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ABSTRACT 
 

The expression of green fluorescent protein (GFP) was induced and monitored in fed-batch 

cultures of a genetically-engineered Escherichia coli strain. This recombinant E. coli is 

commercially available (Bio-Rad pGLO kit), and it synthesizes GFP when induced by 

addition of L-arabinose. The E. coli fed-batch culture considered in this work utilizes 

glycerol as carbon and energy source and ammonium ion as nitrogen source. Acetic acid 

(acetate) is produced as a metabolic by-product because of incomplete oxidation of glycerol 

(Hall et al., 1996). Given that higher concentrations of acetate, ammonium and glycerol can 

inhibit E. coli growth (can decrease the biomass bench scale concentration), all fed batch 

fermentations were inoculated to start at high initial cell mass concentrations in close analogy 

to an industrial setting. After inoculation, all fermentations were monitored and samples 

collected regularly to be analyzed at line using NIR, IR and Raman spectroscopies.  

 

Acetate and glycerol concentrations were measured with an offline HPLC during each batch 

with very good accuracy (R2 > 92%). To contribute to the monitoring and eventually to 

bioprocess automation and industrial applications improvements (such as PAT), Raman 

spectroscopy was used along with chemometric techniques to model and predict analyte 

concentrations. During the fermentation, samples were collected and analyzed with at-line 

Raman and the off-line HPLC to establish a correlation. Specifically, to accomplish the 

correlation, a design of experiments (DOE) was programmed with Minitab (software version 
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14). A mixture design was used to correlate the analytes concentrations and the Raman 

spectra using a chemometric techniques, partial least squares (PLS). The correlation between 

Raman spectroscopy and the analyte mixture showed excellent model results (R2 > 99 % and 

Q2 > 99 %) with three factors. The correlation between the HPLC and the Raman with 

fermentation data was determined and validated. Different modes were used, such as cross-

validation (after model was obtained, it was tested by predicting the results with the set of 

data using in the model) and test set validation (reserve a representative data and predict it 

with the model). Both validation procedures presented a good model fit (linear y = x relation).    

 

The biomass concentration is another critical variable to ensure rigorous fed-batch 

fermentation. Specifically, the biomass concentrations were measured using two methods: 1) 

an at-line absorbance method (ultraviolet spectrophotometry) and 2) dry cell mass 

concentration, or gravimetric determination. Both methods were then correlated with near 

infrared spectroscopy (NIR).  PLS regression presented a good model fit (R2 = 99%, two 

factors) as well as the validation analysis (y = x). 

 

After obtaining a good correlation between different analytical methods used for estimating 

dry cell mass and by-products concentrations, a GFP protein fluorescence correlation was 

investigated using flourometry as the reference method and Fourier transform infrared (FT-

IR) spectroscopy as the primary method. Analysis and PLS modeling resulted in a good fit 

for GFP concentration (protein concentration is proportional to the fluorescence). FT-IR was 
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used with chemometric techniques to model and predict the recombinant protein 

concentration. Following available literature, a partial least squares (PLS) regression analysis 

was used to establish the correlation between fluorescence and the FT-IR spectra (R2= 99 %, 

two factors). Also a cross validation and test-set validation were achieved with good linear 

relationships (y = x). 

 

Overall, a substantially better understanding on how we can measure the critical parameters 

of a recombinant protein fed-batch culture system using spectroscopic techniques and 

chemometrics was accomplished. Specifically, the ability to accurately determine glycerol, 

acetate, biomass and recombinant protein concentrations was achieved. More research is 

needed to test the techniques “in line” to determine if the bench scale experimental approach 

can be scaled-up to industrial and commercial scale working volumes.  
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RESUMEN  
 

La expresión de la proteína de verde fluorescencia conocida como GFP, por sus siglas en 

inglés fue inducida y medida durante la fermentación de Escherichia coli en modo de semi-

tanda. Una cepa de E. coli recombinante está comercialmente disponible (Bio-Rad pGLO kit), 

la cual es capaz de sintetizar la proteína de verde fluorescencia cuando es inducida mediante 

adición de L-arabinosa. La E. coli utilizada en este trabajo consume glicerol como su fuente 

de carbón y energía, y amoníaco como su fuente de nitrógeno. Ácido acético (acetato) es 

producido como un producto metabólico a consecuencia de la oxidación parcial del glicerol 

(Hall et al., 1996). Dado que las altas concentraciones de ácido acético, amoníaco y glicerol 

pueden inhibir el crecimiento de  E. coli (puede disminuir la concentración de biomasa), el 

monitoreo y la automatización o ambas son necesarias para lograr una fermentación óptima y 

reproducible a escala industrial.  

 

Las concentraciones de acetato y glicerol fueron medidas mediante cromatografía liquida de 

alta resolución (HPLC) durante cada fermentación para poder presentar un resultado lo 

suficientemente preciso (R2 > 92%). Como contribución a la automatización del bioproceso y 

mejorar las técnicas de monitoreo industriales, la técnica de espectroscopía analítica (Raman) 

fue utilizada junto a análisis de quimiometría para medir las concentraciones de los analitos.  

Durante las fermentaciones, las muestras fueron analizadas utilizando espectroscopía de 

Raman y HPLC para establecer una correlación entre ambas medidas. Específicamente, para 
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lograr la correlación entre ambas tecnologías, un diseño experimental fue diseñado usando 

Minitab (version 14) para modelar y predecir la concentración de los analitos y los espectros 

de Raman utilizando análisis de quimiometría. En nuestro caso, “partial least squares” (PLS) 

fue utilizado. La relación entre la espectroscopía de Raman y el diseño de experimento 

presentó excelentes resultados (R2 > 99 % y Q2 > 99 % con tres factores). La correlación 

entre HPLC y Raman en la fermentación fue completada y validada.  Para esto, diferentes 

pruebas fueron usadas tales como “cross-validation” (el modelo es probado con los mismos 

datos que fueron utilizados para crear el modelo) y “test-set validation” (se reserva una 

porción representativa independiente de datos para probarla con el modelo creado). Ambos 

presentaron una buena validación y un buen modelo lineal (y = x). 

 

La concentración de biomasa es una variable crítica para asegurar un nivel considerable del 

crecimiento de la bacteria para asegurar que la nuestra fermentación sería representativa y 

realizable a escala industrial. Específicamente, la concentración de biomasa fue medida por: 

1) absorbancia, utilizando un equipo de espectrofotometría de ultravioleta y 2) como 

concentración de célula seca  por el  método conocido como gravimétrico. Luego, fue 

correlacionada con los espectros obtenidos mediante un equipo de cercano a infrarrojo (NIR 

por sus siglas en inglés). PLS presentó una buena precisión  (R2 = 99%, dos factores) así 

como también los análisis de validación (y = x). 
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Luego de obtener una correlación entre algunas de las variables mas críticas del proceso, la 

correlación de la producción de proteína recombinante fue establecida utilizando un 

fluorómetro. Esta tecnología presenta una manera fácil y precisa para la cuantificación de 

proteína recombinante (la concentración de proteína es proporcional a su fluorescencia). 

Infrarrojo mediano por transformadas de Fourier (FT-IR por sus siglas en inglés) fue 

utilizado junto con las técnicas de quimiometría para medir la concentración de la proteína. 

Tomando sugerencias de la literatura, el análisis de PLS  fue realizado con muy buenos 

resultados (R2= 99 %, dos factores). Además los análisis de validaciones como se habían 

expuesto anteriormente presentaron un modelo lineal (y = x). 

 

En general, un mayor entendimiento fue obtenido sobre cómo medir las variables más 

críticas usando espectroscopía de infrarrojo y análisis quimiométrico en un bioreactor 

operado a modo de semi-tandas. Se pudo determinar con una buena precisión las 

concentraciones de proteína recombinante, analitos y biomasa. Mas investigación es 

necesaria, como por ejemplo, el utilizar estas técnicas en modo “in line” (sondas inmersas en 

el medio de cultivo) a escala industrial para determinar si la relación se asemeja a la de la 

escala pequeña. 
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2  

1 INTRODUCTION 
 
 
Bioprocesses are used to produce a wide variety of metabolites: from chemicals such as 

ethanol, organic acids, amino acids, and antibiotics to therapeuticals such as monoclonal 

antibodies, and hormones. In those, bioreactors constitute the core components of their 

production processes. The ability to monitor on time the critical variables on time in the 

bioreactors is fundamental for both bioprocess supervision for quality control, and bioprocess 

development, where the microbial strain or cell line and the operating conditions always need 

consistency.  For process supervision, at-line and in-situ analyses are needed, where the 

analyzer is within or inside the bioreactor, and sample collection is necessary for timely 

analysis and control of process parameters. For process development, the flexibility to 

analyze a wide range of substrates, biomass and products is critical and at-line measurements 

are useful for early identification of poor growth conditions, etc.  

 

The inability to accurately measure concentrations of biomass, nutrients, products and by 

products in real time, obstruct effective and timely monitoring and controlling of batch and 

fed-batch fermentation bioprocesses [1]. Process control strategies must be evaluated during 

important instances; for example, during a shutdown of a process because of bacterial or viral 

contamination. In-process scheduling changes such as aeration rate, timing of inoculation, or 

delaying of harvest to increase titer concentration, have to be made while the process is 

running. For these reasons the traditional analytical off-line methods such as dry cell weight 

analysis and optical density measurements for biomass, enzymatic or chemical synthesis 
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mediated UV absorption reactions, liquid and gas chromatography are not adequate because 

of extensive sample preparation, prolonged analysis time and possible changes to samples 

after collection. At-line and in-situ analyses represent an improvement because of their rapid 

results, are analyzed rapidly represent an improvement, as opposed to conventional off-line 

analyses. In many production processes, off-line analyses are performed after the 

fermentation is finished or several hours have passed after the sample was collected, resulting 

in untimely analyses results [2]. For that reason, Federal agencies have promoted initiatives 

to improve the traditional methods and innovate novel methods to fully understand how 

products attributes and processes relate to final product performance [3]. Guidances like the 

Process Analytical Technologies (PAT) are intended to encourage the industry to voluntarily 

device and implement innovative pharmaceutical development, manufacturing, and quality 

assurance [3].  

 

The ability to implement PAT in the biotechnology industry depends on the implementation 

of real time monitoring and control of bioprocesses [4]. The monitoring of the products, 

byproducts and nutrients at-line, preferably in-situ, where the analyzer is in direct contact 

with the process stream is an ideal approach of monitoring. In in-situ probes would help 

avoid contamination during the sample acquisition and would allow the process to continue 

forward without any interference and delay that may affect the process. The industry has 

already implemented the use of various in-situ probes (pH, dissolved oxygen, conductivity, 

and temperature). These technologies usually involve changes in potential, and although they 

provide useful data, they are insufficient for the understanding of critical variables such as 
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metabolic states of the culture, product and by-product synthesis, etc., that require other types 

of instrumentation.  

