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ABSTRACT 
 
 

We consider physical situation of homogeneous, isotropic decaying turbulence in an 

incompressible fluid for computational study.  It is well established that laminar and 

turbulent flows of Newtonian fluids are governed by Navier-Stokes equations. We use 

Navier-Stokes equations for simulating the physical situation. As no external forcing is 

present in the present situation, turbulence decays in time from its initial conditions. The time 

dependent Navier-Stokes equations are numerically solved in the Fourier wave vector (k) and 

time (t) domain using different initial conditions for velocity field in the wave vector domain. 

The initial conditions are generated using the initial known shape for energy spectrum. Time 

evolutions of various statistical properties of isotropic turbulence are obtained from the 

numerical data and are presented in this thesis. 
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1 INTRODUCTION 
 

Turbulent flows are frequent in nature and in flow situations of many engineering 

equipments. These flows are unsteady, irregular and random in nature and contain circulation 

of fluids (eddies) of different sizes. For many years, understanding and prediction of 

turbulent flows have remained central goals for physicists and engineers. Though many 

advances have been achieved in the field, turbulence continues to surprise and defeat us in 

completely understanding and predicting it.  This has largely due to complexity of the 

turbulent flows which involve interaction of large number of eddies of different sizes and 

eddy turnover time scales. Generating detailed information about time dependent behavior of 

these eddies in general situations require accurate initial and boundary conditions which are 

extremely difficult, if not possible, to obtain. Further implementation of these in numerical 

methods and simulating the turbulent flows in general by using Navier-Stokes equations 

require computer resources and computing speed which are not yet available. At present, it is 

possible to simulate turbulent flows in simple geometries and not at very large Reynolds 

numbers.       

 

For this work, we consider simulation of ideal situation of homogeneous, isotropic turbulence 

in an incompressible fluid. This situation is studied numerically by many researchers and 

continues to remain as an active field of research. The numerical study on this situation 

provides data for testing various theories generated for turbulence and the data also reveal 

fundamental properties and phenomena of turbulence.  
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The homogeneity of the turbulent flow field means that the statistical properties of turbulence 

are independent of location of coordinate system in which these properties are obtained. 

Further, if the statistical properties are independent of rotation and mirror image of the 

coordinate system, turbulence is called isotropic. So homogeneous isotropic turbulence does 

not have any preference for the direction of the flow and statistical mean velocity and mean 

pressure gradient field is zero. In the absence of any imposed external forcing, this situation 

contains only interaction of different eddies of different sizes and time scales. The fluid 

viscosity (friction between fluid layers) causes slowing down of these fluid circulations 

(eddies) in time. And finally the fluid turbulence will come to rest. All the kinetic energy 

(due to non zero velocity field) which the flow had at some initial time is converted 

ultimately into heat due to the presence of viscosity.        

 

This situation of homogeneous, isotropic turbulence is studied here by performing direct 

numerical simulation (DNS) of Navier-Stokes equations. We consider incompressible 

Newtonian fluid in a domain πππ 222 ××  m3.  The Reynolds number and consequently the 

range for size of interacting eddies are considered sufficiently small so that the simulation 

can be performed on laptop on the grid size 646464 ×× . In case of isotropic turbulence, 

periodic boundary conditions are employed as there is no preferred direction for the mean 

flow. Navier-Stokes equations are solved in discrete Fourier wave vector and time domain. 

The initial conditions for isotropic turbulence are generated by using different shapes of 

energy spectrum. The details of initial conditions are described later in Chapters 2 and 3. The 

energy spectrum indicates how the kinetic energy of turbulence is distributed among various 
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Fourier modes (k) which roughly indicates inverse of size of eddies. This means that large 

eddy has small value for k = |k| representing magnitude of k and smaller eddy has large value 

for k.  

 

1.1 Motivation 
 

In environmental and engineering situations having large length scales, turbulent flows occur 

as a rule rather than exception. All kinds of turbulent flows at large Reynolds number have 

universal scaling, known as Kolmogorov scaling, behavior in certain range of length scales 

near smaller eddy sizes. Also, in this range turbulence is locally isotropic as suggested by 

Kolmogorov. To understand the universal behavior of locally isotropic nature of turbulent 

flows, it becomes necessary to analyze ideal situation of homogeneous, isotropic turbulence. 

