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ABSTRACT

The continued drive toward technology scaling in VLSI design has provided greater

integration levels in silicon chips. Thanks to the reduction in minimum feature size

and the corresponding decrease in power supply voltage, digital circuits have bene-

fited from savings in area and power consumption. This approach presents a number

of challenges in Complementary Metal-Oxide Semiconductor (CMOS) analog circuit

design. As the gate oxide of transistors becomes thinner and power consumption

increases, a lower supply voltage must be used, even though it results in performance

degradation of analog circuits. This must be done in order to avoid silicon punch-

through. In applications requiring low power consumption and moderate conversion

speed, one of the most frequently used analog-to-digital converter (ADC) architec-

tures is the successive approximation. As data converters are mixed-signal circuits,

containing both analog and digital circuits, they suffer from the same problems just

described. This thesis presents the design of a low-voltage successive approximation

ADC based on a Switched Opamp comparator. The proposed comparator archi-

tecture provides high-resolution and low-power consumption without compromising

speed. The results obtained from extensive simulations have validated the design

of the ADC prototype, showing comparable performance to those found in recent

publications, while achieving a higher conversion speed.
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RESUMEN

El impulso cont́ınuo hacia la reducción del tamaño minimo ofrecido en tecnoloǵıas

VLSI ha brindado mayores niveles de integración en dispositivos de silicio. La re-

ducción en el tamaño mı́nimo realizable y la disminución de la fuente de alimentación

de voltaje, ha resultado en menor área ocupada y consumo de enerǵıa. Esto ha tráıdo

un gran número de desaf́ıos en el diseño de circuitos analógicos de tipo CMOS. Según

la capa de óxido de los transistores se hace más angosta y el consumo de enerǵıa

aumenta, surge la necesidad de utilizar fuentes de alimentación de menor voltaje.

Aunque hacer esto resulta en menor rendimiento para los circuitos analógicos, es

necesario para aśı evitar el efecto de “silicon punch-through”. En aplicaciones que re-

quieren bajo consumo de potencia y moderada velocidad de conversión, el convertidor

analógico digital (ADC) de aproximación sucesiva es uno de los más usados. Ya que

los convertidores de datos son circuitos de señal-mixta que utilizan circuitos analógicos

y digitales, los mismos sufren de los problemas antes mencionados. Esta tesis pre-

senta el diseño de un ADC de aproximación sucesiva para bajo voltage, basado en

un comparador con amplificador operacional conmutable. La arquitectura propuesta

para el comparador provee alta resolución y bajo consumo de potencia, sin comprom-

eter su velocidad. Los resultados obtenidos através de simulaciones validan el diseño

del ADC, demostrando rendimiento comparable con el que se puede encontrar en la

literatura reciente, proveyendo a la vez mayor velocidad de conversión.
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CHAPTER 1

Introduction

The continued increase in the integration level of VLSI technologies gives designers

the ability to add greater functionality to a silicon chip. The savings in area and power

consumption obtained in digital circuits are the result of a reduction in minimum

feature size and the reduction in power supply associated with the reliability issues

introduced by silicon punch-through effects.

Signal processing systems are the combination of a number of mixed-signal circuits

requiring both analog and digital domain functions. To change from one domain to

the other, analog-to-digital (A/D) and digital-to-analog (D/A) converters are used.

System on a chip (SoC) solutions require that analog and digital circuits reside on

the same chip. As the boundary between these two domains is moved closer to the

real world, which is analog in nature, the required performance and conversion rates

of A/D converters becomes more stringent. The reason for this is the limited voltage

headroom available for the converter’s analog circuit components to do signal process-

ing. Furthermore, computer-aided-design (CAD) tools for analog circuits have not

reach the maturity of those used for digital circuits. As a result, there is a bottleneck

in the design cycle that prolongs the time-to-market of the system. Consequently,

the design of analog circuits becomes one of the most critical design aspects of SoC

1
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design.

The focus of this research is the performance improvement of low-voltage analog-

to-digital converters (ADCs). The reduced supply voltage used in SoC solutions

degrades the performance of the analog circuits components present in the latter.

The design of these system components is a current challenge that will increase in

difficulty as new technology processes become available. Portable battery-operated

equipment, such as those used in data acquisition and microcontroller applications, is

an example of a SoC design. One of its main requirements is low power consumption

in order to prolong battery life. In these applications, low-to medium resolution and

low-to-medium speed are typical requirements for data processing. The flexibility for

tradeoffs of speed, power, and resolution, makes the successive approximation ADC

one of the most frequently used in applications with such requirements. The minimal

number of active components needed by the architecture makes it one of the best

choices for low-power applications demanding no compromise in conversion speed.

To alleviate the problem associated with low-voltage operation new techniques

are needed at the architectural and circuit level. As the voltage continues to be

scaled down and analog circuits are pushed to their operational limits, new circuit

structures are required that make optimal use of the available voltage headroom.

The main issues in low-voltage circuit design are the insufficient gate-overdrive of

switches, sampling linearity and SNR degradation due to limited input/output swings,

and the increase in power consumption in the analog circuit components. The low-

voltage issues addressed in this work include those related to the switch gate-overdrive

problem, which is one of the major limiting factors in achieving optimal circuit speed

and linearity.

The main goal of this thesis is to search for and develop techniques at the ar-

chitectural and circuit level that would aid in the design of low-voltage low-power
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data converters, such as the successive approximation ADC. Particular emphasis has

been given to the comparator, the main active analog circuit component present

in successive approximation ADCs. These comparators requires high-resolution and

moderate-speed, without consuming large amounts of power. The best approach to

achieve such requirements is to employ an architecture which contains a preampli-

fier stage and a latch stage. As these stages must be activated in different clock

phases, the use of switches becomes unavoidable. The limited gate-overdrive present

in switches, results in speed degradation due to their high on-resistance. This brings

the challenging task of designing comparators which make a minimal use of switches

while maximizing their gate-overdrive voltage.

The rest of the chapters are organized as follows:

Chapter 2 introduces the topic of data conversion and discusses the performance

parameters that characterize an ADC. This knowledge will provide a better under-

standing of the tradeoffs made when comparing the different ADC architectures avail-

able.

Chapter 3 presents in more detail the issues associated with the design of the

most frequently used ADC circuit blocks, namely, S/H circuits, D/A converters, and

comparators.

Chapter 4 discusses different low-voltage circuit techniques, as applied to succes-

sive approximation ADCs found in the literature. Most of these techniques, generally,

can be applied to other ADC architectures.

Chapter 5 presents the circuit components used in the design of a successive

approximation ADC prototype. It is based on a number of existing low-voltage com-

ponents and a new comparator architecture proposed in this work. The performance

specifications, as obtained from Spice simulations, are presented to validate the de-

sign.



4

Chapter 6 presents the ADC characterization results as obtained from Spice sim-

ulations and subsequent calculations made from Matlab scripts.

Chapter 7 draws conclusions on the research topic and highlights areas were im-

provement is possible, which suggests opportunities for further research.



CHAPTER 2

Principles of Data Conversion

Data conversion is an essential aspect of any signal processing system. It can be

divided into two parts: analog-to-digital (A/D) and digital-to-analog (D/A) conver-

sion. A basic diagram illustrating how these form part of a signal processing system

is shown in Figure 2.1.

A/D�
Conversion�

DSP�
D/A�

Conversion�

Additional�
Digital Logic�

Analog�
Input�

Analog�
Output�

Figure 2.1. Block diagram of a signal processing system.

An analog input signal is sensed from the “outside world” (i.e., voice) and pro-

cessed by the analog-to-digital converter (ADC). The analog input is a signal defined

over a continuous amplitude and time range. The ADC takes the analog signal and

gives a digital representation which is defined over a finite set of values in amplitude

and time. Once the input is in digital form, the data can be processed by the digital-

signal processor (DSP). Depending on the application, additional digital logic might

be interfaced to the DSP to provide extra processing functions to the system. After

5
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the data is processed, it is converted back into analog form by the digital-to-analog

converter (DAC).

This chapter gives first a general overview of ADCs along with their main char-

acterization parameters. It follows with a brief description of different types of ADC

architectures. Particular attention is paid to Nyquist-rate converters such as succes-

sive approximation ADCs. Finally, a comparison is made among the more popular

ADCs in industry for low-power applications. The advantages and disadvantages

of each one are highlighted. They are categorized according to power, speed, and

resolution requirements.

2.1 Analog-to-Digital Converters

2.1.1 General Considerations

The main function of an ADC is to approximate a continuous-time continuous-

amplitude (analog) signal into a discrete-time discrete-amplitude (digital) signal [1,

3,14]. With the aid of Figure 2.2, the conversion process of an ADC will be discussed

next.

The conversion process begins by first conditioning the input signal with an anti-

aliasing filter. The purpose of this filter is to limit the signal’s bandwidth to no

more than half the sampling frequency, to comply with the Nyquist criterion. This

is necessary in order to prevent aliasing of the frequency spectra. The sample-and-

hold (S/H) circuit is responsible of converting the input signal from a continuous-

time domain into one of discrete-time. This is done by sampling the analog signal

at specific time intervals. The conversion process ends at the quantizer’s output,

where the digital signal is produced by converting the continuous-amplitude discrete-
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time signal into a discrete-amplitude discrete-time signal. The number of bits that

represent the digital signal depends on the resolution of the converter.

Anti-�Aliasing�
Filter�

S/H�
Circuit�

Quantizer�
Analog�
Input�

Digital�
Output�

N�
0010�
0101�
0111�

1010�

. .
 .�

Figure 2.2. Analog-to-digital conversion system.

Figure 2.3 shows the input/output characteristics of a 3-bit ADC. To approximate

the sampled signal into a digital code, the ADC fractions a reference voltage into a

set of quantization levels and selects the one closest to the sampled signal as the

digital output code. This difference between the input signal and the output code

is called quantization error, eq. There will be a region of input voltages that will be

mapped into the same output code, because of the minimum step change or accuracy

necessary to produce a transition from one output code to another.

It has just been illustrated that even an ideal converter introduces errors in the

conversion process. Yet, real ADCs exhibit other type of errors that arise due to the

non-ideal effects present in its internal components. How the quantization error can

be reduced and how the non-ideal errors affect the performance of the converter will

be discussed in the following section.

2.1.2 Performance Metrics

The following is an introduction to the main parameters that characterize the

performance of an ADC. These parameters are limited by the performance of the
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Figure 2.3. (a) Transfer characteristic and (b) quantization error of an ADC.

ADC circuit blocks. As such, the discussion presented here is general. Chapter 3

presents in more detail the operation of these circuit blocks and how they influence

the operation of an ADC.

Static Parameters

The resolution is the minimum input voltage required to produce a transition

between two of the 2N possible output codes of the ADC. The incremental difference

between adjacent codes is defined in terms of the least-significant-bit (LSB) by the

following equation

LSB = Vref/2N (2.1)

In Eq. (2.1) Vref is the reference voltage used by the ADC and N is the number

of bits present in the output code. It can be seen that by increasing N, and hence

the resolution, the number of quantization levels increases. Since the sampled input

signal has more digital codes into which it can be mapped, the amount of quantization

error will decrease.

In an ideal ADC an input voltage of zero produces a “zero code” at the output.
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Due to the limited matching of the internal components of circuits such as operational

amplifiers (op amps), real ADCs need certain amount of input voltage in order to

produce a “zero code” at the output. The difference between the ideal and actual

input voltage needed results in a digital offset error at the output. This is illustrated

in Figure 2.4(a) for a 3-bit ADC.

The gain error, illustrated in Figure 2.4(b), is the difference in slopes between the

actual transfer characteristic of an ADC and that of an ideal one.
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Figure 2.4. (a) Offset and (b) gain errors in a 3-bit ADC.

The Differential Non-Linearity (DNL) error is the difference between the actual

input step and the ideal step of 1 LSB. This is illustrated in Figure 2.5(a). For an

actual input of 1 LSB this means that the DNL would be zero. For example, a DNL of

-1 LSB means that for a 1 LSB input signal increase the ADC output remained with

the same digital code or skipped the corresponding one. The Integral Non-Linearity

(INL) error is illustrated in Figure 2.5(b). It represents the difference between the

actual input transition and that of an ideal converter.

For an ADC with no significant DNL and INL errors (i.e., ±0.5 LSB), the in-

put/output characteristics shows that for an increase in the input signal, the digital

output code will increase accordingly. This characteristic of an ADC is referred to
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Figure 2.5. (a) DNL and (b) INL errors in a 3-bit ADC.

as monotonicity. Figure 2.6 shows nonmonotonic behavior in an ADC during the

transition from 101 to 110 in the output code.

000�

001�

010�

011�

100�

101�

110�

111�

D
ig

ita
l O

ut
pu

t C
od

e�

Analog Input Voltage�
0� 1/8� 2/8� 3/8� 4/8� 5/8� 6/8� 7/8�

Actual�
Response�

Ideal�
Response�

Figure 2.6. Nonmonotonic behavior in an ADC.

Dynamic Parameters

Among the dynamic parameters, the dynamic range can be specified as the ratio of

the full-scale input signal to the smallest signal that can be detected by the converter.

Measured in decibels, it is the difference between the power of a full-scale input to

the power of the smallest input signal that can be detected.
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The signal-to-noise ratio (SNR) is the ratio of the full-scale input signal to the

total noise (including quantization) presented at the output. For an N-bit ADC, it is

described by the following equation

SNR = 6.02N + 1.76 dB (2.2)

A figure-of-merit (FOM) often used to compare the performance of different types

of converters is the effective number of bits (ENOB). Since it includes all other errors

it is one of the most frequently used methods of assessing the performance of an ADC.

ENOB =
SNRactual − 1.76

6.02
(2.3)

2.2 ADC Architectures

In chapter 3 the most important circuit blocks of an ADC are presented in de-

tail, namely the S/H circuit, the DAC, and the comparator. Here the discussion is

focused toward explaining the general operation principle behind some of the most

popular ADC architectures, highlighting the advantages and disadvantages that each

one posses.

2.2.1 Flash ADC

The flash ADC is the fastest architecture available because it performs the con-

version in parallel form. A block diagram illustrating this architecture is shown in

Figure 2.7. A string consisting of equally-valued resistors is used to generate 2N volt-

age references. The comparators use these references to compare against the input

signal. All those comparators whose reference voltage is lower than the input voltage
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will generate a “1” at its output while the remaining comparators on top will generate

a “0” at its output. The set of comparator outputs produce a thermometer code that

is converted into binary form by the decoder.

. .
 .�

. .
 .� Decoder�

N�

V�ref� V�in�

D(�2�
N�-1�)�

D(�2�
N�-2�)�

D�0�

D�1�

Figure 2.7. Block diagram of a Flash ADC.

By using comparators composed of a preamplifier and a latch (refer to section

3.3.2) an inherent sampling function is achieved. The preamplifer tracks the analog

input for a specified amount of time, then the latch is strobed and the input difference

is stored in the latch. The absence of an explicit S/H circuit is another reason why

this architecture achieves a high conversion rate.

One obvious disadvantage of this architecture is the large area and power consump-

tion required , due to the exponential grow (2N) of comparators as the resolution is

increased. The large input capacitance presented by the comparators at the input

can affect the performance of the previous circuit connected to it. The latch strobing

starts a regeneration process in which the differential input is being resolved. The
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time at which the latch is strobed must not overlap with the preamplication phase,

otherwise the resulting kickback noise can be reflected to the input and affect the

conversion. The lack of a front-end S/H circuit can result in different sampling points

among comparators, ultimately leading to distortion in the sampled signal.

