
COMPLEXITY MEASURES: THE CASE OF ENGINEERING
UNDERGRADUATE EDUCATION

Zachary M. Soto Maldonado

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE IN

INDUSTRIAL ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2017

Approved by:

______________________________ _____________
Lourdes A. Medina Aviles, PhD Date
Associate Professor of Industrial Engineering Department
President, Graduate Committee

______________________________ _____________
Saylisse Dávila Padilla, PhD Date
Associate Professor of Industrial Engineering Department
Member, Graduate Committee

______________________________ _____________
Betzabé Rodríguez Álamo, PhD Date
Associate Professor of Industrial Engineering Department
Member, Graduate Committee

_____________________________ _____________
Jaquelina E Alvarez, M.A. Date
Representative of Graduate Studies

______________________________ _____________
Viviana I. Cesaní Vázquez, PhD Date
Chairperson of the Department

ii

Abstract
This work investigated the relevance and impact of complexity in Project-based learning

(PBL) for engineering undergraduate education. Interviews were conducted with engineering

professors to evaluate weather complexity is and should be considered for two scenarios: when

students are assigned the same project and when students work on different projects. The first

scenario is examined in more depth with a case study on a particular course – Process Automation,

were complexity metrics were identified, adapted and implemented. These metrics measure

components interaction, process and station functionality, the number of linearly independent

paths in the program and volume. To evaluate the relationship among complexity metrics and

designer’s characteristics and performance, a student survey was developed and implemented.

Additionally, complexity prediction models are presented using randomForest, a statistical method

for classification and regression problems. The intention of this work is to promote the assessment

of complexity to identify and analyze PBL.

iii

Resumen
 Este trabajo investigó la relevancia y el impacto de la complejidad en PBL (por sus

siglas en ingles) para la educación de ingeniería sub-graduada. Se realizaron entrevistas a

profesores de ingeniería para evaluar si la complejidad es o debe ser evaluada para dos escenarios:

cuando a los estudiantes se asignan al mismo proyecto y cuando el estudiante trabaja en diferentes

proyectos. El primer escenario se examina más a fondo con un estudio de caso sobre un curso en

particular - Automatización de Procesos, donde se identificaron, adaptaron e implementaron

métricas de complejidad. Estas métricas miden la interacción de los componentes, la funcionalidad

del proceso y de la estación, el número de rutas linealmente independientes en el programa y el

volumen. Para evaluar la relación entre las métricas de complejidad y las características y

desempeño del diseñador, se desarrolló e implemento una encuesta estudiantil. Adicional, modelos

de predicción de complejidad se presentan utilizando randomForest, un método estadístico para la

clasificación y los problemas de regresión. La intención de este trabajo es promover la evaluación

de la complejidad para identificar, analizar y controlar la complejidad del aprendizaje basado en

proyectos en PBL.

iv

© Zachary M. Soto Maldonado

2017

v

Acknowledgements

Special thanks to my graduate committee, in particular to my advisor Dr. Lourdes A. Medina

for her unlimited support and for maintaining me motivated to accomplish my goal. To current

and former Industrial Engineers and once members of the UPRM’s IDDEAS Research Group who

collaborated in this work: Melissa Rosado, Eliseo Martinez, Angel Collazo, Carlos Jusino, Ismael

A. Garcia, Maricarmen Collet, Giovanni Cruz, Marisol Colón, David Del Pilar and Fernando

Martínez. To my loving husband for supporting me throughout this journey. Also I want to thank

Hector Espada and Yamil Odeh for all the flexibility provide to me in my current job to finish my

degree. Last but not least important, Hewlett Packard Enterprise for the economic support.

vi

Table of Contents

Chapter 1: Introduction ... 1

Chapter 2: Literature Review .. 5

2.1 Overview ... 5

2.2 Project-based Learning ... 5

2.3 Complexity of Projects ... 7

2.4 Complexity Metrics .. 9

2.4.1 Design Complexity .. 9

2.4.2 Software Metrics .. 10

2.4.3 Operator Choice Complexity ... 11

2.4.4 Summary .. 12

2.5 Team Characteristics and Performance ... 13

2.6 Summary and Contributions ... 14

Chapter 3: Methodology ... 15

3.1 Overview ... 15

3.2 Stage 1: Development of Professors Factor Survey .. 17

3.2.1 Analysis of Professors Factor Survey .. 18

3.3 Case Study: Process Automation (ININ 4057) Course ... 19

3.3.1 Stage 2: Identify, Adapt and Develop Complexity Metrics for Process Automation 21

3.3.1.1 Visual Component Interaction (VCI) .. 25

3.3.1.2 Software Component Interaction (SCI) .. 28

3.3.1.3 Software Component Interaction with Stages (SCIS) ... 31

3.3.1.4 Lines of Code (LOC) .. 32

3.3.1.5 Cyclomatic Complexity (V(G)) .. 33

3.3.1.6 Process Hierarchical Functionality (PHF) .. 35

3.3.1.7 Station Hierarchical Functionality (SHF) ... 38

3.3.2 Analysis of Complexity Metrics for Process Automation ... 40

3.3.3 Stage 3: Development of Student Factor Survey ... 40

3.3.3.1 Student Factor Survey ... 42

3.4 Stage 4: Data Analysis .. 46

3.4.1 Prediction Models .. 46

3.4.1.1 Random Forest .. 48

vii

3.4.1.2 Basic Recursive Partitioning Trees ... 49

3.4.1.3 Relation with Complexity Metrics .. 50

Chapter 4: Results ... 51

4.1 Overview ... 51

4.2 Professor Survey ... 51

4.3 Complexity Metrics... 58

4.3.1 Visual Component Interaction (VCI) ... 59

4.3.2 Software Component Interaction (SCI) ... 60

4.3.3 Software Component Interaction with stages (SCIS) .. 62

4.3.4 Lines of Code (LOC) ... 64

4.3.5 Cyclomatic Complexity (CC) .. 66

4.3.6 Process Hierarchical Function ... 67

4.3.7 Station Hierarchical Function .. 69

4.3.8 Complexity Metric Comparison ... 71

4.4 Student Factor Survey ... 74

4.5 Prediction Models ... 78

Chapter 5: Conclusion ... 84

References ... 86

Appendix A: R2D2 Ladder Logic ... 92

Appendix B: SCI Metric Applied to R2D2 ... 103

Appendix C: CPSHI Approval .. 143

Appendix D: R code for Random Forest Analysis... 145

Appendix E: R code for Decision Tree Analysis .. 147

Appendix F: Friedman Test .. 149

Appendix G: Student's t-Test for Variable Importance Selection ... 150

Appendix H: Partial Dependence Plot .. 151

viii

List of Tables
Table 2.1: PBL Definition ... 5
Table 2.2: Sources of Complexity by Category .. 8
Table 2.3: Review of Metrics .. 12
Table 3.1: Professor Factor Survey Questions .. 17
Table 3.2: Adaptation of Complexity Metrics .. 21
Table 3.3: Student Factor Survey Questions ... 40
Table 3.4 Student Factor Survey Variables .. 42
Table 3.5: Additional Student’s Variables .. 44
Table 3.6: Additional Group Variables ... 45
Table 4.1: Professor Survey Summarized Result .. 52
Table 4.2: Visual Component Interaction Result .. 59
Table 4.3: SCI Results .. 61
Table 4.4: SCIS Results .. 62
Table 4.5: LOC Results ... 64
Table 4.6: CC Results ... 66
Table 4.7: PHF Results ... 68
Table 4.8 SHF Results .. 70
Table 4.9: Student Factor Survey and Complexity Metric Result Range ... 74
Table 4.10: Cronbach Alfa Analysis ... 78
Table 4:11 Prediction Models Result Summary ... 79
Table 4.12: Selected Prediction Models for Complexity .. 80
Table 4.13: Prediction Models Important Variables ... 80

ix

List of Figures

Figure 2.1: PBL Definition Word Cloud .. 6
Figure 3.1: Research Overview ... 15
Figure 3.2: Ladder Logic Example ... 24
Figure 3.3: Grafcet Example ... 25
Figure 3.4: VCI Figures Legend ... 26
Figure 3.5: VCI Component-Interaction Diagram Example ... 27
Figure 3.6: Line of Code Example .. 30
Figure 3.7: Network Diagram Example .. 30
Figure 3.8: Line of Code Network Diagram Example .. 30
Figure 3.9: Network Diagram Example .. 32
Figure 3.10: Line of Code Network Diagram Example .. 32
Figure 3.11: Ladder Logic Identification Number .. 33
Figure 3.12: Ladder Logic .. 34
Figure 3.13: Generic Functional Decomposition for Process Automation ... 36
Figure 3.14: Example of a Functional Decomposition Diagram .. 37
Figure 3.15: SC Functional Decomposition Diagram ... 39
Figure 3.16: Prediction Models Methodology .. 47
Figure 4.1: Pie chat of Engineering Department ... 51
Figure 4.2: Example of one survey question answers ... 52
Figure 4.3: VCI Results .. 60
Figure 4.4: SCI results by Group .. 61
Figure 4.5: SCIS results by Group .. 63
Figure 4.6: LOC results by Group .. 65
Figure 4.7: CC Complexity Metric Results .. 67
Figure 4.8: PHF Complexity Metric Results .. 69
Figure 4.9: SHF Complexity Metric Results .. 71
Figure 4.10: Complexity Metric Results by Group ... 71
Figure 4.11: Correlation Analysis ... 72
Figure 4.12: Friedman Rank Sum Test ... 73
Figure 4.13: Pairwise Comparison .. 74
Figure 4.14: Partial Dependence Plot for LOC ... 82

1

Chapter 1: Introduction
In education, a student-centered strategy known as Project-based Learning (PBL) is

commonly used to provide students real-life experiences in a class environment. This strategy

makes student competencies go beyond content knowledge (Sam Houston State University, 2016).

PBL challenges students to research stimulating problems to create unique products (Intel, 2007)

while, encouraging them to develop interpersonal skills in a flexible learning environment

(Doppelt, 2003). It enables students to work in teams, communicate and be aware of time-

management, applying their technical skills while exercising the technical aspects of their career

(Medina et al., 2015). Students learn to make decisions in real-time in diverse environments that

may include multiple stakeholders and decision makers. For example, all engineering students at

University of Puerto Rico Mayagüez (UPRM) experience PBL in their Capstone projects. In

particular, The Department of Industrial Engineering at UPRM has multiple courses that involve

PBL such as: Process Automation (ININ 4057), Facility Layout and Design (ININ 4040), Work

Measurement (ININ 4009) and Introduction to Medical Device Design Methods (ININ 5105).

Common teaching techniques combined with PBL promoted peer learning, group learning and

self-motivation (Indiramma, 2014). Meanwhile, assessing collaborative work introduces a

challenge not found when evaluating individual work (Webb, Nemer & Zuniga, 2002). Therefore,

Researchers address the importance of managing complexity in real-life projects (Gottfredson &

Rigby, 2009). Hence, a professor survey was submitted to UPRM engineering professors with

experiences in PBL to answer the following questions:

(1) Is complexity considered for PBL in Engineering Education?

(2) Should complexity be assessed in PBL?

2

PBL Complexity was analyzed for two scenarios: when students are assigned the same project

and when student work on different projects. Differentiating between these two scenarios enables

the study of complexity for “solutions or project outcomes” when the same project is assigned,

and the complexity of “project definitions or problems” when different projects are assigned.

Considering the two scenarios, this study also answered the following questions:

(3) When students are assigned the same project, is the complexity of the multiple

solutions generated significantly different?

(4) When students are assigned different project, is the complexity of the project

definitions significantly different?

 When students are assigned the same project, it is assumed they have the same lack of

understanding (prior knowledge). Lack of understanding or deficiency in knowledge, increases the

complexity of problem solving as a result of the increased effort that is required to overcome for

the unknown information or skills (Crespo-Varela et al., 2012).

In design-related projects, engineering students generates multiple solutions while having the

same requirements. To study this in more depth, a case study was performed on the process

automation course, ININ 4057, which is a core course for all Industrial Engineering students at the

UPRM. In this course Students learn and apply different skills to integrate electronic, mechanic

and computer systems in the development of an automated process prototype (same project

definition). A substantial contribution of this work involves adapting and developing complexity

metrics and methods for their implementation in process automation.

 “Measurement is the key for controlling any process because it is difficult to

manage what cannot be measured” (DeMarco, 1982).

3

Without metrics, comparisons and predictions are difficult to achieve. For the particular case

of process automation in project-based learning, this research studies:

(5) How can project complexity be assessed when students have the same project

requirements?

The case study contributions go beyond assessing complexity to also provide a deeper

understanding on its relation with team characteristics and performance. It is hypothesized that

each team member previous knowledge/characteristic influences the overall design complexity.

“Research on project complexity has shown that complexity is relative not only to size and scope,

but also the past experience of the project management team” (Owen et al., 2011).

Nowadays, in science and engineering fields, there are notable differences in gender,

participation, performance and rewards (Sonnert and Fox, 2012). The data acquired with the case

study allowed reviewing if for example, students’ grade point average (GPA) and gender is related

to project design complexity. According to the emerging state and national standard for

assessment, it is recommended to incorporate small groups into large-scale assessment (Webb,

Nemer & Zuniga, 2002). A study that took place within Ford Motor Company with over 270

employees, showed a clear relationship between team composition (diversity), complexity of task

and team performance (Higgs et al., 2005). With these motivations, and for engineering project-

based learning setting, this research addressed the following question:

The design team characteristics considered include: age, gender and knowledge. Also

performance, individual contribution, abilities and difficulty was considered. Last, team dynamic

was also evaluated.

4

To summarize, primary objective of this research is to investigate the relevance and impact of

complexity in PBL for engineering undergraduate education. Accordingly, research objectives include

the:

- Creation and implementation engineering professors survey to:

o understand current considerations and assessments of complexity for PBL

o explain project complexity when student are assigned different requirements

- Identification, adaptation, development and implementation of complexity metrics in

order to explain project complexity when student are assigned common requirements

- Creation and implementation of student factor survey to analyze the relationship of

project complexity with team characteristics and performance

With the results from this work, the aim is to promote a culture where complexity is considered,

that includes to identify and analyze complexity in PBL.

The following sections provide research background along with the motivations.

5

Chapter 2: Literature Review

2.1 Overview

This chapter summarizes background information and relevant literature to this work.

Background information includes a discussion about project-based learning (PBL) in Section 2.2

and project complexity in Section 2.3. Section 2.4 provides a review of literature addressing

complexity metrics. Section 2.5 is focused on team characteristics and performance. Finally, a

summary is provided along with research contributions in comparison to the literature reviewed.

2.2 Project-based Learning

With a considerable amount of literature dedicated to showing the PBL’s benefits and keys for

successful implementation, this concept is defined in multiple ways. From the analysis of different

definitions, PBL can be explained as:

A teaching strategy that enables students to develop competencies and gain
deeper knowledge through active explorations of real-world problems.

Table 2.1 summarizes PBL definition from various sources and Figure 2.1 is visual
representation of PBL definition word frequency.

Table 2.1: PBL Definition

Source PBL Definition
Thomas, 2000 Model that organizes learning around projects.
Doppelt, 2003 Well-known method for imparting thinking competencies and

creating flexible learning environments.
Balve and Albert,
2015

Course that display motivation and meaningful real-world task in the
center of the students’ attention.

Buck Institute for
Education, 2016

Teaching method in which students gain knowledge and skills by
working for an extended period of time to investigate and respond to
an engaging and complex question, problem, or challenge.

Vega, 2015 Dynamic classroom approach in which students actively explore real-
world problems and challenges and acquire a deeper knowledge.

Medina, 2015 Platform that enables student to work in teams, communicate and be
aware of time-management while practicing technical aspect of their
concentration.

6

Source PBL Definition
Intel, 2007 Instructional model that involves students in investigations of

compelling problems that culminate in authentic products.
Krajcik et al., 2006 Overall approach to the design of learning environments.

Figure 2.1: PBL Definition Word Cloud

PBL offers tremendous benefits to both, student and instructors. PBL drives students to the

central and technical concepts of their concentration with a goal-directed process that involves the

application of skills such as design, decision-making and problem solving (Thomas, 2000). A PBL

environment allows student teams to examine questions, suggest hypotheses, discuss/challenge

ideas, and attempt new things (Krajcik et al., 2006). Students are forced to use their own criteria

to complete projects that do not take predetermined paths (Thomas, 2000).

PBL helps instructors succeed in their mission since it accommodates students with varying

learning styles and differences. It makes education more engaging for students by improving

learning and developing success skills for college, career and life. It enhances student’s skills

development for living in a knowledge-based, highly technological society while making teaching

enjoyable and rewarding (Buck Institute for Education, 2016) Furthermore, PBL brings a new

relevance to the learning at hand encouraging authentic assessment that promotes lifelong learning.

7

2.3 Complexity of Projects

Projects can be define as an individual or collaborative effort to accomplish a particular

objective, for example a unique product, service or outcome (Project Management Institute, 2016).

Lewis (1999) defines it as a one-time task that has a specific start and end date, as well as a

particular scope, budget and performance to be attained. Complexity has various definition in

literature. For example, some say is related to the difficulty or lack of understanding, a

phenomenon in a given context or environment (Gul and Khan, 2011; Crespo-Varela et al., 2012).

Ireland (2007) think is related to an item having one or more component or variables. Therefore,

having a clear understanding of the operational definition of complexity within the project being

managed its crucial, since it varies depending on the domain. Understanding the sources of

complexity and its magnitude might help identify the abilities and competencies needed to deal

with a problem (Remington, Zolin & Turner, 2009).

As summarized in Table 2.2 below, literature shows there are efforts to managing complexity

by identifying sources of complexity among different domains. For instance, in the case of

transportation projects, Gransberg et al., (2013) evaluated 18 projects from different countries –

Canada, New Zealand, United States, and United Kingdom (see Table 2.2 below). As a result, they

propose a framework from which the sources of complexity for transportation project can be

conceptualized. They also developed a tool, the complexity footprint, to measure and visualize the

various dimensions of project complexity. In general, the study searched to better understanding

and prioritization of the available resources. They added financing and context as two new

dimension to the traditional three-dimensional project management theory that involves: cost,

schedule and technical. By doing so, they elevated the visibility of complex project context which

8

represent both the controllable and uncontrollable factors that will be faced during the delivery of

complex projects.

