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ABSTRACT

This research work presents the application of the Differential Evolution
algorithm in the solution of the economic dispatch problem and the reactive power
dispatch problem. To test the performance and capability of the algorithm, four case
studies were designed all of which are extremely complex, highly nonlinear and in

occasions discontinuous.

The case studies can be classified into four groups: economic dispatch using non-
conventional cost functions, economic-environmental power dispatch, security
constrained economic dispatch and reactive power dispatch. Each case study presents
several variants based on typical systems used in other references that help validate the

results obtained by Differential Evolution.

The main contribution of this research regards the application of evolutionary
computation techniques, in particular Differential Evolution, in the solution of complex
optimization problems where classical techniques may fail to obtain optimal solutions or

may result inefficient to implement.
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RESUMEN

Esta investigacion presenta la aplicacion de la técnica de optimizacién Evolucion
Diferencial en la solucion de los problemas de Despacho Econdmico de Potencia y
Despacho de Potencia Reactiva. Para evaluar el desempeino y capacidad del algoritmo,
cuatro casos de estudio fueron desarrollados los cuales se caracterizan por ser
extremadamente complejos, altamente no lineales y en muchos casos presentan un
espacio de soluciones discontinuo lo que dificulta su solucién mediante técnicas

convencionales como las basadas en gradientes.

Los casos de estudios se resumen en despacho econdmico con curvas de costo no
convencionales, despacho econdmico-ambiental de potencia, despacho econémico con
restricciones de seguridad y despacho de potencia reactiva. Varias modalidades de estos
casos fueron evaluadas basadas en sistemas caracteristicos utilizados en otras

investigaciones que permiten validar los resultados obtenidos por el algoritmo.

La principal contribucion de este trabajo, es la aplicacion de técnicas no
convencionales, especificamente Evoluciéon Diferencial en la soluciéon de problemas
dificiles y complejos dentro del campo de sistemas de potencia, donde las técnicas
clasicas fallan en obtener una solucion Optima o pueden resultar ineficientes de

implementar.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Optimal generation dispatch represents one of the most important problems in
power systems engineering, being a technique commonly used by operators in everyday
system operation. Optimal generation dispatch seeks to allocate the real and reactive
power throughout the power system obtaining an optimal operating state that reduces
costs and improves overall system efficiency. This problem can be formulated and
solved as two separate problems. One is the economic dispatch problem which reduces
system cost by allocating the real power among the online generating units. Another
problem is the reactive power dispatch which improves system voltage profile and

reduces system losses by allocating the reactive power efficiently.

Modeling in the generation dispatch problem is critical to achieve optimal results.
In the economic dispatch problem, the classical formulation presents deficiencies due to
the simplicity of the models. Here, the power system is modeled through the power
balance equation and generators are modeled with smooth quadratic cost functions and
generator output side constraints. In the reactive power problem, a common approach is
to model transformers and capacitor banks as continuous variables instead of the discrete

variables.
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To improve power systems studies, new models are continuously being developed
that result in a more efficient system operation. Cost functions that consider valve point
loadings [1-6], fuel switching [7-12] and prohibited operating zones [13-18] as well as
constraints that provide a more accurate representation of the system such as: emissions
[19-31], line flow limits [32-36], ramp rate limits [37], spinning reserve requirement [38,
39] and system voltage profile [40-55]. These improved models generally increase the
level of complexity of the optimization problem due to the nonlinearity associated with

them.

Many different traditional optimization methods have been used to solve the
classical economic dispatch and reactive power dispatch problems including: Steepest
Descent, Newton, Interior Point Methods, Linear Programming, Quadratic Programming
and Dynamic Programming. Some of these techniques are not capable of solving
efficiently optimization problems with a non-convex, non-continuous and highly
nonlinear solution space. Other techniques become inefficient since they require too
many computational resources to provide accurate results for large scale systems such as

electric power systems.

Recent advances in computation and the search for better results of complex
optimization problems have fomented the development of techniques known as
Evolutionary Algorithms. Evolutionary Algorithms are stochastic based optimization
techniques that search for the solution of problems using a simplified model of the
evolutionary process. These algorithms provide an alternative for obtaining global

optimal solutions, especially in the presence of non-continuous, non-convex, highly
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solution spaces. These algorithms are population based techniques which explore the
solution space randomly by using several candidate solutions instead of the single
solution estimate used by many classical techniques. The success of evolutionary
algorithms lies in the capability of finding solutions with random exploration of the
feasible region rather than exploring the complete region. This results in a faster
optimization process with lesser computational resources while maintaining the

capability of finding global optima.

Several techniques have been developed inside the Evolutionary Computation
field being the most popular techniques: Genetic Algorithms (GA), Evolutionary
Programming (EP) and Evolution Strategies (ES) all of which have been applied
successfully to numerous engineering problems. The recent advances in parallel
computation along with faster and more powerful processors have improved greatly the
performance of these techniques, and have stimulated the development of new techniques
such as Differential Evolution, Particle Swarm Optimization, Ant Colony Search, Scatter
Search and Cultural Algorithms. References [56-58] provide a good review on

evolutionary computation application and formulation.

One algorithm that has become increasingly popular in the field of evolutionary
computation is Differential Evolution (DE). DE is very appealing due to the great
convergence characteristics that it presents when compared to other algorithms from
evolutionary computation. Also the few control parameters of DE require minimum
tuning and remain fixed throughout the optimization process [59-61]. DE obtains

solutions to optimization problems using three basic operations: Mutation, Crossover and
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Selection. The mutation operator generates noisy replicas (mutant vectors) of the current
population inserting new parameters in the optimization process. The crossover operator
generates the trial vector by combining the parameters of the mutant vector with the
parameters of a parent vector selected from the population. In the selection operator the
trial vector competes against the parent vector and the one with better performance
advances to the next generation. This process is repeated over several generations

resulting in an evolution of the population to an optimal value.
1.2 Topic of the Thesis

The topic of this thesis is “Differential Evolution Based Power Dispatch
Algorithms”. This research covers four different generation dispatch problems and solves
them using the novel evolutionary computation technique known as Differential

Evolution.
1.3 Objectives and Contributions of the Thesis

The main purpose of this research work is to investigate the applicability of
Differential Evolution to the economic dispatch problem and prove that this algorithm
can be used to efficiently determine solutions to complex economic dispatch problems.
Differential Evolution will be tested on several case studies that are extremely difficult or
impossible to solve by standard techniques due to the non-convex, non-continuous and

highly nonlinear solution space of the problem.



Specific objectives are:

1. To analyze and solve the optimal generation dispatch problem using
different objective functions and constraints which present discontinuities
and increase the degree of difficulty of the problem using the differential

evolution algorithm.

2. To compare the results obtained with results from other evolutionary

algorithms and/or other optimization algorithms used in the industry.

3. To test different economic dispatch problem formulations that may result
in an improved optimization process in terms of type of solution (local or
global minima), consistency of the solution, algorithm quickness and

computational requirements.

4. Test the algorithm potential to obtain global minima solutions of complex

optimization problems.

5. To evaluate the tradeoff associated with the algorithm control parameters
variation.
6. To organize the systems used for testing and results of the cases studies to

allow easy reproduction of the research, for future developments in the

evolutionary optimization field or any other optimization algorithm.

7. To present recommendations regarding the implementation and control of

the algorithm.



1.4 Thesis Outline

An introduction to the differential evolution based power dispatch algorithm was
presented in Chapter 1 along with the research objectives and scope. Chapter 2 provides
a review of the economic dispatch and the reactive power dispatch problem, problem
formulation and available literature. Chapter 3 presents an overview of the differential
evolution algorithm. In Chapter 4 the case studies and their implementation using the
differential evolution algorithm are presented. Results and validation are provided and
discussed for each case study in Chapter 5. Chapter 6 presents conclusions and

recommendations for future work.



CHAPTER 2

POWER DISPATCH

2.1 Introduction

To operate power systems in an efficient and reliable way, several techniques
have been developed to schedule power plants and determine their production level.
Power dispatch is one of these techniques which adjusts some control variables and
allocates the power throughout the system resulting in an optimal operation. Power
dispatch has two approaches: Economic Dispatch Problem and the Reactive Power
Dispatch Problem. Economic dispatch seeks to optimize the system operation by
allocating the real power among the power system while reducing production costs. The
reactive power dispatch minimizes the system losses improving the system efficiency and

utilization of resources.

To improve the solution obtained from the power dispatch, system modeling is
critical. Reduced models are often used, simplifying the problem solution at the expense
of quality. The use of more precise and accurate models yield better solutions but also
increases problem difficulty significantly. Common modeling efforts to improve the
economic dispatch include cost functions with valve point loadings, prohibited operating
zones and fuel switching; security constraints such as line flow limits, spinning reserve

allocation and other constraints like emissions and voltage profile. This chapter reviews
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how the economic dispatch and reactive power dispatch problems are formulated, and the

available literature related to these problems.
2.2 Classical Economic Dispatch Problem Formulation

The classical economic dispatch problem is an optimization problem that
determines the power output of each online generator that will result in a least cost
system operating state [1, 2]. The objective of the classical economic dispatch is to
minimize the total system cost where the total system cost is a function composed by the
sum of the cost functions of each online generator. This power allocation is done
considering system balance between generation and loads, and feasible regions of

operation for each generating unit.
2.2.1 Objective Function

The objective of the classical economic dispatch is to minimize the total system
cost (2.1) by adjusting the power output of each of the generators connected to the grid.

The total system cost is modeled as the sum of the cost function of each generator.
Ng
miny_ F,(F;) 2.1)
i=1

where F, (PG,.) is the i generator cost function, £, is the i" generator real power output

and N, is the total number of generators connected to the power system.

Each generator cost function establishes the relationship between the power

injected to the system by the generator and the incurred costs to load the machine to that
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capacity. Typically, generators are modeled by smooth quadratic functions such as (2.2)

to simplify the optimization problem and facilitate the application of classical techniques.

F(P;)=a,+bP, +cF; 2.2)

1

where a,,b ,c. are the cost coefficients of the i generator cost function.

27020

Cost ($/h)

v

Output, P (MW)

Fig. 1 Typical fuel cost function of a thermal generation unit

2.2.2 Equality Constraint

Power Balance Constraint: The power balance constraint is an equality constraint

that reduces the power system to a basic principle of equilibrium between total system

generation and total system loads. Equilibrium is only met when the total system

generation (Z PG,.) equals the total system load (F,) plus system losses (P,) as stated

in (2.3).
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Ng
DY P =P,+P, (2.3)

i=1

Systems losses can be determined exactly as a result of solving the power flow
problem. One approach to estimate losses is by modeling them as a function of the
system generators outputs using Kron’s loss formula (2.4). Other ways to model losses

are with the use of penalty factors or considering losses as constant.

Ng Ng Ng

P,=)3"P,B,P,+> P.By+By (2.4)

i=1 j=1 i=1

where B, B, B, are known as the loss or B-coefficients.

2.2.3 Inequality Constraint

Real Power Generation limits: Generating units have lower (PG‘T““) and upper

(PG‘:“‘X) production limits that are directly related to the machine design. These bounds

can be defined as a pair of inequality constraints (2.5).

PIM < Py <PX™, i=1,..,N, (2.5)
2.3 Non-Conventional Fuel Cost Functions

Generators are commonly modeled using smooth quadratic functions (Fig.1) to
relate power output to production cost. This type of cost function simplifies greatly the
economic dispatch problem and increases the number of techniques that can be applied to
solve it. For some cases, quadratic representations do not model properly generators,

requiring more accurate models to provide better results in the solution of the economic
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dispatch problem. More accurate models usually result in higher nonlinear, non-smooth
and non-convex functions. Valve point loadings, piecewise quadratic functions due to
multiple fuels and prohibited regions of operation are examples of these types of cost

functions.
2.3.1 Valve Point Loadings

Power plants commonly have multiple valves that are used to control the power
output of the unit [1-6]. When steam admission valves in thermal units are first opened, a
sudden increase in losses is registered which results in ripples in the cost function (Fig.
2). This effect is known as a valve point loading. This type of problem is extremely
difficult to solve with conventional gradient based techniques due to the abrupt changes

and discontinuities present in the incremental cost function.

Cost ($/h)

v

Output, P (MW)

Fig. 2 Fuel cost function for a thermal generation unit with three admission valves
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2.3.1.1 Economic Dispatch with Valve Point Loadings Formulation

Valve Point Loadings economic dispatch minimizes the system cost (2.1) based
on the valve point loading cost function that considers valve transitions. Valve point
loadings are usually modeled adding a sinusoidal term to the basic quadratic cost function

2.6).

F(P,)=a,+bP, +cP +‘d,. sin(e, (B -2, ))‘ 2.6)

1

where a,,b,,c,,d. and e, are the cost coefficients of unit i.

The basic formulation of this problem is subject to the power balance constraint
(2.3) and generation limits (2.5). Further constraints can be added depending on the

modeling requirements.

The economic dispatch with valve point loadings has received attention from
several researchers. Shebl¢ and Walters [3] used a genetic algorithm to solve the
economic dispatch featuring units with valve point loadings. Also, K. Wong and Y.
Wong [4] proposed a way of solving the economic dispatch problem with valve point
loadings using genetic and genetic/simulated annealing techniques. K. Wong along with
B. Lau and A. Fry [5] presented a neural network approach for economic dispatch
featuring valve point loadings. Basic concepts of valve point loadings and their cost

functions are presented in [1] and [2].
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2.3.2 Piecewise Quadratic Functions

Some generating units are capable of operating under different types of fuels [7].
The use of multiple fuel types may result in multiple cost curves that are not necessarily
parallel or continuous. The lower contour of the resulting cost curve determines which

fuel cost is most economical to burn.

Cost ($/h)

v

Output, P (MW)

Fig. 3 Fuel cost function of a thermal generation unit supplied with multiple Fuels

This cost function can be represented by a piecewise curve (Fig. 3), and the
segments are defined by the range in which each fuel is used (2.7). Piecewise quadratic
curves are extremely difficult to solve by standard techniques. Piecewise quadratic

functions have as many segments as fuel types.
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2 1 Dl
a,+b,F; +¢,,F; ., Pg < F, <P

): a,,+b,P, +c,P;, Pi< P, <P} 2

2 k Dk
a +b,-,kPG, +C[,ch,.a EG, < PG, < PG,.

where P} and P/ are the lower and upper bound respectively of the £ fuel of unit i and

a..,b ,,c,, arethe k™ fuel cost coefficients of unit .

