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ABSTRACT 

In bioinformatics, it is possible to generate experimental data at a high pace. For example, 

microarrays can provide large amounts of data for genetic relative expression in illnesses of 

interest such as cancer. These data are stored and often times abandoned when new 

experimental technologies arrive.  This work, re-examines lung cancer microarray data with a 

multiple criteria optimization-based strategy developed in our research group. This strategy 

does not require any adjustment of parameters by the user and is capable to converge 

consistently to important genes –potential biomarkers- even in the presence of multiple and 

incommensurate units across microarrays. In this thesis, three different cases were 

approached with the proposed method: lung cancer and leukemia, each using microarrays, 

and breast cancer with microRNA. The lists of resulting genes in the first two cases are 

provided with a discussion of their role in cancer, as well as the possible research directions 

for each of them. A list of microRNA sequences is also provided in the third case, 

emphasizing that this last case is to demonstrate the transferability of analysis ideas to other 

high throughput biological experiments. It is also recognized at this point that experimental 

validation is necessary to confirm the role of genes for which not enough evidence was found 

in the literature. Fundamentally, these genes with little reported information represent the best 

opportunities for biological discovery from existing data. 
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RESUMEN 

En bioinformática es posible la generación de datos experimentales a un paso muy acelerado. 

Los microarreglos, por ejemplo, pueden proveer grandes cantidades de datos sobre expresión 

genética relativa en una enfermedad de interés como lo es el cáncer. Esta data es almacenada 

y en muchas ocasiones abandonada cuando nueva tecnología experimental es desarrollada. 

Este trabajo re examina la data proveniente de microarreglos de cáncer del pulmón utilizando 

una estrategia de optimización multicriterio que fue desarrollada previamente en nuestro 

grupo de investigación. Esta estrategia no requiere de ajustes en los parámetros por parte del 

usuario y es capaz de converger consistentemente a genes importantes considerados como 

biomarcadores potenciales, incluso en presencia de unidades múltiples e inconmensurables a 

través de los microarreglos. En esta tesis tres casos diferentes fueron abordados con el 

método propuesto: el cáncer de pulmón y leucemia, cada una usando microarreglos y el 

cáncer de seno con microRNA. La lista de los genes resultantes de los dos primeros casos, se 

provee con una discusión sobre su rol en el cáncer, al igual que las posibles direcciones de 

investigación para cada uno de ellos. Igualmente se provee la lista de secuencias de 

microRNA del tercer caso, enfatizando que este último puede ser transferido y aplicado a 

otros tipos de alto rendimiento de experimentos biológicos. Se reconoce en este punto que la 

validación experimental es necesaria para confirmar el rol de estos genes para los cuales no 

se encontró suficiente evidencia en la literatura. Fundamentalmente estos genes con poca 

información representan mejores oportunidades para descubrimientos biológicos en la data ya 

existente. 
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1. CHAPTER 1: INTRODUCTION 
 

 

1.1. Introduction 

 

Cancer statistics for the US in 2014 include 1,665,540 new cancer cases and 585,720 cancer-related 

deaths [1]. Cancer can attack any organ or tissue of the body. There is no universal cure for cancer, in 

spite of the many discoveries made every day. This research intends to facilitate the discovering of  

new information related to cancer from the simultaneous analysis of multiple microarray experiments 

(meta-analysis) already available in specialized repositories [2–4]. It specifically targets the 

identification of potential cancer biomarker genes.  

Microarray experiments quantify the relative expression of tens of thousands of genes. These 

experiments have been highly utilized in the past decade to study a number of health conditions, 

including cancer [5, 6]. However, these experiments are sometimes measured in different units, thus 

making it difficult to analyze several of them simultaneously. Furthermore, because the measured 

level of expression is relative, a normalization process is commonly required. All of these have 

hampered the meta-analysis search for cancer biomarkers in the past. 

The process of putting together several analyses to obtain general conclusions across them is called, 

meta-analysis as mentioned before [7]. Meta-analysis is a valuable resource in the identification of 

biomarkers, as it allows adding up experimental evidence to strengthen biomarking signals in genes 

that might be otherwise overlooked. This work proposes the use of multi-criteria optimization to 

search for biomarkers in the presence of inconmensurate units and without the need to normalize data. 

To further preserve objectivity, the method will not require for the analyst to define thresholds, 

significance values, number of desired genes, or preference structures a priori. 
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The ideas presented in this thesis are developed in the context of cancer, capitalizing in previous work 

within our research group on multiple criteria optimization and data envelopment analysis for the 

detection of biomarkers using a single microarray database [8].  To this end, the case studies set forth 

involve lung cancer, leukemia, and breast cancer. 

Lung cancer is one of the first causes of cancer related death across age and gender, while leukemia is 

the first cause of cancer-related deaths in people younger than 20 [1]. For the study of both illnesses, 

publicly available microarray databases contrasting measures in cancer-ridden tissue and healthy 

tissue are used. Aforementioned Multiple Criteria Optimization (MCO) [9] will be the tool to test 

these data through the direct application of the Pareto-optimality conditions. The idea is to represent 

each gene found in every distinct microarray database through multiple performance measures (PM) 

to be either minimized or maximized. Initially, one tries to maximize the absolute value of the 

difference of means or medians between two different conditions (healthy and cancer).  Those genes 

that are found to change their relative expression the most across these states and across the different 

microarray experiments are proposed as potential cancer biomarkers. See Figure 1-1. 

The capabilities offered by MCO in the analysis of microarray experiments can be extended to others 

- omics - experiments related to cancer, such as microRNA experiments, as approached in Chapter 6 

of this thesis. 

MicroRNAs (miRNA), are molecules resulting from large segments of RNA that are found in all 

diverse multicellular organisms [10]. miRNAs have been involved in a wide range of biological 

processes such as cell cycle control, apoptosis and several developmental and physiological processes 

including stem cell differentiation, cardiac and skeletal muscle development, immune responses, viral 

replication, among others [11]. Numerous types of cancer, heart diseases and neurological diseases 

have been associated to changes with microRNAs. These could represent important challenges for 

early cancer detection and diagnosis [12, 13]. 
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1.2. Problem Description 

 

Microarrays form databases of tens of thousands of measures of relative expression levels of genes 

from samples in two different conditions. The analysis of these measurements drives the identification 

of genes that are important in diseases such as cancer. Genes, whose relative expression is proven to 

be consistently different in, for example in healthy tissues and cancer tissues, are considered cancer 

biomarkers. Biomarkers have multiple uses in the fight against cancer [10], including early detection, 

diagnosis, prognosis, and - sometimes - treatment.  
 

When multiple microarray databases are analyzed simultaneously in search of features that apply 

generally across all experiments, then one speaks of meta-analysis. In its more general form, and as 

the name suggests, meta-analysis uses a series of multiple analyses. Potential cancer biomarkers 

identified through meta-analysis are considered to have stronger evidence on their capabilities.  

Detecting cancer biomarkers through meta-analysis of microarrays is complicated due to 

inconsistencies in the units of measurements across the different publicly-available microarray 

platforms, as well as the use of different normalization schemes. In this case, then the problem at hand 

is the identification of potential cancer biomarkers from the meta-analysis of microarray experiments 

in the presence of incommensurate units. 
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Figure 1-1: Graphic description of the meta-analysis problem with different Lung cancer microarrays. The results of 

this analysis will be a set of solutions in the form of potential biomarkers. 

 

1.3. Objective 

The objective of this thesis is to approach the meta-analysis of multiple and potentially 

incommensurate microarray experiments with multiple criteria optimization (MCO) aiming to detect 

potential cancer biomarkers.  MCO, as proposed in this work, does not require either data 

normalization or the adjustment of parameters by the user. MCO is expected to converge to potential 

cancer biomarkers with objectivity and consistency. 

1.4. Contribution of this Thesis 

There are significant beneficial aspects derived from the proposed methodology when compared to 

the traditional bioinformatics techniques: 

I. Data normalization is not required. 

II. Preference among different measures or different genes is not required a priori. 

III. There is no need for parameter adjustment by the user. 

IV. There is no need for the definition of a threshold value to establish relevance of a gene. 

V. Meta-analysis is achieved practically in an automatic fashion. 
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Previous results by our research group have shown that MCO has a high discriminatory power and 

effective detection rate [8].  This holds true even when the previous results were achieved with Data 

Envelopment Analysis, which identifies only the convex portions of the Pareto-efficient frontier. 

Novel to this work is the capability to identify both the convex and nonconvex portions of the 

efficient frontier, which is a clear analysis enhancement.  

1.5. Contrast of this work with previous work in the Bio IE Lab  

Uribe-Mastache [14] and Pérez-Vicente [15] started the work in microarray analysis within the Bio IE 

Lab, under the advice of Dr. Clara Isaza and Dr. Mauricio Cabrera-Ríos in 2008. Uribe-Mastache 

wrote a thesis entitled “Metodología para el análisis de datos de Microarreglos para la detección de 

Cáncer” (Methodology for cancer detection based on microarray data analysis) and Pérez-Vicente 

wrote a thesis entitled “Diagnóstico de cáncer a partir de datos de Microarreglos” (Cancer diagnosis 

with microarray data). Their joint work proposed statistical testing strategies for microarray analysis 

for the diagnosis of different types of cancer [14, 15]. No optimization procedure was explored in 

these theses. Mainly, the proposed strategies used in this thesis were focused on the extensive use the 

non-parametric Mann-Whitney test for differences of medians. 

Sanchez-Peña [16] in 2010, continued the biologically-related research with the thesis Identification 

of Potential Cancer Biomarkers through Multiple Criteria Optimization Using Microarray Data [16]. 

The identification of potential cancer biomarkers from microarray data was solved as a MCO 

problem. Sanchez-Peña used a combination of two performance measurements (both p-values) 

obtained from a single microarray database. The efficient solution to this problem was found through 

Data Enveloped Analysis (DEA), where genes with lower p-values indicate stronger statistical 

significance [8]. This thesis proposes an improvement over DEA and generalizes the MCO 

formulation for meta-analysis. 

Rodriguez-Yañez [17] wrote the thesis Process Windows Considering two conflicting criteria: The 

injection molding case in 2011 [17]. In this work, Rodriguez-Yañez developed a method of building 

process windows under multiple and conflicting criteria to aid in setting the processing conditions in 
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injection molding operations. She developed the pairwise comparison scheme that enabled the 

application of the Pareto-optimality conditions adopted in this work. Improvement and automation of 

such scheme is achieved in this thesis. 

1.6. Thesis Organization  

This thesis is structured as follows: The second chapter is a review of the most relevant literature 

regarding cancer, microarrays, biomarkers, and gene selection across multiple high-throughput 

biological experiments. The third chapter presents a Multiple Criteria Optimization as a competitive 

approach to meta-analysis, the main part of this thesis. The fourth and fifth chapters show case studies 

in lung cancer and leukemia, respectively. The sixth chapter extends the application of this work to 

micro-RNAs, a newer and highly relevant class of high throughput biological experiments.  The 

seventh chapter sets forth the comparison of the proposed method with another method in the 

literature: Volcano plot. The eighth chapter lays down the general conclusions of this work and 

establishes directions for future research. 
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2. CHAPTER 2: LITERATURE REVIEW 
 

 

2.1. Cancer 

According to the American Cancer Society (ACS), cancer is a set of illnesses characterized by 

uncontrolled cell replication caused by diverse reasons, driving to serious problems in our body 

including death [18].  In 2014, an estimated of 1,665,540 new cancer cases and 585,720 cancer deaths 

in United States will occur. Lung cancer, which is of interest to this work, is the primary cause of 

death by cancer in women and men. Lung cancer represents 28% of cancer deaths in men and 26% in 

women in the US [1]. Research to advance  treatment against cancer is ubiquitous as there are many 

scientists dedicated to solve this health problem [19]. 