Table 2.2: Sources of Complexity by Category
Source Domain Sources and types of project

complexity
Baccarini (1996) Project Management

emphasis
Differentiation and
interdependency

Hussein et al. (2014) New Products and Process
Development Project

Product development
projects: interdependency
between tasks and the novelty
of the project

Process improvement
projects: diversity and
multiplicity of end-users and
uncertainty

Bosch-Rekveldt et al., (2010) Process Engineering Industry Technical, Organizational and
Environmental complexity

Gransberg et al., (2013) Transportation Project Five-dimensional sources of
complexity: cost, schedule,
technical, financing and
context

Ireland (2007) Planning Standpoint Two dimension source of
complexity: Technical
Complexity and Management
Complexity

In summary, project complexity is addressed in the context of project management in which

experienced project managers are the SMEs helping define the type of complexities that they

encounter. As shown in Table 2.2, there are sufficient efforts to identify the sources of complexity

for the management and implementation of real projects. However it is also desired to understand

the quantitative approach used to measure and manage complexity. Hence a review of complexity

metrics was performed on the Section 2.4.

9

2.4 Complexity Metrics

Relevant literature on complexity metrics in general was addressed (summarized in Table 2.3

below). The objective was to identify and adapt, when possible, existing metrics to measure

process automation project complexity. Accordingly, diverse complexity metrics were found in

the literature, and are divided in the following categories: design complexity, software complexity,

and choice complexity.

2.4.1 Design Complexity

Most relevant design complexity metrics involve the study of modules and interactions

(Keating 2000), product functionality (Bashir & Thomson, 1999), and product variations (Roy

Evans, Low and Williams, 2011).

For the assessment of hardware design quality at early stages of the design cycle, Keating

(2000) proposes the study of modules at each level of hierarchy and interactions with the belief

that quality and functional correctness are not tested in, rather design in. A block diagram is

performed to have a reasonable explanation of product functionality. Blocks are decomposed into

a hierarchy of what the study calls “too many levels” such that the design is divided into

independent units. After the block diagram is completed, the metric is implemented with the sum

of squares of the number of modules (M) and the interfaces (I).

Meanwhile, the Product Complexity (PC) metric makes an assessment based on product

functionality using a deductive approach (Bashir and Thomson, 1999). This metric uses a

hierarchical approach to decompose product functions into different levels. The more sub-function

at any level and depth of the functional tree, the greater the complexity (lower functions in the tree,

imply more complexity). The metric count the number of functions at each level and weight them

10

by the number of levels. According to Faulconbridge and Ryan (2003), complex technical projects,

can only be manage effectively when functional requirements are analyzed.

Roy, Evans, Low and Williams, (2011) measures product complexity from the perspective of

product variations. The metric involves calculating a design ratio (DR) which is based on the

commonality of components for the end-product. For example, a low DR indicates less

commonality of the component in the design and therefore higher complexity.

Similar, focused on assembly, Mathieson, Wallace and Summers (2010) develop a model to

predict assembly time of a system based on complexity metrics of the system architecture using

that of a power regression.

2.4.2 Software Metrics

Software metrics are the oldest and most proven complexity metrics. A well-known metrics is

the Cyclomatic Complexity metric (V(G)). V(G) measures the number of linearly independent

paths in a program control graph. McCabe (1976) worked on the mathematical technique that

allowed identifying software modules, and testing difficulties. The approach was to measure and

control the number of path in a program. Research findings included that complexity is

independent of size, but it depends on the decision structure of a program.

On the contrary, Halstead (1977) defined the Software Science Metric with the belief that the

effort required to implement a computer program is proportional to the program size. The metric

measures complexity as related to the length and volume of a program. For its implementation,

any symbol or keyword in a program that specifies an algorithmic action is considered an operator,

and any symbol used to represent data is considered an operand. As a result, the length of the

program becomes a function of the unique operators and operands.

11

Finally Basili and Perricone (1984), studied 90,000 lines of code (LOC) of a software project

which general purpose was satellite planning and concluded that the larger the module, the less

error prone it was. LOC metric measures the number of lines (statements) in a program. However,

Yu (2010) mentioned that even though this metrics is easy to understand, LOC ignores jumps in

the software as well as complexity on each code line.

2.4.3 Operator Choice Complexity

In the context of decision-making, the Operator Choice Complexity (OCC) deals with the

decision operators can make regarding assembly and the risk associated with their choice (Fast-

Berglund, Fässberg, Hellman, Davidsson, & Stahre, 2013). It is stated that decision making is

needed more when there are additional variants and parts to be handled. In general terms, the

study focuses on determining if there are any correlations between the areas of complexity,

cognitive automation and quality. The areas of complexity are defined as the nature of product,

processes, and strength of interactions, among others; cognitive automation refers to the decision

making in production that enables error-free products (Fast-Berglund, Fässberg, Hellman,

Davidsson, & Stahre, 2013).

Fast-Berglund, Fässberg, Hellman, Davidsson, and Stahre (2013) formulation is based on the

average uncertainty or randomness in a choice process and occurrence probability to get a

complexity measure for the stations. Formulation independent variables include the number of

variants that occurs at each station and the demand of each variant. In their experiment, operator’s

performance depended on assembly errors extracted from seven station for a 16 week time frame

and retrieved from an internal quality system named ATACQ. The study concluded that the main

cause of complexity is due to assembly workers’ restricted timeframe and workspace with positive

12

correlation between OCC and assembly error and more than 60% of the assembly task lacking

cognitive support.

2.4.4 Summary

Table 2.3 summarizes all the metrics found relevant to this research with possible application

to the study of process automation projects. Some of these metrics will be studied in more detail

for their adaptation and the development of implementation methods.

Table 2.3: Review of Metrics
Source Metric Name Purpose/Definition Notation Equation

Keating,
2000

Complexity of
the partition
(C)

Measures based on
component interaction

M - number of modules
I - number of interfaces

Bashir and
Thomson,
1999

Product
Complexity
(PC)

Measures component
functionality
hierarchically

Fj - number of functions at
level j
i - number of levels

Roy, Evans,
Low and
Williams,
2011

Design ratio
(DR)

Measures from the
perspective of product
variation

ni -number of product
variants that use part variant
i
n -total number of product
variants

Basili and
Perricone,
1984

Lines of Code Metric to determine
the size of the program

li-lines of code i �𝑙𝑙 𝑖𝑖

McCabe,
1976

Cyclomatic
Complexity
Metric (V(G))

Measures the number
of linearly
independent paths in a
program

n –vertices
e –edges
p -connected components

Halstead,
1977

Halstead
Software
Science
Metrics

Determine a
quantitative measure
of complexity directly
from the operators and
operands in the
program, related to the
length and volume of a
program.

n1 -number of unique
operators,
n2-number of unique
operands,
N1-total number of
operators,
N2-total number of
operands.

Fast-
Berglund,
Fässberg,
Hellman,
Davidsson,
& Stahre,
2013

Operator
Complexity
Metric

Quantify human
performance on
making choices

Pij- occurrence probability
of a state j in the random
process i,
C- constant (depending on
the base of the
logarithm function chosen)

Mathieson,
Wallace and
Summers,
2010

Assembly
Time Metric
(ta)

Predict the assembly
time of a system based
on the architecture of
that system

APL-average path length
n- number of elements
PLD- path length density

𝑡𝑡𝑎𝑎 =
𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥 𝑛𝑛(1.185+𝑃𝑃𝑃𝑃𝑃𝑃)

13

2.5 Team Characteristics and Performance

Real-life project management and implementation requires continuous teamwork and

collaboration. Accordingly, effective undergraduate engineering education must include exposing

students to similar experiences throughout their course curriculum. Student attributes and team

composition are factors that influence group project outcomes where the same student may

perform differently depending on the group (Webb, Nemer & Zuniga, 2002). Therefore, the benefit

from collaborative assessment work is not necessarily found in individual assessment.

The comparison between group and individual performance is affected by ability, gender, and

affiliation preferences (Hills, 1982). While it can be generally stated that group performance is

superior to individual performance (Hills, 1982), an exceptional individual can be superior to that

of a committee, especially, when solving a complex problem (Davis, 1969). High-ability students

perform well in homogenous group and group interaction is a strong predictor for student

performance (Webb, Nemer & Zuniga, 2002). In particular, group interaction examples that

impact project outcomes include: leadership efforts, approval or disapproval of fellow group

members, and influence attempts, among others (Guzzo & Shea, 1990).

In terms of student attributes, the literature emphasizes the role of student’s GPA as an

indicator of performance (Sonnert & Fox, 2012). GPA was found to explain retention of student

across fields (Aitken, 1982). Meanwhile, the study of a sample of 5,223 senior students from a

midsized Midwestern public university (between 2001 and 2009) showed that student’s gender

does have an effect on GPA (Tessema, Ready & Malone, 2012). Results showed that female

perform better with an average a GPA of 3.37 in comparison to males that had an average GPA of

3.13.

14

2.6 Summary and Contributions

In comparison with the existing literature, this work opens up the paradigm of complexity for

PBL, particularly for process automation. While the importance of project complexity is clearly

stated for the management and implementation of real-problems in the context of project

management for different domains, there is a gap in the consideration of this concept for project-

based learning. This work developed the project complexity concept further. As part of the

methodology, a case study on process automation was performed. Complexity metrics reviewed

from the literature were adapted and implemented to fourteen projects. At the same time, team

characteristics and performance were collected from a student factor survey. Last, the relationship

of project complexity with team characteristics and performance was assessed.

To conclude, the major research contribution is for this method (the use of complexity metrics)

to be used in school systems and higher education on a large scale to provide students the venue

to identify, analyze and control complexity. Faculty will be likewise, to use complexity measures

as part of project evaluations.

15

Chapter 3: Methodology

3.1 Overview
Research question and objectives were addressed in four major stages as shown in Figure 3.1.

The first stage (Section 3.2) involved creating and launching a survey to engineering faculty with

experience in PBL to answer the first four research questions. In contrast, the second stage (Section

3.3.1) was focused on identifying and adapting complexity metrics previously identified in

literature, followed by the development of implementation methods for a specific domain, process

automation project, as given in Process automation (ININ 4057) course. This section answers

research question five and also research question 3. Data concerning team characteristics and

performance were collected as part of the third stage (Section 3.3.2) in which a web-based survey

was launch for students who designed process automation as required in the Process Automation

(ININ 4057) course. After the three stages were implemented, the fourth and last stage integrates

all the information obtained to answer the last research question and to suggest a complexity

prediction model (Section 3.3).

Figure 3.1: Research Overview

16

Figure 3.1: R
esearch O

verview

17

3.2 Stage 1: Development of Professors Factor Survey

In order to assess complexity in engineering undergraduate education, a 14-question survey was

created (see Table 3.1 below). Subject matter experts (SME’s) were identified to be engineering

faculty with experience implementing PBL. The purpose of the survey is to gain knowledge on

how complexity is currently managed for two scenarios: (1) when students are assigned the same

project requirements (the focused is on projects solution) and (2) when students are assigned

different projects (the focus is on project definitions).

The questionnaire, illustrated in Table 3.1, is divided in four sections: (1) screening or profile;

(2) define complexity; (3) explain current consideration of complexity in engineering education;

and (4) provide opinion regarding complexity for the two scenarios specified above. For instance,

part of SMEs’ opinion includes explaining if they have experienced significant differences in

complexity of the two scenarios - project definitions and solutions.

Table 3.1: Professor Factor Survey Questions
Research Question ID Professor Factor Survey Questions (Spanish / English)

Is complexity
considered for PBL

in engineering
education?2,3

5 En el contexto de cursos con proyecto (donde se aplica PBL), defina, qué es
complejidad para usted. Explique. / In the context of courses with project
(PBL), define, what it is complexity for you. Explain

9

10

Actualmente, ¿se considera la complejidad en la enseñanza mediante
proyectos?/ Is complexity currently considered in Project-Based Learning?

Scale 1(Substantially not considered) to 7 (Substantially considered)
De ser así, ¿cómo se considera? / If so, how do you consider it?

11

12

Actualmente, ¿se emplean métricas objetivas para medir la complejidad de la
definición o evaluación de proyectos/ Is there objective metric currently used to
measure project definition or evaluation complexity?

Scale 1(Substantially not used) to 7 (Substantially used)
De utilizarse métricas, favor especificarlas y evaluarlas indicando con qué
frecuencia integra esa métrica de complejidad en la evaluación de proyectos. /
If complexity metrics are used, please specify which and evaluate with what
frequency you integrate each of those metrics in project evaluation.

Scale 1(Never) to 7 (Always)
Should complexity

be assessed in
PBL?4

6 Califique el impacto de las siguientes variables en la complejidad de proyecto
en cursos de ingeniería. / Rate the impact of the following variables in project
complexity in engineering courses.

18

Research Question ID Professor Factor Survey Questions (Spanish / English)

Scale 1(Not related significantly to 7 (Related significantly)
7 Califique cuán importante es medir la complejidad en la enseñanza con

proyectos / Rate how important is to measure complexity in Project-Based
Learning.

Scale 1(Extremely irrelevant) to 7 (Extremely relevant)
8

Califique cuán importante es tener métricas objetivas para evaluar la
complejidad de los proyectos de ingeniería. / Rate how important is to have
objective metrics to evaluate the complexity of project in engineering.

Scale 1(Extremely irrelevant) to 7 (Extremely relevant)
Is the complexity

of the multiple
solutions generated

significantly
different?4

14 Cuando a los estudiantes se les asigna el mismo proyecto, califique cuanto
difiere la complejidad de las soluciones provista por los estudiantes. / When
students are assigned the same project, rate how different the complexity of the
solutions provided by students are.

Scale 1(Substantially the same) to 7 (Substantially different)
Is the complexity

of the project
definitions

significantly
different?4

13 Cuando a los estudiantes se les asigna diferentes proyectos, califique cuan
diferente es la definición (especificaciones) del proyecto. / When students are
assigned different project, rate how different is the project definition
(specifications).

Scale 1(Substantially the same) to 7 (Substantially different)

Professor Profile1

1 Seleccione el departamento de ingeniería al que pertenece. / Select the
engineering department you are part of.

2 ¿Cuantos años de experiencia tiene como profesor(a)? / How many years of
experience you have as a professor?

3 ¿Cuantos años de experiencia tiene enseñando cursos basados en proyectos? /
How many years of experience you have teaching Project-based learning
course?

4 ¿Qué cursos ha ofrecido donde se implementa el aprendizaje a través de
proyectos (“Project-based Learning”) ó PBL por su siglas en inglés? / What
courses have you offered where learning is implemented through projects
(Project-Based Learning)?

Legend: 1-profesor profile, 2- define complexity, 3- consideration of complexity in engineering
education, 4-opinion regarding complexity

3.2.1 Analysis of Professors Factor Survey

The first set of data that needed to be analyzed, was the result from the professor’s survey. This

results were analyzed using 1-Sample Wilcoxon test, a nonparametric hypothesis test for the

median of a single population. Hypothesis tests prove if there is enough evidence to support claims

related to research questions. Hypothesis tests statements are provided below:

H1O: Complexity is considered for PBL in Engineering Education.
H1A: Complexity is not considered for PBL in Engineering Education.

19

H2O: Complexity should be assessed for PBL in Engineering Education.
H2A: Complexity should not be assessed for PBL in Engineering Education.

H3O: When students are assigned the same project, the complexity of the multiple
solutions generated is different.
H3A: When students are assigned the same project, the complexity of the multiple solutions
generated is not different.

H4O: When students are assigned different projects, the complexity of the project
definitions is different.
H4A: When students are assigned different projects, the complexity of the project
definitions is not different.

Next sections describe remaining methodology stages.

 3.3 Case Study: Process Automation (ININ 4057) Course
Automation has become a key factor for many manufacturing processes who are impacted by

workforce reduction along with workload increase (McQuilken, 2014). Cost reduction, higher

production rates, better product quality and reduced factory lead times are some examples among

the many advantages of automation.

In unison with industry trends, universities include in their curriculum, introductory

engineering elective courses, process automation and robotics. For instance, the Department of

Industrial Engineering at the University of Puerto Rico at Mayagüez requires all students’ in the

program to take Process Automation (ININ 4057), Fundamentals of Electrical Engineering (INEL

4075), Fundamentals of Electronics (ININ 4076), and Basic Electronic Laboratory (INEL 4077),

Manufacturing Process (INME 4055), Manufacturing Process Laboratory (INME 4056), among

other courses.

In the Process Automation course (ININ 4057), students learn and apply their skills in

electronics, computer science, and programming. Specifically, the course syllabus states that

students should be able to: (1) identify and use industrial sensors and actuators as main components

20

of a process (2) creatively integrate electric, pneumatic and mechanical systems to automated

process (3) formulate and code the control logic to run a process in real time and (4) use software

to build a Human Machine Interface (Medina, 2013).

When project starts, students are divided in groups of two or three (the majority) and receive

the description of a manual process that they have to automate during the semester, a five-month

period. The design of the automated process is divided in four phases with detailed rubrics

provided at each phase. In the first phase, the design process is executed– where student work on

the concept and come up with a design proposal. Students are given flexibility in terms of the use

of software. They are allowed to make designs with free hand or use software they know such as

Sketch up. Special emphasis is given to concept generation and ideation with methods such as

radial thinking and morphological chart. This design is evaluated by the instructor and influenced

by the group.

The second phase involves the construction of the structure, with Fishertechnik components

with all the electric connections, inputs-X and outputs-Y. The third phase is the most challenging

part of the project that requires programming in the Programmable Logic Controller (PLC), using

Ladder Logic, and troubleshooting the automated process model to make sure it works in

compliance with the requirements. This troubleshooting often requires student to re-design and re-

build some workstations until the model is functioning as desired. The fourth and last phase

involves the project report.

In particular, the Process Automation course motivated this research because student design,

develop, evaluate, integrate and manage projects that are used in real-life applications. However

the attention is in students’ preference and choices as they develop a diverse range of solution with

different complexity that can now be quantified. Section 3.3.1 describe complexity measures.

