for the mechanical model does 

not have an explicit term for viscous damping.  Validation results showed good 

performance for the identified model.  Orthogonal Least Squares is a good method to 

perform the model complexity reduction, which produce good results with less basis 

functions.  The reduced order model gave reasonable good performance.   
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1  Conclusions 

The purpose of this work was the study of a modeling methodology that can be 

used in a self-commissioning scheme for an electric drive.  The modeling methodology 

needed to be flexible enough to allow the drive to be capable of handling a wide range of 

loads.  We also wanted a simple enough method such that it could be adopted by 

industry.  The developed approach meets both constrains.   

The two-stage method results in good performance of our parameter estimation 

results with relatively lower computational requirements that other methods based on 

multilayer perceptron.  The importance of this two-stage method is that it can be used to 

solve the parameter estimation problem in any type of motor, without losing the 

effectiveness and low computational time.  It is important to point to the fact that the 

electrical parameters could be estimated with small errors and they do not depend on the 

mechanical load or the selected mechanical model structure. 

 Simulations results show potential benefits of the method for modeling and 

identification of electric drives systems.  In general, we achieve good estimation of 

physical parameters.  We can conclude that physical meaning of estimates is still 

achievable. 
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The artificial neural networks based on radial basis functions did good 

approximations of the load characteristics within the training data range and validation 

data range. 

The use of state variable filters to avoid the common problem of differentiation 

results in acceptable performance for the estimator. 

The model validation is necessary to prove the effectiveness of our model.  

However, we have to take care of the characteristics of the validation data, which need to 

be inside the same range of training data so the system work in the same range as it was 

trained for. 

Pruning help to obtain models with reduced complexity that performed well. 

We can conclude that this methodology is viable if there is enough information 

regarding the operation of the load. 

 

5.2  Future Work 

This research work let a number of questions that should be addressed in future 

work. 

Some future lines of work could be: 

• Application of the approach to dynamics loads. 

• Incorporation of load identification into self-commissioning drive 

systems. 
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• Expand the use of the parameter estimation process, two-stage 

method, to another types of motors, for example the induction 

motor. 

• Recursive implementation for on-line identification. 

• Experimental validation.  Using a similar set-up as shown below. 

 

Figure 43 Proposed Experimental Set-up 
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Appendix 

 
 
APPENDIX 1 - Translations from Neural Network into System 

Identification Language 

 

The terminology used in this work follows the standard system identification and 

optimization literature rather than the neural network language.  The following 

expressions are often used in the literature related to this work [10]. 

 Table 8 Translation from neural network into system identification. 

Neural Network Terminology System Identification Terminology 

Mapping or Approximation Regression 
Classification Discriminant analysis 
Neural Network Model 
Neuron Basis function 
Weight  Parameter 
Bias or Threshold Offset or intercept 
Hidden Layer Set of basis functions 
Input Layer Set of inputs 
Input Independent variable 
Output Predicted value 
Error Residual 
Learning or Training Estimation or optimization 
Generalization Interpolation or extrapolation 
Over fitting or Over training High Variance error 
Under fitting or Under training High Bias Error 
Error bar Confidence Interval 
Online Learning Sample Adaptation 
Offline Learning Batch Adaptation 
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APPENDIX 2 - Pruning by Singular Value decomposition. 

 

The simplicity of the two-stage method is due to the fact that by fixing the radial 

basis function centers and variances, the estimation of the radial basis function 

amplitudes ia  is a linear problem.  Here we investigate full nonlinear estimation where 

the centers and variances are also estimated.  Nonlinear estimation and pruning allows for 

models with significantly smaller dimension than those obtained by orthogonal least 

squares. 

Fan Load Static Model 

After the model structure is performance we study the behavior of the fan load 

system.  The physical parameters estimates and radial basis function network weights are 

computed by least square and nonlinear least square for the linear and nonlinear 

parameters respectively. 

This model implemented produce a high performance in the estimates with a low 

estimation error; as we can see in Figures 44 our system has a good performance in the 

estimate of the fan load curve.  Figure 45 present the error between real torque values and 

estimated torque value in which we have a lower estimation error value, which indicates 

our good performance. 

A disadvantage of this model was the large number of parameters, which may 

introduce a parameter redundancy, over-fitting and as a result ill-conditioned system.  To 
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avoid over-fitting and ill-conditioned of the system modeling we used singular value 

decomposition for pruning of the system. 

In pruning method, to examine the parameter redundancy we examine the 

Jacobian matrix, which is the matrix of the parameters sensitivity. The rank of this matrix 

gives an idea of the number of parameters and basis functions that can be estimated [1]. 

Figure 46 shows a plot of the Jacobian singular values of the fan load estimation.  Since 

there are 93 parameters (31 radial basis functions) in our model, in which the matrix has 

many small singular values, this is indicative of over fitting and redundant parameters, 

which results in ill - conditioning.   
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Figure 44 Real Torque vs. Estimated Torque of Fan Load 
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Figure 45 Error Between Real Torque and Estimated Torque. 

 

M
ag

ni
tu

de
 

0 20 40 60 80 100
10-15

10-10

10-5

100

105

 
Figure 46 Singular Values of Fan Load with full parameters 
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Figure 47 Singular Value Decomposition after parameter reduction. 

 

As we can see in Figure 46 we have a threshold marked.  This value is obtained 

by 








max

min

σ
σ

 of S matrix.  In this case this threshold is approximated 0.44 in magnitude, 

which means approximately 27 parameters, or 9 radial basis functions (Figure 47).  This 

was our break point, this value was used as a clue of how many radial basis functions we 

need to make a good estimate of the friction load without redundancy, over-fitting and 

eliminating ill-conditioning results.      