2.2.2 Two-Step ADC

The two-step architecture resulted from the need to provide high-resolution high-

speed analog-to-digital conversion without the increase in power and area. A block

diagram of a two-step ADC is shown in Figure 2.8. By reducing the number of parallel

stages and hence the number of comparators required, this architecture reduces silicon

area and power consumption. However, it comes at the cost of some speed loss.

S/H�
Circuit�

V�in�
Coarse�
Flash�
ADC�

DAC�
Fine�
Flash�
ADC�

MSBs�
phi�

LSBs�

+�
-�

+�

Figure 2.8. Block diagram of a Two-Step (flash) ADC.

The conversion procedure begins by sampling the analog input with a S/H circuit.

Once the sampled signal has settled to within ±0.5 LSB of its final value, the coarse

ADC makes a rough approximation of the sampled signal. The latter represents the

MSBs of the digital output code. The DAC converts the coarse digital approximation

into analog form so that it is subtracted from the original sampled signal at the S/H

circuit’s output. The difference between the two signals is sent to the fine ADC to

produce a high-precision conversion that represents the LSBs or remaining bits of the

digital output code.
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One of the most critical components needed in this architecture is the S/H circuit.

Due to the settling time imposed by the DAC, the subtraction cannot begin until

the sampled signal has reached the required degree of accuracy. Moreover, in order

to relax the resolution requirements of the fine ADC an amplifier is placed at the

output of the subtractor. However, the delay associated with the linear response of

the amplifier and its nonlinear effects must be taken into account during the design

process.

2.2.3 Pipeline ADC

The concept of pipelining, popular in digital circuits and microprocessors, con-

sists of performing a number of operations serially in order to obtain a higher data

throughput. The idea of using pipelining for analog-to-digital (A/D) conversion came

after realizing that in a two-step ADC four operations were carried out, namely coarse

A/D conversion, D/A conversion, subtraction, and fine A/D conversion. However,

not all operations were performed at the same time since the fine A/D conversion

could not be done until after the S/H circuit’s output had settled properly. Pipelin-

ing in ADCs makes use of analog preprocessing in order to execute all these operations

concurrently for different input samples.

A block diagram of a pipeline ADC is illustrated in Figure 2.9. It consists of N

stages, each producing a digital output of k bits. The last stage is usually a flash

ADC of j bits. The total resolution of the ADC is given by the sum of the bits of

the stages. The operation of each stage starts by first sampling the analog output

of the previous stage (for the first stage the sampling is done on the input of the

converter). The k -bit ADC makes a coarse conversion which is converted back to

analog by a k -bit DAC. The subtractor then generates a residue corresponding to the

difference between the sampled signal and the approximation of the sampled signal.
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The residue is then amplify by 2k and sent to the next stage in the pipeline. Using

digital correction techniques the digital output of all the stages are added to produce

the digital output of the ADC.

k�-bit�
ADC�

k�-bit�
DAC�

k�-bits�

+�

-�

+�S/H�
Circuit�

A=�2�k�

Stage 1�V�in� Stage 2� . . .� Stage� N�

Figure 2.9. Block diagram of a Pipeline ADC.

Due to the extensive use of analog preprocessing, the speed is limited by the S/H

circuits and the op amps used for residue amplification. The precision required by

these two blocks depends on the number of bits remaining to be resolved at each

stage. This means that the first stage in the pipeline demands the greatest precision,

requiring high-gain op amps with as large as possible bandwidth. The main advantage

of this architecture is its reduced area and power consumption when compared to flash

configurations.

2.2.4 Successive Approximation ADC

The Successive Approximation (SAR) ADC consists of a sample-and-hold (S/H)

circuit, a comparator, a digital-to-analog converter (DAC) and digital logic. The ADC

employs a binary-search algorithm that uses the digital logic circuitry to determine
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the value of each bit in a sequential or successive manner based on the outcome of the

comparison between the outputs of the S/H circuit and DAC. Figure 2.10 illustrates

a block diagram of the converter.

S/H�
Circuit�

V�in�

N�-bit�
DAC�

Output�
Register�

Digital�
Logic�

Shift�
Register�

N�

SAR�

Figure 2.10. Block diagram of a Successive Approximation ADC.

The conversion sequence starts at the S/H circuit, where the analog input signal

is converted from the continuous-time domain into the discrete-time domain. The

digital logic then sets the Most-Significant-Bit (MSB) to ’1’. With the remaining

bits set to ’0’, the digital word produced corresponds to the midscale of the reference

voltage, Vref . The digital word is applied to the DAC in order to produce an analog

output voltage that, once settled within 1
2

LSB of accuracy, is compared with the

sampled voltage by the comparator. A comparator output of ’1’ means that the

sampled signal is larger than the DAC’s output. If this is the case the MSB remains

as ’1’, otherwise, it is set to ’0’. The process is repeated by setting the next bit of the

digital word to ’1’ and applying the digital word to the DAC for comparison of its

output signal with that of the S/H circuit. Just as before, depending on the outcome

of the comparison the bit either remains as ’1’ or is set to ’0’. The comparison cycle

will continue until all bits have been successively determined.

Figure 2.11 illustrates how the output of the DAC changes as it is compared with

the sampled signal, Vin. For an N-bit SAR ADC, it takes N cycles to determine the

digital value corresponding to that of the sampled signal. Moreover, the precision
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required by the comparator increases as the converter goes from the MSB to the LSB

in the approximation algorithm of the output code.

V�ref�

V�in�

V�dac�

Bit� D�N�
D�1� D�2� D�3� D�4�

'1'� '1'� '0'� '0'�

V�ref�_�
2�

Figure 2.11. Successive approximation conversion procedure [1].

The main advantage of the SAR ADC is that the circuit complexity and power

dissipation are less than those found in most other types of ADCs [3]. Its main

disadvantage is the required resolution and speed of the comparator. As it takes N

cycles for the ADC to complete a conversion, the speed of the converter is limited

by the output settling time of the DAC and the time needed by the comparator to

resolve the input difference in each 1-bit cycle. Furthermore, the comparator must

eventually be able to do the comparison within 1 LSB of precision, meaning that the

input-referred noise must be kept to a minimum in order to avoid errors.

2.2.5 Delta-Sigma (∆Σ) ADC

The ADCs discussed thus far sample the input signal at two-times the input

signal’s bandwidth, hence the name Nyquist-rate converters. In order for these ADCs

to avoid aliasing of the sampled signal, they require an analog filter with a sharp

corner-frequency. Not only the design of such a filter is very challenging, but the tight

matching requirements of IC components prevent Nyquist-rate ADCs of achieving

very high resolutions.
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The ∆Σ ADC is referred to as an oversampling ADC because it samples the input

signal at a frequency much higher than that specified by the Nyquist criterion. A

block diagram of a ∆Σ ADC is shown in Figure 2.12. It consists of an integrator, a

1-bit ADC, a 1-bit DAC and a decimation filter. The operation principle consists of

sampling multiple times the input signal and computing the average of the quanti-

zation error between the input signal and its estimate generated by the DAC. This

average is calculated by the decimation (digital) filter. The fact that a coarse (1-bit)

quantization is done and the separation between the signal bandwidth and the sam-

pling frequency is wide, the requirements for the anti-aliasing filter are very relaxed.

This allows the use of a simple 1st. or 2nd. order analog filter, requiring small silicon

area.

Integrator�V�in�
1-bit�
ADC�

1-bit�
DAC�

Decimation�
Filter�

+�
-�

+�

N�

Figure 2.12. Block diagram of a ∆Σ ADC.

2.2.6 Final Remarks

In the previous sections an introduction to data conversion systems was presented

and a number of analog-to-digital converters were described. From various manufac-

turer catalogs and datasheets it has been found that the most popular and widely

available ADCs are those based on the Pipeline, the Successive Approximation (SAR),

and the Delta-Sigma (∆Σ) architectures [13]. Moreover, as will be discussed in later

chapters, these three types of converters have been under extensive study with the

advent of low-voltage low-power applications.
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Table 2.1 shows a classification of these converters in terms of resolution, speed,

and power. Although a trade-off exists among these three parameters, for a given

application (i.e., resolution requirements) more than one type of converter might be

used. For example, for medium- to high-resolution applications one will have to

choose between the SAR and the ∆Σ ADCs. Which one to use will depend to a

certain degree on the specifications needed for the application or design. For extreme

low-power requirements the ∆Σ will be the ideal choice. Yet, if the speed require-

ments are not met, the SAR ADC has to be chosen. A similar design trade-off occurs

for low to medium-resolution applications. When speed is the number one design pa-

rameter, the Pipeline ADC offers the fastest conversion speed. However, if the power

consumption requirements are not met the SAR ADC must be selected.

Table 2.1. Resolution, speed, and power requirements for popular ADCs [13].

Low Resolution Medium Resolution High Resolution
(8-12 bits) (14-18 bits) (20-24 bits)

∆Σ
- speed n/a 128S/s - 40kS/s 12S/s - 105kS/s
- power n/a 0.27 - 122mW 0.6 - 35mW
SAR
- speed 20kS/s - 1MS/s 40kS/s - 1.25MS/s n/a
- power 0.6 - 250mW 1.95 - 200mW n/a
Pipeline
- speed 2MS/s - 105MS/s 1MS/s - 80MS/s n/a
- power 54 - 905mW 250 - 1200mW n/a

The data shown in table 2.1 does not represent the absolute minimum/maximum

performance that can be achieved with these converters, but it is a rough estimate

based on technical data published by manufacturers [13]. For example, a few high-end

∆Σ ADCs with conversion speeds of 1 MS/s range are available, but in general these

converters do not achieve more that a few tenths kS/s.
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Based on the data just presented, it can be seen that the best trade-off between

speed and power consumption is achieved by the SAR ADC. It achieves higher con-

version speed than the ∆Σ ADC while consuming less power than the Pipeline ADC.

Moreover, its resolution range is similar to that offered by the Pipeline ADC. Con-

sequently, the SAR ADC can be used in a wide range of applications. Examples of

these includes instrumentation and transducers, medium-resolution data acquisition,

and systems interfaces. In Chapter 5, the design of a SAR ADC prototype is pre-

sented. The objective of this design was to obtain low-power consumption under the

constraint of a power supply operating at low-voltages (i.e., 1-2 volts).



CHAPTER 3

ADC Circuit Blocks

In Chapter 2 the basic concepts of data conversion were presented and a num-

ber of architectures commonly employed for A/D conversion were described. The

S/H circuit, the D/A converter, and the comparator were presented as fundamen-

tal components for the operation of an ADC. With a general understanding of data

conversion principles, now follows a detailed discussion of how these circuit blocks

affects the performance of an ADC. The basic concepts entailing the operation of

S/H circuits, DACs, and comparators is presented. The main performance metrics

of each circuit block are described along with different techniques available for the

implementation of these circuits.

3.1 Sample-and-Hold Circuits

A sample-and-hold (S/H) circuit takes samples of its analog input signal and holds

these samples in a memory element. The key feature of this circuit, when used as the

front end of an ADC, is that it relaxes the timing requirements of the latter. This

means that the precision and speed of the converter will be limited to a certain degree

by the S/H circuit.

21
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The operation of a S/H circuit is divided into two modes, sample and hold. Usually

this is done at uniform time intervals, set by a periodic clock that divides circuit

operation into two phases. During the sample-mode the output of the circuit can

either track the input or reset to some fixed value. In the hold-mode, the output

of the S/H circuit is equal to the input value obtained (sampled) at the end of the

sample mode. Figures 3.1 (a) and (b) illustrate example waveforms for a S/H circuit

and a T/H (track-and-hold) circuit. Although here a distinction was made between

sampling and tracking, the majority of the circuits are referred to as S/H circuits

even though they behave as T/H circuits.

(a)� (b)�

t� t�

Hold�

Sample�

Hold�

Track�

Figure 3.1. (a) S/H circuit and (b) T/H circuit output waveforms.

The most basic form of a S/H circuit combines a switch and a capacitor, as shown

in Figure 3.2. The operation of the circuit proceeds as follows. In sampling mode

the switch is “on”, creating a signal path that allows the capacitor to track the input

voltage. When the switch is “off” an open circuit is created that isolates the capacitor

from the input, hence changing the circuit from sampling mode into holding mode.

C�H�

V�in� V�out�

phi�

Figure 3.2. Simple sample-and-hold circuit.



23

3.1.1 Performance Metrics

In order to understand the influence of sample-and-hold circuits in ADCs, a num-

ber of parameters describing their main characteristics must be defined. These are

described below and illustrated in Figure 3.3.

V�in�

V�out�

t�

Analog�

Voltage�

hold�
settling time�

acquisition�
time�

aperture�
time�

error�
band�

pedestal�
error�

droop�
rate�

Figure 3.3. Illustration of some performance parameters of a S/H circuit.

• acquisition time, tacq, is the time required, after the sampling command, for the

S/H circuit to take a new sample, so that its output during the hold mode be

within a specified error band.

• settling time, ts, is the time required after the hold command is asserted for the

S/H circuit’s output to settle within a specified error band of its steady state

(or final) value. This is usually the limiting factor on the sampling rate of the

circuit.

• aperture time is the time required, after the hold command, for the switch to

open and the signal to be actually sampled into the storing element.
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• aperture uncertainty, or jitter, is the random variation in the aperture time,

arising from the noise that affects the clock transitions and, consequently, the

execution of the hold command.

• pedestal error is the error introduced at the output of the S/H circuit between

the time when the sample mode ends and the time the hold mode is active.

• droop rate is the rate of change of the output, due to signal leakage during the

hold mode. The parasitic elements present in the circuit is the main reason for

the existance of this effect.

• hold-mode feedthrough is the fraction of input signal present at the output during

the hold mode. It is due to the signal coupling created by the parasitic elements

surrounding the internal nodes of the S/H circuit.

• dynamic range is the ratio of the maximum allowable input signal and the

minimum input signal that can be sampled within a specified degree of accuracy.

• signal-to-noise ratio (SNR) is the ratio of signal power to noise power present

at the output.

• signal-to-(noise + distortion) ratio (SNDR) is the ratio of the signal power to

the total noise and harmonic power present at the output.

3.1.2 MOS Sampling Switch

As illustrated in Figure 3.2, the two most basic elements needed in a sampling

circuit are the switch and a memory element. The switch allows the circuit to be

configured into one of its two operating modes: sample and hold. In CMOS tech-

nology, the clear choice for the implementation of a switch is the MOS transistor.
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For data storage either voltage sampling or current sampling methods can be used

[3]. The first method employs capacitors; the second employs inductors. However, in

integrated circuit technology it is easier to fabricate capacitors than inductors, reason

for which all S/H circuits are done with voltage sampling [15]. Next, the operation

of the MOS transistor as a switch and its most important limitations are discussed.

When a voltage large enough is applied to the gate terminal of an MOS transistor,

the formation of the channel between its source and drain terminals allows the tran-

sistor to transmit any signal through that channel. The application or removal of a

voltage at the gate follows the same operation principle of an ideal switch. When the

transistor is turned “on” a signal path is present and when the transistor is turned

off the channel vanishes and no signal path exists.