2.3.2.1 Piecewise Quadratic Functions Economic Dispatch Formulation

This economic dispatch minimizes the system cost (2.1) based on piecewise
quadratic cost functions (2.7) subject to the power balance constraint (2.3) and the
generation limits (2.5). Further constraints can be added depending on the modeling

requirements.

One of the classical approaches for solving this problem was proposed by C. Lin
and G. Viviani [7]. In this paper they used a Hierarchical method to solve the economic
dispatch of a system with piecewise quadratic cost functions. Other approaches capable
of solving the piecewise quadratic economic dispatch based on evolutionary algorithms
have been proposed. El-Gallad et al. [8] used the Particle Swarm Optimization technique
to solve the economic dispatch with piecewise quadratic cost functions. Also, hybrid
approaches were proposed by Whei-Min Lin [9] and by J. H. Park et al. [10] to determine
the solution to piecewise quadratic case. In reference [9] Lin solves the Economic
Dispatch problem featuring piecewise quadratic functions using an algorithm that
integrates evolutionary programming, tabu search, and quadratic programming while

Park et al. in [10] used several Evolutionary Algorithms to solve single and piecewise
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quadratic cost functions. These algorithms were Genetic Algorithm (GA), Evolution

Strategies (ES), Evolutionary Programming (EP), GA + ES and EP + ES.

Neural Networks also have been applied to solve this type of Economic Dispatch.
Lee et al. [11] presented an Adaptive Hopfield Neural Networks approach for Economic
Load Dispatch with piecewise quadratic cost functions and Park et al. [10] also solved

piecewise quadratic problems using Hopfield neural networks.
2.3.3 Prohibited Operating Zones

Units may have certain regions [13-18] where operation is undesired due to
physical limitations of the machine components or issues related to instability. These
regions (Fig. 4) produce discontinuities in the cost curve since the unit must operate
under or over certain specified limit. This type of functions results in non-convex sets of

feasible solutions.
2.3.3.1 Prohibited Operating Zones Formulation Economic Dispatch

The basic economic dispatch with prohibited zones minimizes the system cost
(2.1) based on smooth quadratic cost functions (2.2). This cost function present regions
were operation is not allowed and this regions can be modeled as inequality constraints
(2.8-2.10). The dispatch considers also the power balance constraint (2.3) and the
generation limits constraint (2.5). Further constraints can be added depending on the

requirements of the model.
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P <P, <P (2.8)
Py'<P, <Pi ., k=2,..n, (2.9)
Pl <P, <PI™ (2.10)

where P} and P, are the lower and upper bound of the k" prohibited zone of unit i and

n, the number of prohibited zones of unit i.

Cost ($/h)

/

v

Output, P (MW)

Fig. 4 Fuel cost function for a unit with two prohibited operating zones

Several techniques have been used to solve the economic dispatch problem
considering prohibited operating zones. Lee and Breipohl [13] and Fan and McDonald
[14] used techniques based on decision spaces to solve the economic dispatch with

prohibited operating zones while Orero and Irving [15] used genetic algorithms. Chen et
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al. [16] presented a new genetic approach for solving the economic dispatch problem in

large scale systems considering ramp rate limits and prohibited zones.

An evolutionary programming algorithm for prohibited zones economic dispatch
was proposed by Jayabarthi, et al in [17]. Non convex economic dispatch by integrated
artificial intelligence proposed by Whei-Min Lin, Fu-Sheng Cheng and Ming-Tong Tsay
[9] solves prohibited zones using an algorithm that integrates EP, TS and QP. Su and

Chiou [18] proposed a hopfield neural network approach considering prohibited zones.
2.4 Economic-Environmental Power Dispatch

After the 1990 Clean Air Act Amendments, environmental considerations have
regained considerable attention in the power system industry due to the significant
amount of emissions and other pollutants derived from fossil based power generation.
The most important emissions considered in the power generation industry due to their

effects on the environment are sulfur dioxide (SO;) and nitrogen oxides (NOx).

One of the techniques used to reduce emissions production in power systems is
the Economic-Environmental Power Dispatch. This dispatch determines the power
allocation that reduces system cost considering the level of emissions produced. To be
able to carry out an Economic-Environmental Dispatch, these emissions must be modeled
through functions that relate emissions with power production for each unit. Sulfur
dioxide emissions are dependent on fuel consumption and they take the same form as the

fuel cost functions used for economic dispatch [19-21]. NOx emissions are more difficult
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to predict since they come from two different sources and their production is associated

with several factors such as boiler temperature and air content [21].

Emissions

v

Output, P (MW)

Fig. 5 Combined SO, and NOx Emissions Function Example

One approach to represent SO, and NOx emissions is to use a combination of
polynomial and exponential terms (2.11). The parameters o, £, y, 1 and 4 are determined
by curve fitting techniques based on real test data [20]. Other approach is to model SO,
emissions and NOx emissions separately. The NOx emission function is highly nonlinear

and difficult to generalize. A NOx emissions function example is shown on Fig. 6 [22].
Ei(Pq):ai+ﬂqu+7/iPé + 41, exp(4,Fg) (2.11)

where a,.f,;.7;.1; and A, are the emissions coefficients of unit i
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EED has become an important topic of research due to the 1990 Clean Air Act

that established emission control and reduction. Because of the nonlinear characteristics
of emissions, several approaches using evolutionary algorithms and neural networks have

been developed capable of solving the EED.

Emissions

v

Output, P (MW)

Fig. 6 NOx Emissions Function Example

Talaq et al. [20] and Lamont et al. [21] have presented comprehensive studies that
feature emissions modeling, problem formulation and dispatching strategies. Wong and
Yuryevich [23] developed an evolutionary programming based algorithm presenting
emissions as constraints. Das and Patvardhan [24] proposed a multiobjective stochastic
search technique (MOSST) based on real coded GA and SA using single criterion
function optimization. Abido [25, 27] presents a Multiobjective Evolutionary Algorithm
that determines the pareto optimal set simultaneously using the strength pareto

evolutionary algorithm. Other implementations have been proposed to solve the
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economic/environmental dispatch such as the heuristic guided evolutionary algorithm,
[27] genetic algorithm with generation compensation [28], neural networks and

hierarchical approach [29, 30].
2.4.1 Multiobjective Economic/Environmental Dispatch Formulation

The nature of cost and emission production allows the economic/environmental
power dispatch problem to be formulated and solved as a multiobjective optimization
problem. In multiobjective optimization problems (MOP) two competing objectives are
minimized simultaneously, subject to the imposed constraints. MOP’s have infinite
optimal solutions, and this set of possible solutions is referred to as the Pareto optimal
set. Multiobjective optimization problems can be solved by different approaches. One
approach converts the problem to a single function optimization problem using
aggregating techniques such as weighted sum. Another approach is based on non-

dominated ranking and selection to determine the Pareto-optimal set [62].
2.4.1.1 Objective Function

The objective of the economic/environmental power dispatch is to minimize

simultaneously the cost function and the emissions function (2.12).
NG NG
min| Y F (R, ). 2. E(P,) (2.12)
i=l i=1

where F, (PG,.) 1s a cost function such as (2.2); E, (PG) 1s an emissions function such as

@2.11).



21
2.4.1.2 Constraints

This problem is subject to the basic system constraints such as the power balance
equality constraint (2.3) and generation limits inequality constraint (2.5). Other
constraints such as security or operational constraints can be considered depending on the

study requirements.

2.4.2 Emissions Constrained Economic Dispatch Formulation

The purpose of an emissions constrained dispatch is to minimize the cost function
(2.2) subject to the power balance constraint (2.3) and generation limits (2.5) while
satisfying the desired emissions limits (2.13-2.14). Emissions can be expressed as a
nonlinear function such as (2.11) or other expressions depending on the unit
characteristics. Other constraints such as line flow constraints and/or voltage profile can

also be considered to improve the security of the system.

Emission constraints are nonlinear inequality constraints that impose a limit on

the emissions of certain generation units or system areas (2.13, 2.14).

%Ei (P, )<Eq (2.13)
i=l
E(R,)<E, (2.14)

where E is the System/Area emission limit for the corresponding emission (SO, and/or

NOx) and E,, the i™ unit emission limit for the corresponding emission SO, and/or
U, p g

NOx).
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2.5 Security Constrained Power Dispatch
To improve the results of the economic dispatch and maintain proper system
operation, other constraints such as line flow limits [32-36], ramp rate limits [37] and
spinning reserve [38, 39] can be considered in the economic dispatch. These constraints
give a more realistic operating condition, and provide better solutions from an operating

standpoint.
2.5.1 Security Constrained Power Dispatch Problem Formulation

The security constrained power dispatch seeks to minimize the system cost (2.1)
based on smooth quadratic cost functions (2.2). This problem is subject to the power
balance equality constraint (2.3) and the generation limits inequality constraint (2.5). To
provide a power allocation that will yield a better system operating point, the basic
economic dispatch is enhanced with constraints that model better the power system and
help attain the desired system condition. Common concerns of the power systems are
overloading of transmission lines, proper allocation of the spinning reserve to enhance

system stability and ramp rate limits to consider proper unit loading.
2.5.1.1 Line Flow Constraint

In many occasions, the power allocation from the economic dispatch leads to
congestions in the transmission grid. The line flow constraint seeks to avoid undesired
line loadings due to power allocation. This constraint is formulated as an inequality

constraint (2.15).

Lf <LE™, i=1,.,N, (2.15)
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where Lf, is the power flowing on branch #; L™ is the maximum power transfer

capability of branch i and N, is the number of transmission branches.

Line Flows can be determined by several methods. The most common approach
is to determine the flows after solving the power flow algorithm. Another approach is to
estimate the flows as a linear function of the power outputs using the generation shift

factors (2.16) [2, 39].
Lf'=Lf °+ Ay x(P' = P°) (2.16)

where Lf°, Lf' are the original and updated vector of line flows; A is the

sensitivity shift factors matrix and P°, P' are the original and updated column vector of

power outputs.
2.5.1.2 Spinning Reserve Constraint

Spinning reserve is the amount of synchronized generation that can be used to
pickup source contingencies or load increase. System spinning reserve requirement can
be determined by several criteria such as a percentage of the forecasted peak demand, the
most heavily loaded unit or the probability of not having sufficient generation to meet the
load [2]. Spinning reserve should be sufficient to absorb source contingencies and has to
be allocated efficiently to provide adequate response and sufficient reserve across the
system in the case it becomes electrically disconnected, avoiding limitations in

transportation due to grid congestion.
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Spinning reserve can be associated to system emergency conditions or regulating
conditions. Since both conditions are related, several formulations of spinning reserve
are available. One way to allocate power for reserve purposes is expressed in (2.17-2.19)
[39]. The available system reserve should be at least equal to the system requirement to
overcome contingencies (2.17). For emergency conditions, the unit reserve should not
exceed the established unit pickup capability (2.18). For regulating purposes in normal
conditions, the unit available reserve should not exceed the difference between the
maximum power output established for dispatch purposes and the current point of

operation (2.19).

Ng
Sp 2 S5 2.17)

i=1
Sy <Sp (2.18)
Se S(PM™—P,) (2.19)

where S, is the spinning reserve capability of unit i at given output, S;* the system
spinning reserve requirement, S;* the maximum spinning reserve capability of unit / in
emergency conditions.

2.5.1.3 Ramp Rate Limit Constraint

Due to the high nonlinear solution space of the economic dispatch, especially in
large scale systems, the best solution of the economic dispatch can be located distant

from the current point of operation when adjustments to the power allocation are
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required. Due to physical limitations, generating units adjust their power output

according to ascending and descending ramp rates [2].

The ramp rate limit constraint gives better generation control, avoiding
unacceptable changes in the power production of certain machines. This constraint
updates the lower and upper generation limit (2.5, 2.22) according to (2.20) and (2.21)
when a system operating point along with the machine ramp rate will prevent the unit

from increasing/decreasing the loading to the desired value.

P, =max| P, P} ~ DR, | (2.20)
P, =min| P, P} + AR, | 2.21)
P, <P, <P, (2.22)

where P, is the lower real power generation limit due to ramp rate, P, the upper real
power generation limit due to ramp rate, Py the previous hour i unit real power output,

DR, the i™ unit descending ramp and AR, the i unit ascending ramp.

Several papers have been published that address the power dispatch security
issues such as line flows and spinning reserve allocation. J. Chen and S. Chen [32]
presented a power dispatch with line flow constraints based on sensitivity factors to
obtain line flows. Several economic dispatch approaches considering line flows were
proposed by Fan and Zhang [33], Nanda et al. in [34] and [35] and Yalcinoz and Short
[36]. These articles solve the line flow constrained economic dispatch using quadratic

programming, genetic algorithms, neural networks and other classical techniques.
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Ongsakul et al. [37] proposed a genetic algorithm based on simulated annealing to solve
ramp rate constrained dynamic economic dispatch. G. Sheblé [38] and R. Lugtu [39]
have conducted research work on spinning reserve requirement and allocation,

respectively.
2.6 Reactive Power Dispatch

Reactive power dispatch is treated as an optimization problem that reduces grid
congestion by minimizing the active power losses for a fixed economic power dispatch.
The RPD requires solving the power flow problem and for this reason is usually known
as optimal reactive power dispatch or as an optimal power flow problem. Reactive power
dispatch (RPD) reduces power system losses and provides better system voltage control,
resulting in an improved voltage profile, system security, power transfer capability and

overall system operation [40].
2.6.1 Problem Formulation

The reactive power dispatch (RPD) problem consists of minimizing the active
power losses of the system by adjusting the system reactive power control variables such
as generator voltages, transformers taps, and capacitor banks for a fixed real power
dispatch. The RPD is subject to control variables boundary constraints, as well as other

system constraints such as system balance and bus voltage limits.
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2.6.1.1 Objective Function

The objective of the reactive power dispatch is to minimize the active power
losses of the system by adjusting the generator voltages, transformer taps and other

sources of reactive power such as capacitor banks.

min P, (2.23)
where
NB NB 2
P=3"> gV (2.24)

i=1 j=1

and P, is the power system losses, g, is the transmission line /j conductance,

V)|
represents the magnitude of the voltage drop across the branch between buses i and j

respectively and N, is the number of system buses. V; is the complex voltage at bus i.