This ideal situation is though accessible for theoretical analysis, it is most difficult if not 

impossible to generate experimentally. To assess the theoretical developments and 

predictions of homogeneous isotropic turbulence, computational simulation of such an ideal 

flow becomes necessary. In view of these, the present study is undertaken to generate 

temporal behavior of statistical properties of homogeneous, isotropic turbulence through 

direct numerical simulation. The information on time dependent statistical properties can be 

used to assess predictions of various theories of statistical turbulence which have been 

proposed by researchers (see Mccomb 1990 and references cited therein).  
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1.2 Literature Review 
 
 
The first numerical study on decaying homogeneous, isotropic turbulence was performed by 

Orszag and Patterson (1972). They solved the three-dimensional Navier-Stoke equations for 

incompressible flow numerically in Fourier wave vector and time domain. Using their 

numerical simulation data, they performed assessment of a theory of statistical turbulence 

proposed by Kraichnan (1959). Their numerical study was performed for the Taylor 

microscale based Reynolds number values less than 45.  After this study, there have been 

increased activities for simulating ideal situation of isotropic turbulence and utilizing it for 

assessing various statistical theories of turbulence (McComb 1992) and generating 

fundamental understanding of turbulence. For example, McComb and his coworkers (see 

references McComb and Shanmugasundaram 1984, McComb and Quinn 2003, Kuczaj, 

Geurts and McComb 2006 and references cited therein) have performed numerical 

simulation of decaying and stationary isotropic turbulence to understand interactions between 

various wave vectors (eddies) and to assess their theory which is well known as Local 

Energy Transfer (LET) theory.   

 

Isotropic turbulence simulations have also performed by Yueng and his coworkers to study 

statistical properties of passive scalar field such as temperature (Donzis, Sreenivasan, Yeung 

2005) and Lagrangian statistics of velocity and scalar fields (Yueng 2001). 

 

Numerical simulation of isotropic turbulence is also utilized by researchers working in the 

field of multiphase turbulent flows (see review by Mashayek and Pandya 2003). The cases of 



 
 
 
 

 

 6 

isotropic turbulence seeded with a large number of particles/droplets/bubbles provide 

extremely rich database and statistical properties of velocity, temperature, dispersion, 

collision behavior of  these particles/droplets/bubbles. These kind of studies provide insight 

into multiphase flows relevant to many important situations of technology and environmental 

flows, such as, spray combustion and collision statistics of droplets for modeling of cloud 

microphysics (Sundaram and Collins 1997).  

 

Though the above mentioned literature do not cover all aspects of fundamental studies on 

isotropic turbulence, it exhibit important application areas of isotropic turbulence simulations.  

In view of above mentioned usefulness of isotropic turbulence, in this thesis we undertake 

numerical simulation studies of decaying isotropic turbulence. The results presented here will 

be used later to assess a theory of turbulence (Pandya 2004), known as Variant of Local 

Energy Transfer theory.   

 

1.3 Summary of Following Chapters 
 
 
We first develop the necessary background theory in Chapter 1.  Chapter 2 deals with the 

numerical methodology for decaying isotropic turbulence and generation of initial conditions 

for simulations. The third chapter presents temporal variations of various statistical properties 

of isotropic turbulence as obtained through numerical simulations for cases having different 

initial conditions. Concluding remarks are presented in Chapter 4. 
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2 THEORETICAL BACKGROUND 
 
 

2.1  Numerical Solution of Navier-Stokes Equations   
 
2.1.1 Introduction 
 
It is well established that laminar, transition and turbulent regimes of Newtonian fluid flows 

are governed by the Navier-Stokes equations which consist of conservation of mass and 

momentum equations. We will use Navier-Stokes equations and numerically compute these 

equations in Fourier wave vector and time domain. The methodology adopted here is well 

established for accurate computation of homogeneous, isotropic turbulence. Periodic 

boundary conditions will be used along with the initial conditions generated from the known 

shape of the energy spectrum. The details of the methodology and initial conditions are 

presented in this chapter.  