Our body is made up of trillions of cells [20]. Each cell has its own replication system.  When this 

system loses control or presents a failure, the abnormal cell could grow uncontrollably. Also, there is 

a possibility to extend the proliferation across the system and cause cancer in different places of the 

body (a phenomenon called metastasis) [20]. At the present time, around 100 types of cancer are 

known. 

The human being possesses different sets of systems in the body; each system is constituted by 

organs, and organs by tissues, which, in turn, have sets of cells with specific functions. Each cell 

contains deoxyribonucleic acid (DNA), which has the chemical machinery to produce proteins [18]. 

According to National Cancer Institute [18], DNA exists as two long, paired strands spiraled into the 

double helix. Each strand is made up of millions of chemical building blocks called bases. There are 

only four different chemical bases in DNA: cytosine, guanine, adenine, and thymine, but they can be 
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arranged and rearranged in large numbers of ways. The order in which the bases occur determines the 

messages to be conveyed, much as specific letters of the alphabet combine to form words and 

sentences [21]. 

The human cell has 46 molecules of double-stranded DNA. Each DNA molecule is made up of 50 to 

250 million bases stored in a chromosome[18]. 

A DNA molecule is composed by several working units called genes. A gene is a segment of DNA 

containing a specific set of instructions, which are used by cells to create a specific product (proteins 

among others). Every gene consists of thousand, even hundreds of thousands of chemical bases [18]. 

“For a cell to make a protein, the information from a gene is copied, base by base, from a strand of 

DNA into a strand of messenger RNA”[18]. Each of these cells contains the most of the complete 

genetic information to produce all types of proteins that the body need. 

In some cases, our genes can be changed or altered in its molecular base, this process is called 

mutation. One example could be when there is a base insertion in the DNA sequence that make a 

change, or a disparity exists in some sections of DNA caused by that insertion. In consequence, this 

mutated gene could change the function of a protein or other molecule. Some gene mutations can 

produce cancer [18]. When a gene produces more protein than normal, it is called overexpressed, if, in 

the contrary, it produces less protein than normal, it is called underexpressed. 

2.2. Microarray experiments 

Microarray experiments produce a set of measurements of relative expression of genes from tissues or 

cell lines on an artificial platform called a microarray chip. This chip uses fluorescence detection to 

this end [22].  

Microarray experiments are important because they foster the knowledge about the behavior of certain 

illnesses, including all forms of cancer. In cancer research, the main advantage of microarray 

experiments is the variety of analysis allowed by them and the possibility of comparison with other 

databases. 
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Microarray experiments have been very popular among researchers [23]. At some point, low cost, 

accessible DNA chips, and valuable information about the study were deemed advantages of this 

technology [3]. Also, microarray experiments are sufficiently accepted as a reliable technology where 

the most common use is to find differentially expressed genes between two experimental conditions 

or samples [3]. Moreover, in an attempt to study how different biological processes or pathway work 

in several organism, microarrays have been used as a powerful tool [24]. To analyze the obtained 

data, statistics have been used for these type of studies [23,24]. However, producing a standard 

analysis method has never been accomplished, even when it comes to normalization procedures to 

account for variation among or within microarrays [27]. 

2.3. Biomarkers 

The Biomarkers Definition Working Group defines a biomarker as: "A characteristic that is 

objectively measured and evaluated as an indicator of normal biologic processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention" [28]. A biomarker could be used 

for diagnosis, prognosis, or discovery of genetic or non - genetic illnesses. 

Currently, there are several types of biomarkers: genes, proteins, DNA, mitochondrial DNA, 

mitochondrial mutations, RNA, and microRNAs, among others. This thesis will focus on genes, RNA, 

and microRNA biomarkers.  

RNA is a nucleic acid similar to DNA, stranded and contains information to regulate how genes are 

expressed to make proteins. MicroRNAs (miRNA) are small, mostly non-coding RNA gene products. 

They are molecules derived from larger segments of “precursor” RNA. miRNA are found in all 

diverse organisms. miRNAs regulates activity at multiple levels; specifically transcription, translation, 

and protein degradation [10] 

In the literature, there are many methods to find potential biomarkers. Most of them are focused in 

statistical procedures including but not limited to t-test, Wilcoxon rank sum, Fisher exact test, 

Likelihood ratio test, edgeR, DESeq, baySeq, BBSeq, and Two-stage poisson model, among others 
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[23], [29]. This research adopts  multiple criteria optimization and Pareto conditions to find 

biomarkers following the direction of our research group [8, 28], and proposes extending the 

application to this end through simultaneous analysis of multiple independent experiments, this is 

carrying out meta-analysis. As such, the perspective of this thesis is deterministic and departs from 

many of the considerations directly applicable to statistical procedures. 

2.4. Gene Expression  

Gene expression can be defined as a process where genes use information for the synthesis of a 

functional product [31]. Some cases, when a gene produces more than normal levels of a certain 

product, such as proteins, it can be described as “overexpressed” (See Figure 2-1). In the case that a 

gene produces less than normal levels it can be described as “under-expressed” (See Figure 2-2). In 

the analysis of each case study the sign of the difference of means or medians among two conditions 

(healthy and not-healthy) is used to assess if a biological entity is overexpress or underexpressed in 

the non-healthy material.  
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Figure 2-1: Example of overexpression of a gene. 
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Figure 2-2: Example of underexpression of a gene 

2.5. Meta-analysis 

This thesis will focus on carrying out meta-analysis to analyze different microarrays with their own 

measurements, number of samples, and units. Microarray experiments involve hundreds of thousands 

of data. The data will be analyzed with a MCO formulation, applying Pareto conditions and resulting 

in potential biomarkers, as explained previously. 

In the literature, it is possible to find different applications and examples of meta-analysis. Glasser 

and Duval, for example, in the book Essentials of Clinical Research, Chapter 10 indicate, “Meta-

analysis refers to methods for the systematic review of a set of individual studies or patients within 

each study, with the aim to quantitatively combine their results” [7]. Meta-analysis is a method 

capable of taking independent, but associated studies to obtain a set of solutions through all studies.  

Li and his research group led a systematic review and meta-analysis of different papers to determine 

whether two polymorphisms (V89L and A49T) are associated with the risk of prostate cancer. After 

the searching they analyzed 27 articles and reviews related to such risk [32] using a website tool 

called HUGE review. This tool identifies human genetics variations at one or more genetic 

localization (loci) in the chromosomes [33]. The review of these papers comprehends from the 1997 

to 2007 years. The authors performed meta-analysis between two conditions (healthy and cancer 
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tissues) using the Begg Mazumdar rank correlation test. The result of this meta-analysis was that 

prostate cancer was not associated with V89L and was probably not associated with A49T. On the 

other hand, R developed the software for microarray meta-analysis called MetaOmics. MetaOmics 

integrates Quality Control (Meta QC), Differentially Expressed (Meta DE), and Pathway (Meta 

pathway) [34]. MetaDE was designed to find candidate marker or genes biomarkes. MetaDE 

implements 12 different statistically based methods to carry out meta-analysis such: Fisher (Rhodes, 

2012), Stouffer (1949), adaptively weighted Fisher (Aw), minimum p-value (minP), maximum p-

value (maxP), among others. The application of these methods depends of the expertise of the users 

and the type of data for analysis. Often times, however, the final users –medical doctors, biologists- 

will find it difficult to properly select statistical methods and their parameters. 

George Tseng and others wrote a review of microarray meta-analysis [35]. They reviewed 620 

genomic meta-analysis papers. The authors show a general categorization on meta-analysis: 

descriptive review (2%), target gene meta-analysis (13%), and genome-wide meta-analysis (85%). 

Purposes of meta-analysis are: detection of differentially expressed (DE) genes or signaling pathway 

detection (66%), network or gene co-expression analysis (10%), classification analysis (8%), 

reproducibility or bias analysis (6%), and others (10%). Types of papers include: review paper (3%), 

biological application (60%), novel methodology (25%), and database/software (12%). Type of meta-

analysis methods in DE gene detection are: combined p-values (42%), combined effect sizes (22%), 

combined ranks (9%), and direct merge (27%). According to this analysis, the major uses of 

microarray meta-analysis are for DE gene detection, which is akin to the detection of biomarkers. 

Different ways to carry out microarray meta-analysis to discover gene expression [36] can be found in 

the literature. Many of these methods are used to find differential expressions of genes and 

biomarkers [37]. However, none of the described methods use multiple criteria optimization to 

analyze microarray, aside from our research group [8]. 

Zhuohui et al. (2014) research developed a tool called “MAAMD” [38]. They carry out meta-analysis 

using different Affymetrix microarrays data using the tool. The MAAMD tool automates the process 
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to analyze microarrays and requires normalization and several statistical methods to detect DE genes. 

MAAMD is aimed to summarize all steps to analyze the Affymetrix microarrays existing in GEO 

repository. The tool automates multiple dataset downloading, data organization, normalization, and 

employs a series of statistics procedures for the determination of differential gene expression, multiple 

testing adjustments, clustering, and GO-Elite pathways all of that in one tool. To this end, the authors 

used Kepler, AltAnalyze and Bioconductor software packages. The parametric approach of these 

authors differs from our nonparametric approach. It is clear that multiple criteria optimization would 

differ from the reviewed approaches and would constitute a novelty in meta-analysis. 

2.6. Multiple criteria Optimization 

Optimization is very valuable to decision making and design processes [35, 36]. Optimization can 

make a system or design effective, functional, or in its most basic form, possible [9, 37] . This 

research will focus in the MCO problems to find a set of solutions with the best possible balance 

among multiple conflicting performance measures (PM) [42]. This thesis will use the cone of 

dominance formed by the linear convex combinations of the desired directions to find the best 

possible compromise, a method explored by Rodriguez in 2012 [17] in manufacturing applications. 

To find the best solutions between multiple criteria, Pareto optimality conditions are used.  
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3. CHAPTER 3: MULTIPLE CRITERIA OPTIMIZATION 
 

 

3.1. Multiple Criteria Optimization (MCO) 

The MCO problem aims to choose the best compromising solutions among a set of candidate 

solutions assessed through at least two performance measures in conflict. The solutions to the MCO 

problem are called Pareto-efficient and determine the efficient frontier of the problem. The MCO 

problem has been approached in our group by Sánchez-Peña, et al (2013) [37] through Data 

Envelopment Analysis (DEA), and by Rodríguez-Yañez, et al (2014) [38] through full pairwise 

comparison. Sánchez-Peña, et al (2013) used DEA to detect potential cancer biomarkers using a 

single microarray database and multiple performance measures. This thesis approaches the larger 

problem of analyzing multiple microarray databases simultaneously, that is, to carry out meta-

analysis. In Rodríguez-Yañez, et al (2014), the said full pairwise comparison scheme was developed 

to improve upon DEA’s constraint of finding only the convex portion of the efficient frontier in the 

context of manufacturing. This full pairwise comparison finds the entire efficient frontier, both the 

convex and non-convex parts.  Thus, in this thesis, the latter scheme is adopted and proposed to carry 

out meta-analysis in the context of –omics, in particular with microarrays and microRNAs. 