 

Recent improvements in informatics, mathematical procedures, and multivariable analysis 

and technologies are established new tools that can be implemented as in-situ bioprocess 

monitoring tools [5]. Now a days the technologies available for in-situ determination of 

critical parameters such as biomass, are more an “experience than a science,” they present 

difficulties and inconsistent pathways in fermentation processes during the growth phase [6]. 

For example, an inverse correlation exists between in-situ pH meters and biomass; as 

biomass increases, pH decreases due to acetate production. In the case of dissolved oxygen 

probes as biomass increases, oxygen demand also increases, therefore the dissolved oxygen 

concentration decreases. Infrared technology and Raman spectrometry show non-invasive 

measurement techniques with the possibility of multicomponent analysis, where the 

concentration of more than one culture broth constituent (substrate, biomass, products and by 

products) can be determined simultaneously [7]. There are also probes capable of 

withstanding the steam-sterilization at 120ºC without adverse effects on their calibrations [7].  

 

Escherichia coli is perhaps the most commonly used industrial bacterium in biotechnology 

processes. It is the preferred microbial cell to express therapeutically useful protein 

molecules such as human insulin and Filgrastim (Neupogen). The high-cell-density E. coli 

fermentation considered in this study consumes glycerol as a carbon and energy source and 

synthesizes a recombinant protein called green fluorescent protein (GFP) in presence of 



 
 
 
 

 

 5

arabinose. Acetic acid (acetate) is produced as a metabolic by-product as a result of 

incomplete oxidation of glycerol [1]. In this study, we have used near-IR (NIR), IR and 

Raman spectroscopies to analyze bench-scale (1.5 L) fed-batch fermentations, which produce 

as time progresses different accumulation profiles for biomass, acetate and recombinant 

protein production. 

 

1.1 Objectives 
 

Our research objectives can be classified as general and specific. 
 
1.1.1 General Objectives 
 

• To monitor in a batch and fed-batch fermentation of E. coli the production of: 

o microbial cell mass and growth.  

o substrate concentration and utilization. 

o by-product concentration and production. 

o intracellular recombinant protein production and accumulation. 

1.1.2 Specific Objectives 
 

• To use multivariable analysis such as partial least squares (PLS) to create and validate 

a model for monitoring the E. coli growth using NIR spectroscopy via optical density 

and dry cell concentration (gravimetric) as reference methods. 
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• To Use multivariable analysis such as PLS to create and validate the substrate 

utilization and by-product production using Raman spectroscopy via HPLC as 

reference method.  

• To use chemometrics for correlation of FT-IR spectra to characterize GFP expression 

via fluorescence spectrophotometry as reference method. 

 

1.2 References 
 
 
[1] Hall, J. W.; McNeil, B.; Rollins, M. J.; Draper, I.; Thompson, B.G.; Macaloney, G. 

Near-Infrared Spectroscopic Determination of Acetate, Ammonium, Biomass and 
Glycerol in an Industrial Escherichia coli Fermentation. Applied Spectroscopy 1996, 
50, 102-8. 

[2]  Macaloney, G. Near infrared sprectroscopy: the technology, its growing use in 
biotechnology and evaluation of its utility. Society of Industrial Microbiology 1996, 
46, 129-132. 

[3]  FPAC/PAT Summit with INDUNIV – Process Analytical Technology 
Pharmaceutical/ Biopharmaceutical Manufacturing, June 2007 San Juan, Puerto Rico, 
Essential Meeting in Puerto Rico for Process Analytical Technology, not accessed yet.  

[4] Arnold, S.A.; Gaensakoo, R.; Harvey, L.M.; McNeil, B. Use of At-line and In-situ 
Near-Infrared Spectroscopy to Monitor Biomass in an Industrial Fed-Batch 
Escherichia coli Process. Wiley Periodicals, Inc. 2002, 405-13. 

 [5]  Raidyanathan, S.; Macaloney, G.; McNeil, B. Fundamental investigation on the near-
infrared spectra of microbial biomass as applicable to bioprocess monitoring. Analyst 
1999, 124, 157-62. 

[6]  Vaidyanathan, S.; Macaloney, G.; McNeil, B. Fundamental investigations on the 
near-infrared spectra of microbial biomass as applicable to bioprocess monitoring. 
Analyst, 1999, 124, 157-62.       

[7] Lee, H.L.T.; Boccazzi, P.; Gorret, N.; Ram, R.J.; Sinskey, A.J. In situ bioprocess 
monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vibrational 
Spectroscopy, 2004, 35, 131-7. 

 
 
 
 
 



 
 
 
 

 7

2 LITERATURE REVIEW 
 
 
2.1 Historical Background 
 
 
The need to understand fermentation processes dates back to the XIX century when Louis 

Pasteur brought microbiology to a new level of scientific excellence. In France in 1949, 

Monod demonstrated for E. coli that growth rate changed form first order to zero order 

kinetics as the initial substrate concentration was increased [1]. Later in Great Britain in 1965, 

Pirt developed a method for calculating the maintenance energy term using mass balance 

equations and demonstrating that the consumed energy was proportional to biomass yield and 

growth rate. [2].  

 

In the pharmaceutical industry, the commercial fermentation processes started after the 

accidental discovery of penicillin by Alexander Fleming in 1941. The extreme demand 

(>100,000 patients per year) for penicillin during the Second World War was the reason for 

the design of the suspended cell culture reactor by Pfizer to achieve higher penicillin 

productivities. During this period, fermenters with rudimentary monitoring and feedback 

control were available in industry and academia [3, 4]. The need of technology which could 

improve the fermenters rudimentary control schemes was indispensable. In 1945, pH probes 

were able to withstand repeated sterilization. Later on, dissolved oxygen (DO) probes were 

also introduced [2]. After that, off gas analysis of oxygen and carbon dioxide using mass 

spectrometers became reliable and affordable, providing at-line data of the culture state in 
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several industrial fermentation plants [2, 5, and 6]. However, even with the advances in 

analytical technologies, from the mid-1970’s to present the inability to measure important 

parameters in-situ has been a major task in developing mathematical models and control 

strategies [2, 7]. Even though these strategies are complex, the control and optimization of 

fermentation processes have become an “economic necessity” [8].  This conviction about the 

value of at-line sensors was the reason for a literature explosion that attempted in developing 

novel measurement applications during the decades of the 1980’s and 1990’s.   

 

During the 1980’s, the commercialization of several types of biosensors which provided in-

situ measurements, increased the number of analyses obtainable under aseptic conditions and 

allowed a faster and less-labor intensive analysis methodology [9]. The advancement in 

computer technology has served to enhance the development of a multitude of novel 

measurement technologies [2].   Near infrared (NIR) techniques would be concerned with the 

rapid analysis, non-destructive sampling and possible in-situ analytical measurements. Also, 

this technique presents prominent expectations, reducing the use of tedious techniques such 

as HPLC technology or total solids weight determinations, to name a few. Using at-line 

sampling with an analysis time of less than a minute, NIR was implemented for an E. coli 

fermentation to determine acetate, ammonium, biomass and glycerol concentrations without 

pretreatment, and using either multiple linear least squares regression or partial least-squares 

regression [10]. Then at-line, flow-through, and in-situ IR probes were developed. The 

application of the multivariable analysis with the extensive calibration data and the lack of 

sophisticated mathematical techniques, limited early infrared applications in bioprocessing 
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[10, 11]. With computer advances and improvements, successful works in the collection of 

fermentation data have incremented [12].  For example, Novo Nordisk developed at-line data 

acquisition from 10-15 measurement devices with a sampling time ranging from 10 seconds 

to 30 min, over 100,000 data points accumulated when about 300 long fed-batch 

fermentations were conducted annually [13]. A tremendous amount of process data became 

archived without analysis for lack of correlations and the difficulty to analyze large amounts 

of data to assist in process decision-making.  

 

Chemometrics is an innovative idea that was started in the 1970’s. It was first reported in 

1972 in a paper published by Wold, et al. who developed multivariable model analysis such 

as partial least squares [14]. Those model analyses were very useful in the 1980’s to extract 

information from large sets of data. Chemometrics became a new chemical discipline that 

uses mathematical, statistical and logical information to provide maximal relevant chemical 

information by optimal experimental design.  Chemometrics analysis ascertains the use of 

exploratory analysis with statistical property prediction such as regression modeling and 

factorial behavior to convey different spectra or patterns into a predictive model [14]. 

 

2.2 Difficulties of PAT Implementation in Biotechnology 
Processes 

 
 
In a fermentation process, the necessity to implement monitoring and control techniques is 

fundamental for tight control of the life of organism’s environment to optimize yield and 
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productivity [2]. The classical fermentation processes for milk and cheese have incorporated 

excellent applications for PAT. However, in the pharmaceutical industry PAT has not had the 

same response [2]. The frustrations have caused the fermentation scientists to establish that 

the protein-based biological production is more “an art than a science” [2, 15]. Fermentation 

has been considered by some to be “the most complex step in the manufacturing process 

since the desired product typically is present at lower concentrations in the broth, at levels 

comparable to impurities” [16]. Some of the difficulties consist in the inherent complexity of 

biopharmaceuticals, making it difficult to determine product characteristics critical to safety, 

efficacy and stability, and the different metabolic routes, which may produce different 

compounds depending on the raw feed materials [16]. Some of the complexities are 

dependent on the mass transfer limitations from high densities required for desired 

productivities, the inhibition of the bacteria and the strain causing low growth from the raw 

material, by-products excess concentration and the variability of the active seed culture. 

Despite these impediments, the PAT implementation is necessary to improve the quality 

without increasing costs and to reduce regulatory costs [2, 16]. The improvements of these 

techniques start low and increase over time [15, 17].  

 

For the PAT implementation, the classical focus based on univariate experimentation and 

optimization is changing to a systematic multivariate analysis with robust modeling and 

control strategies [3]. Multivariate instead of univariate analysis permits us to see how the 

combination of experimental data could impact multiple process parameters and their 

interactions among the variables and observations to model and predict performance. 
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2.3 Infrared Spectroscopy Fundamentals 
 
 
Spectroscopy in general is the study of the interactions between the radiation and matter by 

practically the entire spectrum (Figure 2.1). Infrared spectroscopy is a well-known 

characterization technique that uses simultaneous analysis of several components quickly, 

with no sample pretreatment and has the capability to be used in-situ and to provide data in 

real time. Spectroscopy can explain the chemical structural characteristic features of the 

molecule, if whether they are found in the backbone of the molecule or in the functional 

groups attached to the molecule.  

 

 

Figure 2.1 - Molecular frequency absorption through the spectra. 
 

