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ABSTRACT

We consider physical situation of homogeneous,ropat decaying turbulence in an
incompressible fluid for computational study. # well established that laminar and
turbulent flows of Newtonian fluids are governed Nwvier-Stokes equations. We use
Navier-Stokes equations for simulating the physifthation. As no external forcing is
present in the present situation, turbulence deicalysie from its initial conditions. The time
dependent Navier-Stokes equations are numericaled in the Fourier wave vectdt)(and
time () domain using different initial conditions for weelty field in the wave vector domain.
The initial conditions are generated using thaahknown shape for energy spectrum. Time
evolutions of various statistical properties oftiepic turbulence are obtained from the

numerical data and are presented in this thesis.
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1 INTRODUCTION

Turbulent flows are frequent in nature and in flsiuations of many engineering
equipments. These flows are unsteady, irregularamndom in nature and contain circulation
of fluids (eddies) of different sizes. For many ngaunderstanding and prediction of
turbulent flows have remained central goals for gptigts and engineers. Though many
advances have been achieved in the field, turbaleonatinues to surprise and defeat us in
completely understanding and predicting it. Thas Hargely due to complexity of the
turbulent flows which involve interaction of largeimber of eddies of different sizes and
eddy turnover time scales. Generating detailed'mébion about time dependent behavior of
these eddies in general situations require accumdial and boundary conditions which are
extremely difficult, if not possible, to obtain. fuer implementation of these in numerical
methods and simulating the turbulent flows in gahday using Navier-Stokes equations
require computer resources and computing speechvenenot yet available. At present, it is
possible to simulate turbulent flows in simple getnes and not at very large Reynolds

numbers.

For this work, we consider simulation of ideal ation of homogeneous, isotropic turbulence
in an incompressible fluid. This situation is sedlinumerically by many researchers and
continues to remain as an active field of reseafdte numerical study on this situation
provides data for testing various theories gendréte turbulence and the data also reveal

fundamental properties and phenomena of turbulence.



The homogeneity of the turbulent flow field mealnattthe statistical properties of turbulence
are independent of location of coordinate systemvimch these properties are obtained.
Further, if the statistical properties are indeperdof rotation and mirror image of the
coordinate system, turbulence is called isotropm@.homogeneous isotropic turbulence does
not have any preference for the direction of tlosvfand statistical mean velocity and mean
pressure gradient field is zero. In the absencangfimposed external forcing, this situation
contains only interaction of different eddies offetient sizes and time scales. The fluid
viscosity (friction between fluid layers) causeswshg down of these fluid circulations
(eddies) in time. And finally the fluid turbuleneéll come to rest. All the kinetic energy
(due to non zero velocity field) which the flow had some initial time is converted

ultimately into heat due to the presence of vidgosi

This situation of homogeneous, isotropic turbulergetudied here by performing direct
numerical simulation (DNS) of Navier-Stokes equasgio We consider incompressible
Newtonian fluid in a domain x 272 x 2n m®. The Reynolds number and consequently the
range for size of interacting eddies are considetdticiently small so that the simulation
can be performed on laptop on the grid $iZex64%x . Bdcase of isotropic turbulence,
periodic boundary conditions are employed as tiemo preferred direction for the mean
flow. Navier-Stokes equations are solved in digcfeburier wave vector and time domain.
The initial conditions for isotropic turbulence agenerated by using different shapes of
energy spectrum. The details of initial conditi@me described later in Chapters 2 and 3. The

energy spectrum indicates how the kinetic energydfulence is distributed among various



Fourier modesk) which roughly indicates inverse of size of eddi€kis means that large
eddy has small value fér= k| representing magnitude lofand smaller eddy has large value

for k.