One of the main differences between an ideal switch and a transistor is that when

the transistor is “on”, instead of an ideal short circuit, a small on-resistance (i.e.,

0.5 - 2 kΩ) is present in the signal path between the drain and source terminals.

Similarly, in the “off” state there is a resistance large enough to prevent signals from

passing between its two terminals. Figure 3.4 (a) and (b), respectively, shows the

basic sampling circuit using an MOS switch and its equivalent circuit during sample

mode. When operated in the triode or linear region the on-resistance of an NMOS

transistor can be approximated as1

C�H�

V�in� V�out�

phi�

V�in�

(a)� (b)�

V�out�

R�on�

C�H�

Figure 3.4. (a) MOS-based S/H circuit (b) equivalent circuit during sampling.

1Although the discussion has focused on an NMOS transistor, it also applies to PMOS transistors.
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Ron =
1

µnCox
W
L

(VGS − Vthn)
(3.1)

where µn represents the electron mobility factor in the channel, Cox, is the oxide

capacitance present between the gate terminal and the substrate, W and L are the

width and length of the transistor, respectively, VGS is the gate-source voltage, and

Vthn is the threshold voltage. A similar analysis can be made for a PMOS transistor.

As discussed next, the on-resistance and the parasitic capacitance of the transistor

affects the speed and precision of a S/H circuit.

Speed Issues

One of the key parameters used to estimate the speed of a S/H circuit is the

settling time. For a circuit tracking an input, the settling time is specified as the time

required for the output voltage to be within the acceptable error band, ∆V, after

the hold command has been issued. This is illustrated in Figure 3.5. When used

as the front-end of an ADC, the sampled value must have an accuracy of ±0.5 LSB

(least-significant-bit).

V�

t�

0�

Clk�

V�out�

Figure 3.5. Speed measurement in a S/H circuit.

Precision Issues

When an MOS transistor is “on”, the channel formed between its source and drain

terminals has charge stored in it. When the transistor switches to the “off” state,



27

the charge stored in the channel exits through both of its terminals. This effect,

called charge injection, is illustrated in Figure 3.6. Although the charge injected into

the circuit’s input introduces no error, the charge injected into the holding capacitor

results in a sampled voltage error. The charge of a transistor in strong inversion mode

can be approximated by [16]

Qchn = WLCox(VGS − VTH) (3.2)

C�H�

V�in� V�out�

Clk�

V�out� =�V�sampled�  +�
q�

C�H�

C�ov�C�ov�

Q�chn�

Figure 3.6. Charge injection in an MOS switch.

Another type of error that occurs during the transition of the switch from the “on”

state to the “off” state is clock feedthrough. The finite slope present in the clock signal

transition results in coupling of the clock signal to the holding capacitor through the

overlap capacitances Cov (from the gate-to-drain or gate-to-source), causing errors in

the sampled voltage. An approximation of the error voltage is given by the following

equation [16].

∆V =
Cov

Cov + CH
· Vclk (3.3)

Thermal noise is also an important source of error. It is due to the random thermal

motion of electrons in the switch’s on-resistance. In a switched-capacitor circuit (see

Figure 3.4), the resulting noise power generated in the sampled signal can be defined

as [16]
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Pnoise =
kT

C
(3.4)

where k is the Boltzmann’s constant (1.38×10−23 J/K), T is the absolute temperature

(in kelvins), and C is the holding capacitor.

The time at which the transistor turns off depends on the value of the input

signal at the time the gate’s clock signal is making a transition. As discussed in

section 3.1.1, this effect and the noise affecting the clock transitions produces jitter

or random variation at the sampling instant.

The input voltage range of an MOS switch is limited by the threshold voltage,

VTH , of the transistor. From equation (3.1) and Figure 3.7 it can be seen that the

variation in switch on-resistance is maximum when the gate overdrive (VGS − VTH)

approaches 0. For an n-channel MOS switch the input voltage range at the source

terminal is from 0 (i.e., ground potential) to VDD − VTHN . For a p-channel MOS

switch this range goes from VTHP to VDD.

pMOS� nMOS�

V�thp� V�in�

R�ON�

V�DD�-�V�thn�

Figure 3.7. Switch on-resistance as a function of the input signal.

A technique used to extend the input range of the sampling switch consists of using

complementary transistors in parallel, so that at least one of the two transistors is

“on” over the whole input-signal range while the switch on-resistance is maintained
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relatively constant. In order to turn “on” or “off” both transistors simultaneously,

complementary clock signals are applied at their gate terminals. This is shown in

Figure 3.8.

C�H�

V�in� V�out�

phi�

phi'�

0�

phi�

phi'�

0�

Figure 3.8. CMOS switch using complementary transistors.

3.1.3 S/H Architectures

S/H circuits can be classified into open-loop and closed-loop architectures. The

classification depends on whether or not the hold capacitor is enclosed in a feed-

back loop. In the following sections these two groups are explained and a few basic

implementations are discussed for each.

Open-loop architectures

A typical open-loop S/H circuit is presented in Figure 3.9. It is based on the

circuit shown in Figure 3.2. Here, buffers have been added at the input and output of

the circuit. The purpose of the input buffer is to prevent loading in the previous stage

or circuit. The output buffer is added for driving capability considerations, otherwise

the circuit would not be able to drive large loads.

V�S� phi�

C�H�
V�out�

Figure 3.9. Basic open-loop S/H circuit.
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The main drawback of this configuration is the signal distortion resulting from

the input-dependent charge-injection. Moreover, the speed of this circuit is limited

by bandwidth and, hence, settling time of the added buffers. In order to fulfill the

linearity requirements of the system, usually imposed by the ADC, the buffers require

as high a gain as possible and the use of local feedback [3].

Closed-loop architectures

In order to eliminate the input-dependent charge injection present in open-loop

architectures, the hold-capacitor must be enclosed in a feedback loop [16]. A classic

implementation of such an architecture is shown in Figure 3.10. This configuration

is arranged in such a manner that the charge injected by those switches which are

not connected to a constant potential (usually VDD or Gnd) introduce no errors into

the sampled voltage. As it will now be discussed, the operation of the switches must

follow a very specific timing in order to avoid charge-injection errors.

V�S�

phi�1�

V�out�C�H�

phi'�2�

phi�2�

S�1�

S�2�

S�3�

Figure 3.10. Basic closed-loop S/H circuit.

During sampling-mode (phi1), switches S1 and S2 are closed and switch S3 is

opened. The op amp is in unity-gain mode and the capacitor is able to track the

input voltage. In hold-mode (phi2), switches S1 and S2 are opened and switch S3 is

closed. However, to prevent input-dependent charge injection, switch S2 must turn

off (phi′2) slightly before switch S1. Since the node at the right-hand terminal of

the capacitor is a virtual ground, the charge injected by S2 is constant and can be
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viewed as an offset in the input/output characteristic. As the charge at this node

must remain the same before and after S2 turns off, there is no path for the charge

injected by S1 to flow, hence no error is introduced by the latter. A more detailed

analysis of this circuit and other similar configurations can be found in [16].

3.2 Digital-to-Analog Converters

A digital-to-analog converter (DAC) receives a digital code at the input and gen-

erates an analog output signal that is a fraction of the full analog range set by a

reference. Depending on the architecture, the reference can be treated as a current,

voltage, or charge quantity. Figure 3.11 shows the basic block diagram of a DAC with

the input/output characteristic shown in Figure 3.12.

Voltage�
Reference�

Scaling�
Network�

and�
Switches�

Amplifier�

. . .�

D�0�D�1� D�N�-1�

V�ref�

V�ref�

2�m� V�out�

Figure 3.11. Block diagram of a digital-to-analog converter.
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7/8�

V�out�
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Figure 3.12. Input/output transfer characteristic of a 3-bit DAC.
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The output voltage of the DAC can be expressed as

Vout = Vref ·
(

N−1∑
m=0

Dm · 2−m

)
(3.5)

where (Vref) represents the reference voltage, N is the number of bits, and Dm is the

mth-bit of the digital code. The summing term in the equation represents the binary-

weighting produced by the division of the reference voltage. The accuracy with which

the DAC implements equation (3.5) will determine the linearity of the converter [3].

3.2.1 Performance Metrics

The DAC is a very important circuit component present in ADCs. For this reason

it becomes necessary to study the parameters that describe its performance. This

provides a better understanding of how it influences the behavior and performance of

an ADC. Following is a brief description of the static and dynamic parameters that

characterize a DAC.

Static Parameters

The resolution can be defined as the smallest output voltage change for which a

transition between input code occurs. For an N-bit converter the total number of

digital input codes is 2N . The DAC fractions the reference into a minimum output

value of 1/2N according to equation (2.1).

The full-scale (FS) range indicates the output voltage range within which lie the

analog voltages corresponding to each possible digital input vector. Due to the DAC’s

finite resolution, its full-scale range is not equal to the reference. The full scale range

is described as
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FS = Vref − LSB = Vref

(
1 − 1

2N

)
(3.6)

It can be the case that, for a zero digital input code, the analog output voltage is

not zero but some voltage amount. This type of error is called offset error and affects

all codes by the same amount; it is illustrated in Figure 3.13(a).

0�

1/8�
2/8�

3/8�

4/8�

5/8�

6/8�

7/8�

000� 001� 010� 011� 100� 101� 110� 111�
Digital Input Code�

A
na

lo
g 

O
ut

pu
t V

ol
ta

ge
�

Ideal�
Response�

Actual�
Response�

Actual�
Response�

Ideal�
Response�

Offset�
Error�

Gain�
Error�

(a)� (b)�

0�

1/8�

2/8�

3/8�

4/8�

5/8�

6/8�

7/8�

000� 001� 010� 011� 100� 101� 110� 111�
Digital Input Code�

A
na

lo
g 

O
ut

pu
t V

ol
ta

ge
�

Figure 3.13. (a) Offset and (b) gain errors in a 3-bit DAC..

The gain error is the difference in slope between the actual transfer function and

that of an ideal DAC when no offset error is present. This is illustrated in Figure

3.13(b).

Figure 3.14 illustrates the Differential Non-Linearity (DNL) and Integral Non-

Linearity (INL) in a DAC. The DNL is the difference between the actual voltage

change at the output and the ideal digital code transition of 1 LSB. The INL is the

difference between the output voltages in the actual converter response and a straight

line drawn between the end points of an ideal converter response.

Dynamic Parameters

One of the most important dynamic parameters of a DAC is the conversion speed.

It is a measure of how fast the DAC can make successive conversions, as it is the case
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Figure 3.14. (a) DNL and (b) INL errors in a 3-bit DAC..

when the input code has made a transition. A key limiting factor in the conversion

speed is the settling time of amplifiers and RC circuits, which determine the time

needed after an input change for the output voltage to settle within the specified

accuracy limits (i.e., ±0.5 LSB).

The signal-to-noise ratio (SNR) is the ratio of the full-scale analog signal to the

rms-value of the quantization noise. It is related to the dynamic range, which is the

ratio of the maximum allowable input voltage and the minimum voltage that can be

resolved within a specified degree of accuracy. These parameters measure how robust

is the system against noise perturbations.

As with ADCs, to better assess the performance of a DAC against noise, the

effective number of bits (ENOB) can be used as shown below.

ENOB =
SNRactual − 1.76

6.02
(3.7)

3.2.2 DAC Architectures

Digital-to-analog converters can be grouped into two main categories: serial DACs

and parallel DACs [14]. A serial DAC does the conversion of the digital input code one
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bit at a time. For an N-bit DAC it takes N cycles to represent the input as an analog

voltage. On the other hand, since a parallel DAC processes all the bits simultaneously,

it takes only once cycle to complete the conversion. Since serial DACs make the SAR

ADC slower, parallel DACs are the most frequently used in the design of such ADCs.

From here on the discussion will focus on parallel DAC based architectures.

Parallel DACs receive a digital input code and generate an analog output that

is a fraction of the reference voltage. This output represents the analog estimate

of the digital input. These types of DACs can be sub classified according to how

the voltage reference is binary-scaled into an analog value. The three most popular

methods used for digital-to-analog conversion are current-scaling, voltage-scaling, and

charge-scaling; these are discussed next.

The current-scaling DAC makes use of current-steering circuits to convert the

digital input code into a set of binary-weighted currents. These are added and applied

to an op amp for conversion into a voltage signal. The op amp is configured as

an inverting-summing amplifier in order to perform the addition and conversion of

current to voltage.

Figure 3.15 illustrates a current-scaling architecture, also called binary-weighted

resistor DAC [14]. For an N-bit converter, it requires N switches and N resistors

sized in binary fashion. The binary-weighted currents generated by the resistors are

directed to the op amp according to the operation state of the switches. Those bits

asserted with a “1”, will have their corresponding switch set to the reference voltage

VREF and the current through it will flow through the feedback resistor RF . The

bits containing a “0” will have their corresponding switch set to ground potential,

preventing any flow of current through them.

The output voltage for the circuit of Figure 3.15 can be expressed as follows
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V�out�
2R�R� 4R� 2�N�-�1�R�

V�ref�

I�0� I�1� I�2� I�N-1�
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Figure 3.15. Binary-weighted resistor DAC.

Vout =
RF

R

(
SN +

SN−1

2
+ · · ·+ S2

2N−2
+

S1

2N−1

)
(3.8)

The main advantage of the current-scaling architecture is that it is insensitive to

parasitic capacitors and, hence, can provide fast conversion rates [14]. Disadvantages

include the required area and poor matching of resistors that limit resolution below

10 bits. When higher resolution is needed, an alternative circuit solution requiring

less area is the circuit shown in Figure 3.16.

2R�2R� 2R� 2R�
V�ref�

I�0� I�1� I�2� I�N-1�

V�out�

R�f�

R� R� R�

Figure 3.16. R-2R resistor ladder DAC.

The voltage-scaling DAC converts the digital input code into an analog output by

scaling the reference voltage into a set of N node voltages. The basic configuration

as shown in Figure 3.17, consists of a resistor string and a series of switches. The

latter are controlled by the digital input in order to route to the output the appro-

priate “tap” voltages representing the analog estimate of the input code. The main

advantage of this architecture is the guaranteed monotonicity. Its main disadvantage
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is the large number of resistors and switches required, limiting the resolution to about

6-bits. Its output voltage can be expressed as

Vout =
Vref

2N

(
n − 1

2

)
(3.9)
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Figure 3.17. 3-bit voltage-scaling DAC.

The charge-scaling method consists of a capacitor array and a combination of

switches that distributes the circuit’s total charge among the capacitors. The basic

architecture used with this method is shown in Figure 3.18. The operation of the

circuit is controlled by a two-phase non-overlapping clock. During the reset phase

the bottom-plate of the capacitors are connected to ground through the switches,

allowing them to discharge. During the second phase, the digital input code will

control to what potential the switches will be connected. For a bit containing a

“1” the switch’s terminal will be connected to the reference voltage Vref and for a

bit containing a “0” the switch’s terminal will remain connected to ground. The

equivalent of the digital code will be the sum of the charge distributed through those

capacitors connected to Vref . When used as a standalone unit, the DAC requires an
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output buffer to prevent the discharge of the unit capacitor due to resistive loads.

Vout = VrefC

(
SN

2
+

SN−1

4
+ · · ·+ S2

2N−1
+

S1

2N

)
(3.10)
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S�N� S�N�-1� S�2� S�1� C�1�=�C�0�
C�i�+1�=�2C�i�; i=1, ...,� N�-1�

Figure 3.18. Basic charge-scaling DAC..

