
HIGH-LEVEL PARTITIONING OF DISCRETE SIGNAL
TRANSFORMS FOR DISTRIBUTED HARDWARE

ARCHITECTURES

By

Rafael A. Arce Nazario

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTING AND INFORMATION SCIENCE AND ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

June, 2007

Approved by:

Domingo Rodŕıguez, Ph.D Date
Member, Graduate Committee

Dorothy Bollman, Ph.D Date
Member, Graduate Committee

Rogelio Palomera, Ph.D Date
Member, Graduate Committee

Isidoro Couvertier, Ph.D Date
Member, Graduate Committee

Manuel Jiménez, Ph.D Date
President, Graduate Committee

Nazario Ramı́rez, Ph.D Date
Representative of Graduate Studies

Nestor Rodŕıguez, Ph.D Date
Chairperson of the Department

Abstract of Dissertation Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

HIGH-LEVEL PARTITIONING OF DISCRETE SIGNAL
TRANSFORMS FOR DISTRIBUTED HARDWARE

ARCHITECTURES

By

Rafael A. Arce Nazario

June 2007

Chair: Manuel Jimenez, Ph.D
Major Department: Computing and Information Science and Engineering

Discrete signal transforms (DSTs) have numerous applications in a wide spec-

trum of scientific fields. To attain superior performance, the size and composition of

these algorithms frequently require implementation to architectures involving more

than one dedicated hardware device. Even though hardware implementations of

signal processing algorithms are known to be orders of magnitude faster than most

other generic computing platforms, they are not commonplace mainly because of the

increased complexity involved in partitioning and mapping such algorithms onto dis-

tributed hardware platforms. Automated methods and tools to aid in the design

and exploration of distributed implementations shall encourage adoption of dedi-

cated hardware platforms for high-performance applications.

Traditionally, partitioning to distributed hardware architectures (DHAs) has

been done either manually, or at various stages of the design process, predominantly

at the behavioral and structural levels. Although these schemes have produced ac-

ceptable implementations, they do not necessarily exploit the functional properties

of algorithms. Structural level techniques handle the design at an abstraction level

ii

too low for the algorithm functionality to be effectively interpreted. Most proposed

higher-level strategies target generic partitioning problems through local optimiza-

tion techniques, which miss out on alternate formulations that become apparent

only on a higher level of abstraction.

This dissertation presents an automated methodology specifically designed for

partitioning DSTs onto DHAs. The methodology takes advantage of DST features

at two levels of abstraction: the graph and algorithmic levels. At the algorithmic

level, an exploration is conducted in search of equivalent transform formulations

that are more suitable for the target topology. At the graph level, a series of DST-

specific structural considerations are made to improve the partitioning heuristic. The

developed strategy integrates several algorithms which allow exploring partitioning

solutions at both abstraction levels.

A Kronecker products algebra (KPA) to dataflow graph conversion (DFG) tool

was developed to allow straightforward conversion and structural visualization of

KPA expressed formulations. The DFG generated by this tool is partitioned using a

k-way deterministic algorithm with structural considerations derived from common

DST features. A scheduler estimates latency of the partition solution, constrained by

the available computational resources, as determined by an area estimator. Solution

cost at the graph level is used to transform the current DST formulation, and thus

explore alternative formulations as part of the partition optimization process. Given

the exponential size of the space of equivalent formulations, a greedy, polynomial-

time exploration heuristic was designed.

Results from the application of this methodology to a range of sizes of Discrete

Fourier Transforms and Discrete Cosine Transforms evidence the advantages of ma-

king the partition methodology DST-aware. Latency and run-time reductions of up

to 34% and 99%, respectively were obtained with respect to previously proposed,

stochastic high-level partitioning approaches.

iii

Resumen de Disertación Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Doctor en Filosof́ıa

PARTICIONAMIENTO A ALTO NIVEL DE TRANSFORMADAS
DISCRETAS DE SEÑALES A ARQUITECTURAS DE HARDWARE

DISTRIBUIDO

Por

Rafael A. Arce Nazario

Junio 2007

Consejero: Manuel Jimenez, Ph.D
Departamento: Ciencias e Ingenieŕıa de la Computación y la Información

Las transformadas de señales discretas (TSDs) tienen numerosas aplicaciones en

una ámplia gama de campos cient́ıficos. Para lograr obtener un mayor rendimiento,

frecuentemente se requiere la implementación de dichas transformadas en arqui-

tecturas de múltiples dispositivos. Las implementaciones de estos algoritmos en

hardware suelen obtener rendimientos significativamente mejores que otras platafor-

mas de procesamiento general. Sin embargo, dichas implementaciones no abun-

dan, principalmente por la complejidad necesaria para particionar estos algoritmos

a plataformas de hardware distribuido y determinar las estructuras correspondientes

en hardware. El desarrollo de métodos y herramientas que ayuden en el diseño y

exploración de estas implementaciones facilitará la adopción de estas plataformas

para aplicaciones de alto rendimiento.

Tradicionalmente, el particionamiento a arquitecturas de hardware distribuido

(AHD) se ha realizado de forma manual o como parte de alguna de las etapas

del diseño automatizado, tanto a alto nivel como a nivel estructural. A pesar de

que dichas técnicas de particionamiento han producido resultados aceptables, en la

iv

mayoŕıa de los casos estas no aprovechan las propiedades de estas transformadas a

nivel algoŕıtmico. Las técnicas de particionamiento a nivel estructural trabajan con

una representación a un nivel de abstracción demasiado bajo como para aprovechar

cualquier aspecto funcional del algoritmo. Por otro lado, las técnicas de alto nivel

han sido diseñadas, en su mayoŕıa, para casos genéricos. Esto las limita a utilizar

técnicas genéricas de optimización local y por lo tanto, obvian formulaciones alternas

que solo se pueden visualizar a un nivel de abstracción más alto.

Esta disertación presenta una metodoloǵıa automatizada espećıficamente diseña-

da para particionar TSDs a AHDs. La metodoloǵıa aprovecha caracteŕısticas de las

TSDs tanto a nivel gráfico como a nivel algoŕıtmico. En el nivel algoŕıtmico, se

explora el espacio de formulaciones equivalentes en busca formulaciones que resul-

ten más apropiadas para la arquitectura. A nivel gráfico, se introdujeron una serie

de consideraciones a los heuŕısticos de particiónamiento que atienden particulari-

dades estructurales de las TSDs. La estrategia propuesta integra varios algoritmos

que permiten la exploración de soluciones en ambos niveles de abstracción. Se

desarrolló una herramienta para la conversión de expresiones en álgebra de produc-

tos Kronecker (APK) a grafos de flujo de data (GFD). Esta herramienta permite

conversión rápida de formulaciones de TSDs, aśı como la visualización de sus es-

tructuras computacionales. El GFD traducido es particionado usando un algoritmo

determińıstico de particionamiento en k-partes, al que se le han añadido considera-

ciones estructurales de las TSDs. Un planificador (“scheduler”) estima la latencia

de la solución de partición, restringido por los recursos computacionales disponibles,

los cuales son determinados por un estimador de área. El costo de la solución a nivel

gráfico se usa para transformar la formulación algoŕıtmica actual y aśı explorar otras

alternativas como parte del proceso de optimización. Debido al tamaño exponencial

del espacio de formulaciones equivalentes, se diseñó un heuŕıstico de exploración

ambicioso (“greedy”) que tiene complejidad de tiempo polinomial.

v

Se utilizó la estrategia propuesta para obtener resultados del particionamiento

para un rango de tamaños de transformadas discretas de Fourier y transformadas

discretas de coseno. Estos evidencian las ventajas que consigue nuestra estrate-

gia gracias a ser consciente de las caracteŕısticas de las TSDs. Se obtuvieron re-

ducciones en latencia y tiempo de ejecución de 34% y 99%, respectivamente, en

comparación con técnicas de alto nivel anteriormente propuestas, que utilizaban

estrategias genéricas y estocásticas.

vi

Copyright c© 2007

by

Rafael A. Arce Nazario

This work is dedicated to Maritza, my wife, for her love and understanding,

for believing in me, and helping me keep my sanity. Also, to my parents Marirosa

and Rafael Angel, for instilling in me the joy of learning and the drive to excel

academically. To all of them for being my role models of dedication and excellence.

ACKNOWLEDGMENTS

I would like to thank my doctoral advisor Dr. Manuel Jiménez for his dedi-

cation, suggestions and guidance in the present investigation. On many occasions,

it was his vision and enthusiasm that helped keep this endeavor alive. I also ap-

preciate the intellectual support and savvy advise from Domingo Rodriguez, and

the valuable suggestions from rest of my graduate committee members: Dorothy

Bollman, Isidoro Couvertier, and Rogelio Palomera. My appreciation to the CISE

administrative staff for their help.

I would also like to thank the organizations that funded my research work:

UPR-Humacao, GEM consortium, Resource Center for Sciences and Engineering,

WALSAIP project, and CISE program.

Many thanks to Carmen Irizarry for providing a welcoming home during my

Mayagüez stays. My appreciation to Kathy and Jerry Takaks for helping me start

off this Ph. D. venture on the right foot by being such wonderful hosts in Rochester,

NY.

ix

TABLE OF CONTENTS
page

ABSTRACT ENGLISH . ii

ABSTRACT SPANISH . iv

ACKNOWLEDGMENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvii

1 Introduction . 1

1.1 Objectives and Scope of Research 3
1.2 Dissertation Overview . 4

2 Related Work . 6

2.1 Electronic Design Automation . 7
2.2 Distributed Hardware Architectures 10
2.3 Partitioning to DHAs . 14

2.3.1 Graph partitioning algorithms 14
2.3.2 Partitioning for Distributed Hardware Architectures 16
2.3.3 Structural partitioning . 16
2.3.4 Behavioral-level Partitioning 18
2.3.5 Limitations of Previous Methods 22
2.3.6 A glimpse into our approach 25

2.4 Hardware implementation of signal transforms 25
2.4.1 General DST Definition . 26
2.4.2 DFT implementations . 27

2.5 Optimizing discrete signal transform implementations for specific
architectures . 34

2.6 Summary . 35

3 Problem Formulation . 37

3.1 Problem Statement . 37
3.2 Methodology . 40
3.3 Summary . 44

x

4 Tools . 45

4.1 Kronecker Product Algebra . 45
4.1.1 Definitions and Basic Rules 46

4.2 Stride Permutations . 47
4.3 From Kronecker Products Algebra to Dataflow Graph 48

4.3.1 Problem Formulation . 49
4.3.2 Implementation . 50

4.4 Graph Partitioning . 52
4.4.1 Problem Formulation . 52
4.4.2 Algorithms for Graph Partitioning 53
4.4.3 Preliminaries . 53
4.4.4 Kernighan-Lin Bipartitioning Heuristic 54
4.4.5 Fiduccia-Mattheyses . 56
4.4.6 Simulated Annealing . 57
4.4.7 Genetic Algorithms . 60
4.4.8 k-way Partitioning . 62

4.5 k-way Implementation . 64
4.5.1 Cost Function . 64
4.5.2 DST Considerations in Graph Partitioning 67
4.5.3 Complexity . 70

4.6 Scheduling . 72
4.7 Resource Estimation . 74

4.7.1 Architectural Model . 76
4.7.2 Target Technology . 77
4.7.3 Resource Estimation Model 79
4.7.4 Module Components Resource Estimation 81
4.7.5 Resource estimation scheme validation 91

4.8 Summary . 92

5 Formulation Exploration . 93

5.1 General Considerations . 93
5.2 Experiments to Assess Effect of Transformations on Partition Qual-

ity . 95
5.2.1 Inter-stage Permutations 96
5.2.2 Kernel Granularity . 96
5.2.3 Breakdown Strategy . 100

5.3 FFT Formulation Exploration Heuristic 104
5.4 Partitioning the Discrete Cosine Transform 107
5.5 DCT Regular Algorithms . 108

5.5.1 Püschel’s Cooley-Tukey-like DCT Algorithms 109
5.5.2 Hsiao and Tseng’s DCT Algorithm 111
5.5.3 Morikawa’s Simple Structured Fast DCT algorithm 112
5.5.4 Nikara’s Perfect Shuffle DCT Algorithm 113

5.6 CT-like Decomposition for NPS-DCT 114

xi

5.7 Experiments . 119
5.8 Summary . 121

6 Results and Analysis . 123

6.1 Graph Considerations . 123
6.1.1 Initial Partitioning Solution 123
6.1.2 Stage-limited Node Swapping 124

6.2 Effect of Formulation Exploration 126
6.3 Comparison Against Established Methodology 128

6.3.1 Srinivasan’s DFGP Methodology 128
6.3.2 Results Comparison . 130

6.4 Scaling the Suboptimality . 132
6.5 Summary . 137

7 Conclusions . 138

7.1 Contributions . 139
7.2 Limitations . 142
7.3 Future Work . 143

8 Ethics . 146

APPENDICES . 149

A Prototype Documentation . 150

A.1 Kronecker to dataflow graph tool (KTG) 150
A.1.1 KTG Usage . 151
A.1.2 KTG implementation functions and data structures 155

A.2 Graph partitioning heuristic . 156
A.2.1 Usage . 158
A.2.2 DGP prototype functions and data structures 162

A.3 DMAGIC . 162
A.3.1 Usage . 163
A.3.2 DMAGIC functions and data structures 165

B CT-like FFT formulation derivation . 168

References . 170

BIOGRAPHICAL SKETCH . 183

xii

LIST OF TABLES
Table page

5–1 Results for granularity experiment. 99

5–2 Results of FFT formulation exploration for various FFT sizes targeting
a 4-Ring topology. 107

5–3 Results of FFT formulation exploration for various FFT sizes targeting
a 4-Array topology. 107

5–4 Latency in c-steps for various sizes of DCT formulations. 121

5–5 Execution time in seconds for various sizes of DCT formulations. . . . 121

6–1 Formulation exploration heuristic performance - 4-Ring topology. . . . 127

6–2 Formulation exploration heuristic performance - 4-Array topology.. . . 127

6–3 FFT Results of SBPH vs. our methodology, assuming no concurrency. 131

6–4 FFT Results of SBPH vs. our methodology, assuming concurrency. . . 132

6–5 DCT Results of SBPH vs. our methodology, assuming no concurrency. 132

6–6 DCT Results of SBPH vs. our methodology, assuming concurrency. . . 132

6–7 Run times for DCT . 133

6–8 Suboptimality comparison based on cost sums for 4-Ring topology . . 134

6–9 Suboptimality comparison based on cost sums for 4-Array topology . . 134

6–10 Suboptimality comparison based on latency for 4-Ring topology 136

6–11 Suboptimality comparison based on latency for 4-Array topology . . . 136

xiii

LIST OF FIGURES
Figure page

2–1 Flow for Computer Aided Design for VLSI. 8

2–2 General architectural model for a distributed hardware architecture. . 13

2–3 Price vs. capacity for Xilinx Virtex 2 FPGAs. Source: www.digikey.com 13

2–4 Dataflow graph representation of the radix-2 butterfly. 28

2–5 Data flow for an 8-point FFT. Dashed lines represent operands that
will be subtracted. Filled dots represent multiplication by twiddle
factors. 29

2–6 A one-to-one mapping of a 16-point FFT to a 4-FPGA platform. . . . 30

2–7 Folding of an 8-point FFT: (a) fully expanded DFG, (b) strict hori-
zontal folding and (b) strict vertical folding. 31

2–8 Single kernel implementation of FFT. 32

2–9 (a)An 8-point Pease FFT formulation and dataflow graph. (b) full
horizontal folding. 33

2–10 (a)A vertically-folded Ln,n/2 permutation with 2p ports. (b) Detail of
the Jm component. 34

3–1 Sample topology. 39

3–2 Block diagram of methodology. 41

4–1 Several KPA sparse matrices and their corresponding data order to-
pology DFGs. 50

4–2 KPA formulation and two isomorphic dataflow graphs. 51

4–3 (a)The KA-component data structure, (b) KA-component represen-
tation and (c) derived DFG for sample formulation F4P4,2(I2⊗F2)
. 51

4–4 Common KPA operations and their KA-component representation. . 52

4–5 (a) Graph (b) a partition solution, (c) partition solution after swap-
ping nodes a and b. 54

xiv

4–6 (a)Graph and (b)hypergraph representations of a circuit netlist. . . . 57

4–7 Bucket structure used in the Fiduccia-Mattheyses algorithm. 58

4–8 Example of a chromosome encoding for a bipartitioning solution. . . . 61

4–9 Effect of cut distribution on a DHA. 65

4–10 8-point DFT Cooley-Tukey formulation, showing initial linear hori-
zontal partition. 70

4–11 Two formulations for an 16-point FFT, representing different granu-
larities. Horizontal dashed lines represent the partition boundaries.
. 72

4–12 Device-level architectural model and block diagram for an FFT module. 76

4–13 Example mapping of a DFG partition to a device with two architec-
tural modules. 77

4–14 FPGA components. 78

4–15 Functional primitive (a) implements the functionality of DFGs (b)
and (c). 82

4–16 Slice compression ratio vs. ROM (uncompressed) slice utilization. . . 85

4–17 Experimental results for mapping of several FFT sizes to architectures
with 4, 8, 16, and 32 modules. 89

4–18 Two approaches for implementing module-level control logic (a)integrated,
(b)distributed. 90

4–19 Actual vs. estimated slice utilization for various FFT sizes. 92

5–1 Results from the permutation experiment. 97

5–2 Two split trees for FFT size n = 26 and their formulations. 100

5–3 Part of a breakdown strategy mega-tree for 32-point FFT. 102

5–4 (a) A split tree for a 210-point FFT. (b) All possible children split
trees of (a). (c) children split trees exclusively factoring leaf ‘3’. . . 104

5–5 A split tree for a n = 26-point DFT and part of its corresponding DFG.105

5–6 Dataflow graphs of C8,2 and C8,4 matrices. 111

5–7 Practical split trees for 16, 32 and 64-point DCT when using Equation
5.6 for hardware implementation. 111

5–8 8-point HT-DCT data flow graph. 112

xv

5–9 8-point HT-DCT using a single functional primitive that performs
both the BM and post-processing functionalities. 112

5–10 8-point SS-FCT. 113

5–11 8-point SS-FCT using functional primitive blocks. 113

5–12 DFG for an 8-point NPS-DCT. 114

5–13 DFG for Equations 5.40 and 5.41. 119

5–14 Target topology for experiments. 120

6–1 Comparison of cost sum for initial horizontal partitions vs. random
for 4-Ring and 4-Array architectures. 124

6–2 Comparison of iterations for initial horizontal partitions vs. random
for 4-Ring and 4-Array architectures. 125

6–3 Comparison of latency with and without stage-restricted swaps. . . . 126

6–4 Comparison of run time with and without stage-restricted swaps. . . . 126

A–1 Visualization of CT.fig using the Xfig program. 154

A–2 CT.gph file contents. 155

A–3 Pseudocode for the KTG prototype implementation. 156

A–4 Illustration of the effect of KTG functions. 157

A–5 Extract of Eq Node class. 158

A–6 Extract of CComp, Port, and Device classes 159

A–7 Extract of the Node class . 160

A–8 Example of a topology description file. 161

A–9 Example of a device family resource file. 161

A–10Pseudocode for the DGP prototype implementation. 163

A–11Main DGP data structures. 164

A–12Extract from DMAGIC’s output. 166

A–13Pseudocode for the DMAGIC prototype implementation. 167

xvi

LIST OF ABBREVIATIONS

CAD Computer Aided Design for VLSI Circuits
DFG Dataflow Graph
DHA Distributed Hardware Architecture
DST Discrete Cosine Transform
DST Discrete Signal Transform
EDA Electronic Design Automation
FCCM Field-Programmable Custom Computing Machines
FPGA Field Programmable Gate Array
FFT Fast Fourier Transform
GPP General Purpose Processor
HLS High-Level Synthesis
KL Kernighan-Lin
KPA Kronecker Product Algebra
PDSP Programmable Digital Signal Processors
RTL Register Transfer Level
SA Simulated Annealing
VHDL VHSIC Hardware Description Language
VLSI Very Large Scale Integration

xvii

CHAPTER 1

Introduction

Applications for discrete signal transforms (DSTs), such as the Discrete Fourier

Transform (DFT) and the Discrete Cosine Transform (DCT), abound in fields as

diverse as communications, biomedical sciences, and astronomy. In these and many

other fields, increases in the quantity and resolution of data and the need for faster

processing, demand novel platforms and methodologies for the implementation of

DSTs.

DSTs have been implemented to a myriad of computational platforms, from

software-based General Purpose Processor systems to pure customized hardware

such as Application Specific Integrated Circuits (ASICs). Throughout time, a cyclic

behavior between software and hardware implementations has been observed [1]

[2]. In the majority of cases, DST applications are initially implemented in soft-

ware. Then, the need for real-time computation encourages their implementation to

application-specific hardware. Meanwhile, advances in technology make the software

implementation again competent. However, as this happens, applications evolve to

demand more aggressive performance requirements, causing the cycle to repeat itself.

This observed trend highlights a major distinction between the software and

hardware DST implementations: hardware implementations tend to achieve higher

performance than software ones, but with a significant increase in the implementa-

tion effort. For example, it is a consistently observed fact that implementations of

1

2

DSP applications in FPGAs can achieve 10x performance over their counterparts on

Programmable Digital Signal Processors (PDSPs) [3]. Similarly, it is estimated that

implementation effort for an FPGA is 5x-10x that of a PDSP. In today’s world, where

time to market can make the difference between a commercially successful product

and a failure, it is common to see how implementers shy away from hardware imple-

mentations due to their steep development costs in time, cost, and hardware design

expertise. To make these dedicated hardware implementations more widespread, we

need, among other considerations, to improve the methods and tools used to design

them.

Efficient mapping of algorithms to hardware is a challenging task. It demands

a design philosophy somewhat dissimilar to programming a software-based system

and imposes a number of additional difficulties. For instance, when implementing

the functionality of an algorithm to hardware, in addition to deciding the type

and order of operations, the designer must determine what functional units will be

implemented in the device. This expands the range of possibilities available for the

implementation of each algorithm, thus widening the solution space and the number

of design options to be considered.

To aggravate the case against dedicated hardware implementations, some ap-

plications may require mapping to multiple devices (FPGAs or ASICs) to attain

the degree of parallelism needed to achieve acceptable performance [4][5]. Today’s

developers not only have to think about the efficient hardware structures to im-

plement their algorithms, but must also partition their designs into pieces that fit

to each of the devices, and make effective use of the communications and memory

resources provided in a multi-chip board. Clearly, to reduce the effort required for

hardware implementations in multiple device architectures, the development of auto-

matic algorithms for mapping and partitioning is essential. Correspondingly, there

3

is a recently revived interest in dedicated hardware implementations using multi-

ple intra-chip processing units, as in multi-core and System on Chip architectures,

which can also benefit from effective partitioning schemes [6].

Several strategies have been proposed for automating the partitioning of algo-

rithms to DHAs [7][8][9]. However most of the proposed automated mapping and

partitioning methodologies are limited in at least one of two main aspects when used

for DSTs. First, they perform optimizations at an abstraction level where it is diffi-

cult to detect functional features that could result in implementations with a higher

performance. Second, they target general applications, so they only incorporate

strategies that will work appropriately for the general case. Consequently, results

from these strategies are often merely adequate in quality and require unnecessarily

lengthened processes to converge to a solution.

DSTs represent a major energy, performance, and resource component in many

modern applications, which merits the study of specialized methods for optimizing

their implementation to modern computing platforms. The studies in this disser-

tation consider the development of a methodology for automated partitioning of

discrete signal transforms to multiple-chip architectures. By targeting a specific

group of algorithms we devised a partitioning methodology that exploits their func-

tional features to attain better implementations in a more straightforward manner.

The decision to focus on a certain class of algorithms allowed the incorporation

of global algorithmic reformulations into the methodology, something that is not

contemplated in existing methodologies.

1.1 Objectives and Scope of Research

One of the main objectives of this research is to make a contribution to the

software tools and general philosophy that designers encountering a partitioning

task can have at their service. This was accomplished through the development

of a partitioning methodology specifically designed for discrete signal transforms

4

onto distributed hardware architectures. The developed methodology uses features

and mathematical characteristics of discrete signal transforms, which would be lost

or would incur in excessive effort if considered at lower abstraction levels. It en-

compasses several tasks that work together to accept DST algorithms, optimization

objectives, constraints, and architectural specifications, and explores the solution

space in search for an optimized implementation. Development of these tasks re-

quired the study, adaptation and creation of heuristic techniques to take advantage

of improvement opportunities at the DST graph and formulation levels.

As a proof of concept to our methodology, its various stages were integrated

into an automated tool. Individual components of the methodology were used to

conduct experiments which, in turn, helped in defining the rest of the components.

The integrated tool was used to partition DSTs to demonstrate its effectiveness

and to compare its solutions with those of other published results. Outcomes from

these evaluations confirmed the advantages of the considerations that were taken

throughout the methodology’s development. They validate our hypothesis that

faster/higher-quality partitioning results can be obtained with a strategy that is

aware of DST features.

1.2 Dissertation Overview

The rest of the document is organized as follows. Chapter 2 provides a review of

published work related to our topic, serving to sustain the importance of the prob-

lem, analyze what other researchers have accomplished, and to survey some areas

of knowledge which influenced our solution. Chapter 3 formally states the problem

of high-level partitioning of DSTs to DHAs and presents the main justification for

our approach. This is followed by an overview of the approach followed in finding a

solution to the stated problem.

Our partitioning methodology takes advantage of dataflow graph-level constructs

while exploring alternative algorithmic DST formulations. Chapter 4 presents the

5

development of processes to support graph-level exploration of a given DST for-

mulation as well as the rationale behind their selection. This includes a Kronecker

products algebra to DFG conversion tool, an extension of the Kernighan-Lin biparti-

tioning heuristic to k-way, and latency and hardware estimation strategies. Chapter

5 discusses how those tools were used to experiment with DST formulations and

assess the effect of algorithmic level transformations. Observations from these ex-

periments were used in the design of a formulation space exploration heuristic. The

effectiveness of the various parts of our approach, as well as the unified methodo-

logy is validated in Chapter 6. Also in this chapter, results of the methodology

are compared against those from a previous methodology. Chapter 7 reviews the

main findings of this dissertation, highlighting the contributions of this work, and

list several possible future research directions. The last chapter considers some of

the ethical issues related to engineering research, in general, and to electronic design

automation, in particular.

CHAPTER 2

Related Work

Our intended approach to the problem of partitioning of discrete signal trans-

forms onto distributed hardware architectures requires combination of knowledge

and techniques from at least three areas: electronic design automation, distributed

hardware architectures, and digital signal processing. These three areas have been

widely explored independently. Part of our proposed solution’s novelty lies in fin-

ding how these areas of knowledge can complement each other to produce efficient

hardware solutions for DST algorithms. This chapter reviews relevant technical li-

terature to these areas, emphasizing the issues and techniques most closely related

to the contributions of this dissertation.

The first section of this chapter provides a background on electronic design auto-

mation to establish the context in which automated partitioning methodologies are

used. The second section reviews distributed hardware architectures and introduces

the model we shall target throughout the development of our methodology. Section

2.3.2 discusses partitioning strategies for DHAs, with an emphasis on techniques at

the behavioral level. The discussion highlights areas of opportunity with respect to

our chosen problem and offers a glimpse into our proposed solution. Subsequently,

in Section 2.4 we explore previous hardware implementations of a particular but

representative signal transform, the discrete Fourier transform. Code generation

methods that explore alternative DST formulations as part of their optimization

6

7

strategy are reviewed in Section 2.5. Our main intention in these later sections is

to project how previously developed hardware structures and algorithm techniques

influenced our solution to the problem of automated partitioning of discrete signal

transforms for distributed hardware architectures. Finally, Section 2.6 summarizes

the main findings of our review of previous work.

2.1 Electronic Design Automation

Designers looking for improved speed performance have always sought effec-

tive hardware implementations of digital signal processing applications [2]. It is

commonly known that hardware implementations of these types of algorithms are

faster than their software counterparts by orders of magnitude [3]. However, high-

performance is achieved at an increased cost in technology price and implementation

effort. Despite this, organizations seriously looking for increased performance are

willing to pay the necessary price for technology. The biggest obstacle faced by

designers in the process of successfully and efficiently mapping algorithms to hard-

ware is how to handle the design complexity of these implementations. Typically,

a team of designers is needed to build such project, consisting of experts in signal

processing, algorithm design, and digital electronics. The required digital design ex-

pertise deters many signal processing enthusiasts and scientists from using hardware

technology to test their algorithms, and achieving the promised high-performance.

Clearly, an automated approach for mapping algorithms to hardware could open the

opportunity of hardware implementation to the non-electronically inclined crowd

and significantly ease solution exploration/optimization for digital designers.

The field of electronic design automation (EDA) has evolved to assist designers

throughout the various tasks involved in the design and implementation of inte-

grated circuits. From the highest to the lowest level of abstraction, elaborate tools

have been developed to assist designers in the exploration and evaluation of the

solution space to increase the odds of arriving at improved implementations. Figure

8

2–1 illustrates the traditional computer aided design flow for VLSI circuits (CAD)

intended for a multi-device architecture. The process of transforming a digital sys-

tem from a system specification into a hardware implementation is divided into

four major steps: system-level synthesis, high-level synthesis, logic synthesis, and

physical design, which are briefly discussed next.

Figure 2–1: Flow for Computer Aided Design for VLSI.

At the highest level of abstraction of the EDA process, a functional system

description is provided using a high-level language. C, MATLAB and hardware

description languages, such as VHDL and Verilog, have all been used for this pur-

pose [10][11][12]. A process commonly referred to as system-level synthesis accepts

this specification and outputs a partitioned set of tasks. Each partition is handled

separately throughout the rest of the design flow and ultimately implemented on a

particular target architecture device.

9

To accomplish the partitioning objectives, a system-level synthesizer starts by

converting the human-specified algorithm formulation into an intermediate graph-

like format that captures the control and data flow of the algorithm’s operations.

Graph representation schemes with various levels of granularity have been used for

such representation. Among them, data flow graphs (DFGs) [8], control-data flow

graphs (CDFGs) [13] and call graphs [14] are worth mentioning. The graph repre-

sentation is then partitioned using implementation objectives such as performance,

area, or power utilization.

High-level synthesis (HLS) transforms a behavioral description of the tasks that

have been assigned to each device into a technology-independent structural descrip-

tion, such as a register transfer level (RTL) netlist. To accomplish this, HLS also

represents the behavioral description in a graph-like format. This representation is

then taken through a series of optimizing subtasks, namely allocation and schedu-

ling [13][15]. During allocation, the hardware structures that will implement the

systems’ functionality (e.g. functional units) are determined. The aim of schedu-

ling is to assign each of the algorithm’s operations to a given time-step using the

allocated units.

The last stages of the EDA flow convert the RTL-specified circuit onto a gate

or transistor level netlist and determine the circuit layout description for the final

implementation. In logic synthesis the RTL netlist is expanded into a gate-level

circuit and optimized for a variety of objectives, such as area and delay. Techno-

logy mapping maps the gate-level circuit into the logic structures available in the

targeted device. Placement and routing assign each of the technology-mapped cir-

cuit components a physical location on the target device and establish how circuit

connections are physically routed through the device area. In the case of FPGAs,

these steps are followed by the generation of a bitstream, which is used to program

the reconfigurable elements in the device. For ASICS, the geometrical shapes that

10

determine the various gates and connections are transcribed onto layout masks for

fabrication.

Several computer aided design flows have been proposed to specifically tar-

get distributed hardware architectures [7][16][17]. All of them focus their attention

on the partitioning step, either at the threshold between the system and high-level

stages of the EDA process, as illustrated in Figure 2–1, or later after an RTL or logic

design has been obtained. These strategies are oriented toward general algorithms

and have not considered functional characteristics of signal transforms that we be-

lieve can conduct to a more straightforward exploration of the solution space. In the

next sections we discuss distributed hardware architectures such as the ones we de-

veloped as part of this work. We also explain how the process of design automation,

particularly at the system and high-level stages, is conducted for our architectures

of interest.

2.2 Distributed Hardware Architectures

DSP algorithms have been implemented to multiple computing platforms, see-

king to take advantage of their cost/performance features. Our research focuses on

architectures consisting exclusively of homogenous dedicated hardware, e.g. multi-

FPGA boards. Throughout the rest of this document the term distributed hardware

architectures will be used to refer to computational platforms consisting of multiple

homogenous dedicated hardware devices, along with memory resources and some

type of communication between the devices and memory.

Documentation of distributed hardware architectures using ASICs is scarce as

this type of systems is commonly proprietary. However, a number of interesting va-

riations of multiple FPGA systems have been constructed and documented since the

early 1990s. The reconfigurable nature of these systems makes their documentation

important for designers who are interested in implementing their own algorithms to

these architectures. Even though we foresee that we will be targeting most of our

11

implementation efforts to multiple-FPGA architectures, our proposed methodology

for high-level partitioning is flexible enough to be useful for other architectures con-

sisting of multiple dedicated hardware devices, such as traditional cell-based ASICs,

and newer technologies like structured ASICs [18].

One of the first multiple-FPGA (MFPGA) systems to be documented was

SPLASH [19]. It consisted of 32 Xilinx 3090 FPGAs with their corresponding 32

memory chips, connected in a linear array topology. A second version, SPLASH II

improved on SPLASH by using higher capacity and faster FPGAs and providing a

crossbar for one-hop data transfer for any two FPGAs as well as broadcast function-

ality [20]. Numerous DSP applications were mapped to SPLASH-2 with improve-

ments in performance as compared to other implementation options [21][22][23].

Since then, a significant number of MFPGA systems have been constructed, both

in Academia and Industry, each differing from the other in the number and types

of FPGAs, the connection topology and memory capacity and arrangement [24][25].

Compton, et al., presented a thorough review of reconfigurable computer systems

and issues, highlighting the fact that currently no consensus as to what combination

of system characteristics, especially connection topology, are optimal for the general

implementation of algorithms [26]. In spite of this, developers of these systems al-

ways seem to find a specific niche of benchmarks or metrics that make their systems

superior to previous architectures.

The continued design of MFPGA systems for high performance signal processing

applications evidences their acceptance as a preferred solution for low-volume or

unique applications with a reasonable development time cycle. Two recent systems

attest to this notion. The Serendip IV spectrometer, used as part of the Search

for Extraterrestrial Intelligence (SETI) project, consists of 120 Xilinx FPGAs on

40 spectrum analyzer boards working in parallel to scan 168 million narrow-band

(0.6 Hz) channels every 1.7 seconds [4]. Each SERENDIP IV board computes a

12

four million point FFT by breaking the computation into three smaller FFTs (128,

128, and 256 points each). Each of the smaller transforms is implemented in a single

FPGA. SERENDIP V, the next-generation of spectrometer boards, is being prepared

for deployment. The majority of signal processing in this board is performed by a

Xilinx XC2V6000 FPGA which can sustain a 64M-point FFT in real-time.

The Berkeley Emulation Engine (BEE) is an integrated rapid prototyping and

design environment for communications and digital signal processing (DSP) systems,

consisting of four multi-FPGA based processing units, each consisting of 4 processing

and 1 interconnection FPGA [5]. Besides neighboring inter-FPGA connections, a

novel hierarchical crossbar interconnection is used to support the communications

among devices and boards. BEE2, a new version of BEE, is being justified by its

designers not just as a hardware emulation platform but as a cost effective option

to high performance computing [27].

Figure 2–2 illustrates the general target architecture model of a DHA that will

be used throughout the rest of our discussion. It consists of k dedicated hardware

devices with local memory, connected in a ring or linear array topology with a cross-

bar serving as a global communication channel. This architecture is modeled after

common multi-FPGA boards produced by vendors such as Annapolis (Wildforce)

and Gidel (PROC20KE), as well as high-end academic reconfigurable systems such

as the Berkeley Emulation Engine 2 (BEE2) [28]. Furthermore, this architecture

can be considered scalable due to the number of connections per device and its

topological symmetry.

Regardless of the increasing logic capacities foreseen for next generation FP-

GAs and ASICs, there will always exist applications where distributed hardware

systems will be either the only or the most cost/effective implementation option.

Furthermore, using current manufacturing standards, single device yield diminishes

dramatically as density and/or dye size are increased [29]. Power management and

13

Figure 2–2: General architectural model for a distributed hardware architecture.

heat dissipation also become prominent with increased density [30]. As illustrated in

Figure 2–3 for Xilinx Virtex 2 FPGAs, these factors contribute to a cost/density ra-

tio that increases with density. For these reasons, the development of novel methods

for partitioning algorithms to multiple device systems will continue to be of great

importance. In the next section we discuss partitioning/mapping strategies that

have been proposed specifically targeting homogeneous distributed hardware archi-

tectures.

Price vs. Gate Capacity in Xilinx Virtex 2 FPGAs

Capacity (kilogates)

0 2000 4000 6000 8000

P
ric

e
(U

S
 d

ol
la

rs
)

0

2000

4000

6000

8000

Figure 2–3: Price vs. capacity for Xilinx Virtex 2 FPGAs. Source: www.digikey.com

14

2.3 Partitioning to DHAs

We begin our discussion of DHA partitioning methodologies with some general

concepts about graph partitioning algorithms that are needed to understand the ba-

sic differences between the reviewed approaches. For purposes of discussion, specific

graph partitioning heuristics, such as Kernighan-Lihn‘s and Fiduccia Matheysses,

are discussed in Chapter 4, where they are analyzed as part of our design of a

DST-influenced graph partitioning strategy.

2.3.1 Graph partitioning algorithms

Partitioning algorithms can be classified as constructive or iterative. Construc-

tive algorithms utilize clustering techniques to arrive at partitioning solutions. Each

node initially belongs to its own cluster, and clusters are then gradually merged until

a desirable partitioning is found. Thus, constructive algorithms follow a bottom-up

greedy approach to partitioning.

Iterative algorithms, on the other hand, follow a top-down approach. They

begin with an initial partition solution, which can be obtained in a näıve manner or

from other partitioning strategies. At each iteration, the current solution is modi-

fied to obtain candidate solutions which are evaluated to determine their goodness

according to the partitioning objectives. The goodness of a solution is quantified

by combining the implementation objectives on an objective function1 . The best

candidate solution (or a randomly chosen one in the case of probabilistic algorithms)

becomes the new current solution for the next iteration step.

Two main factors distinguish the various system-level iterative strategies that

have been published in literature: the composition and evaluation of the objective

1 For example, the objective function of a partitioning process aimed at mi-
nimizing area and power utilization of an implementation could be as follows:
F = k1

∑
i Areai + k2

∑
i Poweri where i are the partitions, and k1 and k2 are

weight coefficients (sums are assumed to be normalized).

15

function, and the mechanism used to guide the exploration of the solution space.

During system-level partitioning, many of the desired objectives are related to lower-

level implementation issues such as logic area, latency, and power utilization. The

estimation of these properties from the high abstraction levels is not trivial, which

explains why the development of fast and accurate estimators for those properties

has been the topic of considerable research effort [7][13][31].

The graph min-cut bisection problem was demonstrated to be NP-complete

by Garey [32]. All other size-constrained formulations of the graph partitioning

problem are NP-complete too, as they reduce to the min-cut bisection problem [33].

Therefore, practical partitioning strategies rely on heuristics rather than on exact

algorithms. Even though heuristic decisions cannot guarantee a good (or even a

feasible) solution every time and under every situation, they represent a relatively

fast and effective option for finding near-optimal solutions. Heuristic partitioning

mechanism explore the solution space by using either deterministic or stochastic

strategies. Deterministic techniques explore the solution space by applying rules that

have been observed to lead to good solutions in practice. Two widely used heuristic

partitioning techniques that employ a deterministic approach are Kernighan-Lin and

Fiduccia-Matheyses. They are both considered greedy heuristics, accepting at each

iterative step the best candidate solution. This makes them susceptible to local

minimum solutions.

In an effort to avoid local minimum solutions, stochastic algorithms randomly

select the solution for the next iteration, as is done in simulated annealing (SA), or

build a new generation of solutions by crossing and mutating previous solutions, as

in genetic algorithms (GA). Given the correct coding of the partitioning problem

onto the probabilistic algorithm, a wise selection of solution exploration parameters

(e.g. mutation probability in GA, cooling schedule in simulated annealing) and

16

sufficient iterations, probabilistic algorithms can be relied on to find near-optimal

partitioning solutions.

2.3.2 Partitioning for Distributed Hardware Architectures

Previous strategies for partitioning algorithms onto homogeneous distributed

hardware architectures can be classified into two categories, according to the general

abstraction level at which partitioning is performed: partitioning at the RTL-or-

below-level, commonly referred to as structural partitioning, or partitioning at the

behavioral-level, commonly known as high-level partitioning.

2.3.3 Structural partitioning

Multi-FPGA logic emulation systems served as motivation for many of the

reported structural partitioning methods. These platforms are used to verify the

overall functionality of a logic implementation before committing it to a silicon

solution, when software simulation techniques are impractical. Since silicon admits

much denser structures than FPGAs, an array of these reconfigurable devices is used

to implement the circuit under validation, thus requiring a mapping strategy.

Approaches to multi-chip partitioning at RTL-levels or below typically consist

of enhancements and adaptations to well-known graph partitioning algorithms such

as Kernighan-Lin and Fiduccia-Mattheyses. They tend to supplement a traditional

graph partitioning algorithm with additional stages of optimization mechanisms.

These mechanisms help the overall partitioning strategy comply with architecture-

specific constraints or limitations, such as communication channels, I/O pins and

logic resources, while guiding toward more effective partitioning solutions. Addi-

tionally, techniques such as unit/module cloning and communication channel multi-

plexing are integrated in an effort to solve the I/O limitation problem often seen in

FPGA/ASIC implementations. The cutsize minimization objective stated in strict

graph partitioning is enhanced by considering performance and cost issues, such as

area, price, delay, and pin count. Frank M. Johannes gives a concise review of logic

17

emulation structural partitioning methods in [34]. We discuss several representative

methods to illustrate the salient issues in DHA structural partitioning.

The partitioning algorithms by Kim, Kuznar, and Chou had the objective of

finding a feasible circuit partitioning solution while minimizing the monetary cost

of an implementation; as measured by the cost of all DHA devices [35][36][37]. This

objective somewhat departs from our intention in this thesis, since it assumes that

the DHA can be custom-built using the results of the partitioning exploration, as

opposed to targeting an established DHA platform, where device types and con-

nections are predetermined. Nevertheless, they are representative of the types of

strategies followed at the structural level.

Kuznar, et al. used Integer Linear Programming to determine the optimal

distribution of Xilinx devices to partition a certain circuit in order to minimize price

[35]. Then, a FM-based heuristic is recursively applied on the circuit to produce a

subcircuit at each iteration that meets constraints determined by the previously

determined target distribution.

Chou, et al. approached the circuit partitioning for huge logic emulation sys-

tems by using a hybrid algorithm that combined local bottom-up clustering and

top-down recursive partitioning [36]. Partitioning was achieved by converting it to

a Set Covering Problem and using the Espresso covering algorithm to improve re-

sults. Fang and Wu enhanced Chou’s strategy by utilizing design hierarchy acquired

from the circuit’s pre-synthesis VHDL specification to guide clustering decisions [38].

This served to alleviate the I/O limitation problem typically encountered when par-

titioning to multiple FPGA platforms. Fang and Wu’s work supports our general

hypothesis of using higher-level information to provide better solutions to the multi-

device partitioning problem. However, their approach is still essentially structural,

which severely limits the amount of algorithmic information that they can use and

makes their results highly dependent on programmer’s style.

18

Kim, et al. utilized a two-phased approach based on Fiduccia-Mattheyses [37].

The first stage iteratively improves an objective function that is the weighted sum

of the cut size and the delay on the critical timing paths, while not considering

system constraints such as routability. The second stage further optimizes the initial

solution to satisfy the constraints. Results obtained with their method required less

FPGAs, and obtained a lower monetary cost than the methods by Kuznar and Chou.

Scott Hauck devised a methodology to determine an order to map the results of

recursive bipartitioning to the devices in a multi-FPGA board, based on the commu-

nication properties of the later [9]. His algorithm first determines the most congested

DHA channel(s) using a technique developed by Yeh, et al. [39], and establishes the

order in which the resulting partitions from a recursive Fiduccia-Matheyses biparti-

tioning should be assigned to the DHA devices. The most significant DHA connec-

tion topologies were analyzed and the resulting partition orderings were reported in

his dissertation. However, no benchmark results using the complete methodology

were found in literature.

In our opinion, most of the structural partitioning methodologies accomplish

their main purpose, which is to effectively map a circuit to a set of devices for hard-

ware emulation. Multi-FPGA logic emulation systems are not the end platform for

the emulated designs, thus structural partitioning methodologies do not necessarily

strive for implementation performance but rather compliance. They apply gene-

ralized optimization techniques based almost entirely on netlist information. We

hypothesize that use of higher-level information is beneficial in partitioning strate-

gies, especially when performance is an important implementation objective.

2.3.4 Behavioral-level Partitioning

A commonly observed fact in EDA is that optimization methodologies that

work at higher levels of abstraction usually achieve better performance than their

19

lower level counterparts. Behavioral-level partitioners typically consist of a high-

level cost estimation mechanism coupled with a partitioning engine that relies on

probabilistic or heuristic decisions to improve on the solution [7][8] [10][13]. A re-

curring characteristic of methodologies dealing with partitioning for homogenous

distributed hardware architectures is that they integrate tasks that have been tra-

ditionally considered at the high-level synthesis stage, particularly allocation and

scheduling. Thus, behavioral partitioning, rather than being a separate stage in-

dependent of high-level mapping synthesis tasks becomes an integrated partition-

ing/synthesis step.

The following three references represent, to the best of our knowledge, the best

documented automated high-level partitioning strategies for DHAs. They exemplify

the types of approaches that have been followed for the behavioral partitioning of

general algorithms to DHAs, and highlight the combination of system-level and

high-level issues throughout the optimization process:

Bringmann, et al. combined high-level synthesis and partitioning into a metho-

dology aimed at multi-FPGA architectures [8]. They used a constructive (clustering)

strategy to partition a flow-graph whose nodes represent arithmetic operations and

whose edges represent data dependencies among the operations. The closeness me-

tric used for clustering takes into consideration scheduling and allocation issues,

such as the concurrency of operations (how probable it is for two operations to be

executed in parallel) and the probability that an operation is on the critical path.

Their algorithm is also capable of serializing data transfers among the devices in or-

der to maximize circuit performance under the constraints of the target architecture.

Their heuristic was used to partition four algorithms from the from the 1992 High-

Level Synthesis Workshop [40], one of which was an 8-point DCT, to multi-FPGA

platforms consisting of four Xilinx 4013 and 4025 devices.

20

Srinivasan worked on several methods for high-level partitioning onto FPGA-

based reconfigurable computers [41]. His ‘data flow graph partitioning’ (DFGP) me-

thodology starts by completely scheduling and allocating a DFG to an (imaginary)

FPGA with an area equal to the cumulative area of all devices. Then, the scheduled

graph is partitioned using latency as the optimization objective and constrained by

the resources offered by the individual devices. Partitioning is guided by a genetic

algorithm exploration engine whose fitness function is a combination of the cut-

size and area penalties. His ‘Block-level partitioning’ (BLP) methodology utilizes a

coarse-grained graph structure, called a behavioral-block graph (BBG), to represent

the systems’ behavior. In this case, a simulated annealing optimization technique

alternates between partitioning and scheduling/allocation stages. Benchmarks, in-

cluding FFTs and DCTs, were coded by Srinivasan’s research group in both DFG

and BBG format, and partitioned to Annapolis Systems’ Wildforce, Wildchild and

Wildfire multi-FPGA boards [42]. BLP obtained improved results over the DFGP

in the majority of cases, both in terms of design latency and partition runtime. A

5.57% average improvement (6.87% peak) was obtained in terms of latency, while a

94.70 % (96.39% peak) reduction was seen in run-time. However, BLP requires the

user to have thorough understanding of the partitioning process, synthesis and tar-

get architecture specifics. Since many variables were changed between one method

and the other (e.g. optimization method and granularity of representation, among

others) it is difficult to distinguish a specific feature that makes BLP superior to

DFGP. The FFT and DCT benchmarks used by Srinivasan were small by todays

standards. However, as seen in Chapter 6 the DFPG method’s specification was

sufficiently detailed, which allowed us to implement this technique and use it as

comparison against our results.

21

Duncan, et al. proposed the COBRA-ABS High Level Synthesis System for

Multi-FPGA Custom Computing Machines [10]. COBRA-ABS is a complete par-

titioning and HLS system for synthesis of datapath dominated applications onto

multi-FPGA custom computing machines (FCCMs). It performed global optimizing

high-level synthesis using simulated annealing, integrating all partitioning, schedu-

ling, and allocation operations into one optimization step. Given an algorithm,

specified in a subset of C, COBRA-ABS synthesized a custom Very Long Instruc-

tion Word (VLIW) architecture suitable for implementation on the specified FCCM.

Six DFT algorithms of sizes 64 and 1024 were partitioned using this system onto

a FCCM consisting of 4 Motorola MPA-1000 series fine-grained FPGAs, and their

results compared to implementations in a Sun Ultra 1/140 computer [16]. A design

speedup of up to 20 times is achieved as compared to the Sun Ultra implementa-

tion. Although not necessarily the authors’ main intentions, the results show how

different formulations of the same discrete signal transform can attain significantly

different design results. For instance, all other considerations being equal, a deci-

mation in frequency (DIF) radix-4 FFT achieved a 54% reduction in latency over a

DIF radix-2 FFT. As part of the discussion of results, the authors mention that their

partitioning strategy “has no knowledge of the regular structure of the FFT”, proba-

bly implying that more effective results and exploration could be obtained by being

aware of the FFTs regular structure. However, to the best of our knowledge, no

additional automated methodologies incorporating these considerations have been

proposed since.

To the best of our knowledge, the only partially-automated methodology specif-

ically targeting the implementation of a discrete transform was documented by Pinit

Kumhom [43]. He used Kronecker algebra formulations to guide mapping of a dimen-

sionless FFT onto an Annapolis Wildforce multi-FPGA board, which has a linear

array connection topology and crossbar. Taking into consideration the structure of

22

the FFT and the target topology, Kumhom established how computational units

where to be allocated in the platform. A 2-point FFT kernel was instanced in each

FPGA device with the crossbar acting as the sole communication resource among

the processors. The mapping scheme between the FFT operations and the instanced

kernels was accomplished by conducting an exhaustive search through the space of

formulation permutations in order to minimize communication. For a given size

FFT, each possible permutation reformulation was evaluated with a performance

model. An optimal mapping pattern was identified after conducting an exhaustive

search for various FFT sizes. Kumhom’s approach acknowledges the importance

of using the algorithmic regularity of FFT’s to aid in their mapping. However, to

extend its applicability beyond the specific case of FFTs on the Wildforce we believe

that it should be enhanced to consider other transformations beyond permutations

and a more effective space exploration technique.

2.3.5 Limitations of Previous Methods

The state of research regarding partitioning to distributed hardware architec-

tures evidences the need for new methods specifically focusing on algorithms where

high performance is of utmost need. The following is a list of unresolved issues

identified in previously reported strategies, from the perspective of our particular

problem:

1. Generality of approach - Almost all current strategies target either general-purpose

or an ample class of algorithms. In our opinion, this considerably impacts the

effectiveness of these methods for partitioning specific algorithmic classes, and in

particular those with high-connectivity and regularity such as DSTs. In trying to

be ’good for the general case’ these strategies are not able to incorporate specific

optimization techniques which may benefit a small class of important algorithms.

Furthermore, to the best of our knowledge, no automated partitioning methodo-

logies have been reported specifically for DSTs onto DHAs. Thus, none of the

23

previously proposed strategies takes advantage of DST properties to expedite and

improve their partitioning to distributed hardware architectures.

2. Input language - Previously proposed methods specify their inputs using high-level

languages or data flow graphs. Although this is not a problem by itself, it presents

a limitation as to the types of transformations that may be applied to an algorithm

during the optimization process. The use of higher-level transformations is parti-

cularly important in DSTs, which have a rich set of algorithmic-level rules whose

application can affect the outcome of partitioning methodologies, as evidenced by

Duncan, et al [10].

3. Exploration limited to graph-level and below - Most of the inspected methodologies

perform partition optimization by exploring a single formulation of an algorithm.

Although this can serve to benchmark specific parts of a partitioning methodology,

it fails to consider alternate formulations which may expose opportunities to obtain

more effective implementations. Formulation exploration is used in strategies for

automated software generation of DSTs [44][45]. The development of a methodo-

logy that uses formulation exploration for hardware requires a sense of the impact

of reformulation on implementation, a topic which is explored as part of our work.

4. Representation granularity - Several researchers working in the behavioral-parti-

tioning (BP) area have highlighted the effect of the graph representation granu-

larity on the BP results [7][12][46]. Fine-grained representations, such as using

a flow-graph where each node represents an arithmetic or load/store operations,

allow for a more thorough exploration of the solution space than coarser repre-

sentations, which already group several operations into each node. Coarse-grained

representations have the advantage of having fewer nodes, which potentially results

in a faster exploration of the solution space. In order to have both fast explo-

ration and effective results, some proposed approaches have utilized a combination

of both granularities. In our opinion, a common limitation to these approaches

24

is that they either construct coarse-grained representations based on the modules

defined in the programmer’s specification (for instance, defining nodes by functions

or subprograms in the specification) or rely on the programmer to manually build

the coarse-grain representation [7][46]. This makes the quality of results depen-

dent on a user’s programming style or requires the programmer to be reasonably

familiarized with the target system in order to obtain effective results.

5. Mix of high-level synthesis tasks - The interdependence of high-level synthesis and

behavioral partitioning tasks has been acknowledged by various researchers [13][47].

However, the exact relationship between the various high-level synthesis objectives

and their influence on high-level partitioning is difficult to establish, especially

for general algorithms. For reasons of computational cost, these tasks are han-

dled individually by some HLP methods [7][48]. Yang and Gupta studied how the

decomposition of synthesis and partition sub-tasks impact the quality of synthe-

sis results [47]. They experimented with different orders in which to sequentially

perform scheduling, binding and partitioning, as well as their concurrent perfor-

mance. Of the tested orderings, the strategy that performed partitioning followed

by a simultaneous scheduling and binding obtained the best combination of syn-

thesis quality and computational cost. Surprisingly, this strategy is not followed

by any of the subsequently developed HLP methodologies.

6. Comparison to other multi-device implementations - A common deficiency among

documented HLP methodologies is their failure to compare results with other HLP

methods. There is a lack of accepted benchmark sets for behavioral partitioning.

This problem is aggravated by the fact that high-level optimization relies on other

tools to produce a final result, so it is not trivial to isolate the benefits that can be

directly attributed to the partitioning process itself. These other EDA tools are

elaborate research projects in themselves and typically not documented explicitly

enough as to allow third-party validation. Commonly, they have been developed

25

as part of projects for the private industry or military so they are not available for

our use by the general public. Another hurdle for the comparison of results is that

the EDA community has not agreed on a standardized target architecture even

for benchmark purposes. As a consequence of these difficulties, most articles in

high-level partitioning target very diverse architectures and only compare results

to other methods from the same author/group or to implementations in alternate

GPP architectures [7][8][10][11][49].

2.3.6 A glimpse into our approach

Even though the usefulness of behavioral partitioning has been proven for algo-

rithms in general, we hypothesize that by introducing functional knowledge about

these algorithms into the partition/synthesis process shall result in a more focused

exploration of the design space than if only non-deterministic or general-case based

heuristics are used. By limiting the scope of our methodology to signal transforms

we were able to use characteristics inherent to DSTs to arrive at efficient partitions

in a straightforward manner. DST-features are introduced in two abstraction levels

as part of our methodology: at the graph level and the algorithmic-level. At the

graph partitioning level, a series of DST-specific structural considerations have been

taken to improve the graph partitioning heuristic. Most of these structural features

are evidenced in Section 2.4, in which we review previous work related to DST hard-

ware implementations. At the algorithm-level, an exploration is conducted in search

of equivalent transform formulations that are more suitable for the target topology.

Formulation-level exploration is used in several automated code generation mecha-

nisms. However, as discussed in Section 2.5 they have not been satisfactorily used

to guide automated partitioning and synthesis of multiple-device implementations.

2.4 Hardware implementation of signal transforms

Ultimately, our work intends to solve the problem of mapping and partitioning

DST algorithms onto distributed hardware architectures. Within this context, a

26

review of hardware implementations of signal transforms is important for many

reasons, among them:

1. Synthesis, a stage that is closely dependent on partitioning, is responsible for the

actual generation of hardware structures based on algorithmic description. Thus,

an adequate high-level partitioning methodology must be aware of the impact of

its decisions on synthesis.

2. At high-levels of abstraction, it is essential to have a well defined target intra-device

architecture to achieve acceptably accurate estimations of resource utilization and

latency. A study of previous implementations helps identify structural tendencies

to define a target intra-device architecture.

3. When targeting a multi-device architecture, each device will probably implement

processing elements similar to the structures of single-device implementations.

Research on the implementation of discrete signal transforms has mostly focused

on the discrete Fourier transform (DFT), the main reason being its usefulness in so

many applications. Furthermore, formulations for other discrete signal transforms,

such as the Discrete Hartley Transform (DHT) and the Discrete Cosine Transform

(DCT), commonly try to emulate the regularity of the DFT [50][51]. Thus, our dis-

cussion of hardware structures for DSTs is centered around the structures proposed

for the DFT.

Discussion of DST hardware implementations is organized as follows. Section

2.4.1 presents the general definition of DSTs. This is followed by a review of DFT

implementations, in Section 2.4.2, highlighting the techniques that have been devel-

oped to take advantage of its structural regularity.

2.4.1 General DST Definition

A linear separable transform of a d-dimensional discrete signal x[n], where each

element can be specified by d indexes n1, n2, . . ., nd, is defined by:

27

X[k1, .., kd] =

Nd−1∑
ad=0

..

N1−1∑
a1=0

x[a1, .., ad]α1(a1, k1)..αd(ad, kd) (2.1)

where the αi‘s are the transform functions. For example, for the d-dimensional

DFT αi(ni, ki) = e−j2πniki/Ni, and for the d-dimensional type-II DCT αi(ni, ki) =

cos [(2ni + ki)π/2Ni].

A d-dimensional transform can be expressed as a tensor (Kronecker) product

of unidimensional transforms:

X̂ = (AN1 ⊗ . . .⊗ ANd
)x̂ (2.2)

where ANi
is the Ni point discrete signal transform matrix, ⊗ denotes Kronecker

product and x̂, and X̂ are vectors of size N = N1 · ·Nd obtained by ordering x and

X lexicographically [52].

DSTs can be reformulated into algorithms with reduced computational com-

plexity by taking advantage of symmetries in the transform’s functions (e.g. the

roots of unity in the case of the discrete Fourier transform). These fast algorithms

can be expressed as a multiplication of the input signal vector by a succession of

sparse matrices, which can be compactly expressed in Kronecker products algebra.

2.4.2 DFT implementations

The differences and similarities between the various 1-D DFT implementations

that have been devised over the years can be better understood by observing the

1-D DFT and fast Fourier transform (FFT) algorithm formulations. For a length N

complex sequence x[n], n = 0, 1, 2, . . . , N − 1, the DFT is defined as:

X[wk] =

N−1∑
n=0

x[n]e−j2πkn/N , k = 0, 1, 2, . . . , N − 1 (2.3)

The DFT formulation can be interpreted as a matrix-vector formulation and

implemented as such. Periyacheri and Jones implemented DFTs and DCTs using

28

matrix multiplication on the WILDCHILD multi-FPGA architecture as part of the

development of the MATCH compiler project. The objective of this project was to

map MATLAB signal processing functions to distributed reprogrammable architec-

tures [11][49]. The WILDCHILD platform consists of eight slave and one master

FPGA interconnected by a crossbar. Each FPGA has an attached RAM. In one of

their matrix multiplication (C = A ·B) schemes, the columns of B were distributed

among the slave FPGAs, while the elements of A were broadcasted row-wise from

the master to all of the slaves. Each slave FPGA carried out the multiplications

and accumulations of their assigned elements of B with the broadcasted elements of

A, to obtain the elements of C. The complexity of the matrix-vector DFT formu-

lation is O(N2) vs. O(NlogN) for the fast Fourier transform, which explains why

implementations of the former type are rare.

As illustrated in Algorithm 1, the FFT is a divide and conquer algorithm that

at its kernel (instruction 〈xk, xk+p〉 ← 〈xk + zjxk+p, xk − zjxk+p〉) consists of multi-

plications and additions between the points (or the intermediate results) and roots

of one coefficients (zj terms). The instruction that we have identified as the ker-

nel is commonly known as a radix-2 butterfly, whose dataflow graph is shown in

Figure 2–4. Figure 2–5 illustrates the DFG for an 8-point decimation in time algo-

rithm. Notice that, besides the multiply and addition operations, all that remains

is a highly regular connection pattern between the different stages of the algorithm.

In general, the implementation of a N = 2n-point FFT requires logN stages where

O(N) multiply/add operations are performed at each stage.

n

a

b

W

+

_
*

a

b

Figure 2–4: Dataflow graph representation of the radix-2 butterfly.

29

Algorithm 1 FFT decimation in time algorithm.

Input: Signal x of length-N = mp
Output: FFT(x)
1. For b← (logN)− 1 to 0 by − 1

1.1. p← 2b ; q ← N/p
1.2. z ← wp ;
1.3. For i← 0 to N − 1

1.3.1. If (kmodp) = (kmod2p)
1.3.1.1. 〈xk, xk+p〉 ← 〈xk + zjxk+p, xk − zjxk+p〉

1.3.2. End If
1.4. End For

2. End For

Leyend

y[1]

y[2]

y[3]

y[4]

y[5]

y[6]

y[7]

a

b

a+b

x[0]

x[2]

x[1]

x[3]

x[7]

w
2

w
2

w

w
2

w
3

x[4]

x[6]

x[5]
a

b a−b

a
w

aw

y[0]

Figure 2–5: Data flow for an 8-point FFT. Dashed lines represent operands that will
be subtracted. Filled dots represent multiplication by twiddle factors.

Despite the substantial amount of hardware resources provided in today’s ded-

icated hardware devices, for most practical cases, a one-to-one mapping of DST

operations to hardware functional units is not feasible. For distributed hardware

architectures, the limitations in inter-device communication channels make one-to-

one mappings impractical. Figure 2–6 illustrates this situation. An 8-point FFT

is mapped to DHAs with three and four FPGAs connected in ring topology whose

communication channels are 1-point wide. Assume that each device has enough

resources to physically instance all the operations assigned to it. The limitations

30

in communication resources would data-starve the functional units, so most would

have a very low duty cycle, which represents an ineffective use of hardware.

Figure 2–6: A one-to-one mapping of a 16-point FFT to a 4-FPGA platform.

These limitations call for folding the DST dataflow graph and iterating data

through a limited number of functional units. Regularity of the FFT is well suited

for a folding scheme, as it consists of the same kernel operations throughout its

computational structure, connected by stride permutations. Kernel operations are

uniform across the vertical and horizontal axis of the FFT dataflow graph. A

strict vertical folding of the FFT, shown in Figure 2–7 maps computation as in

an architectural-level pipeline, where one or more complete DST computational

stages are assigned to each hardware device. In strict horizontal partitioning, de-

picted in Figure 2–7, each device carries out all stages of computation for a data

subset, similar to single-instruction-multiple-data (SIMD) processing. For an FFT

or Walsh-Hadamard Transform of size 2n there are H × V folding strategies, where

H and V are the number of divisors of n and 2n−1, respectively [53]. Throughout

the rest of this discussion, h and v will be the degree of horizontal and vertical

mapping, respectively. For instance, Figure 2–7 illustrates the folding of an 8-point

31

FFT. Figure 2–7(a) shows the fully expanded DFG, (b) represents h = 1, v = 8,

and (c) is a h = 3, v = 1. Both folding orientations can be combined as needed

to comply with performance requirements or device resource availability. Previous

FFT implementations can be classified by the degree and orientation of their folding.

Figure 2–7: Folding of an 8-point FFT: (a) fully expanded DFG, (b) strict horizontal
folding and (b) strict vertical folding.

An FFT dataflow graph which is fully folded both vertically and horizontally,

requires the instancing of a single butterfly-twiddle computational kernel. Figure

2–8 illustrates this implementation. This architecture requires a memory of at least

N words for a length-N FFT, and performs the computation in place. Commer-

cially available FFT cores, such as the Xilinx LogiCore library, typically implement

this type of folding [54]. Every point and intermediate result of the FFT will be

read/stored in the memory at some instance. This type of scheme is similar to the

one utilized by GPPs or PDSPs with the difference that the hardware is dedicated

and no instructions must be read from memory. Many times, the memory interface

will be the bottleneck for the performance of this system. One variation of the single

memory architecture is the cached memory architecture, in which a cache is placed

32

between memory and the processing element in an effort to increase the effective

memory bandwidth. [55]. Another option strategy to increase memory bandwidth,

is to have two read/write memories connected to the processor. Data begins in one

of the memories and goes back and forth between them as the transform is being

processed [56].

Figure 2–8: Single kernel implementation of FFT.

The pipeline is the most commonly documented architecture among hardware

implementations of the FFT. Instead of requiring one memory with capacity for N

words, the pipeline uses smaller multiple storage elements with a simpler read/write

scheme, e.g. FIFOs. Various methodologies and digital circuit techniques have been

proposed for implementation of FFTs in a pipeline, especially for accomplishing the

permutations needed between the computational stages. Shousheng and Torkelson

surveyed some of the existent pipeline architectures and proposed a new architecture

that requires a simpler connection scheme while retaining the memory and functional

complexity of earlier models [57].

Depending on the amount of logic resources available and performance criteria,

a combination of partial vertical and hardware foldings might represent the best

implementation option. Kumhom’s strategy for partitioning a dimensionless FFT

allows the implementation of a single kernel for each of the four FPGA devices.

An n-point dimensionless FFT is implemented as a h = n, v = 2n−3 folding, thus

behaving much like a SIMD implementation in a parallel processor system. Fang, et

al. explored the effect of orientation and degree of folding on the Walsh-Hadamard

transforms [53]. They conclude that folding reduces the resource requirement at

33

the expense of performance, with horizontal folding having the smallest impact on

latency. Nordin, et al. developed a parameterizable soft core generator for FFTs

which allowed them to experiment with the effect of various parameters, such as

v, in the cost/performance of FFT implementations to FPGAs [58]. Their metho-

dology utilizes the Pease FFT formulation to facilitate the folding of inter-stage

permutations. Figure 2–9 shows the formulation and dataflow graph of an 8-point

Pease FFT. Observe that all inter-stage permutations are the same (L8,4), greatly

simplifying the horizontal folding of this structure, as seen in Figure 2–9(b). Vertical

folding of any power-of-two degree is implemented using an efficient v-folded imple-

mentation of the perfect shuffle permutations, illustrated in Figure 2–10 [59]. Their

implementations are comparable in quality to DFT cores from the Xilinx LogiCore

library.

Figure 2–9: (a)An 8-point Pease FFT formulation and dataflow graph. (b) full
horizontal folding [58]

Milder, et al. developed a resource estimator for Nordin’s soft core generator

by analyzing resource utilization of the various architectural components involved

in the folded FFT structure [60]. Their estimator can be used to determine the

feasibility of diverse implementations of a given FFT size to a single FPGA de-

vice. The relationship between p, the number of instanced FFT2 kernels, and the

implementation latency leads to conclude that to obtain minimal latency an FFT

34

Figure 2–10: (a)A vertically-folded Ln,n/2 permutation with 2p ports. (b) Detail of
the Jm component, proposed by Takala, et al.[58][59].

should be implemented using the highest p which still fits the FPGA. In most of

their experiments, p is limited by the available embedded multiplier resources.

In summary, manual hardware implementations take advantage of the FFT’s

regularity to maximize resource utilization. This is mainly accomplished by folding

the computational structure.

2.5 Optimizing discrete signal transform implementations for specific
architectures

For years, researchers looking to optimize DFT formulations were mostly con-

cerned with minimizing the number of costly arithmetic operations, such as mul-

tiplications. Nevertheless, it has always been acknowledged that the optimality of

a DFT implementation depends not only on the number of operations but also on

system-specific such issues as the efficiency of data access patterns on the under-

lying register-cache-memory structure. Because of this, optimizing a DFT algorithm

implementation to a specific architecture has traditionally meant hand-coding the

algorithm to exploit the various features of the system [61]. Several recent efforts

have dealt with the question of how to automatically produce high quality signal

transform code for an arbitrary platform. FFTW [45] [62], and SPIRAL [44], two

popular methodologies for this purpose, are essentially solution-space exploration

engines in search for optimal signal transform implementations. To explore the so-

lution space for a given DST, they heuristically apply algorithmic level rules, thus

obtaining alternate formulations. Software code is generated for each formulation,

35

compiled and executed on the target system. Based on the result and the chosen

optimization heuristic, further reformulations are explored.

Although the formulation of a DST is known to have an effect on its hardware

implementation, the previously mentioned code-generation methods have not been

properly extended to contemplate multi-device dedicated hardware implementations.

Fang, et al., used AREP, a library with signal transform capabilities for the GAP

computer algebra system, to generate automatic formulations for implementations of

the Walsh-Hadamard transform on a single FPGA [63][53]. Kumhom used Kronecker

algebra to guide his implementation of a universal FFT processor on a multi-FPGA

system, but ultimately relied on an exhaustive search for permutations to optimize

data ordering and communication [43]. In general, previously documented methods

arrive at a point where the algorithm is expressed in a generic flow graph manner or

recur to strategies that treat the signal transform as a generic algorithm. After this

transition, algorithmic level characteristics can be hard to extract with the graph

partitioning methods utilized by those schemes.

2.6 Summary

In this chapter we have reviewed some of the most relevant literature to our

line of work. Distributed hardware architectures continue to be an option for high-

performance implementation of discrete signal transforms. The vast majority of

previous implementations to these architectures have been done manually or with

generic partitioning schemes. To reduce the design complexity involved in mapping

algorithms to such architectures and to improve the performance of the resulting

implementation, novel methodologies are needed which consider algorithmic-level

and high-level algorithm characteristics. Through a systematic study of techniques

that have been used for the implementation of signal transforms to hardware devices

and the exploration of algorithmic formulations, we have devised a methodology that

36

integrates functional knowledge about DSTs to aid in their automated partitioning

and high-level synthesis.

CHAPTER 3

Problem Formulation

This chapter has two main objectives. The first is to define and explain the

problem of high-level partitioning of discrete signal transforms to distributed hard-

ware architectures. Second, to provide an overview of the approach we have followed

in search of a suitable solution, presented in Section 3.2. The last section summarizes

the ideas presented throughout the chapter.

3.1 Problem Statement

The problem of high-level partitioning of a discrete signal transform to a dis-

tributed hardware architecture (HLPDD) can be stated as follows. Given:

1. A high-level description T of a discrete signal transform, whose functionality is

implemented by a set of tasks (T0, T1, . . . TM−1). The description includes, at least,

the following:

(a) The DST’s type and number of input points, or a DST algorithmic description.

(b) The resolution (i.e. bitwidth) and format (e.g. fixed point or floating point)

of the input points.

2. A description H of the target multi-chip architecture, described as a weighted,

annotated hypergraph1 H = (D, C), where:

1 A hypergraph is a pair (V, E) of sets, where the elements of E are non-empty
subsets of any cardinality of V [64].

37

38

(a) Each vertex di ∈ D represents one of the architectural devices. The weight

wi of each vertex represents the logic capacity of device di.

(b) The set of hyperedges C represent the available communication channels.

Each channel ci ∈ C = {c0, . . . , cM−1} is a subset of the vertex set D. Fur-

thermore, the following two mappings are specified:

i. The weight W (ci) of a channel is a function W : C → Z
+, whose value is

a relative measure of the impact on system latency of communicating a

data point through ci.

ii. The bitwidth B(ci) of a channel is a function B : C → Z
+, whose value

is the total number of bits that may be commuicated through channel ci

at any computational cycle.

Determine a mapping function f : T 	→ D that minimizes the latency of the overall

transform implementation. In the context of this work, latency is defined as the

number of clock steps between the beginning and end of computation. A solution

to the HLPDD problem is subject to the following constraints:

1. For each device Dj , 0 ≤ j < V :

Resources

⎛
⎝ ⋃

∀Ti|f(Ti)=Dj

Ti

⎞
⎠ ≤Wj

where Resources (x) is the total number of logic resources required for the imple-

mentation of subset x of tasks. In other words, the constraint requires that the set

of tasks assigned to each device Dj can be implemented with the resources provided

in Dj . However, this does not imply that there will be a one-to-one correspondence

between the tasks and the instantiated hardware functional units. Thus, each task

might be assigned a computation step t when a corresponding hardware unit will

implement its functionality.

39

2. For every pair of tasks (Ti, Tj) ∈ T , at every computational step t

Comm (Ti, Tj , t) ≤ Bf(i)f(j) (3.1)

where Comm (Ti, Tj, t) is the number of bits that are communicated between tasks

Ti and Tj during computation step t. In other words, at any time the number of

bits communicated from task i to task j, does not exceed the width of the channel

that connects their assigned devices, Bf(i)f(j).

Example 1. The following example illustrates the representation of a topology using

a hypergraph. For the architecture depicted in Fig. 3–1, D = {d0, d1, d2, d3}, the

channel c0 = {d0, d1}, and the crossbar is c3 = {d0, d1, d2, d3}. B(ci) = 32 for

0 ≤ i ≤ 3.

Figure 3–1: Sample topology.

Although somewhat similar in terms of inputs, constraints and objectives, our

present problem is not to be confused with the classical problem of graph partitioning

(GP). The key difference between GP and HLPDD is brought by the inputs to the

problem, specially the entity which is to be partitioned and its abstraction level. GP

receives a generic graph, while HLPDD receives a high-level description of a discrete

signal transform. Although the high-level description will be converted to a graph

for actual partitioning, a given DST has multiple equivalent algorithms, each with

its corresponding graph and features that make it unique for partitioning purposes.

This allows a solution to HLPDD to explore alternative formulations of a given

transform rather than settling on a particular algorithm. Furthermore, working

exclusively on a family of algorithms allows a solution to HLPDD to incorporate

optimization techniques which would not necessarily apply to general algorithms.

40

GP and HLPDD also differ in their optimization objectives. The former is purely

concerned with minimizing cutsize, whereas the later is interested in minimizing

latency, which is a function of the distribution of communication and processing in

the DHA.

3.2 Methodology

The main objective of this work is to develop a high-level partitioning methodo-

logy for discrete signal transforms to distributed hardware architectures. In essence,

our methodology takes advantage of DST-specific features and properties to provide

effective partition solutions in acceptable time.

Fig. 3–2 shows a conceptual map of the proposed partitioning methodology,

called DMAGIC (DST Mapping using Algorithmic and Graph Interaction and Com-

putation). As implied in the problem formulation, the methodology receives two

inputs. The first is a DST specified as a Kronecker Products Algebra (KPA) for-

mulation, parameterized by at least the resolution of its points. The second is a

high-level specification of the target architecture, which includes the number and

logic capacity of the devices and their connection topology. Based on the inputs,

a series of heuristics reformulate the transform to expose characteristics that are

exploited by the partition/placement process. Reformulation is accomplished by

applying algorithmic-level transformations, such as factorization and permutation

rules, on the original formulation.

The Kronecker to Graph process converts the algorithmic formulation into a

dataflow graph (DFG) whose nodes denote functional primitives. These primitives

are small computational components that are common throughout the formulation

and have been identified as efficient procedures on the target devices. The dataflow

graph is then partitioned using a deterministic graph partitioning/placement heuris-

tic that has been enhanced to handle DST structures. The quality of results

from the partition/placement process is used by a heuristic formulation-exploration

41

engine to guide exploration onto further formulations. Based on the partition-

ing results of the current formulation, factorization rules are used to generate a

new formulation, which, hopefully, improves the previous results. The conver-

sion/partitioning/reformulation process continues until no considerable improve-

ments are detected, at which point the methodology outputs the best partition/pla-

cement scheme obtained throughout the exploration.

Figure 3–2: Block diagram of methodology.

The DMAGIC methodology takes advantage of DST features at two levels of

abstraction: the graph and algorithmic levels. First, a series of DST-structure

aware considerations have been incorporated into the partitioning/placement heuris-

tic. These considerations help the partitioning/placement heuristic conduct a faster

exploration and maintain the regularity of the original expression, thus obtaining

results that can efficiently mapped to hardware structures [65]. Second, the metho-

dology uses rules specific to the particular DST at hand to conduct an exploration

of alternate formulations that might be more suitable for partitioning to the given

topology. In this sense, DSTs have an advantage over other algorithms, because

they a have considerable amount of properties to be used for such purposes.

42

DMAGIC’s development was organized into four major tasks, each building

upon the findings and tools of its predecessors.

Task 1: Development of a methodology scheme. The first task consisted

of defining a general partitioning strategy and deciding the format for our metho-

dology’s inputs. An extensive literature review revealed that most reported DST

implementations to distributed hardware architectures use either manual or general

purpose partitioning methods. In other words, no automated partitioning strategies

have been reported to take advantage of DST specifics, albeit evidence that using

these properties could contribute to more effective solutions to the HLPDD problem:

• Effective manual DST implementations in hardware and distributed architectures

are obtained through careful manipulation and matching between the underlying

computational architecture and the algorithm [61][11]. For instance, the Pease FFT

formulation is preferred for scalable single-chip hardware FFTs mainly because of

its data access scheme, which requires the same data permutation throughout all

computational stages [58].

• The effect of formulations on distributed hardware implementation is evident in

the results of some automated methods for general purpose DHA partitioning, yet

no systematic strategy has been proposed to explore formulations as part of the

mapping process [16].

• Recently, automated DST code generation methods for general purpose processors

have been proposed, which use algorithmic-level transformations as part of their

optimization process [44][45] . However, these methods have yet to be success-

fully adapted for automated partitioning methodologies on dedicated distributed

hardware architectures (DHAs)

The proposed methodology, shown in Figure 3–2, provides a framework to facilitate

the use of DST-specific properties to aid in their partitioning. Since algorithmic-level

43

transformations are contemplated as part of the optimization loop, Kronecker prod-

uct algebra representation was chosen as DST specification language because it can

compactly capture DST functionality and allows algorithmic-level transformations,

yet allows easy interpretation of the implied hardware computational structures.

Additionally, weighed hypergraphs were selected as representation format for the

target DHA.

Task 2: Tool development. The main optimization loop explores alter-

native formulations of a DST, partitioning each of these formulations to assess its

quality. The actual partitioning is performed on a dataflow graph representation

of the current formulation. To evaluate the partition of any DST formulation, we

developed the tools that deal directly with graph partitioning. The KTG, graph par-

tition/placement, resource and latency estimators were developed and integrated as

part of this task. Throughout the development of these tools, opportunities were

observed to introduce graph level strategies, cost functions, and resource estimation

techniques especially for DSTs.

Task 3: Experimentation and assessment to define formulation explo-

ration strategy. To the best of our knowledge, the effect that DST reformulations

have on their partitioning to DHAs has not been adequately reported in literature.

However, understanding these effects is critical to define the heuristics controlling

the optimization process. In this task, we used the KTG, graph partition/placement,

and estimator tools to conduct experiments to assess the effects of reformulations on

solution quality. Consequently, results from these experiments allowed us to define

strategies for the formulation exploration heuristics.

Task 4: Results and validation. In this task, several experiments were

performed to validate the performance of individual methodology processes and

the methodology as a whole. The effectiveness of DST-related design decisions

was ascertained by comparing results with alternative general-purpose techniques.

44

Finally, the scaled suboptimality of the proposed heuristic was measured to evidence

that quality of results is maintained throughout increasing problem sizes.

3.3 Summary

In this chapter we formally stated the problem of high-level partitioning a

discrete signal transform to a distributed hardware architecture (HLPDD), distin-

guishing it from the generic graph partitioning problem. Our approach to solving

HLPDD requires designing new processes and adapting existing ones, as well as

their integration into a partitioning methodology. A general scheme of DMAGIC,

the proposed partitioning methodology, was discussed and the main tasks toward

achieving a solution to the HLPDD problem were outlined. The next chapters detail

the development of these tasks.

CHAPTER 4

Tools

A discussion of the development of the DMAGIC methodology can be divided

in two stages; (1) the development of tools to partition a given DST formulation,

and (2) experimentation with these tools to determine a formulation exploration

technique. In this chapter, we discuss the former, starting with the process of

converting an algorithmic formulation to a dataflow graph, followed by the partition

of the DFG, and the latency and area estimators.

4.1 Kronecker Product Algebra

Kronecker Product Algebra (KPA) is a compact and practical manner of ex-

pressing sparse linear algebra algorithms, specially those consisting of recursive

derivations, such as the fast versions of DSTs. The nomenclature used through-

out this thesis for the expression of DSTs is the following: Kronecker product is

denoted by ⊗, while direct sum is denoted by ⊕. Ik represents an identity matrix

size k, and Ln,m a stride-m size n matrix. Jk is the Ik matrix with the order of

the columns reversed. The operation ALn,m denotes the conjugation of matrix A by

permutation ALn,m = Ln,n/mALn,m.

The next two sections discuss rules and properties of KPA and stride-permuta-

tions, which are necessary to visualize the computational structures and dataflow

of DSTs, as well as to allow their reformulation. For more details about Kronecker

45

46

product and stride permutation properties, as well as their proofs the reader is

referred to [52] and [66].

4.1.1 Definitions and Basic Rules

The Kronecker product of two matrices B and C of sizes (k, l) and (m, n) is

defined by

B ⊗ C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(0,0)C b(0,1)C · · · b(0,l−1)C

b(1,0)C b(1,1)C · · · b(1,l−1)C

...
...

. . .
...

b(k−1,0)C b(k−1,1)C · · · b(k−1,l−1)C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

The following are important Kronecker product properties that are used thro-

ughout this work to reformulate DSTs and understand their computational insights.

Property 1. Associativity of Kronecker product

(A⊗B)⊗ C = A⊗ (B ⊗ C) (4.2)

Property 2. Kronecker product transpose operation

(A⊗B)T = AT ⊗ BT (4.3)

Property 3. Kronecker product distribution property

Let A and C be M ×M and B and D be N ×N matrices. Then,

(A⊗B) (C ⊗D) = AC ⊗BD (4.4)

Property 4. Expression of Kronecker Product with identity matrices

Let A be M × M and B be N × N matrices. Let IM and IN be M and N

dimensional identity matrices. Then,

A⊗ B = (A⊗ IN) (IM ⊗B) = (IM ⊗B) (A⊗ IN) (4.5)

47

4.2 Stride Permutations

In DST KPA formulations, permutation matrices act mainly to reorder data

arrays between computational stages.

Definition 4.2.1. Permutation matrix: A permutation matrix PN is an N × N

matrix with all the elements either 0 or 1, with exactly one 1 at each row and

column.

Property 5. Permutation matrices are orthogonal.

If PN is a permutation, then P−1
N = P T

N . Thus,

PN · P T
N = IN (4.6)

Stride permutations reorder data in regular arithmetic patterns. Their use in

DST formulations is advantageous, as their implementation in software or hardware

is simpler than permutations that do not follow a pattern.

Definition 4.2.2. Stride Permutations.

The application of a p-stride permutation Ln,p on a vector X of size n is:

Ln,px =
[
x0, xp, .., x(m−1)p, x1, x1+p, .., x1+(m−1)p, .., xp−1, x(p−1)+2p, .., x(p−1)+(m−1)p

]T
(4.7)

where n = mp.

For example, for x = [x0, x1, x2, x3, x4, x5, x6, x7]
T

L8,2x = [x0, x2, x4, x6, x1, x3, x5, x7]
T (4.8)

and

L8,4x = [x0, x4, x1, x5, x2, x6, x3, x7]
T (4.9)

A stride permutation where p = n/2 is called a perfect shuffle permutation.

Property 6.

Ln,1 = Ln,n = In (4.10)

48

Property 7.

LT
n,p = Ln, n

p
(4.11)

Property 8.

La,bc = La,bLa,c (4.12)

Property 9.

La,abc = (La,ac ⊗ Ib) (Ia ⊗ Lbc,c) (4.13)

Property 10. Factorization of stride-2 permutation.

L2n+1,2 =

0∏
q=n−1

(I2n−q−1 ⊗ L4,2 ⊗ I2q) (4.14)

Property 11. Factorization of L2n+K ,2n+1

L2n+K ,2n+1 =
n∏

q=0

(
I2n−q ⊗ L2K ,2 ⊗ I2q

)
(4.15)

Stride permutations allow the commutation of the Kronecker product.

Definition 4.2.3. Definition, commutative property for tensor products. Let A be

a× a and B be b× b matrices. Then,

(A⊗ B) = Lab,a (B ⊗ A)Lab,b (4.16)

4.3 From Kronecker Products Algebra to Dataflow Graph

Automated search for a partitioning solution requires us to translate the for-

mulation representation into one that graphically expresses the relationship between

data and operations. One of the shortcomings of previous high-level partitioning

schemes was their dependence on user-generated dataflow graphs as input [7] [8].

Creating DFGs by hand is only practical for smaller examples, since it is a tedious

and error-prone process. Manual DFG creation discourages exploration into alter-

native DFG granularities for a given algorithm, thus limiting the potential of finding

49

more suitable expressions. Since our approach contemplates experimentation with

multiple sizes and forms of DSTs, an automated KPA to DFG methodology was

developed.

4.3.1 Problem Formulation

A KPA formulation of a n-point DST is a product of one or more n-row sparse

matrices. These matrices may be either permutation matrices, which alter the order

of data, or computational matrices, which linearly combine points of the input data

set. The operations dictated by each computational matrix conform the DFG nodes.

For instance, the sparse matrix (I4 ⊗ F2) translates to four nodes of type F2.

Given a KPA formulation, the Kronecker to DFG converter will output an

equivalent DFG that retains data order topology. A data order topology DFG is

a directed acyclic graph G = (V, E) with two functions fT and fL. The function

fT : V → R maps each node v ∈ V to a resource type. The function fL : V → N

assigns each node v ∈ V a non-negative integer that indicates the node’s level within

the computational topology. The level of each node in a sparse matrix is assigned

in ascending order based on the matrix position of its corresponding operations.

For example, a matrix [(I2 ⊗A3)⊕ (I3 ⊗ B2)] would have two A3 nodes with levels

0 and 1, and three B2 nodes with levels 2, 3, and 4. Figure 4–1 shows several

representative examples of common sparse matrices found in KPA formulations and

their corresponding data order topology DFGs. Node levels are shown in italics in

the lower right corner of each box.

Figure 4–2 illustrates the concept of data order topology DFG for a DST KPA

formulation. Even though both (b) and (c) are equivalent DFG’s that represent

the formulation in (a), (b) has retained data order topology by vertically organizing

the processing blocks with respect to their corresponding matrix operations. Retai-

ning this information is important for visualization and because it helps maintain

regularity in the starting partitioning solution as we shall explain in Section 4.4.

50

Figure 4–1: Several KPA sparse matrices and their corresponding data order topo-
logy DFGs.

4.3.2 Implementation

Implementation of the algorithm to translate from KPA to DFG is aided by

the use of an intermediate data structure called a KA − component. Figure 4–3

illustrates this structure. A KA-component consists of three lists: input ports, de-

vices, and output ports. Each input (output) port establishes a connection between

a KA-component input (output) and a device input (output). Each device can be

an end node or a pointer to another KA-component, making the KA-component a

recursive data structure. The list of devices can be interpreted as being horizontal

or vertical. A horizontal list symbolizes a cascade of matrix operations, such as in a

sparse matrix multiplication (e.g. P4,2T4,2). A vertical list symbolizes a set of smaller

51

Figure 4–2: KPA formulation and two isomorphic dataflow graphs.

matrix operations acting on different subsets of a vector, such as in the operation

I2 ⊗ F2.

Figure 4–3: (a)The KA-component data structure, (b) KA-component representa-
tion and (c) derived DFG for sample formulation F4P4,2(I2 ⊗ F2)

Figure 4–4, illustrates how each of the common DST KPA expressions are re-

presentable using KA-components. The conversion process starts by parsing the

KA formulation onto a queue. As the formulation’s operands and operators are

read sequentially from the queue, data structures, KA-components are created and

linked to each other based on the operations and the levels of associativity in the

expression. Once all operations and operands have been read from the queue, we

have a hierarchical collection of KA-component that represent the expression. All

that remains to create the DFG is to traverse the KA-components, creating nodes

52

for those components that imply hardware computation and obeying the established

connections between them. For a comprehensive interpretation of tensor products

and their effect on common permutation matrices please refer to Davio [66].

Figure 4–4: Common KPA operations and their KA-component representation.

To build the corresponding data flow graph, our algorithm performs a recursive

traversal of the KA-component structures. This establishes the DFG nodes (which

correspond to the end nodes in the k-components) and their connections. Each DFG

node is assigned a weight that depends on the estimated area of its represented pri-

mitive. Figure 4–3c illustrates the data flow graph deduced from the KA-component

representation in 4–3b. Not all components are converted to nodes, as they do not

imply actual hardware computations.

4.4 Graph Partitioning

In this section, we introduce the graph partitioning problem, which is intimately

related to our high-level partitioning objective. We begin by formally defining the

graph partitioning problem and then we introduce several of the most commonly

used algorithms for solving it. This is followed by a discussion of our implementation,

which integrates several DST-specific properties to conduct a faster exploration of

the graph-partitioning space.

4.4.1 Problem Formulation

The graph partitioning problem can be stated as follows. Given a graph,

G = (V, E, WV , WE), where V = {v0, v1, . . . , vM−1} is the set of vertices, E ⊆ [V]2 is

the set of edges, WV =
{
wV0 , wV1, . . . , wVM−1

}
is the set of vertex weights, and

53

WE =
{
wE0, wE1, . . . , wEM−1

}
is the set of edge weights, determine a partition

(V0, V1, . . . VP−1) such that:

1. V = V0 ∪ V1 ∪ . . . ∪ VP−1,

2. The sum of vertex weights in each partition is approximately equal, i.e.
∑

vi∈V0

wVi
�∑

vi∈V1

wVi
� . . . � ∑

vi∈VP−1

wVi

3. The sum of weights for the edges that join vertices in different partitions is min-

imized. In other words, minimize
∑

ei∈C

wEi
, where C = {〈vi, vk〉 |vi ⊆ Pa, vk ⊆ Pb

, a �= b}.
4.4.2 Algorithms for Graph Partitioning

Graph partitioning is known to be a NP-complete problem [32], even for the

simplest case of V = V0 ∪ V1, commonly known as bipartitioning or graph bisection.

Therefore, practical partitioning strategies rely on heuristics rather than on exact

algorithms. Heuristic partitioning mechanisms search the solution space by using

either deterministic or stochastic strategies. Sections 4.4.3 through 4.4.7 review

common graph partitioning terms, as well as four commonly used graph partitioning

heuristics.

4.4.3 Preliminaries

The Kernighan-Lin, Fiduccia-Matheyses, simulated annealing and genetic al-

gorithms are move-based strategies: they optimize a partitioning solution by itera-

tively moving one or several nodes from their partitions and measuring the effect

on a global cost function. Figure 4–5 illustrates some common terms related to the

operation of move-based partitioning heuristics. A cut edge is one that connects

two vertices that are currently on different partitions, for example 〈a, b〉 in Figure

4–5(b) is a cut edge. The cost function for the bi-partitioning problem is the cut

weight, i.e. the sum of the weights of cut edges. The gain of a perturbation on the

partitioning solution is the difference in cost before and after a move is performed,

gain = cut weightbefore − cut weightafter (4.17)

54

i.e. gain = 5 for swapping nodes a and b.

Figure 4–5: (a) Graph (b) a partition solution, (c) partition solution after swapping
nodes a and b.

4.4.4 Kernighan-Lin Bipartitioning Heuristic

Kernighan and Lin’s bipartitioning algorithm, introduced in 1970, is considered

by many to be the first “good” bi-partitioning heuristic [67] [33]. The KL algorithm,

as shown in Algorithm 2, iteratively improves on the current solution by swapping

pairs of nodes between partitions. Each iteration of the outer loop of the KL algo-

rithm is called a pass. During each pass, each node is swapped once from its current

partition. The inner loop helps to establish the order in which swaps are performed.

During each iteration of the inner loop, the algorithm chooses the unlocked node

pair 〈u, v〉 whose swap has the highest gain. The nodes are swapped, the node pair

〈u, v〉 and its corresponding gain are added to the sequence of performed swaps du-

ring this pass, and u and v are locked for the rest of the pass. The gains of any nodes

connected to u or v are updated. At the end of each pass, the algorithm evaluates

the swap sequence list to determine at which step (if any) in the swap sequence the

highest positive cumulative gain was achieved. Swaps that happened after this step

are reversed (i.e. u and v are returned to their original partitions) and the solution

cost is adjusted according to the cumulative gain. Nodes are unlocked and the next

pass starts. This continues until a pass does not offer a positive gain over the current

cost.

55

Algorithm 2 Kernighan-Lin bipartitioning heuristic

Input: Graph G = (V,E)
Output: Partition {A,B}
1. Obtain initial linear horizontal balanced partition {A,B} such that A ∪ B = V ,

A ∩B = {}, and |A| ≈ |B|
2. do

2.1. Compute Dv for all v ∈ V
2.2. queue← φ; i← 1; A′ = A, B′ = B;

2.2.1. while A′ and B′ are not empty
2.2.1.1. Choose node pair ai ∈ A′, bi ∈ B′ with highest swap gain gi

2.2.1.2. queue← queue + (ai, bi, gi)
2.2.1.3. A′ = A′ − {a}; B′ = B′ − {b};
2.2.1.4. Update Dv for all v ∈ A′ ∪B′ connected to ai or bi

2.2.1.5. i← i + 1
2.2.2. Find k to maximize G =

∑k
i=1 gi

2.2.3. if G > 0 then
2.2.3.1. Move {a1, . . . , ak} to B, and {b1, . . . , bk} to A

2.2.4. endif
3. while G > 0

The gain computation for each swap pair is done by observing that the gain of

moving a node a ∈ A to B is given by:

Da = Ea − Ia, (4.18)

where Ea is the sum of weights of the edges that emerge from node a ∈ A and

terminate in B:

Ea =
∑

ei∈{〈a,b〉|b∈B }
WEi

(4.19)

and Ia is the sum of weights of the edges that emerge from node a ∈ A and terminate

in other nodes in A:

Ia =
∑

ei∈{〈a,v〉|v∈A}
WEi

(4.20)

The swap gain of 〈a, b〉, where a ∈ A and b ∈ B can be computed using the following

expression:

gab = Da + Db − 2WE<a,b>
(4.21)

56

Furthermore, every time a pair of nodes is swapped, the potential gains obtained for

swapping other nodes may change. This change to the D-values can be computed

in constant time:

D′
x = Dx + 2WE<x,a> − 2WE<x,b>

, ∀x ∈ A− {a} (4.22)

D′
y = Dy + 2WE<y,b>

− 2WE<y,a>, ∀y ∈ B − {b} (4.23)

A straightforward implementation of the Kernighan-Lin heuristic requires O(n3)

time per pass. The selection of the node pair with the highest swap gain constitutes

the most expensive step. The inner loop must be repeated O(n) times, choosing

among O(n2) swap pairs each iteration. In actual implementations, a per-pass com-

plexity of O(n2 log n) is achieved by maintaining a nonincreasing sorted list of the

D-values for each partition. Since the number of D-values is linear in size, the time

to update each list is O(n log n). Finding the maximum gab rarely requires examina-

tion of all pairs
(
Dai

, Dbj

)
. This is because when examining the lists, once we come

upon a pair (Dak
, Dbl

) such that Dak
+ Dbl

is less than the best gain gij seen so far,

there cannot be another pair k ≥ i, l ≥ j with greater gain.

4.4.5 Fiduccia-Mattheyses

Fiduccia-Mattheyses’ algorithm enhances the Kernighan-Lin heuristic in two

main aspects: the ability to handle hypergraphs and the reduction of the per-pass

time complexity [68]. A hypergraph is a pair (V, E) of sets, where the elements of

E are non-empty subsets of any cardinality of V . Thus graphs are a special class of

hypergraphs with cardinality of 2. Hypergraphs are a more appropriate abstraction

for structural level circuit netlists since each pin of a circuit block a ∈ A can be

connected to one or more pin(s) of other blocks b, c ∈ B [69]. As illustrated in

Figure 4–6, cut weight for the graph representation implies two separate signals,

while hypergraph representation correctly implies a common signal to from a to b

and c.

57

Figure 4–6: (a)Graph and (b)hypergraph representations of a circuit netlist.

Fiduccia-Mattheyses’ algorithm requires O(|E|) time per pass for graphs and

O(|p|) for hypergraphs , where p is the sum of cardinalities for elements of E (i.e.

the total number of pins in the netlist). Similarly to KL, FM operates in passes

and every node is swapped once per pass, however at each step FM exchanges one

node at a time, instead of a pair. Thus, the decision of which node to exchange

next can be based on single node gains (O(n)) instead of node pairs (O(n2)). Since

values for single node gains are bounded by −degmax and degmax, a linked-list vector

structure called a bucket list can be used to efficiently maintain and update the gains

and detect the highest gain throughout the procedure. Figure 4–7 illustrates a gain

bucket structure. At the beginning of a pass, node gains are computed in (O(p))

time and linked to their corresponding gain slot, meanwhile recording the maximum

gain. Direct access is also kept to each bucket cell by using the CELL structure.

This allows constant-time access to the maximum gain cell and to each cell for gain

updates. Every time a node is changed to its complementary partition, all incident

node gains are updated, which implies that a total of (O(p)) cells will be updated

each pass.

4.4.6 Simulated Annealing

Simulated annealing (SA) is a combinatorial optimization technique that has

been successfully applied to various tasks in electronic design automation, mainly

in placement and partitioning [70] [71] [72]. Proposed by Kirkpatrick et al., SA’s

optimization strategy is based on the physical process of annealing, which achieves

58

Figure 4–7: Bucket structure used in the Fiduccia-Mattheyses algorithm [68]

low energy states in metals [73]. First, the metal is heated to a melting temperature

that is high enough to break atoms from their chemical bonds and allow them to

move freely. This is followed by a cooling schedule in which the atoms arrange them-

selves in a low energy - highly ordered state. In an analogous procedure, simulated

annealing explores the solution space by allowing high probability of hill-climbing

during the initial stages of exploration followed by a gradual decrease in probability

as the exploration progresses.

Each step in the iterative improvement strategy of SA proposes a new solution

by randomly perturbing the current configuration. The cost of the new configuration

is computed and the new solution is accepted or rejected according to the following

criteria, commonly called the Metropolis criteria:

Paccept =

⎧⎪⎨
⎪⎩

1, ΔC ≤ 0

e−
ΔC
T , ΔC > 0

, (4.24)

where T is the temperature and ΔC is the cost variation in the current iteration.

This acceptance rule establishes the probability of hill climbing throughout the so-

lution space exploration, which gives SA its ability for escaping local minima.

59

Algorithm 3 outlines the SA heuristic. An initial temperature and solution are

set. The outer loop controls the monotonically decreasing temperature schedule.

At each temperature, a number of moves are attempted until a certain equilibrium

criteria has been achieved. The cooling schedule proceeds until a stop criteria is met.

Although the core SA heuristic is conceptually simple, its actual implementation

requires careful and extensive experimentation and/or a sufficient familiarity about

the problem at hand to define the following specifics:

• The initial temperature, also called the melting temperature, determines the initial

acceptance probability of hill climbing configurations. Choosing a TM that is too

high will destroy any possible good qualities in an initial solution and might un-

necessarily delay convergence, while choosing a value too small might not induce

the necessary freedom of exploration and be prone to local minima [74].

• The inner loop (equilibrium) criterion controls the number of configurations ex-

plored at each temperature step. This criterion determines when the system has

reached a steady-state, a condition necessary to guarantee appropriate solution

convergence.

• The temperature decrement function establishes the rate at which the temperature

is decreased. To guarantee an effective rate, either of two methods are commonly

used: a predefined decrease rate schedule which is defined through experimentation,

or a rate that dynamically responds to exploration statistics in previous steps.

• The stop criterion decides when the exploration has converged to a point where

further reductions in temperature are not expected to have a significant impact

on the solution. This is commonly deduced by measuring the rate of change in

solution cost vs. rate of temperature change. When the ratio falls below a certain

value, the exploration process is stopped.

60

Algorithm 3 Simulated annealing heuristic.
Input: S0: initial solution, T0: initial temperature
Output: S: optimized solution
1. S ← S0

2. T ← T0

3. while stop criterion not satisfied
3.1. while equilibrium not reached

3.1.1. S′ ← Perturb(S)
3.1.2. ΔC ← Cost(S′)− Cost(S)
3.1.3. Probability(ΔC) = min

(
1, e−

ΔC
T

)
3.1.4. if Random (0, 1) ≤ Probability(ΔC) then

3.1.4.1. S ← S′

3.1.5. end if
3.2. end while

4. T ← Decrement(T)
5. end while

4.4.7 Genetic Algorithms

A genetic algorithm (GA) is a general optimization technique based on the

metaphor of natural evolution [75]. GA’s have been used in placement, partitioning

and scheduling problems [76] [77] [78] [7] [79]. Natural species evolve to become

better adapted to their environment throughout generations of selective reproduc-

tion. Each individual in a population has features that determine its fitness, i.e.

how well it is able to survive in its environment. Each feature is genetically con-

trolled by a basic unit called a gene. The sets of genes controlling features are called

chromosomes. On each generation, pairs of individuals mate and reproduce, inher-

iting a combination of their genes to their offspring. Better fitted individuals have

a greater chance of reproducing, thus new generations are potentially more fit than

the previous.

GA maps an optimization problem to that of finding the most fit individual

after several generations of an evolution process [13]. In GA, candidate solutions

to the optimization problem are analogous to the individuals of a population. Each

candidate solution is called a chromosome and is composed of a string of genes

representing the values for the various problem variables. For example, as shown in

61

Figure 4–8, a common way of encoding the solution of a bipartitioning problem is

an integer array where each cell indicates the partition assigned to a certain node.

Figure 4–8: Example of a chromosome encoding for a bipartitioning solution.

Algorithm 4 shows the GA heuristic. During each iteration, a new generation

is created by selecting members of the current population, crossing pairs of them

to generate offspring, and randomly introducing mutations to chromosomes of the

new generation. The selection process probabilistically selects some of the members

of the current population to serve as parents for the next one. It emulates the

survival of the fittest principle by mostly selecting highly fit individuals. Crossover

creates offspring with a combination of genes from both parents. Mutation randomly

modifies the structure of some chromosomes. This introduces variations that can

help the optimization heuristic in hill-climbing from local minimum.

Algorithm 4 Generic algorithm optimization heuristic.
Input: , PS : Selection percentage, PC : Crossover percentage, PM : Mutation percentage
Output: S: optimized solution
1. P ← CreateInitialPopulation()
2. while stop criterion not satisfied

2.1. for every member m ∈ P
2.1.1. compute Fitness(m)

2.2. Sort P in decreasing order of fitness
2.3. best solution← first member of sorted P
2.4. bs ← Select(P,PM);
2.5. bc ← CrossOver (bs, PC);
2.6. P ← Mutate(bs ∪ bc, PM)

3. end while

62

4.4.8 k-way Partitioning

In their original paper, Kernighan and Lin suggested two adaptations of their

bipartitioning heuristic for k-way partitioning [67]. The first method required the

creation of an initial k-way partition, followed by the repeated application of the

bipartitioning heuristic to pairs of subsets. As observed by the authors, although

this method might achieve pairwise optimality, this is only one condition for global

optimality. The second method relied on the recursive use of the bipartitioning

algorithm. For example, for a 4-way partition, KL is used to bipartition the origi-

nal graph. Then, each of the resulting partitions is split using KL, for a total of

four partitions. As pointed by the authors, this scheme might suffer from several

problems, especially because earlier partitions have an impact on later ones. For

instance, the first split tries to minimize the number of cuts by tending to maximize

the connections inside the partitions. This, in turn, can have an adverse impact on

the quality of subsequent partitions.

L. Sanchis proposed one of the first widely cited and compared adaptations

of the Fiduccia-Mattheyses’ heuristic for multi-way partitioning [80]. Rather than

using a recursive or pairwise approach, the author’s adaptation improves the par-

tition uniformly at each step. During a pass, all possible moves of a free cell from

its current partition to any other partition are considered, choosing the move that

represents the highest gain. The uniform partitioning algorithm by Sanchis found

lower cutsets than the recursive (hierarchical) approach under similar execution time

constraints. Extension of FM bipartitioning to a uniform k-way implementation, re-

quires the adaptation of gain computations, gain vector maintenance, balancing and

the bucket array data structures, resulting in additional space and time complexity.

Hauck used the recursive bipartitioning method for structural partitioning of

circuit netlists to multi-FPGA topologies [9]. His algorithm determines the order

to perform bipartitioning by finding the critical bottlenecks in the topology, while

63

ensuring that all partitions created are connected. In his dissertation, the com-

puted bipartitioning ordering is given for several typical multi-FPGA topologies.

Topologies with crossbar connecting all components are identified as an opportunity

for using uniform multi-way partitioning. However, Hauck’s method does not ulti-

mately use uniform partitioning for these topologies. His argument is that typical

uniform algorithms do not consider individual channels but instead choose objective

functions such as the total number of nets connecting logic in two or more partitions

(the net-cut metric), or the total number of partitions touched by each of these cut

nets (the pin-cut metric). Our method utilizes an objective function that instead of

counting the total number of cuts utilizes a vector of cuts.

Even though for bipartitioning FM and KL may produce similar results, when

used for k-way partitioning the differences in their optimization decisions become

more evident. In FM, when only two partitions are present, if balance is to be kept

throughout the optimization process, every move of a node from P0 to P1 is followed

by moving a node in the opposite direction. Thus, for all effective purposes, node

pairs are being swapped, as in KL. On the other hand, when dealing with more than

two partitions in FM, the effect of swapping node pairs is not always maintained.

For instance,think of 4-way partition and the D values for all nodes. The first node

chosen, say a ∈ P1 may have its greatest gain when moved to partition P2. However,

none of the nodes in P2 might have a good gain. Thus, may be a node from P3 could

be moved, and so forth. The differences between k-way KL and FM also extend

to the move commitment rules. As previously explained, on every pass of KL and

FM all nodes are moved once. At the end of each pass, the sequence of moves that

produced the highest cumulative cost gain is committed, the remaining moves are

reversed. Thus, for example, in FM if the only move that contributed gain is moving

a from partition P1 to partition P2 we might not be able to commit this swap since it

64

will leave the solution with an unbalance. On the contrary, in KL a swap involving

node a would be committed, as long as it represents a positive gain.

4.5 k-way Implementation

In this section, our implementation of a k-way partitioning heuristic is dis-

cussed. We begin by discussing the cost function. Then, we discuss several DST

considerations that were taken into account for the implementation. Finally, the

complexity for the heuristic is analyzed.

4.5.1 Cost Function

A limitation of previous k-way extensions of deterministic partitioning heuristics

is that their objective function does not consider individual channels but instead

chooses cumulative objective functions such as the total number of nets connecting

logic in two or more partitions (the net-cut metric), or the total number of partitions

touched by each of these cut nets (the pin-cut metric). These cumulative functions

are useful in the context of ASICs where the designer might want to minimize the

total number of physical wires crossing chip boundaries. However, for partitioning to

distributed hardware architectures, a cumulative function presents several problems:

• It assumes complete connectivity between partitions: In a DHA, not all devices have

a direct connection to each other. A DHA will commonly have different types of

connections between various devices. Adjacent devices might have a direct point

to connection, whereas distant devices might rely on a communication channel

such as a crossbar or multiple-device data hopping for data interchange. Thus,

the cost of communicating varies across certain partition boundaries. Traditional

cumulative objective functions do not take this fact into account and simply count

the number of cut nets regardless of the partitions they join.

• DHAs have ‘hard’ interconnect resources : When communication resources are

hardwired and scarce, as they are in most DHAs, a balanced distribution of cuts

throughout the offered resources is a better objective than the minimization of the

65

sum of cuts. This becomes more evident when we consider that communication

of data will be scheduled throughout time. A cumulative function might minimize

total cuts by concentrating all cuts on a few partition boundaries. These partition

boundaries will then become the implementation bottleneck. Figure 4–9 exempli-

fies this situation. The cumulative objective function in Figure 4–9(a) is smaller

than in (b), i.e. 29 vs. 39. However, distribution of cuts is more balanced in (b),

promoting a better communication distribution throughout execution, and thus

decreasing latency.

Figure 4–9: Effect of cut distribution on a DHA.

Our P/P process estimates solution latency using a cost function that measures

the impact of communications on each individual DHA communication resource.

The cost of a solution is represented by a vector:

P = 〈Φ0, Φ1, . . .ΦM−1〉 , (4.25)

where Φi is the cost of communications through channel i. Let P1 and P2 be costs, we

say P1 < P2 if the nonincreasing ordering of P1 is lexicographically smaller than the

ordering of P2. For example, P1 = 〈1, 3, 1, 4〉 is smaller than P2 = 〈0, 2, 3, 4〉, since,

lexicographically 4,3,1,1 is smaller than 4,3,2,0. Each channel cost communication

Φi is obtained as follows:

Φi = W (ci)
∑
e∈E

R(e, ci), (4.26)

where W (ci) is the weight of channel ci; a function W : C → Z
+, whose value

is a relative measure of the impact on system latency of communicating a data

66

point through c. The communication flag R(e, ci) of an edge e through a channel ci

determines if the communication represented by e will be done through ci.

R(e, ci) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ci = μ(e),

0 else.

(4.27)

Let a(x) represent the partition to which node x is assigned. Let Je, where

e = 〈u, v〉 be the set of channels that can be used to communicate data from a(u) to

a(v). The minimum weight channel μ(e) is the channel ci ∈ Je with the minimum

weight.

The described changes to the cost function require modifications to the gain

computation and maintenance. The D value for moving a node x is no longer a

scalar, as in bipartitioning, but a collection of k − 1 vectors each representing the

effect of moving x to one of the remaining k−1 partitions. The D vector for moving

a node x from Px to another partition Py is given by:

Dx,Py =
〈
Dx,Py,c0, Dx,Py,c1, . . . , Dx,Py,cM−1

〉
, (4.28)

where Dx,Py,ci
is the cost effect on channel ci of moving node x from Px to another

partition Py, and can be computed as follows:

Dx,Py,ci
= Fx,ci

− Tx,Py,ci
(4.29)

Assuming that channel ci is the minimum weight channel between partitions Pa and

Pb:

Fx,ci
=

⎧⎪⎪⎨
⎪⎪⎩
∑

〈x,u〉|u∈Pb
W (ci) if Pa = Px,

0 else.

(4.30)

67

Tx,Py,ci
=

⎧⎪⎪⎨
⎪⎪⎩
∑

〈x,u〉|u∈Pa
W (ci) if Pb = Py,

0 else.

(4.31)

The gain obtained by swapping two nodes x and y between partitions Px and

Py on a channel ci is computed by:

Gx,y,ci
= Dx,Py,ci

+ Dy,Px,ci
−Θ, (4.32)

where

Θ =

⎧⎪⎪⎨
⎪⎪⎩

2WE〈a,b〉 if Pa = Px and Pb = Py ,

0 else.

(4.33)

In this manner, each of the values for the gain vector of node pair x, y are

obtained:

Gx,y =
〈
Gx,y,c0, Dx,y,c1, . . . , Dx,y,cM−1

〉
, (4.34)

On each iteration, the next chosen swap pair will be the one whose gain vector

combined with the current cost vector obtained the lowest cost vector (as previously

defined).

4.5.2 DST Considerations in Graph Partitioning

Our partition/placement algorithm, KL-MH, is a uniform k-way partition heuris-

tic for heterogeneous-channel topologies. It complements the basic Kernighan-Lin

bipartition heuristic with several considerations derived from DST flow-graph cha-

racteristics, in an effort to improve optimization convergence and solution quality.

The main considerations are discussed next:

Linear partitioning: Fast DST algorithms, because of the regularity of their

dataflow and inter-stage data dependence, have traditionally been partitioned ver-

tically or horizontally [81][58]. Vertical partitioning maps computation as in an

68

architectural-level pipeline, where one or more complete DST computational stages

are assigned to each hardware device. In horizontal partitioning, each device carries

out all stages of computation for a data subset, similar to single-instruction-multiple-

data (SIMD) processing. We argue that, for the type of architecture we are targeting,

horizontal partitioning will obtain lower latencies than the vertical scheme. To be-

gin with, in vertical partitioning, all data enter through the first device and leave

through the last. Thus, the potential of using each device as an input (reading new

data from its own local memory) is lost. Furthermore, in a pipeline scheme, every

data point must cross through each of the channels, while in a horizontal scheme

even a näıve linear partitioning can reduce data communications requirements in

half. When communication channels are the system’s bottleneck, as they are in

DHA systems, the excess communication in pipeline implementations hinders per-

formance. Based on this reasoning, our partition/placement algorithm explores the

solution space by exclusively considering horizontal partitioning schemes.

Linear initial partitions: The concept of balanced linear horizontal partitions is

illustrated in Figure 4–10 by the dashed horizontal lines. The initial linear horizontal

partitions are obtained using Algorithm 5. Given a DST’s data-flow graph, the initial

partition scheme is determined by dividing the structure horizontally into k equally

weighted partitions, respecting the DST’s data order topology.

Common formulations of DSTs have corresponding DFGs which cluster highly

interconnected subgraphs in such way that a balanced linear horizontal partition re-

presents a good solution. For this reason, in KL-MH we use this method, rather than

randomly obtained initial solutions. As later presented on Chapter 6, on average,

better solution quality was achieved when using this initial partition mechanism as

compared to random initial solutions.

69

Algorithm 5 Algorithm to obtain linear horizontal partitions.

Input: DFG G = (V, E) with data order topology, k: the number of partitions
Output: Horizontal linear partition {V0, V1, .., Vk−1}, where Vi ∈ V and V0 ∪ V1 ∪
. . . ∪ Vk−1 = V
1. V0 ← ∅, V1 ← ∅, . . .Vk−1 ← ∅
2. For every computational column C ∈ V

2.1. Sort C in order of increasing node levels.
2.2. WCC =

∑
c∈C

w(c)

2.3. Determine indexes (p0, . . . , pk−2) such that
p0∑
i=0

w(ci) ≈
p1∑

i=p0+1

w(ci) ≈ . . . ≈
|C|−1∑

i=pk−2+1

w(ci) ≈ WCC

k

2.4. V0 = V0 ∪
p0⋃
i=0

ci, V1 = V1 ∪
p1⋃

i=p0+1

ci, . . . , Vk−1 = Vk−1 ∪
|C|−1⋃

i=pk−2+1

ci

3. End For

Schedule compactness: A common graph structure found in fast DST algorithms

is the butterfly network (BN) [82]. As illustrated in Figure 4–10, canonical for-

mulations of the FFT are isomorphic to BNs when each node represents a 2-point

butterfly (F2) and successive twiddles. Other DSTs such as the DCT and the DHT

are commonly formulated using BN-like structures [81][83][1]. Schedule-wise the BN

is a completely rigid structure, since all paths of its computational stages are isome-

tric and a delay in the computation of any node means a delay to the completion of

processing as a whole. We take this into account as part of the partitioning process

by only considering solutions that exchange nodes from the same computational

stage. This consideration entails a more focused partition solution exploration and

a simplified subsequent scheduling.

Algorithm 6 shows how the KL-MH algorithm integrates the cost function and

DST-specific considerations. Step 1 obtains a balanced linear partition as an initial

solution. Inside each internal iteration, step 2.1 chooses a swap pair of nodes from

the same computation stage. Throughout the rest of the algorithm, the decisions

70

Figure 4–10: 8-point DFT Cooley-Tukey formulation, showing initial linear horizon-
tal partition.

as to which node pairs to swap and which sequence of swaps to commit are taken

based on the cost function defined in Section 4.5.1.

4.5.3 Complexity

Similarly to the bipartitioning KL heristic, selection of the node pair with the

highest swap gain constitutes the most expensive step of KL-MH. Assuming that n

is the number of nodes in the DST dataflow graph, the inner loop must be repeated

O(n) times, choosing among O(n2) swap pairs each iteration. This amounts to a

time complexity of O(n3).

The impact on time complexity of choosing nodes from the same computa-

tional stage can be visualized by analyzing complexity in terms of DST points. The

dataflow graph of an N -point fast DST consists of O(N log2 N) nodes. If arbitrary

pairs of nodes are allowed, a total of O(N2 (log2 N)2) pairs must be considered, re-

sulting in a complexity of O(N3 (log2 N)3). When node pairs can only be formed by

nodes in the same computational stage, each node can be paired with O(N) others,

resulting in a total complexity of O(N3 (log2 N)2).

In both complexity approaches just presented, actual running time depends on

the number of DFG nodes, which for a given DST size can vary depending on the

granularity of the formulation. A coarser formulation will be represented by a smaller

71

Algorithm 6 KL-MH: Adapted KL algorithm for n-way heterogeneous channel
architectures.
Input: Data Flow Graph G(V,E), Info about target architecture: devices D =
{P0 . . . PM−1}, communication channels C = {C0, . . . , CN−1} and their weights W =
{W0 . . . WN−1}
Output: Partition assignment for each v ∈ V .
1. Initial balanced partition |P0| ∼= |P1| ∼= . . . |PM−1|
2. while not all nodes are locked

2.1. Determine ai, bi ∈ V s.t. ai and bi are in same computational stage, and p(ai)↔
p(bi) minimizes cost()

2.2. Perform swap p(ai)↔ p(bi). Ci ← cost()
2.3. Lock ai, bi

2.4. [ai, bi, Ci]→ queue
2.5. i← i + 1

3. end while
4. Choose k s.t. C ′

k = min
0<j<i

(Cj)

5. Reverse all swaps aj , bj where j > k
6. if C ′

k < Ck then
6.1. C ′

k ← Ck, unlock nodes, goto step 2
7. else stop

cost() = max
i∈[0,N−1]

[Ri ×Wi],

where Ri = number of required communications through Ci

72

number of nodes and will require less exploration time. However, the quality of the

partition solution might be compromised as the coarse nodes encapsulate certain

nodes which might be needed to obtain better solutions. This situation is exemplified

in Figure 4–11, which shows partitioning solutions for two formulations of the 16-

point FFT. Figure 4–11(a) has fewer nodes and required a smaller execution time,

whereas (b) obtained a better solution quality (as measured by the cost function)

thanks to the mobility of certain nodes which had been clustered as coarser nodes

in (a). It must be mentioned that coarser granularity does not necessarily imply

poorer results. In fact, as reflected by results presented in Chapter 5, a good match

between the granularity of a formulation and the decisions made by the partitioning

heuristic can allow coarser formulations to have better solutions than finer ones.

Figure 4–11: Two formulations for an 16-point FFT, representing different granu-
larities. Horizontal dashed lines represent the partition boundaries.

4.6 Scheduling

In regular/scheduled-constrained structures such as DSTs, a general sense of

partition quality can obtained by looking at the distribution of cuts through the

channels and stages. However, the only way to have an clear estimate is by actually

scheduling the nodes assigned to each partition to the architectural resources. For

scheduling purposes, communication channels are architectural resources. In fact for

73

highly connected structures, such as DSTs, communication channels are commonly

the most strained resource. Thus, to schedule a partition solution, channel resources

must be first inserted into the DFG as determined by the solution. This is, for

every connected node pair 〈u, v〉 such that u ∈ Px and v ∈ Py (Px �= Py) a third

node is inserted between u and v. The inserted node represents utilization of the

communication channel that connects Px and Py.

Once the communication nodes have been introduced into the dataflow graph,

the resource-constrained scheduling problem can be solved to obtain a latency esti-

mate. This problem can be stated as follows. Given:

1. A directed acyclic graph G = 〈V, E〉, where V is a set of nodes and E is a set of

edges. Each edge is expressed as a sequence 〈u, v〉 where u, v ∈ V .

2. A set K = {K0, . . . , Km−1} of m functional unit types.

3. A type function f : V → K, i.e. a function that maps each node to a functional

type.

4. A resource constraint function h : K → N that states the number of available

resources of each functional unit type, where N is the set of non-negative integer

numbers.

5. A function w : K → N that states the latency of each functional unit type.

Determine a mapping function t : V → Z
+ that minimizes max

∀v∈V
|t(V)| and

subject to the following constraints:

1. For all 〈u, v〉, max
∀u
|t (u) + w (h (u))| < t(v), i.e. precedence relations are respected.

2. For each time step ti and functional type kj,

∑
∀v∈V | t(v)=ti AND f(v)=kj

1 ≤ h (kj) (4.35)

In other words, the number of nodes of type kj assigned at any time ti does not

exceed the number of available resources of type kj.

74

In our implementation, we chose an As Soon As Possible (ASAP) scheduling

heuristic, shown in Algorithms 7 and 8 [84]. First, a sorted list is constructed which

contains the nodes in order of the earliest starting times. This is done in two steps:

first, the depth of each node is determined, i.e. longest path from any starting node

the node in question. Then, DFG nodes are sorted in a list LT on non-descending

order according to their depth. Following the order of the list, nodes are assigned

to the allocated resources as the resources become available.

Algorithm 7 Topological sort heuristic.

Input: DFG {V, E} and VS ∈ V , the set of all starting nodes.
Output: Topologically list LT

1. VCurrent ← VStart, VNext ← {}, level ← 0
2. while VCurrent �= {}

2.1. For all v ∈ VCurrent

2.1.1. VNext ← VNext ∪ {children of v}
2.1.2. depth (v)← level

2.2. end for
2.3. VCurrent ← VNext

2.4. VNext ← {}
2.5. level← level + 1

3. end while
4. LT ← sort V in nondescending depth () order.

The topological sort heuristic requires O(|V | + |E|) time to determine earliest

start step, and O (|V | log (|V |)) to sort the list. The assignment of nodes in LT to

the various resources takes O(|V |). Thus, the ASAP algorithm has O (|V | log (|V |))
time complexity.

4.7 Resource Estimation

In order for a DFG partition solution to be implementable in a DHA, it must

be mapable to the available resources offered by the architecture, without exceeding

them. The exact number of resources used by a partition can only be known by

synthesizing the design, but such an approach requires too much time if it is to

be part of an iterative improvement heuristic. To ensure resource feasibility of

solutions during high-level exploration, an estimation technique must be developed

75

Algorithm 8 ASAP scheduling heuristic.

Input: Resources set R = {〈rtypei
, rlati〉}, and DFG {V, E} and ft : V → Rtype

Output:
1. LT = Topological Sort (G)
2. for all r ∈ R, rfree ← true, rdone ←∞
3. for all n ∈ V , ndone ←∞
4. c step = 0
5. while LT �= {}

5.1. for every r ∈ R
5.1.1. if rfree = false

5.1.1.1. if rdone = c step then rfree ← true
5.1.2. if rfree = true

5.1.2.1. select topmost n ∈ LT whose ntype = rtype AND all parents m of
n are such that mdone ≤ c step

5.1.2.2. ndonex = c step + rlat

5.1.2.3. rdone = c step + rlat

5.1.2.4. LT ← LT − nx

5.1.2.5. if ndonex > max c step then max c step← ndonex >
5.2. end for
5.3. c step++

6. end while

that computes resource utilization in a fast and relatively accurate manner. One

of the challenges for accurate resource estimation at high levels of abstraction is

that there are multiple ways in which a dataflow graph can be implemented in

hardware. Each of the structures has a different resource utilization. To overcome

this problem, high-level optimization techniques define a specific target architecture

model [10]. This establishes the general structural style of the solutions envisioned

by the optimization mechanism and allows the deduction of mathematical models

that establish a relationship between DFG properties and resource utilization.

In this section, we discuss the development of a high-level resource estimation

technique for the DMAGIC methodology. First, the target architectural model is

presented, followed by the justification and general overview of our chosen target

technology. Based on the architectural model and target technology, a resource

estimation model is developed.

76

4.7.1 Architectural Model

Figure 4–12 shows DMAGIC’s target architectural model for each dedicated

DHA device. The computational load of a partition is implemented by a set of inter-

connected modules that function as a customizable vertical folding structure. Each

module consists of a functional primitive common throughout a particular DST’s

structure, as well as the necessary storage, control and data path options to imple-

ment the various stages of the transform. For instance, Figure 4–12 shows a module

for the implementation of an FFT. It consists of a two input kernel implementing

a size-2 DFT with twiddle multiplication, data memories to store intermediate re-

sults, a twiddle table that contains the various coefficients for multiplication, and

data path/control elements to establish data movement throughout execution.

Figure 4–12: Device-level architectural model and block diagram for an FFT module.

The regularity exhibited by fast DST algorithms allows them to be entirely

implemented by the proposed modular architecture. After a partitioning solution

has been obtained, each node in a partition is mapped to one or more structural

modules. Mapping proceeds in a balanced manner, equally distributing computa-

tional load throughout the modules. For a size N = 2n DST consisting of λN log2 N

functional primitive operations, partitioned to a DHA consisting of M = 2m de-

vices, each implementing P = 2p modules, each module implements the operation

of (λN log2 N) / (M · P) primitives. Figure 4–13 shows a possible mapping for an

example partition to a device with two modules.

77

Figure 4–13: Example mapping of a DFG partition to a device with two architectural
modules.

The number of modules per device determines the computational latency of the

implementation. A higher number of modules requires less folding of the original

DST DFG, each architectural module needs less cycles to complete all its compu-

tations, thus reducing latency. For instance, the DFG partition presented in Figure

4–13 could be mapped to a single module. However, this would negatively impact

the implementation latency, as each module would be responsible for implementing

a higher number of DFG operations. Given that latency minimization is the main

objective in our partitioning strategy, our principal intention when estimating re-

sources is to determine the maximum number of modules that can fit to the DHA

devices.

4.7.2 Target Technology

The DMAGIC methodology is oriented toward platforms with dedicated hard-

ware devices. This includes devices such as ASICs and FPGAs, where the imple-

mented internal circuitry is customized for the specific application at hand. As

previously mentioned, documentation about implementation and experimental re-

sults for distributed ASIC architectures is scarce. Moreover, the availability of such

78

architectures is significantly more restrictive than for distributed FPGA architec-

tures. For these reasons, our developed resource estimation model targets FPGA

devices, specifically those of newer families which include embedded elements, such

as multipliers and RAMs. Nevertheless, the development of the FPGA resource-

estimation models is presented in a modularized manner to simplify their adaptation

to alternate technologies, if needed.

As illustrated in Figure 4–14, modern FPGAs are internally organized as an

array of configurable logic blocks (CLBs), embedded functional units and program-

mable interconnections. Configurable logic blocks are called slices and adaptive logic

modules in Xilinx and Altera devices, respectively. A configurable logic block usu-

ally consists of two look-up tables (LUTs), each capable of implementing any 4-to-1

function, two bits of storage for registering the LUTs outputs, and data path-related

gates for implementing simple functionalities, such as carry propagation and multi-

plexing. Embedded functional blocks implementing more elaborate operations such

as multipliers, block RAMS, and microprocessor cores are also included in most of

today’s FPGAs. The logic array, embedded elements, and device pins are connected

via several levels of programmable interconnect.

Figure 4–14: FPGA components.

79

Resource estimation for FPGAs is essentially concerned with determining the

number of compromised CLBs and embedded functional units for an application

[60][85]. Programmable interconnects are harder to estimate at higher-levels since

they depend on decisions made much later in the EDA design flow at the physical

placement and routing stages. Furthermore, in practice, designs implemented to

modern FPGAs typically run out of logic resources before routing resources.

4.7.3 Resource Estimation Model

Generally speaking, the mathematical model for resource utilization in the hard-

ware implementation of an algorithm is the sum of the resources required for the

following: functional units, storage units, datapath, control and connections. Our

discussion for the resource estimation model follows the hierarchical nature of the

chosen architectural model. In other words, discussion begins with a device-level

model consisting of modules and data communication components, followed by the

development of resource estimation models for the modules’ internal components.

Estimation for user logic and embedded units is handled separately at all levels,

since they are physically distinct resources in the FPGA.

At the device-level, resources are estimated by Equations 4.36 and 4.37.

TOTALCLB = MCNTCLB+
∑

m∈Modules

MODULECLB (m)+
∑

c∈Channels

CHCNTCLB (c)

(4.36)

TOTALE = MCNTE +
∑

m∈Modules

MODULEE (m) +
∑

c∈Channels

CHCNTE (c) ,

(4.37)

where TOTALCMB and TOTALE are the total estimated CLB and embedded

units, respectively. MCNTCLB/is the number of CLBs required for the implemen-

tation of the memory controller, MODULECLB (m) is the number CLBs for module

80

m, and CHCNTCLB (c) is the number CLBs for channel controller c. Quantities for

embedded units follow a similar naming convention.

The number of CLBs in each module is estimated by:

MODULECLB = KCLB + IMCLB + DMEMCLB + TTCLB + CTRLCLB , (4.38)

where KCLB is the number of CLBs used by the kernel, IMCLB is the number of

CLBs used by input multiplexers units, DMEMCLB is the number of CLBs used by

data memory, TTCLB is the number of CLBs used by twiddle tables, and CTRLCLB

is the number of CLBs used for control logic. Since all of these components, except

the input multiplexers, can be completely or partially implemented using embedded

units, the number of embedded units per module is estimated by:

MODULEE = KE + DMEME + TTE + CTRLE (4.39)

The rest of our discussion pertains to how the individual terms of Equations 4.38

and 4.39 are estimated. This requires some understanding on how certain operations

are synthesized to embedded units.

Mapping to Embedded Multipliers and BRAMs

Among the embedded units provided by modern FPGAs, embedded multipli-

ers and block RAMs (BRAMs) play an essential role in the dedicated hardware

implementation of DSP algorithms. Most synthesis tools can automatically synthe-

size multiplications in the HDL specification to embedded multipliers, and likewise,

storage functionality to embedded BRAMs. Embedded multipliers in modern Xil-

inx and Altera families are hardwired 18-bit by 18-bit multipliers. Multiplications

wider than 18 bits are synthesized from several 18-by18 modules. The exact number

of embedded multipliers needed to perform a wa-bit by wb-bit real multiplication

follows a simple formula:

81

EM(wa, wb) = �wa/18� · �wb/18� (4.40)

BRAMS have a total capacity of 16 kbits, which can be configured to be between

16Kx1-bit and 512x32-bit [86][87]. Memories with capacities that exceed this range

of configurations are synthesized using several BRAMs. The number of BRAMs

needed to implement a memory of height h, width w is given by the equation

BRAMS(h, w) =

⎧⎪⎪⎨
⎪⎪⎩
�w/32� if (w′h) ≤ BRAM capacity

2�log2(w′h/BRAM capacity)� otherwise.

, (4.41)

where w′ is the effective bit-width of the twiddle factors, obtained as

w′ = 2�log2(w)� (4.42)

4.7.4 Module Components Resource Estimation

Kernels

A kernel contains the physical implementation of the functional primitive com-

mon throughout a given DST. Commonly, a DST functional primitive performs a

combination of addition/subtractions and multiplications on its inputs. In order to

represent the functionality of two similar operations, a kernel can also include simple

data path redirections. For instance, the kernel in Figure 4–15 could implement the

functionality of similar DFG blocks (a) and (b). Kernel resource utilization can be

understood by considering the impact of implementing its most common structures:

multipliers, adders/subtractors, and multiplexers.

Multiplications

Multipliers are one of the main resource spenders in DSP applications. This

is especially true for DSTs using complex number representation, where each com-

plex multiplier implementation could use up to three or four real multipliers and up

82

Figure 4–15: Functional primitive (a) implements the functionality of DFGs (b) and
(c).

to three real additions. In modern FPGAs, multipliers can be implemented using

either of two resources: user logic or embedded multipliers. As a rule of thumb, a

fixed-point multiplier implemented with user logic blocks requires a number of CLBs

proportional to the square width of its inputs, and operates at a slower rate than

those implemented with dedicated logic. Because of this, recent implementations

exclusively use embedded units for multiplication. The number of embedded mul-

tipliers for a kernel can be computed by adding the embedded multipliers required

by each of the multiplication operations.

EMKernel =
∑

u∈multiplications

EM(BW (u)) , (4.43)

where BW (u) is the operand bit-width of multiplication node u, and EM() is

computed according to Equation 4.40.

Additions

In FPGAs, additions are implemented with user logic, requiring a number of

CLBs proportional to the bit-width of its operands. The CLB utilization of kernel

additions can be appropriately estimated by:

CLBKernelAdd
= λA

∑
u∈additions

BW (u) , (4.44)

where λA is the proportionality factor relating the operand bit-width to the actual

number of CLBs required. For instance, in Xilinx Virtex-2 devices λA = 1
2
, e.g.

requiring 8 CLBs to implement a 16-bit adder.

83

Multiplexers

Multiplexers are also implemented with user logic in FPGAs. The number of

CLBs used by a multiplexer is proportional to the product of the data input bit-

width and the number of inputs from which the multiplexer must select.

CLBKernelMux
= λM

∑
u∈multiplexers

(
BW (u)× 2�log2(NI(u))�) , (4.45)

where λM is the proportionality factor relating the product of operand bit-width

(BW) and number of inputs (NI), with the actual number of CLBs required. For

instance, in Xilinx Virtex-2 devices λM = 1
4
, e.g. requiring 16 CLBs for a 4-input

multiplexer with 16-bit inputs.

Twiddle Factor Tables

The typical structure of a fast DST involves the multiplication of data by dif-

ferent twiddle factors throughout the various columns and rows of its DFG. Each

architectural module implements several DFG functional primitives. Thus, every

module must be provided with a different twiddle factor for each iteration. In pre-

vious DST hardware implementations twiddle factors were either computed ‘on the

fly’ by a dedicated generator or accessed from a precomputed table [60][88]. The

twiddle factor generator approach is too resource expensive for a multi-kernel archi-

tectural model since it requires the use of multipliers, which are used abundantly

in the DST kernels. The remaining option is to store twiddle factors in a table and

access them as needed by the each iteration.

Milder, et al. proposed two methods for implementing twiddle tables in an

FPGA multi-kernel implementation [60]. The first method instantiates a table con-

taining all the transform’s twiddles per kernel multiplier. Each kernel multiplier re-

quires a twiddle address generator to access the correct factor in each computational

stage. Typically for fast DSTs the number of different twiddle factors is half the

size of the transform. Therefore, this method requires that each table contain N/2

84

entries. The second method instances in each table only the twiddle factors needed

by that specific kernel multiplication throughout computation. In this method, the

factors can be sequentially stored in the table, allowing the table to be implemented

as a FIFO and saving in memory address logic. Typically, for fast DSTs the total

number of different functional primitives is proportional to λN log2 (N). Thus in

this method the number of twiddles per table corresponds to the number of times

a kernel will be used throughout computation: λN log2 (N) / (M · P). The second

method, although requiring more storage resources for the twiddle factors, will be

less expensive for our architectural model, since it will save significantly on control

logic for memory addressing.

If implemented using BRAMs, twiddle tables resource utilization per module

can be estimated with the following expression:

TTE = t · BRAM(h, w) (4.46)

where BRAM(h, w) is as defined in Equation 4.41, t is the number of kernel multi-

pliers, w is the twiddle factor bit-width, and h = λN log2 (N) / (M · P) .

When implementing a table of constant values using user logic, synthesis tools

use logic minimization heuristics which considerably reduce the number of required

CLBs. Figure 4–16 shows the results of an experiment to determine how compression

behaves across different ROM sizes. A wide range of ROM sizes with various lengths

and widths were generated in Verilog and synthesized using Xilinx ISE 6.3 targeting

a Xilinx Virtex 2P device. The graph shows the relationship between the achieved

compression ratio vs. the uncompressed slice utilization. The dominating trend

follows an exponential rise (y = y0 + a
(
1− e−bx

)
) to a maximum of approximately

95%, as indicated by the trend line.

85

ROM size vs. compression ratio

Uncompressed ROM size in slices

1 10 100 1000 10000 100000

C
om

pr
es

si
on

 r
at

io

30

40

50

60

70

80

90

100

y = 59.75 + 31.40(1-exp(-0.01418x))

Figure 4–16: Slice compression ratio vs. ROM (uncompressed) slice utilization.

Thus, the number of CLBs used in the ROM implementation of table of values,

such as the twiddle factor table is:

TFCLBs = ROM size · (1−K (ROM size)) , (4.47)

where ROM size is the uncompressed size of the data table

ROM size =
kλN log2 (N)

M · P , (4.48)

where λ is the proportionality factor between n and the actual number of functional

primitives. K is the ROM compression factor function achieved by the synthesis

tool, e.g. in our empirical results:

K (ROM size) = y0 + a
(
1− e−bx

)
, (4.49)

with y0 = 59.79, a = 31.40, and b = 0.01418.

Data Memory

Data memory is needed as part of each module to store the intermediate results

of the transform’s computation. Each kernel memory is responsible for storing part

86

of the data set. Since partitions and mappings are balanced, each of the DHA’s

devices is responsible for handling λN log2 (N) /M data points, where λ is the pro-

portionality factor between the number of functional primitives and N log2 (N).

Each module is responsible for storing λN log2 (n) / (M · P) data points. Since t

data points are produced simultaneously by each kernel, t data memories each with

height λN log2 (n) / (M · P · t) are needed. Data memories can be implemented with

user logic or using the embedded BRAMs. The first option requires a number of

CLBs proportional to the memories’ width w and height h.

DMCLB =
λN log2 (n) · w

M · P , (4.50)

where w is the bit-width of data points.

It was experimentally corroborated that data memory structures do not repre-

sent the slowest modular component, even when implemented using CLBs. There-

fore, they can be completely or partially implemented using BRAMS or CLBs with

no significant impact on the system performance. When implemented using BRAMs,

each data memory, no matter how small, will occupy at least one of these structures.

The total BRAMs for implementing data memory in a module is computed by:

DME = t · BRAM(h, w), (4.51)

where h = λN log2 (n) / (M · P · t) is the height of each memory.

Input Multiplexers

Input multiplexers select the input data source for the next kernel iteration.

Since the proposed architectural model implements a partitioned vertical folding

of a DST structure, kernel inputs for the next iteration may arrive from external

memory, kernel memories, or communication ports. From a partitioning-level per-

spective, resource estimation for input multiplexers is not as straightforward as for

the previously discussed components because information is needed about the actual

87

mapping of DFG nodes to architectural modules. In a worst case scenario, a ker-

nel would need to input data from a different source during each iteration. In this

situation, each of the input multiplexers would be a Q to 1 multiplexer, where Q:

Q = min

{
t · P,

λN

P ·M (log(N)− 1)

}
+ (M − 1) + 1 (4.52)

Since there are P kernels, there are t · P possible data outputs. The term

λN
P ·M (log(N) − 1) accounts for the number of processing stages that the kernel will

go through in which it could require data from sources other than external memory.

The later terms account for the rest of hardware devices (M − 1) and external

memory. The upper bound hypothesized by equation 4.52 could probably only be

achieved by intentionally looking for a bad partitioning solution followed by a bad

mapping scheme, which go against the intention of the partitioning methodology.

In practice, the number of multiplexer inputs is significantly lower than the upper

bound, thanks mainly to the following consideration in the proposed methodology.

Without any loss of generality, assume that an FFT is being partitioned and that

the architectural kernels each implement an F2 and twiddle factor multiplication

operation.

First, the FFT’s KPA formulation is converted to an equivalent DFG. Each

FN operator in the KPA formulation becomes a node in the DFG. The DFG is

partitioned as is, without further breaking or clustering the nodes. Thus, after each

node has been assigned to a partition, its constituting operations will be mapped to

the kernels in that specific device. Nodes that represent FFT operations larger than

2 can be mapped to the available kernels in a manner that minimizes multiplexer

requirements. To illustrate this concept, consider a particular KP formulation that

contains a stage of DFTs of size n=8. During the P/P each of them will be assigned

to a certain device. The DFT2 operations that make up the DFT8 can be assigned

in a manner which lessens the impact on multiplexer resources. Usually this would

88

imply a folded Pease implementation in which the input of every kernel receives data

from only one other kernel.

In order to obtain a more realistic estimate of the number of inputs to the in-

put multiplexers, a simple mapping mechanism was implemented. Using a simulated

annealing optimization heuristic, the nodes assigned to each partition are mapped

to the device’s modules in an effort to minimize the number of inputs required by

the input multiplexers. Several FFT sizes were partitioned and then mapped to

architectures containing different module quantities. Figure 4–17 shows the results

for a 4 RING topology. The results indicate that the number of multiplexer inputs

required after mapping is bounded by a number that is considerably smaller than im-

plied by Equation 4.52. Furthermore, this experimental upper bound increases only

slightly across various P sizes. The resource estimation model for input multiplexers

was changed to reflect the empirical results.

IMCLB = t · P ·Υ · λMUX · w (4.53)

where Υ is an empirically established value.

Control Logic

Control logic accounts for all the additional FPGA logic that is needed to control

the dataflow throughout the rest of the components. To achieve proper computation

in the architectural model, at each computational-step a module’s control logic must

specify: the source of data inputs, the address of the data inputs (if from one of

the data memories), as well as provide any other signals to specify the kernel’s

functionality. One approach to implement control would be to provide a table of

instructions, where each instruction contains the necessary control signals for all

the controlled components. This approach is illustrated in Figure 4–18(a). As the

DST computation advances through time, a control word is read from the table on

each c-step, and the corresponding signals sent to the controlled components. A

89

p = 32

FFT Size

256 512 1024 2048

N
um

be
r

of
 M

ux
 In

pu
ts

0

10

20

30

40

50

60

70

80

Experimental
Upper Bound

p = 8

FFT Size
64 128 256 512 1024

N
um

be
r

of
 M

ux
 In

pu
ts

4
6
8

10
12
14
16
18
20
22

p = 4

FFT Size
64 128 256

N
um

be
r

of
 M

ux
 In

pu
ts

5

6

7

8

9

10

11

12

13

p = 16

FFT Size

128 256 512 1024

N
um

be
r

of
 M

ux
 In

pu
ts

0

5

10

15

20

25

30

35

40

Figure 4–17: Experimental results for mapping of several FFT sizes to architectures
with 4, 8, 16, and 32 modules.

table with as many entries as c-steps would be required. This is bound to waste

logic resources, since modules are actually performing computation only during part

of the total latency. The total logic required for a CLB implementation using this

method can be estimated as:

CLBcontrol = Latency ·Winstruction · (1−K (Latency ·Winstruction)) , (4.54)

90

where Winstruction is the width of the control word that specifies the control signals

for all controlled components, and can be computed as follows:

Winstruction =
∑

i∈InputMuxes

2�log2(NumInputs(i))�+

∑
i∈DataMems

2�log2(MemHeight(i))� + Kernel Signals
(4.55)

and K () is the function relating the uncompressed ROM size to the synthesis com-

pression ratio (Equation 4.49) and Kernel Signals are any additional control signals

that must be provided to the computational kernel, e.g. signal S in Figure 4–15.

Figure 4–18: Two approaches for implementing module-level control logic
(a)integrated, (b)distributed.

A less resource-intensive approach would be to provide each of the controlled

components with its own instruction table. Figure 4–18(b) illustrates this approach,

which would additionally require a module-level unit to coordinate the work of the

individual tables. Each of the distributed tables needs to have as many entries as

there are actual computational steps involving the component. Each kernel imple-

ments the functionality of λN log (N) / (M · P) DFG functional primitives. This

implies, for example, that the control table for each input multiplexer needs to have

91

λN log (N) / (M · P) entries of width 2�log2(IMinputs)�, where IMinputs is the number of

inputs to the multiplexer. The module-level table would still need to have as many

entries as c-steps in the total latency, yet the width of each entry is significantly

reduced to one bit per controlled component plus one for the kernels signals.

CLBcontrol = (1−K (ROM SIZE))ROM SIZE , (4.56)

ROM SIZE = LTotal ·Winstruction + LComp ·
(∑

i∈InputMuxs

2�log2(NumInputs(i))� +

∑
i∈DataMems

2�log2(MemHeight(i))� + KSignals

)
,

(4.57)

where Winstruction now refers to the global control table, which includes only the

necessary signals to specify the state of the controlled components.

4.7.5 Resource estimation scheme validation

The proposed resource estimation scheme was validated by constructing Verilog

HDL models of different sizes, synthesizing them using Xilinx ISE 6.3.03i, and com-

paring the synthesis results against our estimates. Figure 4–19 shows the actual vs.

estimated slice utilization for various FFT sizes and modules per device. As indi-

cated by the proximity of the points to the line of slope = 1, there is a high degree of

correspondence between the estimated and actual slice utilization. A 5.79% average

estimation error with a maximal error of 21.15% was measured among the results.

Estimates for the embedded components were exactly the same as the synthesis

results.

As predicted by our model, resource utilization is directly proportional to the

number of modules per device. Since our optimization objective is latency, which

has an inversely proportional relation to P , our methodology essentially chooses to

instance as many modules as can be fit to the device.

92

Actual vs. estimated CLB utilization

Estimated number of CLBs

0 5000 10000 15000 20000

A
ct

ua
l n

um
be

r
of

 C
LB

s

0

5000

10000

15000

20000

Figure 4–19: Actual vs. estimated slice utilization for various FFT sizes.

The resource estimator is not consulted at each graph partitioning optimization

step, since in each iteration the only changes introduced would be to the connections

between the input multiplexers. Thus, we establish a P in the beginning and stick

with it throughout the whole optimization process.

4.8 Summary

In this chapter we have introduced the various tools used by our methodology

to partition a given formulation of a DST. A KPA to DFG tool was developed to

facilitate representation of DSTs and their subsequent graph partition. The incorpo-

ration of DST considerations into a graph partitioning heuristic was also presented.

Lastly, a resource estimation model was derived for the chosen architectural model.

Next chapter discusses how these tools were used in order to determine a heuristic

for formulation exploration.

CHAPTER 5

Formulation Exploration

Our partitioning methodology contemplates the use of DST algorithmic prop-

erties to conduct an exploration of equivalent DST formulations, in search of formu-

lations that may be more suitable for the target distributed hardware architecture.

Even the application of a small set of algorithmic-level transformations can result in

the combinatorial explosion of the exploration space. Thus, some level of awareness

of the effect of these rules on solution quality is needed to design an exploration

strategy that provides good results in a practical amount of time. In this chapter,

the development of our formulation exploration strategy is described.

Section 5.1 compares our intended exploration with that performed by other

DST code optimization methods, highlighting the special considerations needed in

our case. Sections 5.2.1, 5.2.2 and 5.2.3 describe the experiments conducted to gain

insight into the effect of FFT reformulations on solution quality. Results from these

experiments were used to devise a greedy exploration heuristic, which is presented

in Section 5.3. The extension of our methodology to the discrete cosine transform

is detailed in section 5.4. The last section presents a chapter summary.

5.1 General Considerations

The impact of formulation on single and distributed hardware implementations

has been documented in some isolated DST cases [16]. However, to the best of

our knowledge, no methodologies have been proposed that will automate the task

93

94

of exploring the formulation space for hardware implementations. Algorithmic-level

rules have been successfully integrated into methodologies for automated DST (soft-

ware) code generation. FFTW and SPIRAL, two such methodologies, are essentially

solution-space exploration engines which utilize factorization rules to generate and

evaluate DST formulations for general-purpose processor architectures [45][89].

The nature of our problem, i.e partitioning rather than code generation, as

well as the characteristics of our target architectures, significantly differentiate our

approach from DST code generation methodologies. Current DST code generation

methodologies target single processor and bus-connected multi-processor platforms,

which have a one-dimensional address space (i.e. cache levels, and main memory).

In our target architecture, each processing element can obtain its data from a variety

of communication channels or its own memory. This constitutes a multidimensional

address space, which has been shown to require alternative strategies for evaluation

and optimization [90]. The software-oriented nature of code-generation approaches

also allows them to make certain strategical assumptions which would not apply to

our case. For example, both SPIRAL and FFTW can speed their exploration process

by assuming that DSTs have an optimal substructure: if an optimal implementation

for a size n is known, this implementation is still optimal when size n is used as a

subproblem of a larger transform [62]. This assumption is in principle false, yet it

allows them to obtain good results using faster exploration methods such as dynamic

programming.

The dedicated nature of the target devices, also introduces a key difference be-

tween our approach and code generation schemes. As part of their optimization loop,

code generation strategies compile and execute each solution to measure its runtime

on the architecture. On the other hand, the implementation process for dedicated

devices is considerably more time consuming than GPP source code compilation.

95

This implies that our methodology must rely on high-level models and assumptions

to estimate solution quality.

There are many Kronecker Product Algebra and DST specific rules and algo-

rithms that can be applied to a given discrete transform. If all of these rules were

considered equally capable of affecting partition quality, then all of them would have

to be considered as part of a formulation exploration. One problem with this sce-

nario is the considerable growth of the exploration space. For instance, the SPIRAL

code generation program can consider a total 1,639,236,012 formulations for a size-

32 DCT [44]. The huge number of formulations for this relatively small transform

is caused by the number of rules considered as part of the formulation exploration.

In SPIRAL’s case, using an extensive number of rules is justified by the fact that

the target devices are General Purpose Processors. Formulation changes ultimately

translate to changes in program code, which might exploit some concealed archi-

tectural advantage of the chosen GPP. This is not the case for dedicated hardware,

where we favor DST algorithms that are as regular as possible [1]. Thus, the type of

rules that we allow in exploration is limited to those that can maintain a structure

with regular functional primitives.

5.2 Experiments to Assess Effect of Transformations on Partition Qual-
ity

In order to use DST functional properties to improve their partitioning process,

we need to first understand their effect on partition solution quality and exploration

efficacy. To this end, several experiments were carried to assess the effect of prop-

erties that can be algorithmically controlled on DST formulations: inter-stage per-

mutations, kernel granularity and breakdown strategy. The resulting observations

were used to devise the heuristics employed throughout the DMAGIC methodology.

Diverse FFT formulations of various sizes and characteristics were partitioned us-

ing KL-MH to target architectures consisting of four and eight devices. For all the

96

experiments we assumed adjacent and crossbar channels weights of 1 and 2, respec-

tively. For compactness, solution costs were expressed as the highest channel cost

in the solution cost vector. For example, the reported value of a solution with cost

vector P = 〈12, 11, 14, 10〉 is 14.

5.2.1 Inter-stage Permutations

The solution quality of deterministic partitioning methods, such as Kernighan-

Lin, is highly dependent on the initial solution. Some popular graph partitioning

algorithms actually run several times with different randomly created initial solu-

tions and then chose the best result [91]. In an effort to salvage regularity through

the final solution, DMAGIC generates initial linear horizontal partitions. Thus,

algorithmic formulations with different inter-stage permutations represent distinct

initial solutions. To observe the effect of permutations, and possibly detect heuristic

strategies to be applied in partitioning, KPA formulations for a range of sizes of five

common FFT formulations were converted to DFGs and partitioned/placed using

KL-MH. The chosen formulations were Cooley-Tukey (CT), Gentleman-Sande (GS),

Pease, Stockham, and Transposed Stockham.

Fig. 5–1 shows the results from this experiment. The graphs show the percent

difference in solution cost for various formulations on the target architectures. Ave-

rage solution costs for a randomly determined initial partition were also included.

Two main observations can be drawn from these results. First, randomly generated

initial solutions yield inferior results than when starting with linear partitioning

initial solutions. Secondly, none of the formulations exhibit a consistent advantage

over others for all sizes and/or topologies, even though formulations CT and GS,

consistently start with a lower initial cost.

5.2.2 Kernel Granularity

Clustering is commonly used during graph partitioning to help prune the solu-

tion space while improving solution quality and reducing time of convergence. When

97

 0

 10

 20

 30

 40

 50

 512 256 128 64 32 16

%
 c

os
t d

iff
er

en
ce

Size

4-array

 0

 10

 20

 30

 40

 50

 60

 70

 80

 512 256 128 64 32 16

%
 c

os
t d

iff
er

en
ce

Size

8-array

 0

 20

 40

 60

 80

 100

 120

 140

 512 256 128 64 32 16

%
 c

os
t d

iff
er

en
ce

Size

4-ring

 0

 50

 100

 150

 200

 250

 300

 512 256 128 64 32 16

%
 c

os
t d

iff
er

en
ce

Size

8-ring

Stockham
TStockham

CT

GS
Pease

Random

Figure 5–1: Results from the permutation experiment.

dealing purely with graphs, clustering techniques determine the formation of clusters

based on graph qualities such as connectedness [91]. In generic HLP methods, infor-

mation extracted from the high-level language algorithm specification or manually

added information has been used to cluster DFG operations to form coarse-node

graphs [7][12]. At the formulation level, the granularity of a DST can be manipu-

lated by decomposing larger sized DST kernels into combinations of smaller ones.

We used a Cooley-Tukey-like factorization formula to study the effect of granularity

in the partitioning of FFTs. This formula states that, if n = pm, then:

Fn = (βp ⊗ Im) (Ip ⊗ βm)Pn,p (5.1)

where Fn represents a size n DFT, In is an identity matrix, Tn,m is a diagonal matrix

of weights, Pn,p is a stride permutation matrix.

98

β2t =

1∏
q=t,t−1

(I2t−q ⊗ (β2 ⊗ I2q−1)) , (5.2)

where is a butterfly-twiddle operation

β2 = F2

⎡
⎢⎣ 1 0

0 α

⎤
⎥⎦ (5.3)

and α is a twiddle factor. The derivation of Equations 5.1 and 5.2 is given in

Appendix B.

Using Equation 5.1 we generated KPA formulations for every combination of

stage granularities for a range of sizes of FFTs. For instance, for an FFT size

n=8, three formulations were generated: 2×2×2, 2×4, and 4×2, where each num-

ber corresponds to the size of kernels in each stage (e.g. the 2×2×2 formulation

corresponds to that in Fig. 4–10). The formulations were converted to their cor-

responding dataflow graphs and partitioned using KL-MH. Table 5–1 summarizes

our results by showing the formulations that achieved minimum cost for each of the

FFT sizes 16 through 512. In this table, k-Array and k-Ring denote architectures

with k devices connected in a linear array and ring topologies with an additional

crossbar. Cases where multiple formulations achieved the minimum cost are iden-

tified by asterisks. For these cases, we show the minimum cost formulation with

coarsest granularity.

Generally, the results demonstrate the effect of topology on solution cost. Ave-

rage solution cost reductions of 37% and 57% were achieved when comparing linear

arrays vs. ring topologies. This represents significant reductions, since the difference

between the two topologies is only an additional communication channel. It is also

evident that, for a fixed topology, having more devices does not decrease solution

cost. This is due to the high connectivity in FFT algorithms and the fact that when

scaling from 4 to 8 devices, each device’s degree of connectivity doesn’t increase.

99

T
ab

le
5–

1:
R

es
u
lt

s
fo

r
gr

an
u
la

ri
ty

ex
p
er

im
en

t.

C
os

t
fo

r
T
op

ol
og

ie
s

F
F
T

A
rr

ay
4

R
in

g
4

A
rr

ay
8

R
in

g
8

Si
ze

C
os

t
Fo

rm
ul

at
io

n
C

os
t

Fo
rm

ul
at

io
n

C
os

t
Fo

rm
ul

at
io

n
C

os
t

Fo
rm

ul
at

io
n

32
11

2×
2×

2×
4*

7
2×

2×
2×

4
32

8×
2×

2*
16

2×
4×

2×
2

64
22

8×
2×

4*
14

2×
2×

8*
48

2×
2×

2×
2×

4
20

4×
2×

2×
4

12
8

43
8×

2×
8*

26
16
×2
×2
×2

*
92

2×
2×

2×
2×

2×
4

32
2×

2×
2×

2×
2×

4
25

6
86

4×
2×

32
*

55
16
×8
×2

*
13

2
4×

2×
2×

2×
2×

4
58

2×
2×

2×
2×

2×
2×

4
51

2
17

1
4×

2×
64

*
10

6
64
×4
×2

*
27

6
2×

2×
2×

2×
2×

2×
4×

2
11

6
2×

2×
2×

2×
2×

2×
8

100

As evidenced by the results, for the general case we cannot easily establish a

correspondence between granularity scheme, architectural topology, and quality of

solution. A practical fact that we can observe is that the finest grained formulations

do not necessarily obtain the best results, so in many cases it would be wise to avoid

these formulations as they also represent an increased exploration time.

5.2.3 Breakdown Strategy

As evidenced in the previous experiments, the independent consideration of

permutation and granularity did not reveal definite relations with solution quality.

For this reason, an additional experiment was conducted in which we explored the

effect of breakdown strategy on the partitioning results. A breakdown strategy de-

scribes the order and divisors with which the decomposition rule such as (5.1) is

applied to obtain a formulation. It ultimately has an effect on both granularity and

permutations, as it completely determines a DST’s formulation. Split trees are a

common graphical representation of decomposition strategies [92]. Fig. 5–2 shows

two split trees for an FFT size n = 26 and their corresponding KPA formulations.

Each node in the split tree is labeled with the log2 of the size of the DFT that it

represents. For discussion purposes, we shall call this label the size of a node. The

children of a node indicate how the node’s DFT is recursively computed.

Figure 5–2: Two split trees for FFT size n = 26 and their formulations.

Breakdown strategies have been used to search the space of DST formulations,

mainly in processor code generation/optimization methodologies [89]. The main

101

idea can be summarized as follows. A DST is decomposed by recursively applying

heuristically or randomly-chosen decomposition rules, such as that in Equation 5.1,

to obtain a split tree. The corresponding formulation is then coded, code-optimized,

compiled and run on the target processor architecture or alternatively evaluated

using an architectural model. The execution time (or performance measure) is

registered and used to drive an optimization strategy which explores alternative

split-trees in search of an optimal formulation.

In our experiment, all possible split trees were generated using Equation 5.1

for a range of FFT sizes from n =16 to 256 and partitioned for architectures with

linear array and ring topologies. For analysis purposes, breakdown strategies and

their partitioning results were represented as breakdown mega-trees where the root

corresponds to the unfactored DFT and children of a node n symbolize the various

ways in which a single application of Equation 5.1 can be used to further factorize n.

Figure 5–3 illustrates the breakdown strategy mega-tree for a 32-point FFT. Each

node is labeled by the breakdown tree that it represents, as well as the partition

latency. The highlighted nodes illustrate the relationship between children and

parent in this tree representation. For instance, given a 32-point DFT which has

been factorized into leaves with exponents 1 and 4, Equation 5.1 can be used to

further factorize the ‘4’ leaf into (1, 3), (2, 2), and (3, 1). Nodes of each level k of

the mega-tree correspond to split trees where the breakdown rule has been applied

k times. The maximum level of a mega-tree for a 2n-point DFT using Equation

5.1 is n− 1. Mega-tree leaves correspond to fully factorized formulations where all

operands cannot be further factorized.

An essential observation within the created mega-trees is that the top-down

paths leading to high-quality solutions follow most of the time a systematic improve-

ment, noticeable since the beginning breakdown stages. The following behaviors are

seen throughout the studied mega-trees:

102

Figure 5–3: Part of a breakdown strategy mega-tree for 32-point FFT.

1. The quality of level 1 formulations is not indicative of the quality of their ascen-

dants. A formulation u which has the best latency of level 1 does not imply that

best quality formulations will be their ascendants. For this reason, the first stages

of our exploration strategy are based on common behaviors seen for the various

DFT sizes for a given topology. For instance, ascendant formulations from split

trees where a first level equally distributes size among its children tend to obtain

better partitioned solutions when targeting topologies consisting of 4 devices. For

example, in Fig. 5–2, formulations that follow a breakdown strategy similar to tree

(a) generally have better results than those of tree (b).

2. For level 3 and above, if a node u corresponds to a breakdown tree that has minimal

latency among all the nodes of the mega-tree, it is highly probable that its parent

is one of the best latencies among the nodes of its’ level.

3. There is a wide spread of solution qualities throughout the nodes of the mega tree

and the number of highest-quality solutions is scarce. Thus, randomly searching

for a good formulation would not be practical.

103

4. In most of the studied mega-trees, there is more than one formulation that results

in the lowest latency when partitioned. Thus even if we found a strategy to search

the formulation-space which always resulted in the best formulation, this strategy

would not be unique.

5. In many cases, formulation(s) with the lowest latency can be found in levels be-

low the leaves of the mega-tree. In cases where leaves contain the lowest latency

formulations, there exist nodes in lower levels the attain that same lower latency.

This is a key observation for exploration time since graph partition complexity

depends on the number of DFG nodes. Mega-tree nodes in lower levels have DFGs

with less nodes and thus can be partitioned faster than mega-tree nodes in higher

levels. Formulation-exploration strategy should be oriented to find the lower-level

high-quality nodes.

6. A leaf-bound path is a sequence of nodes 〈u0, u1, . . . , uj〉 where u0 is the mega-

tree root and each node ni is a node with level i. One such path is illustrated in

Figure 5–3 with a dashed line. The wide majority of leaf-bound paths had the

characteristic that given 0 < i < j, if the latency of ui was higher than that of ui−1

then latency of all children of ni is greater than or equal to that of ui−1. In other

words, the mega-tree showed very few instances of hill-climbing (when explored in

the root-leaf direction), and in these few occasions the path did not lead to the

best quality solutions. Thus, a formulation-exploration strategy can use increase

in latency as a condition to halt exploration down a certain formulation path.

All these observations suggest the use of a bottom-up greedy heuristic explo-

ration in which starting from coarse formulations of a DFT, increasingly finer-grained

formulations are explored until a leaf or a condition similar to observation #6 is

found. The general strategy would be as follows. Given a DST, perform the first

few factorizations by using common rules observed for that target topology. Parti-

tion the resulting formulation u and all its children c0, c1, . . . cj. If the best children

104

ci has a latency lower than the parent formulation n, then choose ci and explore its

children. This process repeats until the chosen formulation is a leaf or no children are

found with lower latency than the parent. For a 2n-point DFT, this greedy approach

evaluates O(n) formulations at each level of exploration, thus O(n2) formulations

would be evaluated in total.

5.3 FFT Formulation Exploration Heuristic

Algorithm 9 shows our proposed heuristic for formulation exploration using

breakdown properties. Figure 5–4 illustrates a technique used by our algorithm

to reduce the average number of explored formulations. Instead of exploring all

children of a given formulation in order to decide which exploration path to follow,

our algorithm explores only children obtained by factoring a specific split tree leaf.

The chosen leaf represents the DST computation stage which can benefit most by

factorization. The rationale for choosing this leaf is as follows.

Figure 5–4: (a) A split tree for a 210-point FFT. (b) All possible children split trees
of (a). (c) children split trees exclusively factoring leaf ‘3’.

FFT formulation dataflow graphs are composed of a series of computational

columns of smaller FFT kernels and corresponding inter-column connections. For

instance, Figure 5–5 illustrates a split tree, formulation, and dataflow graph for a 16-

point FFT. Notice that each split tree leaf corresponds to a computational column

105

in the DFG. Thus a split tree with m leaves will have m DFG computational columns

and m− 1 inter-column permutation columns.

Our graph partitioning algorithm can determine the most cut-congested column:

the inter-column permutation column with the greatest contribution to overall parti-

tion cost. For instance, in Figure 5–5 column A has the greatest contribution to total

cut cost. The most cut-congested column lies between two computational columns

corresponding to two split-tree leaves, e.g. 2 and 3 in our example. Through analysis

of mega-trees it was determined that a strategy which lead to high-quality partitions

is to factorize the split tree leaf adjacent to the most cut-congested column and with

the highest size, e.g. leaf 3 in our example.

Figure 5–5: A split tree for a n = 26-point DFT and part of its corresponding DFG.

The algorithm starts by factoring the transform to a breakdown tree with a

distribution of children’s sizes that has been observed to lead to partition friendly

formulations in smaller cases. This formulation is partitioned and its communication

106

costs are measured. Partitioning cost information is used to determine which leaf

of the current formulation to split. The chosen leaf is split exhaustively into its

children and the cost of each resulting formulation is measured. If any of the new

formulations has a better cost than the current solution, te best among them is

chosen as the current solution for further iterations. Exploration continues until no

further improvement is obtained or the current solution allows no more factorization.

Algorithm 9 Heuristic for formulation exploration based on top-down breakdown
using CT-like factorization.

Input: Discrete signal transform Kronecker product expression D
Output: Optimized expression D′

1. Cost←∞
2. D′ = InitialBreakdown(D);
3. Cost′ = Partition(D′)
4. While (Cost′ < Cost)

4.1. Cost← Cost′

4.2. Cost′ ←∞
4.3. H = NextChildToSplit(D’)
4.4. For every split (a, b) of H

4.4.1. D split = Split(D,H ,(a, b))
4.4.2. Split Cost = Partition(D split)
4.4.3. If (Split Cost < Cost′) Then Best D ← D Split

4.5. End For
4.6. D′ ← Best D);
4.7. Cost′ = Partition(D′)

5. End While

Tables 5–2 and 5–3 show the results obtained for the formulation exploration

method compared against the best result obtained with a Simulated Annealing DFG

partition heuristic. Latency improvements of up to 13.3% are obtained over SA with

a dramatic reduction of up to 99.4% in exploration time. Reduction in exploration

time can be attributed to the fact that our method begins exploration by considering

coarser FFT formulations, which represent coarser DFGs and thus require less time

to partition. The SA heuristic lacks the capability to guide formulation exploration,

107

and must rely on exploring a single formulation that can expose all partition op-

timization opportunities. This corresponds to the finest-grained FFT formulation,

whose large number of DFG nodes significantly impacts convergence-time.

The 4-ring topology benefits more than the 4-array from the deterministic ex-

ploration scheme. We believe that this can be attributed to the fact that the 4-ring

topology, like the FFT, is symmetric, and thus may require less random/hill-climbing

decisions to reach acceptable results.

Table 5–2: Results of FFT formulation exploration for various FFT sizes targeting
a 4-Ring topology.

Latency (c-steps) Exploration Time
Size Form. Exp. SA Improvement Form. Exp. SA Improvement
512 122 136 10.3% 50s 10m 16s 91.9%

1024 235 253 7.1% 5m 35s 3h 16m 97.2%
2048 458 528 13.3% 1h 34m 1d 22h 2m 96.6%
4096 913 1047 12.8% 1h 40m 11d 7h 37m 99.4%

Table 5–3: Results of FFT formulation exploration for various FFT sizes targeting
a 4-Array topology.

Latency (c-steps) Exploration Time
Size Form. Exp. SA Improvement Form. Exp. SA Improvement
512 191 183 -4.4% 5m 10m 26s 52.1%

1024 370 361 -2.5% 26m 14s 5h 20m 91.8%
2048 722 757 4.6% 2h 18m 1d 12h 34m 93.7%
4096 1437 1528 6.0% 2d 2h 35m 13d 22h 10m 84.9%

5.4 Partitioning the Discrete Cosine Transform

The encouraging results obtained with the exploration of FFTs using CT fac-

torization rule (CT-FR) motivated our search for similar rules for discrete cosine

transforms (DCT) [65]. CT-FR is an effective algorithm for the exploration of FFT

formulations for two main reasons. First, it is capable of decomposing a size n = mp

FFT into the combination of arbitrary sized FFTs sized m and p. This allows the

generation of multiple breakdown strategies, each corresponding to a unique formu-

lation and potentially having characteristics that enable its improved partitioning

108

for a given DHA. Second, regardless of the decomposition factors, the resulting for-

mulation can still be implemented using the same basic functional primitives as the

original, i.e. size-2 butterfly-twiddles. Functional primitive regularity is essential

for effective hardware implementation since it simplifies control and allows a more

effective use of hardware resources for computation.

In general, fast algorithms for the DCT do not posses the regularity found in

FFT algorithms [1]. This is especially true for fast DCT algorithms that have not

been developed with hardware implementation in mind. These algorithms concen-

trate on the reduction of operations; even at the cost of non-regular computational

structures [93][94][95]. Several regular fast DCT algorithms have been reported over

the years, yet none of them inherently comply with both of the features that make

CT-FR desirable for FFTs. Püschel, et al. proposed several Cooley-Tukey like al-

gorithms for the DCT which factor instances of size n = mp into a combination

of size-m and size-p terms [96]. However, the resulting structures do not naturally

encourage hardware implementation. Other algorithms, such as those reported by

Wang, Takala, Hsiao, and Nikara imply effective hardware structures, but lack the

arbitrary decomposition capability [97] [98] [81] [1].

As part of our search for a decomposition algorithm for DCT that offers both

features, we studied the several well-known regular DCT formulations. This analysis

led is to the identify Nikara’s perfect shuffle DCT (NPS-DCT) algorithm as the most

suitable among those studied for distributed implementation and the development

of a CT-like decomposition rule based on NPS-DCT.

5.5 DCT Regular Algorithms

The N-point 1-D DCT type-II transform matrix is defined as:

[
DCTII

n

]
mn

=

√
2

N

[
bm cos

(
m
(
n + 1

2

)
π

N

)]
, m, n = 0, 1, . . . , N − 1 (5.4)

109

where bm is a scaling factor defined as:

bm =

⎧⎪⎪⎨
⎪⎪⎩

1√
2
, if m = 0 or m = N

1, if m �= 0 and m �= N

(5.5)

The redundancies found in the DCT matrix are exploited to obtain algorithms

which reduce its computational complexity. For hardware implementation, it is

essential that the fast DCT algorithm not only have a reduced number of expen-

sive operations, such as multiplication, but must also have an overall regular struc-

ture. Regular computational structures facilitate the mapping of DCT operations

to the limited resources available in hardware, meanwhile keeping a simplified con-

trol structure. In general, DCT algorithms have not obtained the regularity found

in Cooley-Tukey FFT algorithms. However the regularity of some proposed DCT

algorithms is enough to implement efficient hardware pipeline structures that meet

performance requirements [1] [81]. The following sections discuss the four candidate

formulations that were evaluated for their potential use within the DMAGIC metho-

dology. Section 5.5.1 presents Pus̈chel’s Cooley-Tukey-like DCT algorithm, which

allows arbitrary decomposition at the expense of structural irregularities. Sections

5.5.2, 5.5.3, and 5.5.4 discuss three regular fast DCT algorithms, emphasizing their

suitability for distributed implementation.

5.5.1 Püschel’s Cooley-Tukey-like DCT Algorithms

Püschel, et al. reported several algorithms where DCTs of size N = M · P can

be synthesized as the composition of DCTs size M and P along with interfacing

permutations and additions. Equation 5.6 shows one of the proposed algorithms for

the DCT-II.

DCTII
n (rπ) = Cn,kLn,k

(
Im ⊗ DCTII

k (rπ)
)(⊕

0≤i<k
DCTII

m (riπ)

)Ln,k

Rn,m (5.6)

110

where

Cn,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ik Zk

Ik
. . .

. . . Zk

Ik

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (5.7)

Zn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0 1

. .
.

. .
.

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (5.8)

and

Rn,m = (Ik ⊕ Jk ⊕ Ik ⊕ Jk ⊕ . . .) . (5.9)

Here Jk is Ik with the order of the columns reversed.

In particular,

DCT
(II)
2 (riπ) = diag

(
1, 1/(2 cos(riπ/2)

)
· F2 (5.10)

F2 =

⎡
⎢⎣ 1 1

1 −1

⎤
⎥⎦ (5.11)

The DCT II
n (riπ) term is called a skew DCT of type II, where ri has an effect on

the multiplication coefficients but not on the structure of the DCT flowgraph.

The essential limitation of this algorithm when targeting a distributed imple-

mentation resides in matrix C. This matrix represents a varying number of additions

and permutations depending on its indexes. Figure 5–6 shows the DFG interpreta-

tion of two different C matrices. Repetitive functional primitives can be seen in each

111

of the graphs. However, since different C matrices may be used throughout decom-

position; the functional primitives will differ from stage to stage, making difficult its

hardware implementation through uniform modules.

Figure 5–6: Dataflow graphs of C8,2 and C8,4 matrices.

Experimental results using our partitioning heuristics revealed latency increases

of up to 100% when comparing formulations containing heterogenous C matrices

to formulations using a unique C matrix. Thus, practical instances for hardware

implementations using Equation 5.6 could be obtained as factorizations that produce

C matrices of the same type throughout all stages. This represents a very limited

set of formulations. For example, Figure 5–7 shows the split trees of the DCT

formulations for size=64.

Figure 5–7: Practical split trees for 16, 32 and 64-point DCT when using Equation
5.6 for hardware implementation.

5.5.2 Hsiao and Tseng’s DCT Algorithm

Hsiao and Tseng reported a 1-D DCT decomposition algorithm (HT-DCT) that

computes a size N = 2n transform as n stages of a butterfly-with-multiplication

(BM) stages followed by n− 1 post processing (PP) stages [81]. The PP stages add

several of the results from the BM stages. Figure 5–8 shows the dataflow graph for

112

the type-II formulation of an 8-point 1D HT-DCT. The regularity obtained thro-

ughout both stages allowed its implementation as resource-efficient VLSI pipeline

consisting of variations of two kernels: one to implement each of the butterfly stages

and another for each of the post-processing stages. The explicit separations into

two stages performing distinct operations preclude merging both functionalities into

one functional primitive, since this would lead to a rather non-regular structure, as

shown in Figure 5–9. This discourages the development of an arbitrary factorization

scheme based on HT-DCT.

Figure 5–8: 8-point HT-DCT [81] data flow graph.

Figure 5–9: 8-point HT-DCT using a single functional primitive that performs both
the BM and post-processing functionalities.

5.5.3 Morikawa’s Simple Structured Fast DCT algorithm

As part of the development of his Pruning Discrete Cosine Transform algorithm,

Wang used Morikawa’s simple structured fast DCT (SS-FCT) algorithm [97]. SS-

FCT is similar to HT-DCT in that it involves both butterfly-multiply and adding

113

structures. However, as shown in Figure 5–10, SS-DCT intermixes the adding struc-

tures and with the butterfly-network structures, making it more feasible to utilize a

merged BM/Add functional primitive. Figure 5–11 shows a dataflow graph for a 8-

point WP-DCT using a unified functional primitive. Notice that if all the successive

BM and add stages were like in the second BN column we could implement a size-2,

common-data integrated functional primitive, i.e. a functional primitive that would

perform BM followed by addition on the same two points. However, this doesn’t

happen throughout the rest of the structure, as BMs are followed by permutations.

This eliminates the practicality of integrating BM and adds as common-data unified

functional primitive. Thus, we have a 2n − 1 computational column structure, as

shown in Figure 5–11. Once again, the lack of regularity and the explicit separation

of functionalities limit SS-FCT chances for being factorized in a CT-like manner.

Figure 5–10: 8-point SS-FCT [97].

Figure 5–11: 8-point SS-FCT using functional primitive blocks.

5.5.4 Nikara’s Perfect Shuffle DCT Algorithm

Nikara’s Perfect Shuffle DCT algorithm (NPS-DCT) has several features that

facilitate its pipelined hardware implementation [1]. Figure 5–12 shows a dataflow

114

graph of an 8-point NPS-DCT. First, it is almost perfectly regular across each of its

computational columns, an essential characteristic to vertically fold its columns into

a pipeline. Second, irregularities have been distributed across the computation in

such manner that they operate on the same data sets as the previous BM structure.

Third, data permutations between successive computational columns are kept to

varying sizes of perfect-shuffle permutations, for which efficient pipeline structures

have been proposed [59]. From the DFG, we can begin to identify a functional

primitive that is common throughout the complete PS-DCT structure (identified

in Figure 5–12 by dashed boxes). This serves as basis for the development of an

arbitrary clustering/factorization technique, developed in the next Section.

Figure 5–12: DFG for an 8-point NPS-DCT [1].

5.6 CT-like Decomposition for NPS-DCT

NPS-DCT is formulated as a product of sparse matrices using Kronecker Alge-

bra operators. Let CII
2n be a 2n-point DCT type-II formulation,

CII
2n =

√
2

2n
U

(n−1)
2n

1∏
s=n−1

[
A

(s)
2n

(
I2n−s−1 ⊗ L2s+1,22

)]
A

(0)
2n P H

2k , (5.12)

where

A
(s)
N = M

(s)
N D

(s)
N H

(s)
N FN , (5.13)

115

M
(s)

2k =
2k−1−1⊕

i=0

⎛
⎜⎝ 1 0

−μs(i) 1

⎞
⎟⎠ , (5.14)

D
(s)

2k = diag (gk (i, s)) , i = 0, 1, ..., 2k − 1 , (5.15)

gk (i, s) =
(
2μs(�i/2�)d

(
2k−s−1 +

⌊
i/2s+1

⌋))fk(i,s)
, (5.16)

fk (i, s) = (i mod 2) + (1− τ0 (i)) (1− τk−1 (s)) , (5.17)

τi (s) =

⎧⎪⎨
⎪⎩

0, s = i

1, s �= i
, (5.18)

H
(s)

2k =
2k−2−1⊕

i=0
(Q4R4Q4)

μs−1(i) , (5.19)

F2k = I2k−1 ⊗ F2 , (5.20)

and P H
2k is a Hadamard permutation matrix of order N . To allow us to concentrate

on the main computational components, we rewrite Equation 5.12 as follows:

CII
2n =

√
2

2n
U

(n−1)
2n Γ2nP H

2k (5.21)

where

Γ2n =
1∏

s=n−1

[
A

(s)
2n

(
I2n−s−1 ⊗ L2s+1,2s

)]
A

(0)
2n , (5.22)

As evidenced by Equation 5.22, actual arithmetic operations are performed by

the A
(s)
n terms. Upon closer examination, it was noticed that the sparse matrices

involved in the computation of these A
(s)
n terms are all composed of kernels operating

116

on 2 or 4 points. Thus, a complete formulation can be represented in terms of 4-input

functional primitives, as illustrated by the dashed lines in Figure 5–12. Furthermore,

these 4-input functional primitives can be systematically combined into clusters with

4p inputs. If we define the operation performed on each 4-input group to be a

functional primitive Φ4, we can rewrite Nikara’s formulation as follows:

Γ2n =

1∏
s=n−2

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)] (I2n−2 ⊗ Φ4) (I2n−2 ⊗ L4,2) (I2n−2 ⊗ Φ4)

(5.23)

In other words, PSDA consists of n processing columns, each consisting of 2n−2

Φ4 components interconnected using the perfect-shuffle sequence. Let us define Φ2n

as:

Φ2n =
1∏

s=n−2

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)] (I2n−2 ⊗ Φ4) (5.24)

Equation 5.24 can be split into three products of length m− 1, 1, and k − 1, where

n = m + k + 1:

Φ2n =
n−m∏

s=n−2

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)]

(I2n−2 ⊗ Φ4)
(
I2n−k−2 ⊗ L2k+2,2k+1

)
1∏

s=k−1

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)] (I2n−2 ⊗ Φ4)

(5.25)

For discussion purposes Equation 5.25 is rewritten as follows:

Φ2n = A (I2n−2 ⊗ Φ4)
(
I2n−k−2 ⊗ L2k+2,2k+1

)
B (5.26)

, where,

A =
n−m∏

s=n−2

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)] (I2n−2 ⊗ Φ4) (5.27)

117

B =

1∏
s=k−1

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)] (I2n−2 ⊗ Φ4) (5.28)

Since, n− 2 = m + k − 1, we factor out I2m

B = I2m⊗
1∏

s=k−1

[(I2k−1 ⊗ Φ4) (I2k−s−1 ⊗ L2s+2,2s+1)] (I2k−1 ⊗ Φ4) = I2m⊗Φ2k+1 (5.29)

Expanding the A term exposes the permutations between the computational columns

(permutation terms are shown underlined):

A =
n−m∏

s=n−2

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)]

= (I2n−2 ⊗ Φ4) (L2n,2n−1) (I2n−2 ⊗ Φ4) (I2n−2 ⊗ L2n−1,2n−2)...

(I2n−2 ⊗ Φ4) (I2m−2 ⊗ L2n−m+2,2n−m+1)

(5.30)

The underlined terms in Equation 5.30 are expanded using the permutation

property shown in Equation 4.14, yielding the underlined terms in Equation 5.31.

A = (I2n−2 ⊗ Φ4) (I2 ⊗ L2n−1,2n−2) (L4,2 ⊗ I2n−2) (I2n−2 ⊗ Φ4)

(I2n−1 ⊗ L2n−2,2n−3) (I2 ⊗ L4,2 ⊗ I2n−3)... (I2n−2 ⊗ Φ4)

(I2m−1 ⊗ L2n−m+2,2n−m+1) (I2M−1 ⊗ L2n−2,2n−3 ⊗ I2n−2−(m−2))

(5.31)

The (IX ⊗ L4,2 ⊗ IY)) expressions are moved to the end of the formulation and

rewritten as a multiplication series:

A = (I2n−2 ⊗ Φ4) (I2 ⊗ L2n−1,2n−2) (I2n−2 ⊗ Φ4) (I2n−1 ⊗ L2n−2,2n−3)

... (I2n−2 ⊗ Φ4) (I2m−1 ⊗ L2n−m+2,2n−m+1)
0∏

q=m−2

(I2m−2−q ⊗ L4,2 ⊗ I2q)⊗ I2n−m

(5.32)

Then, using Propery 10:

118

A = (I2n−2 ⊗ Φ4) (I2 ⊗ L2n−1,2n−2) (I2n−2 ⊗ Φ4) (I2n−1 ⊗ L2n−2,2n−3) ...

(I2n−2 ⊗ Φ4) (I2m−1 ⊗ L2n−m+2,2n−m+1)L2m,2 ⊗ I2n−m

(5.33)

The same procedure is repeated, yielding the underlined term:

A = (I2n−2 ⊗ Φ4) (I22 ⊗ L2n−2,2n−3) (I2n−2 ⊗ Φ4) (I23 ⊗ L2n−2,2n−3) ...

· (I2n−2 ⊗ Φ4)
(
I2M−2 ⊗ L2n−M+1,2n−M

) (
I2 ⊗ L2M ,2 ⊗ I2n−M−1

) (
L2M ,2 ⊗ I2n−M

)
(5.34)

After k iterations of this procedure, exhibited in Equations 5.30-5.34, another

multiplication series is obtained:

A = (I2n−2 ⊗ Φ4)
(
I2k ⊗ L2n−k ,2n−k−1

)
(I2k+1 ⊗ Φ4) (I2 ⊗ L2n−2,2n−3) ...

· (I2n−2 ⊗ Φ4) (I2k+M−2 ⊗ L2n−m+1,2n−m)
k−1∏
q=0

(I2k−1−q ⊗ L2m,2 ⊗ I2q)⊗ I22

(5.35)

Property 11 is used, yielding:

A = I2k ⊗
0∏

s=m−1

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)]
(
L2m+k−1,2k ⊗ I22

)
(5.36)

Since m + k − 1 = n− 2, we finally obtain:

A = I2k ⊗
0∏

s=m−1

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)]
(
L2n−2,2k ⊗ I22

)
(5.37)

Thus,

119

Φ2n = A (I2n−2 ⊗ Φ4)
(
I2n−k−2 ⊗ L2k+2,2k+1

)
B

= I2k ⊗
0∏

s=m−1

[(I2n−2 ⊗ Φ4) (I2n−s−2 ⊗ L2s+2,2s+1)] (I2n−2 ⊗ Φ4)︸ ︷︷ ︸
I
2k⊗Φ2m+1(

L2n−2,2k ⊗ I22

) (
I2n−k−2 ⊗ L2k+2,2k+1

)
(I2m ⊗ Φ2k+1)

(5.38)

Finally,

Φ2n = (I2k ⊗ Φ2m+1)
(
L2n−2,2k ⊗ I22

) (
I2n−k−2 ⊗ L2k+2,2k+1

)
(I2m ⊗ Φ2k+1) (5.39)

For example, the following two decompositions of DCT24 can be obtained using

Equations 5.40 and 5.41. Figures 5–13a and 5–13b illustrate the two decompositions.

Γ24 = [(I2 ⊗ Φ8) (L4,2 ⊗ I4) (I2 ⊗ L8,4) (I4 ⊗ Φ4)] (I4 ⊗ L4,2) (I4 ⊗ Φ4) (5.40)

Γ24 = [(I4 ⊗ Φ4) L16,8 (I2 ⊗ Φ8)] (I4 ⊗ L4,2) (I4 ⊗ Φ4) (5.41)

Figure 5–13: DFG for Equations 5.40 and 5.41.

5.7 Experiments

In order to assess the suitability of the various DCT formulations for distributed

implementation, we partitioned them using the DMAGIC methodology. For DCT

120

formulations where only one algorithm is available per size, such as HT-DCT and

SS-FCT, the methodology only conducts a graph partitioning without formulation

exploration. When using the developed formulation, the CT-like property is used to

explore alternative formulations, as directed by Algorithm 1. In all cases, a schedu-

ling algorithm using the As-Soon-As-Possible heuristic is run after partitioning to

map the various DCT nodes to the available hardware kernels in each device.

Figure 5–14 shows the target topology for our experiments. It consists of Virtex-

2 Pro XC2VP7 FPGAs connected in ring topology with a crossbar which mainly

serves to communicate non-adjacent devices. Latency for communication through

the direct channels and the crossbar is 1 and 2 cycles, respectively. Width for all

communication channels is 16 bits. Latency for operations (addition, subtraction

and multiplication) is 1 cycle.

Figure 5–14: Target topology for experiments.

Tables 5–4 and 5–5 summarize our results. In the majority of cases, the use of

the PSDA-CT algorithm within the formulation-exploration methodology obtained

better latency values than the rest of formulations, with up to 18% improvement over

the best of the other cases. DMAGIC did not achieve the best latency overall for

the 128-point DCT, however, its result (57 c-steps) was only surpassed by the fully

fine-grained PSDA formulation. Execution time was also significantly reduced when

compared to the rest of formulations with reductions up to 83%. These results evi-

dence the advantage of exploring different formulations of a given transform as part

of the partitioning process. They also demonstrate that formulation-exploration

can be performed in a non-exhaustive manner and yield acceptable results. Run

121

time reduction can be attributed to the fact that our formulation exploration stra-

tegy starts by considering coarser-granularity formulations. This requires a smaller

number of nodes and consequently a reduced graph partitioning vs. the rest of

formulations, whose format requires them to be in their finest-granularity. Among

the previously proposed formulations, PSDA consistently obtained the best results,

both in latency and execution time, highlighting the importance of regularity on

distributed hardware implementation of DCT.

Table 5–4: Latency in c-steps for various sizes of DCT formulations.

PSDA Hsiao Wang Pueschel Best of rest PSDA-CT Latency decrease
64 50 48 46 40 40 35 12.50%

128 54 80 72 65 54 57 -5.56%
256 86 161 112 118 86 75 12.79%
512 160 385 219 199 160 131 18.13%

1024 318 669 387 404 318 267 16.04%

Table 5–5: Execution time in seconds for various sizes of DCT formulations.

PSDA Hsiao Wang Pueschel Best of rest PSDA-CT Time decrease
64 0.2 1 1 1 0.2 0.2 0.00%

128 0.2 11 5.2 17 0.2 0.2 0.00%
256 6 123 99 142 6 1 83.33%
512 14 1234 934 1321 14 3 78.57%

1024 189 18701 21509 16015 189 45 76.19%

5.8 Summary

This chapter described the development of heuristics to guide exploration of

the DST formulation space, which embodies an essential feature of our partitioning

algorithm. The effect of various types of reformulations on the partition quality of

FFTs was experimentally assessed. Observations were synthesized into a heuristic

strategy using breakdown trees. The extension of such strategy for the discrete

cosine transform was also detailed.

The results presented in this chapter evidence the impact of algorithmic for-

mulation on partition quality, and support our decision to perform reformulations

122

as part of our partition optimization strategy. The developed heuristics achieved

fast exploration of the formulation-space along with high-quality partitioning re-

sults. Further experimentation, following the guidelines set forth in this chapter,

may allow the identification of further exploration strategies and the enhancement

of our methodology.

CHAPTER 6

Results and Analysis

In this chapter we validate the effectiveness of the various parts of our approach

as well as the unified methodology. First, the advantage of DST graph-level consi-

derations is evaluated by comparing results of the graph partitioning heuristic with

and without these features. Second, the impact of formulation exploration is apprai-

sed by quantifying the quality of results obtained by our formulation-space explo-

ration heuristic. The complete methodology is compared to a previously published

high-level partitioning heuristic to confirm its competitiveness. Finally, asymptotic

behavior is measured to evidence that quality is maintained throughout problem

scaling.

6.1 Graph Considerations

Graph considerations were integrated into our k-way extension of the Kernighan-

Lin heuristic to improve partition solution quality and run time. Sections 6.1.1 and

6.1.2 discuss the rationale behind these considerations and present results to evi-

dence their benefits.

6.1.1 Initial Partitioning Solution

Our partition/process algorithm uses initial linear horizontal partitions (de-

scribed in Section 4.5.2), in an effort to preserve the data-access regularity of a DST

throughout the partition process. Common formulations, when partitioned in this

manner generate an initial solution that allows effective partition-space search and

123

124

improved solution quality with KL-H, as compared to randomly generated initial

solutions.

Figure 6–1 shows the average and range of costs obtained by using initial linear

horizontal partitions vs. initial random partitions for several FFT sizes. For visua-

lization purposes, these graphs present cost as the sum of scalars in the cost vector

Φ (presented in Section 4.5.1). For the majority of sizes, initial linear horizontal

partitions obtained a lower average and range values than random partitions, with

an average 10.34% and peak 15.51% cost reduction.

Cost sum comparison:
linear horizontal vs. random initial partitions

for 4-Ring architecture

Transform size

6464 128128 256256 512512 10241024

C
os

t s
um

50

100

500

1000

1500

300

Linear horizontal

Random

Cost sum comparison:
linear horizontal vs. random initial partitions

for 4-Array architecture

Transform size

6464 128128 256256 512512 10241024

C
os

t s
um

50

100

500

1000

1500

300

Figure 6–1: Comparison of cost sum for initial horizontal partitions vs. random for
4-Ring and 4-Array architectures.

Figure 6–2 compares initial linear horizontal partitions vs. initial random par-

titions in terms of iterations. A lower number of average iterations was required

when using initial linear horizontal partitions, reducing iterations by an average of

16.12% and up to 34.00%.

6.1.2 Stage-limited Node Swapping

An additional DST-oriented consideration taken in KL-H was the limitation

of node swaps to nodes in the same computational stage. It could be conjectured

that limiting swap opportunities during optimization could have a negative effect on

125

Iteration comparison:
linear horizontal vs. random initial partitions

for 4-Ring architecture

Transform size

6464 128128 256256 512512 10241024

Ite
ra

tio
ns

0

10

20

30

Linear horizontal

Random

Iterations comparison:
linear horizontal vs. random initial partitions

for 4-Array architecture

Transform size

6464 128128 256256 512512 10241024

Ite
ra

tio
ns

0

10

20

30

40

Figure 6–2: Comparison of iterations for initial horizontal partitions vs. random for
4-Ring and 4-Array architectures.

partitioning results, since a considerable part of the solution space is left unexplored.

Nevertheless, this impact was found to be minimal. Furthermore, exploring swaps

outside the computational stage significantly increased exploration time.

Figures 6–3 and 6–4 show latency and run time graphs for various FFT sizes,

comparing the results of activating and deactivating node-swap restrictions thro-

ughout the graph partitioning process. Average latency was slightly higher when

using these restrictions (an average increase of 4.63% and peak increase of 13.87%),

however run time was significantly lower (an average decrease of 84.49% and peak

decrease of 88.55%). Our methodology uses the graph partition/placement process

as part of a major formulation-exploration optimization loop. Thus, any additio-

nal run time incurred in the graph partitioning heuristic will be amplified by the

formulation-level iterations. In the case of the stage-limited swapping considera-

tion, the run time advantage overpowers the increase in latency. Regardless, this

slight increase in latency is counterbalanced by the rest of the graph considerations

and the formulation-level exploration. This justifies our decision to utilize the stage

restrictions within our methodology.

126

Latency comparison:
scheduling restrictions on vs. off

Transform size

6464 128128 256256 512512 10241024

La
te

nc
y

(c
-s

te
ps

)

10

50

100

200

20

400

On

Off

Latency comparison:
scheduling restrictions on vs. off

Transform size

6464 128128 256256 512512 10241024

La
te

nc
y

(c
-s

te
ps

)

10

20

50

100

200

500

Figure 6–3: Comparison of latency with and without stage-restricted swaps.

Run time comparison:
scheduling restrictions on vs. off

4-Ring

Transform size

6464 128128 256256 512512 10241024

R
un

 ti
m

e
(s

ec
on

ds
)

1e+2

1e+3

1e+4

1e+0

1e-1

1e+5

1e+1

On

Off

Run time comparison:
scheduling restrictions on vs. off

4-Array

Transform size

6464 128128 256256 512512 10241024

La
te

nc
y

(c
-s

te
ps

)

10

100

1000

10000

0.1

Figure 6–4: Comparison of run time with and without stage-restricted swaps.

6.2 Effect of Formulation Exploration

In terms of run-time, it is impractical to exhaustively search the solution space of

equivalent formulations of a DST, as it grows exponentially with transform size. Our

proposed search heuristic, presented in Section 5.3, performs a greedy exploration,

starting with a coarse formulation and moving onto increasingly finer ones, running

in O (n2) time.

127

Table 6–1: Formulation exploration heuristic performance - 4-Ring topology.

Formulation universe Heuristic
Size Range Bottom Range Top Latency Percentile % better

16 18 21 18 50.00% 0.00%
32 23 32 24 66.00% 4.00%
64 29 52 29 97.33% 0.00%

128 43 90 43 99.86% 0.00%
256 70 159 71 98.34% 0.07%

Table 6–2: Formulation exploration heuristic performance - 4-Array topology..

Formulation universe Heuristic
Size Range Bottom Range Top Latency Percentile % better

16 19 26 20 57.14% 28.57%
32 26 41 27 58.00% 28.00%
64 36 68 38 87.70% 4.28%

128 58 119 59 90.82% 1.64%
256 102 218 103 93.32% 2.14%

Tables 6–1 and 6–2 show the results of the exploration heuristic as compared to

exhaustive results from formulation-space of FFT sizes 32 through 256. To highlight

the performance of the heuristic, the tables show the percentile of heuristic results

as well as the percent of exhaustive results that are better than those obtained by

the heuristic. The heuristic achieved the best overall result in several cases, while

maintaining a superior percentile, specially in the larger cases.

Interestingly, as for the other graph considerations, the 4-Ring architecture

benefits more than the 4-Array from our methodology’s features. We conjecture

that this could be caused, among other things, by the pairing of the DHA connection

symmetry and the symmetry implied by the moves (swaps) done as part of the KL

heuristic. Each device in the 4-Ring topology has two neighbor connections and a

crossbar connection to access non-neighbors. Thus, a move from one partition to

other may have less impact on the nodes’ connectivity than in the 4-Array, where

the first an last devices have one connection less than the rest. It could also be

conjectured that topologies with low symmetry could benefit from a certain degree

of non-deterministic decisions as part of the optimization process.

128

6.3 Comparison Against Established Methodology

A significant drawback of previously reported high-level partitioning methods is

their failure to compare results with other proposed techniques. The lack of accepted

high-level partitioning benchmark sets and the diversity of target platforms makes

it difficult to perform a one-to-one comparison. To further complicate matters, a

complete algorithm-to-hardware mapping solution requires the interaction of several

tools (e.g. partition engine, scheduler, estimators) which may not be available or

properly documented to allow third party validation.

We shall compare the results of our methodology to the ‘data flow graph par-

titioning’ (DFGP) strategy proposed by Srinivasan, et al. [7]. Even though the ori-

ginal DFGP prototype is not available, the method is sufficiently well documented

and close in objective to ours as to allow an acceptable implementation.

6.3.1 Srinivasan’s DFGP Methodology

In DFGP, input algorithms are specified as fine grained dataflow graphs, where

each node represents a single operation, such as a multiplication or addition. Addi-

tional specification files establish the target architecture: its connection topology

and the capacity of its devices. The methodology begins by performing schedu-

ling/allocation of the DFG onto a single (virtual) device with as much resources as

all DHA devices combined. Then, the DFG is partitioned with a genetic algorithm-

based partition engine, which relies on the genetic operations of selection, crossover

and mutation to evolve a population of mostly random initial partitioning solutions.

The most relevant features of DFGP genetic algorithm are as follows:

1. Encoding: Each population member is represented as an integer array in which

the value of location i represents the partition assigned to node i.

2. Population: Population is kept constant throughout optimization at 100 to 200

members, depending on the problem size.

129

3. Fitness function: The fitness of a solution x is computed as follows:

fitness(x) =
1

1 + AreaPenalty (x) + InterconnectPenalty (x)
, (6.1)

where AreaPenalty (x) is proportional to the ratio of excess area needed by x over

the total area provided by the device. InterconnectPenalty (x) is proportional to

the number of cut edges in x.

4. Selection mechanism: The selection operator probabilistically selects highly fit

solutions in the current generation and crosses them to obtain future generations.

The DFGP’s selector operator tosses a biased-coin and, depending on the result

of the toss, recursively branches either to the lower or upper half of the array.

The process continues until the size of the array is one, at which point the single

solution in the array is returned. A call to the selection mechanism with a highly

biased probability, e.g. 0.9, strongly biases selection to the fittest members.

5. Crossover: The selection mechanism is used to select two parents for the crossover.

To guarantee better population diversity, the selection function is called with pro-

bability 0.8 for the first parent and 0.55 for the second. Once the parents have been

chosen, a uniform crossover operation generates two offspring. The content from

chromosome i in each offspring is copied from the same position in either of its

parents. The parent that donates each chromosome to each offspring is determined

randomly by an unbiased coin toss.

6. Mutation: Mutation randomly changes a small percentage (5%) of chromosomes

of a small percentage (10%) of members. This introduces changes that allow ge-

neration member’s to possibly improve their fitness and/or escape local minima.

7. Stop criterion: No specific exit conditions are explicitly documented for DFGP.

In our implementation, iterations are stopped when the running average fitness of

100 generations has not improved above 0.10%.

130

After a partitioning solution has been obtained, latency is estimated in DFGP

by the formula:

L = Lsched + LI/O + Ldata + Lsynch (6.2)

where Lsched is the schedule latency, i.e. the number of time steps in the scheduled

DFG. Recall that in DFGP scheduling assumes a single FPGA, thus Lsched does not

include time steps needed for transferring data between devices. LI/O is the number

of cycles for reading input data from memory and writing output data to memory.

In the Wildforce architecture reading takes three cycles, while writing takes one

cycle. Ldata is the data transfer latency, i.e. number of cycles to communicate data

from FPGA to FPGA using channels in the interconnection network or through

shared memory. The Wildforce platform requires two cycles and four cycles for

these transfers, respectively. Finally, Lsynch is the number of cycles needed for

synchronization/handshaking among devices interchanging data.

As implied by Equation 6.2, communications in DFGP are assumed to occur

non-concurrently with execution. In our methodology, a post-partitioning schedule

is capable of arranging concurrent communications and executions. This difference

is highly influential in terms of the final latency achieved by each methodology.

Thus, in order to properly compare both methodologies, each has been adapted to

the assumption of the other before comparison. For instance, a comparison is done

between our methodology with no concurrent communication/execution vs. DFGP.

Another comparison is done with DFGP assuming concurrency vs. our methodology.

6.3.2 Results Comparison

Table 6–3 compares the best result obtained with the DFGP implementation to

those of our methodology for various sizes of FFTs, assuming no concurrency. The

target distributed hardware architecture for the original SBPH FFT partitioning

results was a Wildforce 4013 by Annapolis Systems, which had enough resources

for a small FFT (size 16) [7]. To be fair in our comparison, we assume that for

131

bigger FFT sizes, the target DHA is a scaled-up version of the Wildforce 4013,

providing enough resources to accommodate bigger FFTs. When no concurrency is

assumed, latency is essentially based on the cumulative size of the cutsize. Table 6–3

shows that in most cases our methodology produced better latencies, even though

its objective was not necessarily the minimization of the cumulative cutsize. This

advantage can be mainly attributed to the granularity in the DFGP input graphs.

DFGP has to partition a fine-grained graph and is completely unaware of compact

structures, e.g. butterflies, whose partition is counterproductive in most instances.

On the other hand, our methodology relies on coarser graphs which tend to cluster

highly connected structures, thus avoiding many high-cutsize solutions.

It must be stressed that these comparison are being done against the best DFGP

results. The stochastic nature of the GA optimization engine gives variability to their

results. Furthermore GA relies on convergence over a much larger size of iterations.

On the contrary, our methodology is deterministic and requires much less iterations.

Table 6–3: FFT Results of SBPH vs. our methodology, assuming no concurrency.

DFGP Ours Latency
Size Lexec Lcomm + Lsynch Latency Lexec Lcomm + Lsynch Latency Improvement

16 14 130 144 15 116 131 9.0%
32 24 260 284 24 234 258 9.2%
64 54 442 496 51 508 559 -12.7%

128 123 1001 1124 115 916 1031 8.3%
256 275 2490 2765 259 1712 1971 28.7%

Table 6–4 presents results for partitioning various FFT sizes assuming that

communications and execution can occur concurrently. Our methodology has a

clear advantage over the best DFGP results. This advantage can be mainly attribu-

ted to two considerations. First, our methodology explicitly emphasizes the balance

of communications among the available channels and execution among the various

processing units. This improves the efficacy with which the scheduler is able to

132

accommodate concurrent operations and communications. Second, it has been de-

monstrated that scheduling after partitioning achieves better results than the other

way around [47].

Table 6–4: FFT Results of SBPH vs. our methodology, assuming concurrency.

Size DFGP Ours Improvement
16 53 45 15.1%
32 116 85 26.7%
64 226 175 22.6%

128 501 373 25.5%
256 1047 847 19.1%

Tables 6–5 and 6–6 show a comparison between the best DFGP results and

our methodology for various DCT sizes. Interestingly, even though DCTs are not

as regular as FFTs, our method offers larger improvements as compared to DFGP

than for FFTs.

Table 6–5: DCT Results of SBPH vs. our methodology, assuming no concurrency.

DFGP Ours Latency
Size Lexec Lcomm + Lsynch Latency Lexec Lcomm + Lsynch Latency Improvement

16 16 144 160 16 128 144 10.0%
32 21 336 357 18 184 202 43.4%
64 32 592 624 40 412 452 27.6%

128 69 976 1045 91 836 927 11.3%
256 156 1768 1924 211 1548 1759 8.6%

Table 6–6: DCT Results of SBPH vs. our methodology, assuming concurrency.

Size DFGP Ours Improvement
16 85 60 29.4%
32 135 89 34.1%
64 213 161 24.4%

128 389 330 15.2%
256 749 595 20.6%

6.4 Scaling the Suboptimality

To demonstrate the scalability of our heuristics we use Hagen’s suboptimality

principle [99]. This approach states that given a heuristic H , an instance I and the

solution cost for the instance cH(I), if a new instance kI is constructed by scaling

133

Table 6–7: Run times for DCT

Run time (seconds)
Size DFGP Ours Improvement

16 3.70 0.01 99.7%
32 17.50 0.02 99.9%
64 23.50 0.16 99.3%

128 89.00 0.90 99.0%
256 190.00 12.30 93.5%

the original by k, then cH(kI) > k · cH(I). The suboptimality of a heuristic can be

measured by how much it departs from the optimal scaling cost k · cH(I):

ηH (k) =
cH (kI)

kcH (I)
− 1 (6.3)

where a value ηH (k) ≥ 0.

The scalability of our partitioning methodology in terms of cutsize can be

readily verified using Hagen’s principle by using FFTs as the scalable instance I.

Bornstein, et al. demonstrated that the minimum bipartition cutsize of a butterfly

network of input size-n is 2
(√

2− 1
)
n + o (n) ≈ 0.82n [82]. If we think of a k-way

partitioning solution as being composed of multiple bipartitions, then we can con-

jecture that the minimum cutsize of a k-way partitioning solution also grows at a

rate O (n). The FFT DFG is an example of a butterfly network, therefore, scaling

an FFT by 2m should optimally have a 2m effect on its partition cutsize.

Tables 6–8 and 6–9 show the results of our partitioning methodology, in terms

of cutszie, for a range of FFT sizes partitioned to 4-Ring and 4-Array topologies.

Cost is measured as the sum of all scalars in the cost vector Φ. Results for the 4-Ring

evidence the near-optimal behavior of the heuristic with respect to the base case:

32-point FFT. Results for the 4-Array show more variation and serve to demonstrate

the importance of base-case results when using Hagen’s principle. The third and

fifth columns of Table 6–9 show suboptimality factors (ηH) based on the 32-point

FFT and 256-point FFT results, respectively. The 32-point FFT result was not

134

particularly good, hence the negative suboptimality factor deviations. On the other

hand, choosing a good result as base case, e.g. 256-point FFT, gives a worst-

case scaling scenario. Anyhow, the suboptimality factors of 13.22% and below are

maintained throughout, evidencing an excellent asymptotic behavior of the heuristic.

Table 6–8: Suboptimality comparison based on cost sums for 4-Ring topology .

Size Cost Sum η Deviation
32 32 1 -
64 64 2 0.00%

128 128 4 0.00%
256 256 8 0.00%
512 512 16 0.00%

1024 1024 32 0.00%
2048 2070 64.6875 1.07%

Table 6–9: Suboptimality comparison based on cost sums for 4-Array topology .

Size Cost Sum η32 Deviation η256 Deviation
32 42 - - - -
64 85 2.02381 1.19% - -

128 164 3.904762 -2.38% - -
256 295 7.02381 -12.20% - -
512 659 15.69048 -1.93% 2.233898 11.69%

1024 1326 31.57143 -1.34% 4.494915 12.37%
2048 2672 63.61905 -0.60% 9.057627 13.22%
4096 5158 122.8095 -4.06% 17.48475 9.28%

Although minimizing the cost function is the objective of partition/placement

process within our methodology, the global objective is latency. The latency of a

partitioning solution is bounded as follows:

max [LExec, LComm] ≤ L ≤ (LExec + LComm) , (6.4)

where LExec is the execution latency of the implementation, i.e. the number of cycles

spent in the actual processing operations of the DST. LComm is the communication

latency, i.e. the number of cycles spent communicating data points between the DHA

devices. The lower bound represents a situation where execution and communication

135

cycles can be perfectly overlapped. The upper bound represents nonoverlapping

execution and communication processes. Although LExec can be known exactly

for each architectural module and LComm can be estimated from the cost function,

exact latency value is only known after scheduling. Although conceptually simple,

the ASAP scheduler may introduce non-linearity with respect to LExec, LComm, and

L. For instance, it was experimentally assessed that in some occasions, two different

partitioning solutions with the same cost had slightly different latencies. This is

due, among other things, to the fact that our chosen cost function does not store

information how the cuts are distributed throughout the DST computational stages.

A more uniform distribution of cuts might make it easier for the scheduler to overlap

execution and communication latencies.

Estimating suboptimality in terms of latency requires us to take into conside-

ration the effect of the scheduler. Scheduler optimization was not the main purpose

of this work. Thus, no explicit efforts were taken to make it scale properly. Ne-

vertheless, we can exactly compute the bounds of a scheduled partition solution to

have an idea of how well scheduled results scale. Once again, the FFT is chosen

as instance because of its proven lower bounds on cutsize. On a DHA with 2q de-

vices, where computation is evenly distributed, the scaling of a 2n-point FFT to a

2n+m-point implies an increase from (n · 2n) /2q+1 to ((n + m) · 2n+m) /2q+1 butter-

fly+twiddle operations. It also implies an increase in cutsize of O (n). Using these

two considerations, a 2m scaling in FFT size implies an optimal scaling bounded by:

max
[

(n+m)2n+m

2q+1 tb, 2
n+mtc

]
n2n

2q+1 + 2ntc
≤ k (2m) ≤

(n+m)2n+m

2q+1 tb + 2n+mtc

max
[

n2n

2q+1 , 2ntc
] (6.5)

clock steps, where tb is the number of c-steps necessary for the execution of a bu-

tterfly+twiddle element, and tc is the latency for communicating each point that

is transfered through the interconnection resources. The lower bound represents a

situation where the 2n-point FFT has no concurrent operations/communications,

136

while the 2n+m-point FFT is perfectly concurrent. The upper bound represents the

inverse situation. Results of the latency suboptimality experiments are summarized

in Tables 6–10 and 6–11. Observe that, given the effect of the scheduler and the

available resources, latency is not expected to increase at the same exact rate that

FFT sizes are scaled.

Table 6–10: Suboptimality comparison based on latency for 4-Ring topology .

Optimal Scaling Deviation
Size Latency η Lower Bound Upper Bound from L.B.

64 29 - - - -
128 43 1.48 0.51 9.44 189.49%
256 71 2.45 1.17 19.56 109.12%
512 131 4.52 2.63 40.44 71.49%

1024 264 9.10 5.85 83.56 55.52%
2048 553 19.07 12.88 172.44 48.07%
4096 1130 38.97 28.10 355.56 38.68%

Table 6–11: Suboptimality comparison based on latency for 4-Array topology .

Optimal Scaling Deviation
Size Latency η Lower Bound Upper Bound from L.B.

64 40 - - - -
128 65 1.63 0.51 9.44 217.26%
256 103 2.58 1.17 19.56 119.95%
512 204 5.10 2.63 40.44 93.61%

1024 407 10.18 5.85 83.56 73.82%
2048 786 19.65 12.88 172.44 52.59%
4096 1130 28.25 28.10 355.56 0.54%

Results indicate appropriate behavior of our heuristic, as evidenced by the fact

that the suboptimality factor is consistently closer to the lower bound than to the

upper bound. In fact, deviation with respect to the optimal lower bound is mono-

tonically decreasing, which promises competitive results for larger FFT sizes.

137

6.5 Summary

In this chapter, the validity of the graph partition/placement and formula-

tion exploration processes, as well as our methodology as a whole have been evi-

denced empirically. Graph level considerations significantly helped in speeding par-

tition/placement heuristic convergence while offering small improvements to parti-

tion quality. The formulation-exploration heuristic achieved competitive results as

compared to the universe of solutions, with reduced exploration time. Finally, an

analysis of the methodology’s scalability reveled that quality of results is maintained

throughout a range of input problem sizes.

CHAPTER 7

Conclusions

This thesis presented a high-level partitioning methodology for discrete signal

transforms onto distributed hardware architectures. Multiple opportunities were

found throughout the methodology’s design to improve the effectiveness of the par-

titioning process by taking advantage of DST and DHA features. For instance,

the graph partitioning heuristic’s cost function was adapted to more adequately

represent the main implementation constraint when partitioning to DHAs. Fur-

thermore, the initial solution generation and solution exploration functions were

adjusted based on structural DFG qualities of fast regular DSTs. An intra-level ar-

chitectural model was tailored to the typical computational/data-path requirements

of these transforms, allowing for accurate resource and latency estimation. The de-

velopment of graph-level partitioning tools and a KPA to DFG converter allowed an

assessment of the impact of formulation-level transformations on partition-solution

quality. A formulation-level greedy heuristic was derived through systematic analy-

sis of assessment results.

The integration of graph-level and algoritmic-level strategies, allowed DMAGIC

to obtain improved results over a generic DFG-based reported method. Results were

improved both in terms of implementation latency and run-time required for solution

exploration.

138

139

The work presented in this thesis represents, to the best of our knowledge,

the first attempt at combining the algorithmic and graphic abstraction levels to

improve partition of DSTs to DHAs. Besides evidencing that DMAGIC fuses both

levels appropriately, it is the intent of this thesis to foster further research in this

area. The improved understanding of the interaction between these two abstraction

levels and their impact on hardware implementations promises to have a powerful

impact on the design-time and performance of future systems.

The following sections summarize the main aspects discussed throughout this

dissertation, salient contributions and future research directions.

7.1 Contributions

The design of the DMAGIC methodology required fusing two otherwise dis-

joint strategies: the treatment of DSTs at the algorithmic level, common in the

signal processing arena, and the automated treatment of algorithms at the graph

level, typical in EDA. The main contributions of this work will be useful in each of

those areas and toward the original goal of facilitating the implementation of DSTs

on distributed hardware architectures. We consider the following to be the main

contributions of this work.

• An automated and extensible methodology for conversion of Kronecker

product algebra (KPA) formulations into DFGs: This tool proved highly

valuable for the practical study of formulation effect on partition quality. KPA

formulations have been converted to code as part of automated code generation

techniques [44]. However, to our knowledge, no tool has been documented that

will output a dataflow graph from a KPA formulation. Moreover, our KTG tool

maintains data order throughout the DFG by using the concept of levels. Data

order information can be used to maintain regularity throughout partitioning, as

evidenced when initial horizontal partitions were used. The practicality of KTG is

not limited to its use within a partitioning methodology. Additional tasks that can

140

be aided with such tool include hardware synthesis, code generation and manual

analysis of DSTs.

• An architectural model for the implementation of distributed DSTs:

Section 4.7 introduced a flexible architectural model which extends previously pro-

posed folded FFT models. The model allows distributed implementation of signal

processing transforms in general. Mapping between DFG and architectural com-

ponents is simplified by encapsulating operator’s functionality inside kernels. Data

communication is mapped to simple data path components and control structures.

The model’s ease of scalability and modularity allowed precise estimation of its

resources using linear (mathematical) model approach.

• Extension of Kernighan Lin bipartitioning algorithm into a k-way par-

tition/placement heuristic for DHAs with considerations to DST graph

features: The cost function of our graph partitioning heuristic emphasizes distrib-

ution of costs rather than cumulative cost, as many previous adaptations. This has

the effect of better balancing communication load over interconnection channels

and achieving lower latency schedules. Several graph considerations that take

advantage of DST DFG features were introduced into the heuristic and their ad-

vantages in time and solution quality were experimentally assessed.

• Study of the effect of formulations on their distributed implementa-

tion: To our knowledge, our work is the first to explicitly assess the impact of

formulation-level transformations, such as permutations and factorizations, on the

partition of FFTs and DCTs. The effect of formulation on implementation is com-

monly taken into account during manual DST mappings. The exhaustive experi-

mentations reported in this work, albeit for smaller DST sizes, shed some light as

to what transformations may be used to guide DST onto more suitable mappings.

These results also highlight the importance of clearly specifying formulation when

using DSTs as part of a benchmark set.

141

• A decomposition method for exploring the formulation space: Experimen-

tal assessment of the impact of formulation on partition quality exposed strategies

for effective exploration of the formulation space. A heuristic was developed which

takes advantage of granularity features of DSTs to conduct a coarse-to-fine explo-

ration that saves run-time while arriving at competent solutions.

• Study of current DCT formulations and their appropriateness for DHA’s:

Most literature on DCT hardware implementations concentrates on 8-point unidi-

mensional and 8×8 bidimensional cases, which can be currently achieved in single

devices while meeting performance criteria. In contrast with FFTs, not much

attention has been given DCT distributed implementations in literature. The ex-

tension of automated partitioning strategies for DCT’s required us to examine

various popular regular DCT formulations and their suitability for distributed im-

plementation.

• Derivation of a Cooley-Tukey like factorization algorithm for DCTs:

Previously reported DCT regular formulations lack the ability to be arbitrarily

factorized into multiple equivalent algorithms. The Cooley-Tukey-like DCT fac-

torization algorithm developed in this work was successfully used in DMAGIC to

explore alternate DCT expressions and find improved partitioning solutions. It

could be useful for future DCT implementers as it may expose folding or partition-

ing opportunities in other architectures.

• DMAGIC, an automated high-level partitioning methodology for DSTs

onto distributed hardware architectures: The DMAGIC methodology inte-

grates a series of processes and supporting tools to conduct an optimizing search

that benefits from the interaction of the algorithmic and graphic abstraction levels.

To the best of our knowledge, this methodology represents the first reported effort

to engage the information and opportunities available at these two levels to solve

the problem of algorithm mapping to distributed hardware architecture. Results

142

were superior both in quality and time to general-purpose partitioning strategies.

Thus, this approach certainly merits further development into other types of target

platforms (e.g. SoCs), algorithm families (e.g. image processing) and optimization

objectives (e.g. energy utilization).

7.2 Limitations

DMAGIC’s ability to exploit DST features during the partitioning process in-

evitably imposes some limitations to its applicability to algorithms beyond DSTs.

In a sense, DMAGIC cedes its generality in exchange for effectiveness of exploration

and quality of solution of DSTs, a fundamental component in many modern appli-

cations. However this does not mean that the general philosophy of using graph and

algorithmic opportunities during partitioning cannot be extended to other classes of

algorithms.

Within the scope of DST to DHA partitioning DMAGIC has yet to address

some specific limitations, some of which could become significant problems in their

own.

• The experiments and results were limited to 2n-point DSTs. Nevertheless, this

covers a significant percentage of common application sizes. Experiments and

heuristics such as the ones conducted throughout this work could be used to verify

DMAGIC’s effectiveness for non-2n-point DSTs.

• The DHA representation method, architectural model, and cost functions may

prove to be limited for connection schemes beyond the point-to-point/crossbar

topologies. For instance, in Network-on-Chip topologies communications are han-

dled by a mesh of routers. In this case, communicating any two processing elements

might imply solving a routing optimization problem, something that is simplified

in our current methodology by the availability of point-to-point connections.

143

• Formulation exploration for further DSTs might require specialized factorization

methods, such as the CT-like factorization algorithms for the FFT and DCT men-

tioned in Chapter 5.

Regardless of these limitations, the heuristic and results presented throughout

this thesis are sufficiently comprehensive to prove our hypothesis.

7.3 Future Work

Several enhancements and research paths have been envisioned throughout the

development of this work. The following is a description of related issues that might

be undertaken in the near future.

• Partition-aware scheduling heuristics: This work focused on high-level par-

titioning strategies, a task within the high-level synthesis of digital circuits. As

critical as partitioning may be to the final implementation, high-level synthesis

consists of additional tasks, e.g. scheduling and allocation, which influence per-

formance parameters such as latency. In DMAGIC’s prototype implementation

we used a simple scheduling heuristic. Further development of an integrated DST

mapping tool could contemplate the evaluation of additional scheduling heuris-

tics that take advantage of the decisions made by the graph partition/placement

process.

• High-level partitioning benchmarks: One of the shortcomings uncovered thro-

ughout our literature review was the lack of formally established benchmarks for

high-level partitioning: both for the input problems and the target architectures.

This has the unfortunate consequence that the results in documented methodolo-

gies can’t be appropriately compared against each other. The development of this

work helped us identify desirable characteristics in the definition of benchmarks.

For instance, DST benchmarks should specify formulation, as it has an impact on

implementation. For general algorithms, benchmarks should also specify how they

144

are to be scaled. This shall help benchmarks avoid obsolescence as target device

density and/or data requirements increase.

• Computer-driven search of heuristics: The effect of algorithmic-level transfor-

mations was evidenced throughout this work. Determining heuristics for efficiently

arriving at good formulations is not trivial even when limiting transformations to

a reduced set of rules. Even then, development of these heuristics relies on user

knowledge and insightfulness rather than on a systematic (automated) method.

For instance, the proposed formulation exploration heuristic was solely based on

humanly detectable patterns’ on results for smaller sized transforms. Future work

could be focused on using techniques such as genetic programming or computer

learning for extracting improved formulation-exploration heuristics.

• Exploration of hardware structures for data permutation: Folding schemes

for DSTs take advantage of their regularity to achieve implementations using a re-

duced number of functional units. An important part for achieving effective folding

is the implementation of data permutation structures. Efficient hardware struc-

tures have been found for isomorphic permutations such as those found in the

Pease FFT formulation, and have been used in automated and manual hardware

implementations [59] [58]. A research idea that stems from the work presented in

this dissertation is the study of efficient hardware data-permutation structures for

transforms with non-isomorphic permutation sequences. A methodology similar to

the one proposed in this work could be used to explore alternate permutation repre-

sentations in search for optimal structures, given knowledge about the underlying

hardware resources.

• Study of partitioning in System-on-chip architectures : The high-level par-

titioning techniques described in this work could also be applicable when targeting

on-chip distributed architectures. The Network-on-chip connection topology would

be an interesting study case, as it incorporates considerations similar to those of

145

the DHAs studied herein. For example, not all processing elements are directly

connected to each other, and the cost of communication varies according to the

position of elements in the network mesh.

• Extension of DMAGIC for a power efficiency objective: Power dissipation

is one of the main limiting factors in digital VLSI performance. Its importance will

certainly increase thanks to the current global environmental/energetic concerns.

One of the most promising ways to approach this problem is by introducing power-

saving modifications at the architectural level. A practical extension of the current

work would study its application for power optimization as a performance objective.

• Development of a production-quality tool: The current prototype tool is

adequate for experimental purposes and achieved results which sustain the initial

hypothesis. Nevertheless, the various methodology components as well their in-

tegration would require further fine code tuning/testing to capture isolated cases

which may be encountered by users not familiar with the detailed program wor-

kings. Further work is also required in terms of data structures to represent the

application of decomposition/synthesis rules to the formulations. The current im-

plementation can only represent the repeated application of a single rule. This was

sufficient for the studied cases, since the application of further rules de-regularized

the expressions.

• Study of further DSTs:The two most common DST’s, the DFT and DCT, have

been studied throughout this dissertation. An evident extension of the presented

methodology is to adapt it to other discrete transforms. Similar to the DCT, use

of the DMAGIC methodology can motivate the search for regular formulations and

folding techniques, which in turn benefit dedicated hardware implementations.

CHAPTER 8

Ethics

Ethical concepts must be considered even in predominantly conceptual engi-

neering works, such as the one we have developed. Moriarty distinguishes three

elements of ethics involved in the engineering enterprise [100]:

1. virtue ethics: deal with the moral sense of the engineer

2. conceptual ethics: are related to the goodness of the engineering process: means,

methods and procedures (how engineers can do good engineering)

3. material ethics: apply to the result of engineering process, i.e. the engineered.

The lawful motivations behind our research guided our work in a way where

virtue and material ethics were respected at all times. The tools and results obtained

throughout this research contribute to the better understanding of partitioning in

EDA for distributed hardware architectures, a key process in achieving better and

faster computation to these computation platforms. We envision our synthesized

and newly discovered knowledge being used for the direct benefit of humanity in

fields such as biomedical image processing, genomics and digital communications.

Nevertheless, good intentions do not exempt any work from having possible ethical

implications, both direct and indirect.

Throughout the development of our research we maintained awareness of its

possible ethical implications, using research integrity guidelines such as the ones

suggested by the Health and Human Services Commission on Research Integrity

146

147

[101]. In the publications generated as part of this research we have been careful to

respect the intellectual property of other researchers. In cases where ideas included

in this document have been adapted from previous works, we have clearly referenced

their originators. Furthermore, all the information included in this document has

been obtained from publicly available sources.

The element of conceptual ethics could be the most controversial aspect in res-

pect to the technical fields impacted by this work. In electronic design automation,

high-level abstractions of an ultimately physical implementation depend on many

variables and tools, and are not always exactly representable. This is aggravated by

the fact that many intermediary steps are handled by heuristic and non-deterministic

processes. Thus, it is hard to account exactly for the contribution of each step, ma-

king an exact, third-party validation practically impossible. All these difficulties not

withstanding, during the development of our methodology and the experimentation

phase we were conscientious to produce results in a manner where no details that

might unfairly give us an advantage were hidden.

Another ethical aspect related to the higher-levels of EDA is that by handling

ever-higher levels of abstraction in the design processes, some might argue that

we are attempting to substitute human knowledge with synthetic computational

processes. Nevertheless, even if this perception might have some validity in some

humanistic context, it fails to consider what, in our opinion, is the general idea

behind EDA and automation. Freeing our minds from repetitive, implementation-

related and other menial problems liberates our intellects to solve more challenging

ventures. Besides, technology moves at such fast pace that we need advances in

automation just to keep current. Furthermore, although the proposed methodology

aspires to be completely automated, the need for human intervention is still evident.

Throughout the development of this work, our best efforts focused to generate

and synthesize knowledge which does not have a negative impact in the well being,

148

privacy, or dignity of other people, organizations, or the advance of research in a

direct or indirect manner.

APPENDICES

APPENDIX A

Prototype Documentation

The results discussed throughout this work were obtained using a prototype

software implementation of the DMAGIC methodology, henceforth referred to as

Revision 1 (R1) . This implementation consists of the various graph tools and

formulation exploration strategies discussed in Chapters 4 and 5. This Appendix

documents the R1 user interface and most relevant data structures used in its tools.

A.1 Kronecker to dataflow graph tool (KTG)

One of the main advantages of using Kronecker products algebra as a framework

for the representation of DSTs is that it facilitates the deduction of computational

structures directly from formulation. Although manual KPA to DFG conversion is

practical for small examples and illustration purposes, bigger DST sizes demand an

automated conversion method. Furthermore, a KPA to dataflow graph conversion

software tool is crucial to the fully-automated operation of our proposed scheme.

The creation of KTG allowed us to experiment with various sizes and formulations

of the FFTs and DCTs, which ultimately defined the strategies used in DMAGIC’s

formulation exploration component. The following section explains the use of the

implemented KTG tool.

150

151

A.1.1 KTG Usage

The command to execute KTG is the following:

ktg.exe − exp “expression′′ −name output file name ,

where expression is a KPA expression which may consist of the operands and oper-

ators listed below, and output file name will be the name of the generated output

files.

The Backus-Naur form for a KPA expression accepted by the current ktg version

is as follows:

〈KPA expression〉 ::⇒ (〈KPA expression〉 〈operation〉 〈KPA expression〉) |
(〈KPA expression〉 〈operation〉 〈matrix〉) |
(〈matrix〉 〈operation〉 〈KPA expression〉) |
(〈matrix〉 〈operation〉 〈matrix〉)

〈operation〉 ::⇒ \otimes | \times | \osum

〈matrix〉 ::⇒ I {size} | 〈DST {size}〉 | M {〈row list〉} |
G {〈vector〉} | 〈permutation matrix〉 | U {size} | UT {size}

〈DST {size}〉 ::⇒ DFT {size} | DCT {size}
〈row list〉 ::⇒ (〈row〉) | (〈row〉)(〈row list〉)
〈row〉 ::⇒ real | real , 〈row〉
〈vector〉 ::⇒ integer | integer, 〈vector〉
〈permutation matrix〉 ::⇒ L {stride,size} | P1 {stride,size} | P3 {size} | P11 {size} |

〈arbitrary permutation〉
〈arbitrary permutation〉 ::⇒ [〈cycle list〉 , size]

〈cycle list〉 ::⇒ 〈cycle〉 | 〈cycle〉 〈cycle list〉
〈cycle〉 ::⇒ integer | integer, 〈cycle〉 ,

where size is a positive integer, and stride is a divisor of size.

152

Expression operands

The current version accepts the following operand matrices:

1. Identity matrix: The format is I_{size}.

2. Discrete signal transform: Currently supports DFT and DCT. The format is

DFT_{size} or DCT_{size}. Each DST is represented by a graph node whose

weight is assigned according to the transform’s implementation area.

3. Custom matrix: Format M_{(row1)(row2)..(row N)}, where each row consists of

a sequence of comma-separated real numbers. For example,M_{(1.0,1.0)(0,1.0)}.

4. Diagonal matrix: Format G_{n[0],n[1],..,n[N-1]}, where each n is an integer

number. Represents a diagonal matrix

G {n [0] , .., n [N− 1]} = diag [n[0], . . . , n[N− 1]] =

⎡
⎢⎢⎢⎢⎣

n[0]

. . .

n[N − 1]

⎤
⎥⎥⎥⎥⎦

5. Permutation matrix: Permutation matrices are specified using permutation cycles.

The format is [(cycle0),(cycle1),..., size], where each cycle is a sequence

of comma-separated indexes. Indexes are assumed to start at 1. For example,

[(1,2,4),(3,6,5),8] represents the size-8 stride-by-2 permutation matrix, L8,2.

The format is not limited to stride permutations.

Additional compact formats are provided for the specification of common permu-

tations used in DSTs:

(a) Stride permutations: Format L_{size,stride}.

(b) Inverse identity: This permutation matrix is used as part of Püschel’s Cooley-

Tukey-like DCT formulations [96]. The format is P1_{size}.

(c) Perfect shuffle : Format P3_{size}.

(d) Bidiagonal matrix: This matrix is utilized in Hsiao and Tseng’s DCT al-

gorithm and Püschel’s Cooley-Tukey-like DCT formulations [81][96]. The

bidiagonal matrix is defined as:

153

Sk =

⎡
⎢⎢⎢⎢⎢⎣

1 1
1 1

. . .
. . .

1 1
1

⎤
⎥⎥⎥⎥⎥⎦

The format is P11_{size}.

6. U and UT matrices: U is a matrix of the form Up = [u0, u1, . . . , up−1], u0 = u1 =

. . . = up−1 = 1. The formats are U_{size} and UT_{size} for the U and UT

matrices, respectively.

Expression operators

The following operations are accepted:

1. Kronecker product (⊗), specified as \otimes.

2. matrix-matrix multiplication, specified as \times.

3. direct summation (⊕), specified as \osum.

Program output

The output consists of two files:

1. a .fig file with the data order topology representation of the dataflow graph. This

file can be viewed using the Xfig program [102].

2. a .gph file with a graph representation of the expression. The format of this file

is similar to the one used by METIS, a family of multilevel graph partitioning

algorithms [103]. The first line contains three integers n, m, and fmt, where n

and m are the number of nodes, respectively, and fmt indicates that the graph has

weights associated with both the nodes and edges. The remaining n lines specify

information about the nodes and edges. Each line has the following structure:

w, v1, e1, . . . , vk, ek ,

154

where w is the weight of node corresponding to the line number, e(1), . . . , e(k) are

the nodes adjacent to this node, and v(1), . . . , v(k) are the weights of the adjacent

nodes. Additional information and examples are available in [104].

The following example shows how to formulate a KPA expression using the KTG

format, as well as illustrations of the generated output files.

Example 2. A user would like to use KTG to obtain the dataflow graph for the

expression:

(F2 ⊗ I4) (I2 ⊗ (F2 ⊗ I2)) (I4 ⊗ F2) R8

The KTG command is as follows:

ktg.exe −exp “ (DFT {2} \otimes I {4} \times

(I {2} \otimes (DFT {2} \otimes I {2})) \times (I {4} \otimes DFT {2})
\times R {8} ” − name CT

(A.1)

This command generates two files: CT.fig and CT.gph. Figure A–1 shows a

CT.fig when opened using the Xfig program. Figure A–2 shows the content of

CT.gph.

OUTPUT_7

INPUT_0

INPUT_1

INPUT_2

INPUT_3

INPUT_4

INPUT_5

INPUT_7

INPUT_6

DFT_1_2_1

DFT_2_2_2

DFT_3_2_3

DFT_4_2_4 DFT_6_2_6

DFT_5_2_5

DFT_2_2_2

DFT_1_2_1 DFT_1_2_1

DFT_2_2_2

DFT_3_2_3

DFT_4_2_4

OUTPUT_0

OUTPUT_1

OUTPUT_2

OUTPUT_3

OUTPUT_4

OUTPUT_5

OUTPUT_6

Figure A–1: Visualization of CT.fig using the Xfig program.

The .gph output file contains an ‘dummy’ node in addition to the derived dataflow

graph. The purpose of this ‘dummy’ node is to provide a connected graph structure,

155

29 40 11 1
100 5 1 6 1 13 1 14 1
100 5 1 6 1 15 1 16 1
100 7 1 8 1 17 1 18 1
100 7 1 8 1 19 1 20 1
100 9 1 11 1 1 1 2 1
100 10 1 12 1 1 1 2 1
100 9 1 11 1 3 1 4 1
100 10 1 12 1 3 1 4 1
100 21 1 25 1 5 1 7 1
100 22 1 26 1 6 1 8 1
100 23 1 27 1 5 1 7 1
100 24 1 28 1 6 1 8 1
0 1 1 29 0
0 1 1 29 0
0 2 1 29 0
0 2 1 29 0
0 3 1 29 0
0 3 1 29 0
0 4 1 29 0
0 4 1 29 0
0 9 1
0 10 1
0 11 1
0 12 1
0 9 1
0 10 1
0 11 1
0 12 1
0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0

Figure A–2: CT.gph file contents.

which is a constraint in some graph partitioning software. Both the additional node

and the edges connecting it to the rest of the structure are weightless, to null their

effect on the partition solution.

A.1.2 KTG implementation functions and data structures

The current version of the KTG program was implemented in Microsoft Visual

C++. Figure A–3 shows KTG’s pseudocode, while Figure A–4 illustrates the ef-

fect of KTG’s functions on a sample command. Figures A–5 through A–7 show

the most relevant classes utilized in KTG. The Eq Node class, shown in Figure

A–5, is used during the conversion from a KPA expression string to a tokenized

postfix queue. An Eq Node object is created for each operation or operand matrix

156

in the KPA expression. The CComp class (Figure A–6) is an implementation of

the k-comp concept presented in Section 4.3.2. As shown in Figure 4–4, this data

structure expedites the deduction of computational structures and their intercon-

nections from the expression by facilitating the implementation of the basic KPA

operations. Figure A–7 shows the Node class, which is used to implement the data

order topology DFG nodes and edges.

Input: Command line arguments (CLA)
Output: .fig and .gph files

// Extracts the expression and output file name strings from
// the command line argument string.
(KPA_expression, output_filename) = parse_command_line_arguments(CLA);

// Extract all tokens (matrices and operations) from the expression string
// and return a vector of strings, where each element is a token.
vector <string> expression_tokens = parse_KPA_expression(KPA_expression);

// Organize the expression tokens into a queue so that they can be read
// and interpreted as a postfix expression.
queue <Eq_Node*> expression_queue = expression_to_postfix(expression_tokens);

// Read the token queue, interpret as a postfix expression, and
// create the corresponding CComp structures.
vector <Ccomp*> ccomp_list = expression_to_ccomp(expression_queue);

// Generate a data order topology dataflowgraph based on the list of
// CComp structures generated in the previous step.
vector <Node*> node_list = ccomp_to_nodes(ccomp_list);

// Generate the .fig and .gph files, based on the DFG contained in node_list;
generate_fig_file(node_list, output_filename + ".fig");
generate_gph_file(node_list, output_filename + ".gph");

Figure A–3: Pseudocode for the KTG prototype implementation.

A.2 Graph partitioning heuristic

DMAGIC’s graph partitioning heuristic was inspired by the Kernighan-Lin graph

bipartition heuristic. It incorporates DST and DHA graph level considerations to

provide effective partition solution space exploration. DGP, the current version of

the graph partitioning tool integrates the rest of DMAGIC graph-related tools, i.e.

157

Figure A–4: Illustration of the effect of KTG functions.

the KPA to DFG converter, the graph partitioning heuristic, and the resource and

latency estimators.

158

class Eq_Node {
Node_Type type;
void *data; // rest of data depending on type
public:

// Functions
void set_type(Node_Type);
Node_Type get_type();
// Several constructors for various types
Eq_Node(int);
Eq_Node(DST_Type, int);
Eq_Node(Operation_Type);
Eq_Node(Node_Type, std::string st);
. . .
~Eq_Node(); };

enum Node_Type {
I,
Transf,
Perm,
Twiddle,
Operation,
. . . . };

Figure A–5: Extract of Eq Node class.

A.2.1 Usage

The command to execute DGP is the following:

dgp.exe −exp “expression′′ −name output file name

−top topology description file name −fam device family file name

where:

• expression is a KPA expression, using the same specifications as stated in

Section A.1.1

• output file name will be the name of the generated output files.

• topology description file name is the name of the file that specifies the dis-

tributed hardware architecture as a hypergraph structure. The first line of

this file contains three integers e, n, and fmt, where e and n are the num-

ber of hyperedges and nodes, and fmt = 11 indicates that the graph has

weights associated with both the nodes and edges. The next e lines specify

159

class CComp {
public:

std::vector<Port> in_port, out_port;
std::vector<Device> device;
bool vert;
unsigned short stage, level;

// Functions
// Several constructors for various types
CComp();
CComp(int,int);
. . .
// Operations
CComp *mult(CComp *m); // matrix mult operation
CComp *clone();
CComp *kron(CComp*); // kron product operation
CComp *kron_by_U(CComp*);
CComp *direct_sum(CComp*); // direct sum operation
. . .
~CComp(); };

class Port {
public:

short dev;
unsigned int pin;
Node *gnode;
void set(int d, int p);
~Port(); };

enum Device_Type { I_dev, Perm_dev, Twiddle_dev, };

class Device {
public:

Device_Type type;
short size, index;
CComp *desc; // pointer for recursive structure
Node *gnode; // pointer to DFG node during DFG creation

// Functions
void set(char* st, CComp *d);
void set(char*, CComp*, Node*);
// Several constructors for various types
Device ();
. . . .
~Device(); };

Figure A–6: Extract of CComp, Port, and Device classes .

160

class Node {
public:

std::vector<Node*> child, parent; // pointers to other nodes
short stage; // computational column
short level;
Device_Type type;
int size;
int index;
short part; // partition
bool visible;
bool locked; // for KL-MH purposes
unsigned short c_step;

// Functions
void add_dest_edge(Node *to_node);
void add_source_edge(Node *to_node);
void delete_edge(Node *node);
std::vector<Node*> get_children();
std::vector<Node*> get_parents();
// Creators for various types
Node();
Node(char *st);
Node(Device_Type,int);
Node(Device_Type,int,int);
. . . };

Figure A–7: Extract of the Node class .

the hyperedges in the following format:

(line p) : wp−1, v1, . . . , vr

where wp−1 is the weight of hyperedge p − 1, and v1, . . . , vr are the nodes

connected to hyperedge p − 1. The next n lines specify the type of each

architectural device. The last line specifies the width in terms of points of each

of the communication channels. Figure A–8 shows the topology description

file for a DHA with four Xilinx XC2VP7 devices connected in a ring topology

with a crossbar. Latencies for the point-to-point channels and crossbar are 1

and cycles, respectively. The width of all channels is 1 point.

• device family file name is the name of a file that specifies the resources offered

by a family of devices. Each line in this file specifies the device name, number

161

5 4 11
1 1 2
1 2 3
1 3 4
1 4 1
2 1 2 3 4
xc2vp7
xc2vp7
xc2vp7
xc2vp7
1 1 1 1 1

Figure A–8: Example of a topology description file.

of slices, embedded multipliers and BRAMs for the device. For example,

Figure A–9 shows the contents of the file virtex2pro.res, which provides

resource information for Xilinx Virtex 2 Pro devices.

#device_name clbs emb_mults bram
xc2vp4 3008 28 28
xc2vp7 4928 44 44
xc2vp20 9280 88 88
xc2vp30 13696 136 136
xc2vp40 19392 192 192
xc2vp50 23616 232 232
xc2vp70 33088 328 328
xc2vp100 44096 444 444

Figure A–9: Example of a device family resource file.

Additional runtime parameters include:

• -type [CT |P |GS|S|TS]: this option can be used along with the -size op-

tion to specify common FFT formulations, instead of using the -expression

option.

• -size s: where s is the FFT size, when using the -type option.

• -rnd: This option generates a random initial partition instead of a linear

horizontal initial partition.

• -nsr: This option allows arbitrary swapping of nodes in the partitioning

heuristic. If this option is not specified, the default swapping is limited to

nodes within the same computation column.

162

The output of this program is provided in the standard output stream. The

following information is reported throughout execution:

(a) Resource estimation

(b) The final partition assignment for each node and the solution cost function

obtained by the partitioning heuristic.

(c) Scheduling information, followed by the latency estimate.

A.2.2 DGP prototype functions and data structures

The current prototype of the DGP tool was implemented in Visual C++. Fig-

ure A–10 shows the pseudocode for this implementation. Figure A–11 illustrates

the most relevant data structures used in the DGP graph partitioning heuristic

implementation. Figure A–11(a) shows that each vertex of the dataflow graph is

implemented as a node in a double linked-list. Each node’s associated information

includes its weight, level, partition and lists of pointers to its preceding and suc-

ceeding nodes, i.e. parents and children. Additionally, a vector v of pointers to

each node is maintained for O (1) access. Cost (Figure A–11(b)) is maintained as

a size-M vector, where M is the number of available channels in the topology. Fig-

ure A–11(c)) illustrates how DGP maintains communication channel information.

Communication channel properties such as its weight and width are maintained

using a vector of nodes CCP . Available communication between devices is imple-

mented using the upper triangular of a k × k − 1 bidimensional matrix of pointer

vectors, where the content of cell i, j points to the available channels that commu-

nicate devices i and j.

A.3 DMAGIC

The current version of DMAGIC explores the DFT or DCT formulation space

using the CT-like rules presented throughout this thesis and guided by Algorithm

9 in Chapter 5.

163

Input: Command line arguments (CLA)
Output: Estimation, partitioning, and scheduling information.

// Extracts strings from the command line argument.
(KPA_expression, output_filename, topo_filename, fam_filename, type, size) =

parse_command_line_arguments(CLA);

// If a DFT type and size was provided instead of an expression,
// build the DFT expression string.
if (empty(KPA_expression))

{ KPA_expression = build_formulation(type,size);}

// Convert the expression string to a data order topology DFG
DFG = ktg(KPA_expression);

// Interpret the topology file
topology = read_topology_file(topo_filename);

// Estimate the number of kernels available in each device
estimated_resources =

resource_estimate(KPA_expression, topology.device_type, fam_filename);

// Perform KL-MH algorithm on the DFG subject to the specified topology.
// See Section 4.5, Algorithm 6.
(min_cost, partition_mapping_function) = KL-MH(DFG, topology);

// Insert channel resource nodes in partitioned DFG (discussed in Section 4.6)
DFG = insert_channel_nodes(DFG);

// Resource-constrained ASAP schedule the DFG based on the estimated resources.
// See Section 4.6, Algorithms 7 and 8.
latency = ASAP_schedule(DFG, estimated_resources);

Figure A–10: Pseudocode for the DGP prototype implementation.

A.3.1 Usage

dmagic.pl −type DST type −size DST size

−top topology description file name −fam device family file name

where

• DST type is either DFT or DCT.

• DST size is power of two integer number.

164

Figure A–11: Main DGP data structures.

• topology description file name and device family file name are as in the pre-

vious section.

Example 3. A 128-point DFT is to be partitioned to a DHA that consists of

Xilinx XC2VP4 devices connected in a ring topology with crossbar. The DMAGIC

command is the following:

dmagic.pl −type DFT − size 128

−top 4 ring xbar XC2VP4.top −fam virtex2pro.res ,

Figure A–12 shows part of DMAGIC’s output as the previous command is exe-

cuted. An initial coarse tree (74+3-x+x+2+1-x+x+x+x) is generated based on

experimentally observed heuristics. This tree is partitioned and further decomposed

165

based on the partitioning results. Finally, the program outputs the formulation with

the minimal latency found through exploration.

A.3.2 DMAGIC functions and data structures

The current prototype of the DMAGIC formulation exploration algorithm was im-

plemented in the Perl programming language. DMAGIC explores the formulation

space using FFT and DCT Cooley-Tukey-like equations 5.1 and 5.40. The DGP

executable is called every time a new formulation is to be partitioned. Figure A–13

shows the pseudocode of the current implementation. Since only one rule is used

throughout exploration, at any moment the formulation can be fully represented

by its split tree. The current implementation uses binary tree data structures to

represent split trees. Extension of DMAGIC to handle multiple rules throughout

the exploration of a given DST would require a data structure that can store in-

formation about the rule used in each decomposition step. