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Abstract 
This work investigated the relevance and impact of complexity in Project-based learning 

(PBL) for engineering undergraduate education. Interviews were conducted with engineering 

professors to evaluate weather complexity is and should be considered for two scenarios: when 

students are assigned the same project and when students work on different projects. The first 

scenario is examined in more depth with a case study on a particular course – Process Automation, 

were complexity metrics were identified, adapted and implemented. These metrics measure 

components interaction, process and station functionality, the number of linearly independent 

paths in the program and volume. To evaluate the relationship among complexity metrics and 

designer’s characteristics and performance, a student survey was developed and implemented. 

Additionally, complexity prediction models are presented using randomForest, a statistical method 

for classification and regression problems. The intention of this work is to promote the assessment 

of complexity to identify and analyze PBL.  
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Resumen 
 Este trabajo investigó la relevancia y el impacto de la complejidad en PBL (por sus 

siglas en ingles) para la educación de ingeniería sub-graduada. Se realizaron entrevistas a 

profesores de ingeniería para evaluar si la complejidad es o debe ser evaluada para dos escenarios: 

cuando a los estudiantes se asignan al mismo proyecto y cuando el estudiante trabaja en diferentes 

proyectos. El primer escenario se examina más a fondo con un estudio de caso sobre un curso en 

particular - Automatización de Procesos, donde se identificaron, adaptaron e implementaron 

métricas de complejidad. Estas métricas miden la interacción de los componentes, la funcionalidad 

del proceso y de la estación, el número de rutas linealmente independientes en el programa y el 

volumen. Para evaluar la relación entre las métricas de complejidad y las características y 

desempeño del diseñador, se desarrolló e implemento una encuesta estudiantil. Adicional, modelos 

de predicción de complejidad se presentan utilizando randomForest, un método estadístico para la 

clasificación y los problemas de regresión. La intención de este trabajo es promover la evaluación 

de la complejidad para identificar, analizar y controlar la complejidad del aprendizaje basado en 

proyectos en PBL. 
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Chapter 1: Introduction 
In education, a student-centered strategy known as Project-based Learning (PBL) is 

commonly used to provide students real-life experiences in a class environment. This strategy 

makes student competencies go beyond content knowledge (Sam Houston State University, 2016).  

PBL challenges students to research stimulating problems to create unique products (Intel, 2007) 

while, encouraging them to develop interpersonal skills in a flexible learning environment 

(Doppelt, 2003). It enables students to work in teams, communicate and be aware of time-

management, applying their technical skills while exercising the technical aspects of their career 

(Medina et al., 2015). Students learn to make decisions in real-time in diverse environments that 

may include multiple stakeholders and decision makers. For example, all engineering students at 

University of Puerto Rico Mayagüez (UPRM) experience PBL in their Capstone projects. In 

particular, The Department of Industrial Engineering at UPRM has multiple courses that involve 

PBL such as:  Process Automation (ININ 4057), Facility Layout and Design (ININ 4040), Work 

Measurement (ININ 4009) and Introduction to Medical Device Design Methods (ININ 5105).  

Common teaching techniques combined with PBL promoted peer learning, group learning and 

self-motivation (Indiramma, 2014). Meanwhile, assessing collaborative work introduces a 

challenge not found when evaluating individual work (Webb, Nemer & Zuniga, 2002). Therefore, 

Researchers address the importance of managing complexity in real-life projects (Gottfredson & 

Rigby, 2009). Hence, a professor survey was submitted to UPRM engineering professors with 

experiences in PBL to answer the following questions: 

(1) Is complexity considered for PBL in Engineering Education?  

(2) Should complexity be assessed in PBL?  
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PBL Complexity was analyzed for two scenarios: when students are assigned the same project 

and when student work on different projects. Differentiating between these two scenarios enables 

the study of complexity for “solutions or project outcomes” when the same project is assigned, 

and the complexity of “project definitions or problems” when different projects are assigned. 

Considering the two scenarios, this study also answered the following questions:  

(3) When students are assigned the same project, is the complexity of the multiple 

solutions generated significantly different?  

(4) When students are assigned different project, is the complexity of the project 

definitions significantly different?  

 When students are assigned the same project, it is assumed they have the same lack of 

understanding (prior knowledge). Lack of understanding or deficiency in knowledge, increases the 

complexity of problem solving as a result of the increased effort that is required to overcome for 

the unknown information or skills (Crespo-Varela et al., 2012). 

In design-related projects, engineering students generates multiple solutions while having the 

same requirements. To study this in more depth, a case study was performed on the process 

automation course, ININ 4057, which is a core course for all Industrial Engineering students at the 

UPRM. In this course Students learn and apply different skills to integrate electronic, mechanic 

and computer systems in the development of an automated process prototype (same project 

definition). A substantial contribution of this work involves adapting and developing complexity 

metrics and methods for their implementation in process automation.  

 “Measurement is the key for controlling any process because it is difficult to 

manage what cannot be measured” (DeMarco, 1982).  
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Without metrics, comparisons and predictions are difficult to achieve. For the particular case 

of process automation in project-based learning, this research studies: 

(5) How can project complexity be assessed when students have the same project 

requirements? 

The case study contributions go beyond assessing complexity to also provide a deeper 

understanding on its relation with team characteristics and performance. It is hypothesized that 

each team member previous knowledge/characteristic influences the overall design complexity. 

“Research on project complexity has shown that complexity is relative not only to size and scope, 

but also the past experience of the project management team” (Owen et al., 2011).  

Nowadays, in science and engineering fields, there are notable differences in gender, 

participation, performance and rewards (Sonnert and Fox, 2012). The data acquired with the case 

study allowed reviewing if for example, students’ grade point average (GPA) and gender is related 

to project design complexity.  According to the emerging state and national standard for 

assessment, it is recommended to incorporate small groups into large-scale assessment (Webb, 

Nemer & Zuniga, 2002).  A study that took place within Ford Motor Company with over 270 

employees, showed a clear relationship between team composition (diversity), complexity of task 

and team performance (Higgs et al., 2005). With these motivations, and for engineering project-

based learning setting, this research addressed the following question: 

The design team characteristics considered include: age, gender and knowledge. Also 

performance, individual contribution, abilities and difficulty was considered. Last, team dynamic 

was also evaluated.  
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To summarize, primary objective of this research is to investigate the relevance and impact of 

complexity in PBL for engineering undergraduate education. Accordingly, research objectives include 

the:  

- Creation and implementation engineering professors survey to: 

o understand current considerations and assessments of complexity for PBL 

o explain project complexity when student are assigned different requirements 

- Identification, adaptation, development and implementation of complexity metrics in 

order to explain project complexity when student are assigned common requirements  

- Creation and implementation of student factor survey to analyze the relationship of 

project complexity with team characteristics and performance 

With the results from this work, the aim is to promote a culture where complexity is considered, 

that includes to identify and analyze complexity in PBL. 

The following sections provide research background along with the motivations.  
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Chapter 2: Literature Review 

2.1 Overview 

This chapter summarizes background information and relevant literature to this work. 

Background information includes a discussion about project-based learning (PBL) in Section 2.2 

and project complexity in Section 2.3.  Section 2.4 provides a review of literature addressing 

complexity metrics. Section 2.5 is focused on team characteristics and performance.  Finally, a 

summary is provided along with research contributions in comparison to the literature reviewed. 

2.2 Project-based Learning  

With a considerable amount of literature dedicated to showing the PBL’s benefits and keys for 

successful implementation, this concept is defined in multiple ways. From the analysis of different 

definitions, PBL can be explained as: 

A teaching strategy that enables students to develop competencies and gain 
deeper knowledge through active explorations of real-world problems. 

 
Table 2.1 summarizes PBL definition from various sources and Figure 2.1 is visual 
representation of PBL definition word frequency. 

 
Table 2.1: PBL Definition 

Source PBL Definition 
Thomas, 2000 Model that organizes learning around projects. 
Doppelt, 2003 Well-known method for imparting thinking competencies and 

creating flexible learning environments. 
Balve and Albert, 
2015 

Course that display motivation and meaningful real-world task in the 
center of the students’ attention. 

Buck Institute for 
Education, 2016 

Teaching method in which students gain knowledge and skills by 
working for an extended period of time to investigate and respond to 
an engaging and complex question, problem, or challenge. 

Vega, 2015 Dynamic classroom approach in which students actively explore real-
world problems and challenges and acquire a deeper knowledge. 

Medina, 2015 Platform that enables student to work in teams, communicate and be 
aware of time-management while practicing technical aspect of their 
concentration. 
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Source PBL Definition 
Intel, 2007 Instructional model that involves students in investigations of 

compelling problems that culminate in authentic products. 
Krajcik et al., 2006 Overall approach to the design of learning environments. 

 

 

Figure 2.1: PBL Definition Word Cloud 

PBL offers tremendous benefits to both, student and instructors. PBL drives students to the 

central and technical concepts of their concentration with a goal-directed process that involves the 

application of skills such as design, decision-making and problem solving (Thomas, 2000). A PBL 

environment allows student teams to examine questions, suggest hypotheses, discuss/challenge 

ideas, and attempt new things (Krajcik et al., 2006). Students are forced to use their own criteria 

to complete projects that do not take predetermined paths (Thomas, 2000).  

PBL helps instructors succeed in their mission since it accommodates students with varying 

learning styles and differences. It makes education more engaging for students by improving 

learning and developing success skills for college, career and life. It enhances student’s skills 

development for living in a knowledge-based, highly technological society while making teaching 

enjoyable and rewarding (Buck Institute for Education, 2016) Furthermore, PBL brings a new 

relevance to the learning at hand encouraging authentic assessment that promotes lifelong learning.  
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2.3 Complexity of Projects 

Projects can be define as an individual or collaborative effort to accomplish a particular 

objective, for example a unique product, service or outcome (Project Management Institute, 2016).  

Lewis (1999) defines it as a one-time task that has a specific start and end date, as well as a 

particular scope, budget and performance to be attained. Complexity has various definition in 

literature. For example, some say is related to the difficulty or lack of understanding, a 

phenomenon in a given context or environment (Gul and Khan, 2011; Crespo-Varela et al., 2012). 

Ireland (2007) think is related to an item having one or more component or variables.  Therefore, 

having a clear understanding of the operational definition of complexity within the project being 

managed its crucial, since it varies depending on the domain. Understanding the sources of 

complexity and its magnitude might help identify the abilities and competencies needed to deal 

with a problem (Remington, Zolin & Turner, 2009).  

As summarized in Table 2.2 below, literature shows there are efforts to managing complexity 

by identifying sources of complexity among different domains. For instance, in the case of 

transportation projects, Gransberg et al., (2013) evaluated 18 projects from different countries – 

Canada, New Zealand, United States, and United Kingdom (see Table 2.2 below). As a result, they 

propose a framework from which the sources of complexity for transportation project can be 

conceptualized. They also developed a tool, the complexity footprint, to measure and visualize the 

various dimensions of project complexity.  In general, the study searched to better understanding 

and prioritization of the available resources. They added financing and context as two new 

dimension to the traditional three-dimensional project management theory that involves: cost, 

schedule and technical. By doing so, they elevated the visibility of complex project context which 
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represent both the controllable and uncontrollable factors that will be faced during the delivery of 

complex projects. 

Table 2.2: Sources of Complexity by Category 
Source Domain Sources and types of project 

complexity 
Baccarini (1996) Project Management 

emphasis  
Differentiation and 
interdependency 
 

Hussein et al. (2014) New Products and Process 
Development Project 

Product development 
projects: interdependency 
between tasks and the novelty 
of the project  

 
Process improvement 
projects: diversity and 
multiplicity of end-users and 
uncertainty 
 

Bosch-Rekveldt et al., (2010) Process Engineering Industry Technical, Organizational and 
Environmental complexity 
 

Gransberg et al., (2013) Transportation Project Five-dimensional sources of 
complexity: cost, schedule, 
technical, financing and 
context 
 

Ireland (2007) Planning Standpoint Two dimension source of 
complexity: Technical 
Complexity and Management 
Complexity 

In summary, project complexity is addressed in the context of project management in which 

experienced project managers are the SMEs helping define the type of complexities that they 

encounter. As shown in Table 2.2, there are sufficient efforts to identify the sources of complexity 

for the management and implementation of real projects. However it is also desired to understand 

the quantitative approach used to measure and manage complexity. Hence a review of complexity 

metrics was performed on the Section 2.4.  
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2.4 Complexity Metrics 

Relevant literature on complexity metrics in general was addressed (summarized in Table 2.3 

below). The objective was to identify and adapt, when possible, existing metrics to measure 

process automation project complexity. Accordingly, diverse complexity metrics were found in 

the literature, and are divided in the following categories: design complexity, software complexity, 

and choice complexity.  

2.4.1 Design Complexity 

Most relevant design complexity metrics involve the study of modules and interactions 

(Keating 2000), product functionality (Bashir & Thomson, 1999), and product variations (Roy 

Evans, Low and Williams, 2011).  

For the assessment of hardware design quality at early stages of the design cycle, Keating 

(2000) proposes the study of modules at each level of hierarchy and interactions with the belief 

that quality and functional correctness are not tested in, rather design in. A block diagram is 

performed to have a reasonable explanation of product functionality. Blocks are decomposed into 

a hierarchy of what the study calls “too many levels” such that the design is divided into 

independent units. After the block diagram is completed, the metric is implemented with the sum 

of squares of the number of modules (M) and the interfaces (I).  

Meanwhile, the Product Complexity (PC) metric makes an assessment based on product 

functionality using a deductive approach (Bashir and Thomson, 1999). This metric uses a 

hierarchical approach to decompose product functions into different levels. The more sub-function 

at any level and depth of the functional tree, the greater the complexity (lower functions in the tree, 

imply more complexity).  The metric count the number of functions at each level and weight them 
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by the number of levels. According to Faulconbridge and Ryan (2003), complex technical projects, 

can only be manage effectively when functional requirements are analyzed.  

Roy, Evans, Low and Williams, (2011) measures product complexity from the perspective of 

product variations. The metric involves calculating a design ratio (DR) which is based on the 

commonality of components for the end-product. For example, a low DR indicates less 

commonality of the component in the design and therefore higher complexity. 

Similar, focused on assembly, Mathieson, Wallace and Summers (2010) develop a model to 

predict assembly time of a system based on complexity metrics of the system architecture using 

that of a power regression.  

2.4.2 Software Metrics 

Software metrics are the oldest and most proven complexity metrics. A well-known metrics is 

the Cyclomatic Complexity metric (V(G)). V(G) measures the number of linearly independent 

paths in a program control graph. McCabe (1976) worked on the mathematical technique that 

allowed identifying software modules, and testing difficulties.  The approach was to measure and 

control the number of path in a program. Research findings included that complexity is 

independent of size, but it depends on the decision structure of a program.  

On the contrary, Halstead (1977) defined the Software Science Metric with the belief that the 

effort required to implement a computer program is proportional to the program size.  The metric 

measures complexity as related to the length and volume of a program. For its implementation, 

any symbol or keyword in a program that specifies an algorithmic action is considered an operator, 

and any symbol used to represent data is considered an operand. As a result, the length of the 

program becomes a function of the unique operators and operands.  
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Finally Basili and Perricone (1984), studied 90,000 lines of code (LOC) of a software project 

which general purpose was satellite planning and concluded that the larger the module, the less 

error prone it was.  LOC metric measures the number of lines (statements) in a program. However, 

Yu (2010) mentioned that even though this metrics is easy to understand, LOC ignores jumps in 

the software as well as complexity on each code line.  