2.6.1.2 Equality Constraints

Real and Reactive Power Mismatch: These equality constraints seek to find the

set of voltages (magnitude and angle) that satisfy the proposed system conditions. These
are the power expressions of the Kirchhoff laws that establish system equilibrium and

energy conservation in electric circuits.

Ng
P, =B, = |0 |77 cos(8, +8,-5,)=0 (2.24)
j=1

0, -0, + S|l |sin(6, +5,~5) =0 (225)
=
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where F, and Q) are the active and reactive power injected at bus 7; P, and O, are the

active and reactive power demanded at bus i;

YU‘ and 6, are the admittance magnitude

and angle connecting nodes i and j, K| and J, the voltage magnitude and angle at bus i

and ‘VJ‘ and o, voltage magnitude and angle at bus;.

2.6.1.3 Inequality Constraints

min

Reactive Power Generation limits: Generating units have lower ( p ) and upper

( g’ax) reactive power production limits that are directly related to the machine design.

These bounds can be defined as a pair of inequality constraints.
05" <0, <057, i=1..,N, (2.26)
where O, is the reactive power production of the i" generator.

Transformer taps limits: Many transformers are capable of providing small

adjustments to the output voltage by changing their turn ratio or taps. Transformers that
can perform this operation while energized are called load-tap-changing transformers
(LTC). These taps can be changed inside a range usually of £10%. As the reactive
power generation limits, these bounds can also be defined as a pair of inequality

constraints.

™ <T <T™, i=1,.,N, (2.27)
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where 7™ and T,™* are the lower and upper adjustable tap ratio of the i" transformer

and N, the number of LTC transformers.

In addition transformer taps are discrete, having fixed increments (A7) between

consecutive values.
Ar =T, 0—Ty (2.28)
where T, and T, ., are the K" and K" +1 tap positions.

Capacitor Bank limits: Some capacitor banks can adjust their capacity by

connecting/disconnecting capacitors. These as well as generating units, have a region of

operation with lower and upper limits.

<0 OM™, i=1,..,N, (2.29)

where ng and Q- are the lower and upper limit of the i capacitor bank and N, - the

number of adjustable capacitor banks.

Capacitor banks have fixed increments between consecutive values that depend
on the combination of capacitors in service, between stages. These increments are not

necessarily equal throughout the range of operation.
Ag =0, 9, (2.30)

where A, 1is the increment between consecutive values and . ~and Q. —are the K"

and k" +1 capacitor size.
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Maximum Power Output limit: Generating units can not exceed their maximum

apparent power output due to physical machine limitations.
S <857, i=1..,Ng (2.31)
where S.* is the upper limit of apparent power production of the i" generator.

Bus Voltage limits: Reactive power is capable of improving the system voltages.

The purpose of this constraint is to keep buses operating between desired per unit voltage
limits, and determine the reactive power production related to this profile. Bus voltages
are state variables derived from the solution of the power flow problem. This constraint

can be defined by (2.32).

min max

V.

<|yil<p

, i=1..,N, (2.32)

where |Vl.|min and |Vl| ™ the upper and lower voltage magnitude bounds for the i" bus.

Several optimization techniques have been applied in the RPD problem. Gradient
based approach [41], Modified Newton [42], Quadratic Programming [43], Newton
Based Primal-Dual Method [44] and Interior Point Methods [45, 46] are some of the
classical techniques used to solve the reactive power dispatch problem. More recently,
evolutionary computation techniques also have been used to solve the RPD problem.
Genetic Algorithms [47], Evolutionary Programming [48] and Evolution Strategies [49]
along with some hybrid approaches [50, 51] are examples of evolutionary algorithms
which also have been used to solve the reactive power dispatch problem. Reference [52]

provides a comprehensive review of the reactive power dispatch problem.
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CHAPTER 3

DIFFERENTIAL EVOLUTION

3.1 Introduction

Evolutionary Algorithms are optimization techniques that solve problems using a
simplified model of the evolution process. These algorithms are based on the concept of
a population of individuals that evolve and improve their fitness through probabilistic
operators like recombination and mutation. These individuals are evaluated and those
that perform better are selected to compose the population in the next generation. After
several generations these individuals should improve their fitness as they explore the

solution space for the optimal value.

The field of evolutionary computation has experienced significant growth in the
optimization area thanks to the recent advances in computation. These algorithms are
capable of solving complex optimization problems such as those with a non-continuous,
non-convex and highly nonlinear solution space. In addition, they can solve problems

that feature discrete or binary variables, which are extremely difficult.

Several algorithms have been developed within the field of Evolutionary
Computation being the most studied Genetic Algorithms, Evolutionary Programming and
Evolution Strategies. These algorithms were first conceived in the 1960’s when
Evolutionary Computation started to get attention. Recently, the success achieved by

Evolutionary Algorithms in the solution of complex problems and the improvements



32

made in computation, such as parallel computation, have stimulated the development of
new algorithms like Differential Evolution, Particle Swarm Optimization, Ant Colony
Search and Scatter Search that present great convergence characteristics and capability of
determining global optima. Evolutionary algorithms have been successfully applied to
many optimization problems within the power systems area and to the economic dispatch

problem in particular. References [56-57] provide excellent reviews on this subject.
3.2 Differential Evolution

One extremely powerful algorithm from Evolutionary Computation due to
convergence characteristics and few control parameters is differential evolution.
Differential Evolution is an optimization algorithm that solves real-valued problems
based on the principles of natural evolution [59-61] using a population P of N, floating
point encoded individuals (3.1) that evolve over G generations to reach an optimal
solution. Each individual, or candidate solution, is a vector that contains as many
parameters (3.2) as the problem decision variables D. In Differential Evolution, the

population size ( N, ) remains constant throughout the optimization process.

P = [xﬁc),...,xm 3.1)

T
X _[x© __x@ i1 N 32
1,i D,i P

Differential Evolution creates new offsprings by generating a noisy replica of
each individual of the population. The individual that performs better from the parent

vector (target vector) and the replica (trial vector) advances to the next generation. This
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optimization process is carried out with three basic operations: Mutation, Crossover and
Selection. First, the mutation operation creates mutant vectors by perturbing each target
vector with the weighted difference of two other individuals selected randomly. Then,
the crossover operation generates trial vectors by mixing the parameters of the mutant
vectors with the target vectors, according to a selected probability distribution. Finally,
the selection operator forms the next generation population by selecting between the trial

vector and the corresponding target vector those that fit better the objective function.
3.3 DE Optimization Process

The first step in the DE optimization process is to create an initial population of
candidate solutions by assigning random values to each decision parameter of each
individual of the population. Such values must lie inside the feasible bounds of the

decision variable, and can be generated by (3.3).
X=X an, (X7 =X, i=1.,Ny; j=1..D (3.3)

where X;“i“ and X[ are respectively, the lower and upper bound of the ;™ decision
parameter and 7, is a uniformly distributed random number within [0, 1] generated anew

for each value of ;.

After the population is initialized, this evolves through the operators of mutation,
crossover and selection. The mutation operator is in charge of introducing new
parameters into the population. To achieve this, the mutation operator creates mutant

vectors by perturbing a randomly selected vector (X,) with the difference of two other
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randomly selected vectors (X, and X,) according Eq. 2.37. All of these vectors must be

different from each other, requiring the population to be of at least four individuals to
satisfy this condition. To control the perturbation and improve convergence, the
difference vector is scaled by a user defined constant in the range [0, 1.2]. This constant

is commonly known as the scaling constant (F).

x'(©) _ x(©) +F(X§,G) _X(G)), i=1,..,N, (3.4)

l a

where X,, X, X, are randomly chosen vectors € {1,...,N,} and a#b#c#i. X, Xy

and X, are generated anew for each parent vector. F'is the scaling constant.

X'=X,+F(X)-X,)

Fig. 7 Mutation Operator

The crossover operator creates the trial vectors, which are used in the selection
process. A trial vector is a combination of a mutant vector and a parent (target) vector
performed based on probability distributions. For each parameter, a random value based

on binomial distribution (preferred approach) is generated in the range [0, 1] and
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compared against a user defined constant referred to as the crossover constant. If the

value of the random number is less or equal than the value of the crossover constant the
parameter will come from the mutant vector, otherwise the parameter comes from the

parent vector (3.5). Fig. 8 shows how the crossover operation is performed.

Parent Vector Trial Vector Mutant Vector Specify Crossover Constant
X; X" X'; (CR)
~— ~— ~—
. . A 4
j=1 j=1 p .
Generate Random Number
2 < 2 L (Rand) )
3 < 3

Fig. 8 Crossover Operator

The crossover operation maintains diversity in the population, preventing local
minima convergence. The crossover constant (C,) must be in the range of [0, 1]. A

crossover constant of one means the trial vector will be composed entirely of mutant
vector parameters. A crossover constant near zero results in more probability of having
parameters from the target vector in the trial vector. A randomly chosen parameter from
the mutant vector is always selected to ensure that the trial vector gets at least one

parameter from the mutant vector even if the crossover constant is set to zero.
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X\ if pl < Cpoor j=gq

Joi

n(G) __ . .
X1 = R ,i=L.,N, j=1.,D (3.5
;. otherwise

where ¢ is a randomly chosen index € {1,...,D} that guarantees that the trial vector gets

at least one parameter from the mutant vector; 7 is a uniformly distributed random

number within [0, 1) generated anew for each value of j. X j((.}) is the parent (target)

1
5

(6)

i
>

(6)

vector, X" the mutant vector and X7 ;™ the trial vector.

The selection operator chooses the vectors that are going to compose the
population in the next generation. This operator compares the fitness of the trial vector
and the fitness of the corresponding target vector, and selects the one that performs better
(3.6). The selection process is repeated for each pair of target/trial vector until the
population for the next generation is complete.

X/ i f(XI9) < £(X9)

X — , i=1..N
X©  otherwise

(3.6)

Canonical DE Algorithm

1. Initialize population (3.3)
2. While convergence criteria are not satisfied

3. Create mutant vectors with the difference vector and the scaling constant 3.4
4. Generate Trial vectors applying the selected crossover scheme (3.9

5. Select next generation members according to competition performance (3.6)
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Several strategies may be used in differential evolution to generate new parameter
vectors. These strategies, which differ on how the perturbation is performed, can be
denoted as DE/x/y/z where x refers to the perturbation type, y the number of pair of
vectors used in the perturbation process and z the crossover scheme used in the
recombination process. The perturbation type x can be selected to generate new
populations of candidate solutions by perturbing either a randomly selected vector from
the population or the best candidate solution found so far. This perturbation can have
either one or two pair of vectors (y) while the crossover used (z) can be based on

binomial or exponential distributions.

From testing, the best DE strategy for global optimization is DE/best/2/bin which
perturbs the best solution found so far with two difference vectors (3.7) based on a
binomial distribution crossover scheme. The basic strategy is DE/rand/l/bin which is
explained in equations (2.37-2.39) also is good for finding global optima, but presents a

lower convergence rate.

i  “Mbest

xX/(©) = x(©) +F(X(f) — X 4 x(©) —XE,G)), i=1,..,N, (3.7)

where X,,X,,X_ andX, are randomly chosen vectors €{l,..,N,} and a=b#c#d #i.

X,,X,,X_ and X, are generated anew for each parent vector. X,  is the best solution

best

found so far.
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3.4 Constraint Handling Techniques

Most evolutionary algorithms such as differential evolution were originally
conceived to solve unconstrained problems. Over the years, a different number of
constraint handling techniques have been used in conjunction with evolutionary
algorithms. Michalewicz et al. [63] presented a complete review of constrained
optimization in evolutionary algorithms with a classification of the methods used to
handle constraints. A four group classification was established: methods based on
preserving feasibility of solutions, methods based on penalty functions, methods which
make a clear distinction between feasible and infeasible solutions and other hybrid

methods.

xmoif x'9 < xm

Jsi Joi

X9 = axmeif x19 s xme

i=1...,N, j=1L1...D (3.8

M P>

X EG) otherwise

The two main groups are the methods that preserve feasibility of solutions and the
methods based on penalty functions. Feasibility of solution can be achieved through the
use of specialized operators or feasible region boundary search. One strategy used to
explore only the feasible solution space is to generate and keep candidate solutions in the
feasible region [64]. Values outside the boundary limits need to be adjusted to values
inside the feasible space guaranteeing that only feasible solutions will be tested. This can
be achieved by fixing the value to the nearest bound violated (3.8), or generating a new

value within the feasible range [64].
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Methods based on penalty functions [63, 65 and 66] modify the objective function

providing information of the feasible/infeasible regions aiding the algorithm to find the

desired optimal solution. Basically, the objective function F (X ) is substituted by a

fitness function F '(X ) that penalizes the fitness whenever the solution contains

parameters that violate the problem constraints (3.9). Penalty functions can be classified
as exterior or interior penalty functions depending on whether they penalize infeasible
solutions or feasible solutions respectively. Penalties can be implemented using static,

dynamic, adaptive or annealing techniques.
F'(X)zF(X)—i—Penalty(X) (3.9)

Slack techniques can also be used to handle equality constraints that depend
entirely on control variables. This technique forces the equality constraint to be satisfied
by specifying N-1 variables while the remaining variable (dependent variable) adjusts
taking the necessary value to satisfy the constraint. The slack technique guarantees that
the equality constraint will always be satisfied. On the downside, this technique requires
the variables to be control variables. The use of state variables in slack techniques may
lead to local optima results, especially in highly nonlinear systems. The power balance
constraint is an example of an economic dispatch constraint that can be handled with a

slack technique [67].

Lampinen [64] and Michalewicz et al. [63, 65] have performed research in
constrained optimization and constraint handling techniques in differential evolution and

evolutionary algorithms, respectively.
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3.5 Discrete Variables Handling Techniques
Although the canonical form of differential evolution solves optimization
problems over continuous spaces, minor adjustments to the code allow DE to solve mixed
integer optimization problems [68]. This is achieved with the use of an operator that
rounds the variable to the nearest integer value, when the value lies between two integer

values. This operator (3.10) is included after the initialization (3.3) and mutation process

(3.4).

T
Xi.p= I:Yl ko round(Zk-v-l,...,D)} (3.10)

,,,,,,,,,,

where X is the D dimensional parameter vector, Y the £ dimensional vector of continuous

parameters and Z the vector of ( D — k) discrete parameters.