1.1 Motivation

In environmental and engineering situations havamge length scales, turbulent flows occur
as a rule rather than exception. All kinds of tuebt flows at large Reynolds number have
universal scaling, known as Kolmogorov scaling, &dr in certain range of length scales
near smaller eddy sizes. Also, in this range tuabcg is locally isotropic as suggested by
Kolmogorov. To understand the universal behaviotoghlly isotropic nature of turbulent
flows, it becomes necessary to analyze ideal stiatf homogeneous, isotropic turbulence.
This ideal situation is though accessible for tle@oal analysis, it is most difficult if not
impossible to generate experimentally. To assess ttieoretical developments and
predictions of homogeneous isotropic turbulencepmatational simulation of such an ideal
flow becomes necessary. In view of these, the ptestudy is undertaken to generate
temporal behavior of statistical properties of hgermeous, isotropic turbulence through
direct numerical simulation. The information on éirdependent statistical properties can be
used to assess predictions of various theoriestaifsscal turbulence which have been

proposed by researchers (see Mccomb 1990 and meésreited therein).



1.2 Literature Review

The first numerical study on decaying homogenemastopic turbulence was performed by
Orszag and Patterson (1972). They solved the ttireensional Navier-Stoke equations for
incompressible flow numerically in Fourier wave t@cand time domain. Using their
numerical simulation data, they performed assessmien theory of statistical turbulence
proposed by Kraichnan (1959). Their numerical stwdys performed for the Taylor
microscale based Reynolds number values less thanAdter this study, there have been
increased activities for simulating ideal situatiminisotropic turbulence and utilizing it for
assessing various statistical theories of turb@erfMcComb 1992) and generating
fundamental understanding of turbulence. For examilcComb and his coworkers (see
references McComb and Shanmugasundaram 1984, McGomdbQuinn 2003, Kuczaj,
Geurts and McComb 2006 and references cited thereave performed numerical
simulation of decaying and stationary isotropidtuence to understand interactions between
various wave vectors (eddies) and to assess theory which is well known as Local

Energy Transfer (LET) theory.

Isotropic turbulence simulations have also perfatrbg Yueng and his coworkers to study
statistical properties of passive scalar field sashemperature (Donzis, Sreenivasan, Yeung

2005) and Lagrangian statistics of velocity andasdgelds (Yueng 2001).

Numerical simulation of isotropic turbulence isalstilized by researchers working in the

field of multiphase turbulent flows (see review Mgshayek and Pandya 2003). The cases of



isotropic turbulence seeded with a large numberpafticles/droplets/bubbles provide
extremely rich database and statistical propertésvelocity, temperature, dispersion,
collision behavior of these particles/dropletsiblels. These kind of studies provide insight
into multiphase flows relevant to many importantigiions of technology and environmental
flows, such as, spray combustion and collisionidtes of droplets for modeling of cloud

microphysics (Sundaram and Collins 1997).

Though the above mentioned literature do not caldeaspects of fundamental studies on
isotropic turbulence, it exhibit important applicat areas of isotropic turbulence simulations.
In view of above mentioned usefulness of isotrdpibulence, in this thesis we undertake
numerical simulation studies of decaying isotrdpibulence. The results presented here will
be used later to assess a theory of turbulencedy@a2004), known as Variant of Local

Energy Transfer theory.

1.3 Summary of Following Chapters

We first develop the necessary background theor@hapter 1. Chapter 2 deals with the
numerical methodology for decaying isotropic tudnde and generation of initial conditions
for simulations. The third chapter presents temipgagations of various statistical properties
of isotropic turbulence as obtained through nunaémsemulations for cases having different

initial conditions. Concluding remarks are presdnteChapter 4.



2 THEORETICAL BACKGROUND

2.1 Numerical Solution of Navier-Stokes Equations

2.1.1 Introduction

It is well established that laminar, transition dndoulent regimes of Newtonian fluid flows
are governed by the Navier-Stokes equations whatsist of conservation of mass and
momentum equations. We will use Navier-Stokes egustand numerically compute these
equations in Fourier wave vector and time domaime Tethodology adopted here is well
established for accurate computation of homogene@mropic turbulence. Periodic
boundary conditions will be used along with thdiahiconditions generated from the known
shape of the energy spectrum. The details of ththadelogy and initial conditions are

presented in this chapter.