Similar to the binary-weighted resistor DAC, the accuracy of this DAC is limited

by the precision of the passive components. A careful design must be followed so

that the capacitors are correctly sized with respect to the parasitic capacitances. In

order to achieve precise binary-weighted values for the capacitors the layout must

employ techniques such as common-centroid [17, 18]. Consequently, the large area

and mismatch dependence are disadvantages found in this architecture.

3.2.3 Higher Resolution Architectures

For the architectures described thus far, the primary factor limiting their resolu-

tion is the precision of its passive components. For current CMOS technologies, the

maximum resolution is around 10 bits. Since the accuracy of these DACs depends

on the ratio of the largest to smallest resistor (capacitor), a means to increase the

resolution without a significant increase in area must be followed.

One of the techniques available to reduce the required area of these passive com-

ponents consists of combining subDACs of M-bit and K-bit resolution to form a

(M+K)-bit DAC. One of the subDACs is used to process the most-significant bits
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and the other is used to process the least-significant bits. A block diagram illustrat-

ing this technique is shown in Figure 3.19. First, the output of the LSB subDAC is

scaled by a factor of 1/2M . Then, the scaled output is added to that of the MSB

subDAC. As shown in equation (3.11) below, the resulting analog signal represents

the digital input code.

Vout = (
SM+K−1

2
+

SM+K−2

4
+...+

SM

2M
)Vref +(

1

2M
)(

SK−1

2
+

SK−2

4
+...+

S0

2K
)Vref (3.11)

A similar technique used for increasing DAC resolution consists on scaling the

voltage reference of the LSB subDAC instead of scaling its output voltage. Again,

the output of an M-bit subDAC is combined with the output of a K-bit subDAC

to represent the converted analog output of the complete DAC. The output voltage

using this technique is the same as that described by equation (3.11).

An example of a DAC implemented using scaled output voltages is shown in Figure

3.20. Here, an 8-bit charge scaling DAC was formed from the combination of two 4-

bit subDACs. This is done through capacitor CS, which scales the output voltage of

the LSB subDAC and produce the least-significant-bit for the MSB subDAC.

MSB�
DAC�

LSB�
DAC�

+�

1/�2�M�

V�out�

V�ref�

V�ref�

M�
bits�

K�
bits�

Figure 3.19. Block diagram of an M+K DAC formed by using two subDACs.
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Figure 3.20. 8-bit charge-scaling DAC composed of two 4-bit subDACs.

The series addition of the scaling capacitor, CS, and the effective capacitance of

the LSB subDAC, must terminate the MSB subDAC and, hence, be equal to the unit

capacitor C0. From this analysis, the CS value can be obtained from the following

equation

C0 =
1

1
CS

+ 1
2C0∗2N−1

(3.12)

In equation 3.12, CS and C0 represent the scaling and unit capacitors, respectively,

and N represents the DAC’s resolution. It should be noted that Cs affects both the

LSB and MSB subDACs because it acts as a termination capacitor for the MSB DAC

[14]. An approach similar to the one described above can be follow using current-

scaling or voltage-scaling methods.

3.3 Comparators

A comparator is a differential amplifier with no feedback loop, whose function is to

compare the analog signals presented at its inputs. Depending on the polarity of the

differential input will be the logic output produced. As it is the case with several types

of ADCs, usually one of the comparator’s input is connected to a constant potential

or reference. The circuit symbol and ideal transfer function of a comparator is shown
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in Figure 3.21. It can be seen that if the voltage difference V +
in − V −

in is positive the

comparator’s output will go high (VOH), otherwise its output will go low (VOL).

V�in�
+�

V�in�
-�

V�out�

V�out�

V�in�
+�-V�in�

-�

(a)� (b)�

V�OH�

V�OL�

Figure 3.21. Comparator (a) circuit symbol and (b) ideal transfer function.

3.3.1 Performance Metrics

Due to fabrication limits and process variations, the comparator performance is

affected by nonideal effects. As a result, the response deviates from the ideal one

shown in Figure 3.21(b). Following is a brief description of the main parameters that

characterize the performance of comparators.

Static Parameters

The static parameters are those that described the performance of a compara-

tor under DC or steady-state conditions. The main parameters presented here are

resolution, gain, offset, noise, and ICMR.

Resolution is the minimum input difference that can be resolved by the comparator

in order to switch between its binary states. It is usually limited by the input-

referred offset and noise generated by the internal components of the comparator.

When employed in ADCs, the resolution specification must be equal or lower than

the least-significant-bit (LSB) defined by the converter.

The gain, Av, is one of the key limiting factors in achieving the desired resolution

for the comparator. To obtain the ideal response shown in Figure 3.21, a transition
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between output logic levels occurs for a zero-input difference. This leads to a gain

that approaches infinity, as given by the following equation

Av = lim
∆V →0

VOH − VOL

∆V
(3.13)

A real comparator has a finite gain, given by

Av =
VOH − VOL

V +
in − V −

in

(3.14)
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Figure 3.22. Transfer function of a finite-gain comparator.

As mentioned before, the offset is a non-ideal effect that limits the resolution of

the comparator. Assuming an ideal comparator with zero differential input voltage

required to produce an output transition, the offset is defined as the minimum amount

of input voltage required for the binary-state transition to take place. In a real

comparator the offset adds to the minimum voltage for which the resolution was

designed reducing the resolution of the circuit. An illustration of how itt affects the

response of the circuit is given in Figure 3.23. Section 3.3.3 presents offset-cancellation

techniques developed to reduce this kind of error.

Noise has great influence on the operation of the comparator, thus affecting the

performance of an ADC. From Figure 3.24, the effect of noise in the circuit’s response

can be seen as uncertainty in the time when the comparator’s output switches between

its two states.
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Figure 3.23. Effect of offset voltage in the transfer function of a comparator.
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Figure 3.24. Effect of noise in comparators.

The signal presented to the input of amplifiers and comparators is not fully differ-

ential but carries a common-mode component with it. Another important parameter

is then the input common-mode range (ICMR). The ICMR is the permissible voltage-

range over which the input common-mode signal can vary while all transistors remain

biased in the saturation region. If the input signal exceeds this specification, the com-

parator won’t be able to operate properly as some of its transistors could be in triode

or cutoff modes.

Dynamic Parameters

Two of the most important dynamic parameters that determine the speed of a

comparator are the propagation delay and the settling time. The propagation delay

is the time that elapses between an input transition and the corresponding output

change. As shown in Figure 3.25, it is usually measured at the midpoints between

the input and output signals. The settling time, as with a S/H circuit, is defined as

the time needed for the output to settled within a specified percent of its final value,
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usually 0.1 and 0.01%.
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Figure 3.25. Propagation delay in a comparator.

Figure 3.26 illustrates the time response of a comparator to a small input signal.

It is based on a first-order approximation for an op amp with a single dominant-pole.
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Figure 3.26. Comparator time response to a small input voltage.

The propagation delay for the time response shown in Figure 3.26 can be approx-

imated as [19]

tP =
1

p1
ln(2) = τc ln(2) (3.15)

where p1 is the comparator’s dominant pole and τc is its associated time constant.

As with any op amp, the slew rate is a large-signal behavior that sets the maximum

rate of output change. It is limited by the output driving capability of the comparator.

The propagation delay is inversely proportional to the input voltage applied. This

means that applying a larger input voltage will improve the propagation delay, up to

the limits set by the slew rate.
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3.3.2 Architectures

Comparators can be roughly classified into open-loop (continuous-time) compara-

tors and regenerative comparators. The main difference resides on whether or not

feedback is applied to the op amp used. To obtain the benefits offered by both types

of comparators, many configurations have been developed that employ a combination

of open-loop stages with regenerative stages that use positive-feedback.

Open-loop Comparators

An open-loop comparator is an operational amplifier designed to operate with

its output saturated, close to the supply rails, based on the polarity of the applied

differential input. The op amp does not employ the use of feedback and hence no

compensation is required to achieve stability in the system. This does not poses a

problem since the linear operation is of no interest in comparator design. The main

advantage of not compensating the op amp is that it can be designed to obtain the

largest possible bandwidth, thereby improving its time response (see equation 3.15).
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V�in�
+� V�in�

-� V�out�

M�3� M�4�

M�1� M�2�

M�6�

M�3�

M�5�V�bias�

Figure 3.27. Two-stage open-loop comparator.

Figure 3.27 illustrates a circuit example of an open-loop comparator. It is based
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on the commonly used two-stage op amp. The first stage is a NMOS differential-pair

consisting of transistors M1 and M2, with PMOS transistors M4 and M5 acting as

a diode-connected active load. Transistors M3 is used to bias the input pair. The

output stage is a current-sink inverter consisting of transistors M5 and M6. Figure

3.28 illustrates an example of the time response of this comparator.
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Figure 3.28. Output response of a two-stage comparator.

The main advantage of open-loop comparators is that, if enough gain is provided,

the minimum detectable differential input can be very small (< 1mV). Examining

equation (3.14), it would be reasonable to think that by simply designing the com-

parator with the largest possible gain an almost infinite resolution can be achieved.

However, increasing the gain also reduces the bandwidth of op amps. This means

that although the resolution will improve, the time response of the comparator will

degrade. Thus, a tradeoff between speed and resolution must be made. The absolute

maximum resolution of open-loop comparators is limited by input-referred noise and

the offset voltage present in the op amp used.

Regenerative Comparators

Unlike open-loop comparators, regenerative comparators make use of positive feed-

back to realize the comparison between two signals. A striking feature of these com-

parators is that they operate in discrete-time rather than continuous-time form. They

operate with a clock that divides the operation of the circuit into two phases. During
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the first phase the comparator tracks the input and during the second phase the pos-

itive feedback is enabled. Depending on the polarity of the input, the latch’s output

will go high as the other will go low.

The basic principle of regeneration consists in employing a latch circuit. Shown in

Figure 3.29, the latch employs positive feedback through the cross-coupled connection

of the NMOS (or PMOS) transistors.

V�DD�

M�1� M�2�

V�1� V�2�

Figure 3.29. Basic latch using NMOS transistors.

In Figure 3.30, a circuit schematic of a latch comparator is shown [2, 14]. The

operation of the circuit is divided into two phases, using a non-overlapping clock

circuit. During the first phase, the latch command is issued and the circuit tracks the

input voltage applied between its terminals V +
in and V −

in . During the second phase

(latch), transistors M5 and M6 isolate the latch from the input as these are turned

“off”. The regeneration occurs between the drain and gate terminals of transistors

M9 and M10, finalizing when one of its outputs turns high and the other low. When

a new comparison cycle begins (latch command), the latch output is reset to VDD

through transistors M7 and M8. Not shown in the figure, digital inverters are usually

connected at the outputs to raise the signals to full digital logic levels.

One of the advantages of using positive feedback is that the time response can

be very fast thanks to the positive exponential transfer characteristic of the latch.
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Figure 3.30. Latch comparator circuit [2].

However, due to mismatches present in the transistors, the resulting offset voltage

limits the maximum resolution achievable with this circuit. In order for the latch to

operate in the exponential region of its transfer characteristic, the minimum resolvable

input must be large enough to overcome the large offset voltage, typically in the range

from 30 to 100 mV.

Final Remarks

It was described above that the gain required to achieve a high resolution resulted

in a comparator with a large delay. The use of a latch comparator would provide a

very fast time response, but only for large input differences due to its input offset

voltage. The optimal solution that allows to reach a trade-off between resolution

and speed consists of combining a pre-amplifier and a latch. The gain needed by

the preamplifier will depend on how large is the offset voltage produced by the latch

circuit. The idea is to provide enough linear amplification so that the difference seen

at the latch input is large enough for the latter to work in the exponential region

of its input/output characteristic. In the next section and in later chapters various
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architectures that follow this approach will be presented.

3.3.3 Comparator Offset Cancellation

As discussed in Section 3.3.2 the offset voltage inherently present in comparators

limits their resolution. Although the offsets resulting from matching errors can be

alleviated through the use of layout techniques such as common-centroid, those pro-

duced by random process variations call for different techniques. One way to partially

eliminate such type of offset errors is using offset cancellation techniques [3, 20]. In

the following section, two architectures typically employed for offset cancellation will

be discussed along with the advantages and disadvantages of each.

Input-Offset Storage (IOS)

The input offset storage scheme is illustrated in Figure 3.312. The comparator

makes use of switches and capacitors to store the offset voltage present at its input.

Circuit operation is divided into two phases by using non-overlapping clock signals.

During the first phase, φ1, the offset present in the preamplifier and latch is stored

in capacitors C1 and C2. This is done by configuring the preamplifier in unity-

feedback mode with switches S1 through S4. In the second phase, φ2, the above

mentioned switches are opened while switches S5 and S6 are closed. The input signal

is connected to the comparator’s input, allowing the latter to perform the comparison.

This last phase must allow the latch to be strobed in order to sense the amplified

output provided by the preamplifier. Under this scheme, the preamplifier must be

stable when configured in the unity-feedback configuration. As a result, it becomes

necessary to employ compensation techniques.

2Although the discussion shows a comparator composed of a preamplier and a latch, the concept
can also be applied when only a preamplier is used.
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Figure 3.31. Input-offset storage technique [3].

Under the IOS scheme, the remaining offset after cancellation has three compo-

nents. These are the preamplifier’s offset reflected to its input (VOS), the charge

injected by switches S3 and S4, and the latch’s input offset as seen at the compara-

tor’s input (VOS(latch)) [20]. Of these offset components, only the one introduced by

charge injection is not reduced. An expression for the final offset after cancellation is

given by

VOS(final) =
VOS

1 + A0

+
∆q

C
+

VOS(latch)

A0

(3.16)

Distinctive features of the IOS scheme are rail-to-rail input common-mode range

and the improved overdrive recovery provided by the unity-gain feedback. The most

important disadvantage is the kT/C noise, produced by the input sampling capacitors,

that will disturb the input signal during the preamplification mode. Increasing the

size of these capacitors to minimize the noise will lead to a slower circuit time response.

Another disadvantage is the need for compensation in the preamplifier; needed for

stable operation under the unity-feedback configuration.



51

Output-Offset Storage (OOS)

Figure 3.32 illustrates the output offset storage scheme. It works in a similar

fashion to the previous scheme. The main difference is that in neither of the two

clock phases the preamplifier operates in unity-feedback mode. During phase φ1 the

MOS switches connected to ground are “on” and the offset is stored in the capacitors.

During phase φ2 these switches are “off” and input is connected to the comparator

allowing comparisons to be made. As in the previous scheme, this last phase must

allow the comparator to fully resolve the input difference.
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Figure 3.32. Output-offset storage technique [3].

For the OOS scheme the remaining offset after cancellation is reduced to two

components, the charge injection of switches S3 and S4 and the latch offset [20]. As

the sampling capacitors are located at the preamplifier’s output, the offset voltage of

the latter is completely canceled when reflected to the input. The final expression for

the total offset remaining after cancellation can be written as

VOS(final) =
∆q

A0C
+

VOS(latch)

A0
(3.17)
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The main advantages of OOS over IOS are the complete cancellation of the pream-

plifier’s offset, the reduction in offset due to charge injection, and the lower input

capacitance due to the placement of the sampling capacitors at the preamplifier’s

output. A disadvantage of OOS is the limited input common-mode range due to

the DC coupling present. Moreover, the open-loop configuration in the preamplifier

requires a lower gain to avoid saturating the preamplifier if a large offset voltage is

present.