Mixed Discrete DE Algorithm
1. Initialize population (3.3)
2. Apply rounding operator (3.10)
3. While convergence criteria are not satisfied
4. Create mutant vectors with the difference vector and the scaling constant (3.4)
5. Apply rounding operator (3.10)
6. Generate Trial vectors applying the selected crossover scheme (3.5)

7. Select next generation members according to competition performance (3.6)

Discrete variables with fixed step sizes A between consecutive values can easily

be converted from integer values to discrete values with (3.11).
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Z,=nxA+Z"™, i=1,..,(D-k) (3.11)

max

where 7 is an integer in the range of [0,...,11'““] suchas n=0,1,2,....,n

3.6 Literature Review

Differential Evolution is starting to get attention inside the field of evolutionary
computation and computational intelligence thanks to the robustness and ability to find
global optima of nonlinear and non-convex problems. Most of the initial research was
conducted by the developers of Differential Evolution (Price and Storm) [59-61], with
papers that describe the algorithm and explain how the optimization process is carried
out. Constraint handling techniques for DE have been proposed by Lampinen [64] and
along with Zelinka [69] presented the DE stagnation phenomena. Gamperle et al. [70]
published a parameter study for differential evolution and Lopez et al. [71] developed

strategies for selection of Differential Evolution control parameters for optimal control.

Several hybrid approaches of DE have been proposed. Chiou and Wang [72]
developed a hybrid differential evolution method (HDE) which uses two additional
operations, an acceleration phase and a migration phase that improve convergence speed
while maintaining diversity in the population. Lin et al. [68] proposed a mixed integer
hybrid differential evolution method (MIHDE), which modeled continuous and discrete
variables through mixed coding while rounding integer variables. Also Lin et al. [73]
proposed a hybrid DE with multiplier updating for constrained optimization with

adaptive penalties. Magoulas et al. [74] combined Differential Evolution with Stochastic
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Gradient Descent to improve the optimization process for on-line training while Xie and
Zhang [75] used the mutation operator of differential evolution in combination with

particle swarm optimization.

Also, Differential Evolution has been adjusted to solve mulitobjective
optimization problems. Madavan [62] proposed a Pareto-based Differential Evolution
algorithm based on non-dominated sorting and ranking selection. Abbass et al. [76]
developed the Pareto-frontier Differential Evolution (PDE) which creates the pareto front
by evolving non-dominated solutions. Chang et al. [77] also proposed a Pareto-based
Differential Evolution algorithm, and applied it in the optimization of train movement

and Xue et al. [78] used a multiobjective DE for enterprise planning.

Other combinations of Differential Evolution have been proposed such as a Fuzzy
Differential Evolution that incorporates fuzzy logic controllers to adapt the search
parameters for the mutation and crossover operators [79]. A differential evolution
approach with minimal spanning distances was proposed by Rumpler and Moore [80]
while a DE with decreasing-based mutations and self-adaptive mutations was proposed

by Yang et al [81].

Differential Evolution has been applied to problems from several areas. Some
power engineering problems have been solved with DE including: Distribution systems
capacitor placement [82], harmonic voltage distortion reduction [83] and passive shunt
harmonic filter planning [84]. DE has also been used in the design of filters [85, 86],
neural network learning [87, 88], fuzzy logic applications [89], optimal control problems

[71, 90], among others.



DIFFERENTIAL EVOLUTION EXAMPLE

Objective Function: f(X)=x, +x, +x; +x, + X, + X,

where X represents a candidate solution and x,, x,, x;, X4, x; and x, are the parameters of

the individual.

1- Select Control Variables N, (Population Size), F' (Scaling Factor), C,

(Crossover Constant)

Decision Variables or Parameters (D)
Population size 5
Scaling Factor 0.7
Crossover Constant 0.6

2- Initialize Population with random values according to Eq. 24 (Current

Population)
Individual | Individual | Individual | Individual | Individual
1 2 3 4 5

Parameter 1 (x;) 0.99 0.57 0.25 0.28 0.27
Parameter 2 (x,) 0.52 0.12 0.17 0.43 0.71
Parameter 3 (x3) 0.88 0.19 0.47 0.18 0.85
Parameter 4 (x,) 0.85 0.21 0.50 0.82 0.64
Parameter 5 (xs) 0.45 0.73 0.43 0.08 0.86
Parameter 6 (x¢) 0.96 0.90 0.71 0.70 0.10

Fitness f(X) 4.66 2.72 2.52 2.50 343

3- Select Target Vector from current population

4- Select Random Indices a, b and ¢ from current population. These indices

must be chosen so thata #b # ¢ £ i.




5- Create Mutant Vector X' according to Eq. 25

X, X, X, XX, | FXeX) | XA (XX
Parameter 1 0.27 0.57 0.25 0.32 0.22 0.50
Parameter 2 0.71 0.12 0.17 -0.05 -0.04 0.67
Parameter 3 0.85 0.19 0.47 -0.28 -0.19 0.66
Parameter 4 0.64 0.21 0.50 -0.29 -0.20 0.44
Parameter 5 0.86 0.73 0.43 0.31 0.22 1.07
Parameter 6 0.10 0.90 0.71 0.19 0.13 0.23
Fitness 3.43 2.72 2.52 - - 3.56
6- Create Trial Vectors X" according to Eq. 26
Target | Mutant Trial Random
Vector | Vector Vector #
Parameter 1 0.99 0.50 0.50 0.37
Parameter 2 0.52 0.67 0.67 0.41
Parameter 3 0.88 0.66 0.66 0.32
Parameter 4 0.85 0.44 0.85 0.86
Parameter 5 0.45 1.07 0.45 0.96
Parameter 6 0.96 0.23 0.23 0.06
Fitness 4.66 3.56 3.36 -

7- Select the vector that will advance to the next generation to Eq. 27

Trial Vector

Selected
Individual Individual | Individual | Individual | Individual
1 2 3 4 5
Parameter 1 0.50
Parameter 2 0.67
Parameter 3 0.66
Parameter 4 0.85
Parameter 5 0.45
Parameter 6 0.23
Fitness 3.36

8- Return to step 3 and repeat until the next generation population is filled using

a different target vector each time

9- Return to step 3 and repeat for several generations iterations until convergence

criteria are satisfied
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CHAPTER 4

METHOD

4.1 Introduction

Power dispatch is an optimization problem from power systems which determines
the optimal settings of a few control variables to operate the system properly. From the
optimal generation dispatch problem, four case studies were designed based to test the
Differential Evolution algorithm: Economic Dispatch with Non-Conventional Cost
Functions, Economic/Environmental Power Dispatch, Security Constrained Economic

Power Dispatch and Reactive Power Dispatch.

This classification tests differential evolution against highly nonlinear and
discontinuous objective functions, multiobjective optimization problems, nonlinear
constraints and discrete variables and evaluate the performance, effectiveness and

applicability of the algorithm in power systems and similar large scale optimization

problems.
TABLE 4.1
CASE STUDIES SUMMARY

Case Study Characteristics
1 Non Conventional Cost Functions Highly nonlinear and discontinuous solution space
2 Economic/Environmental Dispatch Multiobjective optimization problem
3 Security Constrained Dispatch Linear and highly nonlinear constraints
4 Reactive Power Dispatch Discrete variables, highly nonlinear constraints




46

4.2 Differential Evolution based Power Dispatch Algorithm
The purpose of DE is to find an individual X} that optimizes the fitness function,
where the fitness function is a combination of the objective function and weighted
equality and inequality constraints. The vector X is evolved over several generations
with mutation and crossover operations and tested according to its fitness with other

members of the population.

Control Variable Classification: In the case of mixed optimization problems such

as the reactive power dispatch, the control variables are classified and grouped as

continuous variables or discrete variables (4.1).

,,,,,,,,,,

X, D:[Yl o Ly D}T (4.1)

where X is the D dimensional parameter vector, Y the £ dimensional vector of continuous

parameters and Z the vector of (D-k) discrete parameters.

Initialization: The population P is composed by N, individuals of D parameters.

Each parameter represents a control variable, and is initialized by assigning to each
parameter of each individual a value inside the feasible region of the variable (4.2). In
the event the problem contains discrete variables such as the case of tap settings and
capacitor banks, these are adjusted to the nearest discrete value when they are initialized

with unfeasible values.

T
X,.p= I:Yl k> round(ZM,__,,D)] -

,,,,,,,,,,
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Optimization Process: New system settings (or individuals) are generated with

the mutation and crossover operators and tested using the fitness function. The settings
that perform better against the fitness function are selected to compose the next
population according to (3.6). This process is repeated for several iterations until the best
system setting of decision parameters is determined. The mutation strategy mostly used
is (3.7) due to its improved performance over the basic strategy. DE basic strategy (3.4)

was used in selected cases for comparison purposes.

Fitness Function: The fitness function is a combination of the objective function

and the penalty functions used to model equality and inequality constraints (4.3). This
function is used to measure the performance of candidate solutions in the selection

operator.
F'(X)=F'(X)+2,G,(X)+ 2 H,(X) (4.3)

where F"(X) is the fitness function and F'(X), G,(X) and H,(X) the objective
function, i equality constraint penalty function and j* inequality constraint penalty
function, respectively. X is the vector of decision variables or parameter vector.

4.3 Case Study I: Non-conventional Cost Functions ED

Differential Evolution algorithm can be adjusted to solve the economic dispatch
with non-conventional cost functions. This case study is known for being highly

nonlinear with a non-continuous solution space. Solution to this problem is very difficult
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due to the non-differentiable functions present and the complexity associated prevents

conventional gradient techniques from solving them.

4.3.1 Cost Functions with Valve Point Loadings

Objective Function: Minimize the sum of the cost functions of all the online generators.

F'(Py)=2 F(F,) (44)

i=1

where

1

F (PG, ) =aq, +biPG, + Cl.PGtz_ +d, Sil’l(el_ (PG':HH _PG,. )) (4.5)

Equality Penalty Functions: The power balance constraint can be modeled through

penalty functions as (4.6).

G,(P,)=o, (4.6)

Ng
P,->' P,
i=1

Inequality Penalty Functions: No inequality penalty functions were used in the valve

point loadings study.

Fitness Function: The fitness function used for the valve point loadings case study was

4.7).
F'(P,)=F'(P,)+G,(P,) 4.7)

Non-Penalty Function Inequality Constraints: Power generation limits where handled

with non-penalty function inequality constraints. If during any generation of the
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evolution process, any of these settings become unfeasible, they are adjusted to the bound

violated according to (4.8).

Ximin lf Xl» < X}nin

1
l

X =X™ if X, > X™, i=1..,D (4.8)

X, otherwise

1

Test System: To test this problem a three generator system was selected from [3]. The
generators on this system are modeled with cost functions that consider valve point

loadings. The system data is available on Table 4.2.

TABLE 4.2
VALVE POINT LOADINGS SYSTEM DATA
Gl Gz G3

a 561 310 78

b 7.92 7.85 7.97

c 0.001562 0.00194 0.00482

d 300 200 150

e 0.0315 0.042 0.063
P 600 400 200
pmin 100 100 50

4.3.2 Piecewise Quadratic Cost Functions

Objective Function: Minimize the sum of the cost functions of all the online generators.

F'(P)=2F, () (4.9)

where
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2 1 Dl
a; +bi,1PG‘_ +ci,lPG,- , I_JGI < PG,. < PG‘_

): a,+b,F +ci,2PG,2-’ Bé < F < FGz (4.10)

2 k Dk
a, +b,-,ch, +Ci,ch,.a EG, < PG, < Pc,.

Equality Penalty Functions: The power balance constraint can be modeled through

penalty functions as (4.11). In this case, no losses were considered.

Ng
G (P;,)=w,P,-Y P, (4.11)
i=1

Inequality Penalty Functions: No inequality penalty functions were used in the valve

point loadings study.

Fitness Function: The fitness function used for the piecewise quadratic cost functions

case study was (4.12).
F"(PG)zF’(PG)-i-Gl(PG) (4.12)

Non-Penalty Function Inequality Constraints: Power generation limits where handled

with non-penalty function inequality constraints. If during any generation of the
evolution process, any of these settings become unfeasible, they are adjusted to the bound

violated according to (4.8).

Test System: This problem was tested based on a 10 generator system selected from [7,
8]. The generators are operated with multiple fuels and their cost functions are piecewise
quadratic. The system data is available on Table 4.3. No losses were considered for this

approach.



TABLE 4.3
PIECEWISE QUADRATIC SYSTEM DATA
Fuel a b c pmin pmax
G 1 2697 -0.3975 2.176E-03 100 196
! 2 21.13  -0.3059 1.861E-03 196 250
1 118.40 -1.2690 4.194E-03 157 230
G, 2 1.87 -0.0399 1.138E-03 50 114
3 13.65 -0.1980 1.620E-03 114 157
1 39.79 -0.3116 1.457E-03 200 332
G, 2 -59.14 0.4864 1.176E-05 388 500
3 -2.88  0.0339 8.035E-04 332 388
1 1.98 -0.0311 1.049E-03 99 138
G, 2 52.85 -0.6348 2.758E-03 138 200
3 266.80 -2.3380 5.935E-03 200 265
1 13.92 -0.0873 1.066E-03 190 338
G, 2 99.76  -0.5206 1.597E-03 338 407
3 -53.99 0.4462 1.498E-04 407 490
1 52.85 -0.6348 2.758E-03 138 200
G, 2 1.98 -0.0311 1.049E-03 85 138
3 266.80 -2.3380 5.935E-03 200 205
1 18.93 -0.1325 1.107E-03 200 331
G, 2 4377 -0.2267 1.165E-03 331 391
3 -43.35 03559  2454E-04 391 500
1 1.98 -0.0311 1.049E-03 99 138
G, 2 52.85 -0.6348 2.758E-03 138 200
3 266.80 -2.3380 5.935E-03 200 265
1 88.53 -0.5675 1.554E-03 213 370
G, 3 1423 -0.0182 6.121E-04 130 213
3 1423 -0.0182 6.121E-04 370 440
1 13.97 -0.0994 1.102E-03 200 362
G, 2 -61.13 05084 4.164E-05 407 490
3 46.71 -0.2024 1.137E-03 362 407

4.3.3 Cost Functions with Prohibited Operating Zones

51

Objective Function: Minimize the sum of the cost functions of all the online generators.

where

F(R;)

(4.13)
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F(P, )=a,+bP; +cF; (4.14)

1

Equality Penalty Functions: The power balance constraint can be modeled through

penalty functions as (4.15).