2.1.2 Governing Equations and Numerical Procedure

The Navier-Stokes equations governing the incongiés fluid flow situation can be
written as,

Momentum Equation:

2.1

du ou OAu Ou_ 1= 0°u  0°u 0°u
—tu_—+v=+w==—-—0(p)+V| S+ +
0 ox oy 0z Yo ox° oy° o0z



Continuity Equation:

Ju OJv Ow
+—+ =

—+—+— =0,
ox o0y o0z

Whereg:{u,n,w} is velocity vector field with velocity componen{a,n,w} along the
{x, Y, z} directions, respectively is the pressurep is density of fluid and is the kinematic

viscosity. For the convenience of discussion, imear term (convective term) appearing in

the momentum equation is representedfbgo that the equation (2.1) can be written as

_ 2 2 2
%+f:—l|](p)+yag+ag+azg, 2.2
o — ox° o0y° o0z
where
fEu%+U%+Wa—g. 2.3
- ox ay 0z

For homogeneous, isotropic turbulence case, theserging equations are solved in a
domain of27n x 21 x2n m® by utilizing spectral method similar to that proed by Rogallo

(1981) and is also described by Coppen (1998). e Reynolds number is considered
sufficiently small so that the simulation can befpened on laptop on the grid size

64x64x%64. In case of isotropic turbulence, periodic bougdawnditions are employed as
8



there is no preferred direction for the mean fliow we discuss spectral method used for

numerial simulation.

Equation (2.2) which is written in physical spasetiansformed into Fourier wave vector
domain. To do this, we now discuss three dimensidiszrete Fourier series for velocity

vector field and pressure.

The discrete three dimensional Fourier transformadfuid velocity and pressure can be

written as

Z

_ 3 1 N-1 N-1 N-1 k Xty Yt Zm)
Uk, ,t)=— e’ n¥m Hhap 2] 2.4
~\Zn 3

N Xm=0Y¥m Ozm:O

Z

_ 1 NoIN-IN- il %o Yotk 7)
p(x,.t)=—5 P(X,, 1) e oI El, 25

3
N* {=oy=07,=0

<
EN
1l

whereu and p represent discrete Fourier transformed of fluitbeity vector and pressure,
respectively wheruand p are known at discrete grid pointgin physical domain. While
writing equations (2.4) and (2.5), length of thendon along all three directions is considered

equal and identical t@n . The parametek, represents Fourier wave vector having

components, ,k, ,k, . These components are given as



(Z_mZ_mZ_mj <N

NO ' NJ ' NJ 2
Kq =k, Kk .k, )= 2.6
(2n(N —n),2n(N —n),2n(N _n)j;nzﬁ
NS NJo NJo 2

whered represents spacing between two grid points alenygdirection and is considered
identical along all three directions. The discreteee-dimensional inverse Fourier

transformation for equations (2.4) and (2.5) canwhten as

=« N_1~ +i(k X, tKy Y, tk z)
g(l(n,t)z Zg(ﬂm!t)e xm 7 T Kym Yn Tz Zn , 2.7

Koy =0 Ky =0k =0

N-1 N-1 N-1

p(l(n,t): z Z z5(Km’t)e+i(kxmxn+kymyn+k2m2n), 28

Ky =0 Ky =0k =0

The spatial derivative of the fluid velocity andepsure can be obtained from equations (2.7)

and (2.8). From the definition of Fourier transfoamd inverse Fourier transform, it can be

2 2 2
shown that Fourier transform g#— and 9 g+ 9 lZ—J+ 9 29 are
ox ox° o0y° 0z

ik,0 and - (k2 + k2 +Kk2)d . 2.9

Using all these we can now write Navier-Stokes &qund2.2) in the Fourier domain as
10



T+ F =-Zikp-v(k2T+ K20 +k20), 2.10

Qo
V|~

where f represent Fourier transform of convective term dathil for its calculations are

provided later in this chapter.