Previous studies have highlighted the use of infrared technology in many processes from 

simple (the transformation of progesterone at laboratory scale) to complex (high cell density 

E. coli fermentations) [18].  
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Coates et al. considered the infrared spectrum to be formed as a consequence of the 

absorption of electromagnetic radiation at frequencies that correlate to the vibration of 

specific sets of chemical bonds from within a molecule [19].  The distribution of the energy 

possessed by a molecule at any given moment is defined as the sum of the contributing 

energy terms (Eq. 2.1) [19]. 

 

naltranslatiorotationallvibrationaelectronictotal EEEEE +++=     2.1 
 

The translational energy relates to the displacement of molecules in space as a function of the 

normal thermal motions of matter. Rotational energy is observed as the tumbling motion of a 

molecule, which is the result of the absorption of energy within the microwave region. The 

vibration energy component is a higher energy term and corresponds to the absorption of 

energy by a molecule as the component atoms vibrate about the mean center of their 

chemical bonds [19]. The electronic component is linked to the energy transitions of 

electrons. Planck established one of the most important general relativity-quantum mechanics 

equation (E = hv) that relates proportionally the energy with the frequency [19]. Ultraviolet 

and visible frequency absorption, which are shown in Figure 2.2 have the energy to make 

electron transitions, but in the infrared spectra the frequency absorption could only change 

the atom dipole making their vibration and rotation. For that reason this spectrum could tell 

us some physical as well as chemical properties. 
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In IR spectroscopy, the vibration excitation is achieved by radiating the sample with a broad-

band source of radiation within the 12820-200 cm-1 region [19]. Part of the spectrum is 

divided in the near infrared (NIR), 12820 -3959 cm-1 and mid infrared (MIR), 4000-200 cm-1. 

Many NIR and MIR equipments are available in the market individually. One of the most 

significant explanations for that is because both NIR and MIR are part of the infrared 

spectrum and they provide us different information about the sample.  

 

In the case of near infrared (NIR) spectroscopy, because it has a lower broad energy, it is 

useful to determine physical interactions of the sample with the environment such as density, 

humidity and quantity of suspended particles. In our case, it was useful for determing 

biomass concentration in the fermentation broth.

 
Figure 2.2 - UV-VIS and infrared frequencies are proportionally inverse
to vibrational and rotational energies.  
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The NIR absorption bands are typically broad, overlapping and 10-100 times weaker than 

their corresponding fundamental MIR absorption bands [20]. For that reason this technology 

could be useful for acquiring physical information. We agree that the low absorption permits 

large penetration depths and for that reason it could be useful for turbidity interpretation, 

such as in biomass in a fermentation process. It could also be an important tool for the 

determination of inclusion bodies within the bacteria. NIR could have an indirect relationship 

between the bacterial size and the over expressed recombinant protein concentrated as an 

inclusion body within the cell.  

 

Fourier Transform Infrared (MIR and IR) spectroscopy is a powerful frequency absorbance 

energy that measures predominantly the bond strengths of molecules and the vibrations of 

bonds within functional groups [20]. These special characteristics can help us to determine 

the presence of particular bands within the spectrum, and to also notice the absence of other 

important bands [21]. 

 
 
2.4 Raman Spectroscopy Fundamentals 
 

 
Raman spectroscopy is another important form of vibrational spectroscopy and also a 

complementary technique. The selection rules for Raman spectroscopy are different from the 

infrared spectroscopy [21]. The Raman scattering intensities are proportional to the change in 

molecular polarizability upon vibration excitation, whereas infrared absorption intensities are 
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proportional to the change in dipole moment of a molecule as it vibrates [19]. For these 

reasons, polar bonds or nonequal charges are more prominent to determine in IR spectra, 

while polarizable vibration modes are stronger in Raman spectra such as in diatomic 

molecules, aromatic ring and other vibrations involving multiple bonds or heavy atoms [22]. 

One of the benefits of Raman spectroscopy is the weak absorption of polar molecules such as 

water. The polar weakness on Raman spectroscopies could be useful for applications in 

aqueous solutions, because it possesses a weak OH stretch band and also could generate rich 

information from the sample. Raman spectroscopy might be an excellent technique during 

the fermentation process, because it presents a way to avoid the most significant source of 

interferences (water) at infrared frequencies. Also, this technique is useful in fermentation 

products as well as for the purification processes, where the expressed recombinant protein 

has a large molecular structure.  

 

After explaining the different technologies explored in this work, it is necessary to establish 

that like other analytical equipments, the NIR, FT-IR and Raman spectroscopies will not 

fully replace the traditional wet technology. They are “old but new” tools which in some 

cases could be more convenient to apply than other techniques. Another important 

consideration is that these strong tools need a good preparation and a well devised, 

experimental design, statistical analysis and a rigorous validation of the process [23]. 
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2.5 Application of NIR, IR and Raman Spectroscopies in 
Fermentation Monitoring 

 
 
 
The scientific literature of simultaneous utilization of NIR, IR and Raman spectroscopies to 

monitor the concentration of biomass and recombinant proteins is very limited (Figure 2.3). 

 

 

Figure 2.3 - Literature review on the use of NIR, IR and Raman spectroscopies 
to determine biomass, substrate, by-product and recombinant protein in an E. 
coli culture. 

 

No matter the technology used or proposed by the authors, the purpose was to improve over 

the traditional methods to supply the necessary monitoring data from the fermentation 
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process. The extensive sample preparation and analysis time (1-24 hours, Appendix A) 

restricts the utility of the traditional assays for process monitoring, optimization and control 

[10]. Starting with NIR technology, its spectral information is secondary in nature, having its 

origin in the mid-IR region. This non-invasive technique possesses attractive features in 

particular: the possibility of multicomponent analysis, where the concentration of more than 

one culture broth constituent (e.g., biomass, substrates, and metabolic products) can be 

determined simultaneously by means of non-invasive sample analysis and real-time 

measurements. These features make of this technique an attractive option for real-time 

bioprocess monitoring [27]. Raman spectroscopy, like NIR, can be used to estimate the 

concentration of chemical components and biomolecules in bioprocess media. The main 

difference between Raman and NIR resides on the low interference from water for Raman 

spectroscopy [22]. This technique validates the demonstrated simultaneous concentration 

estimation of fed-batch culture substrate (glycerol) and by-products (acetate, formate, lactate 

and phenylalanine) reported by Lee et al. in 2004 [22]. Although a good correlated spectrum 

is available in the literature, Lee and coworkers agreed in the necessary additional 

experiments and analyses to identify and correct the model errors and to obtain a confidence 

interval around concentration estimates [22]. 

 

The last technique is the Fourier transform infrared spectroscopy (FTIR), which is a physic-

chemical method that measures predominantly the bond strengths of molecules and the 

vibrations of bonds within functional groups, respectively [21]. Infrared spectra of proteins 

exhibit strong amide absorption bands at 1650 cm-1 associated with the characteristic 
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stretching of C=O and C—N and the bending of the N—H bond [21]. The problem is that 

this technique, like NIR, provides water interferences and for that reason it becomes 

necessary to explore various chemometric approaches which use information from the entire 

spectrum. 

 

2.6 Statistics Approach in the Application of Chemometrics 
 
 
Statistics can be used for the extraction of maximal and relevant information from raw data. 

Its uses the experimental design to conduct experiments and determine how and where to 

find additional information of the processes. 

 

In the pharmaceutical and biotechnology industry, hundreds of variables are desirable to fully 

understand the product and the process, and to optimize production. In view of the facts 

above, process monitoring and control need to improve continuously by installing probes at-

line or in-situ to obtain data for the acquisition of the critical variables within the process. 

Multivariable methods such as principal components analysis (PCA) or partial least squares 

(PLS) have demonstrated to be ideal in such cases were huge amounts of data are collected. 

This is would be the case with the kinetic data from a heterogeneous system in which the 

metabolites vary or the metabolic routes could change with respect to their environments. 

The non-linearity of the system studied plus the numerous amounts of data could avoid a full 

characterization of the system. The multivariate analysis does not pretend to substitute 

univariate analyses, but in some cases whereas the lack of information is not the problem and 
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the model is complex, multivariate methods should provide more information than univariate 

methods.  

 

PCA is an algorithm that recognizes the raw data (usually a spectrum) as variation patterns 

(intrinsic correlation), performs a mathematical decomposition of the patterns, and 

reconstructs the patterns using orthogonal vectors (uncorrelated to each other) [30]. PCA 

could be useful for finding the individual relationship between the analytical observation 

such as experimental tests, batches, chemical compounds, etc., to the spectroscopic quality or 

quantity aspect of the product [31]. Some analysis advantage consists of the loading 

dependence of the variable that permits an “a priori” control of the loading, if the researcher 

knows which variable will be more characteristic of the process. If physical interferences are 

known to affect the process modeling, pretreatment of the data is required (smooth 

normalized variance, log, etc.). One example of the pretreatment would be the usage of 

normalized pretreatment to avoid fluorescence effects (due to lower frequency interference) 

on a synthesis of a fluorescent protein in a fermentation run [32]. In fermentation, the 

microbial growth and the recombinant protein synthesis depend on achieving their optimal 

parameters (decreasing the inhibitory effect in the bacteria, metabolic routes, among others). 

The nutrient quantities are a critical variable in the model established in this research.  

 

PCA analysis that explains the variability using vectors or factors is essential in the use of 

other analyses to establish the relation with the quality or productivity data. This analysis is 

called partial least squares (PLS) and its objective is to explain the correlation and variability 
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of the observations and variables (X, usually spectra) to the response of the process (Y, 

usually absorbances or other assays such as concentrations determined using HPLC)  

 

PLS regression estimates the X projection and maximizes its correlation with Y.  One of the 

advantages of this analysis is that each process variable is treated as a vector behavior which 

provides an easy and effective way to determine and establish a good model where the 

loading is sought in the vector direction and sign, and not in the magnitude. There techniques 

are useful because they reduce the noise and compress the long raw data in a better view, 

within vector and effect plots.   

 

In general, PCA and PLS are good statistical methods to build vigorous models with an 

accurate prediction and adjustment of the process. 

 
 
2.7 Geometrical Chemometrics Interpretation 
 
 
The univariate least squares measures a variable response for each known independent 

variable, plots variable responses vs. properties, and finds the slope and intercept which 

minimize the residual sum of squares of the response variable. This technique is useful to 

analyze small clusters of data or where a linear relation is obvious because it presents a rapid 

and simple model analysis. To be sure the model is significant, different statistical tools such 

as ANOVA, null hypothesis test, factorial, repeatability and reproducibility (R&R), split plot, 

are available to determine the relationship between the observation (X) and the response (Y). 
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If the data contains interferences, the linearity of the model is not obvious and one response 

(Y) for observations is not sufficient to explain and obtain a good reproducibility and 

repeatability of the model. If the collected data is extremely large, the limits of this process 

are notable, because the model has to measure one variable response for each known 

independent variable and also without adding the effect of responses in the model. 