21

3.3.1 Stage 2: Identify, Adapt and Develop Complexity Metrics for Process Automation

From an in depth review of complexity metrics, four metrics: (1) Complexity of Partition, (2)

Lines of code, (3) Cyclomatic Complexity Metric and (4) Product Complexity, were identified to

become the baseline and inspiration to create and adapt existing metrics (see Table 3.2 below).

These metrics were selected due to the relevance of interactions, size and functionality in the

proper assessment of complexity as a well as their feasible application to process automation.

Literature shows that interactions have structural and behavioral impact (Blay-Fornarino, Charfi,

Emsellem, Pinna-Dery, & Riveill, 2004), size is a basic attribute of software products (Bajwa,

Gencel & Abrahamsson, 2014), and according to Faulconbridge and Ryan (2003), complex

technical projects, can only be manage effectively when functional requirements are analyzed.

Table 3.2: Adaptation of Complexity Metrics
Original
Metric

Proposed
Metric

Emphasis Notation Formulation Data

Complexity of
Partition (C)

 (Keating,
2000)

Visual
Component
Interaction
(VCI)

Components
and their
physical
interactions

 M- unique
components

 I-interactions

VCI = M2 +I2 Ladder
Logic

Visual
Component
interaction
diagram

Software
Component
Interaction
(SCI)

Components
and their
interactions
through the
program.

M- unique
components

I-interactions

C= M2 + I2 Ladder Logic
Network
Diagram

Software
Component
Interaction
with stages
(SCIS)

Components
and their
interactions
through the
program with
stages
considered

M- unique
components

I-interactions

C= M2 + I2 Drawing with
identified
components

Pictures and
Videos

Lines of Code Lines of Code
(LOC)

Size of the
program based

L - last line
identification

 Ladder Logic

22

Original
Metric

Proposed
Metric

Emphasis Notation Formulation Data

(Basili and
Perricone,
1984)

on the number
of lines

number for the
ladder logic

n – number of blank
lines (output NOP)

Cyclomatic
Complexity
Metric (V (G))

(McCabe, 1976)

Cyclomatic
Complexity
Metric (V(G))

Number of
linearly
independent
paths in a
program

n – number of
stages in the
program

e –number of lines
(interactions)
joining each stage

p –number of initial
stages

Grafset of the
stages

Ladder Logic

Product
Complexity
(PC)

(Bashir &
Thomson,
1999)

Process
Hierarchical
Functionality
(PHF)

Process
functions
decomposed in
multiple levels

F- number of
functions at each
level

l- number of levels
{1,2,…n}

kl- weight for level
l, where k1 = 1, k2 =
2, kn=n

i- total process
functions

Pictures and
Videos

Project
Description

Station
Hierarchical
Functionality
(SHF)

Stations
functions
decomposed in
multiple levels

F- number of
functions at each
level

l- number of levels
{1,2,…n}

kl- weight for level
l, where k1 = 1, k2 =
2, kn=n

i- total station
functions

Pictures and
Videos

Project
Description

23

Table 3.2 summarizes these metrics from literature along with their adaptation that in some

cases resulted in the development of more than one metric. A brief description of the emphasis of

each metric is provided along with its notation and formulation. The last column specifies data

available from the process automation course to implement the metric. Overall, a total of seven

metrics were generated to assess complexity of process automation projects. Each one of these

metrics is discussed in the following sections with the development of implementation methods

(Colón et al., 2013; Soto et al., 2015; Martínez et al., 2015; Martínez et al., 2016; Collado et al.,

2016; Jusino et al., 2016).

Student project reports, from the process automation course, provided the necessary data to

implement metrics. Besides the general documentation (pictures, videos, drawings and

descriptions) that explains the project design, the developed program or software must be

considered. The program is assessed in two forms, through Ladder Logic and Grafcets.

Four of the seven metrics, required analyzing the ladder logic in order to come up with a

result. Ladder Logic is the most popular programming language used to program process

automation that is mostly implemented with programmable logic controllers (PLCs). It is a very

visual graphical language which structure was designed to mimic the electrical schematic of relays.

Some basic functions as shown in Figure 3.2 below are: Examine On (X0) and Examine Off (X1),

located at the left side of the line of code, and the Output(s) (Y0, C5), at the right side of the line

of code. Examine On is when the input element allows the flow of current. At the contrary,

Examine Off is when the input element does not allow the flow of current. Output turn on or off

an output element. The performance can be seen as responding to messages (probably events) sent

by some component instances to other component instances (Blay-Fornarino, Charfi, Emsellem,

Pinna-Dery, & Riveill, 2004). Being the basic structure of a ladder logic, there is the option of

24

organizing groups of lines of codes into Stages (See example in the Appendix A) where only the

code on active stages will be executed.

Figure 3.2: Ladder Logic Example

Grafcets (Figure 3.3) are used as a summarized and visual representation of Ladder Logic

codes with stages. It is used for the Cyclomatic Complexity metric in order to determine the

number of possible routes or roads the program has to complete the process.

1

2

3

4

25

Figure 3.3: Grafcet Example

3.3.1.1 Visual Component Interaction (VCI)

Inspired by Keating’s (2000) Complexity of Partition (C) metric, the Visual Component

Interaction (VCI) metric is proposed to study physical interactions (visual) between components

in process automation projects. The original metric was developed to predict design quality early

in the design cycle by assessing the complexity of a design partitioning. However, VCI is

developed to measure overall design complexity based on the component interaction that can be

observed physically in the process, independently of the program or software (Colón, Collet, Cruz,

Del Pilar, & Martinez, 2013; Soto, Rosado & Medina, 2015; Collado, Medina & Soto, 2016).

Besides Keating (2000) formulation to relate components and interactions mathematically, this

research contribution includes the development of an implementation method to comply with

VCI’s intended objective. A detailed description of the implementation method proposed for VCI

is provided below:

26

1. Following the notation proposed in Figure 3.4, a VCI component-interaction diagram

(see example in Figure 3.5) is necessary to determine the number of components and

interactions.

Figure 3.4: VCI Figures Legend

i. Identify relays with a triangle and place them in a column to the far left.

ii. Identify actuators with a square and place them in a column right to the

triangles. Note: Actuators include motors, pistons and valves. Lights will not

be considered in this interaction, they will be placed in another column to the

far right.

iii. Identify raw materials, finished products and/or packaging products with a

hexagon and place them in a column to the right of the actuators’ column.

iv. Identify sensors with a circle and place them in a column to the right of the

hexagons. Note: If the sensor function is to reset the complete process, then

place its circle in the far left before the relays column (See X0 in Figure 3.5).

v. Identify actuators that interact with relays, by tracing a line between them.

vi. Identify actuators that interact with other actuators by tracing a line between

them.

vii. Identify actuators that interact with products by tracing a line between them.

viii. Identify sensors that interact with products by tracing a line between them.

ix. Identify sensors that interact with actuator by tracing a line between them.

27

Figure 3.5: VCI Component-Interaction Diagram Example

2. After the VCI diagram is done, count all the figures. The result will provide the number

of unique components, M.

28

3. Count the amount of interactions represented as lines between components in the VCI

diagram. The result will provide the number of interactions, I.

Finally, calculate the VCI metric using the C and I values obtained from steps 2 and 3

using the following equation:

 VCI= M2+ I2 (3.1)

The value for the example presented in the figure is VCI= 452+492= 4426.

3.3.1.2 Software Component Interaction (SCI)

Similar to VCI, the Software Component Interaction (SCI) metric uses Keating’s (2000)

formulation to relate components and interactions. SCI is intended to measure the complexity of

process automation components and interactions through the software, particularly, the ladder

logic (Colón et al., 2013; Soto et al., 2015; Martínez et al., 2015 and Martínez et al., 2016). In this

particular context, components are obtained from condition and output statement in the ladder

logic. In the program, Xs and Ys represent in the software sensors and actuators (including relays),

respectively. Contrary to VCI, raw materials, finished products and/or packaging products are not

considered since they are not represented in the code. Meanwhile, other components are added.

These include internal variables (Cs) used to facilitate the programming when needed, counters

(CTs), and timers (Ts).

Interactions are determined as a result of various components (Xs, Ys, Cs, CTs, and Ts) joining

together as conditions for the output statements (set or reset Ys, Cs, CTs and/or Ts). Contrary to

VCI where a diagram of components and interactions could be developed right away from

observing the process automation project, implementing SCI is challenging. While components

can be easily determined by counting the number of unique variables (Xs, Ys, Cs, CTs, and Ts),

interactions require evaluating the code in detail. As part of this research contribution a procedure

29

is developed to obtain the number of interactions. The procedure involves: (1) making

components-interaction diagrams for each line of code, (2) eliminating redundant diagrams and

(3) overlapping diagrams when interactions are reduced. The whole procedure to implement the

metric is provided as follows:

1. Create a table, tabulating unique components within the ladder logic. The amount of all

unique components is M.

2. Follow the following steps to obtain the number the interactions, I:

I. Make components-interaction diagrams for each line of code:

i. Identify components in a line of code with a circle.

ii. Connect components in the conditions statement with a line between all

pair-wise comparisons and draw a circle/oval to surround them (after all

the lines are made).

Example: To represent the condition statement shown in Figure 3.6 of the

line of code 4, the component-interaction diagram in Figure 3.7 was drawn.

30

Figure 3.6: Line of Code Example

Figure 3.7: Network Diagram Example

iii. Connect output variables to the condition statement component-

interaction diagram previously done. Note: JMP (e.g. JMP S1 in the

example) commands are considered as a connection the specified stage,

therefore, the actions in that specified stage are related to the conditions

before the JMP command.

Example: Figure 3.8 shows how outputs should be included.

Figure 3.8: Line of Code Network Diagram Example

iv. Repeat steps i though iii until component-interaction diagrams are

performed for all the lines of code.

II. Analyze and compare diagrams completed in order to identify and eliminate

redundant diagrams.

III. Analyze and compare remaining diagrams after eliminating redundancy in II to

identify opportunities for overlap. Overlapping is necessity only if interactions

31

are reduced. For example, overlapping is necessary when component-

interaction diagrams coincide in the conditions part while happing different

output statement.

IV. Once elimination and overlapping is completed, count the number of lines that

result from the component-interaction diagrams. The result is the number of

interactions, I.

3. With the number of components (M) and interactions (I) obtained in the previous steps

calculate the metric:

 SCI= M2 + I2 (3.2)

This procedure has been proven to be an equivalent simplification to the challenge of completing

the all components and all interactions diagram (Appendix B shows the procedure completed for

a particular project by Martínez et al., 2015).

3.3.1.3 Software Component Interaction with Stages (SCIS)

The Software Component Interaction with Stages (SCIS) metric – Colón et al., (2013), Soto et

al., (2015), Martínez et al., (2015), and Martínez et al., (2016) is proposed as a modification of the

SCI metric. As shown before, the SCI do not consider stages (S) as a component. For the SCIS,

stages will be considered and included as a component. This change impacts both, the number of

components and the number of interactions. The same procedure as SCI is followed; an example

of how the stages are considered in the component-interactions diagrams is provided. Figure 3.9

shows the component-interaction diagram for line of code 4 in Figure 3.6. In comparison to Figure

3.8 where stages were not considered for SCI, for SCIS S0 becomes a condition since stage 0 (S0)

must be active for the program to consider line 4.

32

Figure 3.9: Network Diagram Example

Following, the output (S1) is added as shown in Figure 3.10. In comparison with Figure 3.7,

for SCIS the stage becomes the output and Y1, Y0 and C0 will be considered in a separate

diagram for line 6 where S1 is the condition.

Figure 3.10: Line of Code Network Diagram Example

3.3.1.4 Lines of Code (LOC)

Basili and Perricone (1984) discuss one of the simplest software metrics, Lines of Code (LOC)

LOC, which measures the number of lines (statements) in a program, was originally used in

software projects coded in FORTRAN. In the proposed work LOC is used to measure the lines of

code of ladder logic (Colón et al., 2013). The steps to implement this metric are provided.

1. Identify the line identification number of the “End” statement of the ladder logic. In

Figure 3.11 this corresponds to 111.

33

Figure 3.11: Ladder Logic Identification Number

2. Count number of blank lines (output NOP) in the ladder logic.

3. Calculate LOC metric with the following equation:

 𝐴𝐴𝐿𝐿𝐿𝐿 = 𝐴𝐴 − 𝑛𝑛 (3.3)

Where,

L - last line identification number for the ladder logic

n – number of blank lines (output NOP)

3.3.1.5 Cyclomatic Complexity (V(G))

McCabe (1976) proposes the Cyclomatic Complexity (V(G)) metric as a more robust

assessment of software complexity. V(G) measures the number of linearly independent paths in a

program by identifying the number of vertices (n), edges (e) and connected components (p). To

implement V(G) in the context of process automation, the use of Grafcets (Figure 3.12) is proposed

since it provides a visual representation of the ladder logic code (Colón, Collet, Cruz, Del Pilar, &

Martinez, 2013; Soto, Rosado & Medina, 2015; Collado, Medina & Soto, 2016). Accordingly, the

variables are considered to become the stages (n), initial stages (p) and jumps (e). The steps to

implement Cyclomatic Complexity metric are provided as follows.

1. Draw a Grafcet of the ladder logic. Note that the boxes represent the different stages

that are interconnected (one box per stage). If a stage is specified in a command of JMP

34

(e.g. JMP S0) that means it should follow the particular stage where the command is

provided (like S2 and S3 in Figure 3.12). If a stage is specified in a command of Set

(e.g. Set S0, Rst S0), then it should be connected to the stage where the command is

provided while it does not represent the end that stage (like S2 and S5 in the example).

Figure 3.12: Ladder Logic

2. Identify the number of stages.

3. Identify the number of lines joining each stage.

4. Identify number of initial stages identified (e.g. ISG S0).

5. Calculate the V(G) metric with the following equation:

 𝑉𝑉(𝐺𝐺) = 𝑒𝑒 − 𝑛𝑛 + 𝑝𝑝 (3.4)

Where,

n – number of stages in the program

e –number of lines (interactions) joining each stage

p –number of initial stages

From the example in Figure 3.12, the Cyclomatic Complexity is provided below.

35

𝑉𝑉(𝐺𝐺) = 𝑒𝑒 − 𝑛𝑛 + 𝑝𝑝 = 10 − 6 + 1 = 5

3.3.1.6 Process Hierarchical Functionality (PHF)

Inspired with Bashir and Thomson’s (1999) product complexity (PC) metric, the Process

Hierarchical Functionality (PHF) metric is intended to assess specific functions of completed

process automation projects (Colón, Collet, Cruz, Del Pilar, & Martinez, 2013; Soto, Rosado &

Medina, 2015; Jusino, Medina, and Soto, 2016). In contrast, PC was developed for products to be

designed in order to estimate design effort. Still, both metrics coincide in the need to define a

hierarchical decomposition of functions into different levels. The steps to implement PHF are

provided below.

1. Learn about the process automation project through the project documentation, photos and

videos.

2. Identify functions from the generic functional decomposition provided in Figure 3.13.

36

Figure 3.13: Generic Functional Decomposition for Process Automation (Jusino, Medina

Measure

Weight

Size

Height

Length

WidthCount

Time

Detect

Presence

Material

Current

Light

Transport

Push

Pull

Rotate

Lift

Drop

Carry

Blow

Sort

Organize

Align

Position

Package Accumulate

Attract Magnetize

Transform

Assemble

Bend

Combine

Expand

Examine

Scan

Sense

Test

37

and Soto, 2016)

3. Make a customized functional decomposition diagram with the identified functions as shown

in Figure 3.14.

Figure 3.14: Example of a Functional Decomposition Diagram (Jusino, Medina and Soto,

2016)

4. Calculate the PHF metric with the following equation:

 𝐴𝐴𝑃𝑃𝑃𝑃 = (∑ 𝑃𝑃𝑙𝑙) ∗ 𝑘𝑘𝑙𝑙𝑖𝑖
𝑗𝑗=1

 (3.5)
Where,

Fl is the number of functions at level l,

l is the number of levels {1,2,…n}

kl is the weight for level l, where k1 = 1, k2 = 2, kl=l

38

i= number of functions

Below is an example of the functional decomposition diagram. The result for example above is:

PHF = 4*1+ 9*2+ 7*3 = 43

3.3.1.7 Station Hierarchical Functionality (SHF)

Similar to PHF, the Station Hierarchical Functionality (SHF) measures the complexity in

relation to station functions instead of the whole process (Colón, Collet, Cruz, Del Pilar, & Martinez,

2013; Soto, Rosado & Medina, 2015; Jusino, Medina & Soto, 2016). The same procedure is

followed but for each station independently. The generic functional decomposition in Figure 3.10

is also used to determine station functions. SHF equation is defined by:

 𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖 = (∑ 𝑃𝑃𝑙𝑙) ∗ 𝑘𝑘𝑙𝑙𝑖𝑖
𝑗𝑗=1

 (3.6)

Where,

Fl is the number of functions at level l,

l is the number of levels {1,2,…n}

kl is the weight for level l, where k1 = 1, k2 = 2, kl=l

i= number of stations

After the complexity is assessed for each station, an overall complexity is obtained from

(1) identifying the station with maximum complexity, (2) obtaining the summation of stations

complexities and (3) calculating the product (multiplication) among stations complexities.

Equations are provided below.

 Max_𝑆𝑆𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑥𝑥{𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖} (3.7)

 𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑃𝑃𝑃𝑃 = ∑ 𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=0 (3.8)

 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑡𝑡_𝑆𝑆𝑃𝑃𝑃𝑃 = ∏ (𝑆𝑆HF)𝑛𝑛
𝑖𝑖=0 (3.9)

39

Following an example is provided with Figure 3.15 providing the result for the functional

decomposition and the different complexity calculations provided.