To calculate pressur@ , we can utilize continuity equation. The Fourieansform of
continuity equation can be written as

Continuity equation:a—u Vo 0 Fourier transformk U +k v +k,w= 0 211

oy 0z

Now we obtain divergence of (2.10) in Fourier damai Multiplying three equations,

obtained from vector equation (2.10), for compdsen, v, andw by k,, k, andk,,

respectively, we obtain

xdir 9k T +v(k2 +K2 +K2 T +k, T, = - = ik2P, 2.12
a X X y z X X "X X
t P
ydir:%kyﬁﬂ/(kf+k§+k22)zcy5+kyf~y :—%ikj~, 2.13

11



Zdlir :%kszHv(kf +k2+K2 KWk, T, === ik2P. 2.14
By adding (2.12), (2.13), and (2.14) and utiliz{@gl1), we obtain

KT, +k, T, +k, T, =—Zilk? +k2 +k2)p 2.15
Yo,

and from whichp can be obtained if components of Fourier transfofrmonvective termi.e.
f,, f,, f, are known. Using equation (2.15), equation (2c&0) be written after eliminating

pressure term as

Q- (k. foHk fo+k ) =~
—u+vlk?+k?+k?)j0 = XYY i f, 2.16
atg V(X y Z)L—J E( kf+k§+k22 J .

This equation (2.16) can be further written in difiged form by using an integrating factor

h(t) whereby the viscous terms is treated exactlgnl{2.16) can be modified to the form

%(U_‘h )= {E{kxfx +k, f, + szz]_i] het), 217

ki +ki+kZ

where

12



h(t) =exp(v(k? + k2 +k2)t) 2.18

This equation (2.17) represents initial value peablith prescribed initial conditions fou

and can be solved with suitable numerical schemg(s)) as forward Euler method, Runge-

Kutta method of order three or higher.

For example, if we consider Euler method as utilizgd Coppen (1998) for isotropic

turbulence simulations, equation (2.17) can bereéiged as

T"h(t + &)-T"h(t)
&

ORHS (216)h(t), 2.19

where & represents time step. Aft) is an exponential function in time

ht + &) =exply (k2 + k2 +k2) (¢ + &) = h(t)h(). 20

Substituting (2.20) into (2.19) and after simp#ifiion we obtain

0" + RHS (216)&

~n+l B
° ()

2.21

13



which can be used to solve numerically time evolutof Fourier modesi of isotropic
velocity field.

2.1.3 Convective Terms

In order to solve numerically equation (2.16), wed information about Fourier transform
of convective term, i.ef, at each time step. Now we discuss the calculgirocedure for

this term.

First at each time step, velocity field in physicgaceu and its spatial derivatives are
obtained by inverse transform of the velocity field the Fourier domainu and

(ik,U,ik, u,ik,u), respectively. From the obtained velocity fieldlats spatial derivatives,
convective termsf as given by equation (2.3) are calculated in masdomain. These

calculated termd are then transformed into Fourier wave vector doma

2.1.4 Initial Conditions

In order to solve descretized form of equation §2.$uch as equation (2.21), we need initial
values at time = O for u(«,t =0) =u(«) at all grid pointsc,, of Fourier domain. The initial
values are calculated in such a manner that thecikelfield is compatible with certain
energy spectrum shapggk) at timet = 0. We use the method of Rogallo (1981) for this

purpose which suggests final formula for generatiig) as

14



e, 2.22

K(k? +K2)™2 K(k? +k2)"? k

Herea and £ are given by

1/2

a:(i(;gj exp(b,)cosyp 2.23
1/2

ﬂz(i(;((zj exp(éd,)sing 2.24

In the above equationg,,8, and¢ are random numbers statistically independent ohea

other and uniformly distributed in the range (2w .

15



3 DECAYING ISOTROPIC TURBULENCE:
NUMERICAL SIMULATION RESULTS

Various direct numerical simulation cases wereiedrout for different initial conditions for
velocity field in the Fourier space consistent wiitle selected initial spectra. The results of
these simulations are presented here after pregetite information for initial spectra and
statistical properties considered for temporal etwoh for homogeneous isotropic

turbulence.