G (P;)= (4.15)

Ng
P,->' P,
i=1

Inequality Penalty Functions: The prohibited zones were modeled through penalty

functions with the best design tested being (4.16).

Z:ﬂﬁm( (P_U (4.16)

jeGP

where
1111“ ( P -’) Z;n;(n , szax — 1 ) lfP min < P < szax k — 1
hj ( FG‘/. ) = ( Zmax Pme )/2 Juk oo

0, otherwise

and G = {G{’Z,Gz”z, G,fz} is the set of n generators with prohibited zones, ; is the j”

element of the set of generators with prohibited zones; k is the k" prohibited zone of

max

generator j and P m}{“ and PZ7}" are the lower and upper bounds of the K" prohibited

zone of generator j.

Fitness Function: The fitness function used for the cost functions with prohibited zones

case study was (4.17).

F"(P,)=F'(P,)+G,(P,)+H,(P,) (4.17)
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Non-Penalty Function Inequality Constraints: Power generation limits where handled

with non-penalty function inequality constraints. If during any generation of the
evolution process, any of these settings become unfeasible, they are adjusted to the bound

violated according to (4.8).

Test System: A 15 generator system was used to test the algorithm against cost functions
with prohibited operating zones. This test system contains 4 generators with multiple
prohibited zones of operation. The system data is available on Tables 4.4 and 4.5 and

reference [15]. No losses were considered in this approach.

TABLE 4.4

PROHIBITED OPERATING ZONES SYSTEM DATA

a b c Pmin Pmax
G, 671.03 10.07 0.000299 150 455
G, 57454 10.22 0.000183 150 455
G, 37459 8.8 0.001126 20 130
G, 37459 88 0.001126 20 130
G, 461.37 104 0.000205 105 470
G, 630.14 10.1 0.000301 135 460
G, 5482 9.87 0.000364 135 465
G; 227.09 11.21 0.000338 60 300
G, 17372 11.21 0.000807 25 162
G,, 17595 10.72 0.001203 20 160
G, 186.86 10.21 0.003586 20 80
G, 23027 9.9 0.005513 20 80
G,; 22528 13.12 0.000371 25 85
G,, 309.03 12.12 0.001929 15 55
G,; 323.79 12.41 0.004447 15 55
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TABLE 4.5
PROHIBITED REGIONS
Zone 1 Zone 2 Zone 3
G, [185225] [305 335] [420 450]
G, [180200] [260 335] [390 420]
G, [230255] [365 395] [430 455]
G, [30 55] [65 75]

4.4 Case Study II: Economic/Environmental Power Dispatch

The Economic/Environmental Power dispatch is known for being a highly
nonlinear optimization problem due to the functions used to model SO, and NO,

emissions properly. This problem can be formulated either as an emissions constrained

economic dispatch or as a multiobjective optimization problem.
4.4.1 Emissions Constrained Economic Dispatch

Objective Function: Minimize the sum of the cost functions of all the online generators.

=

F'(P)=YF(P,) (4.18)

l

I
—_

where
F,(P,)=a,+bF, +cF; (4.19)

Equality Penalty Functions: The power balance constraint can be modeled through

penalty functions as (4.20). System losses were estimated in this case using the B

coefficients.

Ng
PD+PL_ZPG,»

i=1

G, (P;)=o, (4.20)
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Inequality Penalty Functions: The emission constraint was modeled through penalty

functions with (4.21).

H,(P,)=u, max{O,%Ei (PGi)—ES} (4.21)

i=1

Fitness Function: The fitness function used for the emission constrained economic

dispatch case study was (4.22).
F"(P;)=F'(P;)+G,(P;)+H, (P;) (4.22)

Non-Penalty Function Inequality Constraints: Power generation limits where handled

with non-penalty function inequality constraints. If during any generation of the
evolution process, any of these settings become unfeasible, they are adjusted to the bound

violated according to (4.8).

4.4.2 Multiobjective Economic/Environmental Dispatch

Objective Function: Minimize the weighted sum of the cost functions and the emissions

functions of all the online generators. Here o is a constant in the range of [0 1] used to

determine the pareto optimal set.

F'(P;)=6) F/(P, )+(1—5)><1<1.§G:Ei (P,), 6=0 1] (4.23)

i=1 i=1
where

F(P,)=a,+bP, +cF; (4.24)

1

E (P, )=a,+BP, +7.P; +u exp( AR ) (4.25)

l



56

Equality Penalty Functions: The power balance constraint can be modeled through

penalty functions as (4.26). System losses were estimated in this case using the B

coefficients.

Ng
Py+ P, =2 R,

i=1

G,(P,)=w, (4.26)

Inequality Penalty Functions: No inequality penalty functions were used in the

multiobjective economic-environmental power dispatch study.

Fitness Function: The fitness function used for the multiobjective economic-

environmental power dispatch case study was (4.27).
F"(P;)=F'(P;)+G,(P;) (4.27)

Non-Penalty Function Inequality Constraints: Power generation limits where handled

with non-penalty function inequality constraints. If during any generation of the
evolution process, any of these settings become unfeasible, they are adjusted to the bound

violated according to (4.8).

Test Systems: The economic/environmental power dispatch algorithm was tested using
the IEEE 6 generator/30 bus test system and a 14 generator/118 test system. A reduction
was applied to these systems by modeling losses as a function of the generators output
through Kron’s loss coefficients instead of obtaining losses via the power flow solution.
The 6 generator system data is available on Table 4.6 and can be found on [25, 26] and

the 14 generator system data is presented on Table 4.7 and [31].
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TABLE 4.6
ECONOMIC/ENVIRONMENTAL 6 GENERATORS SYSTEM DATA
G, G, G, G, G, G,
a 10 10 20 10 20 10
b 200 150 180 100 180 150
c 100 120 40 60 40 100
a 4.091 2.543 4.258 5.426 4.258 6.131
p -5.554  -6.047 -5.094 -3.550 -5.094 -5.555
Y 6.490 5.638 4.586 3.380 4.586 5.151
H 2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5
A 2.857 3.333 8.000 2.000 8.000 6.667
pmin .05 .05 .05 .05 .05 .05
pmax 1.5 1.5 1.5 1.5 1.5 1.5
B COEFFICIENTS OF THE 6 GENERATOR STUDY
[ 0.1382 -0.0299 0.0044 -0.0022 -0.0010 -0.0008 -0.0535 |
-0.0299 0.0487 -0.0025 0.0004 0.0016 0.0041 0.0030
0.0044 -0.0025 0.0182 -0.0070 -0.0066 -0.0066 -0.0085
B =1-0.0022 0.0004 -0.0070 0.0137 0.0050 0.0033 0.0004
-0.0010 0.0016 -0.0066 0.0050 0.0109 0.0005 0.0001
-0.0008 0.0041 -0.0066 0.0033 0.0005 0.0244 0.0015
1-0.0535 0.0030 -0.0085 0.0004 0.0001 0.0015 0.000986 |

B: Blj Bi0/2
Bi0/2 BOO




Economic/Environmental 118 Bus and 14 Generators System Data

TABLE 4.7

a

b

c

(24
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P00 0000D
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%)

Co0an

=

150
115
40
122
125
70
70
70
130
130
135
200
70
45

1.89
2.00
3.50
3.15
3.05
2.75
3.45
3.45
2.45
2.45
2.35
1.30
3.45
3.89

0.0050
0.0055
0.0060
0.0050
0.0050
0.0070
0.0070
0.0070
0.0050
0.0050
0.0055
0.0045
0.0070
0.0060

0.016 -1.500
0.031 -1.820
0.013  -1.249
0.012 -1.355
0.020 -1.900
0.007  0.805
0.015 -1.401
0.018 -1.800
0.019 -2.000
0.012  -1.360
0.033  -2.100
0.018 -1.800
0.018 -1.810
0.030 -1.921

23.333
21.022
22.050
22.983
21.313
21.900
23.001
24.003
25.121
22.990
27.010
25.101
24.313
27.119

50
50
50
50
50
50
50
50
50
50
50
50
50
50

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

[0.042741
0.030108
0.019242

=10.021506

—0.00288
-0.00400
| -0.00447
[—0.00272
—0.00366
-0.00239

=1 -0.00223

0.003116
0.003740

0.003370

B COEFFICIENTS OF THE 14 GENERATOR STUDY

0.030108
0.037946

0.02071

0.020912
—-0.00363
—0.00525
—0.00448
—0.00323
—-0.00359

—-0.0023

—-0.0023
0.004207
0.003341
0.003566

0.019242 0.021506
0.020710 0.020912

0.026780 0.024696

0.024696 0.024393
—-0.00247 -0.00232
—0.00378 —0.00352
—0.00298 —-0.00309
—0.00694 —-0.00745
—-0.00695 -0.01018

1 -0.00467 -0.00786
—0.00475 —0.00715

0.002066 0.000366
0.002486 0.001192
0.003054 0.001293

—0.00288
—-0.00363
-0.00247
—0.00232
0.009543
0.003659
0.002951
—0.01952
—-0.02004
—0.01583
—-0.016
—-0.00365
—-0.00279
—-0.00252

—0.00400
—-0.00525
—-0.00378
—0.00352
0.003659
0.010678
0.005763
-0.01217
-0.01844
—0.01529
—0.01346
—-0.00381
—0.00288
—-0.00192

—0.00447 |
—0.00448
—0.00298
—0.00309
0.002951
0.005763
0.008092 |

-0.01718]
-0.02057
~0.01668
—0.01588
-0.00424
-0.00331
—0.00272 |
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[-0.00272  —0.00366 —0.00239 -0.00223 0.003116 0.00374  0.00337 |
—0.00323 —-0.00359 -0.00231 -0.0023 0.004207 0.003341 0.003566
—-0.00694 -0.00695 -0.00467 -0.00475 0.002066 0.002486 0.003054
B, =]-0.00745 -0.01018 -0.00786 -0.00715 0.000366 0.001192 0.001293

—0.01952 -0.02004 -0.01583 -0.01600 -—0.00365 -—0.00279 —0.00252
-0.01217 -0.01844 -0.01529 -0.01346 -0.00381 -0.00288 —0.00192
| —0.01718 —0.02057 -0.01668 —0.01588 —0.00424 -0.00331 -0.00272 |
0.003876  0.003746 0.002934 0.002063 —0.00152 -0.00142 —0.00188 |
0.003746 0.005404 0.002869 0.001477 —0.00225 -0.00189 —0.00254
0.002934 0.002869 0.006738 0.003054 0.001212 0.001331 0.000955
B,, =10.002063 0.001477 0.003054 0.008576 0.006171 0.008179 0.007260

-0.00152 -0.00225 0.001212 0.006171 0.036153 0.018390 0.020017
-0.00142 -0.00189 0.001331 0.008179 0.018390 0.033117 0.029414
| —0.00188 —0.00254 0.000955 0.007260 0.020017 0.029414 0.041297 |
Bloz[—0.538520 —0.283225 -0.1929400 -0.26424 0.017755 0.021917 0.040508]
B, = [0.012216 0.014007 0.0044072 0.032732 0.217820 0.032560 0.155630]

B,, =2.8378x10?

where

B, B
B, = { . 12} and B, = [Blo Bzo]
‘ B, B,

4.5 Case Study III: Security Constrained Power Dispatch

The security constrained power dispatch determines the optimal solution of an
optimization problem that features multiple inequality constraints. This case study is
highly nonlinear and multimodal favoring the application of global optimization
techniques. Two basic security constraints were modeled: maximum line flow and

spinning reserve. Line flows can be estimated either by solving the power flow problem
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or by estimating the flows through a linear approximation with generation shift factors.

Both approaches were explored in this paper.

4.5.1 Security Constrained Economic Dispatch

Objective Function: Minimize the sum of the cost functions of all the online generators.

F'(Py)=Y F(R,) (4.28)

i=1
where

Ng Ng

F\F )= af+biPG.+ciPGz. (4.29)
2E (B )=2 b +ek;

i=1 i=1

Equality Penalty Functions: The power balance constraint can be modeled through

penalty functions as (4.30). System losses were estimated by solving the power flow
algorithm for the IEEE 30 bus case study. For the 8 generator — 6 lines study no losses
were considered.

Ng
PD+PL_ZPG,»

i=1

G (P;)=o, (4.30)

Inequality Penalty Functions: Line flow constraints and spinning reserve constraint were

modeled through penalty functions with (4.31), (4.32) respectively.

Ny
H,(Py) =,y max|0, S, =S5 | (4.31)

i=1

Ng
H,(P;)=p, ma){O, Sy —ZSRJ (4.32)
i=1
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Fitness Function: The fitness function used for the security constrained economic

dispatch case study was (4.33). When either the line flow constraint or the spinning
reserve constraint was not considered, the corresponding penalty was eliminated from the

fitness function.
F"(P;)=F'(P;)+G,(P;)+H,(P;)+H,(P,) (4.33)

Non-Penalty Function Inequality Constraints: Power generation limits where handled

with non-penalty function inequality constraints. If during any generation of the
evolution process, any of these settings become unfeasible, they are adjusted to the bound

violated according to (4.8).