 

The factor-based regression replaces original X by Xaprox, which has uncorrelated columns. 

Two of them are principal components analysis (PCA) and partial least squares (PLS). PCA 

considers a matrix X with N observations and K variables. Each observation (each row) of 

the X- matrix is placed in the K-dimensional variables space. Consequently, the rows in the 

data table form a swarm of points in the space. Once we have the space point, the mean 

centering involves the subtraction of the variable averages from the data. After mean 

centering and scaling to unit variance, the data set is ready for the computation of the first 

principal component where is the line in the K-dimensional space that best approximates  the 

data in the least squares sense. The second component is also represented in the K-

dimensional variable space, which is orthogonal to the first component. When two principal 

components have been derived they together define a plane, a window into the K-

dimensional variables space [33]. The coordinate values of the observations on this plane are 

called scores of the vector for the first (t1) and the second (t2) components.  

 

PLS is a method for relating two data matrices, X and Y, to each other by a linear 

multivariate model.  For parameters related to the observations (samples, compound, object, 
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items), the precision of a PLS model improves with the increasing number of relevant X-

variables. This corresponds to one of the most important concepts in different areas such as 

statistics, engineering and chemistry, when many variables provide more information about 

the observations than just a few variables do.  

 

 Historically, the PLS methodology has proven to be successful in different application areas 

such as quantitative structure-activity relationship (QSAR), multivariable calibration and 

process monitoring and optimization [33]. Our objective was in the process modeling, were it 

is used to find the relationship between spectroscopic variables measured on the process (X) 

at N time points and corresponding observations (Y) such as product properties and quantity.  

For this process, there were several responses needed to explain a system and others that with 

a single response would be sufficient to obtain the model.  

 

Like PCA, every observation in a data set may be understood as one point in the X-space and 

another point in the Y-space. The first PLS component is a line in the X-space and another 

line in the Y-space. These components are calculated such that they could well approximate 

the point-swarms in X and Y and provide a good correlation between the positions of points 

along these lines in X and Y.  

 

After the average of all the vectors is established, the two score vectors t1 and u1, may be 

displayed in a scatter plot and then are connected through the inner relation ui1 = ti1 + hi, 

where hi is a residual. This relation tells us the visualization of the correlation structure 
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between X and Y such as presences of outliers in the X-data, Y-data and/or in the relation 

between X and Y. Furthermore, when there are non-linearities between the predictors and the 

response (Figure 2.4).  This projection is also used in the ANOVA analysis were the plot of 

Y predicted by the model and the Y variable to make sure the analysis satisfy with the 

presumption of the model. 

 

 

 
 

 
Figure 2.4 - (Left) Linear projection t1 and u1, in the two spaces, X and Y, were 
connected and correlated through the inner relation ui1 = ti1 + hi. (Right) PLS 
score plot t1/u1 is useful for identifying curved (non-linear) relationships between 
the predictors and responses. Adapted from Eriksonn, et al. [33]. 

 
 
2.8 Culture of Genetically-Engineered Escherichia coli at High 

Cell Densities  
 

High cell density fermentations require an extensive knowledge of the process. These growth 

strategies, together with optimization of the media composition and the application of 
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molecular  biology methods, make it possible to grow E. coli to cell densities of up to 190 

g/L (dry weight), while avoiding media precipitation and preventing acetate accumulation 

(waste by product that inhibits the microbial growth) [24] . The growth optimization depends 

on the dissolved oxygen, medium composition, acetate inhibition and growth techniques. 

  

Results published in 1965 by Herbert et al. [24], indicate that the yield-constant for oxygen 

of an E. coli strain growing on glucose as a carbon source is close to 1 (1 g of oxygen is 

needed for the production of 1.06 g of dry E .coli biomass). The need of strong aeration is 

required for a high cell density growth, however, the major obstacle to achieve high-density 

growth of bacteria is in the initial substrate concentration in the liquid medium [24].   

To accomplish high cell density cultures, Luria Bertani (LB) medium does not contain 

phosphorus, sulfur and trace elements which are fundamental to the bacterial growth [24]. 

For these reasons, is it more convenient to formulate the broth with this in consideration. 

Instead, the bacterium needs all of these nutrients, high quantities of medium ingredients 

become inhibitors to E. coli when added. In the literature, the specific recipe for high cell 

density does not exist, because it depends on the bacterium metabolism. It is recommendable 

to determine experimentally which recipe is more convenient for microbial growth. 

However, literature reviews such as in Riesenberg, et al. in 1991 [37] established that 

nutrients such as glucose at concentrations of 50 g/L, ammonium at 3 g/L iron at 1.15 g/L, 

magnesium at 8.7 g/L, and phosphorus at 10g/L and zinc at 0.038 g/L inhibit E. coli growth. 

These concentrations are just a guide to follow, and not a mandatory law. In 1996 Lee [27] 

established that E. coli growth that contained the maximum non-inhibitive concentration of 
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nutrients allowed growth to a cell density of about 15 g/L dry cell weight (dcw) compared to 

LB medium which is 1 g/L dcw. The anion concentration which the bacterium does not use 

instantly could precipitate and affect bacterial growth. Precipitates occur when non-soluble 

complexes of divalent metal-ammonium phosphates, magnesium phosphates and other 

phosphates are formed [24, 38]. The precipitation could increase the osmotic pressure and 

conductivity that may affect membrane potential and may activate different stress 

mechanisms that induce a decrease in growth rate or termination of the growth cycle [39]. To 

avoid the nutrient precipitation it is recommended by same authors [37] that a minimal 

nutrient medium containing only simple inorganic salts and a defined carbon source should 

be used Matsui et al. (1989) [38] improved Neighardt’s method by adding solid glucose 

powder to a growing culture, achieving a cell density of 134 g/L dcw. Korz and coworkers 

improved the Risenberg method by substituting the glucose carbon source with glycerol 

because of its higher solubility to achieve a cell density of 148 g/L, this was the method 

implemented in this work. 

     

Acetate at high concentrations might be another reason for bacterium inhibition. For this 

reason, the acetate metabolism and its effect on E. coli have been studied extensively. In 

1982, some authors described acetate excretion under aerobic conditions, resulting from 

excess carbon source, especially glucose [37]. Others cited overloading of the TCA cycle by 

fast oxidation through glycolysis as the main reason for acetate accumulation [38]. During 

the 1990’s, it became a general consensus that acetate accumulation above 2 g/L in the 

growth media slow down E. coli growth, may stop biomass build-up and may inhibit 
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recombinant protein biosynthesis [24]. It is known that one way to lower acetate 

accumulation is to reduce the growth rate by supplying the carbon source slowly. Fed batch 

techniques would become necessary for achievement of this goal. In the industry, fed batch 

technology, also known as semi-continuous or variable-volume continuous culture, is 

common for the following reasons: overcomes substrate inhibition or catabolite repression, 

increases productivity and lowers downtime cycles.   
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3 MATERIALS AND METHODS 
 
 
3.1 Microorganism 
 
 

The strain used in this research work was Escherichia coli K-12, which is a genetically 

engineered bacterium that expresses the green fluorescent protein (GFP) [1]. GFP is a 

recombinant protein that consists of 238 amino acids and has a molecular weight of 23 kDa 

[1]. This protein is found naturally in the jellyfish Aequorea victoria and fluoresces green 

when exposed to ultraviolet (UV) light [1]. The E. coli strain and the plasmid that expresses 

GFP are commercially available (Bio-Rad pGlo kit). The plasmid contains the PBAD promoter 

and the araC repressor gene. However, the genes which code for arabinose catabolism, araB, 

araA and araD, have been replaced by the simple gene which codes for the GFP. Therefore, 

in the presence of the arabinose in the cell culture, araC promotes the binding of RNA 

polymerase and GFP is produced [1]. 

 

Figure 3.1 - Petri dish cultured with E. coli K-12. Green fluorescence can be 
observed upon application of UV light to the system [1]. 



 
 
 
 

 30

3.2 Inoculum Preparation 
 
 

Inocula were prepared using a two-stage process as described in Hall et al.  [2]. Stock mutant 

culture from a petri dish with LB/ampiciline and arabinose were first inoculated into 280 mL 

of filter-sterilized nutrient medium containing the following components (amount in g/L): 

glycerol, 3.53; ammonium sulfate, 5.35; yeast extract, 8.57; KH2PO4, 4.62; K2HPO4, 25; 

citric acid, 1.7; EDTA, 0.0084 and ampiciline, 0.1. The medium composition was followed 

according to Hall et al. [2] and Korz et al. [3]. The cultures were incubated for 15 hours at 

37°C and 300 rpm in a temperature controller orbital Innova 4000 shaker (New Brunswick, 

NJ) (Figure 3.2). 

 

 

 
 

Figure 3.2 - Inoculum preparation in an Innova 4000 shaker incubator. 
 

280 mL of inoculums 
(40 % (v/v))
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3.3 Batch and Fed-Batch Fermentation and Setting-Up 
 
 
Inocula cultured as described above were transferred at a 40% (v/v) level to a 2-L sterilized-

New Brunswick Bioflow 3000 bioreactor (Figure 3.3) containing the following components 

(amount in g/L): glycerol, 3.53; ammonium sulfate, 2.67; tryptone, 8.57; yeast extract, 17.1; 

KH2PO4, 4.62; K2HPO4, 25; citric acid, 1.7; EDTA, 0.0084 and ampiciline, 0.1. In all runs, 

the pH was monitored using a Mettler Toledo pH probe and was controlled with 

proportional-integral-derivative (PID) control system with a pH 7.0 set point using 2N 

sulfuric acid and 4N sodium hydroxide solutions. Dissolved oxygen was measured using a 

Mettler Toledo DO membrane probe and was controlled with a PID controller at a set point 

of 30% oxygen saturation by oxygen-air enrichment with pure oxygen gas addition. 

Temperature was monitored using an resistant temperature detector (RTD) and was 

controlled at a set point of 37°C through addition of hot water flow through a concave 

bottom jacket. Bioreactor contents were mixed at 350 rpm using Rushton turbine impellers.  

After the inoculation, the fermentation process was run for the first four hours in a batch 

mode and then it was continued in a fed-batch mode by adding feed at a rate of 75 mL/h 

containing the following components (amount in g/L): glycerol, 200; yeast extract, 360; 

tryptone, 180; and ampiciline, 0.1. At the moment the feed was started, bacterial growth 

should be in its exponential phase, and for this reason, the carbon source is required for 

bacterial growth [4]. Since the beginning of the batch fermentation, samples were collected 

every hour for fluorescence (SpectraMax Gemini EM fluorometer), HPLC (Waters), NIR 

(Buker 300), FT-IR (Varian 800) and Raman (Kaiser Optical System Inc.) assays. 
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Fermentation samples were collected periodically for optical density (OD600) measurement at 

600 nm (Genesys 6 spectrophotometer).  