3.1 Initial Spectra

Four different initial energy spectia(k,t=0) were used to calculate initial conditions for

velocity field. The general form of these energgama is given by

E(k,0) =c,k” exp(-c,k™ , ) 3.1

wherec,,c,,c, andc, are constants. The details of these constantdifferent spectra are

provided in TABLE . Also these spectra are plofteéig. 3.1. These spectra are identical to
the spectra considered by McComb and Shanmugasamad@d984) for low Reynolds
number isotropic turbulence. The use of these epeallow us to simulate isotropic

turbulence on a laptop with 2GB of RAM. The gridesused for all simulations in this work

16



IS 64x64x64 and is suitable for capturing all wanembers of different spectra during their
time evolution. Further, a typical plot of isosu#aof one component of velocity that was

generated by using energy spectrum | is showngdargi3.2.

TABLE 3.1Values of constants ¢ irE (k,0) = ¢ k% exp(-& k%

Spectrum
Number 1 C »C 3C £ V(mis)
I 0.524169 x 10-2 4 0.883882 x10- 2 0.01189
1 0.662912 x 10-1 1 0.220971 x10- 2 0.01189
" 0.662912 x 10-1 1 0.210224 1 0.01189
v 0.4 1 0.5 1 0.01189
0.4 -
0.35 -
0.3
0.25 - —
5 02 —
)
O 0.15 - I
\Y
0.1 \
0.05 - k\
O / T — -
0050 10 20 30 40 50 60 70
k

Figure 3.1 Energy Spectra at initial time.
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Figure 3.21so-Surface for x component of velocity with value1.60594238997 at initial

time for spectrum |I.

3.2 A Few Statistical Properties

Once the energy spectrum is known at each time diffprent statistical properties which
depend on the spectrum can be calculated frommamREhe energy spectrum, we can obtain

integral properties, such as, mean kinetic en&f@yper unit mass, the r.m.s. value of any

18



component of turbulent velocity fiela(t) and the dissipation of energy due to viscosty,

the integral length scalgt) and the Taylor microscalgt) .

The r.m.s. of the velocity componentgt), and the rate of dissipation per unit mass can be

calculated using
<] 3 )
E(t) = j E(k,t)dk = E[u(t)] 3.2
0
and

e(t) = 2vj K2E(Kk, t)dk. 3.3
0

The integral lengthscalg(t) and the Taylor microscal€t) can be obtained using

L(t) = [:ZTT k‘lE(k,t)dk} / E(t), 43

and

At) = {55(0/ j sz(k,t)dk} . 3.5

The Reynolds numbers associated with these lerngthsare given as

RO=LO%Y, 36
and
R, (t) =A(t)@. 3.7

19



Also calculated are the characteristic wavenumbet @elocity scales for turbulence as

suggested by Kraichnan (1964) . These are given by

1

ky = (15R,)3A™ 3.8

1 1

v, = (R, /15?) 3u(t) .93

3.3 Time Evolution of Energy Spectra I, II, III and IV

Temporal evolution of various spectra |, I, IllcanvV are shown in Figure 3.3, Figure
3.4,Figure 3.5, and Figure 3.6, respectively. Bsthfigures, time is in seconds and time step
used during numerical simulation is tested for @ge solutions. Also, various color lines
indicate value of time at which spectrum is plotiedhese figures. Tests cases were run for
various values for time steps and results fromvatiest runs used for arriving at converged

solutions are provided in Appendix A. Here we \pilesent results for time step 0.001 sec.

20
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Figure 3.3 Temporal evolution energy spectrum | fora At time step of .001 sec.
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Figure 3.4 Energy Spectra Il for aAt step of .001

21




—— 1.00E-03

—— 4.90E-02

9.90E-02
0.12 0.1490001
01 ——0.1990002
——0.2490003
0.08 ——0.2989997
. 006 ——0.3489991
= 0.3989984
0.04 0.4489978
002 | 0.4989971
; 0.5489965
0 ; ‘ ' ‘ w w 0.5989959
0.0 ) 10 20 30 40 50 60 0.6489952
' 0.6989946
0.7489939

Figure 3.5Energy Spectra Ill for a At step of .001
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Figure 3.6Energy Spectra IV for aAt step of .001
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3.4 Time Evolutions of Various Integral Properties