CHAPTER 4

Literature Review

Today’s CMOS technologies are targeted toward VLSI digital circuits. As the

applications in which these technologies are employed require higher level of integra-

tion and improved performance, the power consumption of a silicon chip rises. Along

with the thinner gate oxides resulting from device scaling, it becomes necessary to

lower the supply voltage used in an integrated circuit (IC). Although this works well

for digital circuits, such an approach presents a number of challenges in the design

of analog circuits. Among these challenges are the limited input range present in

amplifiers and sampling circuits, and the consequent decrease in circuit speed due to

the need for minimizing power consumption.

Data converters are mixed-signal circuits containing both analog and digital cir-

cuits. Hence, ADCs are no exception to the problem described above. When operated

by a low-voltage supply these circuits suffer from reduced signal swings that limit their

dynamic range. These limitations are produced by the constant transistor threshold

voltage (VTH) that results in lower gate overdrive (VGS − VTH) as the supply volt-

age becomes lower. Moreover, unlike digital circuits, analog circuits do not benefit

with lower power dissipation as the supply voltage is reduced [21]. The circuit speed

also becomes affected since operating the transistors in the triode region results in

53
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decreased bandwidth.

As an example of the problems faced in low-voltage circuit design, consider a 12-bit

ADC that must be operated from a 1-V power supply. Generating the quantization

levels using a reference voltage equal to the power supply results in a ±0.5 LSB weight

of 122 µV. For resolutions higher than 12-bits it becomes very challenging to design

such circuits since the LSB approach noise levels. If the trend toward voltage-scaling

continues at its present rate, analog circuits will have to operate at 0.8 volts or lower

[22]. The urgent need for solutions to the problem of low-voltage circuit operation

therefore becomes obvious.

A technology-driven technique available to alleviate the problem of low-voltage

operation is the use of low-Vth CMOS processes. Besides providing transistors with

nominal Vth, it has optional transistors with threshold voltages in the 0.1-0.2 V range

[23]. The latter transistor is used in critical applications where a high gate-overdrive

is needed. A disadvantage of this technique is the higher leakage-currents resulting

from the difficulty of maintaining the transistors in the “off” state. Another drawback

is the increased complexity and costs due to the additional fabrication steps required

by the technology.

In the literature, most of the solutions found to the problem of low-voltage opera-

tion have employed circuit-driven techniques [24–27]. The main reason for this is that

they only use standard CMOS process components, which results in lower costs when

compared to the use of technology-driven techniques. Here, the focus is on modifying

existing circuit structures, or developing new ones, that can work properly with low

supply voltages.

For the reasons outlined above, the ADC prototype presented in this work only

made use of circuit-driven techniques since they represent the most cost-effective

solution to the problem at hand. Hereafter, the presentation focuses on highlighting
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the circuit techniques employed in recent low-voltage SAR ADCs while identifying

their advantages and disadvantages. A study of these provides a better understanding

of the design choices that must be made in low-voltage data converter design.

Since the introduction of the first MOS implementation of a SAR ADC [4,17], its

architecture has remained relatively unchanged [28–34]. As shown in Figure 4.1, the

basic architecture consists of a charge-scaling DAC, a comparator, and digital control

logic to implement the successive approximation algorithm. The only noticeable

change found in some recent implementations has been the separation of the S/H

function inherently present in the DAC [5, 6, 9, 35, 36]. When a charge-scaling DAC

is employed in the ADC, using a separate S/H unit makes the input capacitance

independent from the capacitor array. As a result, the ADC contributes less loading

to the input circuitry or preceding stage.

C� C� 2C� 2�N-1�C�

V�in�

V�ref�

S�1�

Digital�
Control Logic�

Figure 4.1. MOS Charge Redistribution ADC [4].

Table 4.1 summarizes the performance specifications of some of the most recent

low-voltage SAR ADCs found in the literature. As pointed out earlier, there are two

major architecture types for the SAR ADC: (1) the charge-scaling DAC with inherent

S/H circuit and (2) the ADC with separate DAC and S/H circuit. The choice of the

DAC architecture is one of the key aspects in low-voltage designs. It was discussed

in Chapter 3 that voltage-scaling DACs are not used for resolution above 8-bits; the

practical limit being between 4 to 6 bits. For this reason, the majority of SAR ADCs

either employ a single charge-scaling [9, 32, 34] or current-scaling [5, 6] DAC, or they
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use a combination of subDACs [29]. The latter is typically used when it is required

to obtain resolutions above 10 bits.

Table 4.1. Recent SA ADCs found in the literature.

Reference Year Supply Resolution Speed Power Technology
J. Park 2000 1.5 V 10-bit 500 kS/s 1 mW 0.25 um

S. Mortezapour 2000 1 V 8-bit 50 kS/s 0.34 mW 1.2 um
C.J.B. Fayomi 2001 1 V 12-bit 200 kS/s - 0.18 um

F. Kuttner 2002 1.2 V 10-bit 20 MS/s 12 mW 0.13 um
M. Scott 2003 1 V 8-bit 100 kS/s 3.1 uW 0.25 um

J. Sauerbrey 2003 1 V 9-bit 150 kS/s 30 uw 0.18 um

Figure 4.2 illustrates a technique used in [5] to design a low-voltage R-2R ladder.

The technique consists in setting the input common-mode (CM) level of the op amp

close to ground in order to provide enough gate overdrive to the NMOS switches. Since

the sum of the NMOS and PMOS threshold voltages (0.6 and -0.8 V, respectively)

is greater than VDD, the use of transmission gates is not possible. The reason for

this, as illustrated in Figure 4.3, is the presence of a nonconducting zone were both

type of transistors are “off”. The lowest supply voltage that can be used with this

architecture depends on technology and noise considerations. As the supply voltage

decreases so must the input CM level at note VX . Otherwise, the switches won’t

operate properly for a specific technology (i.e., Vth value). On the other hand, setting

VX too close to ground results in increased noise levels that degrade the SNR.

Decoder�
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. .
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B�1�

B�4� . .
 .�

R�f�

B�5� B�6� B�8�

V�x�

V�bias�

V�ref�

V�out�

Figure 4.2. Low-voltage DAC (R-2R ladder) from [5].

In the ADC from [6] two DAC architectures were investigated. The first one,

shown in Figure 4.4, consisted of an R-2R ladder working in voltage-mode. As the
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Figure 4.3. Operation range of a CMOS switch.

DAC output is connected to a high impedance node (i.e., comparator’s input) no

output buffer is required. The other implementation (see Figure 4.5) made use of

MOS transistors to scale the current across the network. Its main limitation is the

need for a low-voltage current-to-voltage converter (IVC) which not only complicates

the design but also limits the circuit’s speed and increases the power consumption.

The proposed IVC from [6] made use of clock boosting techniques to properly turn-on

the switches. This is not a true low-voltage technique due to the excessive oxide stress

generated by the boosted clock signal (usually 2 · VDD).
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Figure 4.4. Low-voltage R-2R DAC from [6].
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Figure 4.5. MOSFET-based current DAC from [6].
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In the conventional charge-scaling DAC from Figure 4.1, switch S1 is normally

referenced to a mid-supply analog ground in order to avoid leakage currents. However,

this can not be done under ultra low-voltage conditions (VDD < Vthn+Vthp) due to the

limited gate-overdrive available for the switches. In [9], the problem was avoided by

separating the S/H function and referencing all switches to VDD and VSS. A second

modification made to the circuit was to incorporate an additional capacitor, acting

as a voltage divider, to make the DAC’s output voltage range compatible with the

comparator’s input range. This guarantees proper ADC operation over the full input

voltage range.

From the previous discussion it becomes obvious that one of the most critical

components in low-voltage DAC design is the MOS switch. For proper function, it

must be referenced to VDD (PMOS) or ground (NMOS) for maximum gate overdrive.

For rail-to-rail input range, the CMOS switch can only be used if VDD > Vthn + Vthp.

The use of clock-boosting or bootstrapping techniques do not constitute true low-

voltage techniques since they introduce reliability issues to the circuit.

The input voltage range of low-voltage op amps is limited to around VDD/2 or

less when their input stage incorporates a single NMOS or PMOS differential pair.

A technique incorporating complementary input differential pairs can be used to

increase the input voltage range [24]. The complementary pair, shown in Figure 4.6,

is composed of an NMOS differential pair and a PMOS differential pair. The first

one operates for common-mode input voltages close to VDD and the latter operates

for common-mode input voltages close to VSS. For mid-supply input voltages, both

differential pairs operate simultaneously. However, the technique can not be used at

ultra-low supply voltages due to a nonconducting gap that exists where both input

pairs are “off”.

Since the comparator requires no compensation, it suffers from the same input
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Figure 4.6. Rail-to-Rail input-stage.

range limitations discussed above. Besides the work presented in [25, 26, 37], few

solutions have been proposed for the design of op amps with rail-to-rail inputs. One

of those solutions is found in [5], where a current-mode approach was followed for the

design of a 1-V comparator (see Figure 4.7). The main limitation of this comparator

is that most of its gain is provided by the latch (the input stage consists of an low-

voltage current mirror). As this leads to a slower time response, the ADC’s conversion

rate was not high (50 kS/s).

V�SH�

V�DAC�
V�DD�/2�

R�

2R�

2R�

V�DD�

latch� latch�V�bias� V�bias�

Figure 4.7. Low-voltage regenerative comparator from [5].

The conventional comparator implementation found in the literature consists of a

preamplifier followed by a regenerative latch. A typical circuit with such architecutre

is shown in Figure 4.8. As mentioned in Chapter 3, the preamplifier is needed to over-

come the latch’s offset voltage, which has limited resolution. This is specially true in

SAR ADCs where no redundant bits are used and the resolution of the comparator
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must be better than an LSB. An advantage of this type of circuit is that the latch’s

regenerative nodes are not capacitively coupled to the input. As a result, this com-

parator exhibits low kickback noise. A disadvantage is the static power consumption

of the preamplifier.
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M�5� M�6�

M�9�

M�8�

M�7�

I�o� I�o�
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Figure 4.8. Typical comparator with a preamplifier and a latch [7].

To reduce the power consumption of the previous comparator, dynamic-type com-

parators have been devised. A circuit example is shown in Figure 4.9. Its operation

proceeds as follows. During the preamplification phase, the “latch” signal is high and

transistors M7 and M8 are off. Transistors M9 and M10 now operate as the active

load of the input transistors M3 and M4. Since transistors M5 and M6 are on, the

input voltage is temporarily stored at the drain nodes of M9 and M10. When the latch

signal falls, the latch stage is activated and the input stage is disabled. Depending

on the polarity of the input signal, one of the drain nodes of M9/M10 will go high

while the other will go low. The digital inverters are used to raise the comparison

outputs to full digital logic levels. In general, the disadvantage of such circuits is the

kickback noise present at the input. Since the latch is typically used as the load of

the input stage, the comparator input is not properly isolated from the latch during

the regeneration phase.



61

V�in�
+� V�in�

-�

latch�

latch� latch�

V�DD�

M�1� M�2�

M�3� M�4�

M�5� M�6�

M�7� M�8�M�9� M�10�

Figure 4.9. dynamic comparator [8].

Although in terms of power consumption it seems more attractive to employ

dynamic-latch comparators, the limited gain provided by their input stages (i.e.,

10 V/V) results in limited resolution, which makes them unattractive for use in SAR

ADCs. These comparators are more frequently found in pipelined [38] or ∆Σ [39]

ADCs. In these ADCs, the use of digital correction techniques allows them to employ

comparators with low resolution (i.e., 4 bits). Although the comparator from [39] was

later used in a successive approximation ADC [9], a low A/D conversion rate (150

kS/s) was obtained due to the speed limitation imposed by the comparator.

A final problem with the previous comparator architectures presented, is the on-

resistance of those transistors operating as switches. Since these switches are not

referenced to ground (NMOS) or VDD (PMOS), their gate-overdrive becomes limited.

As a result, they exhibit a high on-resistance that limits their comparison rate. In

the following chapter a new comparator architecture is proposed based on a modified

low-voltage op amp [11] and the latch circuit from [12]. The critical switches control-

ling the preamplification and latching phases were eliminated by using the Switched

Opamp technique [27]. As a result, a moderate-gain preamplifier can be combined

with a latch to obtain a high resolution comparator with moderate comparison speed.
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Such comparator is well suited for use in successive approximation ADCs.



CHAPTER 5

Circuit Design

The proposed SAR ADC prototype (1.2-V, 8-bit, 615 kS/s, 705 µW) was designed

using IBM’s 0.18µm CMOS process. The technology provides six levels of metal

(copper and aluminum) with Vth values of 0.38 V and -0.4 V for the NMOS and

PMOS transistors, respectively. An extension to that technology provides optional

passive devices for analog circuit design, including MIM (Metal-Insulator-Metal) and

thick oxide MOS capacitors.

In previous chapters the basic data conversion principles were discussed. Under-

standing these concepts provides the necessary knowledge for proper ADC design.

The rest of this chapter focuses on describing the circuit design of the SAR ADC

prototype. The design choices made for each circuit block are discussed and their

respective performance specifications are presented through analytical calculations

and simulations.

Figure 5.1 illustrates the block diagram of the ADC prototype. It consists of a S/H

circuit, a DAC, a comparator, and digital logic. The latter implements the successive

approximation algorithm and generates the necessary control signals to synchronize

the operation of all the ADC circuit blocks.
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Figure 5.1. Block diagram of the SAR ADC prototype.

5.1 Sample-and-Hold Circuit

The conversion process of a successive approximation ADC begins at the S/H

circuit. Figure 5.2(a) shows the S/H circuit used for this work. It is composed of

a sampling switch transistor, MS, and a holding capacitor, CH . Besides these, two

dummy switch transistors, Md1 and Md2, were added. The selection of this circuit was

driven by simplicity and power consumption considerations. The main disadvantage

of such circuit is the distortion introduced by the input-dependent charge injection

of MS. To minimize this source of error, dummy switch compensation was employed

with switches Md1 and Md2 [16]. Moreover, if the comparator’s input capacitance is

negligible, its high input resistance eliminates the need for an output buffer in the

S/H circuit (see section 5.3.3).

V�in�

V�out�

f�S�

M�d1� M�d2�

M�S�

C�S�

(a)� (b)�

f�sample� f�S�

f�S�

f�S�

A� B�

Figure 5.2. (a) S/H circuit [9] and (b) nonoverlapping clock circuit [10].

The operation of the circuit proceeds as follows. When the external “Start” signal
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is asserted, the control logic (SAR) initiates the conversion process by sending a

signal, fsample, to the clock circuit of Figure 5.2(b). This circuit generates a pair of

nonoverlapped signals, fs and fs, that initially are set to “1” and “0” , respectively.

With this condition, sampling switch MS is “on” and dummy switches Md1 and

Md2 are off; setting the S/H circuit into sample mode. During the following clock

cycle, fsample falls to “0” and the nonoverlapped signals interchange states. Now

MS is off and the dummy switches are on, which establishes the S/H circuit’s hold

mode operation. The sampled signal stored in capacitor CH can now be used by to

subsequently produce its corresponding digital code.