Test System: The security constrained power dispatch algorithm was tested with an 8
generator and 6 monitored lines system from reference [39]. Also the IEEE 6
generator/30 bust test systems was modified and adjusted to provide a second case study
for the security constrained dispatch. The basic difference between both studies is how
line flows are determined. The first case uses a linear approximation based on generation
shift factors and dispatches for a constant load without considering losses. The second
case uses the power flow to determine losses and system line flows. The spinning reserve
criteria used was the same for both approaches. The system data of the first case is
presented on Table 4.8 and Table 4.9. The data for the IEEE 6 generator 30 bus test

system can be found on Tables 4.10, 4.11 and 4.12.
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TABLE 4.8
8 GENERATORS — 6 LINES SYSTEM DATA
Bus G, G, G, G, G, G, G, G,
0 0 0 0 0 0 0 0
23.074 23.343 18.094 20.687 16.201 18.094 20.000 19.000
0.022 0.023 0.009 0.010 0.015 0.010 0.015 0.009
pin 20 20 20 20 20 20 20 20
prmax 400 550 350 200 250 200 100 350
S 40 60 35 20 25 20 10 35
TABLE 4.9
8 GENERATORS — 6 LINES GENERATION SHIFT FACTORS
Li Li
o fm G G G G G G G G
Ll 300 1.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000
L2 500 0.06235 0.06235 -0.79483 -0.09577 -0.06639 -0.11252 0.17575 -0.08823
L3 500 0.01226 0.01226 0.05927 -0.021280 -0.00211 -0.00138 0.01429 -0.02690
L4 300 0.03225 0.03225 0.09574 -0.02078 -0.02201 -0.04738 -0.21399 -0.02970
L5 200 0.00190 0.00190 0.00211 0.0090 -0.00390 0.00288 0.00229 0.00486
L() 200 -0.01334 -0.01334 -0.01174 0.04137 -0.00869 -0.02256 -0.016433 -0.01728
TABLE 4.10
SECURITY CONSTRAINED IEEE 30 BUS GENERATORS SYSTEM DATA
Bus G, G, G, G, G, G,
a 0 0 0 0 0 0
b 2.00 1.75 1.00 3.25 3.00 3.00
c 0.00375 0.01750 0.06250 0.00834 0.02500 0.02500
pmin 50 20 15 10 10 12
prax 200 80 50 35 30 40
S 20 10 5 5 5 5




TABLE4.11

SECURITY CONSTRAINED IEEE 30 Bus LOAD DATA
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Bus Type MW MVAR Bus Type MW MVAR
1 Slack 0 0 16 PQ 4.2 2.16
2 PV 21.7 12.7 17  PQ 10.8 6.96
3 PQ 2.88 1.44 18 PQ 3.84 1.08
4 PQ 9.12 1.92 19 PQ 11.4 4.08
5 PV 94.2 19 20 PQ 2.64 0.84
6 PQ 0 0 21 PQ 21 13.44
7 PQ 27.36 13.08 22 PQ 0 0
8 PV 30 30 23 PQ 3.84 1.92
9 PQ 0 0 24 PQ 13.05 10.05
10 PQ 40.6 14 25  PQ 0 0
11 PV 0 0 26  PQ 4.2 2.76
12 PQ 22.4 15 27  PQ 0 0
13 PV 0 0 28 PQ 0 0
14 PQ 7.44 1.92 29  PQ 2.88 1.08
15 PQ 12.3 3.75 30 PQ 12.72 2.28
TABLE 4.12
IEEE 30 BUS SYSTEM DATA
From To From To
Bus Bus R X B Bus Bus R X B
1 2 0.0192 0.0575 0.0264 15 18 0.1070 0.2185 0.0000
1 3 0.0452 0.1852 0.0204 18 19  0.0639 0.1292 0.0000
2 4 0.0570 0.1737 0.0184 19 20 0.0340 0.0680 0.0000
3 4 0.0132 0.0379 0.0042 10 20 0.0936 0.2090 0.0000
2 5 0.0472 0.1983 0.0209 10 17 0.0324 0.0845 0.0000
2 6 0.0581 0.1763 0.0187 10 21 0.0348 0.0749 0.0000
4 6 0.0119 0.0414 0.0045 10 22 0.0727 0.1499 0.0000
5 7 0.0460 0.1160 0.0102 21 22 0.0116 0.0236 0.0000
6 7 0.0267 0.0820 0.0085 15 23 0.1000 0.2020 0.0000
6 8 0.0120 0.0420 0.0045 22 24 0.1150 0.1790 0.0000
6 9 0.0000 0.2080 0.0000 23 24 0.1320 0.2700 0.0000
6 10 0.0000 0.5560 0.0000 24 25  0.1885 0.3292 0.0000
9 11 0.0000 0.2080 0.0000 25 26  0.2544 0.3800 0.0000
9 10 0.0000 0.1100 0.0000 25 27  0.1093 0.2087 0.0000
4 12 0.0000 0.2560 0.0000 28 27  0.0000 0.3960 0.0000
12 13 0.0000 0.1400 0.0000 27 29  0.2198 0.4153 0.0000
12 14 0.1231 0.2559 0.0000 27 30  0.3202 0.6027 0.0000
12 15 0.0662 0.1304 0.0000 29 30 0.2399 0.4533 0.0000
12 16 0.0945 0.1987 0.0000 8 28  0.0636 0.2000 0.0214
14 15 0.2210 0.1997 0.0000 6 28  0.0169 0.0599 0.0065
16 17 0.0824 0.1932 0.0000
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4.6 Case Study I'V: Reactive Power Dispatch
The reactive power dispatch enhances system operation by optimizing the
allocation of the reactive power. This case study is inherently a mixed discrete
optimization problem since many of the sources of reactive power are non-continuous.
The mixed discrete approach results in an extremely complex optimization problem with

multiple nonlinear constraints.

Objective Function: Minimize the system active power losses.

Ny Ny

F'(X)=ZzngX\’4—Vf\z (4.34)

i=1 j=1

Equality Penalty Functions: Since the equality constraints (4.35) and (4.36) are met

when the power flow subroutine used to determine the system state variables converges,

no equality penalty functions were used in the fitness function.

Np

By =By = 2|5 || |eos (6, +5,-5) =0 (435)
j=1

05 -0y + 317 [sin(0, +6,~6) =0 (4.36)
J=1

Inequality Penalty Functions: Maximum Apparent Power, Generator Reactive Power

Limits and Bus Voltages Limits were modeled through penalty functions with (4.37),

(4.38), and (4.39), respectively.

Ng
H,(X) =,y max| 0, S, —Sa™ | (4.37)
i=1
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Ng ‘
H,(X) =,y max| 0, Q5 —05™,0" -0, | (4.38)
i=1

max

V-V,

|V

NB .
H,(X)= ﬂ32max[o, min —\Vﬂ (4.39)
i=1

Fitness Function: The fitness function used for the reactive power dispatch case study

was (4.40).
F”(X)=F'(X)+H1(X)+H2(X)+H3(X) (4.40)

Non-Penalty Function Inequality Constraints: Generator voltage settings, Transformer

Taps and Capacitor Banks lower and upper limits were handled with (4.8). If during the
evolution process, any of these settings become unfeasible, they are adjusted to the bound

violated.

Test System: The reactive power dispatch algorithm was tested with the IEEE 6
generator/30 bust test system found on reference [41]. Two base studies were developed
from here by incorporating 9 capacitor banks to the system to the base case study with 6
generators and 4 load tap changing transformers. Tables 4.12, 4.13, 4.14 and 4.15

present the system data of the IEEE 30 bus test system.



TABLE 4.13
IEEE 30 Bus LOAD DATA
Bus Type MW MVAR Bus Type MW MVAR

1 Slack 0 0 16 PQ 35 1.8
2 PV  21.7 12.7 17  PQ 9 5.8
3 PQ 2.4 1.2 18 PQ 32 0.9
4 PQ 7.6 1.6 19 PQ 95 34
5 PV 942 19 20 PQ 22 0.7
6 PQ 0 0 21 PQ 17.5 11.2
7 PQ 22.8 10.9 22 PQ 0 0
8 PV 30 30 23 PQ 32 1.6
9 PQ 0 0 24 PQ 8.7 6.7
10  PQ 5.8 2 25  PQ 0 0
11 PV 0 0 26 PQ 35 2.3
12 PQ 112 7.5 27  PQ 0 0
13 PV 0 0 28 PQ 0 0
14 PQ 6.2 1.6 29 PQ 24 0.9
15 PQ 8.2 2.5 30 PQ 10.6 1.9

TABLE 4.14

IEEE 30 BUuS TRANSFORMER DATA
From To Minimum Maximum

Transformer Bus Bus Tap Tap
Ts9 6 9 09 1.1
Ts-10 6 10 0.9 1.1
Ta12 4 12 09 1.1
T>827 28 27 0.9 1.1

TABLE 4.15

IEEE 30 Bus CAPACITOR BANK DATA

At  Minimum Size Maximum Size

Transformer /" MVAR) (MVAR)
QC 10 10 0 5
QOc, 12 0 5
Oc;s 15 0 5
QC 17 17 0 5
QCQ() 20 0 5
QCQ 1 21 0 5
Ocy;s 23 0 5
QCQ4 24 0 5
Ocz9 29 0 5
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CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Introduction

This chapter presents the results obtained on the four case studies selected to test
the differential evolution algorithm. Each case study has several variants that help
validate the results obtained and the algorithm capability. All case studies were solved

using Matlab 6.5 on a 1.8 GHz Pentium 4 processor with 256 MB of RAM.

Case Study 1 is composed of three variants which test the algorithm with non-
smooth and non-continuous objective functions. These variants are Cost Functions with
Valve Point Loadings, Piecewise Quadratic Cost Functions and Cost Functions with
Prohibited Zones. Case Study 2 solves the highly nonlinear Economic-Environmental
Power Dispatch using two approaches: a Multiobjective approach and the Emission
constrained approach. Each approach was tested on two systems, a 6 generators system

based on the IEEE 30 bus system and a 14 generators system based on the IEEE 118 bus.

Case study 3 solves the economic dispatch adding two security constraints: Line
flow constraints and spinning reserve constraints. This case study was tested using an 8
generator — 6 lines system and a modified 30 bus test system. Case Study 4 solves the
Reactive Power Dispatch problem using the IEEE 30 bus test system. Two variants were

studied: a Reactive Power Dispatch modeling transformer taps as continuous and
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Discrete Variables and a second study that included Capacitor Banks and modeled them

as Continuous and Discrete Variables.
5.2 Case Study I: Non-conventional cost functions ED

Economic dispatch with Valve Point Loadings, Prohibited Operating Zones and
Piecewise quadratic cost functions problems were solved using the differential evolution
algorithm. For each case 100 independent runs were made using the best suited control

parameters determined with parameter tuning (scaling constant and crossover) shown in

Table 5.1.
TABLE 5.1
NON-CONVENTIONAL COST FUNCTIONS CONTROL PARAMETERS AND WEIGHTS
Control Valve Point  Piecewise Prohibited
Parameters  Loadings Quadratic  Operating Zones

F 1 0.9 0.51

Cp .99 0.99 0.96
N, 45 20 150

o) 1x10° 1x10° 1x10°

H,y - - 2

Hy - - 5

Hs - - 2

Hy - - 2

5.2.1 Valve Point Loadings

DE is capable of solving efficiently problems featuring valve point loadings. DE
offers improvement in the cost function when being compared to the Genetic Algorithm

approach performed in [3] while providing consistent results throughout the simulation
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runs as can be seen on Table 5.2. The strategy DE/best/2/bin performed better than

DE/rand/1/bin in terms of consistency of solution as shown in Table 5.3.

TABLE 5.2
COMPARISON OF VALVE POINT LOADING RESULTS
DE GA [3]
G, (MW) 300.3 300
G, (MW) 400.0 400
G, (MW) 149.7 150
Cost $/h 8234.1 8237.6
TABLE 5.3

VALVE POINT LOADINGS TEST RESULTS
Strategy DE/rand/1/bin DE/best/2/bin

N, 45 45
Max. Gen. 2000 2000
G, MW) 300.3 300.3
G, MW) 400.0 400.0
G, MW) 149.7 149.7

BSF $/h 8234.1 8234.1
WSF $/h 8400.2 8241.6
Median $/h 8234.1 8234.1
Mode $/h 8234.1 8234.1
Standard
Deviation 16.6 1.2
Variance 276.4 1.5

5.2.2 Piecewise Quadratic

DE can solve economic dispatch featuring piecewise quadratic functions as shown
on Table 5.4. DE converged to almost identical results for the 100 runs, in all four cases
as can be seen by the standard deviation index on Table 5.4. The strategy DE/best/2/bin

finds global optima on a more consistent basis than DE/rand/1/bin. Compared to
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techniques such as the Hierarchical approach [7] and Adaptive Hopfield Neural Networks

[8] Differential Evolution delivered successful results, as shown on Table 5.5.

TABLE 5.4
PIECEWISE QUADRATIC ECONOMIC DISPATCH DE TEST RESULTS
Load
(MW) 2400 2500 2600 2700
N, 45 45 45 45

Max. Gen. 2000 2000 2000 2000
G, MW) 189.7 2065 2165 218.2

G, MW) 2024 206.5 2109 211.7
G, MW) 2539 2657 278.5 280.7
G, MW) 2331 236.0 239.1 239.6
G; MW) 2418 258.0 2755 278.7
G, MW) 2330 2360 239.1 239.6
G, MW) 2533 2689 2857 288.6
G, MW) 2331 236.0 239.1 239.6
G, MW) 3204 331.5 3435 4284

G, MW) 2394 2551 2720 274.8

BSF $/h 481.7 526.2 5744 6238
WSF $/h  481.7 5262 5747 623.8
Median $/h  481.7 5262 5744 623.8
Mode $/h  481.7 5262 5744 623.8
Standard 0 o0 01 00

Deviation
Variance 0.0 0.0 0.0 0.0

TABLE 5.5
COMPARISON OF PIECEWISE QUADRATIC RESULTS

Cost $/h DE Hopfield [8] Hierarchical [7]

2400 MW 481.7 481.7 488.5*
2500 MW 526.2 526.2 526.7*
2600 MW 5744 574.4 574.0%*
2700 MW 623.8 626.2 625.2*

*Power Balance constraint not satisfied.
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5.2.3 Prohibited Operating Zones

DE is capable of solving economic dispatch featuring prohibited zones. These
types of problems are extremely difficult to solve due to the large discontinuities in the
feasible region. Strategy DE/best/2/bin is very consistent throughout the 100 trials
presenting a standard deviation and variance of 1.43 and 2.05 respectively. The penalty
factors were set to 2 for each of the zones of generators 2, 6 and 12; and to 5 for the zones

of generator 5.

TABLE 5.6
PROHIBITED OPERATING ZONES TEST RESULTS AND COMPARISON
Deterministic Dynamic
MW DE ETQ[10] Crowding GA [13] Progra};nming [13]
G, 455 450 406.1 455
G, 455 450 453.8 455
G, 130 130 130 130
G, 130 130 130 130
G, 260 335 355 260
G, 460 455 456.8 460
G, 465 465 459.8 465
G, 60 60 60 60
G, 25 25 26.6 25
G, 20 20 21.6 20
G, 60 20 36.2 60
G, 75 55 59 75
G, 25 25 25 25
G, 15 15 15 15
G 15 15 15 15

BSF$ 32506.14  32507.5 32515 32506.14
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In comparison, DE was capable of reaching $32,506.14 which is the best solution
found so far for this particular problem. As shown on Table 5.7, 61 runs reached the top
three local minima with 21 of those reaching the global minimum value. Compared
against other techniques (Table 5.6), DE proves to be a suitable technique for global

optimization, by determining the global optima solution.