Various integral properties of isotropic turbulenz@n be calculated by using the energy
spectrum. So by utilizing data on temporal evolutior different energy spectra I, Il, lll and
IV, time evolutions of various integral properti® calculated. The temporal evolutions for
kinetic energy per unit mass of turbulence are shawFigure 3.1. In Figure 3.8, r.m.s.
velocity component vs. time is plotted for diffetecases. Figure 3.9 exhibits rate of
dissipation of kinetic energy of turbulence asrection of time for different initial spectra. In
Figure 3.10, integral length scale (unit is me®rplution in time is shown. This integral
length scale roughly indicates the length scaleeérgy containing eddies. The Taylor
microscale vs. time for different cases are showrFigure 3.11. This microscale is a
characteristic length scale usually used to esédasipation of turbulence. Integral length

scale and Taylor's microscale based Reynolds nusrR€t) and R, (t ) vs. time are plotted

in Figure 3.12, Figure 3.13, Figure 3.14 and Fig@r&é5 for cases with initial energy
spectrum |, I, Il and 1V, respectively. Tempomalolutions for characteristic wave number
and velocity scales suggested by Kraichnan are showFigure 3.16 and Figure 3.17,
respectively. Temporal evolution of Kolmogorov tiraed length scales are shown in Figure
3.18 and Figure 3.19, respectively. These scalescharacteristic scales of small eddies
which are responsible for dissipation of turbulekagetic energy and are in the range of
smallest scales of turbulence. Further, nondimersifmrm of kinetic energy and dissipation
of turbulence are plotted against nondimensioma in Figure 3.20,Figure 3.21, Figure 3.22,
Figure 3.23 for different initial spectrum case#, ]Il and 1V, respectively.
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Figure 3.13Temporal evolution of Reynolds number for spectruml.
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Figure 3.14Temporal evolution of Reynolds number for spectrumll.
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Figure 3.15Temporal evolution of Reynolds number for spectrumV.
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Figure 3.17Temporal evolution of Kraichnan’s characteristic vdocity.
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4 CONCLUDING REMARKS

For this thesis work, numerical simulations of h@®eous isotropic turbulence were
considered. The isotropic turbulence was simuldtgcumerically solving Navier-Stokes
equations in Fourier wave vector and time domainubing well established numerical
scheme. For the simulation purpose, four differkimids of initial energy spectra were
considered. Using these spectra and method of Rogatial velocity fields in wave vector
domain were generated which were compatible withgpectra. The numerical simulations
were then performed with these initial conditiomsl aesults were tested for convergence by
performing simulation runs for different valuestiohe steps. The temporal evolutions of four
different initial spectra were calculated. From sthetemporal evolutions data, integral
properties of isotropic turbulence were calculated their time evolutions were presented.
The information on temporal evolution of energy &pe and integral properties can be
utilized for assessing various statistical theoattirbulence. In particular these data will be
used to assess one such theory, namely, Varidrdaad Energy Transfer theory proposed by
Pandya. Also, this well tested computer program dwnulating homogeneous isotropic
turbulence will be enhanced, by adding insertinmerical analysis for particle tracking, for

its use to study fundamental aspects of partiaplét-laden turbulence in near future.
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APPENDIX A.

Post Processing for other Values of At for Spectrum
Evolutions
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K 0.6979981
0.6479988

Figure 5.1 Temporal evolution of energy spectrum | forAt = 0.002
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Figure 5.2 Temporal evolution of energy spectrum for At = 0.0005
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Figure 5.3 Temporal evolution of energy spectrumlifor At =0.002
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Figure 5.5 Temporal evolution of energy spectrum Ifor At = 0.0005
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Figure 5.6 Temporal evolution of energy spectrumil for At =0.002
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Figure 5.7 Temporal evolution of energy spectrumil for At =0.0005
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Figure 5.8 Temporal evolution of energy spectrum IMor At = 0.002
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Figure 5.9 Temporal evolution of energy Spectrum IMor At = 0.000
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