 
2.1.2 Governing Equations and Numerical Procedure 
 
 
The Navier-Stokes equations governing the incompressible fluid flow situation can be 

written as, 

Momentum Equation: 
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Continuity Equation:  
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where { }wuu ,υ,=  is velocity vector field with velocity components { }wu ,υ,  along the 

{ }zyx ,,  directions, respectively, p is the pressure, ρ  is density of fluid and v is the kinematic 

viscosity.  For the convenience of discussion, nonlinear term (convective term) appearing in 

the momentum equation is represented by f  so that the equation (2.1) can be written as  
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For homogeneous, isotropic turbulence case, these governing equations are solved in a 

domain of πππ 222 ××  m3 by utilizing spectral method similar to that provided by Rogallo 

(1981) and is also described by Coppen (1998).   The Reynolds number is considered 

sufficiently small so that the simulation can be performed on laptop on the grid size 

646464 ×× . In case of isotropic turbulence, periodic boundary conditions are employed as 
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there is no preferred direction for the mean flow. Now we discuss spectral method used for 

numerial simulation. 

 

Equation (2.2) which is written in physical space is transformed into Fourier wave vector 

domain. To do this, we now discuss three dimensional discrete Fourier series for velocity 

vector field and pressure.  

 

The discrete three dimensional Fourier transform of a fluid velocity and pressure can be 

written as 
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where u~ and p~ represent discrete Fourier transformed  of fluid velocity vector and pressure, 

respectively when u and p  are known at discrete grid points nx in physical domain. While 

writing equations (2.4) and (2.5), length of the domain along all three directions is considered 

equal and identical toπ2 . The parameter nκ  represents Fourier wave vector having 

components 
nnn zyx kkk ,, . These components are given as 
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where δ represents spacing between two grid points along any direction and is considered 

identical along all three directions. The discrete three-dimensional inverse Fourier 

transformation for equations (2.4) and (2.5) can be written as 
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The spatial derivative of the fluid velocity and pressure can be obtained from equations (2.7) 

and (2.8). From the definition of Fourier transform and inverse Fourier transform, it can be 

shown that Fourier transform of 
x

u
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Using all these we can now write Navier-Stokes equation (2.2) in the Fourier domain as 
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( )ukukukvpifu
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ρ
,                                            2.10 

where f
~

 represent Fourier transform of convective term and detail for its calculations are 

provided later in this chapter. 

 

To calculate pressure p~ , we can utilize continuity equation. The Fourier transform of 

continuity equation can be written as 
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Now we obtain divergence of (2.10) in Fourier domain.  Multiplying three equations, 

obtained from vector equation (2.10),  for components u~ , υ~ , and w~  by xk , yk  and zk , 

respectively, we obtain 
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( ) .~1~~~: 2222 pikfkwkkkkwk
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By adding (2.12), (2.13), and (2.14) and utilizing (2.11), we obtain 
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and from which p~  can be obtained if components of Fourier transform of convective term i.e. 

zyx fff
~

,
~
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~

 are known. Using equation (2.15), equation (2.10) can be written after eliminating 

pressure term as 
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This equation (2.16) can be further written in simplified form by using an integrating factor 

h(t)  whereby the viscous terms is treated exactly. Then (2.16) can be modified to the form  
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( )( ).  exp )( 222 tkkkth zyx ++= ν                                            2.18   

 

This equation (2.17) represents initial value problem with prescribed initial conditions for  u~  

and can be solved with suitable numerical scheme(s), such as forward Euler method, Runge-

Kutta method of order three or higher. 

 

For example, if we consider Euler method as utilized by Coppen (1998) for isotropic 

turbulence simulations, equation (2.17) can be descretized as  
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where tδ represents time step. As h(t) is an exponential function in time 

  

( ) ( )[ ] ).()()( xp 222 ththttkkketth zyx δδνδ =+++=+                                                   2.20 

 

Substituting (2.20) into (2.19) and after simplification we obtain   
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which can be used to solve numerically time evolution of Fourier modes u~  of isotropic 
velocity field. 
 