Figure 3.15: SC Functional Decomposition Diagram (Jusino, Medina and Soto, 2016)

𝑆𝑆𝑃𝑃𝑃𝑃1 = 1*1 + 3*2 +3*4 = 19

𝑆𝑆𝑃𝑃𝑃𝑃2 = 1*1 + 2*2+ 3*3+ 2*4 = 22

𝑆𝑆𝑃𝑃𝑃𝑃3 = 1*1 + 2*2+ 2*3 = 11

𝑆𝑆𝑃𝑃𝑃𝑃4 = 1 *1 + 1*2 +1*3 = 6

𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖 = �𝑃𝑃𝑙𝑙 ∗ 𝑘𝑘𝑙𝑙

𝑖𝑖

𝑗𝑗=1

40

𝑀𝑀𝑀𝑀𝑥𝑥_𝑆𝑆𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑥𝑥{𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖} = 𝑀𝑀𝑀𝑀𝑥𝑥�19, 22, 11, 6� = 22

𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑃𝑃𝑃𝑃 = �𝑆𝑆HF
𝑛𝑛

𝑖𝑖=0

= 𝑆𝑆𝑃𝑃𝑃𝑃1 + 𝑆𝑆𝑃𝑃𝑃𝑃2 + 𝑆𝑆𝑃𝑃𝑃𝑃3 + 𝑆𝑆𝑃𝑃𝑃𝑃4 = 19 + 22 + 11 + 6 = 58

Product_𝑆𝑆𝑃𝑃𝑃𝑃 = ∏ (𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖)𝑛𝑛
𝑖𝑖=0 = 𝑆𝑆𝑃𝑃𝑃𝑃1 ∗ 𝑆𝑆𝑃𝑃𝑃𝑃2 ∗ 𝑆𝑆𝑃𝑃𝑃𝑃3 ∗ 𝑆𝑆𝑃𝑃𝑃𝑃4 =

19 ∗ 22 ∗ 11 ∗ 6 = 27,588

3.3.2 Analysis of Complexity Metrics for Process Automation

Once the complexity metrics were implemented, each complexity metric result was analyzed

using descriptive statistics, correlation analysis Kruskal-Wallis rank sum test and Pairwise

comparison using Dunn’s test for multiple comparison of independent samples. Also, these test,

complexity metrics result were normalized by dividing 𝑦𝑦
max (𝑦𝑦)

 in order to build a radar char,

commonly known as a spider graph, used to display and analyze the metrics altogether.

3.3.3 Stage 3: Development of Student Factor Survey

A student factor survey was developed with the objective to collect information from

continuous and categorical variables related to students and design teams (age, gender, knowledge,

abilities, individual contribution, difficulty, team dynamic and individual and team performance)

to correlate these factors with the complexity. The survey is a 24 closed-ended questions (see Table

3.3 below for reference). The survey presented here is a modified version to Colón, Collet, Cruz,

Del Pilar, and Martinez (2013).

Table 3.3: Student Factor Survey Questions
Category Student Factor Survey Questions

Profile 1.Género/ Gender

2. Edad al tomar el curso ININ 4057 / Age at the time enrolled at the course ININ4057

3. Aproximadamente, ¿Cuántos créditos tenía usted matriculado cuando tomo ININ 4057? / Approximately,
how many credit did you had enrolled when you took ININ 4057?

41

Category Student Factor Survey Questions
Performance 23. ¿Actualmente, cuál es su promedio de concentración (Ing. Industrial)? / Currently, what is your major

(Industrial Engineering) GPA?
24. ¿Actualmente, cuál es su promedio general? / Currently, what is your general GPA?

25. Favor de indicar que nota (A,B,C,D) obtuvo en cada una de las siguientes clases/ Please indicate what
grade (A,B,C,D) you obtained in the following courses:
Algoritmos y Programación de Comp./ Computer programming and Algorithm (INGE 3016)
Circuito / Circuit (INEL 4075)
Electrónica / Electronic (INEL 4076)
Laboratorio de Electrónica / Electronic Laboratory (INEL 4077)
Proceso de Manufactura / Manufacturing Process (INME 4055)
Laboratorio de Proceso de Manufactura / Manufacturing Process Laboratory (INME 4056)
Proceso Automatizado / Process Automation (ININ 4057)

 Knowledge 4. Seleccione todas las prácticas obtenidas antes del curso, relacionadas a la Ingeniería Industrial que
apliquen. / Select all the experience obtained before the course related to Industrial Engineering

5. ¿Antes de tomar el curso ININ 5057 estuvo expuesto a procesos automatizados relevantes al curso
mencionado? / Before taking the course ININ 4057, were you exposed to automated process relevant to the
course?

6. Si contestó sí en la pregunta anterior, explique/ If you answered yes to the previous question, explain.
7. Califique su conocimiento sobre programación antes de comenzar el curso ININ 4057. / Rate your

knowledge regarding programin before you took the course.
Scale 1 (Poor) to 7 (Excellent)

Perceived
Abilities/ Skills

9. Califique su destreza al programar su maqueta. / Rate your ability to program the small scale model.
Scale 1 (Very Poor) to 7 (Excellent)

10. Califique su destreza al construir los circuitos de la maqueta. / Rate your ability to build the circuit of the
small scale model.

Scale 1 (Very Poor) to 7 (Excellent)
Individual

contribution
8. Califique cuán motivado(a) estuvo para tomar el curso de ININ 4057. / Rate how motivated you were to
take the course ININ 4057.
 Scale 1 (Not Motivated) to 7 (Extremely Motivated)
17. Califique su desempeño en la maqueta. / Rate you performance in the small scale model.

Scale 1 (Very Poor) to 7 (Excellent)
18. En comparación con sus compañeros de trabajo, ¿cuánto usted trabajo? / In comparison with you
teammates, how much did you worked?

Scale 1 (Substantially less) to 7 (Substantially more)
13. Favor de evaluar su contribución en cada fase del proyecto. / Please evaluate your contribution at each
phase of the proyect.

Scale 1 (Very Poor) to 7 (Excellent)
14. Favor de proveer un estimado de cuántas horas le dedicó al proyecto. / Please provide an estimate on how
many hours did you spend on the project.
15. ¿Cuán confiado se siente en su estimado de las horas trabajadas? / How confident do you feel in your
time estimate?

Difficulty/
Complexity

11. Favor proveer su percepción sobre la complejidad de cada parte de la maqueta: Diseno, Estructura de la
Maqueta, Circuitos, Programación, “Troubleshooting” y HMI. / Please provide your perception regarding
each phase of the small scale model: Design, Structure, Circuit, Programming, Troubleshooting and HMI.

Scale 1 (Extremely Simple) to 7 (Extremely Complex)
12. Favor proveer su percepción sobre la complejidad en la implementación de cada componente. / Please
provide your perception regarding the complexiy of each component.

Scale 1 (Extremely Simple) to 7 (Extremely Complex)
Team Dynamic 16. Favor de proveer la composición (cantidad) de miembros de su proyecto incluyéndose usted. / Please

provide the composition (Qty.) of your group memebers, including yourself.
19. ¿Cuál fue el desempeño de su equipo? / What was the group performace?

20. Califique la frecuencia de comunicación con su equipo de trabajo para el proyecto. / Rate the
communication frequency of your project team memebers.

Scale 1 (Less Frequently) to 7 (Very Frequent)
21. ¿Cómo categoriza la comunicación con su grupo? / How do you categorizes the communication with your
group?

42

Category Student Factor Survey Questions
22. ¿Cómo su grupo tomó las decisiones la mayoría del tiempo? / How did your group made the decisión the
mayority of time?

3.3.3.1 Student Factor Survey

Once the survey was implemented, variables were group into categories as observed in

Table 3.4. to be used as independent variable for the prediction model discussed at Section 3.4.1

Table 3.4 Student Factor Survey Variables
Student Factor Survey

Questions Variables Category Connotation

1. Gender
Gender Gender 0=Female,

1= Male
2. Age at the time enrolled at the
course ININ4057 Age Age Age in Years
3. Approximately, how many
credit did you had enrolled
when you took ININ 4057?

Academic_Load Academic
Load Academic credits

4. Select all the experience
obtained before the course
related to Industrial Engineering

Knowledge_Work

Knowledge

0= No Knowledge,
1= Knowledge

Knowledge_Project
Knowledge_Internship

Knowledge_Coop
5. Before taking the course ININ
4057, were you exposed to
automated process relevant to
the course?

Knowledge_Automation

7. Rate your knowledge
regarding programin before you
took the course.

Knowledge_Programming

9. Rate your ability to program
the small scale model. PerHabilities_Programming Perceived

Abilities/
Skills

Perceived abilities
rating

Scale 1 (Very Poor) to
7 (Excellent)

10. Rate your ability to build the
circuit of the small scale model. PerAbilities_Circuit

11. Please provide your
perception regarding each phase
of the small scale model.

PerComplexity_Design

Perceived
Difficulty/

Complexity

Perceived difficulty
rating

Scale 1 (Extremely
Simple) to 7

(Extremely Complex)

PerComplexity_Structure
PerComplexity_PLC

PerComplexity_Programming
PerComplexity_Troubleshooting

PerComplexity_HMI
12. Please provide your
perception regarding the
complexiy of each component.

PerComplexity_Motors
PerComplexity_Neumuatic

PerComplexity_Sensors
PerComplexity_Relays

8. Rate how motivated you were
to take the course ININ 4057. Individual_Motivation Individual

Contribution
Student Motivation on

a Scale 1 (Not

43

Student Factor Survey
Questions Variables Category Connotation

Motivated) to 7
(Extremely Motivated)

13. Please evaluate your
contribution at each phase of the
proyect.

Individual_ContributionDesign

Student Design
Contribution

Scale 1 (Very Poor) to
7 (Excellent)

Individual_ContributionStructure

Student Structure
Contribution

Scale 1 (Very Poor) to
7 (Excellent)

Individual_ContributionPLC

Student PLC
Contribution Scale 1

(Very Poor) to 7
(Excellent)

Individual_ContributionProgrammin
g

Student Programming
Contribution

Scale 1 (Very Poor) to
7 (Excellent)

Individual_ContributionTroubleshoot
ing

Student
Troubleshooting

Contribution Scale 1
(Very Poor) to 7

(Excellent)

Individual_ContributionHMI

Student Human
Machine Interface

Contribution
Scale 1 (Very Poor) to

7 (Excellent)
14. Please provide an estimate
on how many hours did you
spend on the proyect.

Individual_ProjectHrs Estimated hours spend
in project

16. Please provide the
composition (Qty.) of your
group memebers, including
yourself.

Group_Qty

Team
Dynamic

Group Qty.

Group_Female% Group Female
%Group

17. Rate you performance in the
small scale model.

 Individual_PerPerformance

Student Perceived Self
Performance

Scale 1 (Very Poor) to
7 (Excellent)

18. In comparison with you
teammates, how much did you
worked?

Individual_ComparedContribution

Student contribution
among group members
Scale 1 (Substantially

less) to 7
(Substantially more)

19. What was the group
performace? Group_MemberEngage% Group performance
20. Rate the communication
frequency of your project team
memebers.

Group_CommunicationFreq

Communication
Frequency

Scale 1 (Less
Frequently) to 7 (Very

Frequent)
Goup_DecisionsUnanimity

0=No, 1=Yes
Goup_DecisionsAuthority

44

Student Factor Survey
Questions Variables Category Connotation

21. How do you categorizes the
communication with your
group?

Goup_DecisionsMinority
Goup_DecisionsMayority

Goup_DecisionsConsensus
23. Currently, what is your
major (Industrial Engineering)
GPA?

Performance_ININ3.51

Performance

0=No, 1=Yes
Performance_ININ3.01 0=No, 1=Yes
Performance_ININ2.51 0=No, 1=Yes

24. Currently, what is your
general GPA?

Performance_General3.51 0=No, 1=Yes
Performance_General3.01 0=No, 1=Yes
Performance_General2.51 0=No, 1=Yes

25. Please indicate what grade
(A,B,C,D) you obtained in the

following courses:
Computer programming and

Algorithm (INGE 3016)
Circuit (INEL 4075)

Electronic (INEL 4076)
Electronic Lab. (INEL 4077)
Mfg. Process (INME 4055)

Mfg. Process Lab. (INME 4056)
Process Automation (ININ

4057)

Performance_INEL4075

Grades where
A=4, B=3, C=2

Performance_INEL4076
Performance_INEL4077
Performance_INME4055
Performance_INME4056
Performance_ININ4057

Performance_INGE3016

All students agreed that class reports could be used in this research. Additional variables

were added and are summarized in Table 3.5.

Table 3.5: Additional Student’s Variables
Source Variables Category Connotation

Performance Measures from
Process Automation (ININ

4057)

Performance_GrpLabs

Performance

Course Grade
Performance_GrpDesign

Performance_GrpStructure
Performance_GrpDemo
Perfornance_IndExams

Perr Eval (max 30) Peer Evaluation

Absence Count of Absence to
the ININ 4057 course

Lateness Count of Lateness to
the ININ 4057 course

Also, to consider group interaction, not only individual’s characteristics, some variables

were selected from Table 3.4 to represent group’s maximum, minimum and median value. For

instance, instead of analyzing student age, new variables, now represent group’s maximum,

45

minimum and median age. Accordingly, this calculation was done for all variables in Table 3.6.

This was done to use these new variables in the Expanded Model II as explained in Section 3.4.1.

Table 3.6: Additional Group Variables
Age
Knowledge_Work
Knowledge_Project
Knowledge_Internship
Knowledge_Coop
Knowledge_Automation
Knowledge_Programming
Individual_Motivation
PerHabilities_Programming
PerHabilities_Circuit
PerComplexity_Design
PerComplexity_Structure
PerComplexity_PLC
PerComplexity_Programming
PerComplexity_Troubleshooting
PerComplexity_HMI
PerComplexity_Motors
PerComplexity_Neumuatic
PerComplexity_Sensors
PerComplexity_Relays
Individual_ContributionDesign
Individual_ContributionStructure
Individual_ContributionPLC
Individual_ContributionProgramming
Individual_ContributionTroubleshooting
Individual_ContributionHMI
Individual_ProjectHrs
Individual_PerPerformance
Individual_ComparedContribution
Performance_ININ3.51
Performance_ININ3.01
Performance_General3.51
Performance_General3.01
Performance_INEL4075
Performance_INEL4076
Performance_INEL4077
Performance_INME4055
Performance_INME4056

46

Performance_ININ4057
Performance_INGE3016
Perfornance_IndExams
Absense
Lateness

Next section, discusses how data was analyzed to answer last research question and to generate

prediction models.

3.4 Stage 4: Data Analysis
To study the relationship of complexity with team characteristics and project outcomes, a

complexity prediction model was generated integrating data obtained from stage 1, 2 and 3.

Section 3.4.1 shows how prediction models were built and selected for each one of the complexity

metrics.

3.4.1 Prediction Models

 For the prediction models, three regression models were constructed for each response. See

Figure 3.16. The first model is called “General Model”. This model used as predictor 58 variables

as specified in Table 3.4 and Table 3.5. The second model is called “Reduced Model I”. This

model used as predictors the performance variables only. Last, and third model is called

“Expanded Model II”. It used as predictor 173 variables as specified in Tables 3.4, 3.5 and 3.6.

These 173 variables were obtained from created new variables that represents group’s maximum

minimum and median value.

47

Figure 3.16: Prediction Models Methodology

Two regression method were used, random forests and decision tree, both explained in

more detail in Section 3.4.4.1 and 3.4.4.2, respectively. In order to select only one best prediction

model per response, two performance measures were calculated.

R2, also called coefficient of determination, represents the proportion of the variance in the

response that is explained by the model (basically how close the data is to the fitted regression line).

General Model:
Yi=f(X)

Reduced Model I:
Yi=f(Xp)

Expanded Model II:
Yi=f(Xg)

Random Forest Recursive
Partitioning Tree

Mean Absolute
Percentage Error R Squared

Desirability
Function

Select Best
Model for Yi

Analyze Best
Model for Yi

48

These measures explains the percentage of the variability of the response data around its mean.

For both methods, R2 was calculated using Equation 3.10:

 𝑅𝑅2 = 1 − ∑(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝)2

∑(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙−𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙))2
 . (3.10)

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation

(MAPD), is a measure of prediction accuracy of a forecasting method in statistics, express as a

percentage of the error. MAPE was implemented as specified in Equation 3.11:

 𝑀𝑀𝐴𝐴𝐴𝐴𝑀𝑀 = 100 ∗
∑(𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝)

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

𝑙𝑙𝑝𝑝𝑛𝑛𝑙𝑙𝑎𝑎ℎ(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝) . (3.11)

These measures were used to build a desirability function (dF) as specified in Equation

3.12:

 𝑃𝑃𝑃𝑃 = 𝑅𝑅2

max (𝑅𝑅2)
+ �1 − 𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀

𝑀𝑀𝑎𝑎𝑀𝑀(𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀)� (3.12)

3.4.1.1 Random Forest

A known ensemble learning method and effective tool in prediction was used (Breiman,

2001). Random forest, a non-parametric statistical method, is commonly used when there are

more predictors than responses. It allows the analyst to calculate the relative importance of

predictors. The randomForest package (R Development Core Team, 2010) provides an R interface

to the Fortran programs by Breiman and Cutler.

The principle of random forests is to combine many decision trees built using several

bootstrap samples coming from the training data (observations used to fit the model) and choosing

randomly a given number of input variables (denoted by mtry) at each node (Genuer, Poggi &

49

Tuleau-Malot, 2010). For this work, up to 58 variables were randomly chosen at each split. Note

that the default values for regression is (p/3), where p is number of variables in x.

Also testing data was split to evaluate the performance of the model. Specifically K-folds

cross-validation technique was applied using 10 folds. Therefore, 32 out of the 35 observations

were used for training and 3 out of the 35 observations were used for testing purposes at a time.

No pruning step is performed so all the trees of the forest are maximal trees. The number

of trees in the forest for this work was the default, 500 trees.

To summarize, the random forests algorithm was performed as followed (Liaw and Wiener,

2002):

1. Installed and loaded randomForest library (Brieman, 2001)

2. Fitted the model and estimated performance measure

3. Created testing and training folds

4. Performed K-folds cross validation

5. Calculated the relative importance of predictors

6. Built partial dependence plot

3.4.1.2 Basic Recursive Partitioning Trees

Recursive partitioning is an essential tool in data mining. It helps explore the structure of a

set of data, while developing easy to visualize decision rules for predicting a categorical

(classification tree) or continuous (regression tree) outcome (Kabacoff, 2017). Classification and

regression trees can be generated through the rpart package (Breiman et al., 1984).