After ten hours, an arabinose stock solution was added to induce recombinant protein (GFP) 

expression; this activated the plasmid arabinose operon and induced GFP expression [1]. In 

this process of protein production, since GFP fluoresces, samples were collected every hour 

and a SpectraMax Gemini EM fluorometer was used to measure protein in the sample. 

 

 

Figure 3.3 - Fermentation in a fed-batch reactor (BioFlow 3000). 
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3.4 Determination of Glycerol and Acetate Concentrations 
 
 
Glycerol and acetate concentrations were determined using high performance liquid 

chromatography (HPLC). Fermentor samples were collected and centrifuged using an 

Eppendorf centrifuge system (5415 D). The supernant was filtered using a 0.22 µm Millipore 

membrane and was then analyzed using high performance liquid chromatography with a 

BioRad HPX-87H, 300 mm 7.8 mm organic acids column (BioRad Labs, CA) operating at 

55ºC. A refractive index detector was used for compound detection. Dilute sulfuric acid (0.1 

N) at a flow rate of 0.6 mL/min was the mobile phase. Mixed component concentration 

verification standards containing glycerol and acetate were periodically injected to the HPLC 

to verify calibration accuracy. A similar procedure was already reported by Sáez Miranda et 

al., [5]. 

 

3.5 Determination of Cell Mass Concentration and Cell Mass 
Growth 

 
Cell mass concentration was determined by a gravimetric method. One mL of whole culture 

broth samples were filtered using a PTFE Cole Parmer manifold filtration unit. A pre-

weighed cellulose acetate membrane filter (25 mm, 0.22 µm, Cole Parmer Instruments) was 

used to retain the cell mass, was washed three times with deonized water and dried in an 

oven at 50°C until constant weight was attained. Triplicate analyses of a single sample were 

performed at each sampling time to obtain reliable results. 
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Cell mass was also alternatively determined using a Genesys 6 spectrophotometer at a 

wavelength of 600 nm. The absorbance or optical density (OD600) measurement is linearly 

related to the cell dry weight. To maintain Beer’s Law linearity, samples measuring over 0.6 

units of absorbance were diluted for corrected OD determination. The dilution range depends 

on the spectrophotometer linear range, which for our spectrophotometer is 0.01 - 0.6 at 600 

nm. For this method, sterile medium was used as the “blank” to zero the spectrophotometer 

and was also used as sample diluent, when necessary. 

 

Like Saez Miranda et al., [5] established in a recent article, a linear relation between the dry 

cell mass concentration (g/L dcm) and optical density (absorbance units) exists for a gram-

negative bacteria, which is in agreement with the E. coli results shown in Figure 3.4. The 

following equation was obtained as the slope of the linear correlation between the dry cell 

mass concentration and the absorbance at 600 nm using whole broth samples collected in 

several runs (Equation 3.1). 

 
3.6 Recombinant Protein Concentration 
 
 
In this research work, the transformed E. coli has the betalactamase (bla) plasmid, which 

provides physiological advantages such as ampicillin resistance and recombinant protein 

expression in the presence of arabinose [1]. The process where the arabinose is related to the 

operon activation and the protein expression is called induction. In our fermentations, the 

induction was activated during the exponential phase of the culture to achieve a high protein 

expression. Once the bacteria cells start to produce the protein, a fluorometry 
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spectrophotometer was used to quantify the protein expression by fluorescence. GFP has two 

excitation peaks, a major one at 395 nm and a minor one at 475 nm [6]. Its emission peak is 

at 509 nm in the lower green portion of the visible spectrum. We used this information to 

determine the GFP synthesis quantification on the fermentation sample for each hour after 

induction (Figure 3.5). Figure 3.6 shows an image from confocal microscopy that displays 

the inclusion body in the bacteria cytoplasm. 

 

ODDCM ⋅+−= 579.0217.0 at 600nm                                    3.1   
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Figure 3.4 - Linear correlation between dry cell mass concentration (g/L dcm) 
and OD at 600 nm for E. coli K-12 strain. Data shown includes different 
fermentation experiments. 
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Figure 3.5 - Variation of fluorescence after protein synthesis is induced by 
addition of arabinose. 

 
 

 
 

 
 

 
 

Figure 3.6 - Image of E. coli K-12 expressing GFP. Taken with a confocal 
microscope at Microscopy Laboratory, Department of Biology (UPR-
Mayagüez). 
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3.7 Fermentation Process Simulation 
 
 
In this work, we used Super Pro Designer software, which is the leading process simulator in 

the biotechnology industry to simulate the whole fed-batch process to produce the GFP.  This 

software is used throughout the life cycle of product development and commercialization to 

facilitate process optimization, cycle time reduction, improve team collaboration, and shorten 

the time to market.  

 

Figure 3.7 shows the sketch of simulation of all the process in this research starting with the 

inoculum, batch process, to the fed-batch fermentation, and finally to the purification 

procedure using a hydrophobic interaction column (HIC). Figure 3.8 can help us to visualize 

the time schedule schematic as a Gantt chart. 
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Figure 3.7 - Green fluorescent protein (GFP) production flowsheet using Super 
Pro Design software. 
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Operations Gantt Chart (Single Batch) - fermentacion final
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Figure 3.8 - Gantt chart schedule for GFP production and purification, as 
generated by Super Pro Designer software. 

 



 
 
 
 

 40

3.8 NIR, IR and Raman Equipment Procedure 
 
 
Each sample collected from the fed-batch experiments was analyzed at-line using NIR, IR 

and Raman spectrometry.  

 

The NIR uses an immersion (transmission) probe in 15 mL of sample with a pathlength of 1 

mm. Each sample was not only referenced against the internal reference fiber, it was adjusted 

to give specific illumination energy on installation. The probe was also referenced with air 

(external reference), which must be collected prior to probe insertion in the sample. After 

equilibrating the sample to room temperature, samples were scanned in triplicate. The 

parameters on the software were: 128 scans, 4 cm-1 resolutions and the method used Zaineett 

fiber.  The OPUS software was used for the data acquisition and transformation into GRAMS 

data. Figure 3.9 shows a representative NIR spectrum for a sample collected during a 

fermentation run, where the high-density growth was proportional at 5580 cm-1 [2]. 

 

Raman spectra were collected using a Raman probe immersed in 15 mL of sample. After 

sample analysis, calibration was performed with a cyclohexane standard. Samples were 

analyzed with ~ 10 exposures and ~ 5 accumulations. GRAMS software was used for the 

data acquisition. Figure 3.10 shows representative Raman spectra of samples collected from a 

fermentation run. 
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Figure 3.9 - Sample collected from a NIR spectrum of E. coli fermentation 
producing recombinant GFP protein. Induction was started at the 10th hour.   
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Figure 3.10 - Raman spectroscopy of fermentation samples with induction 
started between samples 3 and 4. 
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FTIR uses an attenuated total reflectance probe (ATR) to obtain spectra during the course of 

fermentation. Three spectra were collected from the culture broth after background was 

collected, which adjusted the equipment to its electric potential and also with an external 

reference (air and CO2). The collection of each spectrum was at the rate of 4 cm-1 using 100 

scans per spectrum. Figure 3.11 shows a result of the measurements of the nutrients and by-

products using FT-IR vibration energy stretch for fermentation run. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11 – FT-IR spectra of fermentation samples. Calibration was 
performed to correlate the characteristic peaks of glycerol, acetate and 
ammonium sulfate. 
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3.9 Analysis of NIR, Raman and FTIR Spectra 
 
 
In the project, different types of components were monitored using different reference 

techniques such as HPLC, UV, fluorescent spectrometry, and gravimetric analysis. Some of 

these techniques are laborious and time consuming. To speed up the sample analysis, NIR, 

IR and Raman, along with multivariable data analysis were performed using SIMCA-P+11 

(Umetrics) and Pirouette software. The steps followed in SIMCA-P+11 and/or Pirouette are:  

1. Definition of project- Import the raw primary data set. The raw material consists of the 

NIR, IR and Raman spectra, which will be on GRAM files and the nutrients such as 

glycerol using HPLC, by products such as acetate using HPLC. The products such as 

recombinant protein concentration using fluorescence spectrophotometry, and 

microbial concentration using optical density and the dry cell concentration 

(gravimetric) method.  

2. Preparation of data- Specify which variables are process variables (X) and which are 

responses (Y). Transform the data and group the observations if necessary.  The 

spectrum wavenumber would be the X primary variable and the experimental analysis 

data would be the Y response [8].   

3. Fitting the model, a PCAX of all the data- The PCAX analysis will be useful to 

determine the scores or loading of each factor, find out which variable has the same 

information and the variation and the predictive ability explanation [8]. In the 

experiment the PCAX is determined, which spectroscopies explain better the 

recombinant protein, nutrients and by-product concentration. These results will be 
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compared with the theorical hypothesis, using the energy vibration spectra, Raman 

spectroscopy may explain better the nutrient and by-product concentrations [9], NIR 

may explain the biomass concentration [2] and IR may explain the protein production 

[10].    

4. Detection of possible outliers- After the PCAX is set, two different analyzes are need to 

detect the presence of outliers. Two different kinds of outliers may exist: the outliers 

that are out of the hyperplane and the outliers that are out of the interval of confidence. 

To determine the hyperplane outliers a DMoxd plot analysis will be useful. This plot 

displays the residual standard deviation (RSD) of the observations in the X space, after 

all the computed dimensions. The RSD is proportional to the distance of the 

observation to the model hyper plane. Larger DModX than the critical limit indicates 

that the observation is an outlier in the X space.  The 95 % interval confidence outliers 

can be detected with the Score plot. The plots show the possible presence of outliers, 

groups, similarities and other patterns in the data [8].  

5. Fitting of model by PLS of all the data- After the determination of the representative 

factor, a PLS analysis is required to determine the relation between the X and Y. This 

model shows which factor could explain and predict better. Also, the analysis will tell 

us the difference among each variable in the group and which variables and which 

factors better predict and explain that group. It is very important to know that the PLS 

like PCAX could locate the outlier’s presence [8].  
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6. Examination of results- After running the model, a careful examination of the model is 

required. For that it is important to compare with the theorical hypothesis and develop 

new perspectives on the underlying meaning in the data [11]. 

7. Validation of the model- To determine the reliability of a model it is necessary to 

include a validation step. This means to determine where the model breaks off the 

critical points of the process. The two different tests used are: test set analysis, where 

the properties of samples (which had not been included in the calibration models) were 

predicted using the calibration models and the leave-one-out analysis were the 

properties of the samples (which had been included in the calibration models) is used to 

determine if there are outliers [12]. 

8. Prediction and classification of PLS model- Compare the results with previous 

expectations. Determine the variance of the prediction of the new experimental set and 

determine if it could be applicable to another fermentation setup [11]. 
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4 EXPERIMENTAL RESULTS AND DISCUSSION 
 
 
 
4.1 Fermentation Profile 
 
 
In this study, intracellular GFP-producing E. coli fed-batch cultivations were monitored with 

three different spectroscopies: FT-IR, NIR and Raman. Figure 4.1 shows values from 

quantitative analysis for biomass, intracellular GFP, glycerol and acetate during a 

representative run. The ±2 standard deviation error bars represent the average of nine runs 

performed as described earlier in Chapter 3. There is good run-to-run reproducibility in the 

concentration profiles for all components.  
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Figure 4.1 – Accumulation profiles for high-density E. coli fed-batch 
fermentation bioprocess. The plot includes: quantitative analysis of biomass, 
glycerol, acetate and intracellular GFP.  
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4.2 Determination of Acetate and Glycerol Concentrations using 
Raman Spectroscopy  

 
 
The following data analysis was performed to generate a model for the prediction of acetate 

and glycerol concentrations in a fed-batch reactor. Raman spectroscopy is ideally suited for 

the analysis of acetate and glycerol due to the strong absorption of Raman energy by organic 

molecules and the weak absorption for -OH- band, which enables direct spectra acquisition. 

Conversely, we believe that the monitoring of acetate and glycerol during fermentations 

using Raman is not abundant in the literature. Hall et al. [1] used multiple linear regression 

(MLR) to derive a linear relationship between the absorption of NIR energy at discrete 

wavelengths and the analyte concentrations. Their group basically determined bands, where 

differences at the spectrum by the pure analytes and by regression analysis were subtracted at 

analyte concentration during fermentation. MLR is a classical method that assumes statistical 

independence of the X-variables and Y-variables. In the Hall et al. case, the relationship 

between the bands and the responses were not included, and the X-variables were exact and 

completely (100 %) relevant (each variable and noise were be incorporate in the model). 

Based on their assumptions, truncate the intrinsic relationship by the organism pathways by 

analyte consumption and production.  

 

To distinguish the difference between the MLR analyses and PLS, Moisheky et al. [2] used 

FT-IR spectroscopy and PLS to quantitate the critical analytes in an alcoholic fermentation. 

They used a factorial design that consisted in different combinations of maximum and 

minimum levels of concentration of analytes (n=98 standards) to derive a calibration model 



 
 
 
 

 49

and to later predict several fermentations. Their method consisted in a factorial design as a 

calibration model, which was not in agreement with the microorganism’s pathway. Chemical 

engineering fermentations are analogous to a chemical reaction among reactants converting 

to products and by-products. In each reaction there is a limiting reactant that in fermentation 

vocabulary is called a “substrate,” and unwanted products are called by-products. One of the 

most significant differences between chemical reactions and bioreactions is that substrates 

can inhibit microorganism growth, for that reason the monitoring of these concentrations is 

fundamental for a proper microorganism growth. Because factorial design assumes that each 

factor (analyte) is independent, and because we already explained there is an indirect 

relationship between the substrates and by-products, a full factorial design might not be a 

good method to use in such cases for different reasons. First, it would require a lot of samples 

to accomplish the calibration method (n= 98), were fifty percent of these experiments would 

physically be impossible. As an example, having a combination of simultaneous high 

concentrations of substrates and byproducts is not real. Another problem is that a lot of 

unuseful combinations promote noise that would affect the model. For instance, to have a 

good model, Moisheky had to use approximately 13 factors to explain each analyte in the 

fermentation, using a full factor design as a calibration method.      

  

A better suited experimental design was required to obtain the acetate, ammonium and 

glycerol calibrations to determine the proportion of the components along the fermentation 

knowing that the analytes are dependently related. Also, the substrate and byproduct 
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concentrations were analyzed using high performance liquid chromatography (HPLC) as the 

reference method. 

 

The calibration of the culture media with and without the microorganism was needed to 

correlate the change of concentrations of the substrate and by-products using Raman. The 

calibration was performed using an extreme vertices mixture design programmed in Minitab 

software [3].  The mixture design consisted of nine different samples in triplicate of the 

substrates and by-products: glycerol, acetate and ammonium. Preliminary experimental 

studies induced to use the intervals (scaled concentration): 0.05 < x / % < 0.90 for glycerol, 0 

< x / % < 0.85 for acetate and 0.1 < x / % < 0.3 for ammonium.  The mixtures are related one 

to another as shown in Figure 4.2. 

 
 

 
 

Figure 4.2 - Experimental design: extreme vertices of substrate mixture test 
analysis.   
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4.2.1 Exploratory Spectral Analysis 
 
 
The selection of the spectral region of interest was the primary step in the chemometric 

exploratory data analysis. Patterns of association exist in the whole spectral data set, but the 

relationship between the sample and the variable of interest can be difficult to predict if 

uncorrelated spectra associated to noise may produce possible outliers. Figures 4.3 and 4.4 

present the spectra of mixture spectra with a variation at the concentration of glycerol and 

acetate and a plot between the peaks that better fit the analyte concentration profile.  The 

plots fit very well between the concentration profiles of the analytes and the intensity of 

Raman except for the 920-860 cm-1 range.     

 

 
4.2.2 Description of the Primary Data Set 
 
 
The primary data consisted of 27 samples of acetate, ammonium and glycerol mixtures, 

prepared and analyzed at-line, with HPLC as reference method. Raman spectra were acquired 

from each sample of mixtures at triplicate. The spectra were obtained in the 3000 - 100 cm-1 

range but it was analyzed between the 3000 - 920 cm-1 range, giving a total of 3332 X- 

variables (absorbance), FT-IR spectral wavenumbers, and three are Y variables (mixture 

proportions). The data set has 27 observations (samples, row vectors). 

 

 

 



 
 
 
 

 52

a) 

Raman shift (cm-1)

8608809009209409609801000

In
te

ns
ity

10000

20000

30000

40000

0.05 % Concentration
0.24 % Concentration
0.42 % Concentration
0.56 % Concentration
0.66 % Concentration
0.70 % Concentration
0.90 % Concentration

Concentration (%)

0.0 0.2 0.4 0.6 0.8 1.0

In
te

ns
ity

5000

10000

15000

20000

25000

Peak at 890 cm-1

Peak at 967 cm-1

 
 

b) 

Raman shift (cm-1)

16001800200022002400260028003000

In
te

ns
ity

10000

20000

30000

40000

0.05 % Concentration
0.24 % Concentration
0.42 % Concentration
0.56 % Concentration
0.66 % Concentration
0.70 % Concentration
0.90 % Concentration

Concentration (%)
0.0 0.2 0.4 0.6 0.8 1.0

In
te

ns
ity

5000

10000

15000

20000

25000

Peak at 2829 cm-1

Peak at 2944 cm-1

Peak at 1694 cm-1

 
Figure 4.3 – Raman spectra of glycerol calibration profile at a) 890 and 967 cm-1 
and b) 2829, 2944 and 1694 cm-1. 

 
 
 



 
 
 
 

 53

a) 

Raman shift (cm-1)

8608809009209409609801000

In
te

ns
ity

10000

20000

30000

40000

0 % Concentration 
0.19 % Concentration
0.38 % Concentration
0.51 % Concentration
0.61 % Concentration
0.65 % Concentration
0.85 % Concentration

Concentration (%)

0.0 0.2 0.4 0.6 0.8 1.0

In
te

ns
ity

5000

10000

15000

20000

25000
Peak at 890 cm-1

Peak at 967 cm-1

 
b) 

Raman shift (cm-1)

16001800200022002400260028003000

In
te

ns
ity

10000

20000

30000

40000

0 % Concentration
0.19 % Concentration
0.38 % Concentration
0.51 % Concentration
0.61 % Concentration
0.65 Concentration
0.85 % Concentration

Concentration (%)

0.0 0.2 0.4 0.6 0.8 1.0

In
te

ns
ity

0

5000

10000

15000

20000

25000

30000

Peak at 2829 cm-1

Peak at 2944 cm-1

Peak at 1694 cm-1 

 
Figure 4.4 - Raman spectra of acetate calibration profile at a) 890 and 967 cm-1 
and b) 2829, 2944 and 1694 cm-1. 
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4.2.3 Evaluation of Raw Data 
 
 
From an examination of the raw spectra (Figure 4.5), both the additive and multiplicative 

effects are apparent. The higher the concentration of the mixtures, the higher the absorbance 

in the spectra. 
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Figure 4.5 - Raman spectra of mixture test: glycerol, acetate and ammonium. 
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4.2.4 Suitable Fit of X/Y Variables 
 
 
Estimating the optimal number of factors is one of the key steps in PLS. For this case the 

PLS model was explained using SIMCA software with three factors in order to account for 

99% of the variance in the system (Figure 4.6). The plot displays the cumulative R2 and Q2 

for the Y matrix, after each component. R2Y (cum) is the percent of the variation of the entire 

Y explained by the model and Q2 (cum) is the percent of the variation of the entire Y that can 

be predicted by the model (Table 4.1). 

 

 
 
 

Figure 4.6 - Goodness of the fit: cross validation suggests three factors. This 
component finds the direction in the X-space that improves the description of the 
X-data as much as possible, while providing a good correlation with the Y-
residuals. 
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Table 4.1 - PLS model information. 
 

Var ID (Primary) M1.R2VY 
Adj(cum) 

M1.R2VY
   (cum) 

M1.Q2VY 
(cum) Stdev(Y) RSD(Y) Stdev(Y)

WS
RSD(Y) 

WS DFR N

Acetate 0.996989 0.99735 0.994924 0.285541 0.0156695 1 0.0548767 22 26

Ammonium 0.997903 0.998155 0.997813 0.0747303 0.00342218 1 0.0457938 22 26

Glycerol 0.997158 0.997499 0.987099 0.29023 0.0154725 1 0.0533112 22 26

          

 Comp Obs. Y-miss(tot)       

 3 26 0       

 
 
Figure 4.7 shows the t1 vs. t2 plot of the X scores, which can be interpreted as a window into 

the X space. This shows how the X spaces (X conditions) are located with respect to each 

other. This plot shows the possible presence of outliers, groups, and other patterns in the 

data, as is the case with the samples 16 and 13. In this case, the mixture proportions are 0.0, 

0.3 and 0.7 (glycerol, ammonium and acetate), respectively and these points are possible 

outliers. To understand and interpret this behavior, we can examine the corresponding T2 

range plot (Figure 4.8). The T2 range plot displays the distance from the origin in the model 

plane (score space) for each selected observation. Values larger than the 95% critical limit 

(horizontal green line) are possible outliers (0.05 significance level), and values larger than 

the 99% critical limit significance (horizontal red line, 0.01 significance level) can be 

considered as serious. Samples 16 and 13 present suspicious values, however, these data 

points were not truncated due to the goodness of the model obtained so far. It presence must 

be taken in consideration for further discrepancies or poor behavior in the model. 
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Figure 4.7 - Score t1 vs t2 using PCA-X analysis. 
 