It is important to understand how transistors Md1 and Md2 realize the charge-

injection cancellation. When transistor MS is turned off at the end of the sample

mode, the charge present in its channel exits through terminals A and B (see Figure

5.2(a)). Since each dummy switch has its drain and source terminals connected

together, the operation of these transistors reflects that of a capacitor. When the

dummy switches are activated at the end of the sampling mode, Md1 and Md2 absorb

the charge released by MS. Although part of the charge will be absorbed by CH , the

charge-injection error introduced into the sampled value will be smaller.

The settling time of the S/H circuit is another important design consideration, as

it influences the conversion speed of the ADC. The output of the circuit is considered

settled when it is within ±0.5 LSB of its final value. Based on the exponential

response, the permissible settling error in the sampled signal is given by

εsettling = e
−t/RonCS <

1

2N+1
(5.1)

where Ron is the switch on-resistance, CH is the sampling capacitor, and N is the ADC

resolution. For 8-bit accuracy, the settling time is 6.2 time constants (6.2RonCS).
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The sampling switch MS, shown in Figure 5.2, was sized with a width, Ws, of

12 µm. Choosing this width reduces the worst-case on-resistance for input voltages

near mid-supply range (i.e., VDD/2). To minimize charge injection errors, the switch

must be made as small as the linearity and speed requirements allow. Assuming

equal charge injection in nodes A and B, transistors Md1 and Md2 were each sized

with a width, Md, equal to 0.5Ws (i.e., =6 µm)1. Minimum length sizes were used

for all switches. Since nonoverlapping clock signals are used (see Figure 5.2 (b)), the

sampling speed is not influenced by the dummy switches.

For a worst-case condition of Vin = VDD, the switch’s (MS) on-resistance obtained

from PSpice2 simulations was 400 ohms. The actual on-resistance will be smaller since

the maximum input voltage specification for the ADC is 0.55 volts (see section 5.3).

The value of the sampling capacitor was selected as 6 pF, based on speed requirements

and noise considerations. Using equation (5.1), the required settling time for the S/H

circuit is 15 ns.

5.2 8-bit Digital-to-Analog Converter

The DAC used for the SAR ADC is based on the charge-scaling architecture.

A circuit schematic of the DAC is shown in Figure 5.3. The main advantages of

this architecture over current-scaling DACs are the minimal changes needed for low-

voltage operation and its lower power consumption. As is the case for the S/H circuit,

a large comparator input capacitance requires that a buffer be placed at the DAC’s

output. This buffer is needed to isolate the DAC output voltage from the voltage

1The charge injected at each terminal depends on the impedance seen by these and by the clock
transition time. As a result, the actual charge injected by a transistor can not be predicted. However,
using Wd = 0.5Ws slightly reduces the charge injection error.

2The PSpice software is copyrighted by Cadence Design Systems, Inc.
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attenuation introduced by the nonlinear input capacitance (see section 5.3.3).
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Figure 5.3. 8-bit charge-scaling DAC.

The circuit, as shown in Figure 5.3, has two modes of operation. During the

sampling phase of the S/H circuit, the SAR logic enables the DAC’s reset mode. At

this time, switches MR and MN8 through MN1 are activated and the capacitor array

is discharged. Once the reset phase ends, which coincides with the end of the S/H

circuit’s sampling phase, theh reset switch MR is deactivated and the dummy switch

Md partially cancels the offset error introduced by MR. The second operating mode

marks the beginning of the successive approximation cycle. As explained in section

2.2.4 it lasts N clock cycles.

5.2.1 Capacitor Array

The accuracy of the DAC sets the limit on the maximum resolution that can be

obtained in the ADC. This is directly influenced by capacitor matching. In order

to minimize matching errors, the array design begins by properly sizing the unit

capacitor, C0, for the required linearity (i.e., 8-bits). The remaining capacitors are

designed based on the required resolution and the binary weighted values of the unit

capacitor.
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In the design of the DAC, parasitic capacitances must also be taken into account.

Generally, the bottom plate of the capacitor has larger parasitics than the top plate

[4, 34]. To minimize the voltage attenuation introduced by these, the top plate of

the capacitors are connected to the DAC output node. However, this increases the

settling time since the switches will drive a larger capacitive load.

Accounting for array parasitics and buffer input capacitance, the output voltage

of the DAC becomes

Vout = Vref

(
Carray

Ctotal + Cs + Cbuffer

)
(5.2)

In equation (5.2), Vref represents the reference voltage which is equal to the supply

voltage. Carray is the total array capacitance that must be charged in a given bit

approximation cycle. Ctotal and Cbuffer are the total array capacitance and the buffer’s

input capacitance, respectively. CS is the scaling capacitor used to adjust the DAC’s

output voltage according to the comparator’s input voltage range.

To save power consumption, the value of the unit capacitor should be as small as

the linearity requirements allow. In [34] and [9], the chosen unit capacitance values

were 15 fF and 20 fF, respectively. These choices were made for a 0.25 µm process in

[34] and for a 0.18µm process in [9]. Based on the limited process data available and

the design presented in [9] for a similar process (i.e., 0.18 µm), a 20 fF unit capacitor

was chosen in this work. The capacitor array is not silicon area intensive thanks to

the large capacitor densities provided by the process (up to 7.9 fF/µm2). Table 5.1

shows the capacitor values for the array.

The value of the Cs capacitor was selected based on the input voltage range of

the ADC, as imposed by the comparator (i.e., 0 - 0.55 volts). This is required in

order to guaranteed proper comparator operation over the whole input range. With
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Table 5.1. Design parameters for the capacitor array.

Capacitor Value
C0 20fF
C1 20fF
C2 40fF
C3 80fF
C4 160fF
C5 320fF
C6 640fF
C7 1,280fF
C8 2,560fF
Cs 6,050fF

Carray = 5120fF and Vref = 1.2V , the Cs capacitor is calculated from the following

equation

Vout,max = Vref

(
Carray

Carray + Cs

)
(5.3)

With the reference voltage and output range of the DAC already established, the

least-significant-bit can be calculated. Using equation (2.1) and the selected values

for Vref and Cs, the LSB value of the 8-bit DAC is 2.15 mV. Since the quantization

levels of the ADC are set by those of the DAC, the LSB of the ADC is equal to that

obtain with equation 2.1.

5.2.2 Switches

For low-voltage operation, the transistor switches need maximum gate overdrive

(i.e., VDD − |Vth|). To achieve this, the voltage references must be selected as VDD

and ground for the PMOS and NMOS transistors, respectively. The main disadvan-

tage of this approach is the degradation of Power Supply Rejection Ratio (PSRR).

Variations in power supply voltage will be reflected in the DAC’s output voltage and,

consequently, in the output codes of the ADC. Under extreme operating conditions
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following this approach will result in conversion errors, requiring the use of a supply-

independent reference voltage. The downside to this solution is that the ADC’s power

consumption will increase due to the complexity of the reference voltage circuitry.

The settling time of the DAC depends on the RC path created by the switch on-

resistance and the array capacitance. When used as part of a SAR ADC, the DAC’s

worst-case settling time occurs during the approximation of the MSB (i.e., ≈VDD/4).

This case corresponds to a transition in the input code from 00000000 to 10000000

and, hence, the charging of capacitor C8 (=256C0). Similar to the S/H circuit, the

required settling time must comply with equation (5.1).

A fast time response can be obtained by selecting large transistor widths for the

switches. However, this will produce an increase in parasitic capacitances, degrading

the accuracy of the DAC. When designing the switches, a tradeoff must be made

between speed and accuracy. In this work, the switches were designed with the

smaller possible widths that would satisfy the speed requirements while complying

with equation (5.1). Table 5.2 summarizes the design parameters for the DAC.

Table 5.2. Design parameters for the switch network.

Device Design value Ron TS = 6.2RonC
MN 5 µm 960 Ω 15.27 ns
MP 15 µm 655 Ω 10.4 ns
MR 1.2 µm - -
Md 0.6 µm - -

As shown in Figure 5.3, the NMOS transistors (MN) are used to connect the

capacitors to ground, while the PMOS transistors (MP ) are used to connect the

capacitors to VDD. Using equation (5.1), the estimated DAC settling time is 10.4

ns. Although the NMOS switches have a slightly larger on-resistance, this is not

of concern since the worst-case discharge only occurs during the reset phase. In

this phase node VD is also connected to ground through reset switch MR, creating
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a short circuit that accelerates the discharge of the capacitor array. To reduce the

charge injection error introduced by MR, its size must be chosen close to minimum

size. A dummy switch, MD, is used to suppress the charge injected by MR. The

resulting offset error obtained from simulation was 10 µV, well below the ±0.5 LSB

specification.

5.2.3 Conversion Time

The conversion time of the ADC depends on three things: the duration of the

sampling phase, the settling time of the DAC, and the time required by the compara-

tor to accurately resolved the difference between the sampled signal and the DAC’s

output. It must be noted that since the hold command is issued at the beginning of

the first approximation cycle, enough time must be given for the sampled value to

settle. The conversion time is then define as

Tconversion = tsampling + N(tDAC + tcomp) (5.4)

where the buffer’s settling time is negligible compared to that of the DAC and the

comparator, tDAC and tcomp, respectively.

5.3 Comparator

The ultimate limit on the conversion time of a SAR ADC is set by the comparator.

The conversion of the analog signal into a digital code is done through the comparator

by successively approximating each code bit. Since eventually the comparator must

be able to resolve the input signal down to ±0.5 LSB of precision, a high precision
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circuit is required. Consequently, each comparison must be done in the shortest

possible time frame.

5.3.1 Proposed Circuit

Chapter 3 discussed the benefits of a comparator architecture that uses both

a preamplifier and a latch circuit. Specifically, it explained the speed/resolution

tradeoff that can be made by combining a moderate-gain preamplifier with a fast

regenerative latch. Chapter 4 highlighted the speed degradation found in recent low-

voltage comparators. This problem is produced by the limited gate overdrive of MOS

switches and the time constant resulting from their high on-resistance. As a result,

the minimum allowable supply voltage is limited. Moreover, the low-gain provided

by the preamplifier limits their use in successive approximation ADCs.

To overcome the above mentioned limitations, the solution proposed in this work

consists of employing the Switch Opamp technique [27] in the preamplifier stage of the

comparator. By making the output stage switchable, the critical switches connecting

the preamplifier with the latch can be eliminated. In this way, the speed performance

of the comparator will not be limited by a signal path with high resistance. Further-

more, during the regeneration phase the preamplifier is disconnected from the latch,

thus reducing the kickback noise reflected to the comparator input.

The proposed “Switched Opamp Comparator” is based on the low-voltage op amp

presented in [11] and the dynamic latch used in [12]. These are shown in Figure 5.4

and Figure 5.5, respectively.

The low-voltage op amp is composed of three stages. The first stage is a PMOS

differential pair (M1/M2) with an NMOS cross-coupled active load (M4-M7). The

NMOS cross-coupled load also serves as a Common-Mode Feedback (CMFB) circuit

that maximizes the signal swing by maintaining the output CM level near mid-supply
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range. A common-source inverter (M15/M14 and M17/M16) is used as the output

stage, with transistors M12/M13 acting as its CMFB circuit. A folded-cascode stage

(M9/M11 and M8/M10) is use to raise the low output level of the first stage and

properly drive the output stage.

The main characteristics needed in a preamplifier are moderate gain (i.e., 40-60

dB) and high bandwidth. The gain sets the maximum resolution for the comparator,

while the bandwidth determines its time response. The circuit from Figure 5.4 was

deemed suitable for this work, since its performance specifications for the original

application [11] provided high-gain (100 dB) and 205 MHz3. The small-signal voltage

gain of the op amp is given by [40],

Av =

( −gm1ROrO9(1 + gm11rO11)

RO(1 + gm11rO11) + rO11 + rO9

)
· gm14(rO14//rO15) (5.5)

where RO = rO2//rO7.

The dynamic latch of Figure 5.5 consists of complementary (NMOS and PMOS)

cross-couple loads. These are followed by inverters that raise the output to full digital

logic levels. The use of both types of transistors results in a faster time response (i.e.,

<2 ns).

The circuit operation proceeds as follows. Once a large input (i.e., 100 mV)

has been applied between terminals V +
in and V −

in , the latch is activated by signal

“phi” at the gate of M3. Using positive feedback, the PMOS flip flop starts the

regeneration process. Once the drain and gate voltages of the NMOS flip flop have

reached appropriate levels, the NMOS flip flop is activated and contributes to the

regeneration. Operated at 1.5 V in the original work [12], the latch provided 4-bit

3This specifications are based on the use of the Replica Amplifier technique. The specifications
of a single op amp were not presented in [11]
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accuracy (i.e., 93.75 mV) at a regeneration speed of 2 ns and a power consumption

of 69 µW.

The op amp from Figure 5.4 was modified as follows. First, transistors M12/M13

were changed to operate as switches instead of acting as a CMFB circuit. The CMFB

of the first stage is enough to allow proper operation of the latch, which will set the

comparator output into one of its binary states. Then, PMOS switches M18/M19

were added between VDD and the drain terminal of transistors M15/M17. The NMOS

switches disconnect the output stage from ground while the PMOS switches discon-

nects the output stage from VDD. With these modifications, complementary nonover-

lapping clock signals can be used to operate these switches and turn “on” and “off”

the output stage. The control signals are derived from the SAR’s master clock, with

a circuit such as that shown in Figure 5.2(b). Transistors M23A/M24A were added for

resetting the comparator outputs during the preamplification phase. The proposed

comparator is shown in Figure 5.6.

It is important to note that since only a PMOS differential pair was used in

the input stage, the Input Common-Mode Range (ICMR) of the comparator is not

defined as rail-to-rail. To guaranteed proper comparator operation, the DAC circuit

was modified as shown in Figure 5.3 [9]. The comparator’s minimum and maximum

common-mode voltages, V −
icm and V +

icm respectively, are given as

V −
icm = 0 (5.6)

V +
icm = VDD + Vthp − VDS3 (5.7)

With an overdrive voltage, VDS3, of 200 mV and Vthp being equal to 400 mV, the

maximum common-mode voltage allowed is 0.6 V. This specification allows all tran-

sistors to operate in the saturation region. To guarantee proper operation against
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process variations, the ICMR of the comparator was defined from 0 to 0.55 volts.

5.3.2 Preamplifier and Latch Design

Table 5.3 summarizes the design parameters used for the comparator circuit pre-

sented in the previous section. To reduce the effects of channel length modulation

upon matching, the length of transistors (M1/M2) was selected as two times the min-

imum length. As suggested in [41], the cross-coupled load (M4-M7) used four times

the minimum length. To obtain optimal regeneration speed, the ratio between the

width of the PMOS (M21/M22) and NMOS (M23/M24) transistors must be less than

the ratio of the conductivity of the NMOS and PMOS transistors [12]. It must be

highlighted that to minimize the offset errors, a physical realization would required

the use of common-centroid layout techniques for the complete circuit.

Table 5.3. Design parameters for Switch Opamp comparator.

Device W (µm) L (µm)
M1/M2 75 0.36

M3 30 0.36
M4 − M7 30 0.72
M8/M9 25 0.36

M10/M11 30 0.36
M15/M17 25 0.36
M14/M16 15 0.36
M18/M19 20 0.36
M12/M13 10 0.36

M20 10.8 0.18
M21/M22 21.6 0.18
M23/M24 10.8 0.18

M23A/M24A 10.8 0.18
M25/M26 28.8 0.18
M27/M28 14.4 0.18

To simplify the design of the comparator, circuit biasing was done using the circuit

shown in Figure 5.7. However, to provide temperature-insensitive biasing, a circuit
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such as that presented in [11] should be used. The input differential pair consumes

94 µA of static current, while the folded cascode and output stage consume 150 µA

and 44 µA, respectively. As the output stage is “off” for half a clock cycle, the

power consumption is dominated by the first stage of the preamplifier. The dynamic

behavior of the latch results in negligible power consumption.