TABLE 5.7
PROHIBITED ZONES DIFFERENTIAL EVOLUTION PERFORMANCE
Cost Results Cost Results
Function Distribution Function Distribution
32506.14 21% 32508.15 9%
32506.18 20% 32508.28 5%
32507.57 20% 32512.07 3%
32507.76 21% 32515.31 1%

5.3 Case Study II: Economic-Environmental Power Dispatch

Emissions Constrained Economic Dispatch (ECED) and Multiobjective Economic
Environmental Dispatch (MEED) were solved using differential evolution algorithm. For
every study, 10 independent runs for each of the 20 pareto points were made using the
best suited control parameters determined via parameter tuning (scaling constant and
crossover) shown on Table 5.8. Both ECED and MEED were solved with and without

losses. Losses were determined using the Kron’s Loss Formula (4).

The economic dispatch with emissions was simulated using the 30 bus and 6
Generator IEEE Test system described in [26] and the 118 Bus and 14 generators system
described in [31]. Each system was solved formulated as a multiobjective approach and

as an emissions constrained economic dispatch. Since MEED determines optimal values
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for cost and emission, the emission results obtained in this approach were used as
constraints in ECED. This will allow better comparison of both approaches in terms of

solution obtained.

TABLE 5.8
ECONOMIC/ENVIRONMENTAL DISPATCH CONTROL PARAMETERS
Control 30 Bus 118 Bus
Parameters System System
F 0.55 0.5
C, 0.95 0.95
N, 40 100
o, 1x10° 1x10°
M, 1x10° 1x10°
K 3.0738x10° 0.0665

5.3.1 IEEE 30 bus - Six Generator Test System

The parameters used for the 30 bus system are presented as follows: Scaling

factor (F) was set to .55 and the crossover constant (C,) to 0.95, strategy to
DE/best/2/bin and a population size (N, ) of 40. The load was set to 2.834 p.u. on a 100

MVA base. Figures 9 and 10 show the tradeoff curves of cost/emissions without losses
and with losses, respectively. Implementation of the MEED or ECED with DE provides
almost identical results with slight variations. Table 5.9 and 5.10, show the result for
both approaches when losses are not considered, and compare them to other results

available in the literature. Table 5.11 shows the tradeoff values for the pareto front.



IEEE 30 Bus - Six Generator Without Losses

B Multiobjective Approach A Emissions Constraint Approach

645
640 - s
635 f -
630 +------- B o
T n
Fos L
& 620 f--------- e e
Zols| - "
© n
610 f-—-—-—--— - R
605 +------—-—-"-—"--"-"-"--"--- - -
n n
600 4 -~ - - B n--
595 T T T T T T
0.19 0.195 0.2 0.205 0.21 0.215 0.22 0.225
Emissions (ton/hour)
Fig. 9 Emission-Cost Tradeoff Curve for MEED and ECED
IEEE 30 Bus - Six Generator With Losses
‘ B Multiobjective Approach & Emissions Constraint Approach
650
645 - R
640 n
n
635 +---—--- Ao
—_ n
E 630 nu
S 625 +-—---—---—- B
N E
2620+~ B
Q n
615 n n .
L e
n
605 - " n
600 T T T T T T

0.19 0.195 0.2 0.205 0.21 0.215 0.22 0.225

Emissions (ton/hour)

Fig. 10 Emission-Cost Tradeoff Curve for MEED and ECED

74



75

As seen from figures 9 and 10, Differential Evolution provides very accurate
solutions to the IEEE 30 Bus System. The use of Kron’s Loss formula, resulted in an
increased computational time but results continued to be accurate. Data dispersion is

low, with a maximum standard deviation of 0.03 without losses and 0.19 with losses.

TABLE 5.9
BEST COST RESULTS COMPARISON WITHOUT LOSSES
Best Cost
DE ECED DE MEED | SPEA [26] LP[26] MOSST [26]
G, 0.110 0.110 0.110 0.150 0.113
G, 0.300 0.300 0.300 0.300 0.302
G, 0.524 0.524 0.524 0.550 0.531
G, 1.016 1.016 1.016 1.050 1.021
G, 0.524 0.524 0.525 0.460 0.531
G, 0.360 0.360 0.360 0.350 0.363
$/hr 600.110 600.110 600.114 606.310 605.890
ton-hr 0.2231 0.2231 0.2221 0.223 0.222
TABLE 5.10

BEST EMISSIONS RESULTS COMPARISON WITHOUT LOSSES
Best Emissions

DEECED DEMEED | SPEA[26] LP[26] MOSST [26]

G, 0.406 0.406 0.412 0.400 0.410

G, 0.459 0.459 0.453 0.450 0.463

G, 0.539 0.538 0.533 0.550 0.543

G, 0.384 0.383 0.383 0.400 0.388

G; 0.539 0.538 0.538 0.550 0.543

G, 0.510 0.510 0.515 0.500 0.514

$/hr | 638.860 638.270 638510  639.600 644.110
ton-hr | 0.1952 0.1952 0.1942 0.1942 0.1942




TABLE 5.11
TRADEOFF VALUES FOR IEEE 30 BUS — 6 GENERATOR SYSTEM
Emission-Cost Tradeoff Values

Without Losses With Losses

MEED ECED MEED ECED

Best Best Best Best Best Best
Emission Cost Cost Emission Cost Cost
0.1952 638.27 63886 0.19518 646.2 645.6
0.19522 636.33 636.34 0.1952 644.0 643.9
0.19528 634.33 63423 | 0.19526 641.7 641.7
0.19538 632.28 63224 [ 0.19538 639.3 639.3
0.19553 630.18 630.21 | 0.19555 637.0 637.0
0.19575 628.04 628.03 0.1958 634.6  634.5
0.19604 625.84 62585 0.19612 632.1 632.1
0.19642 623.61 623.6 0.19653 629.7  629.7
0.1969 621.34 62135 | 0.19706 627.2  627.2
0.19751 619.03 619.03 0.1977 624.8  624.8
0.19827 616.71 616.7 0.1985 622.3 622.3
0.19921 614.37 61437 [ 0.19948 619.9 619.9
0.20037 612.05 612.05 | 0.20067 617.5 617.5
0.20181 609.75 609.75 [ 0.20212 6152 6152
0.2036 607.52 607.52 [ 0.20389 613.0 613.0
0.20582 605.41 60541 | 0.20605 610.9 610.9
0.20862 603.47 60348 [ 0.20872 609.1 609.1
0.2122 601.82 601.82 | 0.21203 607.5 607.5
0.21686 600.61 600.61 | 0.21624 606.4 606.4
0.22314 600.11 600.11 | 0.22173 606.0  606.0

5.3.2 1EEE 118 bus - 14 Generator Test System

The parameters used for the 118 bus system are presented as follows:
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scaling

factor (F) was set to .5 and the crossover constant (C,) to 0.95, strategy to DE/best/2/bin

and a population size (N, ) of 100. The load condition was 4,242 MW.

Figure 11 and Figure 12 show the tradeoff curve of cost/emissions for the IEEE

118 Bus System. Implementation of the EED or ECED continued to be successful for

this higher scale system. The system dimension resulted in a more nonlinear surface,
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which increased when losses were considered. Nevertheless, DE obtained solutions with

very good variance and standard deviation, being almost identical for most of the runs.
When the objective was only minimizing the cost function, ECED provided a better value
than the multiobjective approach. Again, this value is an improvement of less than 0.1%
over the multiobjective approach which shows the robustness of DE for obtaining

solutions.

Table 5.12, shows the tradeoff values for both approaches (MEED and ECED)
with and without losses. The use of the Kron’s Loss formula, also resulted in more time
to solve the problem, but results continued to be accurate. Data dispersion continues to
be low for the 20 runs used to create the pareto front with a max standard deviation of 9.3
for a median of 21,378. One advantage of the ECED is that it offers better control of the
emissions than MEED. It does not require weight selection and conversion factor to

obtain the well distributed pareto front as the multiobjective approach requires.
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TABLE 5.12
TRADEOFF VALUES FOR IEEE 118 BUS — 14 GENERATOR SYSTEM
Emission-Cost Tradeoff Values
Without Losses With Losses
EED ECED EED ECED
Best Best Best Best Best Best
Emission Cost Cost | Emission Cost  Cost

302270 20762 20762 | 328610 21771 21756
302290 20730 20728 | 328620 21737 21739
302330 20697 20698 | 328670 21702 21700
302410 20662 20662 | 328750 21664 21665
302540 20624 20624 | 328880 21626 21627
302720 20585 20585 | 329070 21585 21586
302990 20542 20542 | 329330 21543 21543
303320 20500 20500 [ 329680 21498 21498
303770 20454 20454 | 330140 21452 21452
304360 20406 20406 | 330730 21404 21403
305100 20357 20357 | 331480 21353 21354
306110 20302 20302 | 332450 21301 21302
307380 20247 20247 | 333690 21248 21248
309040 20190 20190 | 335270 21193 21194
311200 20132 20132 | 337310 21138 21138
314050 20073 20073 | 339940 21084 21084
317850 20017 20017 | 343370 21033 21036
323260 19968 19963 | 347910 20988 20988
330110 19926 19926 | 353970 20954 20954
340230 - 19908 | 362230 - 20942

340240 19908 - 362260 20939 -

5.4 Case Study III: Security Constrained Dispatch

Differential evolution algorithm was used to solve the security constrained power
dispatch problem using two systems: an 8 generator with 6 monitored lines test system
[39] and a modified 30 bus and 6 Generator IEEE Test system based in the one described
in [41]. Each system has four case studies that show how the system reliability improves
by adding some security constraints such as maximum line flows and a criterion for

spinning reserve. The four case studies are: classical economic dispatch (case 1),
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economic dispatch with line flows (case 2), economic dispatch with spinning reserve

(case 3) and economic dispatch with line flows and spinning reserve constraints (case 4).

TABLE 5.13
CASE STUDIES CONTROL PARAMETERS
Control 8 Generators Modified IEEE 30
Parameters Bus - 6 Generators
F 0.6 0.6
Ce 0.9 0.93
N, 15 15
, 3000 100
M 500 50
My 100 300

The 8 generators/6 lines study differs from the 6 generator/30 bus on how the line
flows are determined. The first study dispatches without considering losses and uses a
linear approximation based on generation shift factors to determine the power flowing in
each line. The second study solves the power flow problem and then obtains the power
losses and power flowing in each line. = The same spinning reserve criterion was used
for both studies. The powerflow algorithm used was the Full Newton-Raphson from

Matpower 2.0 [91].
5.4.1 8 Generators — 6 Lines system

For each study 100 independent runs were made using the best suited control
parameters. These control parameters (scaling constant, crossover and population size)

were determined via parameter tuning and are given in Table 5.13.

DE was successful, obtaining the best solution with consistency for all cases and

returning a more economical operation when compared to the previous technique. In
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addition, DE satisfies the constraints by limiting the power flowing on line L, to 500

MW and by allocating the spinning reserve adequately according to the criterion used in

this research.

TABLE 5.14
SECURITY CONSTRAINED DISPATCH TEST RESULTS

Case 1 Case 2 Case 3 Case 4

G, 158.36 206.75 183.92 213.07
G, 145.63 191.92 170.08 197.96
G, 350 255.33 349.82 257.96
G, 200 200 185.18 200
G, 250 250 250 250
G, 200 200 200 200
G, 100 100 100 100
G, 350 350 315 335
Reserve 100 135 150 150
BSF$ 3897494 39691.16 39262.70 39773.05
L, 279.64 231.25 254.08 224.93
L, 581.15 500.00 573.38 500.00
L, 398.15 402.60 396.29 401.89
L, 152.13 158.14 149.19 157.04
L, 54.472 54.45 54.26 54.41
L 48.598 48.75 49.27 48.69
TABLE 5.15
SECURITY CONSTRAINED DISPATCH COMPARISON
Ref. [39] DE

Case 1 38975.50 38974.94
Case 2 39688.71 39687.93
Case 3 39246.30 39243.92
Case 4 39781.64 39773.05
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For proper comparison, since two case studies from [39] did not satisty

completely the power balance constraint, DE was dispatched according to the sum of the
generators outputs of [39]. Also, the objective function was recalculated as the sum of

the generator costs for the power outputs of [39]. These results are shown on Table 5.15.

TABLE 5.16
STATISTICAL RESULTS BASED ON 100 INDEPENDENT RUNS
Case 1 Case 2 Case 3 Case 4
Median 38974.94 39691.16  39262.70 39773.05
Standard 53 51 9668 34738 152.65
Deviation

Mode 38974.94  39691.16  39263.00 39773.05
BSF 3897494 39691.16  39263.00 39773.05

WSF 44755.64 41326.00 41339.00 41299.71
SR 98% 96% 93% 95%

5.4.2 Modified Load IEEE 30 Bus — 6 Generator System

For each study 100 independent runs were made using the best suited control
parameters. These control parameters (scaling constant, crossover and population size)
were determined via parameter tuning and are given in Table 5.13. This system is a
modification of the basic IEEE 30 bus test system with an increased load condition that

results in violation of the line flow limits in several lines.