For decision tree, the following general steps were taken:

1. Installed and loaded rpart Packages

2. Created testing and training folds

http://cran.r-project.org/web/packages/rpart/index.html

50

3. Performed cross validation

4. Fitted the model and estimated performance measure

The flowing section demonstrate the result for each analysis.

3.4.1.3 Relation with Complexity Metrics

One way to investigate if there is a relationship between team characteristics and

performance and complexity metrics is with partial dependence plots. These plots are graphical

visualizations of the marginal effect of a given variable (or multiple variables) on an outcome.

Partial Dependence Plot were constructed in R (Friedman, 2010).

Following section demonstrates the implementation of the methodology discussed at this

chapter and the results obtained at each one of the stages.

51

Chapter 4: Results

4.1 Overview

The following chapter expose the results of the professor survey (Section 4.2) which

reveals the current consideration of complexity in engineering education. Also, outcomes of the

implementation of complexity metrics using the projects of the Process Automation (ININ 4057)

course (Section 4.3) were displayed. Next, student factor survey results (Section 4.4) were

presented in order to introduce the discussion of the last analysis, the complexity prediction model

(Section 4.5).

4.2 Professor Survey

A total of thirteen engineering professors from various engineering department

participated of the questionnaire as shown in the pie chart below.

Figure 4.1: Pie chat of Engineering Department

ICOM
INCI
INEL
ININ
INME
INQU

Category

2, 15.4%

2, 15.4%

3, 23.1% 1, 7.7%

3, 23.1%

2, 15.4%

Pie Chart of Department

52

The majority of professors interviewed were from Civil Engineering (INCI) and from Industrial

Engineering department (ININ) each one with a 23.1% participation. Electrical Engineering has

7.7 % of participation.

Most of the questions, as observed in Figure 4.2, were answered with a 7 point Likert scale.

Figure 4.2: Example of one survey question answers

All of these questions were used to judge if there is sufficient evidence for the population

median being greater or less that 4 (neutral in the Likert scale). 1-Sample Wilcoxon test was

implemented using α = 0.05 as shown in Table 4.1 below.

Table 4.1: Professor Survey Summarized Result

Research
Question Variable

Professor Factor Survey
Questions (Spanish /

English)
Median

1-Sample
Wilcoxon

test
Result

Professor
Profile

Department
1. Select the engineering
department you are a part

of.
N/A N/A N/A

Years_
Experience

2. How many years of
experience do you have as

a professor?
18 N/A N/A

Years_
Experience_PBL

3. How many years of
experience you have

teaching Project-based
learning course(s)?

13 N/A N/A

Course
4. What courses have you
offered where learning is

implemented through

N/A

N/A

N/A

53

Research
Question Variable

Professor Factor Survey
Questions (Spanish /

English)
Median

1-Sample
Wilcoxon

test
Result

projects (Project-Based
Learning)?

4a. Projects duration in
weeks

4b. Projects Phases

13
4

N/A
N/A

N/A
N/A

Should
complexity
be assessed

in PBL?

Complexity
Impact_

Definition

6. Rate the impact of the
following variables in
project complexity in
engineering courses.

Scale 1(Not related

significantly to 7 (Related
significantly)

6.00

HO: Median
= 4

HA: Median
> 4

There is
sufficient

evidence to
reject the

null
hypothesis (p

= 0.003).
The

population
median is

statistically
greater than

4.

Complexity
Impact_

Experience
5.50

There is
sufficient

evidence to
reject the

null
hypothesis (p

= 0.011).
The

population
median is

statistically
greater than

4.

Complexity
Impact_

Methodology
5.00

There is
sufficient

evidence to
reject the

null
hypothesis (p

= 0.026).
The

population
median is

statistically
greater than

4.
Complexity

Impact_
Solution

6.50
There is

sufficient
evidence to

54

Research
Question Variable

Professor Factor Survey
Questions (Spanish /

English)
Median

1-Sample
Wilcoxon

test
Result

reject the
null

hypothesis (p
= 0.001).

The
population
median is

statistically
greater than

4

Mesurement_
Importance_

Rating

7. Rate how important is
to measure complexity in
Project-Based Learning.

Scale 1(Extremely

irrelevant) to 7
(Extremely relevant)

6.00

HO: Median
= 4

HA: Median
> 4

There is
sufficient

evidence to
reject the

null
hypothesis (p

= 0.001).
The

population
median is

statistically
greater than

4

Availability
Importance_

Rating

8. Rate how important is
to have objective metrics
to evaluate the complexity
of project in engineering.

Scale 1(Extremely
irrelevant) to 7

(Extremely relevant)

6.00

HO: Median
= 4

HA: Median
> 4

There is
sufficient

evidence to
reject the

null
hypothesis (p

= 0.002).
The

population
median is

statistically
greater than

4

Is
complexity
considered
for PBL in
engineering
education?

Complexity
Consideration_

PBL

9. Is complexity currently
considered in Project-

Based Learning?
Scale 1(Substantially not

considered) to 7
(Substantially considered)

5.5

HO: Median
= 4

HA: Median
< 4

There is
sufficient
evidence to
reject the
null
hypothesis
(0.985). The
population
median is
statistically

55

Research
Question Variable

Professor Factor Survey
Questions (Spanish /

English)
Median

1-Sample
Wilcoxon

test
Result

greater than
4.

Metric_
Implementation

11. Are there objective
metrics currently used to

measure project definition
or evaluation complexity?
Scale 1(Substantially not
used) to 7 (Substantially

used)

3.00

HO: Median

= 4
HA: Median

< 4

There is
insufficient
evidence to
reject the
null
hypothesis (p
= 0.023).
The
population
median is
statistically
less than 4.

Complexity
Measure_
Frequency

12. If complexity metrics
are used, please specify
which and evaluate how
frequently you integrates

them in project
evaluation.

Scale 1(Never) to 7
(Always)

6.00

N/A

N/A

Is the
complexity

of the
project

definitions
significantly

different?

Complexity
Definition_
Difference_

Rating

13. When students are
assigned different project,

rate how different the
project definition is

(specifications).

Scale 1(Substantially the
same) to 7 (Substantially

different)

4.00

HO: Median
= 4

HA: Median
> 4

HO: Median
= 4

HA: Median
< 4

There is
insufficient
evidence to
reject the

null
hypothesis (p

= 0.578).
The

population
median is not
statistically
greater or

equal than 4.

There is
insufficient
evidence to
reject the

null
hypothesis (p

= 0.453).
The

population
median is not

56

Research
Question Variable

Professor Factor Survey
Questions (Spanish /

English)
Median

1-Sample
Wilcoxon

test
Result

HO: Median
= 4

HA: Median
≠ 4

statistically
less than 4.

There is

insufficient
evidence to
reject the

null
hypothesis (p

= 0.906).
The

population
median is not
statistically

different than
4.

Is the
complexity

of the
multiple
solutions
generated

significantly
different?

Complexity
Solution_

Difference_
Rating

14. When students are
assigned the same project,

rate how different the
complexity of the

solutions provided by
students are.

Scale 1(Substantially the
same) to 7 (Substantially

different)

4.50

HO: Median
= 4

HA: Median
< 4

HO: Median
= 4

HA: Median
> 4

HO: Median
= 4

There is
insufficient
evidence to
reject the

null
hypothesis (p

= 0.733).
The

population
median is not
statistically
less than 4.

There is
insufficient
evidence to
reject the

null
hypothesis (p

= 0.297).
The

population
median is not
statistically
less than 4.

There is

insufficient
evidence to

57

Research
Question Variable

Professor Factor Survey
Questions (Spanish /

English)
Median

1-Sample
Wilcoxon

test
Result

HA: Median
≠ 4

reject the
null

hypothesis (p
= 0.594).

The
population

median is not
statistically

different than
4.

This table summarized the answers to first four research questions, showing that

engineering professors believed that complexity should be assessed in PBL, specifically in the

definition and solution. Also, that there are currently no objective metrics used to measure project

definition or evaluation complexity event though, complexity is considered for PBL. Responses

showed that when students are assigned different project, project definition (specifications or

requirements) are the same. Last, when students are assigned the same project, complexity of the

solutions provided by students are the same.

Remaining survey questions were open-ended questions. For instance, Question 4, what

courses have you offered where learning is implemented through projects (Project-Based

Learning)? Results show that engineering professors offered 27 unique courses where learning is

implemented through projects. Of those, three courses were listed by various professors: Project

Design in Engineering in Computers (ICOM 5047), Process Automation Course (ININ 4057) and

Integrated Project of Civil Engineering (INCI 4950). According to interviewed professors, ICOM

5047 course project was not the same for all students. For this project, students needed to design

and implement prototypes in groups of 2-9 students. ININ 4057 course project consist on 4 phases:

concept, design, structure and programming of an automated process. The project (problem

58

statement) is the same for all student and is worked on teams of 2-3 students. Last, INCI 4950

course project focuses on creating a building of around 10-15 floors. This project is managed by

groups of around 10-12 students.

Another question asked in the survey, Question 5, in the context of courses with project

(PBL), define, what it is complexity for you; explain. Some professor defined it as a “challenge

offered to student so they applied what they learned.” Other said, “Is when they used their

creativity.” One mentioned “interrelation to resolve a problem.” Two professors mentioned the

“Number of interactions used within a system.”

Lastly in Question 10, If so, how do you consider it (complexity in PBL), most professor said

they considered it the definition and evaluation. In general, it was observed there is no standard

way to measure complexity, even though most professors agreed they consider it during the

definition and evaluation.

Next section shows the complexity metrics results.

4.3 Complexity Metrics

Fourteen projects from the Process Automation (ININ 4057) course, given at the University

of Puerto Rico at Mayaguez, were used to implement all seven complexity metrics. Each project

was done by group of two to three students with the same requirement. Particularly, for the fall

semester of academic year 2015-16, the project consisted on automating eggs packing process.

The following sections demonstrate results of innovative methodologies implemented to measure

complexity in a standardized and objective matter. This section reveals how can project complexity

be assessed, when student have the same project requirements.

59

4.3.1 Visual Component Interaction (VCI)

VCI metric was implemented to fourteen samples from first semester 2015-16. Results are

showed in the Table 4.2 below. Ranges were obtain and it is observed that VCI range is [169,

2853], component (M) quantities range is [12, 42] while physical interaction (I) range is [5, 38].

Table 4.2: Visual Component Interaction Result
Visual Component Interaction (VCI)

Sample ID C I VCI= M²+I²

Group 1 34 38 2600

Group 2 19 10 461

Group 3 17 12 433

Group 4 22 23 1013

Group 5 18 13 493

Group 6 28 31 1745

Group 7 16 10 356

Group 8 26 25 1301

Group 9 12 5 169

Group 10 27 18 1053

Group 11 12 7 193

Group 12 32 25 1649

Group 13 19 13 530

Group 14 42 33 2853

Also, group VCI complexity was displayed in Figure 4.3.

60

Figure 4.3: VCI Results

It is observe that Group 14 and Group 1 has the highest value, while Group 11 and Group

9 has the lowest value. In more detail, Group 14 has 43 unique components (M) and 33 physical

interactions (I), compared to Group 9 that 12 unique components (M) and 5 physical interactions

(I). This metric can quantify complexity among different groups, showing which group is more

complex in terms of their visual component interaction. In this case evidently, Group 14 is more

complex.

4.3.2 Software Component Interaction (SCI)

SCI metric was implemented to fourteen samples from first semester 2015-16. Results are

shown in the Table 4.3 below. It is observed that SCI range is [277, 20213], component (M)

quantities range is [9, 41] while interaction (I) range is [14, 137].

Grou
p 9

Group
 11

Grou
p 7

Group
 3

Grou
p 2

Grou
p 5

Grou
p 1

3

Grou
p 4

Grou
p 1

0

Grou
p 8

Grou
p 1

2

Grou
p 6

Grou
p 1

Grou
p 1

4

3000

2500

2000

1500

1000

500

0

Sample ID

VC
I=

 M
²+

I²

Chart of VCI= M²+I²

61

Table 4.3: SCI Results
Software Component Interaction (SCI)

Sample ID Components (M) Interactions (I) SCI= M²+I²
Group 1 36 113 14065
Group 2 23 29 1370
Group 3 16 38 1700
Group 4 38 137 20213
Group 5 23 43 2378
Group 6 33 108 12753
Group 7 25 45 2650
Group 8 26 86 8072
Group 9 9 14 277
Group 10 30 44 2836
Group 11 13 23 698
Group 12 39 71 6562
Group 13 30 89 8821
Group 14 41 87 9250

Also, group SCI complexity was displayed in Figure 4.4.

Figure 4.4: SCI results by Group

Grou
p 9

Group
 11

Grou
p 2

Grou
p 3

Grou
p 5

Grou
p 7

Grou
p 1

0

Grou
p 1

2

Group
 8

Grou
p 1

3

Grou
p 1

4

Grou
p 6

Grou
p 1

Grou
p 4

20000

15000

10000

5000

0

Sample ID

SC
I=

 M
²+

I²

Chart of SCI= M²+I²

62

It is observed that Group 4 has the highest value, while Group 9 has the lowest value. In

more detail, Group 4 had 38 unique components (M) and 137 interactions (I) in the ladder logic,

compared to Group 9 that had 9 unique components (M) and 14 interactions (I). This metric can

quantify software complexity among different groups, showing which group is more complex in

terms of their software component interaction. In this case evidently Group 4 is more complex.

Please note, that group 9 had additional physical components that those used in the software. This

could be a result of using components to enable a physical interaction but not necessarily using

them in the software as an actuator or sensor.

4.3.3 Software Component Interaction with stages (SCIS)

SCIS metric was implemented in fourteen samples from first semester 2015-16. Results

are shown in the Table 4.4 below. Ranges were obtained and it is observed that SCIs range is

[1044, 80801], component (M) quantities range is [12, 63] while interactions (I) range is [30 to

280].

Table 4.4: SCIS Results
Sample ID Components (M) Interactions (I) SCIS= M²+I²

Group 1 50 237 58669

Group 2 34 68 5780

Group 3 26 103 11285

Group 4 49 280 80801

Group 5 30 101 11101

Group 6 43 222 51133

Group 7 34 116 14612

Group 8 38 117 15133

Group 9 12 30 1044

63

Sample ID Components (M) Interactions (I) SCIS= M²+I²

Group 10 37 103 11978

Group 11 21 77 6370

Group 12 50 152 25604

Group 13 35 143 21674

Group 14 63 183 37458

Group SCIS complexity was displayed in Figure 4.5.

Figure 4.5: SCIS results by Group

It is observed that Group 4 has the highest value, while Group 9 has the lowest value. In

more detail, Group 4 had 49 unique software components (M) and 280 interactions (I) in the ladder

logic, compared to Group 9 that had 12 unique software components (M) and 30 interactions (I).

This metric can quantify software complexity, including stages as an additional component among

Grou
p 9

Grou
p 2

Grou
p 1

1

Grou
p 5

Grou
p 3

Grou
p 1

0

Grou
p 7

Grou
p 8

Grou
p 1

3

Grou
p 1

2

Grou
p 1

4

Grou
p 6

Grou
p 1

Grou
p 4

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

Sample ID

SC
IS

=
 M

²+
I²

Chart of SCIS= M²+I²

64

different groups, showing which group is more complex in terms of their software component

interaction with stages. In this case, evidently, Group 4 is more complex.

We can say that if we compare SCI components vs SCIS components for group 4, there is

a difference. That difference account for the amount of stages that were not considered in SCI but

are considered in SCIS. These stages that are being considered add complexity since they interact

with the rest of components in the ladder logic. Consequently it is expected to see more interactions

accounted for in the SCIS implementation within the same group. For group 4, there are 143

additional interaction.

4.3.4 Lines of Code (LOC)

LOC metric was implemented to fourteen samples from first semester 2015-16. Results are

shown in the Table 4.5 below. Ranges were obtain and it is observed that LOC range is [9, 113],

lines (L) quantities range is [9, 114] while blank lines (n) range is [0, 10].

Table 4.5: LOC Results
Sample ID L n LOC = L-n

Group 1 75 7 68

Group 2 38 2 36

Group 3 114 1 113

Group 4 63 0 63

Group 5 45 10 35

Group 6 59 0 59

Group 7 55 3 52

Group 8 49 0 49

Group 9 9 0 9

65

Sample ID L n LOC = L-n

Group 10 43 6 37

Group 11 36 0 36

Group 12 55 0 55

Group 13 52 0 52

Group 14 62 0 62

Also, group LOC complexity was displayed in Figure 4.6.

Figure 4.6: LOC results by Group

It is observed that Group 3 has the highest value while Group 9 has the lowest value. In

more detail, Group 3 had 114 lines of code (L) and 1 blank line (n) compared to Group 9 that had

9 lines of code (L) and 0 blank lines (n). This metric quantifies size of the program based on the

number of lines (LOC). In this case, evidently Group 3 has more lines of code, hence we can say

that it is the biggest program among all groups, hence the more complex in that matter.

Grou
p 9

Grou
p 5

Grou
p 1

1

Grou
p 2

Grou
p 1

0

Grou
p 8

Grou
p 1

3

Grou
p 7

Grou
p 1

2

Grou
p 6

Group
 14

Group
 4

Grou
p 1

Grou
p 3

120

100

80

60

40

20

0

Sample ID

LO
C

=
 L

-n

Chart of LOC = L-n

66

4.3.5 Cyclomatic Complexity (CC)

CC metric was implemented as well. Results are showed in the Table 4.6 below. Ranges

were obtained and it is observed CC range is [1, 12], that jumps (e) quantities range is [4, 25],

stages (n) varied range is [3 to 23] and initial stage (p) range is [1, 2].