 
 
2.1.3 Convective Terms 
 

In order to solve numerically equation (2.16), we need information about Fourier transform 

of convective term, i.e. f
~

, at each time step. Now we discuss the calculation procedure for 

this term.  

 

First at each time step, velocity field in physical space u  and its spatial derivatives are 

obtained by inverse transform of the velocity field in the Fourier domain u~  and 

)~,~,~( uikuikuik zyx , respectively. From the obtained velocity field and its spatial derivatives, 

convective terms f  as given by equation (2.3) are calculated in physical domain. These 

calculated terms f  are then transformed into Fourier wave vector domain. 

 

2.1.4 Initial Conditions 
 

In order to solve descretized form of equation (2.16), such as equation (2.21), we need initial 

values at time t = 0 for )(~)0,(~ κκ utu ==  at all grid points nκ  of Fourier domain. The initial 

values are calculated in such a manner that the velocity field is compatible with certain 

energy spectrum shape E(k) at time t = 0. We use the method of Rogallo (1981) for this 

purpose which suggests final formula for generating )(~ κu  as 
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Here α  and β  are given by 
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In the above equations, 21,θθ  and φ  are random numbers statistically independent of each 

other and uniformly distributed in the range 0 to π2 . 
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3 DECAYING ISOTROPIC TURBULENCE: 

NUMERICAL SIMULATION RESULTS 
 
 
Various direct numerical simulation cases were carried out for different initial conditions for 

velocity field in the Fourier space consistent with the selected initial spectra. The results of 

these simulations are presented here after presenting the information for initial spectra and 

statistical properties considered for temporal evolution for homogeneous isotropic 

turbulence. 

 

3.1 Initial Spectra 

 

Four different initial energy spectra E(k,t=0) were used to calculate initial conditions for 

velocity field. The general form of these energy spectra is given by 

 

                                                  ),exp()0,( 42
31

cc kckckE −=                                                 3.1 

 

where 321 ,, ccc  and 4c  are constants. The details of these constants for different spectra are 

provided in TABLE .  Also these spectra are plotted in Fig. 3.1. These spectra are identical to 

the spectra considered by McComb and Shanmugasunadaram (1984) for low Reynolds 

number isotropic turbulence. The use of these spectra allow us to simulate isotropic 

turbulence on a laptop with 2GB of RAM. The grid size used for all simulations in this work 
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is 64x64x64 and is suitable for capturing all wave numbers of different spectra during their 

time evolution. Further, a typical plot of isosurface of one component of velocity that was 

generated by using energy spectrum I is shown in Figure 3.2. 

 

TABLE 3.1Values of constants c in E (k,0) = c1 k
C2 exp(-c3 k

C4) 
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Figure 3.1 Energy Spectra at initial time. 

 
         Spectrum  
           Number                     c1                            c2                              c3                             c4           ν (m2/s) 
     
                  I              0.524169 x 10-2                  4                     0.883882 x 10-1                2       0.01189 
 
                  II             0.662912 x 10-1                  1                     0.220971 x 10-1                2      0.01189 
 
                  III            0.662912 x 10-1                  1                    0.210224                             1     0.01189 
 
                  IV            0.4                                       1                     0.5                                      1     0.01189 
 
                        



 
 
 
 

 18 

 

 

Figure 3.2 Iso-Surface for x component of velocity with value -1.60594238997 at initial 

time for spectrum I. 

 

3.2 A Few Statistical Properties 
 

Once the energy spectrum is known at each time step, different statistical properties which 

depend on the spectrum can be calculated from it. From the energy spectrum, we can obtain 

integral properties, such as, mean kinetic energy E(t) per unit mass, the r.m.s. value of any 



 
 
 
 

 19 

component of turbulent velocity field u(t) and the dissipation of energy due to viscosity є(t), 

the integral length scale L(t) and the Taylor microscale λ(t) . 