 

 

Figure 4.8 - Hotelling T2 range from component three to the last. 
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To obtain a good number of factors in a model, plot such as the cross-validation predictive 

residual sum of squares plot (PRESS), or the loadings plot (not shown) can be examined in 

order to choose an optimal model that can explain the information without modeling data 

noise.     

 

Cross-validation (CV) is a practical and reliable way to test the significance of a PCA or a 

PLS model.  With CV, the basic idea is to keep a portion of the data out of the model 

development, develop a number of parallel models from the reduced data, predict the omitted 

data from the different models, and finally compare these predicted values with the actual 

ones. The squared differences between predicted and observed values are added to form the 

PRESS, which is a measure of the predictive power of the tested model (Equation 4.1). 

Figure 4.9 shows how the coefficients of each Y varies within three factors near to an 

average equal to zero and shows that three factors are adequate to obtain a suitable model [4]. 

 

PRESS = 2
^

)(
ikik xx∑ −                                                               4.1 

 
 
 
One of the most important goals is, of course, to predict the behavior along time of new 

fermentations runs. Below is the test for predictive ability of the model. Figure 4.10 displays 

the relationship between measured (“observed”) amounts and the corresponding value 

predicted by the PLS model. Note that the results show an excellent fit with the three 

different components of each mixture. 
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Figure 4.9 - Coefficients residuals by three factors. 
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Figure 4.10 - Calibration model fit plot of the proportion mixture using Raman 
spectroscopy 
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4.2.5 Predictions and Validation 
 
 
To determine the reliability of the analytes under investigation and not unique to the 

calibration data set only, it is necessary to include several validation steps. Cross-validation 

uses the data model to predict individual each sample used in the training data base (biased 

systematic errors estimate the difference between the average of reference values for a set of 

samples and the average of the instrumental value for the same samples, Figure 4.11). The 

purpose is to determine which sample provides more variability to the model or if there are 

possible outliers. Test-set validation is used to challenge the model goodness using the model 

to predict samples reserved for validation (an unbiased systematic error estimates the 

difference between the average of the mean and the sample set which was not included in the 

model).  

 

Figure 4.11 represents three different fermentations (n=28), for the characteristic 

fluorescence of the GFP protein. A low frequency noise is observed, however, the scaled and 

centered pretreatment in the PLS model analysis shows fewer physical behavior at the 

validation, making the model prediction suitable. HPLC reference method that is designed or 

widely acknowledged as having the highest quality is compared with the model and plotted 

(y = x, Figure 4.12). 



 
 
 
 

 61

Raman shift (cm-1)

50010001500200025003000

In
te

ns
ity

0

20x103

40x103

60x103

80x103

100x103

120x103

140x103

160x103

180x103

200x103

 

Figure 4.11 - Whole broth fermentation spectra using Raman spectroscopy. 
 

 
4.3 Determination of Biomass Concentration using NIR 

Spectroscopy 
 
 
At-line biomass concentration determination was investigated in order to gain information to 

assist in the application of a process “in-situ” NIRS [1]. Although a strong knowledge of the 

statistical technique is needed to extract information from such complex data set as those 

seen in bioprocesses, it is really necessary to understand a priori why specific regions of the 

spectra are most appropriate for model building compared to others [1, 5, 6]. Hall et al. 

among others established that the best two biomass ranges to derive the biomass model are 

4700-4200 cm-1 and 5800- 5300 cm-1 [1].  
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Figure 4.12 - Relationship between observed and predicted values for (a) acetate 
and (b) glycerol concentrations (proportional units) for the test set samples. 
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Extreme vertices mixture design programmed in Minitab software [3] was proposed to 

determine the characteristic frequency range of biomass in the NIR spectrum. Nine different 

samples (in triplicates) were prepared without cells to identify noisiness in the infrared 

spectrum to base on the medium (experimental design was shown in Figure 4.13). The 

experimental results indicated us that in the range of 4700-4200 cm-1 there was overlapping 

between the analyte mixture (glycerol, acetate, ammonia) and the biomass concentration, 

while within the 5800- 5300 cm-1 range, no significant presence of analytes was detected 

(Figure 4.13).  

 

4.3.1 Description of the Primary Data Set 
 
 
 
The primary data consisted of 32 samples (observation, row vectors) prepared and analyzed 

at-line, both with the gravimetric (dried cell) and UV reference methods. NIR spectra were 

acquired from each sample of mixtures in triplicate. The spectra were collected in the 8000- 

4000 cm-1 range but was analyzed only between 5800- 5300 cm-1, using a nominal resolution 

of 8 cm-1 and giving a total of 260 X- variables (absorbance), NIR spectral wavenumbers, and 

two Y variables (UV absorbances and dry cell concentrations). 
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Figure 4.13 - NIR spectra of (a) mixture test samples and (b) whole broth 
(unmanipulated) used for the model calibration. 
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4.3.2 Suitable Fit of X/Y Variables 
 
 
Tables 4.2 and 4.3 display the cumulative R2VX, SEV (standard error of CV), SEC (standard 

error of the model) and SEP (standard error of prediction) for each X/Y variables, where the 

model can explain 99% with two factors. 

 

Table 4.2 - Factor contribution to the OD concentration predicting model from 
two factors to the last. 

 
 Variance Percent Cumulative SEV Press Val rVal SEC Press Cal rCal

Factor 1 644.90 98.84 98.84 14.49 2308.77 0.73 12.27 1354.55 0.85 

Factor 2 6.67 1.02 99.86 7.92 690.66 0.93 5.65 255.31 0.97 

          

 OD(Absorbance) Obs. Y-miss(tot) SEP rSEP     

 0.39 - 70 32 0 5.56 0.95     

 
 

Table 4.3 - Factor contribution to the dry cell concentration predicting model 
from two factors to the last. 

 
 Variance Percent Cumulative SEV Press Val rVal SEC Press Cal rCal 

Factor 1 1161.74  98.82  98.82  7.43 1048.70  0.67 6.72  768.68  0.76 

Factor 2 12.77  1.09  99.90  4.22 338.16  0.90 3.31  174.83  0.95 

          

 OD(Absorbance) Obs. Y-miss(tot) SEP rSEP     

 0.13 - 40 32 0 2.58 0.94     

 
 
4.3.3 Predictions and Validation 
 
 
This section presents the relation between optical densities and dry cell concentrations with 

the FT-NIR spectra. To determine the righteousness of the model, a leave out one cross 
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validation set and test-set validation was required. A full random fermentation was taken for 

characterization of the biomass band in the infrared spectrum. The experimental results are 

presented in Figure 4.14, NIR spectra from this fermentation was not included in the model 

calibration. Figures 4.15 and 4.16 present the goodness of the model using the optical density 

and gravimetric tests, respectively. 
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Figure 4.14 - Raw culture spectra used to validate the model. 
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Figure 4.15 - OD fit plot of both: the model and the test-set validation at 
microbial fermentation by NIR Spectroscopy. 
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Figure 4.16 - Dry cell concentration fit plot of the model and the test-set 
validation at microbial fermentation by NIR Spectroscopy. 

 
 
4.4 Determination of Protein Concentration using FT-IR Spectroscopy 
 
 
The transformed E. coli used in this research possessed the bla plasmid which provides 

physiological advantages such as antibiotic resistance and recombinant GFP expression by 

induction of arabinose. Fluorometry spectroscopy was used as a characteristic indicator of 

GFP presence. Fluorescence was examined for increased intensity over the period of 

expression of GFP along fed-batch fermentations of the E. coli. Although fluorometry is not 

commonly used for protein characterization because of the non-fluorescence characteristics 

of most biopharmaceutical proteins, for GFP a pronounced increase was detected along time 

after the induction step during the fermentations (Figure 3.5).  
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Raman spectroscopy is promising for bioprocess monitoring applications due to the low 

interference from water. For that reason Lee et al. discuss in their literature review (section 

2.5), the use of Raman spectroscopy by modelling the effects of scattering of the protein 

synthesis accumulation (phenylalanine) in a microbial fermentation. However, they assumed 

no effects from fluorescence. In our case the use of Raman spectroscopy is limited by the 

ability of GFP to fluorescence. Fluorescence probability (of 1 in 103-105) vs. probability of 

Raman scattering probability (1 in 107-1010) represents significant background interferences 

and for that reason the use of other techniques is required in our case. Mc Govern et al. 

demonstrated the use of FT-IR techniques in combination with chemometrics for determining 

the synthesis protein (α2 IFN) accumulation in recombinant E. coli bioprocess samples 

(section 2.5). They showed a linear correlation in the cell paste and protein synthesis by PLS 

analysis. However, the study only focused in the dry cell paste and the supernatant samples 

(each sample took around 20 minutes for drying steps), they did not analyzed the culture 

broth.  The need of protein synthesis modelling in the whole culture broth without sample 

pre-treatment presents a challenge to overcome.  

 

Experimental results of the FT-IR spectra from those bioprocess samples were also complex 

(Figures 4.17 and 4.18) and because of the multitude of cellular components and proteins, all 

with their own molecular vibrations capable of absorbing by the mid-infrared range (4000- 

600 cm-1). The infrared spectra of the protein exhibit strong amide I absorption bands at 

1200-1000 cm-1 associated with the characteristic stretching of C-O and C-N and the bending 
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of the N-H bond [9]. This information shall be used to create a model for the determination 

of the protein concentration in a fed-batch reactor. This experiment presents a practical view 

to use multivariable tools for the determination of protein synthesis as a fermentation 

product.   
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Figure 4.17 - FT-IR spectra (raw data) of (a) green fluorescent protein (GFP) 
purified using hydrophobic interaction chromatography (HIC) (b) GFP purified 
and lyophilized. 
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Figure 4.18 - FT-IR spectra (raw data) of whole culture broth with varying 
concentrations of GFP, n=70. 

 
 
 
4.4.1 Description of the Primary Data Set 
 
 
The primary data set consists of 70 samples (observation, row vectors) prepared and analyzed 

at-line, with fluorimetry as the reference method. FT-IR spectra were acquired from each 

sample of mixtures in triplicate. The spectra were obtained in the 4000 - 900 cm-1 range but 

were analyzed only at 1200 - 1000 cm-1, giving a total of 519 X- variables (absorbance), FT-

IR spectral wavenumbers, and one Y variable (fluorescence absorbances).   
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4.4.2 Suitable Fit of X/Y Variables 
 

In the multivariate calibration, all data were scaled to unit variance. The X-block 

compromised all 519 fingerprint variables and the Y-block the response (fluorescence 

absorbance). Table 4.4 displays the cumulative R2VX, SEP, SEV and SEC for each X/Y 

variable. These data indicate tell us that with only two factors, 87% variability would be 

accounted for. 

 

Table 4.4 - Factors contribution to the recombinant protein (GFP) concentration 
predicting model from two factors to the last. 

 
 

 Variance Percent Cumulative SEV Press Val rVal SEC Press Cal rCal 

Factor 1 0.020 58.25 58.25 122.58 1053468.1 0.990 119.11 964790.75 0.991 

Factor 2 0.010 28.30 86.55 114.46 917038.5 0.992 110.76 821936.69 0.993 

          

 API (RFU) Obs. Y-miss(tot) SEP rSEP     

 58-3959 70 0 117.40 0.991     

 
 
 
4.4.3 Predictions and Validation 
 
 
A full random fermentation was used for characterization of the amine band in the infrared 

spectrum. Figure 4.19 plots the PLS estimates versus the true measured value of GFP in the 

whole broth. It resulted in linear fits, which were very close to the expected proportional fits 

(y = x).  

The applicability of the model was confirmed using a test data set. In this case, the properties 

of ten samples (which had not been included in the calibration models) were predicted using 



 
 
 
 

 72

the calibration models. The test-set raw data and test-set validation is shown in Figures 4.19 

and 4.20, respectively. The calibration models were in accordance with the protein 

concentration predicted. The leave-one-out strategy was also used to determine if there where 

some outliers, but it provided good results, as well as those obtained by the prediction of the 

test-set. 
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Figure 4.19 - Raw culture broth spectra in order to validate the model. 
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Figure 4.20 - Estimates and validation of the levels of GFP in whole broth by FT-
IR spectroscopy. 
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5 CONCLUSIONS AND RECOMMENDATIONS 
 
 
5.1 Determination of Acetate and Glycerol Concentration using 

Raman Spectroscopy   
 
 
Through the work reported in section 4.2, a substantially better understanding of the substrate 

and by-products modelling using chemometrics and its comparative performance in a fed-

batch fermentation using a HPLC as a reference was accomplished. The ability to determine 

the concentrations of acetate and glycerol during the fermentation without a pre-treatment of 

samples and in less time provides an important step in the monitoring of the bioprocess with 

a potential to improve process control and automation and a processing cost savings (Table 

A.1).   

 

5.1.1 Conclusions 
 
 
As a part of the determination of the substrate and by-products concentrations in a fed-batch 

reactor, a mixture experimental design was developed to determine the concentrations of 

glycerol (10 < x, g/L < 180) and acetate (0 < x, g/L < 180) through Raman spectroscopy to 

determine the significance of the mixture effect in the determination of other parameters 

(protein expression and biomass concentration). No evidence of previous literature on this 

subject was found, so our results and procedure apparently are the first to be reported.  
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The effects of the concentrations of glycerol and acetate were accomplished by Raman 

spectroscopy instead of NIR and FT-IR. Theoretically, glycerol and acetate may be 

determined in the FT-IR and Raman spectroscopies, but in the NIR it would be a difficult 

task; first because of the short radiation ranges of this spectroscopy and second because the 

FT-IR presents a strong -OH- group interference. In our case, where water is abundant, the 

modelling of the glycerol and acetate concentrations present some small discrepancies from 

batch to batch.  

 

Raman spectroscopy was chosen for the determination of the glycerol and acetate 

concentrations because theoretically, glycerol and acetate result in good analyses in the 

Raman spectra without water interference. Experiences has demonstrated that a good 

experimental design is necessary to find a good calibration for the glycerol and acetate 

concentrations. In our case, our results demonstrated that the best approach to determine the 

analyte concentrations was by performing an experimental design, which incorporated a 

higher range of concentrations (Section 4.2). The experiment consisted in utilizing a mixture 

design with the best effective mixture combination to create a model followed by the 

validation with collected samples.   

 

The modelling of the concentrations of glycerol and acetate showed excellent results, but it 

would only work for the same organism and fermentation conditions. 
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5.1.2 Recommendations 
 
 
As discussed previously, an accurate modelling of the concentration of the glycerol and 

acetate during the fermentation was achieved; this included analysis of glycerol and acetate 

content in the samples using Raman spectroscopy and a comparison with HPLC as a 

reference for several runs. A calibration without the organism was needed and later used to 

predict the acetate and glycerol concentrations for the fermentation samples. Also, different 

spectroscopy techniques were used to test which one generated the best model for the 

different analytes. Findings suggested that the model has no application in other culture 

systems. It remains necessary to determine when a model fails for applicability purposes. 

  

It would be interesting to seek a more robust model by considering the following 

fermentation conditions:  

1) To use of a continuous stirred-tank bioreactor (CSTB) instead of a fed-batch mode for 

growth of E. coli at different specific growth rates (µ). That way, the experimental design 

would be more comprehensive and would cover a wider range of substrate and by-product 

concentrations.  

2) Use different nutrient media and microorganisms, and determine through PCA which 

components provide the most variability.  

3) Attach the spectrometers probes in-situ and at an industrial scale to determine 

incongruences between at-line and in-situ modes of data collection.  
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These experimental variations would give a better understanding of the bioprocess and would 

also help to determine the worst case scenarios and allow to determine which factors provide 

large variabilities to the system. 

 

5.2 Determination of Biomass Concentration using NIR 
Spectroscopy 

 
 
Through the work discussed in section 4.3 a substantially better understanding of the biomass 

modelling using chemometrics and its comparative performance in a fed-batch fermentation 

using an absorbance or a gravimetric technique as reference methods (Table A.1) shows the 

working time for the techniques tested in this research). The ability to determine the biomass 

concentration during the fermentation without a pre-treatment sample and at-line 

measurements provides an important improvement bioprocess monitoring, automation and 

control in automation.  

 

5.2.1 Conclusions 
 
 
As a part of the determination of the biomass concentrations in a fed-batch reactor, several 

runs were made with the purpose of creating a robust model for the quantification of the 

biomass during the fermentation using optical density and dry cell concentration as a 

reference. Both of the references were analyzed and plotted to ensure they showed the same 

behavior along time. A linear relation between the dry cell mass concentration (g/L dcm) and 

optical density (absorbance units) is held ( 600579.0217.0/ ODLdcmg ⋅+−= ; R2=83%). Once 
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the reference (Y, observation) data were correlated with the spectra (X, variable) we could 

observe a linear model where both reference methods were validated with excellent results. 

We found some differences between the dry cell concentration and optical density in the 

biomass model. The optical density instrument (UV) and the infrared spectroscopy (both are 

spectroscopic techniques and they are affected by water interferences) were comparable as 

opposed to the dry cell concentration method, which is a gravimetric technique which has a 

larger variability because of its more tedious procedure.  

 

Because the modeling of the biomass concentration using NIR infrared is a well-utilized 

method (section 4.3), our research was focused on the determination on the effect of the 

component and the biomass. For these reasons, a mixture design was performed to find any 

presence in the component in the spectra. Experimental results showed the best-unaffected 

region area that was 5800- 5300 cm-1 of the NIR spectral region. 

 

5.2.2 Recommendations 
 
 
As discussed previously, an accurate modeling of the biomass concentration during the 

fermentations was achieved and included a quantification of biomass using NIR and dry cell 

concentration and optical density as a references. It remains necessary to scale up the 

analysis and observe if differences exist among the spectra and if the quantification of 

biomass would be affected by this scale up. It is also recommended to attach the NIR probe 

in-situ. 
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5.3 Determination of Protein Concentration using FT-IR 

Spectroscopy 
 
 
Throughout the work described in section 4.4, a substantially better understanding of the 

modeling to predict recombinant protein concentration using chemometrics and its 

comparative performance in a fed-batch fermentation using fluorescence as a reference was 

accomplished. Table A.1 shows the working times for the methods that were used in this 

research (fluorometer and FT-IR) and compared to HPLC (a typical technique that would be 

used to determine GFP concentration that was not used in this work). These techniques 

consume more much time to quantify the protein expression during fermentation as 

compared to the infrared spectroscopy technique. Pretreatment of the samples is not required 

and the possibility of locating the probe in-situ offers infrared as one of the most promising 

techniques in bioprocess monitoring, automation and control.  

 
5.3.1 Conclusions 
 
 
As a part of the determination of the protein concentration in a fed-batch reactor, several runs 

were made with the purpose of creating a rigorous model for the quantification of protein 

expression during the fermentation using fluorescence spectroscopy as a reference method. 

Experimental results demonstrated that a strong model was achieved using FT-IR in the 

spectral range of 1200 - 1000 cm-1.   
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Because the quantification of the protein by fluorescence is a special case, another way to 

determine the protein concentration between the spectra is the use of dynamic light scattering 

(DLS) equipment to scan the hydrodynamic bacterial surface area and to relate the increment 

of the average cell size (due to the accumulation of intracellular recombinant protein) with 

the DSL intensity. Because the DSL equipment was not able to discriminate between cellular 

binary fission and intracellular inclusion bodies, a modified approach for the determination 

of the particle sizes would have to be designed. 

 

5.3.2 Recommendations 
 
 
As discussed previously, an accurate modeling of the protein concentration during the 

fermentation was achieved that included a quantification of protein using fluorescence as a 

reference for several runs. It remains necessary to scale up the analysis and study if there 

might be differences in the spectra by the scale up. It is also recommended to attach the probe 

in-situ. It may be interesting to use another host with another quantification references 

(HPLC assays or an enzymatic assay) to understand if the use of FT-IR spectroscopy would 

be suitable to determine the protein concentration with the same accuracy that we were able 

to obtain using fluorimetry.  
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APPENDIX A 
 
 
To provide an idea of the advantages that would be obtained by monitoring a bioprocess 

using NIR, FT-IR and Raman spectroscopies, the table below compares the estimated 

measurement times that would be expected in determining the variables that were tested in 

this work with the standard or traditional reference technologies. It is evident that using 

robust models derived from chemiometric analyses, there would be beneficial improvements 

in monitoring a bioprocess using spectroscopic techniques. 

 
 

Table A.1- Comparison of measurement times for each analytical technique. 
 
 

Analytical  
Techniques 

Variables of  
Interest 

Aliquot Samples 
for  Calibration 

Fermentation 
Samples 

Working Time 
(min/samples)   

Total time 
(hr) 

Raman Acetate and 
Ammonia 27 28 4 3.7 

HPLC Acetate and 
Ammonia 42 28 30 35.0 

NIR Biomass N/A 44 2 1.5 

UV Biomass N/A 44 2 1.5 

Gravimetry Biomass N/A 44 30 22.0 

FT-IR Recombinant 
Protein N/A 70 2 2.3 

Fluorometry Recombinant 
Protein N/A 70 0.5 0.6 

HPLC 
(proposed) 

Recombinant 
Protein 27 70 20 32.3 

 
 
 