2.4.3 Operator Choice Complexity 

In the context of decision-making, the Operator Choice Complexity (OCC) deals with the 

decision operators can make regarding assembly and the risk associated with their choice (Fast-

Berglund, Fässberg, Hellman, Davidsson, & Stahre, 2013).  It is stated that decision making is 

needed more when there are additional variants and parts to be handled.  In general terms, the 

study focuses on determining if there are any correlations between the areas of complexity, 

cognitive automation and quality. The areas of complexity are defined as the nature of product, 

processes, and strength of interactions, among others; cognitive automation refers to the decision 

making in production that enables error-free products (Fast-Berglund, Fässberg, Hellman, 

Davidsson, & Stahre, 2013).  

Fast-Berglund, Fässberg, Hellman, Davidsson, and Stahre (2013) formulation is based on the 

average uncertainty or randomness in a choice process and occurrence probability to get a 

complexity measure for the stations. Formulation independent variables include the number of 

variants that occurs at each station and the demand of each variant. In their experiment, operator’s 

performance depended on assembly errors extracted from seven station for a 16 week time frame 

and retrieved from an internal quality system named ATACQ. The study concluded that the main 

cause of complexity is due to assembly workers’ restricted timeframe and workspace with positive 
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correlation between OCC and assembly error and more than 60% of the assembly task lacking 

cognitive support. 

2.4.4 Summary  

Table 2.3 summarizes all the metrics found relevant to this research with possible application 

to the study of process automation projects. Some of these metrics will be studied in more detail 

for their adaptation and the development of implementation methods. 

Table 2.3: Review of Metrics 
Source Metric Name Purpose/Definition Notation Equation 

Keating, 
2000 

Complexity of 
the partition 
(C) 

Measures based on 
component interaction 

M - number of modules 
I - number of interfaces  

 

Bashir and 
Thomson, 
1999 

Product 
Complexity 
(PC) 

Measures component 
functionality 
hierarchically 

Fj - number of functions at 
level j 
i - number of levels 

 

Roy, Evans, 
Low and 
Williams, 
2011 

Design ratio 
(DR) 

Measures from the 
perspective of product 
variation  

ni -number of product 
variants that use part variant 
i 
n  -total number of product 
variants 

 

Basili and 
Perricone, 
1984 

Lines of Code Metric to determine 
the size of the program 

li-lines of code i �𝑙𝑙 𝑖𝑖 

McCabe, 
1976 

Cyclomatic 
Complexity 
Metric (V(G)) 

Measures the number 
of linearly 
independent paths in a 
program 

n –vertices 
e –edges 
p -connected components 

 

Halstead, 
1977 

Halstead 
Software 
Science 
Metrics 

Determine a 
quantitative measure 
of complexity directly 
from the operators and 
operands in the 
program, related to the 
length and volume of a 
program. 

n1 -number of unique 
operators, 
n2-number of unique 
operands, 
N1-total number of 
operators, 
N2-total number of 
operands. 

 

 

Fast-
Berglund, 
Fässberg, 
Hellman, 
Davidsson, 
& Stahre, 
2013 

Operator 
Complexity 
Metric 

Quantify human 
performance on  
making choices 

Pij- occurrence probability 
of a state j in the random 
process i,  
C- constant (depending on 
the base of the 
logarithm function chosen) 

 

Mathieson,  
Wallace and 
Summers, 
2010 

Assembly 
Time Metric 
(ta) 

Predict the assembly 
time of a system based 
on the architecture of 
that system 

APL-average path length 
n- number of elements 
PLD- path length density 

𝑡𝑡𝑎𝑎 = 
𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥 𝑛𝑛(1.185+𝑃𝑃𝑃𝑃𝑃𝑃) 
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2.5 Team Characteristics and Performance  

Real-life project management and implementation requires continuous teamwork and 

collaboration. Accordingly, effective undergraduate engineering education must include exposing 

students to similar experiences throughout their course curriculum.  Student attributes and team 

composition are factors that influence group project outcomes where the same student may 

perform differently depending on the group (Webb, Nemer & Zuniga, 2002). Therefore, the benefit 

from collaborative assessment work is not necessarily found in individual assessment.  

The comparison between group and individual performance is affected by ability, gender, and 

affiliation preferences (Hills, 1982). While it can be generally stated that group performance is 

superior to individual performance (Hills, 1982), an exceptional individual can be superior to that 

of a committee, especially, when solving a complex problem (Davis, 1969). High-ability students 

perform well in homogenous group and group interaction is a strong predictor for student 

performance (Webb, Nemer & Zuniga, 2002).  In particular, group interaction examples that 

impact project outcomes include: leadership efforts, approval or disapproval of fellow group 

members, and influence attempts, among others (Guzzo & Shea, 1990).  

In terms of student attributes, the literature emphasizes the role of student’s GPA as an 

indicator of performance (Sonnert & Fox, 2012). GPA was found to explain retention of student 

across fields (Aitken, 1982).  Meanwhile, the study of a sample of 5,223 senior students from a 

midsized Midwestern public university (between 2001 and 2009) showed that student’s gender 

does have an effect on GPA (Tessema, Ready & Malone, 2012).  Results showed that female 

perform better with an average a GPA of 3.37 in comparison to males that had an average GPA of 

3.13.  
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2.6 Summary and Contributions 

In comparison with the existing literature, this work opens up the paradigm of complexity for 

PBL, particularly for process automation. While the importance of project complexity is clearly 

stated for the management and implementation of real-problems in the context of project 

management for different domains, there is a gap in the consideration of this concept for project-

based learning. This work developed the project complexity concept further. As part of the 

methodology, a case study on process automation was performed. Complexity metrics reviewed 

from the literature were adapted and implemented to fourteen projects. At the same time, team 

characteristics and performance were collected from a student factor survey. Last, the relationship 

of project complexity with team characteristics and performance was assessed. 

To conclude, the major research contribution is for this method (the use of complexity metrics) 

to be used in school systems and higher education on a large scale to provide students the venue 

to identify, analyze and control complexity. Faculty will be likewise, to use complexity measures 

as part of project evaluations.  
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Chapter 3: Methodology 

3.1 Overview 
Research question and objectives were addressed in four major stages as shown in Figure 3.1. 

The first stage (Section 3.2) involved creating and launching a survey to engineering faculty with 

experience in PBL to answer the first four research questions. In contrast, the second stage (Section 

3.3.1) was focused on identifying and adapting complexity metrics previously identified in 

literature, followed by the development of implementation methods for a specific domain, process 

automation project, as given in Process automation (ININ 4057) course. This section answers 

research question five and also research question 3.  Data concerning team characteristics and 

performance were collected as part of the third stage (Section 3.3.2) in which a web-based survey 

was launch for students who designed process automation as required in the Process Automation 

(ININ 4057) course. After the three stages were implemented, the fourth and last stage integrates 

all the information obtained to answer the last research question and to suggest a complexity 

prediction model (Section 3.3). 

Figure 3.1: Research Overview 
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3.2  Stage 1: Development of Professors Factor Survey  

In order to assess complexity in engineering undergraduate education, a 14-question survey was 

created (see Table 3.1 below).  Subject matter experts (SME’s) were identified to be engineering 

faculty with experience implementing PBL. The purpose of the survey is to gain knowledge on 

how complexity is currently managed for two scenarios: (1) when students are assigned the same 

project requirements (the focused is on projects solution) and (2) when students are assigned 

different projects (the focus is on project definitions).  

The questionnaire, illustrated in Table 3.1, is divided in four sections: (1) screening or profile; 

(2) define complexity; (3) explain current consideration of complexity in engineering education; 

and (4) provide opinion regarding complexity for the two scenarios specified above. For instance, 

part of SMEs’ opinion includes explaining if they have experienced significant differences in 

complexity of the two scenarios - project definitions and solutions.  

Table 3.1: Professor Factor Survey Questions 
Research Question ID Professor Factor Survey Questions (Spanish / English) 

Is complexity 
considered for PBL 

in engineering 
education?2,3 

5 En el contexto de cursos con proyecto (donde se aplica PBL), defina, qué es 
complejidad para usted. Explique. / In the context of courses with project 
(PBL), define, what it is complexity for you. Explain 

9  
 
 

10 

Actualmente,  ¿se considera la complejidad en la enseñanza mediante 
proyectos?/ Is complexity currently considered in Project-Based Learning? 

Scale 1(Substantially not considered) to 7 (Substantially considered) 
De ser así, ¿cómo se considera? / If so, how do you consider it? 

11  
 
 
 

12  

Actualmente, ¿se emplean métricas objetivas para medir la complejidad de la 
definición o evaluación de proyectos/ Is there objective metric currently used to 
measure project definition or evaluation complexity?  

Scale 1(Substantially not used) to 7 (Substantially used) 
De utilizarse métricas, favor especificarlas y evaluarlas indicando con qué 
frecuencia integra esa métrica de complejidad en la evaluación de proyectos. / 
If complexity metrics are used, please specify which and evaluate with what 
frequency you integrate each of those metrics in project evaluation. 

Scale 1(Never) to 7 (Always) 
Should complexity 

be assessed in 
PBL?4 

6 Califique el impacto de las siguientes variables en la complejidad de proyecto 
en cursos de ingeniería. / Rate the impact of the following variables in project 
complexity in engineering courses.  
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Research Question ID Professor Factor Survey Questions (Spanish / English) 

Scale 1(Not related significantly to 7 (Related significantly) 
7 Califique cuán importante es medir la complejidad en la enseñanza con 

proyectos / Rate how important is to measure complexity in Project-Based 
Learning. 

Scale 1(Extremely irrelevant) to 7 (Extremely relevant) 
8       
 

Califique cuán importante es tener métricas objetivas para evaluar la 
complejidad de los proyectos de ingeniería. / Rate how important is to have  
objective metrics to evaluate  the complexity of project in engineering. 

Scale 1(Extremely irrelevant) to 7 (Extremely relevant) 
Is the complexity 

of the multiple 
solutions generated 

significantly 
different?4 

14 Cuando a los estudiantes se les asigna el mismo proyecto, califique cuanto 
difiere la complejidad de las soluciones provista por los estudiantes. / When 
students are assigned the same project, rate how different the complexity of the 
solutions provided by students are. 

Scale 1(Substantially the same) to 7 (Substantially different) 
Is the complexity 

of the project 
definitions 

significantly 
different?4 

 

13 Cuando a los estudiantes se les asigna diferentes proyectos, califique cuan 
diferente es la definición (especificaciones) del proyecto. / When students are 
assigned different project, rate how different is the project definition 
(specifications). 

Scale 1(Substantially the same) to 7 (Substantially different) 

Professor Profile1 

1 Seleccione el departamento de ingeniería al que pertenece. / Select the 
engineering department you are part of. 

2 ¿Cuantos años de experiencia tiene como profesor(a)? / How many years of 
experience you have as a professor? 

3 ¿Cuantos años de experiencia tiene enseñando cursos basados en proyectos? / 
How many years of experience you have teaching  Project-based learning 
course? 

4 ¿Qué cursos ha ofrecido donde se implementa el aprendizaje a través de 
proyectos (“Project-based Learning” ) ó PBL por su siglas en inglés? / What 
courses have you offered where learning is implemented through projects 
(Project-Based Learning)? 

Legend: 1-profesor profile, 2- define complexity, 3- consideration of complexity in engineering 
education, 4-opinion regarding complexity 

3.2.1 Analysis of Professors Factor Survey 
 

The first set of data that needed to be analyzed, was the result from the professor’s survey. This 

results were analyzed using 1-Sample Wilcoxon test, a nonparametric hypothesis test for the 

median of a single population. Hypothesis tests prove if there is enough evidence to support claims 

related to research questions. Hypothesis tests statements are provided below: 

H1O: Complexity is considered for PBL in Engineering Education. 
H1A: Complexity is not considered for PBL in Engineering Education. 
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H2O: Complexity should be assessed for PBL in Engineering Education. 
H2A: Complexity should not be assessed for PBL in Engineering Education. 
 
H3O: When students are assigned the same project, the complexity of the multiple 
solutions generated is different. 
H3A: When students are assigned the same project, the complexity of the multiple solutions 
generated is not different. 
 
H4O: When students are assigned different projects, the complexity of the project 
definitions is different. 
H4A: When students are assigned different projects, the complexity of the project 
definitions is not different. 
 
Next sections describe remaining methodology stages. 
 

 3.3 Case Study: Process Automation (ININ 4057) Course 
Automation has become a key factor for many manufacturing processes who are impacted by 

workforce reduction along with workload increase (McQuilken, 2014). Cost reduction, higher 

production rates, better product quality and reduced factory lead times are some examples among 

the many advantages of automation.  

In unison with industry trends, universities include in their curriculum, introductory 

engineering elective courses, process automation and robotics. For instance, the Department of 

Industrial Engineering at the University of Puerto Rico at Mayagüez requires all students’ in the 

program to take Process Automation (ININ 4057), Fundamentals of Electrical Engineering (INEL 

4075), Fundamentals of Electronics (ININ 4076), and Basic Electronic Laboratory (INEL 4077), 

Manufacturing Process (INME 4055), Manufacturing Process Laboratory (INME 4056), among 

other courses.   

In the Process Automation course (ININ 4057), students learn and apply their skills in 

electronics, computer science, and programming. Specifically, the course syllabus states that 

students should be able to: (1) identify and use industrial sensors and actuators as main components 
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of a process (2) creatively integrate electric, pneumatic and mechanical systems to automated 

process (3) formulate and code the control logic to run a process in real time and (4) use software 

to build a Human Machine Interface (Medina, 2013). 

When project starts, students are divided in groups of two or three (the majority) and receive 

the description of a manual process that they have to automate during the semester, a five-month 

period. The design of the automated process is divided in four phases with detailed rubrics 

provided at each phase. In the first phase, the design process is executed– where student work on 

the concept and come up with a design proposal. Students are given flexibility in terms of the use 

of software. They are allowed to make designs with free hand or use software they know such as 

Sketch up. Special emphasis is given to concept generation and ideation with methods such as 

radial thinking and morphological chart. This design is evaluated by the instructor and influenced 

by the group. 

The second phase involves the construction of the structure, with Fishertechnik components 

with all the electric connections, inputs-X and outputs-Y. The third phase is the most challenging 

part of the project that requires programming in the Programmable Logic Controller (PLC), using 

Ladder Logic, and troubleshooting the automated process model to make sure it works in 

compliance with the requirements. This troubleshooting often requires student to re-design and re-

build some workstations until the model is functioning as desired. The fourth and last phase 

involves the project report. 

In particular, the Process Automation course motivated this research because student design, 

develop, evaluate, integrate and manage projects that are used in real-life applications.  However 

the attention is in students’ preference and choices as they develop a diverse range of solution with 

different complexity that can now be quantified. Section 3.3.1 describe complexity measures. 
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3.3.1 Stage 2: Identify, Adapt and Develop Complexity Metrics for Process Automation  

From an in depth review of complexity metrics, four metrics: (1) Complexity of Partition, (2) 

Lines of code, (3) Cyclomatic Complexity Metric and (4) Product Complexity, were identified to 

become the baseline and inspiration to create and adapt existing metrics (see Table 3.2 below). 

These metrics were selected due to the relevance of interactions, size and functionality in the 

proper assessment of complexity as a well as their feasible application to process automation. 

Literature shows that interactions have structural and behavioral impact (Blay-Fornarino, Charfi, 

Emsellem, Pinna-Dery, & Riveill, 2004), size is a basic attribute of software products (Bajwa, 

Gencel & Abrahamsson, 2014), and according to Faulconbridge and Ryan (2003), complex 

technical projects, can only be manage effectively when functional requirements are analyzed. 

Table 3.2: Adaptation of Complexity Metrics 
Original 
Metric 

Proposed 
Metric 

Emphasis Notation Formulation Data 

Complexity of 
Partition (C) 

 (Keating, 
2000) 

Visual 
Component 
Interaction 
(VCI) 

Components 
and their 
physical 
interactions 

 M- unique  
components 
 

 I-interactions 

VCI = M2 +I2 Ladder 
Logic 
 
Visual 
Component 
interaction 
diagram 

Software 
Component 
Interaction 
(SCI) 

Components 
and their 
interactions 
through the 
program. 

M- unique  
components 
 
I-interactions 

C= M2 + I2 Ladder Logic 
Network 
Diagram 

Software 
Component 
Interaction 
with stages 
(SCIS) 

Components 
and their 
interactions 
through the 
program with 
stages 
considered 

M- unique  
components 
 
I-interactions 

C= M2 + I2 Drawing with 
identified 
components 
 
Pictures and 
Videos 
 

Lines of Code Lines of Code 
(LOC) 

Size of the 
program based 

L - last line 
identification 

 Ladder Logic 
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Original 
Metric 

Proposed 
Metric 

Emphasis Notation Formulation Data 

(Basili and 
Perricone, 
1984) 

on the number 
of lines 

number for the 
ladder logic 

n – number of blank 
lines (output NOP) 

Cyclomatic 
Complexity 
Metric (V (G)) 

(McCabe, 1976) 

Cyclomatic 
Complexity 
Metric (V(G)) 

Number of 
linearly 
independent 
paths in a 
program 

n – number of  
stages in the 
program 

e –number of lines 
(interactions) 
joining each stage 

p –number of initial 
stages  

 

Grafset of the 
stages 

Ladder Logic 

Product 
Complexity 
(PC) 

(Bashir & 
Thomson, 
1999) 

Process 
Hierarchical 
Functionality 
(PHF) 

Process 
functions 
decomposed in 
multiple levels 

 

F-  number of 
functions at each 
level 

l- number of levels 
{1,2,…n} 

kl- weight for level 
l, where k1 = 1, k2 = 
2, kn=n 

i-  total process 
functions  

 

Pictures and 
Videos 
 
Project 
Description 

Station 
Hierarchical 
Functionality 
(SHF) 

Stations 
functions 
decomposed in 
multiple levels 

 

F- number of 
functions at each 
level 

l- number of levels 
{1,2,…n} 

kl- weight for level 
l, where k1 = 1, k2 = 
2, kn=n 

i-  total station 
functions 

 

 

 

 

Pictures and 
Videos 
 
Project 
Description 
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Table 3.2 summarizes these metrics from literature along with their adaptation that in some 

cases resulted in the development of more than one metric. A brief description of the emphasis of 

each metric is provided along with its notation and formulation. The last column specifies data 

available from the process automation course to implement the metric. Overall, a total of seven 

metrics were generated to assess complexity of process automation projects. Each one of these 

metrics is discussed in the following sections with the development of implementation methods 

(Colón et al., 2013; Soto et al., 2015; Martínez et al., 2015; Martínez et al., 2016; Collado et al., 

2016; Jusino et al., 2016). 

Student project reports, from the process automation course, provided the necessary data to 

implement metrics. Besides the general documentation (pictures, videos, drawings and 

descriptions) that explains the project design, the developed program or software must be 

considered. The program is assessed in two forms, through Ladder Logic and Grafcets. 

Four of the seven metrics, required analyzing the ladder logic in order to come up with a 

result. Ladder Logic is the most popular programming language used to program process 

automation that is mostly implemented with programmable logic controllers (PLCs). It is a very 

visual graphical language which structure was designed to mimic the electrical schematic of relays. 

Some basic functions as shown in Figure 3.2 below are: Examine On (X0) and Examine Off (X1), 

located at the left side of the line of code, and the Output(s) (Y0, C5), at the right side of the line 

of code. Examine On is when the input element allows the flow of current. At the contrary, 

Examine Off is when the input element does not allow the flow of current. Output turn on or off 

an output element. The performance can be seen as responding to messages (probably events) sent 

by some component instances to other component instances (Blay-Fornarino, Charfi, Emsellem, 

Pinna-Dery, & Riveill, 2004). Being the basic structure of a ladder logic, there is the option of 
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organizing groups of lines of codes into Stages (See example in the Appendix A) where only the 

code on active stages will be executed. 

 

Figure 3.2: Ladder Logic Example 

 

Grafcets (Figure 3.3) are used as a summarized and visual representation of Ladder Logic 

codes with stages. It is used for the Cyclomatic Complexity metric in order to determine the 

number of possible routes or roads the program has to complete the process.  

  

1 

2 

3 

4 
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Figure 3.3: Grafcet Example 

 

3.3.1.1 Visual Component Interaction (VCI)  

Inspired by Keating’s (2000) Complexity of Partition (C) metric, the Visual Component 

Interaction (VCI) metric is proposed to study physical interactions (visual) between components 

in process automation projects.  The original metric was developed to predict design quality early 

in the design cycle by assessing the complexity of a design partitioning. However, VCI is 

developed to measure overall design complexity based on the component interaction that can be 

observed physically in the process, independently of the program or software (Colón, Collet, Cruz, 

Del Pilar, & Martinez, 2013; Soto, Rosado & Medina, 2015; Collado, Medina & Soto, 2016).  

Besides Keating (2000) formulation to relate components and interactions mathematically, this 

research contribution includes the development of an implementation method to comply with 

VCI’s intended objective.  A detailed description of the implementation method proposed for VCI 

is provided below: 
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1. Following the notation proposed in Figure 3.4, a VCI component-interaction diagram 

(see example in Figure 3.5) is necessary to determine the number of components and 

interactions.  

 
Figure 3.4: VCI Figures Legend 

 

i. Identify relays with a triangle and place them in a column to the far left. 

ii. Identify actuators with a square and place them in a column right to the 

triangles. Note: Actuators include motors, pistons and valves. Lights will not 

be considered in this interaction, they will be placed in another column to the 

far right.  

iii. Identify raw materials, finished products and/or packaging products with a 

hexagon and place them in a column to the right of the actuators’ column. 

iv. Identify sensors with a circle and place them in a column to the right of the 

hexagons. Note: If the sensor function is to reset the complete process, then 

place its circle in the far left before the relays column (See X0 in Figure 3.5). 

v. Identify actuators that interact with relays, by tracing a line between them. 

vi. Identify actuators that interact with other actuators by tracing a line between 

them. 

vii. Identify actuators that interact with products by tracing a line between them. 

viii. Identify sensors that interact with products by tracing a line between them. 

ix. Identify sensors that interact with actuator by tracing a line between them. 
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Figure 3.5: VCI Component-Interaction Diagram Example 

 

2. After the VCI diagram is done, count all the figures. The result will provide the number 

of unique components, M.  
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3. Count the amount of interactions represented as lines between components in the VCI 

diagram. The result will provide the number of interactions, I.  

Finally, calculate the VCI metric using the C and I values obtained from steps 2 and 3 

using the following equation:  

                                                    VCI= M2+ I2                                                                                              (3.1) 

The value for the example presented in the figure is VCI= 452+492= 4426. 

3.3.1.2 Software Component Interaction (SCI)  

Similar to VCI, the Software Component Interaction (SCI) metric uses Keating’s (2000) 

formulation to relate components and interactions. SCI is intended to measure the complexity of 

process automation components and interactions through the software, particularly, the ladder 

logic (Colón et al., 2013; Soto et al., 2015; Martínez et al., 2015 and Martínez et al., 2016). In this 

particular context, components are obtained from condition and output statement in the ladder 

logic.  In the program, Xs and Ys represent in the software sensors and actuators (including relays), 

respectively. Contrary to VCI, raw materials, finished products and/or packaging products are not 

considered since they are not represented in the code. Meanwhile, other components are added. 

These include internal variables (Cs) used to facilitate the programming when needed, counters 

(CTs), and timers (Ts). 

Interactions are determined as a result of various components (Xs, Ys, Cs, CTs, and Ts) joining 

together as conditions for the output statements (set or reset Ys, Cs, CTs and/or Ts). Contrary to 

VCI where a diagram of components and interactions could be developed right away from 

observing the process automation project, implementing SCI is challenging.  While components 

can be easily determined by counting the number of unique variables (Xs, Ys, Cs, CTs, and Ts), 

interactions require evaluating the code in detail.  As part of this research contribution a procedure 
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is developed to obtain the number of interactions. The procedure involves: (1) making 

components-interaction diagrams for each line of code, (2) eliminating redundant diagrams and 

(3) overlapping diagrams when interactions are reduced. The whole procedure to implement the 

metric is provided as follows: 

1. Create a table, tabulating unique components within the ladder logic. The amount of all 

unique components is M. 

2. Follow the following steps to obtain the number the interactions, I: 

I. Make components-interaction diagrams for each line of code: 

i. Identify components in a line of code with a circle. 

ii. Connect components in the conditions statement with a line between all 

pair-wise comparisons and draw a circle/oval to surround them (after all 

the lines are made). 

Example: To represent the condition statement shown in Figure 3.6 of the 

line of code 4, the component-interaction diagram in Figure 3.7 was drawn.  
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Figure 3.6: Line of Code Example 

 

Figure 3.7: Network Diagram Example 

iii. Connect output variables to the condition statement component-

interaction diagram previously done. Note: JMP (e.g. JMP S1 in the 

example) commands are considered as a connection the specified stage, 

therefore, the actions in that specified stage are related to the conditions 

before the JMP command. 

Example: Figure 3.8 shows how outputs should be included. 

 

Figure 3.8: Line of Code Network Diagram Example 

iv. Repeat steps i though iii until component-interaction diagrams are 

performed for all the lines of code. 

II. Analyze and compare diagrams completed in order to identify and eliminate 

redundant diagrams.  

III. Analyze and compare remaining diagrams after eliminating redundancy in II to 

identify opportunities for overlap. Overlapping is necessity only if interactions 
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are reduced. For example, overlapping is necessary when component-

interaction diagrams coincide in the conditions part while happing different 

output statement. 

IV. Once elimination and overlapping is completed, count the number of lines that 

result from the component-interaction diagrams. The result is the number of 

interactions, I. 

3. With the number of components (M) and interactions (I) obtained in the previous steps 

calculate the metric:  

                                                      SCI= M2 + I2                                                                                              (3.2) 

This procedure has been proven to be an equivalent simplification to the challenge of completing 

the all components and all interactions diagram (Appendix B shows the procedure completed for 

a particular project by Martínez et al., 2015). 

3.3.1.3 Software Component Interaction with Stages (SCIS)  

The Software Component Interaction with Stages (SCIS) metric – Colón et al., (2013), Soto et 

al., (2015), Martínez et al., (2015), and Martínez et al., (2016) is proposed as a modification of the 

SCI metric. As shown before, the SCI do not consider stages (S) as a component. For the SCIS, 

stages will be considered and included as a component. This change impacts both, the number of 

components and the number of interactions.  The same procedure as SCI is followed; an example 

of how the stages are considered in the component-interactions diagrams is provided. Figure 3.9 

shows the component-interaction diagram for line of code 4 in Figure 3.6. In comparison to Figure 

3.8 where stages were not considered for SCI, for SCIS S0 becomes a condition since stage 0 (S0) 

must be active for the program to consider line 4.  
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Figure 3.9: Network Diagram Example 

Following, the output (S1) is added as shown in Figure 3.10. In comparison with Figure 3.7, 

for SCIS the stage becomes the output and Y1, Y0 and C0 will be considered in a separate 

diagram for line 6 where S1 is the condition. 

 

Figure 3.10: Line of Code Network Diagram Example 

 

3.3.1.4 Lines of Code (LOC)  

Basili and Perricone (1984) discuss one of the simplest software metrics, Lines of Code (LOC) 

LOC, which measures the number of lines (statements) in a program, was originally used in 

software projects coded in FORTRAN. In the proposed work LOC is used to measure the lines of 

code of ladder logic (Colón et al., 2013).  The steps to implement this metric are provided. 

1. Identify the line identification number of the “End” statement of the ladder logic. In 

Figure 3.11 this corresponds to 111. 
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Figure 3.11: Ladder Logic Identification Number 

2. Count number of blank lines (output NOP) in the ladder logic. 

3. Calculate LOC metric with the following equation: 

                                                     𝐴𝐴𝐿𝐿𝐿𝐿 = 𝐴𝐴 − 𝑛𝑛                                                                                            (3.3) 

Where, 

L - last line identification number for the ladder logic 

n – number of blank lines (output NOP)  

3.3.1.5 Cyclomatic Complexity (V(G))   

McCabe (1976) proposes the Cyclomatic Complexity (V(G)) metric as a more robust 

assessment of software complexity. V(G) measures the number of linearly independent paths in a 

program by identifying the number of vertices (n), edges (e) and connected components (p). To 

implement V(G) in the context of process automation, the use of Grafcets (Figure 3.12) is proposed 

since it provides a visual representation of the ladder logic code (Colón, Collet, Cruz, Del Pilar, & 

Martinez, 2013; Soto, Rosado & Medina, 2015; Collado, Medina & Soto, 2016). Accordingly, the 

variables are considered to become the stages (n), initial stages (p) and jumps (e). The steps to 

implement Cyclomatic Complexity metric are provided as follows. 

1. Draw a Grafcet of the ladder logic. Note that the boxes represent the different stages 

that are interconnected (one box per stage). If a stage is specified in a command of JMP 
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(e.g. JMP S0) that means it should follow the particular stage where the command is 

provided (like S2 and S3 in Figure 3.12). If a stage is specified in a command of Set 

(e.g. Set S0, Rst S0), then it should be connected to the stage where the command is 

provided while it does not represent the end that stage (like S2 and S5 in the example). 

 
Figure 3.12: Ladder Logic 

2. Identify the number of stages. 

3. Identify the number of lines joining each stage. 

4. Identify number of initial stages identified (e.g. ISG S0). 

5. Calculate the V(G) metric with the following equation: 

                                             𝑉𝑉(𝐺𝐺) = 𝑒𝑒 − 𝑛𝑛 + 𝑝𝑝                                                                                   (3.4) 

Where, 

n – number of  stages in the program 

e –number of lines (interactions) joining each stage 

p –number of initial stages  

From the example in Figure 3.12, the Cyclomatic Complexity is provided below. 
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𝑉𝑉(𝐺𝐺) = 𝑒𝑒 − 𝑛𝑛 + 𝑝𝑝 = 10 − 6 + 1 = 5 

 

3.3.1.6 Process Hierarchical Functionality (PHF)  

Inspired with Bashir and Thomson’s (1999) product complexity (PC) metric, the Process 

Hierarchical Functionality (PHF) metric is intended to assess specific functions of completed 

process automation projects (Colón, Collet, Cruz, Del Pilar, & Martinez, 2013; Soto, Rosado & 

Medina, 2015; Jusino, Medina, and Soto, 2016). In contrast, PC was developed for products to be 

designed in order to estimate design effort. Still, both metrics coincide in the need to define a 

hierarchical decomposition of functions into different levels. The steps to implement PHF are 

provided below. 

1. Learn about the process automation project through the project documentation, photos and 

videos. 

2. Identify functions from the generic functional decomposition provided in Figure 3.13. 
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Figure 3.13: Generic Functional Decomposition for Process Automation (Jusino, Medina 
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and Soto, 2016) 
 

 

3. Make a customized functional decomposition diagram with the identified functions as shown 

in Figure 3.14.  