 
The r.m.s. of the velocity components, u(t), and the rate of dissipation per unit mass can be  
 
calculated using 
 

                                                   [ ]2

0

)(
2

3
),()( tudktkEtE == ∫

∞

                                               3.2 

 
and 
 

                                                   .),(2)(
0

2
∫
∞

= dktkEkvtε                                                          3.3 

 
 
The integral lengthscale L(t) and the Taylor microscale λ(t) can be obtained using 
 
 

                                         ,)(),(
4

3
)(

0

1 tEdktkEktL 
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
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


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−π

                                                  3.4 

 
and  
 

                                            

2/1

0

2 ),()(5)( 



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


= ∫

∞

dktkEktEtλ   .                                            3.5 

 
 
The Reynolds numbers associated with these length scales are given as 
 
 

                                                    ,
)(

)()(
v
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tLtRL =                                                              3.6 

 
and   
 

                                                    .
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Also calculated are the characteristic wavenumber and velocity scales for turbulence as 

suggested by Kraichnan (1964) . These are given by  

 

                                                          13

1

)15( −= λλRkd                                                           3.8 

 

                                                          )()15/( 3

1

2

1

tuRd

−
= λυ                                                   3.9 

 

 
 

3.3 Time Evolution of Energy Spectra I, II, III and IV  
 
Temporal evolution of various spectra I, II, III and IV are shown in Figure 3.3, Figure 

3.4,Figure 3.5, and Figure 3.6, respectively. In these figures, time is in seconds and time step 

used during numerical simulation is tested for converge solutions. Also, various color lines 

indicate value of time at which spectrum is plotted in these figures. Tests cases were run for 

various values for time steps and results from a few test runs used for arriving at converged 

solutions are provided in Appendix A. Here we will present results for time step 0.001 sec. 
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Figure 3.3 Temporal evolution energy spectrum I for a ∆t time step of .001 sec. 
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Figure 3.4 Energy Spectra II for a ∆t step of .001 
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Figure 3.5 Energy Spectra III for a ∆t step of .001 

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70

k

E
 (

k)

1.00E-03

4.90E-02

9.90E-02

0.1490001

0.1990002

0.2490003

0.2989997

0.3489991

0.3989984

0.4489978

0.4989971

0.5489965

0.5989959

0.6489952

0.6989946

0.7489939
 

Figure 3.6 Energy Spectra IV for a ∆t step of .001 
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3.4 Time Evolutions of Various Integral Properties  
 
Various integral properties of isotropic turbulence can be calculated by using the energy 

spectrum. So by utilizing data on temporal evolution for different energy spectra I, II, III and 

IV, time evolutions of various integral properties are calculated. The temporal evolutions for 

kinetic energy per unit mass of turbulence are shown in Figure 3.1. In Figure 3.8, r.m.s. 

velocity component vs. time is plotted for different cases. Figure 3.9 exhibits rate of 

dissipation of kinetic energy of turbulence as a function of time for different initial spectra. In 

Figure 3.10, integral length scale (unit is meter) evolution in time is shown. This integral 

length scale roughly indicates the length scale of energy containing eddies. The Taylor 

microscale vs. time for different cases are shown in Figure 3.11. This microscale is a 

characteristic length scale usually used to estimate dissipation of turbulence. Integral length 

scale and Taylor’s microscale based Reynolds numbers )(tRL  and )(tRλ  vs. time are plotted 

in Figure 3.12, Figure 3.13, Figure 3.14 and Figure 3.15 for cases with initial energy 

spectrum I, II, III and IV, respectively. Temporal evolutions for characteristic wave number 

and velocity scales suggested by Kraichnan are shown in Figure 3.16 and Figure 3.17, 

respectively. Temporal evolution of Kolmogorov time and length scales are shown in Figure 

3.18 and Figure 3.19, respectively. These scales are characteristic scales of small eddies 

which are responsible for dissipation of turbulence kinetic energy and are in the range of 

smallest scales of turbulence. Further, nondimensional form of kinetic energy and dissipation 

of turbulence are plotted against nondimensional time in Figure 3.20,Figure 3.21, Figure 3.22, 