5.3.3 Input Capacitance

In the ADC prototype presented in Chapters 5 and 6, the S/H circuit and the D/A

converter were affected by the input capacitance of the comparator. This capacitance

is given by the differential pair employed in the input stage of the preamplifier, as

shown in Figure 5.8 below.

The comparator’s input capacitance is given by the corresponding gate capacitance

of input transistors M1/M2. The gate capacitance of an MOS transistor is described

by the following formula

CG = Cox · W · L (5.8)

where Cox is the transistor’s oxide capacitance, W is its channel’s width, and L is its

drawn channel length.
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Figure 5.7. Biasing circuit for the comparator.
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Figure 5.8. Preamplifier’s input stage: a PMOS differential pair.

The gate capacitance is composed of three main components: the gate-to-source

capacitance, CGS, the gate-to-drain capacitance, CGD, and the gate-to-bulk capac-

itance, CGB. In practice, the CGB component is negligible compared to the other

terms, such that the gate capacitance can be approximated as

CG ≈ CGS + CGD

The problem with this parasitic capacitance and, hence, the comparator’s input ca-

pacitance is that its value depends on the voltage applied to the gate terminal. As

a result, the value of CG follows a nonlinear dependence on the gate voltage. For

the ADC prototype, both the S/H circuit and the D/A converter exhibit an output

voltage range from 0 to 0.55 volts. As the output of these two circuits will not neces-

sarily have the same output voltage at a given time, the capacitance seen from their

respective comparator connections will not be the same. This results in a voltage

attenuation that will differ among the two outputs, leading to possible conversion

errors.

To solve the above problem, buffers were added at the outputs of the S/H circuit

and the D/A converter. As shown below, the buffers consists of a one-pole op amp

macromodel, as presented in [42]. The op amp has a low input-capacitance, Cin,
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a high input-resistance, Rin, and an open-loop gain given by the voltage-controlled

source ea0. The buffer’s bandwidth is 200 MHz, as given by resistor Req and capacitor

Ceq.

* Dominant-pole op amp (buffer) macromodel

* open-loop gain (a0)=10 V/mV, f3db=200MHz

.SUBCKT Buffer Vn Vp Vout

Rin Vn Vp 500Meg ; input resistance

ea0 1 0 Vp Vn 10000 ; open-loop gain

Req 1 2 8k

Ceq 2 0 100fF ; f3db=1/2*pi*Req*Ceq

ebuf 3 0 2 0 1 ; output buffer

ro 3 Vout 50 ; output resistance

.ends Buffer

Although few implementations at the integrated circuit level are found in the literature

[43], there are a number of discrete commercial implementations which could be ported into

an IC with the ADC prototype presented in this work. More importantly, the performance

specifications of those commercial circuits (i.e., Texas Instruments OPA 354) are similar or

better that those specified in the macromodel used here.

A better alternative, not evaluated in this thesis, is to design the preamplifier of the

comparator as a multi-stage gain op amp (typically 2-3 gain stages). By designing the first

gain-stage with smaller transistors, the input capacitance of the comparator can be reduced.

However, each gain-stage must be designed with higher bandwidth so that the settling time

or comparison rate of the comparator remains relatively the same.
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5.3.4 Simulation Results

To validate the design of the comparator and obtain its performance specifications, a

number of Spice simulations were performed. The results obtained from these are now

discussed. Then, the simulation results obtained for the S/H circuit, the DAC and the

comparator (sections 5.1, 5.2, and 5.3, respectively)), will be used to calculate the conversion

speed of the ADC. The discussion ends with a summary of the performance specifications

obtained for various comparator designs considered.

Frequency Response

As shown in Figure 5.9, the preamplifier achieved a voltage gain of 54 dB up to a 3dB

frequency (f3dB) of 4.2 MHz. Together with the exponential transient response of the latch

stage, this lead to a resolution of 1 mV (±0.5 LSB).

Figure 5.9. Preamplifier frequency response.

To verify that the resolution of the comparator was not limited by circuit noise, AC-

sweep noise simulations were performed. As obtained from the simulations (see Figure

5.10), the input-referred circuit noise is less than 14nV/
√

Hz up to a frequency of 1MHz.



82

Figure 5.10. Preamplifier input (bottom) and output (top) noise response.

Transient Response

Figure 5.11 shows the response of the preamplifier to an input step of 1 mV. This is one

of the most stringent tests perform on a comparator, since this is the case where the circuit

takes the longest time in resolving the polarity of its input. It is seen that after 80ns the

preamplifier output has already reach 800 mV.

Figure 5.11. Preamplifier response to an input step of 1-mV input step.
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Since the offset voltage of a typical latch has a value between 30 and 100 millivolts, the

preamplifier’s output level during the above mentioned case is sufficient to achieve proper

comparator operation. For this reason, the latch can be activated right after the specified

settling time has being reached even though the preamplifier’s output is not fully settled.

The response of the complete comparator circuit to such input step (i.e., 1 mV) is shown

in Figure 5.12.

Figure 5.12. Comparator response to an input step of 1-mV.

Table 5.4 summarizes the performance specifications obtained for various designs of

the proposed comparator. Originally, the design was done using AMI’s 0.5 µm process.

However, as seen from the table, a lower supply voltage was achieved using IBM’s 0.18 µm

process. The reason for the lower supply voltage achieved was the use of transistors with

substantially lower threshold voltages (Vthn = 0.38V and Vthp = −0.4V , against Vthn = 0.6V

and Vthp = −0.9V for AMI’s process). As a result, the first design was discarded in favor

of the improved performance obtained with the IBM process.

Two designs were made for this process. The first design made (labeled #1) achieved

a settling time of 40 ns; a decrease of 25 ns when compared to the original design. This
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Table 5.4. Performance specifications of various comparator designs.

AMI 0.5 µm IBM 0.18 µm #1 IBM 0.18 µm #2
Supply voltage 1.8V 1.2 V 1.2 V

Gain 42 dB 48 dB 54 dB
Resolution 1.2 mV 1 mV 1 mV

f3dB 13 MHz 19 MHz 4.5 MHz
Propagation delay 65 ns 40 ns 90 ns
Power dissipation 1.92 mW 1.54 mW 690 µW

SR+ - - 39.25 V/µs
SR− - - 15.3 V/µs

Input capacitance 0.5 pF 0.1 pF 0.13 pF
V +

icm 0.6 V 0.55 V 0.55 V
V −

icm 0 V 0 V 0 V

Input noise 41.05 nV/
√

Hz 8 nV/
√

Hz 14 nV/
√

Hz

can potentially lead to a higher ADC conversion rate. A slight improvement is also found

in gain and, hence, resolution. Another notable difference can be seen in the comparator’s

input capacitance. Since the AMI process uses larger devices, the gate area occupied by

each transistor results in large parasitic capacitances. Regardless of the application for

which the comparator is employed, these capacitances can produce excessive loading to the

driving circuitry.

The downside of the previous design is the power consumption obtained (i.e., 1.54 mW).

Since the focus of this thesis was to achieve low power consumption, the design was modified

(design #2) in order to decrease the power consumption of the circuit. The use of a class

A output stage sets an absolute minimum in the power consumption of the circuit. Shown

at the far right column of Table 5.12, the power consumption was reduced by a 50% factor

compared to design #1. This comes at the cost of speed reduction, as reflected by the

decrease in preamplifier’s bandwidth and, hence, settling time. The operation of the circuit

was also verified against temperature variations. The circuit was deemed operational for a

temperature range from 200C to 550C.

Based on the worst-case settling times presented in sections 5.1 through 5.3, equation

(5.4) can now be used to calculate the conversion time. Accounting for the S/H circuit and

DAC settling times, a 5 MHz (180 ns) clock signal was used for the SAR logic. One half
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of the clock period is used for the preamplification phase and the other half is used for the

regeneration (latch) phase. Based on the 9 clock cycles (see section 5.4) needed by the SAR

ADC to complete a conversion, the conversion speed is 615 kS/s.

5.4 Successive Approximation Register (SAR)

The successive approximation logic is based on the ring counter/shift register presented

in [44]. Figure 5.13 shows the circuit schematic and Figure 5.14 illustrates its operation

through a timing diagram. During the reset phase (clock cycle #1) all flip flops (FFs)

are cleared; this activates the sample phase and triggers the start of a new conversion

cycle. In the following clock cycle, the sample phase ends, setting the S/H circuit into hold

mode. During the following eight clock cycles (2 through 9) the SAR logic uses the DAC

and comparator to convert the sampled signal into a digital code (signals D8 through D1).

The second row of FFs is used to store the decisions made by the comparator during each

successive approximation cycle. An additional clock cycle was added to read the output

data at the end of the conversion cycle, as indicated by the “Ready” signal.

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

Q�D�

Q�

S�

R�

V�DD�

Clear�

Clear�

Q�D�

Q�

S�

R�

D�8� D�7� D�6� D�5� D�4� D�3� D�2� D�1�

V�COMP�

f�S�

Clk�
Start�

Q�D�

Q�

S�

R�

Ready�

V�DD�

Figure 5.13. Circuit schematic for SAR logic.

The FFs and additional SAR logic were custom designed for this circuit. To minimize

power consumption, small devices (5 µm) were used for the NMOS transistors. PMOS

transistors were sized four times as large in order to obtain a midpoint (VM ) transition

region near mid-supply voltage. When the ADC is disabled (Start), no clock transitions
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Figure 5.14. Timing Diagram for the SAR logic.

occur at its internal nodes so that the power consumption is dominated by the static power

in the input stage of the comparator’s preamplifier (488 µW).



CHAPTER 6

Simulation Results

Extensive verification and testing are required to correctly specify the performance of

an ADC. In this work, the ADC design was validated through a number of Spice simu-

lations based on physical test setups. Although a large number of parameters is usually

provided for commercial ADCs, definitions for all of them are not clearly established among

manufacturers. For this reason, the parameters presented here are limited to those found

in recent publications of low-voltage ADC prototypes.

6.1 Static Measurements

The static (or DC) measurements are used to determine the time-independent param-

eters that characterize the performance of an ADC. The main parameters that are used

for characterizing these circuits are DNL and INL. Once this parameters are measured, the

input/output characteristic of the ADC can be obtained.

Figure 6.1 illustrates a typical setup used for the physical characterization of ADCs. For

an N-bit converter, it uses a DC reference source that slowly increases in value up to the

full-scale range, over a test time equal to 2N conversion cycles. In a converter with minimal

errors, the resulting data will contain a digital code for each quantization level. In practice,

the code widths are not equally spaced by 1 LSB. This requires to take more samples for

each quantization level so that every code width can be accurately determined.
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Programmable�
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R�1� R�2�V�error�

V�out�

Figure 6.1. Test setup for static (or DC) measurements in an ADC [1].

The ADC presented in Chapter 5 was characterized with a transient simulation. The

total transient simulation time was 460.8 µs to include the 256 digital codes. A full-scale

ramp signal (from 0 to 0.55 volts) was applied, and a digital output code was produced

every 1.8 µs. In essence, the sampled input voltage of the ADC is incremented by an LSB

for each successive conversion cycle until the full-scale value is reached.

Using a Matlab script (see Appendix A), the analog estimate corresponding to each

digital code was calculated from the PSpice simulation output file. Figure 6.2 and Figure

6.3 show the DNL and INL plots, respectively. From the figures, it can be seen that the

maximum DNL error does not exceed ±0.45 LSB. Similarly, the maximum INL error does

not exceed ±0.47 LSB. Since an INL specification of ±0.5 LSB was obtained, it can be

said that the response of this ADC is monotonic and, hence, no missing codes resulted.

The major contribution of DNL and INL errors can be attributed to the S/H circuit’s

input-dependent charge injection and the limited number of samples per code taken.

6.2 Dynamic Measurements

The dynamic measurements are used to determine the time-dependent parameters of an

ADC. In this type of measurements it is of interest to study the behavior of the converter

under high-frequency input signals.

Figure 6.4 illustrates a typical test setup for the dynamic characterization of an ADC.

The main idea is to analyze the frequency spectrum of the converter across the full input

signal bandwidth. A full-scale sinusoidal signal is applied to the ADC under test and,
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Figure 6.2. Differential Nonlinearity for the 8-bit ADC.
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Figure 6.3. Integral Nonlinearity for the 8-bit ADC.
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using a DAC of higher resolution (i.e., at least two more bits), the analog equivalent of the

digital output is analyzed with a distortion analyzer. From the frequency output spectrum,

parameters like SNR, SFDR, and ENOB can be calculated.

Programmable�
Sine Wave�

Source�

Low-pass�
Filter�

ADC�
Under Test�

Test�
DAC�

N�

Low-pass�
Filter�

Distortion�
and�

Spectrum�
Analyzer�

Figure 6.4. Test setup for dynamic measurements in an ADC [1].

For the ADC presented in this work, the dynamic characterization was done by applying

a full-scale sinusoidal signal in a transient PSpice simulation, lasting 20 ms. Such a long

simulation time is required in order to obtain more than 10,000 data points and accurately

described the frequency spectrum of the converter. At the simulation level, it is important

to select an input signal frequency at least 20 times smaller than the sampling frequency

(i.e., fsignal=19.67 kHz and fS=615 kHz). Choosing a frequency close to the Nyquist-rate

will not allow to identify the harmonic components needed for the calculations.

Figure 6.5 illustrates the ADC’s output spectrum for an input signal of 19.67 kHz

and a sampling frequency of 615 kHz. Due to the difficulty in estimating noise floor for

Spice simulations, parameters like SNR can not be calculated from Figure 6.5. As the

noise component is dominated by quantization noise, the SNR specification is given by the

theoretical value of 6.02N + 1.76 dB. The proper parameter to look for is the Spurious Free

Dynamic Range (SFDR). The SFDR is defined as the ratio of the maximum signal amplitude

to the amplitude of the largest harmonic component. The resulting SFDR specification is

approximately 63 dB. As expected from the good integral linearity, the SFDR is greater

than the theoretical SNR value of 49.92 dB. In table 6.5 the performance specifications of

the ADC prototype are summarized.
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Table 6.1. Performance specifications for ADC prototype.

Technology IBM 0.18 um
Supply Voltage 1.2 V

Resolution 8 bits
Input range 0 - 0.55 V

Convertion rate 615 kS/s
Power consumption 705 µW

DNL ±0.5 LSB
INL ±0.5 LSB

SFDR (fin=19.67 kHz @ 615 kHz) 63 dB
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6.3 Performance Comparison of ADCs

To validate the design of the ADC prototype and verify that the research goals were

met, it is useful to compare the ADC’s performance with that of recent low-voltage SAR

ADCs found in the literature. Table 6.2 below summarizes the performance specifications

obtained for the ADC prototype along those found in recently-published ADCs. Based

on table 4.1 from Chapter 4, it includes the characterization parameters obtained in this

chapter.

Table 6.2. Comparison of ADC prototype against recent ADCs.