In the literature, one particularly interesting paper used Pareto – concepts for gene selection: 

Rajapakse and Mundra applied F-scores and KW-scores to determine the Pareto-Frontier in the 

selection of genes. In this case, they divided the genes into different fronts (groups) by using 

parametric statistical methods (combine p-values, combine ranks). Moreover, they exclude some 

genes before applying Pareto conditions [43]. Do notice that using F-scores and KW-scores impose 

different assumptions a priori that are not necessary in our proposed approach. 
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3.2. MCO Problem Formulation 

First, to explain the problem formulation, Figure 1-1 shows the elements of the graphical 

representation of the MCO problem. G denotes the universe, comprised of the n genes to be analyzed 

and gi represents each gene of the problem, where i = 1, 2, …n. Figure 1-2 shows the space defined by 

two criteria under analysis, m
1
 and m

2
. In the generalization of this figure, mi

k  
is the value for the i-th 

gene in the k-th criterion or performance measure (PM). Then k = 1, 2, … C, and C is the number of 

criteria considered in the analysis. The Pareto efficient frontier in Figure 1-2 is formed by the genes 

gi
*
.  These genes have indeed the best possible balances among the two criteria to be minimized. 

These genes are the ones proposed as potential biomarkers, as they dominate the rest of the genes.   

When it comes to microarray analysis, the PMs of choice are usually related to gene expression. 

Looking for the most differentially expressed genes is akin to look for potential biomarkers, and it is a 

problem that can be casted as described up to this point.  

 

 

 

 

 

 

   

According to K. Deb [44] and M. Ehrgott [45] the Pareto efficient solutions must meet the Pareto-

optimality conditions for minimization instances. A solution X
(1) 

is said to dominate the other solution 

X
(2)

, if both conditions 1 and 2 are true: 

1. The solution X
(1)

 is no worse than X
(2)

 in all objectives. 

2. The solution X
(1)

 is strictly better than X
(2)

 in at least one objective. 

gi
*
 

G 

gi 

where G = {gi}, i = 1, 2…, n and gi
* ∈ G. 

Figure 3-1: Problem representation 
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These conditions can be evaluated for every single pair of genes to find those that are not dominated. 

These are the Pareto-efficient genes that form the Pareto-efficient frontier of the MCO problem at 

hand. The idea in this thesis is, then, to automate this full pairwise comparison to detect the Pareto-

efficient genes.  

In the search for the most differentially expressed genes, the expressions of all candidate genes are 

measured in two states to be then further compared. It is common, then, to use the difference of the 

means or the medians of the relative gene expression in these two states, for example. In this work, 

each of the C experiments will contribute one difference of medians between two states termed 

‘healthy’ and ‘cancer’. The absolute value of these differences will then be transformed to follow a 

minimization direction to match the illustration in Figure 1-2.  

 

Figure 3-2: Represent the Pareto efficient frontier of the problem 

 

 

Representation: 𝑔𝑖 => (𝑚𝑖
1,  𝑚𝑖

2, … , 𝑚𝑖
𝑘 , … , 𝑚𝑖

𝐶  ), For i = 1, 2, 3,…, n and k = 1, 2, …,C 

Set of solutions:  𝑔𝑖
∗ => (𝑚𝑖

1∗,  𝑚𝑖
2∗, … , 𝑚𝑖

𝑘∗, … , 𝑚𝑖
𝐶∗ ) 

 

To allow for the full pairwise comparison, a matrix  𝛿𝑘 . is developed for the k-th criterion. These will 

be C squared matrices size n built as follows: 



17 

 

For k = 1 => 𝛿1 =            

𝒎𝟏
𝟏 𝒎𝟐

𝟏 … 𝒎𝒋
𝟏 … 𝒎𝒏

𝟏

𝒎𝟏
𝟏

𝒎𝟐
𝟏

𝛿11
1

𝛿21
1

𝛿12
1

𝛿22
1

…
…

𝛿1𝑗
1

𝛿2𝑗
1

…
…

𝛿1𝑛
1

𝛿2𝑛
1

⋮
𝒎𝒊

𝟏

⋮
𝒎𝒏

𝟏

⋮
𝛿𝑖1

1

⋮
𝛿𝑛1

1

⋮   … ⋮ … ⋮
𝛿𝑖2

1 … 𝛿𝑖𝑗
1 … 𝛿𝑖𝑛

1

⋮ …
𝛿𝑛2

1 …
⋮

𝛿𝑛𝑗
1

…
…

⋮
𝛿𝑛𝑛

1

 

For the k-th criterion, then: 

𝒎𝟏
𝒌 𝒎𝟐

𝒌 … 𝒎𝒋
𝒌 … 𝒎𝒏

𝒌

𝒎𝟏
𝒌

𝒎𝟐
𝒌

𝛿11
𝑘

𝛿21
𝑘

𝛿12
𝑘

𝛿22
𝑘

…
…

𝛿1𝑗
𝑘

𝛿2𝑗
𝑘

…
…

𝛿1𝑛
𝑘

𝛿2𝑛
𝑘

⋮
𝒎𝒊

𝒌

⋮
𝒎𝒏

𝒌

⋮
𝛿𝑖1

𝑘

⋮
𝛿𝑛1

𝑘

⋮   … ⋮ … ⋮

𝛿𝑖2
𝑘 … 𝛿𝑖𝑗

𝑘 … 𝛿𝑖𝑛
𝑘

⋮ …
𝛿𝑛2

𝑘 …

⋮
𝛿𝑛𝑗

𝑘
…
…

⋮
𝛿𝑛𝑛

𝑘

 

where: 

𝛿𝑖𝑗
𝑘 = {

−1, 𝑖𝑓 𝑚𝑖
𝑘 < 𝑚𝑗

𝑘                  

0, 𝑖𝑓 𝑚𝑖
𝑘 = 𝑚𝑗

𝑘      , 𝑓𝑜𝑟   𝑘 = 1, 2, … , 𝐶;  𝑖 = 1, 2, … , 𝑛

𝑊, 𝑖𝑓 𝑚𝑖
𝑘 > 𝑚𝑗

𝑘                  

;  𝑗 =   1, 2, … , 𝑛         (Equation 1) 

W is defined as a large positive integer number used as a penalty. For this thesis, W=1000 is used. 

Next, the matrix 𝛾 is defined as the sum of all matrices 𝛿𝑘 (k = 1, 2,…, C). First, however, the 

following formula is applied” 𝛼𝑖𝑗 = ∑ 𝛿𝑖𝑗
𝑘𝐶

𝑘=1 .  For example Table 3-1 shows the results for 𝛼𝑖𝑗 when 

C=2:  

  

𝛿𝑘 = 
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Table 3-1: All the possible combinations of a minimization problem for two criteria. 

Outcome 

number 
𝜹𝒊𝒋

𝟏  𝜹𝒊𝒋
𝟐  𝜶𝒊𝒋 Outcome 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0 

0 

-1 

-1 

-1 

W 

W 

W 

0 

-1 

W 

0 

-1 

W 

0 

-1 

W 

0 

-1 

W 

-1 

-2 

W-1 

W 

W-1 

2W 

𝑋𝑖  
is not worse and not better either in 𝑚1 or 𝑚2

 

X
i 
is better in 𝑚2

 

X
i 
is worse in 𝑚2 

X
i 
is better in 𝑚1 

X
i 
is better in both  𝑚1 and 𝑚2 

X
i 
is better in 𝑚1and worse 𝑚2 

X
i 
is worse in 𝑚1

 

X
i 
is better in 𝑚2 

X
i 
is worse in 𝑚1 and 𝑚2

 

 

For C=2, the following assessment applies 

𝐶 = 2, 𝛾𝑖𝑗  =  {

𝑊, 𝑖𝑓 𝛼𝑖𝑗 ∈ {0, 𝑊}

2𝑊, 𝑖𝑓 𝛼𝑖𝑗 = 2𝑊

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                , {
𝑖 = 1,2, … 𝑛
𝑗 = 1,2, … 𝑛

 

In general for any value C≥2 

  𝛾𝑖𝑗  = {

𝐶

2
𝑊, 𝑖𝑓 𝛼𝑖𝑗 ∈ {0, 𝑊, … , (𝐶 − 1)𝑊} 

𝐶𝑊, 𝑖𝑓 𝛼𝑖𝑗 = 𝐶𝑊

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               , {
𝑖 = 1,2, … 𝑛
𝑗 = 1,2, … 𝑛

        (Equation 2) 

Then, in general, one can build the matrix 𝛾: 

𝒎𝟏
. 𝒎𝟐

. … 𝒎𝒋
. … 𝒎𝒏

.

𝒎𝟏
𝑪

𝒎𝟐
𝑪

𝛾11

𝛾21

𝛾12

𝛾22

…
…

𝛾1𝑗

𝛾2𝑗

…
…

𝛾1𝑛

𝛾2𝑛

⋮
𝒎𝒊

𝑪

⋮
𝒎𝒏

𝑪

⋮
𝛾𝑖1

⋮
𝛾𝑛1

⋮   … ⋮ … ⋮
𝛾𝑖2 … 𝛾𝑖𝑗 … 𝛾1𝑛

⋮ …
𝛾𝑛2 …

⋮
𝛾𝑛𝑗

…
…

⋮
𝛾𝑛𝑛

 
𝛾 = 
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To find gi
*
, a vector 𝛽 is built containing the sums of each row of matrix 𝛾 (Equation 3) 

𝛽𝑖 = ∑ 𝛾𝑖𝑗    ,    𝑛
𝑗=1 𝑖 = 1,2, … 𝑛        (Equation 3) 

𝛽1 =  𝛾11 + 𝛾12 + … 𝛾1𝑗 + … 𝛾1𝑛

𝛽2 =
𝛽3 =

𝛾21 +
𝛾31 +

𝛾22 +
𝛾32 +

…
…

𝛾2𝑗 +

𝛾3𝑗 +

…
…

𝛾2𝑛

𝛾3𝑛

⋮
𝛽𝑖 =

⋮
𝛽𝑛 =

⋮
𝛾𝑖1 +

⋮
𝛾𝑛1 +

⋮ … ⋮ … ⋮
𝛾𝑖2 + … 𝛾𝑖𝑗 + … 𝛾𝑖𝑛

⋮ …
𝛾𝑛2 + …

⋮
𝛾𝑛𝑗 + 

…
…

⋮
𝛾𝑛𝑛

 

The Pareto efficient frontier 𝑔𝑖
∗ will contain all solutions that meet the Equation 4 

𝑔𝑖
∗ = {𝑔𝑖

  | 𝛽𝑖 < 𝐶𝑊, 𝑖 = 1,2, … 𝑛}     (Equation 4)  

In other words: 𝑔𝑖
∗ = {𝑚𝑖

1∗  , 𝑚𝑖
2∗  , … 𝑚𝑖

𝑘∗ , … , 𝑚𝑖
𝐶∗} 

This algorithm identifies all the solutions of the Pareto efficient frontier. The maximum number 

proved and coded in this thesis is five criteria. The MatLab code is available in Appendix 1. 

3.3. Implementation of Method  

The next example will explain the application of the method. Find the 𝑚𝑖
𝑘∗ for minimization problem 

and two criteria. 

Let G = {𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6} a set of data. The PMs per gene are 𝑚1
𝑘 (1, 4); 𝑚2

𝑘 (3,4); 𝑚3
𝑘 (5,6); 

𝑚4
𝑘 (7,5); 𝑚5

𝑘 (3,2); 𝑚6
𝑘 (4,1). Then mi

1 
= {1, 3, 5, 7, 3, 4} and mi

2 
= {4, 4, 6, 5, 2, 1}, where i = 6 and 

C = 2. The Figure 1-3 shows the MCO problem for the minimization case: 

𝛽 = 
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4.  

Figure 3-3: Represent the elements of the example 

 

Assuming that W = 1000 and using the Equation 1, the matrices 𝛿𝑘  for k = 1, 2 are: 

5. For k = 1  

  1 3 5 7 3 4 

1 0 -1 -1 -1 -1 -1 

3 1000 0 -1 -1 0 -1 

5 1000 1000 0 -1 1000 1000 

7 1000 1000 1000 0 1000 1000 

3 1000 0 -1 -1 0 -1 

4 1000 1000 -1 -1 1000 0 

 

6. For k = 2 

  4 4 6 5 2 1 

4 0 0 -1 -1 1000 1000 

4 0 0 -1 -1 1000 1000 

6 1000 1000 0 1000 1000 1000 

5 1000 1000 -1 0 1000 1000 

2 -1 -1 -1 -1 0 1000 

1 -1 -1 -1 -1 -1 0 
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Afterwards, using Equation 2, the resulting matrix 𝛾 is: 

 

1 3 5 7 3 4 

4 1000 0 0 0 0 0 

4 1000 1000 0 0 1000 0 

6 2000 2000 1000 0 2000 2000 

5 2000 2000 0 1000 2000 2000 

2 0 0 0 0 1000 0 

4 0 0 0 0 0 1000 

Subsequently, using Equation 3 and obtained the vector 𝛽: 

i 𝛽𝑖 

𝛽1 1000 

𝛽2 3000 

𝛽3 9000 

𝛽4 9000 

𝛽5 1000 

𝛽6 1000 

Finally, using Equation 4 the Pareto efficient solutions, 𝑔𝑖
∗, for this problem will be: 

𝑔𝑖
∗ = {(1,4), (3,2), (4,1)}, as graphically shown below. 

7.  

Figure 3-4: Represent the Pareto efficient solutions for the problem 
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3.3.1. An example with microarrays 

Following the methodology and the previous example, the microarray database used for 

implementation of method was the GDS3257, first reported by Landi MT and collaborators. It 

measured the relative expression for 22,283 genes from 107 samples: 49 healthy and 58 lung cancer 

tissues. To formulate the MCO problem, first the means and medians for the control and case samples 

were calculated for each gene. Then, also for each gene, the absolute value of the differences between 

the two groups: means and medians were computed. These values correspond to the PMs of the 

problem. An important gene would display a large absolute difference between group medians or 

group means so this is the focus of the method: finding genes with large absolute differences in the 

said measures. It can be verified that when the groups under comparison show asymmetrical 

distributions, an ordering of genes based on difference of medians would be different than an ordering 

of genes based on difference of means, thereby imposing a conflict. An MCO problem in this context 

identifies the genes with the best possible balance between both performance measures. 

For convenience of our method as coded in Matlab, the resulting optimization problem must be stated 

as series of minimization cases. A linear transformation is used for this purpose as described in [16] 

and Equation 5 using the notation defined in the previous sections  

Transformed(𝑚𝑖
𝑘) = [𝑀𝑎𝑥{𝑚𝑖

𝑘} + 𝑀𝑖𝑛{𝑚𝑖
𝑘}] − 𝑚𝑖

𝑘 , i = 1, 2, …n, k = 1, 2,… C 

For this specific implementation case, in one PM and using H to symbolize the control material 

(healthy) and C to symbolize the treatment material (cancer): 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑[|𝑀𝑒𝑎𝑛(𝐻) − 𝑀𝑒𝑎𝑛(𝐶)|]𝑖

= [𝑀𝑎𝑥(|𝑀𝑒𝑎𝑛(𝐻) − 𝑀𝑒𝑎𝑛(𝐶)|) + 𝑀𝑖𝑛(|𝑀𝑒𝑎𝑛(𝐻) − 𝑀𝑒𝑎𝑛(𝐶)|)]

− [|𝑀𝑒𝑎𝑛(𝐻) − 𝑀𝑒𝑎𝑛(𝐶)|]𝑖 

i = 1, 2, … n 
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Using such transformation to arrive to an MCO instance of minimization of criteria, the result is 

depicted in Figure 3-5. 
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a) 

c) 

Figure 3-5: a) General representation of multiple criteria optimization problem using microarrays with two 

performance measures. b) The important genes would display a large absolute difference between group medians or 

group means. c) Method coded in MatLab, the resulting optimization problem must be stated as a series of 

minimization cases. 

Each value represents the relative 

expression level for a particular gene 

(row) in a given tissue (column) 
. 

Transformed data 
b) 
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4. CHAPTER 4: LUNG CANCER GENETIC BIOMARKERS 
 

 

4.1. First case study: Lung Cancer 

Cancer starts in cells, when normal cells in tissues grow and divide to form new cells where they are 

needed, old cells die. During this process, some cells do not die as they should. The excessive growth 

of cells form a mass of tissue called a tumor. 

According to the International Agency for Research on Cancer, the world’s most commonly 

diagnosed cancer is lung cancer, with 1.8 million cases or 13% of total cancer cases in 2012.  

Additionally, lung cancer was the first cause of death in the world, with 1.6 million deaths or 19.4% 

of all cancer related deaths in 2012 [46]. This analysis was conducted in 184 countries. Specifically, 

in the United States, lung cancer is expected to be the highest cause of death in 2014, for both men 

and women [1]. 

PubMed is one resource for the National Center for Biotechnology Information (NCBI). PubMed has 

the major database for electronically searching and recovering biomedical literature from MedLine 

and other life science journals [47]. Dr. Isaza, from Ponce School of Medicine, recommended the 

database GDS3257 to apply the proposed methods. 

For this case, the database GDS3257 was used it was first reported by Landi MT and collaborators 

[48]. Initially, this study analyzed 180 tissues from cancerous and healthy samples, but after several 

revisions 107 samples were used for database. Although curation is often times mandatory in 

microarray repositories, the rationale for this one in particular was not discussed in the original paper. 

These samples showed the measure of relative expression for 22,283 genes from 107 samples: 49 
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healthy and 58 cancerous tissues. Additionally, this microarray experiment analyzed samples from 

never smokers, former smokers, and current smokers (See Figure 4-1).  For this study, the patients 

were between 44 and 79 years old and had stage I thru IV lung cancer. 

 

 

Figure 4-1: Represents the organization of the database used (GDS3257) for this research. “C” indicates cancer 

samples, and “H” indicates healthy samples. 

 

4.1.1. First Analyses of a Healthy Never Smoker vs Cancer Never Smoker  in 

Lung Cancer 

For this first analysis, we used the fifteen healthy never smoker (HNS) tissues from men and women, 

and sixteen cancer never smoker (CNS) tissues from men and women. With these samples the 

absolute value of the differences of means and medians of healthy and cancer tissues for each gene 

were calculated. The analysis in MatLab tool was run in computer with 4 GB of memory RAM and 

2.66 GHz CPU. Due to the memory restriction, Pareto efficient frontier was found in a tournament 

fashion. The two PMs calculated for 22,283 genes was divided in three groups: two groups of 7500 

and one of 7283 genes. This data was run in MatLab tool to find the locally efficient frontier per 

group. Finally, the resulting genes from previous analysis were run again and found the global Pareto 
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efficient frontier [49]. It is important to point out that the order of the partition and input of the data 

does not affect the final efficient frontier, as this is a case of explicit full comparison. In one criterion, 

the process would be akin to finding the tallest person in a room by picking the tallest in different 

subgroups and comparing the local winners in the end. With enough computing memory, partitioning 

the data is not necessary. 

 For each group, the locally non-dominated subset was identified (Figure 4-2), and the total number of 

selected genes for the three groups included five genes: WIF1, FCN3, SPP1, RAGE, and TMEM100.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solutions Pareto: Group 1 

Solutions Pareto: Group 3 

Solutions Pareto: Group 2 

Figure 4-2: Local Pareto-Efficient frontiers of all groups. For the first and second groups, two genes are at the local 

Pareto-Efficient frontier, and one gene for the third group. 
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Then the locally non-dominated subsets (i.e., the five genes obtained before) were used to obtain the 

globally-optimal Pareto Efficient Frontier, as seen in Figure 4-3. 

 
 

Figure 4-3: Represents the final globally-optimal Pareto-Efficient Frontier, which consists of Rage and SPP1 genes. 

 

In figure 4-3, RAGE and SPP1 are the genes in the global Pareto-efficient frontier. It is important to 

mention that to achieve this result the user does not need to normalize or use a threshold value. 

Receptor for Advanced Glycosylation End Products, RAGE, is a multiligand receptor involved with 

the regulation of multiple cell processes, such as homeostasis, development, and inflammation [50]. In 

the literature, RAGE is proposed as lung cancer biomarker, by R. Jing et al, “Receptor for advanced 

glycation end products (RAGE) soluble form (sRAGE): a new biomarker for lung cancer”.   

Secreted PhosphoProtein 1, SPP1, is a protein-coding gene. Diseases associated with SPP1 include 

ossifying fibroma, and papillary cystadenocarcinoma [51].The changes in its gene expression implies 

alterations in cell properties involved in malignancy such as adhesion, migration, invasion, enhanced 

tumor survival, tumour angiogenesis, and metastasis [52]. This gene is proposed to as biomarker in V. 

Lazar et al, “Integrated molecular portrait of non-small cell lung cancers”.  

Pareto Efficient Frontier Global 
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Similar to this analysis, eighteen additional analyses related to never smoker (Healthy and cancer 

tissues) were carried out. For the first 6 analyses, samples from men and women were used together. 

In the next six analyses, only samples of women were used. In the last six analyses, only men tissues 

were used. All of these groups were obtained from database GDS3257 (See Figure 4-1). 

4.1.2. Analysis of Lung Cancer: Never smoker vs Current Smoker in Cancer 

and Healthy tissues 

Figure 4-4 shows a summary of this case study. The circles on the left side represent the healthy never 

smoker (HNS) and healthy current smoker (HCS) tissues, while the circles on the right side represent 

the cancer never smoker (CNS) and cancer current smoker (CCS) tissues. Additionally, the upper 

circles represent never smoker tissues, whereas the lower circles symbolize current smoker tissues. 

 

Figure 4-4: Diagram representing six analyses between four different conditions of microarray (HNS vs HCS vs CNS 

vs CCS). The edges of the graph represent genes of the Pareto Efficient Frontier. For each case is overexpressed or 

underexpressed in cancer when compared to healthy tissues.  

 

The first analyses show that, between HNS and CNS, the MCO solution consisted of just two genes as 

the genes that changed their expression the most: RAGE and SPP1. The result of MCO for the second 

analysis between 16 samples of HCS and 24 samples of CCS is just the SPP1 gene. In the analysis 
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concerning 15 samples between HNS and 24 samples of CCS, RAGE was the only solution, while in 

the analysis between 16 samples of HCS and 16 samples of CNS the gene with the largest change is 

SPP1. With the results from these four analyses, we can conclude that RAGE and SPP1 showed 

significant changes between a state of health and a state of cancer. Also SPP1 showed a large change 

between HCS and CNS. In addition, RAGE showed significant change between HNS and CCS. 

The other two analyses were carried out between 15 samples of HNS versus 16 samples of HCS and 

16 samples of CNS with 24 samples of CCS. The result of these analyses present three genes: 

RPS4Y1, CYP1B1 and XIST in healthy tissues, while in cancer, there is just XIST. In this case, we 

could conclude that XIST showed an important difference when comparing NS and CS (both in 

healthy and cancer tissues). See Table 4-1.  

Table 4-1 shows the genes that form the Pareto Efficient Frontier and the calculated values in order to 

apply the MCO method.  If a gene is overexpressed or under-expressed when comparing healthy 

samples to cancer samples, it is determined if the values of the differences in mean and median are 

positive or negative respectively. For example if the signs of both the differences in mean and median 

are positive, the gene can be considered as overexpressed in cancer, in other way it could be under-

expressed in cancer.  

 

Table 4-1: Represent the summarizing of genes from Pareto-Efficient Frontier in the analysis for never and current 

smoker and their expressions. 

Analysis 1 

ID_Ref Identifier 
Mean 

(HNS) 

Mean 

(CNS) 

Median 

(HNS) 

Median 

(CNS) 

Mean(HNS)-

Mean(CNS) 

Med(HNS)-

Med(CNS) 

Expression in 

cancer 

210081_at AGER 12.3777 7.5234 12.7605 7.3027 4.8543 5.4578 Overexpressed  

209875_s_at SPP1 7.1348 12.0090 7.0223 12.0551 -4.8742 -5.0328 Underexpressed  

Analysis 2 

ID_Ref Identifier 
Mean 

(HCS) 

Mean 

(CCS) 

Median 

(HCS) 

Median 

(CCS) 

Mean(HCS)-

Mean(CCS) 

Med(HCS)-

Med(CCS) 

Expressed in 

cancer 

209875_s_at SPP1 7.4312 11.8356 7.3415 11.9560 -4.4045 -4.6144 Underexpressed  

Analysis 3 

ID_Ref Identifier 
Mean 

(HNS) 

Mean 

(CCS) 

Median 

(HNS) 

Median 

(CCS) 

Mean(HNS)-

Mean(CCS) 

Med(HNS)-

Med(CCS) 

Expressed in 

cancer 

210081_at AGER 12.3777 7.3407 12.7605 7.2301 5.0369 5.5304 Overexpressed  

Analysis 4 
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ID_Ref Identifier 
Mean 

(HCS) 

Mean 

(CNS) 

Median 

(HCS) 

Median 

(CNS) 

Mean(HCS)-

Mean(CNS) 

Med(HCS)-

Med(CNS) 

Expressed in 

cancer 

209875_s_at SPP1 7.4312 12.0090 7.3415 12.0551 -4.5778 -4.7136 Underexpressed  

Analysis 5 

ID_Ref Identifier 
Mean 

(HNS) 

Mean 

(HCS) 

Median 

(HNS) 

Median 

(HCS) 

Mean(HNS)- 

Mean(HCS) 

Median(HNS-

HCS) 

Expressed in 

cancer 

201909_at RPS4Y1 8.5897 10.6481 7.4258 11.5666 -2.0585 -4.1407 Underexpressed  

202437_s_at CYP1B1 6.8600 9.0555 6.8096 9.1060 -2.1955 -2.2964 Underexpressed  

221728_x_at XIST 9.2282 7.0814 10.0964 6.1053 2.1468 3.9911 Overexpressed  

Analysis 6 

ID_Ref Identifier 
Mean 

(CNS) 

Mean 

(CCS) 

Median 

(CNS) 

Median 

(CCS) 

Mean(CNS)-

Mean(CCS) 

Med(CNS)-

Med(CCS) 

Expressed in 

cancer 

221728_x_at XIST 9.3664 7.3730 10.1310 6.4508 1.9935 3.6801 Overexpressed  

 

 

4.1.3. Analysis of Lung Cancer in Women: Never smoker vs Current Smoker 

in Cancer and Healthy tissues 

Figure 4-5 shows the result with the same analysis described before, but using just women’s tissues. 

For this representation the first conclusion is RAGE, which showed a large change when compared to 

a cancer group, regardless if the comparison was against HNS or HCS. 

 
 

Figure 4-5: Diagram representing six analyses between four different conditions for women samples of microarray 

(HNS vs HCS vs CNS vs CCS). The edges of the graph represent genes of Pareto Efficient Frontier. Each case is 

overexpressed or underexpressed in cancer when compared to healthy tissues. 
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Table 4-2 shows the genes that form Pareto Efficient Frontier and the calculated values in order to 

apply the MCO method.  If a gene is overexpressed in cancer or under-expressed in cancer it is 

determined if the values of the differences in mean and median are positive or negative respectively.  

Table 4-2: Represent the summarizing of genes from Pareto-Efficient Frontier in the analysis for never and current 

smoker for women and their expressions. 

 

 

 

4.1.4. Analysis of Lung Cancer in Men: Never smoker vs Current Smoker in 

Cancer and Healthy tissues 

Figure 4-6 shows the results with an analysis similar to the one described before, but using just men 

samples. For this representation, as in previous cases SPP1 and RAGE showed large changes when 

compared to a cancer group, regardless if the comparison was against HNS or HCS. Also in this case 

SPP1 is large differentially expressed more often than RAGE. 

Analysis 1 

ID_Ref Identifier 
Mean 

(HNSW) 

Mean 

(CNSW) 

Median 

(HNSW) 

Median 

(CNSW) 

Mean(HNSW)-

Mean(CNSW) 

Med(HNSW)-

Med(CNSW) 

Expressed in 

cancer 

210081_at RAGE 12.236055 7.3239108 12.6324 7.12506 4.912143776 5.50734 Overexpressed  

Analysis 2 

ID_Ref Identifier 
Mean 

(HCSW) 

Mean 

(CCSW) 

Median 

(HCSW) 

Median 

(CCSW) 

Mean(HCSW)-

Mean(CCSW) 

Med(HCSW)-

Med(CCSW) 

Expressed  in 

cancer   

203980_at FABP4 11.3681 7.4843175 11.3418 6.838025 3.8837825 4.503775 Overexpressed  

209875_s_at SPP1 7.822125 12.015075 7.76183 11.75325 -4.19295 -3.99142 Underexpressed  

210081_at RAGE 11.723925 7.5909588 11.856 7.630145 4.13296625 4.225855 Overexpressed  

Analysis 3 

ID_Ref Identifier 
Mean 

(HNSW) 

Mean 

(CCSW) 

Median 

(HNSW) 

Median 

(CCSW) 

Mean(HNSW)-

Mean(CCSW) 

Med(HNSW)-

Med(CCSW) 

Expressed in 

cancer 

209875_s_at SPP1 7.2148118 12.015075 7.02226 11.75325 -4.800263182 -4.73099 Underexpressed  

210081_at RAGE 12.236055 7.5909588 12.6324 7.630145 4.645095795 5.002255 Overexpressed  

Analysis 4 

ID_Ref Identifier 
Mean 

(HCSW) 

Mean 

(CNSW) 

Median 

(HCSW) 

Median 

(CNSW) 

Mean(HCSW)-

Mean(CNSW) 

Med(HCSW)-

Med(CNSW) 

Expressed in 

cancer 

210081_at RAGE 11.723925 7.3239108 11.856 7.12506 4.400014231 4.73094 Overexpressed  

Analysis 5 

ID_Ref Identifier 
Mean 

(HNSW) 

Mean 

(HCSW) 

Median 

(HNSW) 

Median 

(HCSW) 

Mean(HNSW)- 

Mean(HCSW) 

Med(HNSW)- 

Med(HCSW) 

Expressed in 

cancer 

205725_at SCGB1A1 12.247863 9.9364 13.2639 9.993235 2.311462727 3.270665 Overexpressed  

207430_s_at MSMB 4.5146282 7.2527475 4.24797 6.907905 -2.738119318 -2.659935 Underexpressed  

Analysis 6 

ID_Ref Identifier 
Mean 

(CNSW) 

Mean 

(CCSW) 

Median 

(CNSW) 

Median 

(CCSW) 

Mean(CNSW)-

Mean(CCSW) 

Med(CNSW)-

Med(CCSW) 

Expressed in 

cancer 

203757_s_at CEACAM6 13.174654 10.82439 13.3954 10.277045 2.350263846 3.118355 Overexpressed  
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Figure 4-6: Diagram representing six analyses between four different conditions for men samples of microarray 

(HNS vs HCS vs CNS vs CCS). The edges of the graph represent genes of Pareto Efficient Frontier. For each case, it 

is overexpressed or underexpressed in cancer when compared to healthy tissue 

 

Table 4-3 shows the genes that form Pareto Efficient Frontier and the calculated values in order to 

apply the MCO method.   

Table 4-3: Represent the summarizing of genes from Pareto-Efficient Frontier in the analysis for never and current 

smoker for men and their expressions. 

Analysis 1 

ID_Ref Identifier 
Mean 

(HNSM) 

Mean 

(CNSM) 

Median 

(HNSM) 

Median 

(CNSM) 

Mean(HNSM)-

Mean(CNSM) 

Med(HNSM)-

Med(CNSM) 

Expression in 

cancer 

209875_s_at SPP1 6.914805 11.9426 6.966145 12.0506 -5.027795 -5.084455 Underexpressed  

Analysis 2 

ID_Ref Identifier 
Mean 

(HCSM) 

Mean 

(CCSM) 

Median 

(HCSM) 

Median 

(CCSM) 

Mean(HCSM)-

Mean(CCSM) 

Med(HCSM)-

Med(CCSM) 

Expression in 

cancer 

209613_s_at ADH1B 10.504545 6.040956 10.60635 5.60672 4.46358875 4.99963 Overexpressed  

Analysis 3 

ID_Ref Identifier 
Mean 

(HNSM) 

Mean 

(CCSM) 

Median 

(HNSM) 

Median 

(CCSM) 

Mean(HNSM)-

Mean(CCSM) 

Med(HNSM)-

Med(CCSM) 

Expression in 

cancer 

210081_at RAGE 12.7672 7.21564 12.7797 6.83025 5.55156 5.94945 Overexpressed  

Analysis 4 

ID_Ref Identifier 
Mean 

(HCSM) 

Mean 

(CNSM) 

Median 

(HCSM) 

Median 

(CNSM) 

Mean(HCSM)-

Mean(CNSM) 

Med(HCSM)-

Med(CNSM) 

Expressed in 

cancer 

204734_at KRT15 5.5394642 9.25312 5.518315 10.2703 -3.713655833 -4.751985 Underexpressed  

209875_s_at SPP1 7.30083 11.9426 7.30887 12.0506 -4.64177 -4.74173 Underexpressed  

Analysis 5 
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ID_Ref Identifier 
Mean 

(HNSM) 

Mean 

(HCSM) 

Median 

(HNSM) 

Median 

(HCSM) 

Mean(HNSM)- 

Mean(HCSM) 

Med(HNSM)- 

Med(HCSM) 

Expressed  in 

cancer 

219612_s_at FGG 6.363085 9.956473 6.44629 9.908025 -3.593388333 -3.461735 Underexpressed  

Analysis 6 

ID_Ref Identifier 
Mean 

(CNSM) 

Mean 

(CCSM) 

Median 

(CNSM) 

Median 

(CCSM) 

Mean(CNSM)-

Mean(CCSM) 

Med(CNSM)-

Med(CCSM) 

Expressed in 

cancer 

204734_at KRT15 9.25312 6.909603 10.2703 6.531385 2.343516875 3.738915 Overexpressed  

205725_at SCGB1A1 11.223457 8.356614 11.3493 7.902555 2.866842917 3.446745 Overexpressed  

210096_at CYP4B1 9.4844233 6.566811 8.94934 6.112965 2.917612083 2.836375 Overexpressed  

 

 

Table 4-4: Summary from Pareto efficient frontier genes and their related cancer 

Gene name Examples of cancer types related to genes References 

RAGE Pancreas, colon and prostate, colorectal, gastric, liver, lung  [48, 49] [55]–[58] 

SPP1 
Oral, lung, bone, bladder, prostate, cervical, breast, head and neck, 

liver 
 [54]–[57], [58], 

[59]–[61] 

XIST Meninges, breast, ovarian  [67]–[69] 

RPS4Y1 Meninges  [67] 

CYP1B1 Lung, cervical, head and neck, prostate  [70]–[73] 

WOMEN  

FABP4 Prostate and breast, ovarian  [74], [75] 

CEACAM6 Head and neck, breast, colon, lung  [76]–[79] 

MSMB Prostate   [80] 

SCGB1A1* Smokers  [81] 

MEN 

ADH1B Esophageal, colorectal,  head and neck  [82]–[84] 

CYP4B1 Bladder  [85] 

KRT15 Lung, ovarian  [86], [87] 

FGG Liver  [88] 

SCGB1A1* Smokers  [81] 

 

Table 4-4 presents the summary of genes obtained from eighteen analyses of the lung cancer database. 

The first group consists of the genes obtained from an analysis from both women and men. The 

second group is obtained from a group analysis of only women, and the last group is the results of a 

group analysis of only men. The common genes for all groups are RAGE, SPP1, and the gene with an 

asterisk (SCGB1A1), which is not related to any type of cancer. From this table, three important 

conclusions are obtained. First, those genes found in the literature as biomarkers, validate our method. 

Secondly, those genes not found in the literature as biomarkers but that are associated with other types 
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of cancer, such as, XIST, RPS4Y1, CYPIB1, FABP4, among others, could eventually be validated and 

proposed as lung cancer biomarkesr with the precursor that they are important genes for other type of 

cancer. Also, these genes could possibly have a relation with lung cancer biomarkers in a pathway to 

be researched. Third, the genes that do not have any evidence found in literature indicating or any 

identification as biomarkers in other types of cancer, are the opportunities for discovery and thus, 

offer the potential for a larger contribution. 

 The MatLab tool developed in our group has a high discrimination rate. For the first case, where the 

genes are declared biomarkers, it is possible to remove these genes from the global data and run the 

tool again. This process can be repeated according to the purpose of the analysis. Such is the case of 

Juan Rosas, member of our research group, who searches for signaling pathways. He used MCO to 

find genes in different efficient frontiers and later explores the relations between them. 

4.2. Pseudo Meta-Analysis with four performance measures: a prototype for meta-

analysis. 

 

In previous analyses (Section 5.1) two PMs (absolute value of differences of means and absolute 

value of differences of medians) were used. In this section, MCO meta-analysis is carried out using 

four PMs, which were the “absolute value of differences of medians” for each group [16]. The 

medians were used for their nonparametric characteristics, as it has been habitual in analyzes 

previously carried out by our group. Continuing with the case, the difference in medians between the 

groups of cancer and healthy tissues is calculated for each gene of the 22,283 genes in the database.  

These groups are: HNS (15 samples) vs CNS (16 samples), HNS (15 samples) vs CCS (24 samples), 

HCS (16 samples) vs CNS (16 samples), HCS (16 samples) vs CCS (24 samples) see Figure 4-7. 
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Figure 4-7: Groups for meta-analysis with four PM’s 

 

 

In this way, the four PMs were calculated and MCO was applied to find the genes with high variation 

levels of the relative expressions throughout all PMs. The data was analyzed in six groups of 4,000 

genes and the tool worked on computer with 4GB of memory and 1.70 GHz CPU. For the, four 

groups of 6,000 genes, the tool worked on computer with 4GB of memory and 1.77 GHz CPU. 

Finally, the tool with four groups of 7,000 genes worked on computer with 4GH of memory RAM and 

2.66 GHz CPU. That process did to make sure that the grouping scheme did not introduce any bias in 

the results. Owing to a low memory of computer we divided the data in groups in ascending order 

[49], but to prove to the consistence and trustworthiness of the program we ran the data in 3 different 

computers. In all these analyses the global Pareto efficient frontier included two genes as a result. 

Among all the 22,283 genes and using four PMs, the genes with high variation were RAGE and SPP1. 

This analysis supports the potential of the proposed method for meta-analysis. 
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5. CHAPTER 5: LEUKEMIA GENETIC BIOMARKERS 
 

 

5.1. Second case study: Leukemia 

The NCHS estimates 52,380  new cases of leukemia for 2014 in the U.S., causing  24,090 deaths [1]. 

Leukemia is a cancer of the blood and invades the entire body by bloodstream. There are different 

types of leukemia. Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in 

young children. Acute myelogenous leukemia (AML) is the most common type of acute leukemia in 

adults. Chronic lymphocytic leukemia (CLL) is the most common type of chronic leukemia in adults, 

and chronic myelogenous leukemia (CML), which affects mainly adults [89]. This cancer is described 

as untreated (sick without treatment), in remission (survival), or recurrent. Leukemia has been divided 

by stages, going from Rai 0 to Rai IV, where stage 0 is considered low risk, stage I and II are 

considered intermediate risk, and stage III and IV are high risk [90]. 

The database used for this case is GSE2403,which was first used by S. Fält et al. [91]. This database 

has 12,625 genes and 21 samples: 11 in stable state and 10 progressive. This database contains both 

stable (healthy) and progressive (cancer) samples presenting leukemia; however, according to the 

authors, stable (in remission) samples do not need treatment, while progressive (new Leukemia cases 

or recurrent) samples need treatment. For this reason, the stable samples are here labeled “Healthy 

(H)” and the progressive ones as “Cancer (C)” as to not introduce further descriptors. Also, they take 

thirteen samples of men and eight samples of women (See Figure 5-1). The samples were taken from 

patients between 49 to 82 years old, and they suffer CLL.   
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5.2. Analysis of Leukemia: Healthy vs cancer samples 

In this case the 11 H and 10 C samples were taken from the database. With these samples the absolute 

value of the differences in means and medians for H and C samples were calculated for each gene. 

The 12,625 genes were divided in two groups: one with 7000 and another 5,625 with genes [49], as in 

the previous cases. For each group, the locally non dominated subset was discovered (Figure 5-2), and 

the total number of selected genes for the two groups were three genes: 31687_f_at, 38833_at and 

41165_g_at.  

Leukemia 
(12,625 genes – 21 samples) 

11 stable (H) 
samples  

10 progressive  (C) 
samples  

3 women 8 men 5 women 5 men 

Figure 5-1: Represents the organization of the database used (GSE2403) for this case. 
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Figure 5-2: Local Pareto-Efficient frontiers of two groups. For the first group, one gene is at the local Pareto-Efficient 

frontier, and two genes for the second group. 

 

Then, the locally non-dominated subsets (i.e., the three genes obtained before), were used to obtain 

the globally-optimal Pareto Efficient Frontier, as seen in Figure 5-3. 

 

Figure 5-3: Represents the final globally-optimal Pareto-Efficient Frontier, which consists of 31687_f_at gene. 

 

 

In this analysis we could observe that only one gene out of 12,625 showed significant changes in its 

relative expression. The gene 31687_f_at or HBB, hemoglobin, beta [92] is a protein also known as 

beta-globin. In the literature this gene is proposed to as biomarker in PK Chong et al, “Hemoglobin 

Solutions Pareto: Group 1 Solutions Pareto: Group 2 

Pareto Efficient Frontier Global 
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subunit beta (HBB) is a potential biomarker for predicting response to Gefitinib in NSCLC patients” 

In this case it is important to analyze the relation between non-small cell lung cancer (NSCLC) and 

Leukemia. (See Table 5-1)  

 

Table 5-1: Represent the summarizing of gene from Pareto-Efficient Frontier in the Leukemia analysis and their 

expressions. 

ID_REF Mean(H) Mean(C) Median(H) Median(C) 
Mean(H)-

Mean(C) 

Med(H)-

Med(C) 

Expression in 

cancer 

31687_f_at 7076.109091 11006.57 5494.3 9932.45 -3930.46091 -4438.15 Underexpressed  
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6. CHAPTER 6: BREAST CANCER microRNA BIOMARKERS 
 

 

6.1. Third case study: microRNAs in breast Cancer 

In 2012, breast cancer was one of the most common causes of death by cancer in the world. 

According to the International Agency for Research on Cancer, 1.7 million cases or 11.9% of total 

cases [46] around the world. Specifically, in 2014 in United States breast cancer is expected to be 

associated to 235,030 new cases and 40,430 deaths [1].  

This chapter describes the application of the proposed method to microRNA experiments, a newer 

member of the high-throughput biological experiments (omics). microRNAs (miRNAs) are 

considered as master regulators of gene expression. miRNAs could be able to regulate up to 30% of 

protein-coding genes in the human genome. Furthermore, miRNAs have been associated with the 

development of several diseases [93]. The existence of circulating miRNAs in the blood of cancer 

patients has raised the possibility that miRNAs may serve as a novel diagnostic marker [94]. 

For these type of miRNA microarray, the traditionally normalization methods are not applicable. Due 

to this normalization, methods are based on two assumptions. First, the total number of genes to 

evaluate is large (>10,000), and the expression levels of the majority of genes is preserved constantly. 

On the contrary, miRNA microarrays are generally spotted in low number. Due to that, the total 

number of miRNA is less than 2000 [22]. Also, the expression of miRNAs is different to genes. In 

this chapter, it is demonstrated how the MCO method was able to handle this novel type of –omics 

experiments. 
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The database used in this chapter is divided by 27 case samples (breast cancer) and 29 control samples 

(healthy) and was provided by Dr. Isaza, from Ponce School of Medicine (unpublished data). 

6.2. First data analysis 

In this analysis, 27 C samples and 29 H samples were used. A total of 384 miRNAs are included in 

the database. After revision, 125 miRNAs were removed: 94 of them did not have enough readings 

and 31 had less than three replicates in healthy or cancer samples. Finally, 259 miRNAs were 

analyzed using two PMs, absolute value of differences of means and absolute value of differences of 

medians. The results showed five miRNAs (See Figure 6-1): hsa-miR-9-000583 (FAM, NFQ), hsa-

miR-219-000522 (FAM, NFQ), hsa-miR-365-001020 (FAM, NFQ), hsa-miR-625-002431 (FAM, 

NFQ) and hsa-miR-652-002352 (FAM, NFQ) (See Table 6-1). 

 

Figure 6-1: Represents the final globally-optimal Pareto-Efficient Frontier, which consists of five miRNAs 

 

In this first analysis, five miRNAs showed a significant changed in their relative expression from a 

total of 259 miRNAs. This analysis evidenced the transferability of the method proposed to other 

types of data. In other words, the method could be used in any type of biological database in which is 
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possible to obtain the PMs for healthy vs cancer samples. This type of biological data is part of the 

‘omics’ groups. At this time, in the literature there is not enough information about these five 

microRNAs. These are undergoing more analyses related to breast cancer at Ponce School Medicine 

and Health Sciences by Dr. Isaza. Table 6-1 shows the genes that form the Pareto Efficient Frontier. 

Table 6-1: Represent the summarizing of miRNA from Pareto-Efficient Frontier in the breast cancer analysis and 

their expressions. 

Detector 
Mean 

(H) 

Mean 

(C) 

Median 

(H) 

Median 

(C) 

Mean(H- 

Mean(C) 

Median(H)-

Median(C) 

Expression in 

cancer 

hsa-miR-9-000583 (FAM,NFQ) 30.3902 33.5226 30.9568 34.4201 -3.1324 -3.4633 Overexpressed 

hsa-miR-219-000522 (FAM,NFQ) 35.2830 30.0280 34.7969 33.2758 5.2550 1.5211 underexpressed 

hsa-miR-365-001020 (FAM,NFQ) 31.5740 34.3179 30.1818 34.7958 -2.7439 -4.6140 Overexpressed 

hsa-miR-625-002431 (FAM,NFQ) 36.1277 30.9577 36.6335 33.5928 5.1699 3.0406 underexpressed 

hsa-miR-652-002352 (FAM,NFQ) 27.9800 30.9634 27.9513 31.9310 -2.9834 -3.9797 Overexpressed 

  

6.3. Second data analysis 

In a second analysis, the data was divided by DNA Repair Capacity (DCR) in four groups: low DCR-

H, high DCR-H, low DCR-C and high DCR-C. A total of 384 of miRNAs were taken into account 

and 136 miRNAs were removed due to lack of enough replicates (less than three replicates). Finally, 

256 miRNAs were analyzed using the following four cases.  

6.3.1. Low DRC healthy vs. Low DRC cancer 

Ten low DRC-H samples and 17 low DRC-C samples were used from the database. From the initial 

256 miRNAs, 22 miRNAs were removed from the database due to lack of readings or replicates in 

any group. Finally, with the 226 miRNAs, the MCO results showed four miRNAs: hsa-let-7a-000377 

(FAM, NFQ) is underexpressed in low DCR-H. RNU48-001006 (FAM, NFQ) is underexpressed in 

low DCR-H. Hsa-miR-365-001020 (FAM, NFQ) is underexpressed in low DCR-H. Hsa-miR-627-

001560 (FAM, NFQ) is overexpressed in Low DCR-H (See Figure 6-2). 
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Figure 6-2: Represents the final globally-optimal Pareto-Efficient Frontier, which consists of four miRNAs 

 

Table 6-2 shows the summarizing of miRNAs that form the Pareto Efficient Frontier.   

 

Table 6-2: Represent the summarizing of miRNAs from Pareto-Efficient Frontier in the breast cancer analysis and 

their expressions. 

Detector 
Mean(L-

DRC-H) 

Mean (L-

DRC-C) 

Median (L-

DRC-H) 

Median (L-

DRC-C) 

Mean(L-DRC-

H)-Mean(L-

DRC-C) 

Med(L-DRC-

H)-Med(L-

DRC-C) 

Expression in 

cancer 

hsa-let-7a-000377 

(FAM,NFQ) 
26.7975 30.1677 27.0273 31.2117 -3.3702 -4.1844 overexpressed 

RNU48-001006 

(FAM,NFQ) 
27.1073 31.4208 28.0333 32.1213 -4.3134 -4.0879 overexpressed 

hsa-miR-365-001020 
(FAM,NFQ) 

31.4041 34.5915 30.0910 34.7958 -3.1874 -4.7048 overexpressed 

hsa-miR-627-001560 

(FAM,NFQ) 
26.1536 21.6778 23.9459 22.8787 4.4758 1.0672 underexpressed 

 

 

6.3.2. High DRC healthy vs. High DRC cancer 

Fourteen high DRC-H samples and 4 high DRC-C samples were used. From the initial 256 miRNAs, 

77 miRNAs were removed as in the previous cases. Finally, a total of 171 miRNAs were analyzed. 

The MCO results showed only one miRNA, hsa-miR-133b-002247 (FAM, NFQ). See Figure 6-3. 
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Figure 6-3: Represents the final globally-optimal Pareto-Efficient Frontier, which consists of one miRNA. 

Table 6-3 shows the miRNA that form the Pareto Efficient Frontier for this case.   

Table 6-3: Represent the summarizing of miRNA from Pareto-Efficient Frontier in the breast cancer analysis and 

expressions. 

Detector 
Mean(Hi-

DRC-H) 

Mean (Hi-

DRC-C) 

Median (Hi-

DRC-H) 

Median 

(Hi-DRC-

C) 

Mean(Hi-

DRC-H)-

Mean(Hi-

DRC-C) 

Med(Hi-

DRC-H)-

Med(Hi-

DRC-C) 

Expression 

in cancer 

hsa-miR-133b-

002247 (FAM,NFQ) 
30.0527 36.1958 28.0686 36.9911 -6.1431 -8.9225 overexpressed 

 

 

6.3.3. Low DRC healthy vs. High DRC healthy 

 

Ten low DRC-H samples and 14 high DRC-H samples were used. From the initial 256 data, 19 

miRNAs were removed from the database due to lack of readings or replicates in any group. A total of 

229 miRNAs were analyzed. The MCO results showed four miRNAs: hsa-miR-134-001186 (FAM, 

NFQ), RNU48-001006 (FAM, NFQ), hsa-miR-379-001138 (FAM, NFQ), and hsa-miR-889-002202 

(FAM, NFQ). See Figure 6-4. 
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Figure 6-4: Represents the final globally-optimal Pareto-Efficient Frontier, which consists of four miRNAs 

Table 6-4 shows the miRNA that form Pareto Efficient Frontier and the calculated values in order to 

apply the MCO method.   

Table 6-4: Represent the summarizing of miRNAs from Pareto-Efficient Frontier in the breast cancer analysis and 

their expressions. 

Detector 
Mean(L-

DRC-H) 

Mean 

(Hi-DRC-

H) 

Median 

(L-DRC-

H) 

Median 

(Hi-DRC-

H) 

Mean(L-

DRC-H)-

Mean(Hi-

DRC-H) 

Med(L-

DRC-H)-

Med(Hi-

DRC-H) 

Expression 

in cancer 

hsa-miR-134-001186 

(FAM,NFQ) 
30.5928 33.2027 31.2458 34.8367 -2.6099 -3.5909 overexpressed 

RNU48-001006 (FAM,NFQ) 27.1073 30.0215 28.0333 30.1769 -2.9142 -2.1436 overexpressed 

hsa-miR-379-001138  

(FAM,NFQ) 
29.3594 31.6635 29.5276 33.7454 -2.3041 -4.2179 overexpressed 

hsa-miR-889-002202 

(FAM,NFQ) 
30.8396 33.1913 30.2792 34.0602 -2.3517 -3.7810 overexpressed 

 

6.3.4. Low DRC cancer vs. High DRC cancer 

Seventeen low DRC-C samples and 14 high DRC-C samples were used. From the initial data, 77 

miRNAs were removed due to the number of lectures or replicates in any group. Finally, a total of 

171 miRNAs were analyzed. The MCO results showed three miRNAs: hsa-miR-486-3p-002093 

(FAM, NFQ), hsa-miR-502-3p-002083 (FAM, NFQ), hsa-miR-889-002202 (FAM, NFQ). See Figure 

6-5. 
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Figure 6-5: Represents the final globally-optimal Pareto-Efficient Frontier, which consists of three miRNAs. 

Table 6-5 shows the miRNA that form Pareto Efficient Frontier and the calculated values in order to 

apply the MCO method.   

Table 6-5: Represent the summarizing of miRNA from Pareto-Efficient Frontier in the breast cancer analysis and 

expressions. 

Detector 
Mean (L-

DRC-C) 

Mean (Hi-

DRC-C) 

Median (L-

DRC-C) 

Median (Hi-

DRC-C) 

Mean(L-

DRC-C)-

Mean(Hi-

DRC-C) 

Med(L-

DRC-C)-

Med(Hi-

DRC-C) 

Expression 

in cancer 

hsa-miR-486-3p-002093 

(FAM,NFQ) 
32.7547 35.7990 32.9069 37.0522 -3.0443 -4.1453 overexpressed 

hsa-miR-502-3p-002083 
(FAM,NFQ) 

33.0337 36.3284 32.9711 37.1065 -3.2947 -4.1354 overexpressed 

hsa-miR-889-002202 

(FAM,NFQ) 
33.2527 37.1692 34.5913 37.3564 -3.9165 -2.7650 overexpressed 

 

Figure 6-6 shows the results summary of the four analyses about DRC. In this graphic, the edges 

contain miRNAs that showed significant changes in their relative expression. For this representation, 

hsa-miR-889-002202 (FAM, NFQ) showed significant changes when comparing high DRC to low 

DRC groups (both in healthy and cancer tissues). Due to the fact that this research is ongoing at Ponce 

School of Medicine further analysis and conclusions are left for the future. This case study, however 

support the capability and transferability of the methods in this thesis. 
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Figure 6-6: Diagram representing four analyses between four different conditions for DRC samples of miRNA. The 

edges of the graph represent genes of Pareto Efficient Frontier. 

 

Currently Dr. Isaza is working with the result of these analyses in the Ponce School of Medicine. In 

her research, she is studying the potential relation between DNA repair capacity and the miRNAs 

expression of miR-365 and miR-889. 
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7. CHAPTER 7: MCO COMPARED TO THE USE OF A 

VOLCANO PLOT  
 

 

7.1. Volcano plot 

In the literature there are many methods to detect DE genes from microarrays comparing two states. 

One of those methods is the Volcano Plot, which is a graphic method widely used by scientists and 

biologists [95]. This method is implemented in different software packages. The MCO method 

proposed in this thesis is here compared to the volcano plot in a series of analysis.  

Volcano plot is a scatter plot built using p-values versus gene expression ratios of fold change (FC). 

This scatter plot used the negative log10- transformed p-values from the gene specific t-test against the 

log2 fold change. Genes with statistically significant differential expression according to the gene-

specific t-test will lie above a horizontal threshold line. Genes with large fold-change values will lie 

outside a pair of vertical threshold lines [96].  

P-values were calculated by unpaired t-test using the gene expression values from two experimental 

conditions: healthy and cancer tissues. 

Fold Change is calculated as the ratio of the mean control and mean treatment observations. This is 

the extension of the difference of the logarithm of the control mean (𝑦1)and the logarithm of the 

control treatment (𝑦2):  

𝐹𝐶 = log(𝑦1̅̅ ̅) − log(𝑦2̅̅ ̅) 
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The ordinary t-statistic selects genes with low standard deviations while the fold-changes select genes 

with large shifts between control and treatment. Since the fold-changes and the ordinary t-statistic 

select different sets of genes, a researcher must decide whether a gene’s importance is best quantified 

by the shift in expression or by the shift relative to the standard deviation. 

 According to the literature on the use of volcano plot, a researcher should choose the measure of 

differential expression based on the biological system of interest. On the one hand, if large absolute 

changes in expression are relevant to the system, then fold-change should be used; on the other hand, 

if changes in expression relative to the underlying noise are important, then a modified t-statistic is 

preferable. This, however, is the point of view from which this thesis wants to depart: the choice of 

ad-hoc threshold values to select genes. 

The analysis is required to choose threshold values for both measures to select important genes. The 

volcano plot is available in the bioinformatics toolbox for MatLab. 

Given a particular microarray set with genetic expression levels measured. In two distinct states, the 

tool in MatLab obtains a p-value per gene using a t-test, and measures the FC in a logarithmic scale 

with base 2. 

The cases of lung cancer microarray and leukemia presented in chapters 5 and 6 respectively will be 

revisited here for comparison purposes. 

7.2. Comparison of Volcano with Lung Cancer Case 

The original database GDS3257 of lung cancer was used for this analysis. Fifteen samples of HNS 

and sixteen samples of CNS were used to build the Volcano plot. As mentioned previously, Volcano 

plot requires the user to define thresholds for two parameters: p-value and FC to select genes. This 

analysis has many different combinations and selection of p-values and FC. However choice p-values 

and FCs for this analysis was according to the response of the MCO analysis. A 3
2 

factorial 

experiment was used to explore these parameters as shown in Figure 7-1.The results are shown in 

Table 7-1.  
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P-value =10
-2  ; Fold change = 2 P-value = 10

-2 ; Fold change = 8 

  
P-value = 10

-2 ; Fold change = 24 P-value = 10
-7  ; Fold change = 2 

  
P-value = 10

-7  ; Fold change = 8 P-value = 10
-7  ; Fold change = 24 

  
P-value = 10

-12
 ; Fold change = 2 P-value = 10

-12
 ; Fold change = 8 
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P-value = 10

-12
 ; Fold change = 24 

 
 

Figure 7-1: Figures represent the results of genes with height DE using Volcano plot and varying the p-values and 

FC. 

From Table 7-1, it can be seen how the results depend highly in the user’s selection of thresholds. The 

combinations that fully matches the output of MCO are the ones with FC = 24 at any value of p-value. 

In the case of changing FC=24 and for any p-value the genes with the most DE are two genes: one 

overexpressed and one underexpressed. These genes are SPP1 and RAGE, which are the same genes 

obtained with MCO method.  
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Table 7-1: Summary of important genes expressed using volcano plot. 

P-value Fold change 
Differential 

expression 
Overexpressed Underexpressed 

10
-2

 2 934 645 289 

10
-2

 8 29 23 6 

10
-2

 24 2 1 1 

10
-7

 2 649 516 133 

10
-7

 8 27 22 5 

10
-7

 24 2 1 1 

10
-12

 2 130 121 9 

10
-12

 8 12 11 1 

10
-12

 24 2 1 1 

 

7.3. Comparison of Volcano with Leukemia Case 

In this section, eleven healthy tissues and ten cancerous tissues were used from Leukemia database 

GSE2403 to build the Volcano plot. For this case, the p-values and FC were small, because the 

volcano tool was not permitted other values like lung cancer analysis. In this case, the relative 

expression for each gene required a previous transformation using log2. Due to, the data of leukemia 

microarray was in natural scale. After that, a 3
2 

factorial design was used to explore the variation of 

results to changes in the thresholds for p-values and FC. The results are shown in Table 7-2.  

Table 7-2: Summary of genes using volcano plot 

P-value 
Fold 

change 

Differential 

expression  
Overexpressed Underexpressed 

0.03 2 140 17 123 

0.03 3 13 1 12 

0.03 4 2 0 2 

0.02 2 96 11 85 

0.02 3 11 10 1 

0.02 4 2 0 2 

0.01 2 57 5 52 

0.01 3 9 1 8 

0.01 4 2 0 2 

In this case, there is no match between the solutions found with the volcano plot and those found with 

MCO. Table 7-3 explores this issue. The reason behind the mismatch has done with, potentially.  
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Table 7-3: Table for comparison the different values between important genes from MCO and Volcano methods. 

Method Genes 
|Mean(C)- 

Mean(H)| 

|Median(C)-

Median(H)| 

Log2(|Mean(H)- 

Mean(C)|) 

Log2(|Median(H)-

Median(C)|) 

p-value 

(H and 

C) 

MCO 31687_f_at 3930.46 4438.15 11.94048279 12.11574271 0.7152 

Volcano 
31382_f_at 11.35 8.7 3.504851482 3.121015401 0.0001 

40354_at 10.32 7.6 3.367879325 2.925999419 0.0075 

 

 

The volcano plot, as habitually coded, assumes that the data should be normally distributed. If the 

analyzer does not have enough expertise in the process of choosing the parameters and distinguish 

data, then erroneous conclusions could be obtained. 

The objective to compare volcano plot method with MCO method, proposed in this thesis, was to 

demonstrate the difference on the perspectives of analyses. MCO tries to depart from the definition of 

a priori preference structures by the uses, and thus, from the use of ad-hoc threshold values among 

especially in the presence of multiple and potentially incommensurate performance measures. 
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8. CHAPTER 8: CONCLUSIONS AND FUTURE WORK 
 

 

8.1. Conclusions  

The proposed method in this thesis was evaluated through three case studies: lung cancer, leukemia, 

and breast cancer. The first two cases involve gene databases, while the last one considers a 

microRNA database.  

The tool coded in MatLab in this thesis can currently analyze five criteria, implying that it can be used 

to meta-analyze up to five different datasets in one run. The discrimination rate makes the analysis 

very manageable. Also, the results will be friendly and conveniently available to physicians or 

biological researches, as the analysis does not require normalization, preference of objectives, 

parameter adjustments by user, or the definition of a threshold value. 

In the case study in lung cancer, the general conclusions are: RAGE and SPP1 showed large change 

between a state of health and a state of cancer. Moreover, SPP1 showed large change between 

Healthy Current Smoker and Cancer Non Smoker, and RAGE showed large change between Healthy 

Never Smoker and Cancer Current Smoker. Also, XIST showed a large difference when comparing 

Never Smoker and Current Smoker (both in healthy and cancer tissues). This chapter developed the 

pseudo meta-analysis with four PMs. This last analysis supports the potential of the proposed method 

for meta-analysis. The case study in leukemia the gene in position 31687_f_at is known cancer 

biomarker also, as found in the literature. All of that give as method relevant biological evidence. 

The third case of the proposed method is important because it demonstrates that the analysis strategy 

is not only applicable to microarrays, but also that it could be used to analyze other - omics. This 

means that the method could be applied to other types of data with similar experimental layout. 
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8.2. Future work 

Currently we are working on improving the usability of the code to make the method more amicable 

to the users. Future work should include further investigation of the potential biomarkers proposed in 

this document and, probably, experimental validation. It is certainly also recommended to effectively 

test the Matlab tool with different –omics. 

Finally, because the perspective of MCO and its deterministic nature is different from those methods 

offered by the statistics field, it is necessary that further comparison be carried out in terms of habitual 

statistical properties and measures of the respective analyses’ outputs. 
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Appendix 1: MatLab Code 

 

%Análisis de frontera Pareto de cinco criterios 
%Autor: Katia I Camacho Cáceres 

  
dataT = load('data5Criteria.txt'); %Cargar la data 
[x,y] = size(dataT); % data completa x=num filas, y=num columnas 
data = dataT(:,2:end); %se toma solo las columnas de los criterios 
[n,m]=size(data); %n=num filas (k=PM), m=num columnas (j = criterios) 
c1 = 1000*ones(n,n,m);   % matriz primera condición con j criterios 
for j=1:m  
    for a=1:n 
        for b=1:n  
            if data(a,j) == data(b,j) %condición 1.1 
                c1(a,b,j)=0; 
            elseif data(a,j)<data(b,j)  
                c1(a,b,j)=-1; 
            end 
        end 
    end 
end 

  
% Procedimiento para sumar c1 para cinco criterios 
c2=zeros(n,n);  %matriz segunda condición 
for a=1:n  
    for b=1:n  
        if c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5)==0 
            c2(a,b)=2500; 
        elseif c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5)==1000 
            c2(a,b)=2500; 
        elseif c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5)==2000 
            c2(a,b)=2500; 
        elseif (c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5))==3000 
            c2(a,b)=2500; 
        elseif (c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5))==4000 
            c2(a,b)=2500; 
        elseif (c1(a,b,1)+c1(a,b,2)+c1(a,b,3)+c1(a,b,4)+c1(a,b,5))==5000 
            c2(a,b)=5000; 
        end 
    end 
end 

  
% Procedimiento para encontrar conjunto dominado cd y no dominado cnd 
cnd = zeros(x,y); %matriz del conjunto no dominado 
cd = zeros(x,y);  % matriz del conjunto dominado 
i=0; %contador para cd 
j=0; %contador para cnd 
for a=1:x  
    sumfila=sum(c2(a,:)); 
     if sumfila>=5000; % conjunto dominado 
        i=i+1; 
        cd(i,:)=dataT(a,:); 
    else  % conjunto no dominado 
        j=j+1; 
        cnd(j,:)=dataT(a,:); 
    end 
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end 

  
index = 1:x; 
disp([round(index') cd]); 
disp([round(index') cnd]); 
%Mostrar el Conjunto no dominado en un notepad, con los datos de 
%Posicion,f1,f2, f3, f4, f5c 
disp('   Conjunto no dominado    '); 
cnd=cnd(1:j,:); 
filecnd = fopen('cnd5CriteriaBio.txt','w'); 
fprintf(filecnd,'%6s   %12s   %12s   %12s   %12s    

%12s\r\n','Posicion','F1','F2','F3', 'F4', 'F5'); 
fprintf(filecnd,'%6.4f   %12.4f   %12.4f   %12.4f   %12.4f    

%12.4f\r\n',cnd'); 
fclose(filecnd); 
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Appendix 2: Design of Experiments for Volcano Plot and Lung Cancer case 

Table 1 represents the original data used in the analysis of the volcano plot for lung cancer 

microarray: 

Table A2-1: The Upper (P-value) and Lower (Fold change) limits for 

 Volcano plot 

P-value 
Fold 

change 

Differential 

expression 

10
-2

 2 934 

10
-2

 8 29 

10
-2

 24 2 

10
-7

 2 649 

10
-7

 8 27 

10
-7

 24 2 

10
-12

 2 130 

10
-12

 8 12 

10
-12

 24 2 

 

Using Minitab and the Box-Cox procedure to automatically choose the optimal the transformation 

𝑦∗ = 𝑦−0.0983497  was used. The results are shown in Table 2.  

Table A2-2: Transforming data, where pv = p-values, fc= fold change and Y* is the response 

pv fc y* 

-1 -1 0.510349 

-1 0 0.718081 

-1 1 0.934101 

0 -1 0.528952 

0 0 0.723146 

0 1 0.934101 

1 -1 0.619576 

1 0 0.783182 

1 1 0.934101 
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Figure A2-1 shows the results for the Analysis of Variance (ANOVA) using Minitab 16. 

 

General Regression Analysis: y* versus pv, fc  
 
Regression Equation 

 

y*  =  0.742843 + 0.0290547 pv + 0.190571 fc - 0.0273068 pv*fc 

 

 

Coefficients 

 

Term           Coef    SE Coef        T      P 

Constant   0.742843  0.0056041  132.552  0.000 

pv         0.029055  0.0068637    4.233  0.008 

fc         0.190571  0.0068637   27.765  0.000 

pv*fc     -0.027307  0.0084062   -3.248  0.023 

 

 

Summary of Model 

 

S = 0.0168124       R-Sq = 99.38%        R-Sq(adj) = 99.01% 

PRESS = 0.00540478  R-Sq(pred) = 97.62% 

 

 

Analysis of Variance 

 

Source      DF    Seq SS    Adj SS    Adj MS        F          P 

Regression   3  0.225952  0.225952  0.075317  266.460  0.0000062 

  pv         1  0.005065  0.005065  0.005065   17.919  0.0082236 

  fc         1  0.217904  0.217904  0.217904  770.909  0.0000011 

  pv*fc      1  0.002983  0.002983  0.002983   10.552  0.0227363 

Error        5  0.001413  0.001413  0.000283 

Total        8  0.227365 

Figure A2-1. General Regression Analysis on the number of genes deemed important through a volcano plot. 



66 

 

 

210-1-2

99

90

50

10

1

Standardized Residual

P
e

r
c
e

n
t

0.90.80.70.60.5

2

1

0

-1

Fitted Value

S
ta

n
d

a
r
d

iz
e

d
 R

e
s
id

u
a

l

2.01.51.00.50.0-0.5-1.0-1.5

2.0

1.5

1.0

0.5

0.0

Standardized Residual

F
r
e

q
u

e
n

c
y

987654321

2

1

0

-1

Observation Order

S
ta

n
d

a
r
d

iz
e

d
 R

e
s
id

u
a

l

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for y*

 

Figure A2-2: Residual plots. 

In order to verify the model adequacy the following assumptions were evaluated based on the model 

residuals: normality, independence and equal of variances. These are graphically shown in Figure A2-

2. 

The Kolmogorov Smirnov normality test was performed using Minitab. Yielding a p-value of 0.150, 

so the assumption of normality in the residuals cannot be rejected. 

For independence, the “runs test” was utilized, obtaining a p-value of 0.748. Thus, the assumption of 

independence in the residuals seems to be in check.  

The significance value for this analysis was chosen as 0.05. All terms used in this model are 

statistically significant. In addition, the model explains 99.38% (R-Sq) of the variability. These results 

evidence how choosing different thresholds for p-value and fold change affect the selection of 

important genes in microarrays, independently and when set jointly.  

 