For the modified IEEE 30 bus system DE returned successful results by
minimizing the cost function and satisfying the imposed constraints. The best solution
was found with consistency for all cases with very low data dispersion (maximum

standard deviation of 0.28). Table 5.17 and 5.18 show the results for this case study.
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TABLE 5.17
MODIFIED IEEE 30 BUS TEST SYSTEM SECURITY DISPATCH TEST RESULTS

MW Casel Case2 Case3 Case 4

G, 200.00  198.38  186.49 185
G, 63.32 70.86 70 70
G, 25.97 27.83 27.95 39.33
G, 35.00 35 33.51 35
G, 24.35 20.45 25 20.48
G, 22.36 18.81 27.08 19.32
Reserve 25 25.76 40 40

BSF§ 1094.12 1096.60 1100.97 1112.76

TABLE 5.18

STATISTICAL RESULTS BASED ON 100 INDEPENDENT RUNS
Case 1 Case 2 Case 3 Case 4
Median 1094.12 1096.58 1100.97 1112.76

Standard ) 0.00 0.28 0.00

Deviation

Mode 1094.12 1096.58 1100.97 1112.76
BSF 1094.12 1096.58 1100.97 1112.76
WSF 1094.12 1096.60 1103.75 1112.76

SR 100% 99% 99% 100%

5.5 Case Study IV: Reactive Power Dispatch

Differential evolution algorithm was used to solve the reactive power dispatch
problem using the 30 bus and 6 Generator IEEE Test system described in [41]. Two
different case studies were designed based on this test system. The first case study
adjusts the generator output voltages and the transformer taps of the system to improve
the reactive power allocation. In this case, the transformer taps were modeled as both
continuous (case 1A) and discrete variables (case 1B). The second study includes 9
dynamic capacitor banks distributed over the network to improve the system reactive

power flow. This study, models the capacitor banks as continuous variables (case 2A)
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and as discrete variables (case 2B) and the transformer taps only as discrete variables for
both approaches. Both of these case studies test the capability of the algorithm for

solving mixed discrete optimization problems.

When transformer taps were modeled as discrete variables, the tap step was set to
0.00625 pu with 16 steps over and 16 steps under 1.0 pu. Capacitor banks steps were
chosen to be of 0.050 MVAR from 0 to 5 MVAR. Capacitor banks were included as part
of the system admittance matrix, considering the sensitivity of capacitor banks to voltage
variations. The powerflow algorithm used was the Full Newton-Raphson from Matpower
2.0 [91]. For proper comparison, power loss and bus voltages for initial conditions were

recalculated with Matpower based on the settings given in [41].

TABLE 5.19
CASE STUDIES CONTROL PARAMETERS
Control Case 1A Case 1B Case 2A Case 2B
Parameters
F 0.6 0.6 0.6 0.6
Cp 0.7 0.7 0.85 0.85
N, 20 20 35 35
y78 500 500 500 500
M, 500 500 500 500
sy 500 500 500 500

5.5.1 IEEE 30 Bus — 6 Generators System

For each approach (continuous and discrete transformer taps) 60 independent runs
were made using the best suited control parameters. These control parameters (scaling
constant, crossover and population size) were determined via parameter tuning and are

given in Table 5.19. The fixed real power dispatch is given on Table 5.21. System
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conditions can be found on reference [41]. This case study included the capacitor banks

at bus 10 and at bus 24 of .1901 MVAR and .04 MVAR.

TABLE 5.20
STATISTICAL RESULTS BASED ON 60 INDEPENDENT RUNS

Continuous Xfmr Discrete Xfmr

Median 5.0485 5.0486
Std. Deviation 9.8E-07 9.9E-05
BSF 5.0485 5.0486
WSF 5.0485 5.0493
SR 100% 98%
TABLE 5.21
IEEE 30 BUS — 6 GENERATOR RESULTS
Initial Continuous Discrete
Condition [41] Approach Approach
Eg (p-u.) 1.05 1.0718 1.0718
Eg:(p.u.) 1.04 1.0626 1.0626
Egs(p-u.) 1.01 1.0400 1.0400
Egs(p.u.) 1.01 1.0406 1.0405
EGi(p-u.) 1.05 1.1000 1.1000
Egi3(p-u.) 1.05 1.0810 1.0812
P (MW) 99.23 98.448 98.449
Pg> (MW) 80 80 80
Pgs (MW) 50 50 50
Pgs (MW) 20 20 20
Pgi11 (MW) 20 20 20
Pg13 (MW) 20 20 20
Oci MVAR) 1.89 -0.022 -0.0385
0Oc2 (MVAR) 21.67 18.059 18.005
Ocs MVAR) 18.95 25.673 25.647
Ocs (MVAR) 18.21 39.597 39.451
Q11 (MVAR) 38.25 26.962 27.098
Q13 MVAR) 39.91 24.180 24.344
Tso(p-u.) 1.078 1.0242 1.0250
Ts.10 (p-u.) 1.069 0.9000 0.9000
Tys12 (p-u.) 1.032 1.0059 1.0063
Tr327 (p.u.) 1.068 0.95785 0.95625
Ocio(MVAR) 0.1901 0.1901 0.1901
Oc2¢ (MVAR) 0.04 0.04 0.04

Ploss (MW) 5.829 5.0485 5.0486
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TABLE 5.22
VOLTAGE IMPROVEMENT CASE STUDY 1

Initial Condition Continuous Taps Discrete Taps

V19 0.942 1.0217 1.0216
V20 0.945 1.0262 1.0261
V21 0.940 1.0303 1.0302
V22 0.941 1.0307 1.0307
V23 0.946 1.0223 1.0224
V24 0.927 1.0182 1.0184
V25 0.920 1.0288 1.0296
V26 0.900 1.0113 1.0121
V27 0.925 1.0440 1.0451
V29 0.902 1.0246 1.0257
V30 0.890 1.0134 1.0145

5.5.2 IEEE 30 Bus — 6 Generators System with Dynamic Capacitor Banks

For each approach (continuous and discrete capacitor banks) 60 independent runs
were made using the best suited control parameters. These control parameters (scaling
constant, crossover and population size) were determined via parameter tuning and are

given in Table 5.19. The fixed real power dispatch is given on Table 5.23.

DE solved the highly nonlinear RPD considering capacitor banks as continuous
and as discrete variables. Losses were reduced by .469 MW for both approaches. This
problem is more complex due to the number of possible combinations of capacitor banks
that provide almost the same system power loss. The best solution found was 10.133056
MW for the continuous approach while the discrete approach best solution was
10.133088 MW. Algorithm convergence was good reducing losses to 10.1334 MW
within 450 iterations and 10.13316 within 1050 iterations. Improving the objective
function to 10.13306 (in the continuous approach) required an additional 1000 iterations

from 10.13316 which represents a significant drop in the convergence rate. Both
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approaches improved the voltage profile of the case study by eliminating 5 voltage

violations as seen on Table 5.25.

TABLE 5.23
IEEE 30 BUS — 6 GENERATOR WITH DYNAMIC CAPACITOR BANKS RESULTS
Case Study 2
Initial Continuous Discrete
Condition [41] Banks Banks
Eg; (p-u.) 1.10 1.0877 1.0876
Eg>(p.u.) 1.08 1.0674 1.0673
Egs(p.u.) 1.03 1.0340 1.0341
Egs(p.u.) 1.04 1.0370 1.0371
EGi(pu.) 1.08 1.1000 1.0999
Egi3(p-u.) 1.08 1.0446 1.0410
Pgi (MW) 187.34 186.867 186.867
Pg> (MW) 53.781 53.781 53.781
Pgs (MW) 16.955 16.955 16.955
Pgs (MW) 11.288 11.288 11.288
PG (MW) 11.287 11.287 11.287
Pg13 (MW) 13.355 13.355 13.355
Oc: (MVAR) 6.90 7.73 7.76
Oc2 (MVAR) 39.39 27.95 27.73
Ocs (MVAR) 13.52 28.63 28.68
Ocs (MVAR) 15.46 29.60 29.72
Oc11 (MVAR) 37.26 29.43 29.37
Oc13 (MVAR) 38.81 -3.93 -6.59
T (p.u.) 1.072 1.0500 1.0500
Ts-10 (p-u.) 1.070 0.94375 0.94375
T412(p.u) 1.032 0.9625 0.9625
To8.27 (p-u.) 1.068 0.9750 0.9750
Oci0(MVAR) 0.692 1.45 1.55
Oci>(MVAR) 0.046 0.02 2.40
Ocis(MVAR) 0.285 4.19 4.30
Oci7(MVAR) 0.287 5.00 5.00
Oc20(MVAR) 0.208 3.96 3.90
Oc>21 (MVAR) 0.000 5.00 5.00
Oc23 (MVAR) 0.330 2.91 2.85
Oc24(MVAR) 0.938 5.00 5.00
Oc29(MVAR) 0.269 2.50 2.55

Ploss (MW) 10.602 10.133056  10.133088
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TABLE 5.24
CASE STUDY 2 STATISTICAL RESULTS BASED ON 60 INDEPENDENT RUNS

Continuous Discrete

Banks Banks
Median 10.1331487 10.1331259
Standard ¢ c1op (5 9.899E-05
Deviation
BSF 10.1330556 10.1330599
WSF 10.1332903 10.1333099
SR 43% 63%

Both case studies were successfully optimized providing better results than the
previous gradient based optimization technique [41]. Optimization problems with
discrete variables were easy to handle with DE since the technique only required minor
adjustments to the canonical form. Also, the results obtained proved that the technique is

suitable for solving highly nonlinear mixed discrete optimization problems.

TABLE 5.25
VOLTAGE IMPROVEMENT CASE STUDY 2
Initial Continuous Discrete

Condition [41] Banks Banks
V3 1.063 1.050 1.050
V4 1.055 1.042 1.041
V26 0.936 1.018 1.018
V29 0.939 1.034 1.034

V30 0.926 1.020 1.020
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This research has presented a novel technique for the solution of power systems
optimization problems in particular the economic dispatch problem and reactive power
dispatch problem. The algorithm was successful in finding global optima solutions while
providing a good convergence rate. Four base case studies were designed to test the
algorithm: Non-Conventional Cost Functions, Economic-Environmental Power
Dispatch, Security Constrained Economic Dispatch and Reactive Power Dispatch. These
case studies were solved and compared with existing literature, proving the capability of

the algorithm to solve these problems.

DE, as well as other evolutionary algorithms, is based on stochastic methods to
determine the solution and therefore do not guarantee an optimal solution at all times.
Nonetheless, an adequate perturbation strategy along with a correct set of control
parameters such as the scaling factor, crossover constant and sufficient members may

lead to very successful results, in reasonable computational time.

The two strategies that performed better were DE/best/2/bin and DE/rand/1/bin.
The first one creates generations perturbing the best solution found with 2 difference
vectors. DE/rand/1/bin instead creates generations by perturbing one randomly selected

vector with the difference vector. Both strategies use binomial distribution in the



90

recombination process. DE/best/2/bin performed better in terms of convergence,
consistency and type of minimum obtained. Since the strategy DE/best/2/bin perturbs the
best solution found, it may be difficult to escape from local minima as the population
diversity diminishes. Since DE/rand/1/bin, perturbs randomly selected vectors over the
solution space, it offers the advantage of perturbing more candidate solutions and

escaping from local minima more easily.

The scaling constant controls the perturbation applied to the individuals. This
value can be selected from [0 1.2+] but a more suitable range should be [0.5 1.0]
depending on the case study. DE/best/2/bin performed better from [0.5 0.65] for almost
all cases. When the system is converging in local minima an increase in the scaling
factor is recommended. Higher scaling factors will slow down convergence rate since the
perturbation will be relatively high to explore efficiently the neighborhood, until diversity

reduces in such a way that the difference vector will also reduce.

Crossover constants ( C, ) control the diversity of the population. A constant near

1.0 provide faster results but with more probabilities of converging in local minima. A
smaller constant increases the diversity of the population and also increases simulation
time, since it will require more generations to bring together the complete population.
From all the experiments a suitable range for the crossover constant (strategy
DE/best/2/bin) was [0.70 1.00]. Values lower than 0.7 offered too much diversity and
increased significantly generations without a big improvement in the population. A more
strict range of operation could be [0.80 0.95] since within this range the algorithm

provided the best performance.
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Population size plays an important role in the algorithm success. Large
populations give the algorithm more opportunities to find the desired solution since it can
evaluate more thoroughly the feasible space at the expense of computational time. Small
populations tend to converge to a solution faster than large populations, but more
susceptible to local minima. Initially a recommended population should be near three
times the problem dimension providing the algorithm enough members according to the
problem to find the optimal solution and increased or reduced depending on the problem
requirements. From experimentation it was noted that very large populations have such
great diversity that affect the search and the converge rate. Very large populations do not
guarantee that it will locate the global optimal solution. Also, when the power flow
subroutine was incorporated, larger populations increased dramatically simulation time
becoming more suitable a reduction in the crossover constant to improve diversity instead

of an increase in population size.

Penalty strategy selection for constraint evaluation is very important for the
success and performance of DE. Different penalty strategies may lead to different results
in solution type, accuracy or algorithm performance. The use of static or constant
penalties is not suitable for all constraints, but improves simulations since they require
less floating point operations than dynamic penalties. Dynamic penalties give the
algorithm a better understanding of the solution space but increase the number of floating
point operations required by the algorithm and consequently increases computational

time.
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In the prohibited zones case, prohibited regions were modeled better with penalty
functions than by assigning the value of the nearest bound violated and preventing the
algorithm from exploring combinations near the prohibited zones. Several penalty
functions were tested being noticeable that abrupt slopes and high penalties did not
provide the best results. The best the one was based on a half cycle sinusoidal function
which provided a smooth exploration and success of individuals near the prohibited

zones. A penalty factor was used to assure that the constraint would be satisfied.

Selection of penalty factors was done considering the order of the objective
function. Normally, the algorithm performs well with several penalty factors determining
successfully global optimal solutions with consistency. The penalty factor with best
performance was the least one possible that satisfied the constraint, but tuning of this
factor will lead to multiple runs for a negligible increase in the algorithm success. The
most critical penalty factor selection was the prohibited zones case. Higher penalty
factors make the prohibited zones harder to explore, and solutions near the limit of the
prohibited zone harder to find. For this reason, several simulations were required to find

the proper set of penalty factors that improved the most the algorithm success.
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6.2 Future Work

The work previously presented provides an understanding of new optimization
techniques capable of solving complex power systems engineering problems. The
economic dispatch problem was covered and the results demonstrate the capability of the
algorithm to obtain the desired value and the applicability to large scale optimization
problems.  Several questions should be addressed in the future concerning the
applicability of new optimization techniques such as DE to further optimization problems

in power systems. Some lines of future work should be:

e Application of DE to other power systems optimization problems such
as unit commitment, powerflow and power system planning

techniques.

e Penalty function design and testing that improves algorithm

performance and reduces or avoids penalty factor selection.

e Implementation of a pareto-based differential evolution algorithm for

multiobjective optimization.

e Enhancements to the algorithm code that improve performance and

reduce simulation times (OPF parallel implementation).
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