Reference Supply Resolution Speed Power Technology DNL INL SFDR
[29] 1.5 V 10-bit 500 kS/s 1 mW 0.25 µm < 0.7 < 1.25 -
[5] 1 V 8-bit 50 kS/s 0.34 mW 1.2 µm < 0.47 < 1.14 -
[34] 1 V 8-bit 100 kS/s 3.1 µW 0.25 µm < 0.5 < 0.5 60 dB
[9] 1 V 9-bit 150 kS/s 30 µW 0.18 µm < 0.8 < 0.8 < 65 dB

SO Comparator 1.2 V 8-bit 615 kS/s 705 µW 0.18 µm < 0.5 < 0.5 63 dB

It is seen from table 6.2 that even some ADCs found in the literature do not comply

with the typical DNL and INL specifications of ±0.5 LSB. In this work the static specifi-

cations obtained did not surpass the previously mentioned limit. Since many publications

included experimental data for their designs, most of these only provided the SNR speci-

fication. However, [9, 34] included the FFT plot from which the SFDR specification could

be estimated. The SFDR figure obtained in this work is very similar to that found for

the ADCs from those publications, which was around 60-65 dB. It can be concluded that

the ADC prototype has static and dynamic specifications at par with those found in the

literature. Although the supply voltage and power consumption specifications are slightly

larger than those found in [34] and [9], the conversion rate was greater than that obtained

in [29] with a lower supply voltage.
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6.4 Comparator Performance

As a way to validate the design of the Switched-Opamp (OP) Comparator presented in

section 5.3, Spice simulations of the circuit were performed (refer to sections 6.1-6.2. The

obtained ADC specifications were at par or exceeding those found in the literature [5,9,29,

34]. To validate the figures of merit of the SO Comparator, its performance against that

of similar circuits must be compared within the same ADC architecture. This comparison

must be done using the same supply voltage and with the same technology process.

In order to better assess the conversion rate obtained with the SO Comparator, the SAR

ADC prototype was simulated using three additionals comparators [9,12,45]. The analysis

presented here has not taken into consideration the input-referred offset voltage produced

by mismatch. In order to minimize these errors below the required comparator resolution,

common-centroid layout [18] and offset-cancellation techniques [3, 20] must be employed.

The first comparator evaluated is based on a complementary (PMOS) version of the

circuit presented in [45]. Shown in Figure 6.6, the circuit operates as follows. When the

Clk signal is high, the supply current is cutoff by cascode switches MP5 and MP6, while the

outputs (Vout/V out are reset to VDD through switches MN3 and MN4. When the Clk is low,

the differential input signal applied between the gate of transistors MP3 and MP4 is latched

by the comparator through the regeneration loop consisting of transistors MN1/MN2 and

MP1/MP2.

V�DD�

Clk� Clk�

V�out� V�out�

M�P1� M�P2�

M�P3� M�P3�

M�P5� M�P6�

M�N1�M�N3� M�N4�M�N2�

V�in�
+� V�in�

-�

Clk�

Figure 6.6. Regenerative comparator from [12].

The second comparator considered is shown in Figure 6.7. It is based on the circuit
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presented in [9]. The circuit consists of a PMOS differential pair M2/M3 and a cross-

coupled load M5/M6. The output of the comparator is reset to VDD through transistors

M1 and M7. When the Clk signal toogles to high, the differential input provided between

the V +
in and V −

in terminals is latched by the regeneration loop M5/M6. Based on which

drain terminal (M2/M3) has a higher voltage, one of the outputs will go high and the other

low.

V�DD�

M�4�

M�2� M�3�

M�1� M�5� M�6� M�7�

V�in�
+� V�in�

-�

Clk� Clk�

V�b�

V�out� V�out�

Figure 6.7. Regenerative comparator from [9].

The last comparator evaluated is based on the circuit presented in [12]. Figure 6.8 shows

the comparator’s schematic. The preamplification stage consists of a PMOS differential pair

(M1/M2) and a triode load (M3/M4). Cascode switches M5 and M6 are used to enable

operation of this stage when the Clk signal is high. The latch stage consists of PMOS device

M11 and the regeneration loop formed by transistors M9/M10 and M7/M8. When the Clk

signal toogles to low the input stage is disabled and M11 turns on, biasing the latch stage

and allowing the comparator to latch the input signal.
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Figure 6.8. Regenerative comparator from [12].
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Table 6.3 summarizes the simulated performance specifications obtained for each com-

parator circuit, including the Switched-Opamp comparator. All circuits were designed using

IBM’s 0.18 µm process models, operating with a power supply of 1.2 V. The design was

targeted for a resolution of 1 mV and a power consumption within 400-600 µW. The Figure

of Merit (FOM) used to compare the circuits was defined as the ratio of clock rate to power

consumption. It can be seen from the table that the highest comparison rate was obtained

with the SO Comparator proposed in this work. Although its power consumption was higher

than that of the other three circuits, it obtained a better FOM. It is worth to mention that,

even though the circuits from [12,45] have been presented in [12] with regenerations speeds

of 2 ns, the design reported on these articles was targeted for a very low resolution (4-bit

at VDD=1.5 V). As a result, the speed of these circuits was not limited by the minimum

detectable input signal. Since our target specifications required a comparator resolution of

1 mV, a longer time was required to properly resolve the input signal and produce a valid

binary output.

Table 6.3. Simulated comparator performance specifications.

Author VDD Power Resolution Time Clock FOM
Chul Song 1.2 V 510.15 uW 1 mV 210 ns 4.76 MHz 0.933058
Amaral 1.2 V 505.28 uW 1 mV 210 ns 4.76 MHz 0.942051

Sauerbrey 1.2 V 494.8 uW 1 mV 200 ns 5.26 MHz 1.064777
SO Comparator 1.2 V 604 uW 1 mV 120 ns 8.33 MHz 1.379139

As a final analysis step, each designed comparator was simulated as part of the SAR

ADC prototype presented in Chapter 5. All were operated at the clock rate presented in

Table 6.3. A ramp signal was applied to the converter, covering input values near the lower

(00000000...00000011), middle (011111110...10000010), and higher (11111100...11111111)

region of the specified input range (0 to 0.55 volts).

Table 6.4 presents the estimated ADC performance specifications for each comparator,

based on the above mentioned simulation results. It can be seen that since the SO Com-

parator can operate at a higher clock frequency, the attainable ADC conversion rate was

higher when employing this comparator circuit.
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Table 6.4. Estimated ADC performance specifications.

Author VDD Resolution Power Speed
Chul Song 1.2 V 8-bit 520 uW 529 kS/s
Amaral 1.2 V 8-bit 515 uW 529 kS/s

Sauerbrey 1.2 V 8-bit 505.3 uW 555 kS/s
SO Comparator 1.2 V 8-bit 628 uW 925 kS/s



CHAPTER 7

Conclusion

The design of analog-to-digital converters is one of the most critical and challenging

aspects in the development of new and more powerful electronic systems. The trend toward

system on a chip (SoC) solutions, and hence low-voltage operation, requires the analog

circuit components to reside on the same chip as the digital circuits. This results in savings

of area and power consumption, essential for extending the battery life of current portable

equipment or remote location devices, such as that used in instrumentation systems. De-

pending on the type of measurement to be monitored by the data acquisition system, the

speed requirements are also a concern. Of the A/D converter choices available today, the

successive approximation (SAR) ADC represents the optimal trade-off among speed and

power consumption within low- to medium-resolution requirements.

The design of low-voltage low-power SAR ADCs makes imperative greatly minimizing

the errors associated with technology matching and the SNR degradation. The circuit

design techniques applied must result in an ADC with reasonable performance specifications

when compared to their high-voltage, or nominal, counterparts. Most of these techniques

are based on the use of modified circuit structures that optimize the use of the available

voltage headroom. In this way, active devices such as comparators do not suffer from the

limited gate-overdrive present in transistors. As a result, the performance of such circuits

is optimized. The work produced with this research resulted in the complete design of a
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SAR ADC based on the use of recently-published low-voltage circuit techniques and the

creation of a new architecture for one of its most critical circuit blocks, the comparator.

These included:

• Charge injection cancellation to eliminate undesired offsets.

• Sampling-switch compensation to reduce input-dependent charge injection.

• DAC output range adjustment for compatibility with the comparator’s input range.

• Elimination of critical switches in the comparator architecture that can result in speed

degradation.

The effects of channel charge-injection in S/H circuits and the DAC’s input/output

characteristic were discussed in Chapter 3. The results obtained from Spice simulations

show that, when switches are referenced to VDD or ground, the use of dummy switches

helps in reducing the charge-injection errors below 20 µV.

The power consumption requirements imposed for the ADC design, restricted the choices

of S/H architectures to open-loop configurations that suffer from input-dependent charge-

injection. To mitigate this nonlinear error, the sampling switch was compensated using

dummy switches at its drain and source terminals. These resulted in sampled signal errors

less than ±0.3 LSB.

The limited input range of the comparator made necessary to adjust, or scale, the output

range of the DAC. This guaranteed proper comparator operation over the whole input range.

A drawback of using this technique is that the required resolution of the comparator needs

to be increased in order to compensate for the decrease in the LSB value (i.e., 2.15 mV)

and the associated quantization levels. As a result, the voltage gain specification for the

comparator’s preamplifier stage became more stringent.

In this work, a novel solution was proposed to eliminate the critical switches that

plague the speed performance of low-voltage high-resolution comparators. It is based on

the Switched Opamp technique, which in the literature has prove useful in the design of



99

switched-capacitor circuits. To the author’s knowledge, this technique has not been pre-

viously used in comparator design. As was discussed in Chapter 5, any switch without

one its terminals connected to a constant reference (i.e, VDD or ground) will suffer from

high on-resistance if a signal close to rail-to-rail swing must be transmitted. By making

the preamplifier’s output stage switchable, the series switch connected between preamplifier

and latch was eliminated.

The techniques just outlined lead to the design of a 1.2V 8-bit 615kS/s 705µW SAR

ADC prototype, suitable for low-voltage, low-power, and low- to medium-resolution appli-

cations. Simulations were made to validate the design and characterize the performance of

the ADC. The DNL and INL specifications obtained were in agreement with the typical

specification of ±0.5 LSB. The dynamic performance of the converter was assessed through

the SFDR specification. Through Matlab Power Spectral Density (PSD) calculations, the

output spectrum of the converter was obtained; leading to an SFDR specification of 63 dB.

Based on the linearity results obtained and the theoretical SNR specification, the dynamic

performance of ADC is good. The overall performance of the ADC is similar to that found

in the literature. However, in this work the speed performance of SAR ADCs has been im-

proved. This was done with a new comparator architecture that achieved higher resolution

and moderate speed without a large increase in power dissipation.

7.1 Future Work

The performance of the ADC prototype produced by this research proved to be at par

with that found in recent low-voltage ADC prototypes, nonetheless achieving a higher con-

version rate. However, there is room of improvement in certain areas of the design presented

in this work. One of those areas is related to the S/H stage. The ADC would benefit from

using a more robust architecture that suppresses the harmonic distortion introduced by

charge injection errors. The most prominent way to eliminate this source of error is by

employing a closed-loop architecture. Since such architectures require the use of op amps,
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the development of new ultra low-power (i.e., < 100µW ) op amps is an interesting area of

research.

The preamplifier stage found in the comparator suffered from reduced signal swing.

Although some solutions were described in Chapter 4, they all had limitations. In ultra

low-voltage conditions none of those techniques can be applied. New ways to circumvent

this problem must be found. Another area of concern in the comparator is the input offset

voltage. In this work, offset cancellation schemes were avoided in order to minimize the

number of critical switches employed. In higher-resolution applications, the input offset

voltage must be canceled out or the comparator will not be able to resolve very small

signals. Finally, the comparator’s preamplifier stage could benefit from a Class-AB output

stage which would result in lower power consumption without a significant decrease in

circuit speed. Since the comparison time was the major limitation in the conversion speed

of the ADC prototype, improving the slew rate of the op amp would result in better time

response.
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APPENDIX A

Matlab Code

This appendix presents the Matlab script used to calculate the performance parameters

presented in Chapter 6. The output file produced by PSpice provided the voltage present

at each bit line of the ADC for every time step of the transient simulation. As described in

Chapter 6, only the voltages present at the end of each conversion cycle are of interest. As a

result, the data had to be filtered so that only valid output codes are used in the calculations.

In section A.1, the Matlab code used to calculate the DNL and INL parameters is presented.

Then, section A.2 presents the code used to plot the ADC’s frequency spectrum needed to

determine the SFDR specification. The latter is based on the use of Matlab’s Power Spectral

Density (PSD) function as suggested by [46].

A.1 DNL and INL Calculations

index=size(adcData);

% Columns for adcData matrix:

Vin=2;Vs=3;D8=4;D7=5;D6=6;D5=7;D4=8;D3=9;D2=10;D1=11;

% Columns for Dout matrix:

Vout=1;Vsample=2;Vshifted=3;

% OUTPUT CODE DATA RETRIEVAL

j=1;
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k=181; % row with first sampled value

for i = 181:180:index(1,1)

Dout(j,Vout)=(round(adcData(i,D8))/2 + round(adcData(i,D7))/4 +

round(adcData(i,D6))/8 + round(adcData(i,D5))/16 +

round(adcData(i,D4))/32 + round(adcData(i,D3))/64 +

round(adcData(i,D2))/128 + round(adcData(i,D1))/256)*0.55;

Dout(j,Vsample)=adcData(k,Vs);

k=k+180;

j=j+1;

end

totalCodes=size(Dout);

LSB=(Dout(256,Vout)-Dout(1,Vout))/256;

% END OF OUTPUT CODE DATA RETRIEVAL

idealLSB=0.55/256;

for i=1:totalCodes(1,1)

idealVT(i)=(i-1)*idealLSB;

end

Offset=Dout(2,Vsample)-idealVT(2);

for i=1:totalCodes(1,1)

Dout(i,Vshifted)=Dout(i,Vsample)-Offset;

end

% DNL/INL CALCULATION

for m=1:totalCodes(1,1)-1

DNL(m)=(Dout(m+1,Vshifted)-Dout(m,Vshifted)-LSB)/LSB;

INL(m)=(Dout(m,Vshifted)-idealVT(m))/LSB;

end
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A.2 Spurious Free Dynamic Range Calculation

index=size(adcData);

% Columns for adcData matrix:

Vin=2; Vs=3; D8=4;D7=5;D6=6;D5=1;D4=2;D3=3;D2=4;D1=5;

% OUTPUT CODE DATA RETRIEVAL

% Scans all rows of the data matrix and calculates

% analog estimate of digital code

Vsample=1; Vout=2;

j=1;

for i = 181:180:index(1,1)

Dout(j,Vout)=(round(adcData(i,D8))/2 + round(adcData(i,D7))/4 +

round(adcData(i,D6))/8 + round(adcData(i,D5))/16 +

round(adcData(i,D4))/32 + round(adcData(i,D3))/64 +

round(adcData(i,D2))/128 + round(adcData(i,D1))/256)*0.55;

Dout(j,Vsample)=adcData(i,Vs);

j=j+1;

end

% END OF OUTPUT CODE DATA RETRIEVAL

% Power spectral density calculation to obtain frequency spectrum

dataPoints=length(Dout(:,Vout));

[Spectrum,Freq]=psd(Dout(:,Vout),dataPoints,fs,kaiser(dataPoints,20))
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