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CHAPTER 1INTRODUCTION
The thesis is organized as follows: In this hapter we desribe the basi notionsof graphs and tournaments. Chapter 2 overviews relevant details about two on-jetures of Brualdi-Li matrix. Chapter 3 introdues the bipartite tournaments andsome reent results. Chapter 4 provides a list of singular value properties for tour-nament matries; Chapter 5 presents our results, onluding remarks, and futurework in tournaments.The tournaments are a lass of direted graphs and are inspired from the roundrobin ompetitions. This topi has been of growing interest in the last deades.We will mainly fous on spetral properties and some related properties that werepublished reently in peer-reviewed journals. The original problem appears in thelassial round robin tournament in reviewed building player ranking shemes. Theresearh has motivated an extensive study of the ombinatorial and spetral proper-ties of tournament matries, and therefore has motivated to write some good books(see [1, 5, 6, 11, 24℄).In [1℄ the authors state that: �the theory of graph spetra, is like an attempt toutilize linear algebra inluding, in partiular, the well-developed theory of matriesfor purposes of graph theory and its appliations. However, that does not meanthat the theory of graph spetra an be redued to the theory of matries; on the

1



2ontrary, it has its own harateristi features and spei� ways of reasoning fullyjustifying it to be treated as a theory in its own right.�1.1 Tournaments, Matries and GraphsGraph theory originated with the paper written by Leonhard Euler on the SevenBridges of Königsberg and published in 1736. This is the �rst paper in the historyof graph theory. The study of tournaments started around the �rst half of the lastentury, resulting in the publishing of Topis on Tournaments by John Moon,in whih the author olleted the most useful results. Tournaments have manyappliations in statistis, game theory and other related areas. For example in [18℄it was proven that in round robin ompetition orresponding to T , a tournamentmatrix, the Kendall, Wei and Kamanujaharyula's ranking shemes agree with theranking generated by the row sums of T .If i, j are two verties of a graph, we will use the notation i → j to representthe ar from i to j.De�nition 1. A Tournament of n verties is a loop-free direted graph −→
G withthe property that for eah pair of distint verties i and j, −→G ontains exatly oneof the ars i → j or j → i.A Tournament Matrix is the (0, 1) adjaeny matrix of a tournament, orequivalently, a (0, 1) matrix T suh that T + T T = J − I where J denotes the allones matrix.Proposition 1. The number of ars in a tournament with n verties is

1

2
n(n − 1) =

(
n

2

)

.



3For the proof note that eah vertex has relations with the n−1 verties, we ansay that there are n(n − 1) ars, but this ount is double beause we ounted eahar two times, therefore the number of ars for eah tournament is 1
2
n(n− 1) =

(
n
2

).Example 1. Figure 1�1 is an example of a tournament and its matrix.
q4 q3

q5 q2

q1

T =









0 1 0 1 0
0 0 1 1 1
1 0 0 1 1
0 0 0 0 1
1 0 0 0 0







Figure 1�1: Tournament and its matrix.Clearly,

T + T T =









0 1 0 1 0
0 0 1 1 1
1 0 0 1 1
0 0 0 0 1
1 0 0 0 0









+









0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
0 1 1 1 0









=









0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0









= J − I.

1.1.1 The Sore VetorDe�nition 2. If A is a tournament matrix, its sore vetor is de�ned as:
s = (s1, s2, . . . , sn)T = A1.Note that if (s1, s2, . . . sn)

T is a sore vetor of a tournament A, then
n∑

i=1

si =

(
n

2

)

.



4For n = 2 there are 2 = 2(2

2) tournaments, for n = 3 we have 8 = 2(3

2), in generalwe have:Proposition 2. Let V be a set of n verties, then there exist 2(n

2
) di�erent tourna-ments.There are n verties, and (n

2

) ars, and eah ar has 2 possible diretions, so wehave 2 di�erent tournaments, therefore the proposition is true.The lassial result about sore vetors is the Landau's Theorem, see [21℄. Wegive this result below.Theorem 1. A set of integers S = (s1, s2, . . . , sn), where s1 ≤ s2 ≤ · · · ≤ sn is asore vetor of some tournament if and only if
n∑

i=1

si ≥
(

k

2

)

,for k = 1, . . . , n, with equality holding when k = n.Proof. The proof is due to Ryser [24℄ in 1964.Reently Rihard A. Brualdi and Jian Shen published a result about sorevetor, see [8℄.1.1.2 Isomorphi TournamentsLet T1 and T2 be two tournaments with verties {1, 2, . . . , n}. We say that T1and T2 are isomorphi if there exists a bijetive funtion φ : {1, . . . , n} → {1, . . . , n}suh that
s

T1→ t =⇒ φ(s)
T2→ φ(t) or φ(s) = φ(t).



5In [24℄ there is a lassi�ation for the number of non-isomorphi tournaments.Clearly, if two tournaments are isomorphi, then they have the same sore vetor,but the reiproal proposition is not true. See for examples [24℄.1.1.3 Permutation MatrixAnother equivalent way of haraterizing isomorphi tournaments is using per-mutation matries.De�nition 3. P is a permutation matrix if and only if P an be formed diretlyfrom I by reordering its rows or its olumns.Let T be a matrix and let P be a permutation matrix, then PT is the matrixformed by reordering the rows of T in same way that P reorders them. TP is samebut the reordering is applied in its olumns.Proposition 3. Let T1 and T2 be two tournaments with verties {1, 2, . . . , n}, wesay that T1 and T2 are isomorphi if there exists a permutation matrix P suh that
T2 = P TT1P .Example 2. Let G1 and G2 be tournaments and T1 and T2 their tournament ma-tries respetively,

G1:
q4 q3

q1 q2

T1 =







0 1 0 1
0 0 1 0
1 0 0 0
0 1 1 1







G2:
q4 q3

q1 q2

T2 =







0 1 0 0
0 0 1 1
1 0 0 0
1 0 1 0









6Then G1 and G2 are isomorphi. The permutation matrix is
P =







0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1







,note that isomorphs means relabeling the verties of graph G1 to obtain G2.Clearly, two isomorphi tournaments have same spetrum.1.1.4 Paths and CylesDe�nition 4. A path on a graph (also alled a hain) is a sequene {x1, x2, . . . , xn}suh that (x1, x2), (x2, x3), . . . , (xn−1, xn) are graph edges and the xi are distint.A losed path {x1, x2, . . . , xn, x1} on a graph is alled a yle or iruit.Let Ap =
(

a
(p)
ij

). The number a
(p)
ij is the (i, j) element of Ap. The next propo-sition is a lassial result.Proposition 4. The a

(p)
ij , the element of Ap, is the number of paths of length p fromvertex i to vertex j.Example 3. The graph below has a path from q1 to q3 through q4, this is a path oflength 2,

q3 q4

q1 q2

A =







0 0 0 1
1 0 1 0
1 0 0 0
0 1 1 0







learly,



7
A2 =







0 1 1 0
1 0 0 1
0 0 0 1
2 0 1 0







, A3 =







2 0 1 0
0 1 1 1
0 1 1 1
1 0 0 2







.

Note that the element a
(2)
13 = 1 means that there is one path of length 2 from q1to q3, and a

(2)
41 = 2 means that there exist two paths of length 2 from q4 to q1. Andsimilarly, a
(3)
44 = 2 means that there exist two paths of length 3 from q4 to q4, i.e.,two yles of length 3.1.1.5 Transitive TournamentDe�nition 5. Let T be a tournament. T is transitive if for eah verties p, q and

r, we have that if p → q and q → r then p → r.By reordering the verties, the matrix for transitive tournament is upper trian-gular:
U =










0 1 1 · · · 1
0 0 1 · · · 1... ... . . . . . . ...
0 0 · · · 0 1
0 0 · · · 0 0










.