Table 4.6: CC Results
Cyclomatic Complexity (CC)

Sample ID e n p CC = e-n+p

Group 1 25 14 1 12

Group 2 17 11 1 7

Group 3 15 10 1 6

Group 4 15 11 1 5

Group 5 9 6 1 4

Group 6 13 10 1 4

Group 7 12 9 1 4

Group 8 13 12 1 2

Group 9 4 3 1 2

Group 10 6 6 2 2

Group 11 8 8 1 1

Group 12 15 12 1 4

Group 13 7 5 1 3

Group 14 25 23 2 4

Also, group LOC complexity was displayed in Figure 4.7.

67

Figure 4.7: CC Complexity Metric Results

Result shows that Group 1 has the most independent paths in the Direct Soft Ladder Logic.

On the contrary, Group 11 had only one linear independent path. In more detail, Group 1 had 25

jumps (e), 14 stages (n) and 1 initial stage (p) compared to Group 11 that had 8 jumps (e), 8 stages

(n) and 1 initial stage (p). Surprisingly, for the first time until now, 4 groups are equally complex

in terms of their independent paths. These groups are groups 6,7,12 and 14 with four linearly

independent paths.

4.3.6 Process Hierarchical Function

PHF metric was implemented to determine the Automated Process functions decomposed

in multiple levels. Results are showed in the Table 4.7 below. Ranges were obtained and it is

observed that PHF range is [31, 59], the number of functions at each level (F) varied range is [0,

12], the number of level (l) range is [4, 7] and weight for level (k) range is [1 to 4].

Grou
p 1

1

Grou
p 1

0

Grou
p 9

Grou
p 8

Grou
p 1

3

Grou
p 1

4

Grou
p 1

2

Grou
p 7

Grou
p 6

Grou
p 5

Grou
p 4

Grou
p 3

Grou
p 2

Grou
p 1

12

10

8

6

4

2

0

Sample ID

CC
=

e-
n+

p

Chart of CC=e-n+p

68

Table 4.7: PHF Results
Process Hierarchical Function (PHF)

Sample ID
Level 1

K=1

Level 2

K=2

Level 3

K=3

Level 4

K=4 PFH =∑Fl * Kᵢ

Group 1 5 9 12 0 59

Group 2 4 9 7 0 43

Group 3 7 9 2 0 31

Group 4 4 8 6 0 38

Group 5 4 9 6 0 40

Group 6 4 9 8 0 46

Group 7 4 9 6 0 40

Group 8 4 9 9 0 49

Group 9 4 8 7 0 41

Group 10 4 8 7 0 41

Group 11 4 8 6 0 38

Group 12 4 8 8 0 44

Group 13 4 7 7 2 47

Group 14 4 8 8 0 44

Also, group PHF complexity was displayed in Figure 4.8.

69

Figure 4.8: PHF Complexity Metric Results

Result shows that Group 1 has the most process functions decomposed in multiple levels.

On the contrary, Group 3 has the fewest. In more detail, Group 1 had up to 12 function at level 3

compared to Group 3 that had up to 9 at level 2. Again, it is observed that there are some groups

are equally complex in terms of their process functions decomposition. These groups are group 4

and 12 with a value of 38. Also groups 5 and 7 have a value of 40, while Groups 9 and 10 have a

value of 41.

4.3.7 Station Hierarchical Function

SHF metric was implemented to determine the process automation stations functions

decomposed in multiple levels. Results are showed in the Table 4.8 below. Ranges were obtained

and it is observed that Sum SHF results varied from [53, 76], while Max SHF values were [22, 31]

and Product SHF [15048, 73304].

Grou
p 3

Grou
p 1

1

Grou
p 4

Grou
p 7

Grou
p 5

Grou
p 1

0

Grou
p 9

Grou
p 2

Grou
p 1

4

Grou
p 1

2

Grou
p 6

Grou
p 1

3

Grou
p 8

Grou
p 1

60

50

40

30

20

10

0

Sample ID

PF
H

 =
∑F

l *
 K
ᵢ

Chart of PFH =∑Fl * Kᵢ

70

Table 4.8 SHF Results

Group
Station

1
Station

2
Station

3
Station

4
Station

5 Sum
SHF

Max
SHF

Product
SHF SHF1 SHF2 SHF3 SHF4 SHF5

1 11 28 17 14 6 76 28 73304
2 19 22 11 6 0 58 22 27588
3 6 22 19 6 0 53 22 15048
4 14 22 11 6 0 53 22 20328
5 11 25 11 9 0 56 25 27225
6 17 26 11 9 0 63 26 43758
7 13 22 14 6 0 55 22 24024
8 16 31 11 6 0 64 31 32736
9 11 25 14 6 0 56 25 23100
10 11 25 14 6 0 56 25 23100
11 11 22 14 6 0 53 22 20328
12 11 28 11 9 0 59 28 30492
13 14 29 14 6 0 63 29 34104
14 11 25 17 6 0 59 25 28050

Figure 4.9 displayed Sum SHF metric. These metrics were selected among the others because it

captures functional decomposition of all stations of the process automation but at the same time is

analyzed as a single measure.

Grou
p 1

1

Grou
p 4

Grou
p 3

Grou
p 7

Grou
p 1

0

Grou
p 9

Grou
p 5

Grou
p 2

Grou
p 1

4

Grou
p 1

2

Grou
p 1

3

Grou
p 6

Grou
p 8

Grou
p 1

80

70

60

50

40

30

20

10

0

Sample ID

Su
m

_S
H

F

Chart of Sum_SHF

71

Figure 4.9: SHF Complexity Metric Results

Results shows that Group 1 has the most station functions decomposed in multiple levels.

On the contrary Group 11 has the fewest, but not by much. In more detail, Group 1 had up to 15

function at level 3 compared to Group 11 that had up to 9 at level 3. It is observed that there are

some groups are equally complex in terms of their station functions decomposition. These groups

are group 3, 4 and 11 with a value of 53. Also groups 5, 9 and 10 have a value of 56, while

Groups 13 and 6 have a value of 63.

4.3.8 Complexity Metric Comparison

Beside the individual metrics results, a spider diagram was created to compare all seven

metric among the fourteen groups as shown in Figure 4.10 below.

Figure 4.10: Complexity Metric Results by Group (Collado, Medina & Soto, 2016)

0.00

0.20

0.40

0.60

0.80

1.00
VCI

CC

SCI

SCISSHF

PHF

LOC

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Group 8

Group 9

Group 10

Group 11

Group 12

Group 13

Group 14

72

Each one of the seven complexity metrics results, were normalized for all groups. A higher

value within the scale of 0 to 1 indicates a higher value of complexity. It is observed that the

normalized result for various complexity metrics varied from group to group. Particularly, group

1, compared to the rest of the group, created more independent paths in the software (CC) and

added more functions to their overall process (PHF) and stations (SHF). Similar, group 8,

generated their automated process with higher number of software component interactions (SCI

and SCIS).

Another analysis conducted is a correlation analysis among complexity metrics. It is of

interest to determine the extent to which two metrics correlates. Pearson correlation was used to

evaluate the linear relation between pair of metrics as shown in Figure 4.11.

Figure 4.11: Correlation Analysis

When coefficient absolute correlation is closer to 1 or -1, the data points fall on a line more

tightly. When value is cero, no linear relationship exist. It is observed from the result of this

analysis that there is correlation among almost all metrics expect SHF- LOC. The most significant

correlation is within SCI and SCIS with a correlation of 0.960 and SHF and PHF with 0.955. This

73

was expected since both, SCI and SCIS measures component and interaction in the software,

however, SCI does not consider stages and SCIS does. Similar both SHF and PHF measure

complexity based on functionality, the difference is that SHF measures it by station and PHF assess

the process automation as a whole.

In order to answer research question three, is the complexity of the multiple solutions

generated significantly different? Friedman rank sum test was used to compare all seven

complexity measures between fourteen groups. For this test, complexity metrics were normalized

using the following equation:

 𝑌𝑌
max (𝑌𝑌)

 (4.1)

Figure 4.12 below shows that according to this test, there is sufficient evidence to reject null

hypothesis. Hence there is statistical significant difference between the groups.

Figure 4.12: Friedman Rank Sum Test

Another approach used was the Pairwise comparison using Conover’s test.

74

Figure 4.13: Pairwise Comparison

This approach shows exactly which group differs from one another. For instance, Group 1

is statistically different from group 11, 5, 7 and 9. Similar, group 6 differ from group 9 and so on.

Multiple analysis on the same variable, increase the chance of committing a Type I error.

Therefore adjusting the p-value to a more stringent value making it less likely to commit Type I

Error (Bonferroni Correction, 2015). Equation 4.2 shows the p value adjustment used for this

pairwise comparison test.

 α𝑎𝑎𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑙𝑙 = 1 − (1 − α𝑎𝑎𝑙𝑙𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑘𝑘 (4.2)

Where, α𝑎𝑎𝑙𝑙𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼/𝑛𝑛

Next section, shows student factor survey results.

4.4 Student Factor Survey

Student Factor survey questionnaire was employed to measure age, gender, knowledge

perceived abilities, perceived difficulty, individual contribution, team dynamic and performance.

A total of thirty five students agreed to voluntarily participant in this survey. All they are industrial

engineering students that took the Process Automation (ININ 4057) course. Also they are the

designers of the small scale automated process used to implement complexity metrics, discussed

in the previous Section (4.3 Complexity Metrics). Table 4.9 summarizes results obtained from

student factor survey and complexity metrics implementation results.

Table 4.9: Student Factor Survey and Complexity Metric Result Range
Variables Designation Category Data

Range
Connotation

VCI Output

Complexity
Metric

[169,
2853]

Visual
Component
Interaction

75

Variables Designation Category Data
Range

Connotation

CC [1, 12]
Number of

Independ path
in a program

SCI [277,
20213]

Software
Component
Interaction

SCIS [1044,
80801]

Software
Component

Interaction with
stages

SHF [53, 76] Station
Functions

PHF [31, 59] Process
Functions

LOC [9, 113] Program
Volume

Gender
Input/

Predictors

Gender [0, 1] 0=Female,
1= Male

Age Individual Age [21, 31] Age in Years
Age_Median Group Age [22,25] Age in Years

Academic_Load Academic Load [6, 21] Academic
credits

Knowledge_Work

Input/
Predictors

Individual
Knowledge

[0, 1]

0= No
Knowledge,

1= Knowledge

Knowledge_Project [0, 1]
Knowledge_Internship [0, 1]
Knowledge_Coop [0, 1]
Knowledge_Automation [0, 1]
Knowledge_Programming [0, 1]
Know_Work_Median

Group
Knowledge

[0, 1] Percentage of
knowledge
within the

group
From 0 = No
Knowledge to
1= Knowledge

Know_Project_Median [0, 1]
Know_Intern_Median [0, 1]
Know_Coop_Median [0, 1]
Knowe_Auto_Median [0, 1]
Know_Prog_Median [0, 1]
PerHabilities_Programming

Input/
Predictors

Perceived
Abilities/ Skills

[2, 7] Perceived
abilities rating
Scale 1 (Very

Poor) to 7
(Excellent)

PerAbilities_Circuit [2, 7]

PerComplexity_Design
Input/

Predictors

Difficulty/

Complexity

[3, 6]
Perceived

difficulty rating
Scale 1

(Extremely
Simple) to 7
(Extremely
Complex)

PerComplexity_Structure [2, 6]
PerComplexity_PLC [2, 6]
PerComplexity_Programming [1, 6]
PerComplexity_Troubleshooting [2, 6]
PerComplexity_HMI [1, 6]
PerComplexity_Motors [1, 4]

76

Variables Designation Category Data
Range

Connotation

PerComplexity_Neumuatic [1, 4]
PerComplexity_Sensors [1, 4]
PerComplexity_Relays [1, 4]

Individual_Motivation

Input/
Predictors

Individual
Contribution

[2, 7]

Student
Motivation on a

Scale 1 (Not
Motivated) to 7

(Extremely
Motivated)

Individual_ContributionDesign [3, 6]

Student Design
Contribution
Scale 1 (Very

Poor) to 7
(Excelent)

Individual_ContributionStructure [3, 6]

Student
Structure

Contribution
Scale 1 (Very

Poor) to 7
(Excelent)

Individual_ContributionPLC [2, 6]

Student PLC
Contribution
Scale 1 (Very

Poor) to 7
(Excelent)

Individual_ContributionProgram
ming [2, 6]

Student
Programming
Contribution
Scale 1 (Very

Poor) to 7
(Excelent)

Individual_ContributionTroubles
hooting [3, 6]

Student
Troubleshootin
g Contribution
Scale 1 (Very

Poor) to 7
(Excelent)

Individual_ContributionHMI [1, 6]

Student Human
Machine
Interface

Contribution
Scale 1 (Very

Poor) to 7
(Excelent)

Individual_ProjectHrs [40, 400] Estimated hours
spend in project

Individual_PerPerformance Input/
Predictors

Team Dynamic

[4, 7]

Student
Perceived Self
Performance
Scale 1 (Very

Poor) to 7
(Excelent)

77

Variables Designation Category Data
Range

Connotation

Individual_ComparedContributio
n [7, 7]

Student
contribution
among group

members Scale
1 (Substantially

less) to 7
(Substantially

more)
Group_Qty [2, 3] Group Qty.

Group_CommunicationFreq [4,7]
Group

Communication
Frequency

Group_Female% [0, 1] Group Female
%

Group_MemberEngage% [0.33, 1] Group
performance

Goup_DecisionsUnanimity [0, 1]

0=No, 1=Yes
Goup_DecisionsAuthority [0, 1]
Goup_DecisionsMinority [0, 1]
Goup_DecisionsMayority [0, 1]
Goup_DecisionsConsensus [0, 1]
Performance_ININ3.51

Input
Predictors

Performance

[0, 1] 0=No, 1=Yes
Performance_ININ3.01 [0, 1] 0=No, 1=Yes
Performance_ININ2.51 [0, 1] 0=No, 1=Yes
Performance_General3.51 [0, 1] 0=No, 1=Yes
Performance_General3.01 [0, 1] 0=No, 1=Yes
Performance_General2.51 [0, 1] 0=No, 1=Yes
Performance_INEL4075 [2 , 4]

Grades where
A=4, B=3, C=2

Performance_INEL4076 [2 , 4]
Performance_INEL4077 [2 , 4]
Performance_INME4055 [2 , 4]
Performance_INME4056 [2 , 4]
Performance_ININ4057 [2 , 4]
Performance_INGE3016 [2 , 4]
Performance_GrpLabs [68, 97]

Course Grade
Performance_GrpDesign [86, 100]
Performance_GrpStructure [88, 100]
Performance_GrpDemo [58, 98]
Perfornance_IndExams [46, 100]
Perr Eval (max 30) [0, 30] Peer Evaluation

Absence [0, 4]

Count of
Absence to the

ININ 4057
course

Lateness [0, 9] Count of
Lateness to the

78

Variables Designation Category Data
Range

Connotation

ININ 4057
course

Since Reduced Model I search to predict complexity based on performance only (see Figure

3.16), Cronbach's alpha was used to determine the scale of internal consistency for performance

construct. Table 4.10 shows that Cronbach's alpha is > 0.7, hence predictors are a reliable measure

of performance.

Table 4.10: Cronbach Alfa Analysis
Category Variables Cronbach's alpha > 0.7
Performance Performance_INEL4075

Performance_INEL4076
Performance_INEL4077
Performance_INME4055
Performance_INME4056
Performance_ININ4057
Performance_INGE3016
Performance_GrpLabs
Performance_GrpDesign
Performance_GrpDemo
Performance_GrpStructure
Perfornance_IndExams

0.7465

Next section shows prediction models results.

4.5 Prediction Models

As mentioned in the prediction model methodology (Figure 3.16), two methods of

regression, random forest and decision tree, were used to run three models (General Model,

Reduced Model I and Expanded Model II) and predict each one of the seven complexity metrics.

Hence, there are in total 42 models. Table 4.11 summarizes each model with its R2, MAPE and dF

value.

79

Table 4:11 Prediction Models Result Summary
Method Model Response Rsq MAPE dF

randomForest General Model CC 0.548536 0.397585 1.426677
randomForest Reduced Model I CC 0.535984 0.333267 1.496542
randomForest Expanded Model II CC 0.41384 0.154355 1.531863
decision tree Expanded Model II CC 0.024134 0.340146 0.553503
decision tree Reduced Model I CC -0.85128 0.693474 -1.55191
decision tree General Model CC -0.96172 0.657799 -1.7018
randomForest Expanded Model II LOC 0.738041 0.095312 1.799446
randomForest Reduced Model I LOC 0.523686 0.242122 1.200094
randomForest General Model LOC 0.333015 0.272883 0.877021
decision tree Expanded Model II LOC 0.097521 0.348448 0.398937
decision tree General Model LOC -0.84076 0.332532 -0.83888
decision tree Reduced Model I LOC -0.93683 0.475244 -1.26935
randomForest Expanded Model II PHF 0.922536 0.014024 1.847335
randomForest Reduced Model I PHF 0.801439 0.045817 1.369966
randomForest General Model PHF 0.738634 0.038414 1.382474
decision tree General Model PHF 0.196712 0.08819 0.253179
decision tree Expanded Model II PHF 0.044322 0.063748 0.35407
decision tree Reduced Model I PHF -0.15297 0.09186 -0.16582
randomForest Expanded Model II SCI 0.887782 0.583176 1.705368
randomForest Reduced Model I SCI 0.786818 1.520328 1.118175
randomForest General Model SCI 0.773659 0.99664 1.36793
decision tree Expanded Model II SCI 0.381896 0.661754 1.095838
decision tree General Model SCI 0.273575 1.979339 0.308155
decision tree Reduced Model I SCI 0.051351 1.286805 0.407724
randomForest Expanded Model II SCIS 0.873276 0.299414 1.845223
randomForest General Model SCIS 0.590381 0.983414 1.167694
decision tree Expanded Model II SCIS 0.272862 0.492326 1.057958
randomForest Reduced Model I SCIS 0.183463 1.477243 0.446451
decision tree General Model SCIS 0.070582 1.110499 0.506771
decision tree Reduced Model I SCIS -0.88769 1.934487 -1.01651
randomForest Expanded Model II SHF 0.862238 0.011113 1.820617
randomForest General Model SHF 0.505902 0.029423 1.111795
randomForest Reduced Model I SHF 0.426447 0.031977 0.978417
decision tree Expanded Model II SHF 0.038019 0.0463 0.29673
decision tree Reduced Model I SHF -0.74776 0.060155 -0.83823
decision tree General Model SHF -0.76182 0.061951 -0.88354
randomForest Reduced Model I VCI 0.790529 0.449659 1.390954
randomForest General Model VCI 0.735884 0.523428 1.258034
randomForest Expanded Model II VCI 0.935437 0.138508 1.860113
decision tree Expanded Model II VCI 0.673461 0.293108 1.423917
decision tree Reduced Model I VCI 0.224424 0.990142 0.239913

80

Method Model Response Rsq MAPE dF
decision tree General Model VCI 0.213185 0.69718 0.523778

Each model was analyzed based on the desirability function score to determine which one

is the best prediction model for each complexity metric. This dF seeks to minimize the mean

absolute percentage error and maximize the variability explained by the model. See equation

below:

 𝑃𝑃𝑃𝑃 = 𝑅𝑅2

max (𝑅𝑅2)
+ 1

𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀
 (4.3)

Once analyzed, models with higher score were select for each complexity as shown in Table 4.12

below.