 
Figure 3.14: Example of a Functional Decomposition Diagram (Jusino, Medina and Soto, 

2016) 

4. Calculate the PHF metric with the following equation: 

                                                        𝐴𝐴𝑃𝑃𝑃𝑃 =  (∑ 𝑃𝑃𝑙𝑙) ∗ 𝑘𝑘𝑙𝑙𝑖𝑖
𝑗𝑗=1

                                                                                   (3.5) 
Where,                                                                                                                                                      

Fl is the number of functions at level l,  

l is the number of levels {1,2,…n} 

kl is the weight for level l, where k1 = 1, k2 = 2, kl=l 
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i= number of functions 

Below is an example of the functional decomposition diagram. The result for example above is: 

PHF = 4*1+ 9*2+ 7*3 = 43 

3.3.1.7 Station Hierarchical Functionality (SHF)  

 
Similar to PHF, the Station Hierarchical Functionality (SHF) measures the complexity in 

relation to station functions instead of the whole process (Colón, Collet, Cruz, Del Pilar, & Martinez, 

2013; Soto, Rosado & Medina, 2015; Jusino, Medina & Soto, 2016). The same procedure is 

followed but for each station independently.  The generic functional decomposition in Figure 3.10 

is also used to determine station functions. SHF equation is defined by: 

                                                          𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖 =  (∑ 𝑃𝑃𝑙𝑙) ∗ 𝑘𝑘𝑙𝑙𝑖𝑖
𝑗𝑗=1

                                                                                (3.6) 
 
Where, 

Fl is the number of functions at level l,  

l is the number of levels {1,2,…n} 

kl is the weight for level l, where k1 = 1, k2 = 2, kl=l 

i= number of stations  

After the complexity is assessed for each station, an overall complexity is obtained from 

(1) identifying the station with maximum complexity, (2) obtaining the summation of stations 

complexities and (3) calculating the product (multiplication) among stations complexities. 

Equations are provided below. 

                                                            Max_𝑆𝑆𝑃𝑃𝑃𝑃 =  𝑀𝑀𝑀𝑀𝑥𝑥{𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖}                                              (3.7) 

                                                              𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑃𝑃𝑃𝑃 =  ∑ 𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=0                                               (3.8) 

                                                         𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑡𝑡_𝑆𝑆𝑃𝑃𝑃𝑃 =  ∏ (𝑆𝑆HF)𝑛𝑛
𝑖𝑖=0                                            (3.9) 



39 
 

 
 

Following an example is provided with Figure 3.15 providing the result for the functional 

decomposition and the different complexity calculations provided. 

 

Figure 3.15: SC Functional Decomposition Diagram (Jusino, Medina and Soto, 2016) 
 

 

 

𝑆𝑆𝑃𝑃𝑃𝑃1 = 1*1 + 3*2 +3*4 = 19 

𝑆𝑆𝑃𝑃𝑃𝑃2 = 1*1 + 2*2+ 3*3+ 2*4 = 22 

𝑆𝑆𝑃𝑃𝑃𝑃3 = 1*1 + 2*2+ 2*3 = 11 

𝑆𝑆𝑃𝑃𝑃𝑃4 = 1 *1 + 1*2 +1*3 = 6 

𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖 =  �𝑃𝑃𝑙𝑙 ∗ 𝑘𝑘𝑙𝑙

𝑖𝑖

𝑗𝑗=1
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𝑀𝑀𝑀𝑀𝑥𝑥_𝑆𝑆𝑃𝑃𝑃𝑃 =  𝑀𝑀𝑀𝑀𝑥𝑥{𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖} = 𝑀𝑀𝑀𝑀𝑥𝑥�19,  22,  11,  6� = 22 

𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑃𝑃𝑃𝑃 =  �𝑆𝑆HF
𝑛𝑛

𝑖𝑖=0

= 𝑆𝑆𝑃𝑃𝑃𝑃1 + 𝑆𝑆𝑃𝑃𝑃𝑃2 + 𝑆𝑆𝑃𝑃𝑃𝑃3 + 𝑆𝑆𝑃𝑃𝑃𝑃4 = 19 + 22 + 11 + 6 = 58 

Product_𝑆𝑆𝑃𝑃𝑃𝑃 =  ∏ (𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖)𝑛𝑛
𝑖𝑖=0 =  𝑆𝑆𝑃𝑃𝑃𝑃1 ∗ 𝑆𝑆𝑃𝑃𝑃𝑃2 ∗ 𝑆𝑆𝑃𝑃𝑃𝑃3 ∗ 𝑆𝑆𝑃𝑃𝑃𝑃4 = 

19 ∗ 22 ∗ 11 ∗ 6 = 27,588 

3.3.2 Analysis of Complexity Metrics for Process Automation  

Once the complexity metrics were implemented, each complexity metric result was analyzed 

using descriptive statistics, correlation analysis Kruskal-Wallis rank sum test and Pairwise 

comparison using Dunn’s test for multiple comparison of independent samples. Also, these test, 

complexity metrics result were normalized by dividing 𝑦𝑦
max (𝑦𝑦)

 in order to build a radar char, 

commonly known as a spider graph, used to display and analyze the metrics altogether.  

3.3.3 Stage 3: Development of Student Factor Survey 
 

A student factor survey was developed with the objective to collect information from 

continuous and categorical variables related to students and design teams (age, gender, knowledge, 

abilities, individual contribution, difficulty, team dynamic and individual and team performance) 

to correlate these factors with the complexity. The survey is a 24 closed-ended questions (see Table 

3.3 below for reference). The survey presented here is a modified version to Colón, Collet, Cruz, 

Del Pilar, and Martinez (2013). 

Table 3.3: Student Factor Survey Questions 
Category Student Factor Survey Questions 

Profile 1.Género/ Gender 

2. Edad al tomar el curso ININ 4057 / Age at the time enrolled at the course ININ4057 

3. Aproximadamente, ¿Cuántos créditos tenía usted matriculado cuando tomo ININ 4057? / Approximately, 
how many credit did you had enrolled when you took ININ 4057? 
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Category Student Factor Survey Questions 
Performance 23. ¿Actualmente, cuál es su promedio de concentración (Ing. Industrial)? / Currently, what is your major 

(Industrial Engineering) GPA? 
24.  ¿Actualmente, cuál es su promedio general? / Currently, what is your general GPA? 

25.  Favor de indicar que nota (A,B,C,D) obtuvo en cada una de las siguientes clases/ Please indicate what 
grade (A,B,C,D) you obtained in the following courses: 
Algoritmos y Programación de Comp./ Computer programming and Algorithm (INGE 3016) 
Circuito / Circuit (INEL 4075)  
Electrónica / Electronic (INEL 4076 ) 
Laboratorio de Electrónica / Electronic Laboratory (INEL 4077)  
Proceso de Manufactura / Manufacturing Process (INME 4055)  
Laboratorio de Proceso de Manufactura / Manufacturing Process Laboratory (INME 4056)  
Proceso Automatizado / Process Automation (ININ 4057)  

 Knowledge 4. Seleccione todas las prácticas obtenidas antes del curso, relacionadas a la Ingeniería Industrial que 
apliquen. / Select all the experience obtained before the course related to Industrial Engineering 

5. ¿Antes de tomar el curso ININ 5057 estuvo expuesto a procesos automatizados relevantes al curso 
mencionado? / Before taking the course ININ 4057, were you exposed to automated process relevant to the 
course? 

6.  Si contestó sí en la pregunta anterior, explique/ If you answered yes to the previous question, explain. 
7. Califique su conocimiento sobre programación antes de comenzar el curso ININ 4057. / Rate your 

knowledge regarding programin before you took the course. 
Scale 1 (Poor) to 7 (Excellent) 

Perceived  
Abilities/ Skills 

9. Califique su destreza al programar su maqueta. / Rate your ability to program the small scale model.   
Scale 1 (Very Poor) to 7 (Excellent) 

10. Califique su destreza al construir los circuitos de la maqueta. / Rate your ability to build the circuit of the 
small scale model.   

Scale 1 (Very Poor) to 7 (Excellent) 
Individual 

contribution 
8. Califique cuán motivado(a) estuvo para tomar el curso de ININ 4057. / Rate how motivated you were to 
take the course ININ 4057. 
                                                 Scale 1 (Not Motivated) to 7 (Extremely Motivated) 
17. Califique su desempeño en la maqueta. / Rate you performance in the small scale model.  

Scale 1 (Very Poor) to 7 (Excellent) 
18. En comparación con sus compañeros de trabajo, ¿cuánto usted trabajo? / In comparison with you 
teammates, how much did you worked? 

Scale 1 (Substantially less) to 7 (Substantially more) 
13. Favor de evaluar su contribución en cada fase del proyecto. / Please evaluate your contribution at each 
phase of the proyect. 

Scale 1 (Very Poor) to 7 (Excellent) 
14. Favor de proveer un estimado de cuántas horas le dedicó al proyecto. / Please provide an estimate on how 
many hours did you spend on the project. 
15. ¿Cuán confiado se siente en su estimado de las horas trabajadas? / How confident do you feel in your 
time estimate? 

Difficulty/    
Complexity 

11. Favor proveer su percepción sobre la complejidad de cada parte de la maqueta: Diseno, Estructura de la 
Maqueta, Circuitos, Programación, “Troubleshooting” y HMI. / Please provide your perception regarding 
each  phase of the small scale model: Design, Structure, Circuit, Programming, Troubleshooting and HMI. 

Scale 1 (Extremely Simple)  to 7 (Extremely Complex) 
12. Favor proveer su percepción sobre la complejidad en la implementación de cada componente. / Please 
provide your perception regarding the complexiy of each component.  

Scale 1 (Extremely Simple)  to 7 (Extremely Complex) 
Team Dynamic  16. Favor de proveer la composición (cantidad) de miembros de su proyecto incluyéndose usted. / Please 

provide the composition (Qty.) of your group memebers, including yourself. 
19. ¿Cuál fue el desempeño de su equipo? / What was the group performace? 

20. Califique la frecuencia de comunicación con su equipo de trabajo para el proyecto. / Rate the 
communication frequency of your project team memebers. 

Scale 1 (Less Frequently) to 7 ( Very Frequent) 
21. ¿Cómo categoriza la comunicación con su grupo? / How do you categorizes the communication with your 
group? 
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Category Student Factor Survey Questions 
22. ¿Cómo su grupo tomó las decisiones la mayoría del tiempo? / How did your group made the decisión the 
mayority of time? 

 

3.3.3.1 Student Factor Survey  
 

Once the survey was implemented, variables were group into categories as observed in 

Table 3.4. to be used as independent variable for the prediction model discussed at Section 3.4.1 

Table 3.4 Student Factor Survey Variables 
Student Factor Survey 

Questions Variables Category Connotation 

1. Gender 
Gender Gender 0=Female, 

1= Male 
2. Age at the time enrolled at the 
course ININ4057 Age Age Age in Years 
3. Approximately, how many 
credit did you had enrolled 
when you took ININ 4057? 

Academic_Load Academic 
Load Academic credits 

4. Select all the experience 
obtained before the course 
related to Industrial Engineering 

Knowledge_Work 

Knowledge 
 
 

0= No Knowledge, 
1= Knowledge 

 

Knowledge_Project 
Knowledge_Internship 

Knowledge_Coop 
5. Before taking the course ININ 
4057, were you exposed to 
automated process relevant to 
the course? 

 

Knowledge_Automation 

7. Rate your knowledge 
regarding programin before you 
took the course. 

 
Knowledge_Programming 

9. Rate your ability to program 
the small scale model.  PerHabilities_Programming Perceived 

Abilities/ 
Skills 

Perceived abilities 
rating 

Scale 1 (Very Poor) to 
7 (Excellent) 

10. Rate your ability to build the 
circuit of the small scale model. PerAbilities_Circuit 

11. Please provide your 
perception regarding each phase 
of the small scale model.  

 

PerComplexity_Design 

 
Perceived 
Difficulty/    

Complexity 
 

Perceived difficulty 
rating 

Scale 1 (Extremely 
Simple)  to 7 

(Extremely Complex) 

PerComplexity_Structure 
PerComplexity_PLC 

PerComplexity_Programming 
PerComplexity_Troubleshooting 

PerComplexity_HMI 
12. Please provide your 
perception regarding the 
complexiy of each component.  

 

PerComplexity_Motors 
PerComplexity_Neumuatic 

PerComplexity_Sensors 
PerComplexity_Relays 

8. Rate how motivated you were 
to take the course ININ 4057. Individual_Motivation Individual 

Contribution 
Student  Motivation on 

a Scale 1 (Not 
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Student Factor Survey 
Questions Variables Category Connotation 

Motivated) to 7 
(Extremely Motivated) 

 
13. Please evaluate your 
contribution at each phase of the 
proyect. 

 

Individual_ContributionDesign 

Student Design 
Contribution 

Scale 1 (Very Poor) to 
7 (Excellent) 

Individual_ContributionStructure 

Student Structure 
Contribution 

Scale 1 (Very Poor) to 
7 (Excellent) 

Individual_ContributionPLC 

Student PLC 
Contribution Scale 1 

(Very Poor) to 7 
(Excellent) 

Individual_ContributionProgrammin
g 

Student Programming 
Contribution 

Scale 1 (Very Poor) to 
7 (Excellent) 

Individual_ContributionTroubleshoot
ing 

Student 
Troubleshooting 

Contribution Scale 1 
(Very Poor) to 7 

(Excellent) 

Individual_ContributionHMI 

Student Human 
Machine Interface 

Contribution 
Scale 1 (Very Poor) to 

7 (Excellent) 
14. Please provide an estimate 
on how many hours did you 
spend on the proyect. 

Individual_ProjectHrs Estimated hours spend 
in project 

16. Please provide the 
composition (Qty.) of your 
group memebers, including 
yourself. 

Group_Qty 

Team 
Dynamic 

 

Group Qty. 

Group_Female% Group Female 
%Group  

17. Rate you performance in the 
small scale model.  

 Individual_PerPerformance 

Student Perceived Self 
Performance 

Scale 1 (Very Poor) to 
7 (Excellent) 

18. In comparison with you 
teammates, how much did you 
worked? 
 

Individual_ComparedContribution 

Student contribution 
among group members 
Scale 1 (Substantially 

less) to 7 
(Substantially more) 

19. What was the group 
performace? Group_MemberEngage% Group performance 
20. Rate the communication 
frequency of your project team 
memebers. 

 
Group_CommunicationFreq  

Communication 
Frequency 

Scale 1 (Less 
Frequently) to 7 ( Very 

Frequent) 
Goup_DecisionsUnanimity 

0=No, 1=Yes 
Goup_DecisionsAuthority 
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Student Factor Survey 
Questions Variables Category Connotation 

21. How do you categorizes the 
communication with your 
group? 

Goup_DecisionsMinority 
Goup_DecisionsMayority 

Goup_DecisionsConsensus 
23. Currently, what is your 
major (Industrial Engineering) 
GPA? 

Performance_ININ3.51 

 
Performance 

 

0=No, 1=Yes 
Performance_ININ3.01 0=No, 1=Yes 
Performance_ININ2.51 0=No, 1=Yes 

24. Currently, what is your 
general GPA? 

Performance_General3.51 0=No, 1=Yes 
Performance_General3.01 0=No, 1=Yes 
Performance_General2.51 0=No, 1=Yes 

25.   Please indicate what grade 
(A,B,C,D) you obtained in the 

following courses: 
Computer programming and 

Algorithm (INGE 3016) 
Circuit (INEL 4075)  

Electronic (INEL 4076 ) 
Electronic Lab. (INEL 4077)  
Mfg. Process (INME 4055)  

Mfg. Process Lab. (INME 4056)  
Process Automation (ININ 

4057) 

Performance_INEL4075 

Grades where 
A=4, B=3, C=2 

 

Performance_INEL4076 
Performance_INEL4077 
Performance_INME4055 
Performance_INME4056 
Performance_ININ4057 

Performance_INGE3016 

All students agreed that class reports could be used in this research. Additional variables 

were added and are summarized in Table 3.5. 

Table 3.5: Additional Student’s Variables 
Source Variables Category Connotation 

Performance Measures from 
Process Automation (ININ 

4057) 

Performance_GrpLabs 

Performance 

Course Grade 
Performance_GrpDesign 

Performance_GrpStructure 
Performance_GrpDemo 
Perfornance_IndExams 

Perr Eval (max 30) Peer Evaluation 

Absence Count of Absence to 
the ININ 4057 course 

Lateness Count of Lateness to 
the ININ 4057 course 

 

Also, to consider group interaction, not only individual’s characteristics, some variables 

were selected from Table 3.4 to represent group’s maximum, minimum and median value. For 

instance, instead of analyzing student age, new variables, now represent group’s maximum, 
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minimum and median age. Accordingly, this calculation was done for all variables in Table 3.6. 

This was done to use these new variables in the Expanded Model II as explained in Section 3.4.1. 

Table 3.6: Additional Group Variables 
Age 
Knowledge_Work 
Knowledge_Project  
Knowledge_Internship 
Knowledge_Coop 
Knowledge_Automation 
Knowledge_Programming 
Individual_Motivation 
PerHabilities_Programming 
PerHabilities_Circuit 
PerComplexity_Design 
PerComplexity_Structure 
PerComplexity_PLC 
PerComplexity_Programming 
PerComplexity_Troubleshooting 
PerComplexity_HMI 
PerComplexity_Motors 
PerComplexity_Neumuatic 
PerComplexity_Sensors 
PerComplexity_Relays 
Individual_ContributionDesign 
Individual_ContributionStructure 
Individual_ContributionPLC 
Individual_ContributionProgramming 
Individual_ContributionTroubleshooting 
Individual_ContributionHMI 
Individual_ProjectHrs 
Individual_PerPerformance 
Individual_ComparedContribution 
Performance_ININ3.51 
Performance_ININ3.01 
Performance_General3.51 
Performance_General3.01 
Performance_INEL4075 
Performance_INEL4076 
Performance_INEL4077 
Performance_INME4055 
Performance_INME4056 
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Performance_ININ4057 
Performance_INGE3016 
Perfornance_IndExams 
Absense 
Lateness 

 
Next section, discusses how data was analyzed to answer last research question and to generate 

prediction models.  

3.4 Stage 4: Data Analysis 
To study the relationship of complexity with team characteristics and project outcomes, a 

complexity prediction model was generated integrating data obtained from stage 1, 2 and 3. 

Section 3.4.1 shows how prediction models were built and selected for each one of the complexity 

metrics. 

3.4.1 Prediction Models 

  For the prediction models, three regression models were constructed for each response. See 

Figure 3.16. The first model is called “General Model”. This model used as predictor 58 variables 

as specified in Table 3.4 and Table 3.5. The second model is called “Reduced Model I”. This 

model used as predictors the performance variables only. Last, and third model is called 

“Expanded Model II”. It used as predictor 173 variables as specified in Tables 3.4, 3.5 and 3.6. 

These 173 variables were obtained from created new variables that represents group’s maximum 

minimum and median value.  
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Figure 3.16: Prediction Models Methodology 

Two regression method were used, random forests and decision tree, both explained in 

more detail in Section 3.4.4.1 and 3.4.4.2, respectively.  In order to select only one best prediction 

model per response, two performance measures were calculated. 

R2, also called coefficient of determination, represents the proportion of the variance in the 

response that is explained by the model (basically how close the data is to the fitted regression line). 

General Model: 
Yi=f(X)

Reduced Model I:
Yi=f(Xp)

Expanded Model II:
Yi=f(Xg)

Random Forest Recursive 
Partitioning Tree

Mean Absolute 
Percentage Error R Squared

Desirability 
Function

Select Best 
Model for Yi

Analyze  Best 
Model for Yi
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These measures explains the percentage of the variability of the response data around its mean. 

For both methods, R2 was calculated using Equation 3.10: 

                                            𝑅𝑅2 = 1 − ∑(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝)2

∑(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙−𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙))2
 .                                               (3.10) 

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation 

(MAPD), is a measure of prediction accuracy of a forecasting method in statistics, express as a 

percentage of the error. MAPE was implemented as specified in Equation 3.11: 

                                       𝑀𝑀𝐴𝐴𝐴𝐴𝑀𝑀 = 100 ∗  
∑(𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝)

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 )

𝑙𝑙𝑝𝑝𝑛𝑛𝑙𝑙𝑎𝑎ℎ(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝)  .                                             (3.11) 

These measures were used to build a desirability function (dF) as specified in Equation 

3.12: 

                                                  𝑃𝑃𝑃𝑃 = 𝑅𝑅2

max (𝑅𝑅2)
+ �1 − 𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀

𝑀𝑀𝑎𝑎𝑀𝑀(𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀)�                                         (3.12) 

3.4.1.1 Random Forest 

A known ensemble learning method and effective tool in prediction was used (Breiman, 

2001).   Random forest, a non-parametric statistical method, is commonly used when there are 

more predictors than responses. It allows the analyst to calculate the relative importance of 

predictors. The randomForest package (R Development Core Team, 2010) provides an R interface 

to the Fortran programs by Breiman and Cutler.  

The principle of random forests is to combine many decision trees built using several 

bootstrap samples coming from the training data (observations used to fit the model ) and choosing 

randomly a given number of input variables (denoted by mtry) at each node (Genuer, Poggi & 
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Tuleau-Malot, 2010). For this work, up to 58 variables were randomly chosen at each split. Note 

that the default values for regression is (p/3), where p is number of variables in x.  

Also testing data was split to evaluate the performance of the model. Specifically K-folds 

cross-validation technique was applied using 10 folds. Therefore, 32 out of the 35 observations 

were used for training and 3 out of the 35 observations were used for testing purposes at a time. 

No pruning step is performed so all the trees of the forest are maximal trees. The number 

of trees in the forest for this work was the default, 500 trees.  

To summarize, the random forests algorithm was performed as followed (Liaw and Wiener, 

2002): 

1. Installed and loaded randomForest library (Brieman, 2001) 

2. Fitted the model and estimated performance measure  

3. Created testing and training folds 

4.  Performed K-folds cross validation  

5. Calculated the relative importance of predictors 

6. Built partial dependence plot  

3.4.1.2 Basic Recursive Partitioning Trees 

Recursive partitioning is an essential tool in data mining. It helps explore the structure of a 

set of data, while developing easy to visualize decision rules for predicting a categorical 

(classification tree) or continuous (regression tree) outcome (Kabacoff, 2017). Classification and 

regression trees can be generated through the rpart package (Breiman et al., 1984). 

For decision tree, the following general steps were taken: 

1. Installed and loaded rpart Packages  

2. Created testing and training folds 

http://cran.r-project.org/web/packages/rpart/index.html
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3. Performed cross validation 

4. Fitted the model and estimated performance measure  

The flowing section demonstrate the result for each analysis. 

3.4.1.3 Relation with Complexity Metrics  

One way to investigate if there is a relationship between team characteristics and 

performance and complexity metrics is with partial dependence plots. These plots are graphical 

visualizations of the marginal effect of a given variable (or multiple variables) on an outcome. 

Partial Dependence Plot were constructed in R (Friedman, 2010).  

Following section demonstrates the implementation of the methodology discussed at this 

chapter and the results obtained at each one of the stages.  
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Chapter 4: Results 

4.1 Overview 

The following chapter expose the results of the professor survey (Section 4.2) which 

reveals the current consideration of complexity in engineering education.  Also, outcomes of the 

implementation of complexity metrics using the projects of the Process Automation (ININ 4057) 

course (Section 4.3) were displayed. Next, student factor survey results (Section 4.4) were 

presented in order to introduce the discussion of the last analysis, the complexity prediction model 

(Section 4.5). 

4.2 Professor Survey  

A total of thirteen engineering professors from various engineering department 

participated of the questionnaire as shown in the pie chart below. 

 
Figure 4.1: Pie chat of Engineering Department 

ICOM
INCI
INEL
ININ
INME
INQU

Category

2, 15.4%

2, 15.4%

3, 23.1% 1, 7.7%

3, 23.1%

2, 15.4%

Pie Chart of Department
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The majority of professors interviewed were from Civil Engineering (INCI) and from Industrial 

Engineering department (ININ) each one with a 23.1% participation. Electrical Engineering has 

7.7 % of participation. 

Most of the questions, as observed in Figure 4.2, were answered with a 7 point Likert scale.  

 
Figure 4.2: Example of one survey question answers 

All of these questions were used to judge if there is sufficient evidence for the population 

median being greater or less that 4 (neutral in the Likert scale). 1-Sample Wilcoxon test was 

implemented using α = 0.05 as shown in Table 4.1 below. 

Table 4.1: Professor Survey Summarized Result 

Research 
Question Variable 

Professor Factor Survey 
Questions (Spanish / 

English) 
Median 

1-Sample 
Wilcoxon 

test 
Result 

Professor 
Profile 

Department 
1. Select the engineering 
department you are a part 

of. 
N/A N/A N/A 

Years_ 
Experience 

2. How many years of 
experience do you have as 

a professor? 
18 N/A N/A 

Years_ 
Experience_PBL 

3. How many years of 
experience you have 

teaching Project-based 
learning course(s)? 

13 N/A N/A 

Course 
4. What courses have you 
offered where learning is 

implemented through 

 
 

N/A 
 

 
 

N/A 
 

 
 

N/A 
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Research 
Question Variable 

Professor Factor Survey 
Questions (Spanish / 

English) 
Median 

1-Sample 
Wilcoxon 

test 
Result 

projects (Project-Based 
Learning)? 

4a. Projects duration in 
weeks 

4b. Projects Phases 

13 
4 

N/A 
N/A 

N/A 
N/A 

Should 
complexity 
be assessed 

in PBL? 

Complexity 
Impact_ 

Definition 

6. Rate the impact of the 
following variables in 
project complexity in 
engineering courses. 

 
Scale 1(Not related 

significantly to 7 (Related 
significantly) 

6.00 

 
 
 
 
 
 
 
 
 
 
 
 
 

HO: Median 
= 4 

HA: Median 
> 4 

 

There is 
sufficient 

evidence to 
reject the 

null 
hypothesis (p 

= 0.003). 
The 

population 
median is 

statistically 
greater than 

4. 

Complexity 
Impact_ 

Experience 
5.50 

There is 
sufficient 

evidence to 
reject the 

null 
hypothesis (p 

= 0.011). 
The 

population 
median is 

statistically 
greater than 

4. 

Complexity 
Impact_ 

Methodology 
5.00 

There is 
sufficient 

evidence to 
reject the 

null 
hypothesis (p 

= 0.026). 
The 

population 
median is 

statistically 
greater than 

4. 
Complexity 

Impact_ 
Solution 

6.50 
There is 

sufficient 
evidence to 
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Research 
Question Variable 

Professor Factor Survey 
Questions (Spanish / 

English) 
Median 

1-Sample 
Wilcoxon 

test 
Result 

reject the 
null 

hypothesis (p 
= 0.001). 

The 
population 
median is 

statistically 
greater than 

4 

Mesurement_ 
Importance_ 

Rating 

7. Rate how important is 
to measure complexity in 
Project-Based Learning. 

 
Scale 1(Extremely 

irrelevant) to 7 
(Extremely relevant) 

6.00 

 
 

HO: Median 
= 4 

HA: Median 
> 4 

 

There is 
sufficient 

evidence to 
reject the 

null 
hypothesis (p 

= 0.001). 
The 

population 
median is 

statistically 
greater than 

4 

Availability 
Importance_ 

Rating 

8. Rate how important is 
to have objective metrics 
to evaluate the complexity 
of project in engineering. 

Scale 1(Extremely 
irrelevant) to 7 

(Extremely relevant) 

6.00 

 
 

HO: Median 
= 4 

HA: Median 
> 4 

 

There is 
sufficient 

evidence to 
reject the 

null 
hypothesis (p 

= 0.002). 
The 

population 
median is 

statistically 
greater than 

4 

Is 
complexity 
considered 
for PBL in 
engineering 
education? 

Complexity 
Consideration_ 

PBL 

9. Is complexity currently 
considered in Project-

Based Learning? 
Scale 1(Substantially not 

considered) to 7 
(Substantially considered) 

5.5 

 
 

HO: Median 
= 4 

HA: Median 
< 4 

 

There is 
sufficient 
evidence to 
reject the 
null 
hypothesis 
(0.985). The 
population 
median is 
statistically 
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Research 
Question Variable 

Professor Factor Survey 
Questions (Spanish / 

English) 
Median 

1-Sample 
Wilcoxon 

test 
Result 

greater than 
4. 

Metric_ 
Implementation 

11. Are there objective 
metrics currently used to 

measure project definition 
or evaluation complexity? 
Scale 1(Substantially not 
used) to 7 (Substantially 

used) 

3.00 

 
HO: Median 

= 4 
HA: Median 

< 4 
 

There is 
insufficient 
evidence to 
reject the 
null 
hypothesis (p 
= 0.023). 
The 
population 
median is 
statistically 
less than 4. 

Complexity 
Measure_ 
Frequency 

12. If complexity metrics 
are used, please specify 
which and evaluate how 
frequently you integrates 

them in project 
evaluation. 

Scale 1(Never) to 7 
(Always) 

6.00 

 
N/A 

 

N/A 

Is the 
complexity 

of the 
project 

definitions 
significantly 

different? 
 

Complexity 
Definition_ 
Difference_ 

Rating 
 

13. When students are 
assigned different project, 

rate how different the 
project definition is 

(specifications). 
 

Scale 1(Substantially the 
same) to 7 (Substantially 

different) 

4.00 

HO: Median 
= 4 

HA: Median 
> 4 

 
 
 
 
 
 
 
 
 
 
 
 

HO: Median 
= 4 

HA: Median 
< 4 

 
 
 
 
 

There is 
insufficient 
evidence to 
reject the 

null 
hypothesis (p 

= 0.578). 
The 

population 
median is not 
statistically 
greater or 

equal than 4. 
 

There is 
insufficient 
evidence to 
reject the 

null 
hypothesis (p 

= 0.453). 
The 

population 
median is not 
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Research 
Question Variable 

Professor Factor Survey 
Questions (Spanish / 

English) 
Median 

1-Sample 
Wilcoxon 

test 
Result 

 
 
 

HO: Median 
= 4 

HA: Median 
≠ 4 

 

statistically 
less than 4.  

 
There is 

insufficient 
evidence to 
reject the 

null 
hypothesis (p 

= 0.906). 
The 

population 
median is not 
statistically 

different than 
4.  
 
 

Is the 
complexity 

of the 
multiple 
solutions 
generated 

significantly 
different? 

Complexity 
Solution_ 

Difference_ 
Rating 

 

14. When students are 
assigned the same project, 

rate how different the 
complexity of the 

solutions provided by 
students are. 

Scale 1(Substantially the 
same) to 7 (Substantially 

different) 

4.50 

HO: Median 
= 4 

HA: Median 
< 4 

 
 
 
 
 
 
 
 

HO: Median 
= 4 

HA: Median 
> 4 

 
 
 
 
 
 
 
 
 
 
 
 

HO: Median 
= 4 

There is 
insufficient 
evidence to 
reject the 

null 
hypothesis (p 

= 0.733). 
The 

population 
median is not 
statistically 
less than 4. 

 
 

There is 
insufficient 
evidence to 
reject the 

null 
hypothesis (p 

= 0.297). 
The 

population 
median is not 
statistically 
less than 4.  

 
There is 

insufficient 
evidence to 
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Research 
Question Variable 

Professor Factor Survey 
Questions (Spanish / 

English) 
Median 

1-Sample 
Wilcoxon 

test 
Result 

HA: Median 
≠ 4 

 

reject the 
null 

hypothesis (p 
= 0.594). 

The 
population 

median is not 
statistically 

different than 
4.  
 
 

This table summarized the answers to first four research questions, showing that 

engineering professors believed that complexity should be assessed in PBL, specifically in the 

definition and solution. Also, that there are currently no objective metrics used to measure project 

definition or evaluation complexity event though, complexity is considered for PBL. Responses 

showed that when students are assigned different project, project definition (specifications or 

requirements) are the same. Last, when students are assigned the same project, complexity of the 

solutions provided by students are the same. 

Remaining survey questions were open-ended questions.  For instance, Question 4, what 

courses have you offered where learning is implemented through projects (Project-Based 

Learning)? Results show that engineering professors offered 27 unique courses where learning is 

implemented through projects. Of those, three courses were listed by various professors: Project 

Design in Engineering in Computers (ICOM 5047), Process Automation Course (ININ 4057) and 

Integrated Project of Civil Engineering (INCI 4950).  According to interviewed professors, ICOM 

5047 course project was not the same for all students. For this project, students needed to design 

and implement prototypes in groups of 2-9 students. ININ 4057 course project consist on 4 phases: 

concept, design, structure and programming of an automated process. The project (problem 
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statement) is the same for all student and is worked on teams of 2-3 students. Last, INCI 4950 

course project focuses on creating a building of around 10-15 floors. This project is managed by 

groups of around 10-12 students. 

Another question asked in the survey, Question 5, in the context of courses with project 

(PBL), define, what it is complexity for you; explain. Some professor defined it as a “challenge 

offered to student so they applied what they learned.” Other said, “Is when they used their 

creativity.” One mentioned “interrelation to resolve a problem.” Two professors mentioned the 

“Number of interactions used within a system.” 

Lastly in Question 10, If so, how do you consider it (complexity in PBL), most professor said 

they considered it the definition and evaluation. In general, it was observed there is no standard 

way to measure complexity, even though most professors agreed they consider it during the 

definition and evaluation.  

Next section shows the complexity metrics results. 

4.3 Complexity Metrics 

Fourteen projects from the Process Automation (ININ 4057) course, given at the University 

of Puerto Rico at Mayaguez, were used to implement all seven complexity metrics. Each project 

was done by group of two to three students with the same requirement. Particularly, for the fall 

semester of academic year 2015-16, the project consisted on automating eggs packing process. 

The following sections demonstrate results of innovative methodologies implemented to measure 

complexity in a standardized and objective matter. This section reveals how can project complexity 

be assessed, when student have the same project requirements. 
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4.3.1 Visual Component Interaction (VCI) 

VCI metric was implemented to fourteen samples from first semester 2015-16. Results are 

showed in the Table 4.2 below.  Ranges were obtain and it is observed that VCI range is [169, 

2853], component (M) quantities range is [12, 42] while physical interaction (I) range is [5, 38].   

Table 4.2: Visual Component Interaction Result 
Visual Component Interaction (VCI) 

Sample ID  C I VCI= M²+I² 

Group 1  34 38 2600 

Group 2 19 10 461 

Group 3 17 12 433 

Group 4 22 23 1013 

Group 5 18 13 493 

Group 6 28 31 1745 

Group 7 16 10 356 

Group 8 26 25 1301 

Group 9 12 5 169 

Group 10 27 18 1053 

Group 11 12 7 193 

Group 12 32 25 1649 

Group 13 19 13 530 

Group 14 42 33 2853 

 

Also, group VCI complexity was displayed in Figure 4.3. 
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Figure 4.3: VCI Results 

It is observe that Group 14 and Group 1 has the highest value, while Group 11 and Group 

9 has the lowest value. In more detail, Group 14 has 43 unique components (M) and 33 physical 

interactions (I), compared to Group 9 that 12 unique components (M) and 5 physical interactions 

(I). This metric can quantify complexity among different groups, showing which group is more 

complex in terms of their visual component interaction. In this case evidently, Group 14 is more 

complex. 

4.3.2 Software Component Interaction (SCI) 

SCI metric was implemented to fourteen samples from first semester 2015-16. Results are 

shown in the Table 4.3 below.  It is observed that SCI range is [277, 20213], component (M) 

quantities range is [9, 41] while interaction (I) range is [14, 137].  
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Table 4.3: SCI Results 
Software Component Interaction (SCI) 

Sample ID Components (M) Interactions (I) SCI= M²+I² 
Group 1 36 113 14065 
Group 2 23 29 1370 
Group 3 16 38 1700 
Group 4 38 137 20213 
Group 5 23 43 2378 
Group 6 33 108 12753 
Group 7 25 45 2650 
Group 8 26 86 8072 
Group 9 9 14 277 
Group 10 30 44 2836 
Group 11 13 23 698 
Group 12 39 71 6562 
Group 13 30 89 8821 
Group 14 41 87 9250 

 

Also, group SCI complexity was displayed in Figure 4.4. 

 

Figure 4.4: SCI results by Group 
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It is observed that Group 4 has the highest value, while Group 9 has the lowest value. In 

more detail, Group 4 had 38 unique components (M) and 137 interactions (I) in the ladder logic, 

compared to Group 9 that had 9 unique components (M) and 14 interactions (I). This metric can 

quantify software complexity among different groups, showing which group is more complex in 

terms of their software component interaction. In this case evidently Group 4 is more complex.  

Please note, that group 9 had additional physical components that those used in the software. This 

could be a result of using components to enable a physical interaction but not necessarily using 

them in the software as an actuator or sensor.  

4.3.3 Software Component Interaction with stages (SCIS) 

SCIS metric was implemented in fourteen samples from first semester 2015-16. Results 

are shown in the Table 4.4 below.  Ranges were obtained and it is observed that SCIs range is 

[1044, 80801], component (M) quantities range is [12, 63] while interactions (I) range is [30 to 

280].  

Table 4.4: SCIS Results 
Sample ID Components (M) Interactions (I) SCIS= M²+I² 

Group 1 50 237 58669 

Group 2 34 68 5780 

Group 3 26 103 11285 

Group 4 49 280 80801 

Group 5 30 101 11101 

Group 6 43 222 51133 

Group 7 34 116 14612 

Group 8 38 117 15133 

Group 9 12 30 1044 
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Sample ID Components (M) Interactions (I) SCIS= M²+I² 

Group 10 37 103 11978 

Group 11 21 77 6370 

Group 12 50 152 25604 

Group 13 35 143 21674 

Group 14 63 183 37458 

 

Group SCIS complexity was displayed in Figure 4.5. 

 

Figure 4.5: SCIS results by Group 

It is observed that Group 4 has the highest value, while Group 9 has the lowest value. In 

more detail, Group 4 had 49 unique software components (M) and 280 interactions (I) in the ladder 

logic, compared to Group 9 that had 12 unique software components (M) and 30 interactions (I). 

This metric can quantify software complexity, including stages as an additional component among 
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different groups, showing which group is more complex in terms of their software component 

interaction with stages. In this case, evidently, Group 4 is more complex.  

We can say that if we compare SCI components vs SCIS components for group 4, there is 

a difference. That difference account for the amount of stages that were not considered in SCI but 

are considered in SCIS.  These stages that are being considered add complexity since they interact 

with the rest of components in the ladder logic. Consequently it is expected to see more interactions 

accounted for in the SCIS implementation within the same group. For group 4, there are 143 

additional interaction. 

4.3.4 Lines of Code (LOC) 

LOC metric was implemented to fourteen samples from first semester 2015-16. Results are 

shown in the Table 4.5 below.  Ranges were obtain and it is observed that LOC range is [9, 113], 

lines (L) quantities range is [9, 114] while blank lines (n) range is [0, 10].  

Table 4.5: LOC Results 
Sample ID L n LOC = L-n 

Group 1 75 7 68 

Group 2 38 2 36 

Group 3 114 1 113 

Group 4 63 0 63 

Group 5 45 10 35 

Group 6 59 0 59 

Group 7 55 3 52 

Group 8 49 0 49 

Group 9 9 0 9 



65 
 

 
 

Sample ID L n LOC = L-n 

Group 10 43 6 37 

Group 11 36 0 36 

Group 12 55 0 55 

Group 13 52 0 52 

Group 14 62 0 62 

Also, group LOC complexity was displayed in Figure 4.6. 

 

Figure 4.6: LOC results by Group 

It is observed that Group 3 has the highest value while Group 9 has the lowest value. In 

more detail, Group 3 had 114 lines of code (L) and 1 blank line (n) compared to Group 9 that had 

9 lines of code (L) and 0 blank lines (n). This metric quantifies size of the program based on the 

number of lines (LOC). In this case, evidently Group 3 has more lines of code, hence we can say 

that it is the biggest program among all groups, hence the more complex in that matter.   
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4.3.5 Cyclomatic Complexity (CC) 

CC metric was implemented as well. Results are showed in the Table 4.6 below.  Ranges 

were obtained and it is observed CC range is [1, 12], that jumps (e) quantities range is [4, 25], 

stages (n) varied range is  [3 to 23] and initial stage (p) range is [1, 2].  

Table 4.6: CC Results 
Cyclomatic Complexity (CC) 

Sample ID e n p CC = e-n+p 

Group 1 25 14 1 12 

Group 2 17 11 1 7 

Group 3 15 10 1 6 

Group 4 15 11 1 5 

Group 5 9 6 1 4 

Group 6 13 10 1 4 

Group 7 12 9 1 4 

Group 8 13 12 1 2 

Group 9 4 3 1 2 

Group 10 6 6 2 2 

Group 11 8 8 1 1 

Group 12 15 12 1 4 

Group 13 7 5 1 3 

Group 14 25 23 2 4 

 

Also, group LOC complexity was displayed in Figure 4.7. 
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Figure 4.7: CC Complexity Metric Results 

Result shows that Group 1 has the most independent paths in the Direct Soft Ladder Logic. 

On the contrary, Group 11 had only one linear independent path. In more detail, Group 1 had 25 

jumps (e), 14 stages (n) and 1 initial stage (p) compared to Group 11 that had 8 jumps (e), 8 stages 

(n) and 1 initial stage (p).   Surprisingly, for the first time until now, 4 groups are equally complex 

in terms of their independent paths. These groups are groups 6,7,12 and 14 with four linearly 

independent paths. 

4.3.6 Process Hierarchical Function 

PHF metric was implemented to determine the Automated Process functions decomposed 

in multiple levels. Results are showed in the Table 4.7 below.  Ranges were obtained and it is 

observed that PHF range is [31, 59], the number of functions at each level (F) varied range is [0, 

12], the number of level (l) range is [4, 7] and weight for level (k) range is [1 to 4].  
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Table 4.7: PHF Results 
Process Hierarchical Function (PHF) 

Sample ID 
Level 1 

K=1 

Level 2 

K=2 

Level 3 

K=3 

Level 4 

K=4 PFH =∑Fl * Kᵢ 

Group 1 5 9 12 0 59 

Group 2 4 9 7 0 43 

Group 3 7 9 2 0 31 

Group 4 4 8 6 0 38 

Group 5 4 9 6 0 40 

Group 6 4 9 8 0 46 

Group 7 4 9 6 0 40 

Group 8 4 9 9 0 49 

Group 9 4 8 7 0 41 

Group 10 4 8 7 0 41 

Group 11 4 8 6 0 38 

Group 12 4 8 8 0 44 

Group 13 4 7 7 2 47 

Group 14 4 8 8 0  44 

 

Also, group PHF complexity was displayed in Figure 4.8. 
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Figure 4.8: PHF Complexity Metric Results 

Result shows that Group 1 has the most process functions decomposed in multiple levels. 

On the contrary, Group 3 has the fewest. In more detail, Group 1 had up to 12 function at level 3 

compared to Group 3 that had up to 9 at level 2.  Again, it is observed that there are some groups 

are equally complex in terms of their process functions decomposition. These groups are group 4 

and 12 with a value of 38.  Also groups 5 and 7 have a value of 40, while Groups 9 and 10 have a 

value of 41. 

4.3.7 Station Hierarchical Function 

SHF metric was implemented to determine the process automation stations functions 

decomposed in multiple levels. Results are showed in the Table 4.8 below.  Ranges were obtained 

and it is observed that Sum SHF results varied from [53, 76], while Max SHF values were [22, 31] 

and Product SHF [15048, 73304]. 
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Table 4.8 SHF Results 

Group 
Station

1 
Station 

2 
Station 

3 
Station 

4 
Station 

5 Sum 
SHF 

Max 
SHF 

Product 
SHF SHF1 SHF2 SHF3 SHF4 SHF5 

1 11 28 17 14 6 76 28 73304 
2 19 22 11 6 0 58 22 27588 
3 6 22 19 6 0 53 22 15048 
4 14 22 11 6 0 53 22 20328 
5 11 25 11 9 0 56 25 27225 
6 17 26 11 9 0 63 26 43758 
7 13 22 14 6 0 55 22 24024 
8 16 31 11 6 0 64 31 32736 
9 11 25 14 6 0 56 25 23100 
10 11 25 14 6 0 56 25 23100 
11 11 22 14 6 0 53 22 20328 
12 11 28 11 9 0 59 28 30492 
13 14 29 14 6 0 63 29 34104 
14 11 25 17 6 0 59 25 28050 

 

Figure 4.9 displayed Sum SHF metric. These metrics were selected among the others because it 

captures functional decomposition of all stations of the process automation but at the same time is 

analyzed as a single measure.  
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Figure 4.9: SHF Complexity Metric Results 

Results shows that Group 1 has the most station functions decomposed in multiple levels. 

On the contrary Group 11 has the fewest, but not by much. In more detail, Group 1 had up to 15 

function at level 3 compared to Group 11 that had up to 9 at level 3.  It is observed that there are 

some groups are equally complex in terms of their station functions decomposition. These groups 

are group 3, 4 and 11 with a value of 53.  Also groups 5, 9 and 10 have a value of 56, while 

Groups 13 and 6 have a value of 63. 

4.3.8 Complexity Metric Comparison 

Beside the individual metrics results, a spider diagram was created to compare all seven 

metric among the fourteen groups as shown in Figure 4.10 below. 

 

Figure 4.10: Complexity Metric Results by Group (Collado, Medina & Soto, 2016) 
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Each one of the seven complexity metrics results, were normalized for all groups. A higher 

value within the scale of 0 to 1 indicates a higher value of complexity. It is observed that the 

normalized result for various complexity metrics varied from group to group. Particularly, group 

1, compared to the rest of the group, created more independent paths in the software (CC) and 

added more functions to their overall process (PHF) and stations (SHF). Similar, group 8, 

generated their automated process with higher number of software component interactions (SCI 

and SCIS).  

Another analysis conducted is a correlation analysis among complexity metrics. It is of 

interest to determine the extent to which two metrics correlates. Pearson correlation was used to 

evaluate the linear relation between pair of metrics as shown in Figure 4.11. 

 

Figure 4.11: Correlation Analysis 

When coefficient absolute correlation is closer to 1 or -1, the data points fall on a line more 

tightly. When value is cero, no linear relationship exist. It is observed from the result of this 

analysis that there is correlation among almost all metrics expect SHF- LOC. The most significant 

correlation is within SCI and SCIS with a correlation of 0.960 and SHF and PHF with 0.955. This 
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was expected since both, SCI and SCIS measures component and interaction in the software, 

however, SCI does not consider stages and SCIS does. Similar both SHF and PHF measure 

complexity based on functionality, the difference is that SHF measures it by station and PHF assess 

the process automation as a whole. 

In order to answer research question three, is the complexity of the multiple solutions 

generated significantly different? Friedman rank sum test was used to compare all seven 

complexity measures between fourteen groups.  For this test, complexity metrics were normalized 

using the following equation: 

                                                          𝑌𝑌
max (𝑌𝑌)

                                                                   (4.1) 

Figure 4.12 below shows that according to this test, there is sufficient evidence to reject null 

hypothesis. Hence there is statistical significant difference between the groups. 

 
Figure 4.12: Friedman Rank Sum Test 

Another approach used was the Pairwise comparison using Conover’s test. 
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Figure 4.13: Pairwise Comparison  

This approach shows exactly which group differs from one another. For instance, Group 1 

is statistically different from group 11, 5, 7 and 9. Similar, group 6 differ from group 9 and so on. 

Multiple analysis on the same variable, increase the chance of committing a Type I error.  

Therefore adjusting the p-value to a more stringent value making it less likely to commit Type I 

Error (Bonferroni Correction, 2015). Equation 4.2 shows the p value adjustment used for this 

pairwise comparison test. 

                                           α𝑎𝑎𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑙𝑙 = 1 − (1 − α𝑎𝑎𝑙𝑙𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑘𝑘                                              (4.2) 

Where, α𝑎𝑎𝑙𝑙𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼/𝑛𝑛 

Next section, shows student factor survey results. 

4.4 Student Factor Survey 

Student Factor survey questionnaire was employed to measure age, gender, knowledge 

perceived abilities, perceived difficulty, individual contribution, team dynamic and performance. 

A total of thirty five students agreed to voluntarily participant in this survey. All they are industrial 

engineering students that took the Process Automation (ININ 4057) course. Also they are the 

designers of the small scale automated process used to implement complexity metrics, discussed 

in the previous Section (4.3 Complexity Metrics). Table 4.9 summarizes results obtained from 

student factor survey and complexity metrics implementation results. 

Table 4.9: Student Factor Survey and Complexity Metric Result Range 
Variables Designation Category Data 

Range 
Connotation 

VCI Output 
 

Complexity 
Metric 

 

[169, 
2853] 

Visual 
Component 
Interaction 
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Variables Designation Category Data 
Range 

Connotation 

CC [1, 12] 
Number of 

Independ path 
in a program 

SCI [277, 
20213] 

Software 
Component 
Interaction 

SCIS [1044, 
80801] 

Software 
Component 

Interaction with 
stages 

SHF [53, 76] Station 
Functions 

PHF [31, 59] Process 
Functions 

LOC [9, 113] Program 
Volume 

Gender  
Input/ 

Predictors 
 
 

Gender [0, 1] 0=Female, 
1= Male 

Age Individual Age [21, 31] Age in Years 
Age_Median Group Age [22,25] Age in Years 

Academic_Load Academic Load [6, 21] Academic 
credits 

Knowledge_Work 

Input/ 
Predictors 

 
 

Individual 
Knowledge 

 
 

[0, 1] 

0= No 
Knowledge, 

1= Knowledge 
 

Knowledge_Project [0, 1] 
Knowledge_Internship [0, 1] 
Knowledge_Coop [0, 1] 
Knowledge_Automation [0, 1] 
Knowledge_Programming [0, 1] 
Know_Work_Median 

Group 
Knowledge 

[0, 1] Percentage of 
knowledge 
within the 

group 
From 0 = No 
Knowledge to 
1= Knowledge 

 

Know_Project_Median [0, 1] 
Know_Intern_Median [0, 1] 
Know_Coop_Median [0, 1] 
Knowe_Auto_Median [0, 1] 
Know_Prog_Median [0, 1] 
PerHabilities_Programming 

Input/ 
Predictors 

 

Perceived 
Abilities/ Skills 

[2, 7] Perceived 
abilities rating  
Scale 1 (Very 

Poor) to 7 
(Excellent) 

PerAbilities_Circuit [2, 7] 

PerComplexity_Design  
Input/ 

Predictors 
 

 

 

 
Difficulty/    

Complexity  
 

[3, 6] 
Perceived 

difficulty rating 
Scale 1 

(Extremely 
Simple)  to 7 
(Extremely 
Complex) 

PerComplexity_Structure [2, 6] 
PerComplexity_PLC [2, 6] 
PerComplexity_Programming [1, 6] 
PerComplexity_Troubleshooting [2, 6] 
PerComplexity_HMI [1, 6] 
PerComplexity_Motors [1, 4] 
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Variables Designation Category Data 
Range 

Connotation 

PerComplexity_Neumuatic  [1, 4] 
PerComplexity_Sensors [1, 4] 
PerComplexity_Relays [1, 4] 

Individual_Motivation 

Input/ 
Predictors 

Individual 
Contribution 

[2, 7] 

Student  
Motivation on a 

Scale 1 (Not 
Motivated) to 7 

(Extremely 
Motivated) 

Individual_ContributionDesign [3, 6] 

Student Design 
Contribution  
Scale 1 (Very 

Poor) to 7 
(Excelent) 

Individual_ContributionStructure [3, 6] 

Student 
Structure 

Contribution   
Scale 1 (Very 

Poor) to 7 
(Excelent) 

Individual_ContributionPLC [2, 6] 

Student PLC 
Contribution 
Scale 1 (Very 

Poor) to 7 
(Excelent) 

Individual_ContributionProgram
ming [2, 6] 

Student 
Programming 
Contribution  
Scale 1 (Very 

Poor) to 7 
(Excelent) 

Individual_ContributionTroubles
hooting [3, 6] 

Student 
Troubleshootin
g Contribution 
Scale 1 (Very 

Poor) to 7 
(Excelent) 

Individual_ContributionHMI [1, 6] 

Student Human 
Machine 
Interface 

Contribution 
Scale 1 (Very 

Poor) to 7 
(Excelent) 

Individual_ProjectHrs [40, 400] Estimated hours 
spend in project 

Individual_PerPerformance Input/ 
Predictors 

 
Team Dynamic 

 
[4, 7] 

Student 
Perceived Self 
Performance  
Scale 1 (Very 

Poor) to 7 
(Excelent) 
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Variables Designation Category Data 
Range 

Connotation 

Individual_ComparedContributio
n [7, 7] 

Student 
contribution 
among group 

members Scale 
1 (Substantially 

less) to 7 
(Substantially 

more) 
Group_Qty [2, 3] Group Qty. 

Group_CommunicationFreq [4,7] 
Group 

Communication 
Frequency 

Group_Female% [0, 1] Group Female 
% 

Group_MemberEngage% [0.33, 1] Group 
performance 

Goup_DecisionsUnanimity [0, 1] 

0=No, 1=Yes 
Goup_DecisionsAuthority [0, 1] 
Goup_DecisionsMinority [0, 1] 
Goup_DecisionsMayority [0, 1] 
Goup_DecisionsConsensus [0, 1] 
Performance_ININ3.51 

Input 
Predictors 

 
Performance 

 

[0, 1] 0=No, 1=Yes 
Performance_ININ3.01 [0, 1] 0=No, 1=Yes 
Performance_ININ2.51 [0, 1] 0=No, 1=Yes 
Performance_General3.51 [0, 1] 0=No, 1=Yes 
Performance_General3.01 [0, 1] 0=No, 1=Yes 
Performance_General2.51 [0, 1] 0=No, 1=Yes 
Performance_INEL4075 [2 , 4] 

Grades where 
A=4, B=3, C=2 

 

Performance_INEL4076 [2 , 4] 
Performance_INEL4077 [2 , 4] 
Performance_INME4055 [2 , 4] 
Performance_INME4056 [2 , 4] 
Performance_ININ4057 [2 , 4] 
Performance_INGE3016 [2 , 4] 
Performance_GrpLabs [68, 97] 

Course Grade 
Performance_GrpDesign [86, 100] 
Performance_GrpStructure [88, 100] 
Performance_GrpDemo [58, 98] 
Perfornance_IndExams [46, 100] 
Perr Eval (max 30) [0, 30] Peer Evaluation  

Absence [0, 4] 

Count of 
Absence to the 

ININ 4057 
course  

Lateness [0, 9] Count of 
Lateness to the 
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Variables Designation Category Data 
Range 

Connotation 

ININ 4057 
course 

 

Since Reduced Model I search to predict complexity based on performance only (see Figure 

3.16), Cronbach's alpha was used to determine the scale of internal consistency for performance 

construct. Table 4.10 shows that Cronbach's alpha is > 0.7, hence predictors are a reliable measure 

of performance. 

Table 4.10: Cronbach Alfa Analysis 
Category  Variables Cronbach's alpha > 0.7 
Performance Performance_INEL4075 

Performance_INEL4076  
Performance_INEL4077       
Performance_INME4055  
Performance_INME4056 
Performance_ININ4057 
Performance_INGE3016 
Performance_GrpLabs 
Performance_GrpDesign 
Performance_GrpDemo  
Performance_GrpStructure  
Perfornance_IndExams 

0.7465 
 

Next section shows prediction models results. 

4.5 Prediction Models 

As mentioned in the prediction model methodology (Figure 3.16), two methods of 

regression, random forest and decision tree, were used to run three models (General Model, 

Reduced Model I and Expanded Model II) and predict each one of the seven complexity metrics. 

Hence, there are in total 42 models. Table 4.11 summarizes each model with its R2, MAPE and dF 

value. 
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Table 4:11 Prediction Models Result Summary 
Method Model Response Rsq MAPE dF 

randomForest General Model CC 0.548536 0.397585 1.426677 
randomForest Reduced Model I CC 0.535984 0.333267 1.496542 
randomForest Expanded Model II CC 0.41384 0.154355 1.531863 
decision tree Expanded Model II CC 0.024134 0.340146 0.553503 
decision tree Reduced Model I CC -0.85128 0.693474 -1.55191 
decision tree General Model CC -0.96172 0.657799 -1.7018 
randomForest Expanded Model II LOC 0.738041 0.095312 1.799446 
randomForest Reduced Model I LOC 0.523686 0.242122 1.200094 
randomForest General Model LOC 0.333015 0.272883 0.877021 
decision tree Expanded Model II LOC 0.097521 0.348448 0.398937 
decision tree General Model LOC -0.84076 0.332532 -0.83888 
decision tree Reduced Model I LOC -0.93683 0.475244 -1.26935 
randomForest Expanded Model II PHF 0.922536 0.014024 1.847335 
randomForest Reduced Model I PHF 0.801439 0.045817 1.369966 
randomForest General Model PHF 0.738634 0.038414 1.382474 
decision tree General Model PHF 0.196712 0.08819 0.253179 
decision tree Expanded Model II PHF 0.044322 0.063748 0.35407 
decision tree Reduced Model I PHF -0.15297 0.09186 -0.16582 
randomForest Expanded Model II SCI 0.887782 0.583176 1.705368 
randomForest Reduced Model I SCI 0.786818 1.520328 1.118175 
randomForest General Model SCI 0.773659 0.99664 1.36793 
decision tree Expanded Model II SCI 0.381896 0.661754 1.095838 
decision tree General Model SCI 0.273575 1.979339 0.308155 
decision tree Reduced Model I SCI 0.051351 1.286805 0.407724 
randomForest Expanded Model II SCIS 0.873276 0.299414 1.845223 
randomForest General Model SCIS 0.590381 0.983414 1.167694 
decision tree Expanded Model II SCIS 0.272862 0.492326 1.057958 
randomForest Reduced Model I SCIS 0.183463 1.477243 0.446451 
decision tree General Model SCIS 0.070582 1.110499 0.506771 
decision tree Reduced Model I SCIS -0.88769 1.934487 -1.01651 
randomForest Expanded Model II SHF 0.862238 0.011113 1.820617 
randomForest General Model SHF 0.505902 0.029423 1.111795 
randomForest Reduced Model I SHF 0.426447 0.031977 0.978417 
decision tree Expanded Model II SHF 0.038019 0.0463 0.29673 
decision tree Reduced Model I SHF -0.74776 0.060155 -0.83823 
decision tree General Model SHF -0.76182 0.061951 -0.88354 
randomForest Reduced Model I VCI 0.790529 0.449659 1.390954 
randomForest General Model VCI 0.735884 0.523428 1.258034 
randomForest Expanded Model II VCI 0.935437 0.138508 1.860113 
decision tree Expanded Model II VCI 0.673461 0.293108 1.423917 
decision tree Reduced Model I VCI 0.224424 0.990142 0.239913 
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Method Model Response Rsq MAPE dF 
decision tree General Model VCI 0.213185 0.69718 0.523778 

Each model was analyzed based on the desirability function score to determine which one 

is the best prediction model for each complexity metric. This dF seeks to minimize the mean 

absolute percentage error and maximize the variability explained by the model. See equation 

below:  

                                                          𝑃𝑃𝑃𝑃 = 𝑅𝑅2

max (𝑅𝑅2)
+ 1

𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀
                                                       (4.3) 

Once analyzed, models with higher score were select for each complexity as shown in Table 4.12 

below. 

Table 4.12: Selected Prediction Models for Complexity 
Method Model Response Rsq MAPE DF 

randomForest Expanded Model II VCI 0.935437 0.138508 1.860113 
randomForest Expanded Model II PHF 0.922536 0.014024 1.847335 
randomForest Expanded Model II SCIS 0.873276 0.299414 1.845223 
randomForest Expanded Model II SHF 0.862238 0.011113 1.820617 
randomForest Expanded Model II LOC 0.738041 0.095312 1.799446 
randomForest Expanded Model II SCI 0.887782 0.583176 1.705368 
randomForest Expanded Model II CC 0.4138399 0.1543549 1.531863 

Now that the best model for each complexity model was selected, each one is analyzed in 

order to determine important variables and the relation between team performance and 

characteristic and performance. 

Using student t-test algorithm (See Appendix G), important variables for each model were 

identified as shown in Table 4.13. 

Table 4.13: Prediction Models Important Variables 
Variable  VCI CC SCIS SHF PHF LOC 

Individual_ContributionProgramm Original  X     
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Variable  VCI CC SCIS SHF PHF LOC 
Performance_ININ4057 Original  X     
Perfornance_IndExams Original  X     

Knowledge_Project Median  X     
Knowledge_Programming Median X X X X X X 

Individual_Motivation Median X X X X X X 
PerHabilities_Programming Median  X  X X X 

PerComplexity_Troubleshooting Median X X X X X  
PerComplexity_HMI Median X X X X X X 

PerComplexity_Neumuatic Median X X X X X X 
PerComplexity_Sensors Median  X X X X X 

Individual_ContributionDesign Median  X  X X X 
Individual_ContributionPLC Median X X X X X X 

Individual_ContributionProgramming Median X X X X X X 
Individual_ContributionTroubleshooting Median X X X X X  

Individual_ProjectHrs Median X X X X X X 
Performance_ININ4057 Median  X   X  
Performance_INGE3016 Median X X X X X X 
Perfornance_IndExams Median X X X X X X 

Absense Median X X X X X X 
Knowledge_Project Minimum  X     

Knowledge_Programming Minimum X X X  X X 
Individual_Motivation Minimum X X X X X X 
PerHabilities_Circuit Minimum X X X X X X 

PerComplexity_Design Minimum X X X X X X 
PerComplexity_PLC Minimum X X X X X X 

PerComplexity_Programming Minimum X X X X X X 
PerComplexity_Troubleshooting Minimum X X  X X X 

PerComplexity_Relays Minimum X X X X X X 
Individual_ContributionPLC Minimum X X X  X X 

Individual_ContributionProgramming Minimum X X X X X X 
Individual_ContributionHMI Minimum X X X X X X 

Individual_ProjectHrs Minimum X X X X X X 
Individual_ComparedContribution Minimum X X X X X X 

Performance_INEL4075 Minimum X X X X X X 
Performance_ININ4057 Minimum  X X  X X 
Performance_INGE3016 Minimum  X     
Perfornance_IndExams Minimum X X X X X X 

Knowledge_Programming Maximum X X X X  X 
PerHabilities_Programming Maximum  X     

PerComplexity_PLC Maximum  X  X X  
PerComplexity_Sensors Maximum  X X    

Individual_ContributionProgramming Maximum  X     
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Variable  VCI CC SCIS SHF PHF LOC 
Individual_ProjectHrs Maximum X X X X  X 

Performance_ININ4057 Maximum  X     
Perfornance_IndExams Maximum X X X X X X 

Lateness Maximum X X X X X X 
Total important variables  74 47 73 73 78 75 

Common variables  24 
 

As observed, six of the seven models had important variables, 24 of them in common. 

Please note SCI model did not had statistically important variable. 

 Subsequently, to determine the marginal effect of independent variable on the response, 

partial dependence plot were constructed in R for each one of the responses (complexity 

metrics).  For instance, a subset of all the plots can be seen in Figure 4.14 (remaining are in 

Appendix H). 

 

Figure 4.14: Partial Dependence Plot for LOC 
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These partial dependence plots provide the answer to last research question, is there a 

relationship between project outcome complexity with team characteristics and performance? As 

observed in the top left plot in Figure 4.14, LOC complexity begin to decrease as the group 

minimum individual hour’s increases’. Also it is observed that LOC increase when the contribution 

from one membered compared to the others increase. In terms of performance, plot indicates that 

when group’s minimum GPA is 3 (out of maximum GPA of 4) in the INEL 4075 course, LOC 

reaches is max value. Similarly, bottom left plot shows that LOC increase abruptly when the 

minimum ININ 4057 exam grade within the group was 75 in a scale of 100 (also known as grade 

C).  These finding are very interesting. Most importantly, the relationship between project outcome 

complexity with team characteristics and performance is now known. 
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Chapter 5: Conclusion  
In summary, this research presented current considerations of complexity for Project-Based 

Learning (PB) through the implementation of professor survey to thirteen UPRM engineering 

professor from various engineering departments. It was confirmed that 83% of the participants 

believed complexity is considered in engineering education. Also, 46% acknowledged that it is 

necessary to assess complexity, since they believed that project definitions differ when students 

are assigned different projects. Lastly, 54% said that multiple solutions generated by students who 

are assigned the same project, differ.  

Most noteworthy, this research studied a variety of complexity metrics, in order to present 

the adaptation, development and implementation of seven complexity metric to asses design 

complexity in PBL. These metrics are: (1) Visual Component Interaction metric (VCI), that was 

developed to measure overall design complexity based on the component interaction that can be 

observed physically in the process, independently of the program or software. (2) Similar, 

Software Component Interaction (SCI) metric is intended to measure the complexity of process 

automation components and interactions through the software, particularly, the ladder logic. (3) 

The Software Component Interaction with Stages (SCIS) metric is proposed as a modification of 

the SCI metric, that include the assessment of the software stages. (4) Lines of Codes (LOC) metric 

is used to measure the lines of code of ladder logic. (5) Cyclomatic Complexity (V(G)) metric 

measures the number of linearly independent paths in the Direct Soft Ladder Logic software. (6) 
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The Process Hierarchical Functionality (PHF) metric is intended to assess specific functions of 

completed process automation projects. Last but not least (7), the Station Hierarchical 

Functionality (SHF) measures the complexity in relation to station functions. 

Even though the simplest and easiest metric to implement is LOC, it does not considered 

the interaction in each line of code. Therefore, this work presented a robust metric such as SCIS, 

which account not only for the amount of components, but the interaction in each line of code of 

the software to assess complexity.  

A student factor survey was submitted to collect variables that represent designer’s 

individual and group characteristic and performance among others. In total, a maximum of 173 

variables were used as predictor in the prediction model using both randomForest and rpart 

function in R. Results indicated that Random Forest provided better models based on the 

coefficient of determination (R2) and the mean absolute deviation percentage (MAPE) than basic 

recursive partitioning trees.  For instance, VCI random forest prediction model R2 is 0.935 while 

MAPE is 0.13.  

Finally, one prediction model was developed for each one of the seven responses and 

variable importance was assessed. Through Partial dependence plot, the relationship among 

designer’s characteristic and performance with complexity was revealed. Out of the 173 variables 

used to generate prediction model, 24 variables resulted commonly important in six of the seven 

model.  

A future application for this method can be used in school systems and higher education using a 

more generalized assessment of complexity, for instance, not only for process automation. Moving 

forward this assessment can be extended to control PBL complexity, not only to quantify and 

analyze it.    
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Appendix A: R2D2 Ladder Logic 
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Figure A1: R2D2 Ladder Logic 
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Appendix B: SCI Metric Applied to R2D2 
 

Making components-interaction diagrams for each line of code 

Table B1: Automated Process Components 

Components (M) 

X's Y's C's CT's T's 

X0 Y0 C0 CT0 T0 

X1 Y1 C1 CT1 T1 

X2 Y2 C2 
 

T2 

X3 Y3 C3 
 

T3 

X4 Y4 C4 
 

T4 

X5 Y5 C6 
 

T6 

X6 Y7 C7 
 

T7 

X7 Y10 C11 
 

T10 

X10 Y12 C12 
  

X11 Y13 C13 
  

X20 Y20  
  

X21 Y21  
 

 

X22 Y22  
 

 

X23 Y23  
 

 

X24 Y24  
 

 

X25 Y25  
 

 

X31 Y26  
  

X32   
  

X33   
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Line by Line Analysis 

Table B2: Diagrams based on Lines of Code 
 

Line 
of 

Code 
Diagrams Interaction 

1 

 

 

 

 

4 

 

2 

 

4 

4,6  5 

X36   
  

X37   Total 58 
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9,13  15 



106 
 

 
 

Line 
of 

Code 
Diagrams Interaction 

 

 

10,16 

 

16 



107 
 

 
 

Line 
of 

Code 
Diagrams Interaction 

11,20 

 

10 

14,20 

 

 

6 



108 
 

 
 

Line 
of 

Code 
Diagrams Interaction 

17,20 

 

 

 

8 

18,23 

 

 

 

1 

21,26 

 

 

2 



109 
 

 
 

Line 
of 

Code 
Diagrams Interaction 

24,20 
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30,34 
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31,38 
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32,34 
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35,44 
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39,44 
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46,48 
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49 
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Line 
of 

Code 
Diagrams Interaction 

106,10
8 

 

3 

Total Interactions 270 

 
Eliminating redundant diagrams: 

Table B3: Elimination of Redundant Diagrams Based on Lines of Codes 

Lines of Code Interaction Lines of Code 
Comparison Interaction Final Lines of 

Code 
Final 

Interaction 

1 4       4 
2 4       4 

4,6 5       5 
7 1       1 

8,16 12       12 
10,16 16 9,13 15 10,16 16 
11,20 10       10 
14,20 6       6 
17,20 8       8 
18,23 1       1 
21,26 2       2 
24,20 6       6 
27,29 3       3 
30,34 8       8 
31,38 12 32,34 12 31,38 12 
35, 44 4       4 
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Lines of Code Interaction Lines of Code 
Comparison Interaction Final Lines of 

Code 
Final 

Interaction 

36,41 1       1 
39,44 2       2 
42,44 2       2 

45 5       5 
46,48 6       8 

49 1       1 
50 3       3 
51 3       3 

52,54 8       8 
55,97 14       14 
56,59 14       14 
57,85 14       14 

60 1       1 
61,63 2       2 
64,66 1 90,92 1 64,66 1 

67 1       1 
68,71 6       6 
69,74 8       8 
72,92 5       5 
75,77 5       5 

79 6 78 1 79 6 
86 1       1 

87,89 2       2 
93 1       1 

94,71 4 95,74 4 94,71 4 
99 4 98 1 99 4 

100,102 2 80,82 1 100,102 2 
104 4 103 1 104 4 

106,108 3 105 1 106,108 3 
Total without 
elimination 270 Delta 37 Total wit 

elimination 233 

Overlapping diagrams when interactions are reduced 

Table B4: Overlapped Diagram based on Lines of Code 
Line of 
Code Diagrams Interaction 

1  4 
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Line of 
Code Diagrams Interaction 

104 
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106,108 
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Total Interactions  211 

Result: C= M2+I2 = 582+2112= 47885 

 
 
Validating the methodology through a Big Diagram 
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Figure B1: Big Diagram 
 

Legend of 
Figures 

Conditions variables 

Actions variables 

Lines from conditions to 
actions without implying 
interaction 

Interaction among 
conditions only 

Interaction among 
conditions and actions 

Diagonal line to avoid 
variable duplicity without 
affecting interaction among 
conditions and actions 

Variable that changes from 
condition to action and vice 
versa   

Variable identified as 
condition and action in the 
same interaction 
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Appendix C: CPSHI Approval  
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Appendix D:  R code for Random Forest Analysis  
 
setwd("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data") 
library(readr) 
rawdata <-read_csv("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data/VCIrawdata.csv") 
 
library(randomForest) 
 
#Cross Validation 
data=rawdata 
 
nFolds=10 
 
MAD=matrix(nrow=nFolds,ncol=1) 
MAPE=matrix(nrow=nFolds,ncol=1)#cv MAPE matrix 
MSE=matrix(nrow=nFolds,ncol=1)#cv error matrix 
Rsq=matrix(nrow=nFolds,ncol=1) # aVCIuracy matrix 
permRows=sample(x=1:nrow(data),size=nrow(data),replace=FALSE) 
 
# Create testing and training folds 
obsFold=floor(nrow(data)/nFolds) 
pending=nrow(data)-floor(nrow(data)/nFolds)*nFolds 
j=0 
 
for (i in 1:nFolds){ 
  if (i>=(nFolds-pending+1) & pending>0) {      
    assign(paste("F",i,sep=""),data[permRows[(j+1):(j+obsFold)],]) ; j= j + obsFold + 1 } else  
    { assign(paste("F",i,sep=""),data[permRows[(j+1):(j+obsFold)],]); j= j + obsFold } 
   
  testing=get(paste("F",i,sep="")) 
  trainingRows=setdiff(1:nrow(data),as.numeric(row.names(testing))) 
  training=data[trainingRows,] 
   
  #RandomForest Regression  
  myRF=randomForest(VCI~.,data=training,importance=TRUE,do.trace=100,proximity=TRUE) 
  pred_cv=predict(myRF,newdata=testing) 
  actual=testing$VCI 
  MAD[i]=sum(abs(actual-pred_cv))/length(pred_cv) 
  MSE[i]=sum((actual-pred_cv)*(actual-pred_cv))/length(pred_cv) 
  MAPE[i]=sum(abs(actual-pred_cv)/actual)*(1/length(pred_cv)) # the mean absolute percentage error  
  Rsq[i]= 1 - sum((actual-pred_cv)^2)/sum((actual-mean(actual))^2) 
} 
 
plot(myRF) 
 
myRF$importance 
varImpPlot(myRF) 
 
impo<-myRF$importance 
write(impo,"C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data/ResulTs/VCIimportscoreP.cvs") 
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#myRF$mtry 
#myRF$type 
imposd<-myRF$importanceSD 
write.csv(imposd,"C:/Users/sotoz/OneDrive - Hewlett Packard 
Enterprise/Data/Results/VCIimportscoreP.csv") 
 
#myRF$ntree 
#myRF$oob.times 
#myRF$forest #averiguar mas sobre este valor 
#myRF$forest$nodepred 
#myRF$proximity  
 
#Performance metrics 
MSE 
mean(MSE) # error 
Rsq 
mean(Rsq) # aVCIurracy 
MAD 
mean(MAD) 
MAPE 
mean(MAPE) 
 
ok<-cbind(MSE,Rsq,MAD,MAPE) 
ok 
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Appendix E: R code for Decision Tree Analysis  
 
setwd("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data") 
library(readr) 
rawdata <-read_csv("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data/locrawdata.csv") 
 
library(randomForest) 
 
#Cross Validation 
data=rawdata 
 
nFolds=10 
 
MAD=matrix(nrow=nFolds,ncol=1) 
MAPE=matrix(nrow=nFolds,ncol=1)#cv MAPE matrix 
MSE=matrix(nrow=nFolds,ncol=1)#cv error matrix 
Rsq=matrix(nrow=nFolds,ncol=1) # aVCIuracy matrix 
permRows=sample(x=1:nrow(data),size=nrow(data),replace=FALSE) 
 
# Create testing and training folds 
obsFold=floor(nrow(data)/nFolds) 
pending=nrow(data)-floor(nrow(data)/nFolds)*nFolds 
j=0 
 
for (i in 1:nFolds){ 
  if (i>=(nFolds-pending+1) & pending>0) {      
    assign(paste("F",i,sep=""),data[permRows[(j+1):(j+obsFold)],]) ; j= j + obsFold + 1 } else  
    { assign(paste("F",i,sep=""),data[permRows[(j+1):(j+obsFold)],]); j= j + obsFold } 
   
  testing=get(paste("F",i,sep="")) 
  trainingRows=setdiff(1:nrow(data),as.numeric(row.names(testing))) 
  training=data[trainingRows,] 
   
  #RandomForest Regression  
  myRF=randomForest(LOC~.,data=training,importance=TRUE,do.trace=100,proximity=TRUE) 
  pred_cv=predict(myRF,newdata=testing) 
  actual=testing$LOC 
  MAD[i]=sum(abs(actual-pred_cv))/length(pred_cv) 
  MSE[i]=sum((actual-pred_cv)*(actual-pred_cv))/length(pred_cv) 
  MAPE[i]=sum(abs(actual-pred_cv)/actual)*(1/length(pred_cv)) # the mean absolute percentage error  
  Rsq[i]= 1 - sum((actual-pred_cv)^2)/sum((actual-mean(actual))^2) 
} 
 
plot(myRF) 
 
myRF$importance 
varImpPlot(myRF) 
 
 
myRF$mtry 
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MSE 
MMSE<-mean(MSE) # error 
 
Rsq 
MRsq<-mean(Rsq) # aVCIurracy 
 
MAD 
MMAD<-mean(MAD) 
 
MAPE 
MMAPE<-mean(MAPE) 
 
ok<-cbind(MMSE,MRsq,MMAD,MMAPE) 
ok 
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Appendix F: Friedman Test  

setwd("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data") 

library(readr) 

rawdata <-read_csv("C:/Users/sotoz/OneDrive - Hewlett Packard 
Enterprise/Data/Results/NewResults/Friedman2.csv") 

data=as.matrix(rawdata) 

data 

Ft<-friedman.test(data) 

Ft 

library(PMCMR) 

posthoc.friedman.conover.test(data,p.adjust.method="bonferron") 
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Appendix G: Student's t-Test for Variable Importance Selection  
 

setwd("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data") 
library(readr) 
rawdata <-read_csv("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data/grpallSCIS.csv") 
 
library(randomForest) 
data=rawdata 
names(data)[ncol(data)]="Y" 
qArtificial=0.9 
nPerm=30 
nVar=ncol(data)-1 
X=data.frame(matrix(nrow=nrow(data),ncol=nVar*2)) 
X[,1:nVar]=data[,1:(ncol(data)-1)] 
impor=matrix(nrow=nVar*2,ncol=nPerm) 
q=matrix(nrow=nPerm,ncol=1) 
for (i in 1:nPerm) 
{ 
  for (j in 1:nVar)# Artificial variables 
  { 
    X[,nVar+j]=sample(X[,j],length(X[,j]),replace=FALSE) 
  } 
  data2=cbind(X,data$Y) # New data frame with original Xs, artificial Xs, and Y at the end 
  names(data2)[ncol(data2)]="Y" 
  data2$Y=as.factor(data2$Y) # Depende del tipo de variable 
  rF<-randomForest(Y~.,data=data2,ntree=500,importance=TRUE)  
  impor[,i]<-rF$importance[,5] # Gini 
  q[i]<-quantile(impor[(nVar+1):(2*nVar),i],probs=qArtificial) 
} 
 
pval<-matrix(nrow=nVar,ncol=1) 
for (i in 1:nVar) 
{ 
  test=t.test(x=cbind(impor[i,]),y=cbind(q),alternative="greater",paired=TRUE,conf.level=0.95) # no 
parametrica 
  pval[i,1]<-test$p.value 
} 
pval<-data.frame(pval) 
dfPVAL=cbind(1:nVar,pval) 
impVars=subset(dfPVAL,pval<0.05/nVar,1) 
impVars 
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Appendix H: Partial Dependence Plot 
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