One haraterization theorem is given in [24℄ for transitive tournament.Theorem 2 ([24℄). The following statements are equivalent:1. Tn is transitive.2. Vertex pj dominates node pi if an only if j > i.3. Tn has sore vetor (n − 1, n − 2, . . . , 2, 1, 0)T .



84. The sore vetor of Tn satis�es the equation
n∑

i=1

s2
i =

n(n − 1)(2n − 1)

6
.5. Tn ontains no yles.6. Tn ontains exatly ( n

k+1

) paths of length k, if 1 ≤ k ≤ n − 1.7. Tn ontains exatly (n
k

) transitive subtournament Tk, if 1 ≤ k ≤ n.8. Eah prinipal submatrix of Tn ontains a row and olumn of zeros.1.1.6 Strongly Conneted TournamentDe�nition 6. A graph G is strongly onneted, if there exists a path for eah vertex
i to eah vertex j, i 6= j.Example 4. The tournament in �gure 1�2 is strongly onneted, it is easy to hekthe path from any vertex to any other vertex.

q3 q4

q1 q2

Figure 1�2: Strongly Conneted Tournament1.2 Bipartite TournamentIf we want to make a tournament where there are two disjoint teams I and IIof players and eah player on Team I plays against eah player on Team II, we willhave a new struture of tournament that we will all bipartite tournament. We notethat they themselves do not have the struture of a tournament.The following haraterizes bipartite graphs: if the greatest eigenvalue is equalto the negative of its smallest eigenvalue then the graph is bipartite [1℄.



9De�nition 7. A tournament is bipartite if there is a partition of its set of vertiesin two sets A, B, with A ∩ B = ∅ suh that there are no ars between verties thatbelong to the same set and for all i ∈ A and j ∈ B, we have i → j, or j → i.Little is known about bipartite tournaments. In [22℄, Li gave an upper boundfor the spetral radius. Later, Sangwook Ree introdued Hypergraphs and, in theConferene on Hypergraphs in Hungary 2001, he spoke about the bipartite tourna-ment matries. He looked at the spetral bounds of bipartite tournament matries,that is, tournament matries of two teams, with arbitrary team size. He indiatedthat when bipartite matries exist, players and teams of the matries are evenlyranked.Li showed that a bipartite tournament matrix an be both, regular and normalif and only if it has the same team size. Also, he found the ondition that wasneessary for the variane of the Perron vetor (see De�nition 11) of the bipartitetournament matrix to vanish.We use the notation Tn1n2
for bipartite tournament having sets |A| = n1 and

|B| = n2. Clearly, the unique bipartite tournament, whih is a tournament, is when
n1 = n2 = 1.We may let

Tn1n2
=






0n1
B

C 0n2




 , (1.1)where B + CT = Jn1n2

, and J is a matrix having all entries equal to 1.Example 5. Let T32 be a bipartite tournament with A = {q1, q2, q3} and B =

{q4, q5}. Its adjaeny matrix and its graph are:



10
T32 =









0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 1 0 0









q3

q2

q1

q5

q4

1.3 r-partite TournamentIf we extend the same idea for bipartite tournament, into the ase where wemake a tournament with r teams where eah player of team i plays with eah playerof all others teams j, i 6= j, we have a new struture of tournament whih we willall an r-partite tournament, its matrix is














0n11
B12 · · · B1(r−1) B1r

C21 0n22
· · · B2(r−1) B2r... ... . . . ... ...

Cr−1,1 Cr−1,2 · · · 0nr−1,r−1
Br−1,r

Cr1 Cr2 · · · Cr,r−1 0nrr















,

where Bij + CT
ji = Jni,nj

and all 0i are square zero matries.Note that they themselves do not have the struture of tournament, unless thelength of all subsets of verties are one.1.4 Eigenvalue Bounds for Tournament MatriesHere we show two eigenvalue properties of tournament matries. These fatsare based on the equation T + T T = J − I.Proposition 5. The real part of every eigenvalue of any tournament matrix T isat least −1/2.



11Proof. Let T be a tournament matrix, then
T + T T = J − I, (1.2)and let λ be an eigenvalue of T and x its orresponding normalized eigenvetor, i.e,

Tx = λx, and x∗x = 1. First we take the right of (1.2) then
x∗(J − I)x = x∗Jx − x∗x = x∗Jx − 1

= y∗y − 1 ≥ −1.On the other hand,
x∗(T + T T )x = x∗Tx + x∗T ∗x

= 2Reλ,then we have
−1 ≤ x∗(J − I)x = x∗(T + T T )x = 2Reλ,and the result is obtained.Proposition 6. The real part of every eigenvalue of any tournament matrix T isat most (n − 1)/2, with equality holding if and only if T is a regular tournamentmatrix.For the proof you an see [4℄ or for the greatest eigenvalue ρ(T ) one an use theLevinger's inequality,
ρ(T ) ≤ ρ

(
T + T T

)

2
=

1

2
ρ(J − I) =

n − 1

2
.The eigenvalues of T , λi(T ), i = 1, 2, . . . , n, we will be ordered as |λ1(T )| ≥

|λ2(T )| ≥ · · · ≥ |λn(T )|. In Chapter 5 we show results about the eigenvalues of T .



121.5 Perron Frobenius TheoryIn tournament theory we use only matries with entries equal to 0 or 1.De�nition 8. An n × n matrix A with real entries is said to be nonnegative if
aij ≥ 0 for eah i and j and positive if aij > 0. Similarly, a vetor x = (x1, . . . , xn)tis said to be nonnegative if eah xj ≥ 0 and positive if eah xj > 0.Appliations of these matries are found in geometry and ombinatoris see [2℄and the Leontief input-output models in eonomis.1.5.1 Irreduible MatrixDe�nition 9. An n × n matrix A is said to be a reduible matrix if and only if forsome permutation matrix P , the matrix P T AP is blok upper triangular, i.e, it hasthis form

P T AP =






A11 A12

0 A22




 ,were A11 and A22 are of square order smaller than n.If a square matrix is not reduible, it is said to be an irreduible matrix. Thefollowing onditions on an n × n matrix A are equivalent.1. A is an irreduible matrix.2. The digraph assoiated to A is strongly onneted.3. For eah i and j, there exists some k suh that (Ak)ij > 0.4. For any partition of the index set {1, 2, . . . , n} into nonempty disjoint sets I1and I2 there exist i ∈ I1 and j ∈ I2 suh that aij 6= 0.Proposition 7. Let A be an n × n non-negative matrix. Then A is irreduible ifand only if (I + A)n−1 > 0.



13Proof. Let y ∈ R
n be suh that y ≥ 0 and y 6= 0 and write

z = (I + A)y = y + Ay. (1.3)With a proess that is shown in [20℄ we an say that (I +A)n−1y ≥ 0, for any y ≥ 0,
y 6= 0 and therefore the neessary ondition is ready. The onverse is easy beausethe graph assoiated with (I + A) is strongly onneted, and hene A is too.Example 6. Let A be a matrix of the form









∗ ∗ 0 0 ∗
∗ ∗ 0 0 ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 ∗









,

it is reduible, beause if we permute row 3 with 5, and then olumn 3 with 5, weobtain








∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗









,

and therefore it is learly blok triangular.Note that if a matrix has a row or olumn with all entries zero then the matrixis not strongly onneted.For ertain appliations, irreduible matries are more useful than reduiblematries. In partiular, the Perron-Frobenius Theorem (see next page) gives moreinformation about the spetra of irreduible matries than that of reduible matries.It is known that the Perron Theory is for positive matries and Frobenius extendedsimilar properties for nonnegative matries.



14Example 7. The digraph of �gure 1�3 is a bipartite tournament,
q5

q4

q1

q3

q2

A =









0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 1 1 0 0







Figure 1�3: Bipartite tournament and its reduible matrix.Let

P =









1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0









,

then
P T AP =









0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0









,learly A is reduible.1.5.2 A Useful TheoremDe�nition 10. Let A be a (0, 1)-matrix, and ρ(A) its spetral radius. Let h, indexof imprimitivity or index of yliity, be the number of eigenvalues having modulusequal to the spetral radius. If h = 1 the matrix is alled primitive.Proposition 8. If A if primitive then it is irreduible.Proof. See Berman's book [2℄.



15The next theorem is part of the famous Perron-Frobenius theory.Theorem 3. Let A ≥ 0 be irreduible of order n. Then the following hold.1. ρ(A) is a simple eigenvalue, and any eigenvalue of A of the same modulus isalso simple.2. If A has h eigenvalues λ0 = reiθ0 , λ1 = reiθ1 , . . . , λh−1 = reiθh−1 of modulus
ρ(A) = r, with 0 = θ0 < θ1 < · · · < θh−1 < 2π, then these numbers are thedistint roots of λh − rh = 0.3. More generally, the spetrum S(A) = λ0, λ1, · · · , λn−1 goes over into itself undera rotation of the omplex plane by 2π/h.4. If h > 1, there exists a permutation matrix P suh that

PAP T =










0 A12 0 · · · 0
0 0 A23 · · · 0... ... ... . . . ...
0 0 0 · · · Ah−1,h

Ah1 0 0 · · · 0










,

where the zero bloks along the main diagonal are square.De�nition 11. The spetral radius ρ(T ) of a nonnegative irreduible matrix isalled the Perron value and the orresponding eigenvetor is a positive vetor,whih is alled the Perron vetor for T .1.6 Regular and Almost Regular Tournament MatriesDe�nition 12. A matrix T of a tournament is regular if the out-degree of allverties of T is the same, i.e., if T1 = ((n − 1)/2)1, where 1 is the vetor with allentries equal to one.The de�nition is equivalent if eah of the row sums of T is n−1
2
. (Observe thatneessarily n must be odd.) It is known in [3, 13℄ that for odd n, the matrix that



16maximize the Perron value over the lass of n × n tournament most be a regulartournament matrix.A matrix T of tournament where the �rst n/2 rows have sums equal to (n −

2)/2 and the last n/2 row have sums equal to n/2 is alled an almost regulartournament matrix.An almost regular tournament matrix an be a prinipal submatrix of a regulartournament matrix, as we an see in the next example.Example 8. Let T be a regular tournament matrix of order 7
T =













0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0













,

when T1 = 3 · 1. Note that if we remove the last row and the last olumn we have
T ′ =











0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
1 0 0 0 0 1
1 1 0 0 0 0









almost regular tournament matrix suh that T ′1 =






3 · 1

2 · 1




.



171.7 Hypertournament and Generalization of Tournament MatriesHypertournament and generalized tournament matries not only provide ameans for inquiring into the properties of tournament matries but also are thesoure for matrix analyti hallenges of independent interest.A matrix A is alled an h-hypertournament if it has zero diagonal entries and
A + At = hht − I for some non-zero h ∈ R

n. If h = 1, any ones vetor, an h-hypertournament matrix A satis�es A + At = J − I, where J denotes the all onesmatrix. If all the entries of a 1-hypertournament matrix A are in {0, 1}, then A isalled a tournament matrix, and if all the entries of A are non-negative, then A isalled a generalized tournament matrix.Maybee and Pullman [23℄ show that every h-hypertournament matrix is (diag-onally) similar to a 1-hypertournament matrix. Thus, the disussion of the spe-tral properties of an h-hypertournament matrix an be redued to the ase of 1-hypertournament matries. It is further shown in [23℄ that
− 1

2
≤ Re λ ≤ n − 1

2
, (1.4)whenever λ is an eigenvalue of an h-hypertournament matrix. Moreover, the eigen-values of a generalized tournament matrix satisfy (see [14℄)

|Imλ| ≤ 1

2
cot
( π

2n

)

. (1.5)



CHAPTER 2THE BRUALDI-LI MATRIX B2N

2.1 Two ConjeturesBrualdi and Li onjetured that the matrix that minimizes the Perron valueover the lass of irreduible n × n tournament matries is:















0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
1 0 0 1 0 0 · · · 0
1 1 0 0 1 0 · · · 0... ... . . . . . . . . . . . . ...... ... . . . . . . . . . . . . ...
1 1 · · · 1 1 0 0 1
1 1 · · · 1 1 1 0 0
















(2.1)
Notie that the sore vetor of this matrix is (1, 1, 2, 3, 4, . . . , n−3, n−2, n−2)T .Let us denote this vetor by σr. If, for a tournament matrix T , there is a permutationmatrix P suh that the sore vetor of PTP T is σr, then we say that the sores of

T are equivalent to σr.Steve Kirkland et al. proved, the onjeture in 1996 [17℄, establishing two mainresults. First, they showed that if T is a tournament matrix whih minimizes thePerron value over the lass of irreduible tournament matries of order n, then thesore of T is equivalent to σr. Then they showed that among all the tournament18



19matries whose sores are equivalent to σn, the matrix given by (2.1) yields thesmallest Perron value.The seond onjeture, made by Brualdi and Li in 1983 in [7℄, says that thematrix whih maximizes the Perron value an be written as
B2n =






Un U t
n

U t
n + I Un




 ,where Un denotes the matrix of order n with ones above the diagonal, and zeros onand below the diagonal. This type of matrix orresponds to a transitive tournament.The �rst three B2n matries are

B2 =

[
0 0
1 0

]

, B4 =







0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0







, B6 =











0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0









The Brualdi and Li onjeture is still open, nevertheless there has been greatprogress made on it. This onjeture has been on�rmed for small sizes, and thereis supporting evidene for its validity asymptotially (as the order grows large) [9,13, 19℄.In [9℄ the authors prove that the Brualdi-Li matrix B2n, has the largest Perronvalue among the matries in

Mn =












T T T

T T + I T




 : T is an n × n tournament matrix



. (2.2)Note that Mn ontains the Brualdi-Li matrix B2n.



202.2 Reent ResultsThe following are some results obtained reently:
• The �rst one is due to Brauner and Gentry [3℄, it was shown that if T is an

n × n tournament matrix then
ρ(T ) ≤ n − 1

2
,with equality holding if and only if the tournament is regular.

• A result of Kirkland in [19℄ showed that for a su�iently large even n, an n× ntournament matrix whih maximizes the Perron value must be almost regular.
• Kirkland has also proved in [17℄ that

ρ(Bn) =
n − 1

2
− e2 − 1

2(e2 + 1)
+ O

(
1

n3

)

.

• Friedland obtained in [11℄ that for any matrix T of the almost regular tourna-ment of order n

ρ(T ) ≤ n − 1

2
− 3

8n
+ O

(
1

n2

)

.

• The new bound obtained by S. Kirkland in [17℄ put the last two results together.For all su�iently large even n, a tournament matrix T whih maximizes thePerron value satis�es
ρ(T ) =

n − 1

2
− γn

n
+ O

(
1

n2

)

,where
0.375 =

3

8
≤ γn ≤ e2 − 1

2(e2 + 1)
≈ 0.380797.He found the best lower bound for γn, that is,

2
(
22/3

)
− 34/3 + 13

34
≈ 0.377453.