Table 4.12: Selected Prediction Models for Complexity
Method Model Response Rsq MAPE DF

randomForest Expanded Model II VCI 0.935437 0.138508 1.860113
randomForest Expanded Model II PHF 0.922536 0.014024 1.847335
randomForest Expanded Model II SCIS 0.873276 0.299414 1.845223
randomForest Expanded Model II SHF 0.862238 0.011113 1.820617
randomForest Expanded Model II LOC 0.738041 0.095312 1.799446
randomForest Expanded Model II SCI 0.887782 0.583176 1.705368
randomForest Expanded Model II CC 0.4138399 0.1543549 1.531863

Now that the best model for each complexity model was selected, each one is analyzed in

order to determine important variables and the relation between team performance and

characteristic and performance.

Using student t-test algorithm (See Appendix G), important variables for each model were

identified as shown in Table 4.13.

Table 4.13: Prediction Models Important Variables
Variable VCI CC SCIS SHF PHF LOC

Individual_ContributionProgramm Original X

81

Variable VCI CC SCIS SHF PHF LOC
Performance_ININ4057 Original X
Perfornance_IndExams Original X

Knowledge_Project Median X
Knowledge_Programming Median X X X X X X

Individual_Motivation Median X X X X X X
PerHabilities_Programming Median X X X X

PerComplexity_Troubleshooting Median X X X X X
PerComplexity_HMI Median X X X X X X

PerComplexity_Neumuatic Median X X X X X X
PerComplexity_Sensors Median X X X X X

Individual_ContributionDesign Median X X X X
Individual_ContributionPLC Median X X X X X X

Individual_ContributionProgramming Median X X X X X X
Individual_ContributionTroubleshooting Median X X X X X

Individual_ProjectHrs Median X X X X X X
Performance_ININ4057 Median X X
Performance_INGE3016 Median X X X X X X
Perfornance_IndExams Median X X X X X X

Absense Median X X X X X X
Knowledge_Project Minimum X

Knowledge_Programming Minimum X X X X X
Individual_Motivation Minimum X X X X X X
PerHabilities_Circuit Minimum X X X X X X

PerComplexity_Design Minimum X X X X X X
PerComplexity_PLC Minimum X X X X X X

PerComplexity_Programming Minimum X X X X X X
PerComplexity_Troubleshooting Minimum X X X X X

PerComplexity_Relays Minimum X X X X X X
Individual_ContributionPLC Minimum X X X X X

Individual_ContributionProgramming Minimum X X X X X X
Individual_ContributionHMI Minimum X X X X X X

Individual_ProjectHrs Minimum X X X X X X
Individual_ComparedContribution Minimum X X X X X X

Performance_INEL4075 Minimum X X X X X X
Performance_ININ4057 Minimum X X X X
Performance_INGE3016 Minimum X
Perfornance_IndExams Minimum X X X X X X

Knowledge_Programming Maximum X X X X X
PerHabilities_Programming Maximum X

PerComplexity_PLC Maximum X X X
PerComplexity_Sensors Maximum X X

Individual_ContributionProgramming Maximum X

82

Variable VCI CC SCIS SHF PHF LOC
Individual_ProjectHrs Maximum X X X X X

Performance_ININ4057 Maximum X
Perfornance_IndExams Maximum X X X X X X

Lateness Maximum X X X X X X
Total important variables 74 47 73 73 78 75

Common variables 24

As observed, six of the seven models had important variables, 24 of them in common.

Please note SCI model did not had statistically important variable.

 Subsequently, to determine the marginal effect of independent variable on the response,

partial dependence plot were constructed in R for each one of the responses (complexity

metrics). For instance, a subset of all the plots can be seen in Figure 4.14 (remaining are in

Appendix H).

Figure 4.14: Partial Dependence Plot for LOC

83

These partial dependence plots provide the answer to last research question, is there a

relationship between project outcome complexity with team characteristics and performance? As

observed in the top left plot in Figure 4.14, LOC complexity begin to decrease as the group

minimum individual hour’s increases’. Also it is observed that LOC increase when the contribution

from one membered compared to the others increase. In terms of performance, plot indicates that

when group’s minimum GPA is 3 (out of maximum GPA of 4) in the INEL 4075 course, LOC

reaches is max value. Similarly, bottom left plot shows that LOC increase abruptly when the

minimum ININ 4057 exam grade within the group was 75 in a scale of 100 (also known as grade

C). These finding are very interesting. Most importantly, the relationship between project outcome

complexity with team characteristics and performance is now known.

84

Chapter 5: Conclusion
In summary, this research presented current considerations of complexity for Project-Based

Learning (PB) through the implementation of professor survey to thirteen UPRM engineering

professor from various engineering departments. It was confirmed that 83% of the participants

believed complexity is considered in engineering education. Also, 46% acknowledged that it is

necessary to assess complexity, since they believed that project definitions differ when students

are assigned different projects. Lastly, 54% said that multiple solutions generated by students who

are assigned the same project, differ.

Most noteworthy, this research studied a variety of complexity metrics, in order to present

the adaptation, development and implementation of seven complexity metric to asses design

complexity in PBL. These metrics are: (1) Visual Component Interaction metric (VCI), that was

developed to measure overall design complexity based on the component interaction that can be

observed physically in the process, independently of the program or software. (2) Similar,

Software Component Interaction (SCI) metric is intended to measure the complexity of process

automation components and interactions through the software, particularly, the ladder logic. (3)

The Software Component Interaction with Stages (SCIS) metric is proposed as a modification of

the SCI metric, that include the assessment of the software stages. (4) Lines of Codes (LOC) metric

is used to measure the lines of code of ladder logic. (5) Cyclomatic Complexity (V(G)) metric

measures the number of linearly independent paths in the Direct Soft Ladder Logic software. (6)

85

The Process Hierarchical Functionality (PHF) metric is intended to assess specific functions of

completed process automation projects. Last but not least (7), the Station Hierarchical

Functionality (SHF) measures the complexity in relation to station functions.

Even though the simplest and easiest metric to implement is LOC, it does not considered

the interaction in each line of code. Therefore, this work presented a robust metric such as SCIS,

which account not only for the amount of components, but the interaction in each line of code of

the software to assess complexity.

A student factor survey was submitted to collect variables that represent designer’s

individual and group characteristic and performance among others. In total, a maximum of 173

variables were used as predictor in the prediction model using both randomForest and rpart

function in R. Results indicated that Random Forest provided better models based on the

coefficient of determination (R2) and the mean absolute deviation percentage (MAPE) than basic

recursive partitioning trees. For instance, VCI random forest prediction model R2 is 0.935 while

MAPE is 0.13.

Finally, one prediction model was developed for each one of the seven responses and

variable importance was assessed. Through Partial dependence plot, the relationship among

designer’s characteristic and performance with complexity was revealed. Out of the 173 variables

used to generate prediction model, 24 variables resulted commonly important in six of the seven

model.

A future application for this method can be used in school systems and higher education using a

more generalized assessment of complexity, for instance, not only for process automation. Moving

forward this assessment can be extended to control PBL complexity, not only to quantify and

analyze it.

86

References
Aitken, N. D. (1982). College student performance, satisfaction, and retention: Specification and

estimation of a structural model. The Journal of Higher Education, 53, 32–50

Baccarini, D. (1996). The concept of project complexity—a review. International Journal of
Project Management, 14(4), 201-204.

Balve, P., & Albert, M. (2015). Project-based learning in production engineering at the Heilbronn
Learning Factory. The 5th Conference on Learning Factories 2015, 104-108. doi:
10.1016/j.procir.2015.02.215

Bashir, H. A., & Thomson, V. (1999). Estimating design complexity. Journal of Engineering

Design, 10(3), 247-257.

Basili, Victor R., & Perricone, Barry T. (1984). Software errors and complexity: an empirical

investigation. Communications of the ACM, 42 – 52.

Bajwa, S. S., Gencel, C., & Abrahamsson, P. (2014). Software product size measurement methods:
A systematic mapping study. Joint Conference of the International Workshop on Software
Measurement and the International Conference on Software Process and Product
Measurement, 176-190.

Bonferroni Correction. (2015, March 31). Retrieved May 07, 2017, from
http://www.statisticssolutions.com/bonferroni-correction/

Bosch-Rekveldt, M., Bakker, Herman M., & Verbraeck, A. (2010). Evaluating a complexity
framework - a practitioners view on project complexity. Retrieved February 8, 2016, from
pubs.iids.org/index.php/attachments/single/46

Buck Institute for Education (2016). What is project based learning (PBL)? Retrieved February
07, 2016, from http://bie.org/about/what_pbl

Blay-Fornarino, M, Charfi A., Emsellem D., Pinna-Dery A., & Riveill M. (2004). Software
interactions. Journal of Object Technology, 3(10), 161–180. Retrieved from
http://www.jot.fm/issues/issues 2004 11/article4

Breiman, L. (2001). Random forests, Machine Learning 45(1), 5-32.

Breiman, L & Cutler A. (n.d.). Random forests Leo Breiman and Adele Cutler. Retrieved April 06,
2017, from https://www.stat.berkeley.edu/~breiman/RandomForests/reg_home.htm

Breiman L., Friedman J. H., Olshen R. A., & Stone, C. J. (1984). Classification and regression
trees. Wadsworth.

http://bie.org/about/what_pbl
http://www.jot.fm/issues/issues%202004%2011/article4

87

Colón, M., Collet. M., Cruz, G., Del Pilar, D., & Martínez, F. (2013). Undergraduate research
report: Developing implementation methods for process automation projects [research
report]. Department of Industrial Engineering, University of Puerto Rico, Mayagüez, PR.

Collado, A., Medina, L.A. & Soto, Z. (2016). Undergraduate research report: complexity metrics-
VCI and V(G) [research report]. Department of Industrial Engineering, University of
Puerto Rico, Mayagüez, PR.

Crespo-Varela, J.R., Tucker, C.S., Okudan-Kremer, G.E. & Medina, L.A. (2012). An analysis of
complexity measures in product design and development. Proceedings of the ASME 2012
International Design Engineering Technical Conferences, 3, 523-532.

Davis, J. H. (1969). Individual-group problem solving, subject preference, and problem type.
Journal of Personality and Social Psychology, 13, 362-374.

DeMarco, T. (1982). Controlling software projects: Management, measurement, and estimates

(1st ed.).

Doppelt, Y. (2003). Implementation and assessment of project-based. International Journal of

Technology and Design Education, 13, 255-272.

Faulconbridge, R. I., & Ryan, M. J. (2003). Managing complex technical projects: a systems

engineering approach. Boston: Artech House.

Fast-Berglund, Å, Fässberg, T., Hellman, F., Davidsson, A., & Stahre, J. (2013). Relations between

complexity, quality and cognitive automation in mixed-model assembly. Journal of
Manufacturing Systems, 32(3), 449-455.

Friedman, J. (2001). Greedy function approximation: the gradient boosting machine, Ann. of Stat.

Genuer, R., Poggi, J., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern

Recognition Letters, 31(14), 2225-2236. doi:10.1016/j.patrec.2010.03.014

Gottfredson, M., & Rigby, D. (2009). The power of managing complexity. Retrieved July 30, 2016,

from http://www.bain.com/publications/articles/the-power-of-managing-complexity.aspx

Gul, S. & S. Khan (2011). Revisiting project complexity: Towards a comprehensive model of

project complexity. 2nd International Conference on Construction and Project
Management. Singapore, 15, 148-155.

Guzzo, R. A., & Shea, G. P. (1990). Group Performance and intergroup relations in organizations.

In Handbook of Industrial and Organizational Psychology (2nd ed., Vol. 3, pp. 269-313).
Palo Alto, CA: Consulting Psychologist Press.

http://www.bain.com/publications/articles/the-power-of-managing-complexity.aspx

88

Gransberg, D. D., Shane, J. S., Strong, K., & Lopez, C. (2013, October). Project complexity
mapping in five dimensions for complex transportation projects. Journal of Management
in Engineering, 29, 316-326. Retrieved March 3, 2015, from Ascelibrary.org.

Halstead, M. H. (1977). Elements of software science. New York: Elsevier North-Holland.

H. Hotelling. (1933). Analysis of a complex of statistical variables into principal components. J.

Educ. Psychol., 24 (6), 417–441.

Hussein, B. A., Pigagaitea, G., & Silva, P. P. (2014). Identifying and dealing with complexities in

new product and process development projects. Procedia - Social and Behavioral Sciences,
119, 702-710. Retrieved February 8, 2016, from ScienceDirect.

Higgs M., Plewnia U., & Ploch J. (2005). Influence of team composition and task complexity on

team performance. Team Performance Management: An International Journal, Vol. 11
Issue: 7/8, pp.227-250, doi: 10.1108/13527590510635134

Hill, G. W. (1982). Group versus individual performance: Are N + 1 heads better than one?
Psychological Bulletin, 91 (3), 517-539.

Indiramma, M (2014). Project based learning – Theoretical foundation. International Conference

on Interactive Collaborative Learning (ICL), 841-844. Retrieved November 16, 2016,
from IEEE

Ireland, L. (2007, October). Project complexity: A brief exposure to difficult situations. Retrieved

April 1, 2017, from www.ipma-usa.org

Intel, (2007). Designing Effective Projects: Characteristics of projects. Retrieved December 22,

2016, from
http://download.intel.com/education/common/pk/resources/dep/projectdesign/dep_pbl_
research.pdf

Jusino, C., Medina, L.A. & Soto, Z. (2016). Undergraduate research report: Complexity metrics-

PHF and SHF [research report]. Department of Industrial Engineering, University of
Puerto Rico, Mayagüez, PR.

Kabacoff, R. (2017). Tree-Based models. Retrieved April 06, 2017, from

http://www.statmethods.net/advstats/cart.html

Keating, M. (2000). Measuring design quality by measuring design complexity. Proceedings of

the IEEE 2000 First International Symposium on Quality Electronic Design, 103-108.

Krajcik, J. S., & Blumenfeld, P. C. (2006). Chapter 19: Project-based learning. In R. K. Sawyer

(Ed.), The Cambridge Handbook of the Learning Sciences (pp. 317-334). Cambridge
University Press.

http://www.emeraldinsight.com/author/Higgs%2C+Malcolm
http://www.emeraldinsight.com/author/Plewnia%2C+Ulrich
http://www.emeraldinsight.com/author/Ploch%2C+Jorg

89

Lewis, J. P. (1999). The project manager's desk reference (2nd ed.). McGraw Hill Professional.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 3, 18-

22.

Martínez, E., Jusino, C., Medina, L. A. & Soto, Z. (2016). Undergraduate research report:

complexity metrics SCI vs. SCIS [research report]. Department of Industrial Engineering,
University of Puerto Rico, Mayagüez, PR.

Medina, L. A. (2013). Real time process control [course syllabus]. Department of Industrial

Engineering, University of Puerto Rico, Mayaguez, PR.

Medina, L. A., Colón, M., Cruz, G., Collet, M., & Soto, Z. (2015). Measuring the complexity of

design projects, Proceedings of the 2015 Industrial and Systems Engineering Research
Conference.

Mathieson, J. L., Wallace, B. A., & Summers, J. D. (2010). Assembly time modeling through

connective complexity metrics. 2010 International Conference on Manufacturing
Automation. doi:10.1109/icma.2010.21

McQuilken, T. (2014). Automation is the future of print workflows. Editor & Publisher, 147(1),

32-33. Retrieved from http://search.proquest.com/docview/1498026957?accountid=28498

McCabe, T. (1976) A complexity measure. IEEE Transactions on Software Engineering, 2(4),

308-320.

Owens, J., Ahn, J., Shane, J. S., Strong, K. C., & Gransberg, D. D. (2011). Defining complex
project management of large U.S. transportation projects: A comparative case study
analysis. Public Works Management & Policy, 17(2), 170-188.
doi:10.1177/1087724x11419306

Project Management Institute, Inc (2016). What is project management? Retrieved July 30, 2016,
from https://www.pmi.org/about/learn-about-pmi/what-is-project-management

Sam Houston State University (2016). Project based learning in higher education. Retrieved
February 07, 2016, from http://www.shsu.edu/centers/project-based-learning/higher-
education.html

R Development Core Team. (2010). R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria.

Remington, K., R. Zolin & R. Turner (2009). A model of project complexity: distinguishing

dimensions of complexity from severity. Proceedings of the 9th International Research
Network of Project Management Conference, IRNOP.

http://www.shsu.edu/centers/project-based-learning/higher-education.html
http://www.shsu.edu/centers/project-based-learning/higher-education.html

90

Roy, R., Evans, R., Low, M.J., & Williams, D.K. (2011). Addressing the impact of high levels of
product variety on complexity in design and manufacture. Journal of Engineering
Manufacture, 225, 1939-1950.

Sonnert, G., & Fox, M. F. (2012, January/February). Women, men, and academic performance in

science and engineering: The gender difference in undergraduate grade point averages. The
Journal of Higher Education, 83, 73-101. Retrieved February 5, 2015.