After the parameter reduction from 33 radial basis functions to 9 radial basis 

functions the parameters were estimated.  The results of this estimation are presented in 

Figure 48, which presents the results for the fan load with eight basis functions.  As we 

can see, we obtain a good fitting.   
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Figure 49 presented the error between the real fan load values and the estimated 

fan load values.  We can compare the error in Figure 49 and Figure 45 that the error 

increase, but at least is too small to make a big difference in the fan load parameters 

estimation and by the way in the system performance.  The big difference occurs when 

comparing nonlinear method error with the two-stage error.  The error in the nonlinear 

method is less than the other, however the computational requirements for the nonlinear 

method are more than the requirements of the two-stage.  

The use of the singular values decomposition method for pruning our model 

produces excellent results.  If we compare the simulation results of both methods 

(nonlinear and two-stage) we obtain good performances.  However, in the use of singular 

value decomposition we are dealing with nonlinear least squares, which make our 

identification process, time consuming.  For this reason we think that in practice the two-

stage method will find more acceptance. 
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Figure 48 Real Torque vs. Estimated Torque after Pruning. 
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Figure 49 Error Between Real Torque and Estimated Torque after Pruning. 
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Friction Load Static Model 

With this model we follow the same methodology that we used for the fan load 

identification.  We model the system with all the parameters then make the reduction by 

singular value decomposition for pruning the system. 

In Figure 50, the simulation results for the identification of the friction load 

parameters are presented.  As Figure 51 shows, the error between estimated and actual 

torque is small. 

Here we have the same problem that with the fan load model, due to the large 

number of parameters.  As shown in Figure 52, there is like 93 parameters in the 

identification process.  Based on the singular values, the number of basis functions was 

reduced from thirty-one basis functions to eleven as shown in Figure 53. 

The parameters of the reduced order model were estimated using nonlinear least 

squares.  As shown in Figure 54, the estimated torque was close to the real torque and the 

error was small.  See Figure 55. 

Comparing the results for the nonlinear method and the two-stage linear least 

squares method we can conclude that the best results are from the nonlinear method.  

However, the complexity of the algorithm and the time that consume are two biggest 

drawbacks of this method.  The two-stage method was a simple one, with an easy 

algorithm, no time consuming and at the same time produces good results. 
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Figure 50 Real Torque vs. Estimated Torque of Friction Load. 
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Figure 51 Error Between Real Torque and Estimated Torque of Friction Load. 
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Figure 52 Singular Values for Friction Load with full parameters. 
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Figure 53 Singular Values after Pruning. 
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Figure 54 Real Torque vs. Estimated Torque of Friction Load after Pruning. 
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Figure 55 Error Between Real Torque and Estimated Torque after Pruning. 
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APPENDIX 3 – Experimental set-up. 

 

The control goal is to track a reference speed under unknown parameters and load 

disturbances. The stability of internal dynamics is assured by analysis of zero dynamics. 

A nonlinear observer for load torque with linear error dynamics was also developed to 

give a load torque estimate to the adaptive controller. 

Motor control applications make extensive use of DC motor due to their relative 

simplicity and achieved high performance with precise control. Their outstanding 

advantages lie in flexibility and versatility in positioned systems and speed regulation. 

The control goal is that the motor speed should track the speed reference under 

unknown parameter and load disturbances. 

 

Parameter Estimation of the physical motor  

In this section, experimental methods are presented for the determination of the 

parameters of the DC motor model. 

The resistance aR  was measured by the voltmeter-ammeter method [24].  aR  can 

be measured by simply measuring the resistance across the motor terminals. Turn off the 

power and calculate >4, then take the average.  The armature constant aK  was 

determined by measuring the armature terminal voltage in open circuit when the motor is 

operated as a DC generator.  The self-inductance aL  was measured by the transient 

method [24]. The voltage across a resistor in series with the winding that is proportional 

to the current response is recorded on a storage oscilloscope. The self inductance was 
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calculated from the measurement the time constant (t ) assuming that the setting time ( st ) 

and the time constant are related by st =4t , then the self inductance is given by 
4
s

ea
t

RL =  

where eR  is the equivalent resistance of the RL circuit. 

The friction coefficient can be determined by using de mechanical equation 

presented in chapter 3, equation (3.3) in steady state,  

where 0=
dt
dω

   0=
dt
di

 and 0=LT  ωBTm =  ,  abem ikT = ,  
ω

ω ab
ab

ik
BBik =∴=    

The motor rotor inertia ( mJ ) is determined by the retardation test speed versus 

time characteristic due to switching off the motor after steady state is reached. Using 

equation (3.3) and considering 0=LT  and 0=emT , results in ( ) 0=+ tB
dt
d

J ω
ω

 and the 

solution of the above linear differential equation give  

 ( ) ( ) ( ) ( ) ( )τωωω t
J

Btt −=−= exp0exp0   

where 
B
J

=τ  is the mechanical time constant of the motor. The ?  vs. time curve was 

registered. 

 

Drive system Experimental set-up 

The block diagram of the experimental set-up consists of the control plant, the DC 

motor, the analog and digital I/O board and the Driver (PWM). 

The amplifier to drive the DC motor is a Copley 421 PWM servo amplifier, which 

provides a 5Amperes continuous, 10Amperes peak at switching frequency of 25kHz. The 
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servo amplifier is configured to work as a dc voltage amplifier with gain of 10 as shown 

in Figure 56.  Since the voltage applied to the motor is only positive, the positive from 0 

to 10V is used and the output voltage of the DC amplifier range from 0Volts to 100Volts 

average. The power input to the driver is 135Volts at 6Amperes. 

 

 

Figure 56 Servo amplifier configuration 

 

 

 

 

 