21In [15℄, the authors give two forms of the harateristi polynomial of theBrualdi-Li tournament matrix. They use the �rst form to show that the roots of theharateristi polynomial are simple and that the Brualdi-Li tournament matrix isdiagonalizable, and using the seond form an expression is found for the oe�ientsof the powers of the variable λ in the harateristi polynomial. These oe�ientsgive information about the yle struture of the direted graph assoiated with theBrualdi-Li tournament matrix.The most reent result about the spetral radius is given in [25℄, where it isproved that if T is an almost regular tournament matrix of order n = 2m, then
ρ(T ) ≥ m − 1

2
+

√

m2 − 1

4
. (2.3)2.3 The Determinant for B2nA beautiful and �simple� result for the Brualdi-Li matrix is the alulation ofits determinant. We alulate this determinant in Chapter 5. If T is an n × ntournament matrix with n > 1, it is shown that for the partiular sublass Mn ofalmost regular tournament matries of order 2n, like (2.2), the following is true [9℄

det(MT ) = (−1)(n − 1) det(T + I) + (−1)n−1n det(T ),when MT ∈ Mn. For Brualdi-Li matrix T = U we have
det(MU ) = (−1)(n − 1) det(U + I) + (−1)n−1n det(U) = 1 − n. (2.4)2.4 The Charateristi Polynomial for B2nFor B2n, you might think that, beause of its simple struture, it is easy to �ndthe harateristi polynomial, but in [15℄ this problem was solved ten years after the



22onjeture was formulated. In the proof they used the results in [16℄ and this paperuses results in [11℄ and [12℄.In the �rst work they proved that the sequene 2n(n− 1
2
−ρ(B2n)) is onvergentand found the limit. They also showed that asymptotially, the sequene is mono-tonially dereasing. This problem was established in [12℄ and was used to �nd thenext theorem.Theorem 4. Suppose that n ≥ 2, let B2n be the Brualdi-Li matrix of order 2n, andlet ρ(B2n) be its Perron value. Then

2ρ2(B2n) − 2(n − 1)ρ(B2n) − (n − 1) =
1

(
ρ(B2n)+1

ρ(B2n)

)2n

+ 1
(2.5)In [15℄ it is shown that the equation

(
2λ2 − 2(n − 1)λ − (n − 1))

) (
(1 + λ)2n + λ2n

)
− λ2n = 0. (2.6)is satis�ed for the value ρ(B2n).It is easy to hek that λ = −1

2
is a root of multipliity 2 in (2.6). Observe that

−1
2
is not in the spetrum of any tournament matrix beause it is not an algebraiinteger. This is true beause the harateristi polynomial for any (0, 1)-matrix themain oe�ient is 1 and therefore it doesn't have a rational 1/2 as a root.Theorem 5. Let n ≥ 2 be an integer and B2n the Brualdi and Li matrix. Then

p(λ) =
(2λ2 − 2(n − 1)λ − (n − 1)) ((1 + λ)2n + λ2n) − λ2n

(1 + 2λ)2
, (2.7)is the harateristi polynomial of B2n.They used this polynomial to prove that its roots are simple and B2n is diag-onalizable. They also hanged the last expression to �nd other expression, for the



23harateristi polynomial. This expression gives the information about the ylestruture of the diret graph assoiated with the Brualdi-Li tournament matrix.Theorem 6. The Brualdi and Li matrix B2n has its harateristi polynomial c(λ)equal to
λ2n −

n−1∑

j=0

(n − 1 − 2j)(λ + 1)2(n−j−1)λ2j (2.8)and for eah k, suh that 0 ≤ k ≤ 2n − 2, the oe�ient of λk is
ck = −

⌊k/2⌋
∑

j=0

(n − 1 − 2j)

(
2n − 2j − 2

k − 2j

)

.More reently, X. Yong has obtained further results about tournament matriesand the Brualdi-Li matries [26℄.



CHAPTER 3BIPARTITE TOURNAMENT
We should mention that all that will be presented in this hapter is referenedfrom [10℄ and the Rihard A. Brualdi talk in the Aveiro Graph Spetra Workshop2006. We used similar tehniques of bipartite tournament matries to onsider the

r-partite tournament matries, whih will be presented in hapter 5.Example 9. Let A be the matrix of a tournament show below.
A =









0 0 1 0 0
0 0 0 1 1
0 1 0 0 0
1 0 0 0 0
1 0 0 0 0









q5

q2

q4

q1

q3

Then alulate its spetrum
S(A) = {i 4

√
2,−i

4
√

2,
4
√

2,− 4
√

2, 0} ≈ {1.18921i,−1.18921i, 1.18921,−1.18921, 0},we see that the index of imprimitivity, h(A) = 4.Example 10. The matrix
T3,3 =











0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0









24



25has spetrum {i,−i, 1.4142136,−1.4142136, i,−i} and therefore has an index of im-primitivity equal to 2.
h(A) an be obtained from the assoiated direted graph D(A) of A by The-orem 7. The relation between the index of imprimitivity and the assoiated graphis using the iruits of the assoiated graph. The following theorem is a lassialresult.Theorem 7. (See [2℄) Let A ≥ 0 be irreduible of order n. Let Si be the set of all ofthe lengths mi of iruits in D(A) through the verties i, and hi = g..dmi∈Si

{mi}.Then h1 = h2 = · · · = hn = h(A).Lemma 1. Let Tn1,n2
be a bipartite tournament matrix. Then h(Tn1,n2

) = 2 or
h(Tn1,n2

) = 4.See examples above, and for the proof see [10℄.If the matrix Tn1,n2
, n1 = n2 = n (that is, the two teams have the same numberof players n), then one an onsider the spetral radius of Tn,n.Note that the maximum spetral radius of bipartite tournament matries oforder 2n is less than n, and the minimum over irreduible bipartite tournamentsmatrix of order 2n is greater than 1.Corollary 1. Let Tn1,n2
. Then the numbers of nonzero eigenvalues and distintnonzero eigenvalues are both even.Theorem 8. Let Tn1,n2
be the orresponding bipartite tournament G. Then thefollowing are equivalent.1. h(A) = 4.2. G has the struture of Figure 3�1.



26
V21

V12V22

V11

Figure 3�1: Struture of bipartite tournament with h = 4.3. The spetrum is S(A) = {ρ(A),−ρ(A), iρ(A), iρ(A), 0n1+n2−4}.4. The algebrai multipliity of the eigenvalue 0 of A is n1 + n2 − 4.3.1 The Algebrai Multipliity of the Eigenvalue 0Lemma 2. Let Tn1,n2
be a bipartite tournament having the form of (3.1), where

l1 + l2 + · · ·+ lk = n1, m1 +m2 + · · ·+mk = n2, 2 ≤ k ≤ n2. Then Tn1,n2
has exatly

2k nonzero eigenvalues and n1 + n2 − 2k zero eigenvalues, and, for eah of theseeigenvalues, the algebrai multipliity is the same as the geometri multipliity.
Tn1,n2

=

























Ol1 Jl1,m1

Ol2 Jl2,m2. . . . . .
Olk Jlk,mk

Om1,l1 Jm1,l2 · · · Jm1,lk Om1

Om2,l1 Jm2,l2
. . . ... Om2... . . . . . . Jmk−1,lk

. . .
Omk,l1 · · · Jmk,lk−1

Jmk,lk Omk

























(3.1)
Theorem 9. Let t = n1 + n2 − 2k, k = 2, 3, . . . , n. For any n1, n2 there exists somematrix Tn1,n2

whose eigenvalue 0 has the same algebrai and geometri multipliityequal to t.



27More reently, we have obtained further results about r-partite tournamentmatries in [27℄.



CHAPTER 4SINGULAR VALUES OF TOURNAMENTMATRICES
In this hapter we survey some results about singular values of tournament ma-tries, inluding the the most reent results obtained by D. Gregory and S. Kirklandin [13℄.The method for determining how lose any matrix An is to a matrix of smallerrank involves fatoring A into a produt UΣV ∗, where U and V are orthogonalmatries of order n, and Σ is n× n matrix whose o�-diagonal entries are all 0's andwhose diagonal elements are σ1, σ2, . . . , σn and satisfy σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The

σi's determined by this fatorization are unique and are alled singular values of A,and the fatorization UΣV ∗ is alled the singular value deomposition of A.We see that sine V diagonalize A∗A, it follows that the vj 's are eigenvetorsof A∗A, and similarly way for AA∗. Another way of alulating the singular valuesof A is to alulate the nonnegative square roots of the eigenvalues of A∗A or,equivalently, of AA∗. If the eigenvalues are also taken in nondereasing order then
σ2

i (A) = λi(A
∗A) = λi(AA∗), i = 1, . . . , n. In partiular, σ2

1(A) = ρ(A∗A). Thelargest singular value, σ1(A), is also alled spetral norm of A beause σ1(A) = ||A||2,the operator norm indued by the usual Eulidean norm || · ||2.De�nition 13. Let T be a tournament matrix of order n and s = T1 its sorevetor. We will all α2(T ) = 1
n

∑

i(si − n−1
2

)2 = sT s
n

− (n−1
2

)2 the sore variane.28



29For example for a regular tournament matrix T , α2(T ) = 0, and for an almostregular tournament matrix T , α2(T ) = n
8
.It is easily seen that if T is normal then the singular values of T are the moduleof its eigenvalues. A tournament matrix T is nearly normal in the sense that therank one perturbation, i.e., T − 1

2
J is a normal matrix. To see this, note that

T − 1

2
J =

1

2
D, when dij =







1, if tij = 1

−1, if tij = 0,

(

T − 1

2
J

)∗
=

(

T ∗ − 1

2
J

)

=
1

2
E, when eij =







−1, if tij = 1

1, if tij = 0,and
(

T − 1

2
J

)∗(

T − 1

2
J

)

=
1

4
ED =

1

4
A where aij =

∑

j

eijdij

(

T − 1

2
J

)(

T − 1

2
J

)∗
=

1

4
DE =

1

4
B where bij =

∑

j

dijejiwe see that aij = bij , this is beause eij = −eji and dij = −dij for i 6= j, then
aij = bij . 4.1 MajorizationDe�nition 14. Let x, y ∈ R

n. We say that x is weakly majorized by y and write
x ≺w y if for eah k = 1, . . . , n, the sum of the k largest entries of x is less than orequal to the sum of the k largest entries of y. We say that x is majorized by y andwrite x ≺ y if x ≺w y and ∑xi =

∑
yi.Example 11. Let x = (0, 2, 3, 4, 5, 6)T and y = (0, 2, 4, 4, 4, 7)T . Then x ≺w y and

x 6≺ y beause



30
k
∑k

i=1 xi

∑k
i=1 yi1 0 02 2 23 5 64 9 105 14 146 20 21Table 4�1: x weakly majorized by y.From the neessary ondition in Landau's theorem and the properties of ma-jorization we have that ||T1||2 ≤ ||U1||2, then U is a transitive tournament matrix.This is equivalent to α2(T ) ≤ α2(U) = n2−1

12
, for all tournament matries T of order

n. A similar and important result is shown below.Theorem 10. If U is the upper triangular tournament matrix of order n ≥ 2, then,for all tournament matries T of order n

σ(T ) ≤ σ(U) =
1

2
csc

π

4n − 2
. (4.1)Equality holds if and only if M is the matrix of a transitive tournament.Below we desribe bounds on the minimum value of σ1(T ) and the maximumvalue of σn(T ). These are easily veri�ed.De�nition 15. A tournament matrix T of order n ≥ 2 is alled doubly regularif every pair of verties in the assoiated tournament jointly dominates the samenumber of verties (neessarily, n−3

4
).We see that T is doubly regular if and only if T T T = n+1

4
I + n−3

4
J . Suhmatries are also alled Hadamard tournament matries sine they are oexistentwith skew Hadamard matries of order n + 1.



31Proposition 9. Let T be a tournament matrix of order n and let σi(T ) be its singularvalues in noninreasing order . Then1. σ1(T ) ≥ n−1
2

with equality holding if and only if M is regular.2. σn(T ) ≤
√

n+1
2

with equality holding if and only if M is doubly regular.De�nition 16. Let T be a tournament matrix of order n. The spread of T , notedby sp(T ), is max |λ− µ|, where the maximum is taken over all eigenvalue λ, µ of T .Proposition 10. Let T be a tournament matrix of order n. Then1. sp(T TT ) ≥ n(n−3)
4

with equality holding if and only if T is doubly regular.2. sp(T TT ) ≤ 1
4
csc2 π

4n−2
with equality holding if and only if T is transitive tour-nament matrix.Theorem 11. Let T be a tournament matrix of order n ≥ 4. Then T has preiselytwo distint singular value if and only if T is doubly regular.The next proposition provides a lower bound on the spetral norm, σ1(M), ofa tournament matrix of order n. When n is odd, it agrees with Proposition 9 andthe regular tournament matries are those that give equality. When n is even, itwill yield the lower bound in Corollary 2 below. In that lower bound, equality holdsonly in the speial ase that n = 2m where m is odd.Proposition 11. Let T be a tournament matrix of order n ≥ 2 and let

B =






(
n−1

2

)2
+ α2 nα

2

nα
2

α2 + 1
4




 ,where α2 is the sore variane of T . Then

σ2
1(T ) ≥ ρ(B) = σ2 +

1

8

(

n2 − 2n + 2 + n
√

(n − 2)2 + 16α2
)

.



32Equality holds if and only if T has at least n − 2 eigenvalues with real part −1
2
.Corollary 2. If T is a tournament matrix of even order n = 2m, then

σ2
1(T ) ≥ 1

8

(

(n − 2)2 + n
√

(n − 2)2 + 4
)

.Equality is attained if and only if m is odd, and T is permutation similar to a matrixof the form 




R X

J − XT S




 ,where R and S are regular tournament matries of order m and X is an m × m

{0, 1}-matrix with onstant row and olumns sums (m − 1)/2.If n = 2m where m is odd, then the minimum spetral norm for tournamentmatries of order n is given the lower bound in Corollary 2. Although we do notknow minimum spetral norm for all ases where n = 2m, it is proven in Theorem 12that any tournament matrix of even order that attains the minimum spetral normmust be almost regular. The following orollary to Proposition 9 will be needed inthe proof.Corollary 3. If T is a tournament matrix of even order n and T is not almostregular, then
σ2

1(T ) ≥ ρ(B) =
1

8n

(

n3 − 4n2 + 4n + 16 + n
√

n4 − 4n3 + 8n2 + 32n
)

,where B is de�ned above with α2 = 1
4

+ 2
n
.



33Lemma 3. Let R be a regular tournament matrix of odd order m and let
M =












R 0 RT 1

1T 0 0T 0

RT + I 1 R 0

0T 1 1T 0










where 1 and 0 are olumn m-vetor. Then M is an almost regular tournament matrixof order n = 2(m + 1), dim WM = 4, and σ1 = 1

2
, σ2 =

√
m, σ3 = 1

2
.Theorem 12. If T is a tournament matrix of even order n with minimum spetralnorm, then T is almost regular.The last result is same as the one given by Kirkland in [19℄.