Figure 3.23 for different initial spectrum cases I, II, III and IV, respectively. 
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Figure 3.7 Temporal evolution of kinetic energy per unit mass for initial energy spectra 

I, II, III and IV  
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Figure 3.8 Temporal evolution of r.m.s. velocity component for initial spectra I, II, III 

and IV. 
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Figure 3.9 Temporal evolution of  rate of dissipation of energy for spectrum I, II, III 

and IV. 
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Figure 3.10 Temporal evolution of integral length scale for spectrum I, II, III and IV.  
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Figure 3.11 Temporal evolution of  Taylor microscale λ(t) for spectrum I, II, III and IV. 
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Figure 3.12 Temporal evolution of  Reynolds number for spectrum I. 
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Figure 3.13 Temporal evolution of  Reynolds number for spectrum II. 
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Figure 3.14 Temporal evolution of  Reynolds number for spectrum III. 
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Figure 3.15 Temporal evolution of  Reynolds number for spectrum IV. 
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Figure 3.16 Temporal evolution of  Kraichnan’s characteristic wavenumber. 
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Figure 3.17 Temporal evolution of Kraichnan’s characteristic velocity. 

 



 
 
 
 

 30 

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

Ti
m

e 
S

ca
le

 (
s)

I

II

III

IV

 

Figure 3.18 Temporal evolution of  Kolmogorov time scale spectrum I, II, III and IV. 
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Figure 3.19 Temporal evolution of  Kolmogorov length scale spectrum I, II, III and IV . 
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Figure 3.20 Evolution of  dimensionless kinetic energy and dissipation vs. dimensionless 

time for spectrum I. 
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Figure 3.21 Evolution of  dimensionless kinetic energy and dissipation vs. dimensionless 

time for spectrum II 
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Figure 3.22 Evolution of  dimensionless kinetic energy and dissipation vs. dimensionless 

time for spectrum III.  
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Figure 3.23 Evolution of  dimensionless kinetic energy and dissipation vs. dimensionless 

time for spectrum IV. 
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4 CONCLUDING REMARKS 
 
 

For this thesis work, numerical simulations of homogeneous isotropic turbulence were 

considered. The isotropic turbulence was simulated by numerically solving Navier-Stokes 

equations in Fourier wave vector and time domain by using well established numerical 

scheme. For the simulation purpose, four different kinds of initial energy spectra were 

considered. Using these spectra and method of Rogallo, initial velocity fields in wave vector 

domain were generated which were compatible with the spectra. The numerical simulations 

were then performed with these initial conditions and results were tested for convergence by 

performing simulation runs for different values of time steps. The temporal evolutions of four 

different initial spectra were calculated. From these temporal evolutions data, integral 

properties of isotropic turbulence were calculated and their time evolutions were presented. 

The information on temporal evolution of energy spectra and integral properties can be 

utilized for assessing various statistical theories of turbulence. In particular these data will be 

used to assess one such theory, namely, Variant of Local Energy Transfer theory proposed by 

Pandya. Also, this well tested computer program for simulating homogeneous isotropic 

turbulence will be enhanced, by adding inserting numerical analysis for particle tracking,  for 

its use to study fundamental aspects of particle/droplet-laden turbulence in near future.       
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APPENDIX A. 
 

Post Processing for other Values of Δt for Spectrum 

Evolutions 
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Figure 5.1 Temporal evolution of energy spectrum I for ∆t = 0.002 
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Figure 5.2  Temporal evolution of energy spectrum I for ∆t = 0.0005 
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Figure 5.3  Temporal evolution of energy spectrum II for ∆t = 0.002 
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Figure 5.5 Temporal evolution of energy spectrum II for ∆t = 0.0005 
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Figure 5.6  Temporal evolution of energy spectrum III for ∆t = 0.002 
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Figure 5.7 Temporal evolution of energy  spectrum III for ∆t = 0.0005 
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Figure 5.8 Temporal evolution of energy spectrum IV for ∆t = 0.002 
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Figure 5.9 Temporal evolution of energy Spectrum IV for ∆t = 0.000 