Soto, Z., Rosado, M., & Medina, L. (2015). Undergraduate research report: developing

implementation methods for process automation projects [research report]. Department of
Industrial Engineering, University of Puerto Rico, Mayagüez, PR.

Tessema, M., Ready, K., & Malone, C. (2012). Effect of gender on college students’ satisfaction

and achievement: The case of a midsized midwestern public university. International
Journal of Business and Social Science, 3. Retrieved December 28, 2015, from
www.ijbssnet.com.

Thomas, J. W. (2000, March). A Review of research on project based learning | project based

learning | BIE. Retrieved July 30, 2016, from
http://bie.org/object/document/a_review_of_research_on_project_based_learning

Vega, V. (2015, December 1). Project-based learning research review. Retrieved July 31, 2016,

from http://www.edutopia.org/project-based-learning

Webb, Noreen M., Kariane Mari Nemer & Zuniga, Stephen (2002). Short circuits or

superconductors? Effects of group composition on high-achieving student’s science
assessment performance. American Educational Research Journal, 39(4), 943-989.

Yu, S., & Zhou, S. (2010). A survey on metric of software complexity. 2010 2nd IEEE

International Conference on Information Management and Engineering.
doi:10.1109/icime.2010.5477581

http://bie.org/object/document/a_review_of_research_on_project_based_learning
http://www.edutopia.org/project-based-learning

91

92

Appendix A: R2D2 Ladder Logic

93

94

95

96

97

98

99

100

101

102

Figure A1: R2D2 Ladder Logic

103

Appendix B: SCI Metric Applied to R2D2

Making components-interaction diagrams for each line of code

Table B1: Automated Process Components

Components (M)

X's Y's C's CT's T's

X0 Y0 C0 CT0 T0

X1 Y1 C1 CT1 T1

X2 Y2 C2

T2

X3 Y3 C3

T3

X4 Y4 C4

T4

X5 Y5 C6

T6

X6 Y7 C7

T7

X7 Y10 C11

T10

X10 Y12 C12

X11 Y13 C13

X20 Y20

X21 Y21

X22 Y22

X23 Y23

X24 Y24

X25 Y25

X31 Y26

X32

X33

104

Line by Line Analysis

Table B2: Diagrams based on Lines of Code

Line
of

Code
Diagrams Interaction

1

4

2

4

4,6 5

X36

X37 Total 58

105

Line
of

Code
Diagrams Interaction

7

1

8,16

12

9,13 15

106

Line
of

Code
Diagrams Interaction

10,16

16

107

Line
of

Code
Diagrams Interaction

11,20

10

14,20

6

108

Line
of

Code
Diagrams Interaction

17,20

8

18,23

1

21,26

2

109

Line
of

Code
Diagrams Interaction

24,20

6

27,29

3

110

Line
of

Code
Diagrams Interaction

30,34

8

31,38

12

111

Line
of

Code
Diagrams Interaction

32,34

12

35,44

4

36,41

1

112

Line
of

Code
Diagrams Interaction

39,44

2

42,44

2

45

5

113

Line
of

Code
Diagrams Interaction

46,48

8

49

1

50

3

114

Line
of

Code
Diagrams Interaction

51

3

52,54

8

55,97

14

115

Line
of

Code
Diagrams Interaction

56,59

14

57,85

14

60

1

116

Line
of

Code
Diagrams Interaction

61,63

2

64,66

1

67

1

68,71

6

117

Line
of

Code
Diagrams Interaction

69,74

8

72,97

5

118

Line
of

Code
Diagrams Interaction

75,77

5

78

1

119

Line
of

Code
Diagrams Interaction

79

6

80,82

1

120

Line
of

Code
Diagrams Interaction

86

1

87,89

2

90,92

1

121

Line
of

Code
Diagrams Interaction

93

1

94,71

4

95,74

4

122

Line
of

Code
Diagrams Interaction

98

1

99

4

100,10
2

2

123

Line
of

Code
Diagrams Interaction

103

1

104

4

105

1

124

Line
of

Code
Diagrams Interaction

106,10
8

3

Total Interactions 270

Eliminating redundant diagrams:

Table B3: Elimination of Redundant Diagrams Based on Lines of Codes

Lines of Code Interaction Lines of Code
Comparison Interaction Final Lines of

Code
Final

Interaction

1 4 4
2 4 4

4,6 5 5
7 1 1

8,16 12 12
10,16 16 9,13 15 10,16 16
11,20 10 10
14,20 6 6
17,20 8 8
18,23 1 1
21,26 2 2
24,20 6 6
27,29 3 3
30,34 8 8
31,38 12 32,34 12 31,38 12
35, 44 4 4

125

Lines of Code Interaction Lines of Code
Comparison Interaction Final Lines of

Code
Final

Interaction

36,41 1 1
39,44 2 2
42,44 2 2

45 5 5
46,48 6 8

49 1 1
50 3 3
51 3 3

52,54 8 8
55,97 14 14
56,59 14 14
57,85 14 14

60 1 1
61,63 2 2
64,66 1 90,92 1 64,66 1

67 1 1
68,71 6 6
69,74 8 8
72,92 5 5
75,77 5 5

79 6 78 1 79 6
86 1 1

87,89 2 2
93 1 1

94,71 4 95,74 4 94,71 4
99 4 98 1 99 4

100,102 2 80,82 1 100,102 2
104 4 103 1 104 4

106,108 3 105 1 106,108 3
Total without
elimination 270 Delta 37 Total wit

elimination 233

Overlapping diagrams when interactions are reduced

Table B4: Overlapped Diagram based on Lines of Code
Line of
Code Diagrams Interaction

1 4

126

Line of
Code Diagrams Interaction

2

4

4,6 5

127

Line of
Code Diagrams Interaction

7

1

8,16;
10,16;
11,20

32

128

Line of
Code Diagrams Interaction

14,20

6

17,20

8

18,23

1

21,26 2

129

Line of
Code Diagrams Interaction

24,20

6

27,29

3

130

Line of
Code Diagrams Interaction

30,34;
31,38

17

35,44

4

131

Line of
Code Diagrams Interaction

36,41

1

39,44

2

42,44

2

45

5

132

Line of
Code Diagrams Interaction

46,48

8

49

1

50; 51 4

133

Line of
Code Diagrams Interaction

52,54

8

55,97;
56,59;
57,85

 34

134

Line of
Code Diagrams Interaction

60

1

61,63

2

64,66 1

135

Line of
Code Diagrams Interaction

67

1

68,71;
69,74

12

136

Line of
Code Diagrams Interaction

72,97;
75,77

9

79

6

137

Line of
Code Diagrams Interaction

86

1

87,89

2

93

1

138

Line of
Code Diagrams Interaction

94,71

4

99

4

100,102

2

139

Line of
Code Diagrams Interaction

104

4

106,108

3

Total Interactions 211

Result: C= M2+I2 = 582+2112= 47885

Validating the methodology through a Big Diagram

140

141

142

F

Figure B1: Big Diagram

Legend of
Figures

Conditions variables

Actions variables

Lines from conditions to
actions without implying
interaction

Interaction among
conditions only

Interaction among
conditions and actions

Diagonal line to avoid
variable duplicity without
affecting interaction among
conditions and actions

Variable that changes from
condition to action and vice
versa

Variable identified as
condition and action in the
same interaction

143

Appendix C: CPSHI Approval

144

145

Appendix D: R code for Random Forest Analysis

setwd("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data")
library(readr)
rawdata <-read_csv("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data/VCIrawdata.csv")

library(randomForest)

#Cross Validation
data=rawdata

nFolds=10

MAD=matrix(nrow=nFolds,ncol=1)
MAPE=matrix(nrow=nFolds,ncol=1)#cv MAPE matrix
MSE=matrix(nrow=nFolds,ncol=1)#cv error matrix
Rsq=matrix(nrow=nFolds,ncol=1) # aVCIuracy matrix
permRows=sample(x=1:nrow(data),size=nrow(data),replace=FALSE)

Create testing and training folds
obsFold=floor(nrow(data)/nFolds)
pending=nrow(data)-floor(nrow(data)/nFolds)*nFolds
j=0

for (i in 1:nFolds){
 if (i>=(nFolds-pending+1) & pending>0) {
 assign(paste("F",i,sep=""),data[permRows[(j+1):(j+obsFold)],]) ; j= j + obsFold + 1 } else
 { assign(paste("F",i,sep=""),data[permRows[(j+1):(j+obsFold)],]); j= j + obsFold }

 testing=get(paste("F",i,sep=""))
 trainingRows=setdiff(1:nrow(data),as.numeric(row.names(testing)))
 training=data[trainingRows,]

 #RandomForest Regression
 myRF=randomForest(VCI~.,data=training,importance=TRUE,do.trace=100,proximity=TRUE)
 pred_cv=predict(myRF,newdata=testing)
 actual=testing$VCI
 MAD[i]=sum(abs(actual-pred_cv))/length(pred_cv)
 MSE[i]=sum((actual-pred_cv)*(actual-pred_cv))/length(pred_cv)
 MAPE[i]=sum(abs(actual-pred_cv)/actual)*(1/length(pred_cv)) # the mean absolute percentage error
 Rsq[i]= 1 - sum((actual-pred_cv)^2)/sum((actual-mean(actual))^2)
}

plot(myRF)

myRF$importance
varImpPlot(myRF)

impo<-myRF$importance
write(impo,"C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data/ResulTs/VCIimportscoreP.cvs")

146

#myRF$mtry
#myRF$type
imposd<-myRF$importanceSD
write.csv(imposd,"C:/Users/sotoz/OneDrive - Hewlett Packard
Enterprise/Data/Results/VCIimportscoreP.csv")

#myRF$ntree
#myRF$oob.times
#myRF$forest #averiguar mas sobre este valor
#myRF$forest$nodepred
#myRF$proximity

#Performance metrics
MSE
mean(MSE) # error
Rsq
mean(Rsq) # aVCIurracy
MAD
mean(MAD)
MAPE
mean(MAPE)

ok<-cbind(MSE,Rsq,MAD,MAPE)
ok

147

Appendix E: R code for Decision Tree Analysis

setwd("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data")
library(readr)
rawdata <-read_csv("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data/locrawdata.csv")

library(randomForest)

#Cross Validation
data=rawdata

nFolds=10

MAD=matrix(nrow=nFolds,ncol=1)
MAPE=matrix(nrow=nFolds,ncol=1)#cv MAPE matrix
MSE=matrix(nrow=nFolds,ncol=1)#cv error matrix
Rsq=matrix(nrow=nFolds,ncol=1) # aVCIuracy matrix
permRows=sample(x=1:nrow(data),size=nrow(data),replace=FALSE)

Create testing and training folds
obsFold=floor(nrow(data)/nFolds)
pending=nrow(data)-floor(nrow(data)/nFolds)*nFolds
j=0

for (i in 1:nFolds){
 if (i>=(nFolds-pending+1) & pending>0) {
 assign(paste("F",i,sep=""),data[permRows[(j+1):(j+obsFold)],]) ; j= j + obsFold + 1 } else
 { assign(paste("F",i,sep=""),data[permRows[(j+1):(j+obsFold)],]); j= j + obsFold }

 testing=get(paste("F",i,sep=""))
 trainingRows=setdiff(1:nrow(data),as.numeric(row.names(testing)))
 training=data[trainingRows,]

 #RandomForest Regression
 myRF=randomForest(LOC~.,data=training,importance=TRUE,do.trace=100,proximity=TRUE)
 pred_cv=predict(myRF,newdata=testing)
 actual=testing$LOC
 MAD[i]=sum(abs(actual-pred_cv))/length(pred_cv)
 MSE[i]=sum((actual-pred_cv)*(actual-pred_cv))/length(pred_cv)
 MAPE[i]=sum(abs(actual-pred_cv)/actual)*(1/length(pred_cv)) # the mean absolute percentage error
 Rsq[i]= 1 - sum((actual-pred_cv)^2)/sum((actual-mean(actual))^2)
}

plot(myRF)

myRF$importance
varImpPlot(myRF)

myRF$mtry

148

MSE
MMSE<-mean(MSE) # error

Rsq
MRsq<-mean(Rsq) # aVCIurracy

MAD
MMAD<-mean(MAD)

MAPE
MMAPE<-mean(MAPE)

ok<-cbind(MMSE,MRsq,MMAD,MMAPE)
ok

149

Appendix F: Friedman Test

setwd("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data")

library(readr)

rawdata <-read_csv("C:/Users/sotoz/OneDrive - Hewlett Packard
Enterprise/Data/Results/NewResults/Friedman2.csv")

data=as.matrix(rawdata)

data

Ft<-friedman.test(data)

Ft

library(PMCMR)

posthoc.friedman.conover.test(data,p.adjust.method="bonferron")

150

Appendix G: Student's t-Test for Variable Importance Selection

setwd("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data")
library(readr)
rawdata <-read_csv("C:/Users/sotoz/OneDrive - Hewlett Packard Enterprise/Data/grpallSCIS.csv")

library(randomForest)
data=rawdata
names(data)[ncol(data)]="Y"
qArtificial=0.9
nPerm=30
nVar=ncol(data)-1
X=data.frame(matrix(nrow=nrow(data),ncol=nVar*2))
X[,1:nVar]=data[,1:(ncol(data)-1)]
impor=matrix(nrow=nVar*2,ncol=nPerm)
q=matrix(nrow=nPerm,ncol=1)
for (i in 1:nPerm)
{
 for (j in 1:nVar)# Artificial variables
 {
 X[,nVar+j]=sample(X[,j],length(X[,j]),replace=FALSE)
 }
 data2=cbind(X,data$Y) # New data frame with original Xs, artificial Xs, and Y at the end
 names(data2)[ncol(data2)]="Y"
 data2$Y=as.factor(data2$Y) # Depende del tipo de variable
 rF<-randomForest(Y~.,data=data2,ntree=500,importance=TRUE)
 impor[,i]<-rF$importance[,5] # Gini
 q[i]<-quantile(impor[(nVar+1):(2*nVar),i],probs=qArtificial)
}

pval<-matrix(nrow=nVar,ncol=1)
for (i in 1:nVar)
{
 test=t.test(x=cbind(impor[i,]),y=cbind(q),alternative="greater",paired=TRUE,conf.level=0.95) # no
parametrica
 pval[i,1]<-test$p.value
}
pval<-data.frame(pval)
dfPVAL=cbind(1:nVar,pval)
impVars=subset(dfPVAL,pval<0.05/nVar,1)
impVars

151

Appendix H: Partial Dependence Plot

152

153

154

155

156

157

158

159

160

161

162

	Chapter 1: Introduction
	Chapter 2: Literature Review
	2.1 Overview
	2.2 Project-based Learning
	Table 2.1: PBL Definition

	2.3 Complexity of Projects
	Table 2.2: Sources of Complexity by Category

	2.4 Complexity Metrics
	2.4.1 Design Complexity
	2.4.2 Software Metrics
	2.4.3 Operator Choice Complexity
	2.4.4 Summary
	Table 2.3: Review of Metrics

	2.5 Team Characteristics and Performance
	2.6 Summary and Contributions

	Chapter 3: Methodology
	3.1 Overview
	3.2 Stage 1: Development of Professors Factor Survey
	Table 3.1: Professor Factor Survey Questions
	3.2.1 Analysis of Professors Factor Survey

	3.3 Case Study: Process Automation (ININ 4057) Course
	3.3.1 Stage 2: Identify, Adapt and Develop Complexity Metrics for Process Automation
	Table 3.2: Adaptation of Complexity Metrics

	3.3.1.1 Visual Component Interaction (VCI)
	3.3.1.2 Software Component Interaction (SCI)
	3.3.1.3 Software Component Interaction with Stages (SCIS)
	3.3.1.4 Lines of Code (LOC)
	3.3.1.5 Cyclomatic Complexity (V(G))
	3.3.1.6 Process Hierarchical Functionality (PHF)
	3.3.1.7 Station Hierarchical Functionality (SHF)
	3.3.2 Analysis of Complexity Metrics for Process Automation
	3.3.3 Stage 3: Development of Student Factor Survey
	Table 3.3: Student Factor Survey Questions

	3.3.3.1 Student Factor Survey
	Table 3.4 Student Factor Survey Variables
	Table 3.5: Additional Student’s Variables
	Table 3.6: Additional Group Variables

	3.4 Stage 4: Data Analysis
	3.4.1 Prediction Models
	3.4.1.1 Random Forest
	3.4.1.2 Basic Recursive Partitioning Trees
	3.4.1.3 Relation with Complexity Metrics

	Chapter 4: Results
	4.1 Overview
	4.2 Professor Survey
	Table 4.1: Professor Survey Summarized Result

	4.3 Complexity Metrics
	4.3.1 Visual Component Interaction (VCI)
	Table 4.2: Visual Component Interaction Result

	4.3.2 Software Component Interaction (SCI)
	Table 4.3: SCI Results

	4.3.3 Software Component Interaction with stages (SCIS)
	Table 4.4: SCIS Results

	4.3.4 Lines of Code (LOC)
	Table 4.5: LOC Results

	4.3.5 Cyclomatic Complexity (CC)
	Table 4.6: CC Results

	4.3.6 Process Hierarchical Function
	Table 4.7: PHF Results

	4.3.7 Station Hierarchical Function
	Table 4.8 SHF Results

	4.3.8 Complexity Metric Comparison
	4.4 Student Factor Survey
	Table 4.9: Student Factor Survey and Complexity Metric Result Range
	Table 4.10: Cronbach Alfa Analysis

	4.5 Prediction Models
	Table 4:11 Prediction Models Result Summary
	Table 4.12: Selected Prediction Models for Complexity
	Table 4.13: Prediction Models Important Variables

	Chapter 5: Conclusion
	References
	Appendix A: R2D2 Ladder Logic
	Appendix B: SCI Metric Applied to R2D2
	Appendix C: CPSHI Approval
	Appendix D: R code for Random Forest Analysis
	Appendix E: R code for Decision Tree Analysis
	Appendix F: Friedman Test
	Appendix G: Student's t-Test for Variable Importance Selection
	Appendix H: Partial Dependence Plot