CHAPTER 5THE NEW PROPERTIES
In this hapter we give our results about the Brualdi-Li tournament matrix and

r-partite tournament matries.5.1 A Simple Calulation of the Determinant for B2nPreviously we proved that B2n− 1
2
J is normal, now we alulate its determinantand next the determinant for B2n. To get this result we use the next theorem.Theorem 13. If A, B, C, D are square matries of order n and AC = CA the

∣
∣
∣
∣

A B
C D

∣
∣
∣
∣
= |AD − CB|.Proof. This result is a diret appliation of Shur's omplement.Let B2n be the Brualdi-Li matrix, and

B2n − 1

2
J =






U − 1
2
J UT − 1

2
J

UT + I − 1
2
J U − 1

2
J




 . (5.1)

34



35using that U + U ′ + I = J then
det

(

B2n − 1

2
J

)

= det

((

U − 1

2
J

)2

−
(

UT + I − 1

2
J

)(

UT − 1

2
J

))

= det

(

UT + I − 1

2
J

)

= det

(
1

2
(UT − U + I)

)

=
1

2
,sine the alulation of det(UT − U + I) is easy: note that it is equal to 2n−1.For the alulation of the determinant of the Brualdi-Li matrix we use againShur's omplement with respet to (UT + I) in the exhange matrix from B2n, i.e.,

det(PB2n), so
∣
∣
∣
∣
∣
∣
∣






I 0

−U(UT + I)−1U I











UT + I U

U I






∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣









UT + I U

0 UT − U(UT + I)−1U









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= det
(
UT + I

)
det
(
UT − U(UT + I)−1U

)

= 1 · (−1)n−1(n − 1)

= (−1)n−1(n − 1).To see this, observe that U(UT + I)−1U = −U and det(UT + U) = det(J − I) =

(−1)n−1(n − 1), when so exhange the blok rows. The determinant for this matrixpermutation
P =






0 I

I 0




is (−1)n and therefore �nally det(B2n) = 1 − n.The above alulation is atually similar to the one presented in [9℄, this al-ulations is only for B2n while the other alulation is for any tournament, when

U = T .



365.2 The Perron Value of B2nNow we onsider the Perron value of the Brualdi-Li matrix, we �rst present aproposition and next a theorem from Berman's book [2℄. Next we give a proof forproposition 12.Proposition 12. Let B
(0)
2n be the Brualdi-Li matrix. Let k ≥ 0 and

B
(k+1)
2n =

(
D(k)

)−1
B

(k)
2n D(k),where D(k) = diag

(

B
(k)
2n 1

). Then
B

(k)
2n 1 → ρ(B2n)1, when k → ∞.To prove the proposition, we use the following 2 fats:1. The �rst one is to alulate B

(k+1)
2n =

(
D(k)

)−1
B

(k)
2n D(k).

D(k) = diag
(

d
(k)
1 , d

(k)
2 , . . . , d(k)

n

)

,then
B

(k+1)
2n =

(
D(k)

)−1
B

(k)
2n D(k) =

(

b
(k+1)
ij

)

, (5.2)where, b
(k+1)
ij = b

(k)
ij

(

d
(k)
i

)−1

d
(k)
j for i, j = 1, . . . , n.2. The seond one is to alulate B

(k+1)
2n 1.

B
(k+1)
2n 1 =

(
D(k)

)−1
B

(k)
2n D(k) =

(
n∑

j=1

b
(k)
ij

(

d
(k)
i

)−1

d
(k)
j

)

=

(
(

d
(k)
i

)−1
n∑

j=1

b
(k)
ij d

(k)
j

)

, (5.3)for i = 1, . . . , n.



37Now, beause
B2n =






Un UT
n

I + UT
n Un




 ,where Un is a transitive tournament matrix of order n and therefore B2n1 =






n−2
2

1

n
2
1




by de�nition, then

B
(1)
2n =

(
D(0)

)−1
B

(0)
2n D(0) =

(

b
(0)
ij

(

d
(0)
i

)−1

d
(0)
j

)

=

=







1 2
n−2

n−2
2

= 1, for i = 1, . . . , n
2
, j = i + 1, . . . , n

2
,

1 2
n−2

n
2

= n
n−2

, for i = 1, . . . , n
2
, j = n

2
+ 1, . . . , n

2
+ i − 1,

1 2
n

n−2
2

= n−2
n

, for i = n
2

+ 1, . . . , n, j = 1, . . . , i − n
2
,

1 2
n

n
2

= 1, for i = n
2

+ 1, . . . , n, j = i + 1, . . . , n,

0, otherwise,and
B

(1)
2n 1 =

(

d
(0)
i

)−1
n∑

j=1

b
(0)
ij d

(0)
j =

=







2

n − 2

n∑

j=1

b
(0)
ij d

(0)
j =

2

n − 2





n/2
∑

j=i+1

b
(0)
ij d

(0)
j +

n/2+i−1
∑

j= n
2
+1

b
(0)
ij d

(0)
j



 ,

2

n

n∑

j=1

bijdj =
2

n





i−1∑

j= n
2

bijdj +

n/2+i−1
∑

j=i+1

bijdj



 ,

=







2
n−2

[(
n
2
− i
)
1n−2

2
+ (i − 1)1n

2

]
= n

2
− i + (i − 1) n

n−2
,

2
n

[(
i − n

2

)
1n−2

2
+ (n − i)1n

2

]
=
(
i − n

2

)
+ n − i,

B
(1)
2n 1 =







n2−4n+4i
2(n−2)

, for i = 1, . . . , n
2
,

n2+2n−4i
2n

, for i = n
2

+ 1, . . . , n.



38Again,
B

(2)
2n =

(
D(1)

)−1
B

(1)
2n D(1) =

(

b
(1)
ij

(

d
(1)
i

)−1

d
(1)
j

)

=

=







1 2(n−2)
n2−4n+4i

n2−4n+4i
2(n−2)

= 1, for i = 1, . . . , n
2
, j = i + 1, . . . , n

2
,

n
n−2

2(n−2)
n2−4n+4i

n2+2n−4i
2n

= n2+2n−4i
n2−4n+4i

, for i = 1, . . . , n
2
, j = n

2
+ 1, . . . , n

2
+ i − 1,

n−2
n

2n
n2+2n−4i

n2−4n+4i
2(n−2)

= n2−4n+4i
n2+2n−4i

, for i = n
2

+ 1, . . . , n, j = 1, . . . , i − n
2
,

1 2n
n2+2n−4i

n2+2n−4i
2n

= 1, for i = n
2

+ 1, . . . , n, j = i + 1, . . . , n,

0, otherwise,and
B(2)

n 1 =
(

d
(1)
i

)−1
n∑

j=1

b
(1)
ij d

(1)
j =

=







2(n−2)
n2−4n+4i

[(
n
2
− i
)
1n2−4n+4i

2(n−2)
+ (i − 1) n

n−2
n2+2n−4i

2n

] for i = 1, . . . , n
2
,

2n
n2+2n−4i

[(
i − n

2

)
n−2

n
n2−4n+4i

2(n−2)
+ (n − i)1n2+2n−4i

2n

] for i = n
2

+ 1, . . . , n,

=







n3−6n2+16ni−16i2+8i−4n
2(n2−4n+4i)

, for i = 1, . . . , n
2
,

n3+8n2−24ni+16i2

2(n2+2n−4i)
, for i = n

2
+ 1, . . . , n.Finally,

B(3)
n =

(
D(2)

)−1
B(2)

n D(2) =

(

b
(2)
ij

(

d
(2)
i

)−1

d
(2)
j

)

=

=







1, for i = 1, . . . , n
2
, j = i, . . . , n

2
,

n3+8n2−24ni+16i2

n3−6n2+16ni−16i2+8i−4n
, for i = 1, . . . , n

2
, j = n

2
+ i, . . . , n,

n3−6n2+16ni−16i2+8i−4n
n3+8n2−24ni+16i2

, for i = n
2

+ 1, . . . , n, j = 1, . . . , i − n
2
,

1, for i = n
2

+ 1, . . . , n, j = i, . . . , n,

0, otherwise,



39and
B(3)

n 1 =
(

d
(2)
i

)−1
n∑

j=1

b
(2)
ij d

(2)
j =

=







(
n
2
− i
)

+ (i − 1) n3+8n2−24ni−16i2

n3−6n2+16ni−16i2+8i−4n
,

(
i − n

2

)
n3−6n2+16ni−16i2+8i−4n

n3+8n2−24ni−16i2
+ (n − i),

=







n4−8n3+44in2−96ni2+64in−20n2+64i3−48i2

2(n3−6n2+16in−16i2+8i−4n)
, for i = 1, . . . , n

2
,

n4+22n3+4n2−64i3−92in2+128ni2+16i2−16in
2(n3+8n2+16i2−24in)

, for i = n
2

+ 1, . . . , n,Theorem 14. Let B2n be the Brualdi-Li matrix, and
B

(k)
2n 1 = (r1, r2, . . . , rn)T , 1 = (1, . . . , 1)T .Then

min
1≤i≤n

ri ≤ ρ(B2n) ≤ max
1≤i≤n

ri.Proof. This result is from a theorem in Berman's book (page 37. [2℄)Here we presente a better result below.Theorem 15. Let A = (aij) ≥ 0 of order n and pi =
∑

j 6=i aij, for i = 1, . . . , n.Then
min
i6=j

{

aii + ajj +
√

(aii − ajj)2 + 4pipj

}

≤ ρ(A)

≤ max
i6=j

{

aii + ajj +
√

(aii − ajj)2 + 4pipj

}

.Proof. If Ax = ρ(A)x then
(aii − ρ(A))xi = −

n∑

i=1

aijxj .



40Let xp = max1≤j≤n xj , xq = max j 6=p

1≤j≤n
xj . Then

(app − ρ(A))xp ≤ Ppxq (5.4)
(aqq − ρ(A))xq ≤ Pqxq (5.5)multipliation of (5.4) and (5.5) yields

(app − ρ(A))(aqq − ρ(A)) ≤ PpPq,solving for ρ(A) we obtain the bounds.If A = (aij), aij ≥ 0, A1 = (s1, s2, . . . , sn)
T we have

min
i6=j

sisj ≤ ρ(A) ≤ max
i6=j

sjsj5.3 The Inverse of Brualdi-Li MatrixIn this setion we alulate the inverse of the Brualdi-Li matrix. For this wedesign a little sript funtion in Silab by whih we an obtain B2n for any n.funtion [B, U℄ = matrixBL(n)S = ones(n/2,n/2);U = S - tril(S);B = [U U'; (U' + eye()) U℄;endfuntionThrough alulations, we see that if B2n is the Brualdi and Li matrix, then itsinverse has the following form:
B−1

2n =






u 1

(C2n−1 − W )−1 v




 (5.6)



41where u = (−1, 0, . . . , 0, 0), v = (0, 0, . . . , 0,−1)T of order 2n − 1,
C2n−1 = circ(1, . . . , 1

︸ ︷︷ ︸

n−1

, 0, . . . , 0
︸ ︷︷ ︸

n

),is a irulant matrix of order 2n − 1 and
W =






0n
2

, n
2
−1 0n

2
, n
2

Jn
2
−1, n

2
−1 0n

2
−1, n

2




 . (5.7)For example for n = 4 we have

B8 =















0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
1 0 0 0 0 1 1 1
1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0













and

B−1
8 =





















−1 0 0 0 0 0 0 1
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0
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42The general ase is
B−1

2n =
1

n − 1

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB�
1 − n 0 0 · · · 0 0 0 · · · 0 0 n − 1

1 2 − n 1 · · · 1 2 − n 1 · · · 1 1 0

1 1 2 − n 1 · · · 1 2 − n 1 · · · 1 0... ... . . . . . . . . . . . . ... ...
1 1 · · · 2 − n 1 · · · 1 2 − n 0

2 − n 1 1 · · · 1 2 − n 1 · · · 1 0

1 2 − n 1 · · · 1 2 − n 1 · · · 1 0... ... . . . . . . . . . . . . ... ...
1 1 · · · 2 − n 1 1 · · · 1 2 − n 0

1 1 · · · 1 2 − n 1 · · · 1 1 − n

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA
, (5.8)

where the blok has three diagonals, the �rst one start in entry (1, 2), seond onestart in entry (1, n), and last in entry (n + 1, 1).Theorem 16. The Brualdi-Li matrix is ill-onditioned.Proof. We need to show that ‖B2n‖‖B−1
2n ‖ is very large, for any norm. Note that

‖B2n‖∞ = ‖B2n‖1 = n. On the other hand, diret alulations shows that ‖B−1
2n ‖∞ =

‖B−1
2n ‖1 = 4n−5

n−1
. Then,

cond∞(B2n) = cond1(B2n) = ‖B2n‖1‖B−1
2n ‖1 = n

(4n − 5)

n − 1
> 4n − 5,for any n. Therefore the matrix is ill-onditioned for large n.For the Eulidean, we know that

‖B2n‖2 = λ
1/2
1

(
(B2n)T B2n

)and
λ1

(
(B2n)T B2n

)
≥ max

i≤i≤n
ciiwhere cii =

∑2n
j=1 b2

ij =
∑2n

j=1 bij . Therefore,
cond2(B2n) = ‖B2n‖2‖B−1

2n ‖2 ≥
√

n · 1 =
√

n. (5.9)



43For example if n = 100, then cond∞(B2n) > 4n − 5 = 395, and cond2(B2n) >

√
n = 10. 5.4 r-partite TournamentThe results shown here are similar to the presentation [10℄. We �rst make anextension of bipartite tournaments to 3-partite tournaments. We onsider if r > 3.One of the questions to prove a result that we will present later is: in allreduible matries, an we �nd a vertex with o�-degree or in-degree equal to zero?The answer is negative. Observe the following example.Example 12. We see that

T =











0 1 0 1 1 1
0 0 0 1 0 0
1 1 0 1 0 1
0 0 0 0 0 1
0 1 1 1 0 1
0 1 0 0 0 0











,

is a reduible matrix. This is true beause if
P =











1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1









is a permutation matrix, then we have

PTP T =











0 0 1 1 1 1
1 0 0 1 1 1
0 1 0 1 1 1
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0









is a triangular matrix by bloks and T does not have any row or olumn of zeros.



44Another question is, does any irreduible matrix have at least one nonzero ele-ment in eah olumn and eah row? In this ase the answer is positive. Let us seethe following examples:Example 13. T223 represents the matrix of a 3-partite tournament (left). Thismatrix is irreduible beause is easy to hek the graph is strongly onneted. On theother hand it is lear that the 3-partite tournament matrix T221 (right) is reduiblebeause the graph is not strongly onneted, you an see this in vertex number 5,whih does not onnet with any verties
T223 =













0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 0 0
1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 0 1 0 0 0













T221 =









0 0 0 1 1
0 0 0 1 1
1 1 0 0 1
0 0 0 0 1
0 0 0 0 0









q4

q7

q2

q6

q1

q5

q3

q4

q2

q5

q1

q3

Let J be the 3-partite tournament matrix having the struture
J =





0 Jn1
0

0 0 Jn2

Jn3
0 0



 , (5.10)



45where Jni
for i = 1, 2, 3 is a square matrix of order ni. It's easy to hek that, thistype of matrix is irreduible.The next example is for an irreduible matrix, i.e when the graph is stronglyonneted.Example 14. Let A be a tournament of order 4,

A =







0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0







q3 q4

q1q1 q2

Note that the matrix has, in all rows and all olumns, at least one nonzero elementand note that its graph is strongly onneted.For any n ,we thought that if Tn, tournament matrix, has in-degree and out-degree in all its verties the T
(i)
n−1, the tournament obtained to remove the vertex i,has same property. We try to use this approah, but that is not true, let us observethe following example:Example 15. In this example we see that if we remove any vertex, then the resultinggraph will not have the previous property.

q6

q3 q2

q4 q5

q1

De�nition 17. A iruit of length m in a graph G(V, E) is a sequene of ars
(i1, i2), (i2, i3), . . . , (im−1, im), (im, i1) of V .



46A iruit of length n, will be alled an n-yle.Lemma 4. Let Tn1n2
be a bipartite tournament whose verties have in-degree andout-degree. Then Tn1n2
has a 4-yle.Proof. Let T be a bipartite tournament matrix. By Proposition 4 eah element in themain diagonal of T 4 is a number a 4-yle, we suppose that n1 = n2 and let Ann be ofthe form Ann =

[
0n B
C 0n

], and A4 = [ BCBC 0
0 CBCB ], note that BCBC = (BJ −BBT )2,and CBCB = (BBT − JB)2, therefore we need to prove that any element in thesame position of BCBC in the row a olumn is di�erent from zero (similarly for

BCBC). First we use BJ − BB′, it has of form (BJ − BB′)ij = rij suh that
rij =

∑n
k=1 bik(1 − bjk) ≥ 0, if i = j it is learly, that bik(1 − bjk) = 0. Now if

i 6= j there exist k0, j0 suh that bik0
= 1 and bj0k0

= 0. Existene of k0, j0 isasertained by the hypothesis and for rj0i there exists k′ suh that bj
0k′

= 1. Theproof is �nished if we an prove that bik
′ = 0. We will ontinue by ontradition.We suppose that k′ exists for bj0k′ = 1 and not for bik′ = 0, so we need to hange forother j0, but if we ontinue this way, the ith row has all entries equal to one, this isnot possible beause this ontradits the hypothesis that all verties have in-degreeand out-degree, therefore bik′ = 0 and all verties have 4-yle.Example 16. Consider









1 0 0 0 0
0 1 0 0 0
1 0 0 1 0
1 1 1 0 0
1 0 1 0 1

















0 1 0 0 0
1 0 1 0 1
1 2 0 1 1
2 2 2 0 1
2 3 2 1 0

















1 0 1 0 1
3 6 2 2 1
6 6 6 1 3
6 9 4 3 4
7 8 5 2 6









,
B BJ − BB′ BCBC = (BJ − BB′)2.Note that the element 6 of the diagonal of (BJ −BB′)2 in position 2 omes from theinner produt of row 2, (1, 0, 1, 0, 1) with olumn (1, 0, 2, 2, 3)T , whih has at least



47one nonzero element in the same position beause for row 2 of B, we an �nd otherdi�erent row itself suh that bik(1 − bjk) there exist j0, k0.In [10℄ the authors prove that if A is an irreduible bipartite tournament matrixthen h(A) = 2 or h(A) = 4. For r-partite tournament matries with r = 3, if A isirreduible we have the only ases h = 1 or h = r = 3. For example:
T112 =







0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0







,is irreduible and h = 1, but
T112 =







0 1 0 0
0 0 1 1
1 0 0 0
1 0 0 0







=





0 J11 0
0 0 J12

J21 0 0



 ,has a property like equation (5.10) and h = 3. For r > 3 we have the next theorem.Theorem 17. Let r > 3. If A is a r-partite tournament matrix then A is primitive,i.e, h = 1.Proof. Without loss of generality we only have to onsider the ase r = 4. Let Abe a 4-partite tournament matrix. Labeling the verties of the assoiated graph wehave
A =












0n1
A12 A13 A14

A21 0n2
A23 A24

A31 A32 0n3
A34

A41 A42 A43 0n4












, (5.11)
when all 0ni

are square zero matries an Aij + A′
ji = Jninj

. Suppose that A isirreduible, and we will proeed by ontradition. Suppose that h = 4, then by



48Theorem 3 part 4 there exists a permutation P suh that
PAP T =












0 A12 0 0

0 0 A23 0

0 0 0 A34

A41 0 0 0












, (5.12)
where the zero bloks along the main diagonal are square. Clearly this matrix doesnot satisfy the de�nition of 4-partite tournament. If h = 3, then the new matrix hasthe form

PAP T =









0 A12 0

0 0 A23

A31 0 0









, (5.13)this matrix an be only a 3-partite tournament matrix. Similar ase for h = 2.We onsider other values h > 4 and omplete the proof for r = 4, we onsiderone more ase, for example h = 5. In this ase the matrix has the form
PAP T =















0 A12 0 0 0

0 0 A23 0 0

0 0 0 A34 0

0 0 0 0 A45

A41 0 0 0 0















, (5.14)
We divide its verties into subsets V1, V2, V3, V4, V5 suh that eah ar is from Vito Vi+1 for some 1 ≤ i ≤ 4, or V5 to V1. We use this partition to obtain the 4-partitetournament matrix again. We an join V1 and V3, sine there exist no ars between,them so we obtain the matrix below
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0 0 J 0 0
0 0 0 J 0
0 J 0 0 0
0 0 0 0 J
J 0 0 0 0









,
and learly it is not the 4-partite tournament matrix.The same argument an be applied to onsider for h > 4. So we an laim that
h = 1.In the next setion we state the onlusion and possible future work in thisarea. 5.5 Conlusion and Future WorkWe observed that the tournament matries are speial (0, 1)-matries.Sine Perron-Frobenius theory about nonnegative matries, many people havepaid muh attention to the topis beause of their many appliations in the realworld. We an use their eigenvalue properties to attak the problems. However, it isnot easy to obtain the spetrum of graphs, and there are still many open problems.For example, whih graphs have distint eigenvalues? This is important in graphspetra beause the spetrum haraterizes the topologial struture of a graph.Aording to our understanding, the ombination of graph theory, matrix analysisand ombinatoris makes this topi really interesting.In all the onsiderations above, �nding a better bound for Perron value ofBrualdi-Li matrix is not easy and it seems that we need di�erent tehniques. Wehope that the similarity tehniques in the paper of Savhenko in [25℄ an help attakthe problem. The maximization problem for spetral radius seems hard and ....



50Anyway, in this attempt we learned other tehniques or properties of Brualdi-Limatrix.The study of r-partite tournament matrix is urrently in infany, but veryative, we ontinue our researh on the topi and we hope that we an publish ourpapers soon.We are working on the following problems:1. Calulate the algebrai multipliity of eigenvalue 0 and alulate the number ofdistint eigenvalues in the r-partite tournament matries.2. Explore the spetrum of bipartite tournaments: Let T (R, S) denote the setof all bipartite tournaments with sore vetors R and S, for given R and S,determine max ρ(T ) and min ρ(T ) over all matrix in T (R, S). Currently thereare many people working on the nearly regular bipartite tournaments.
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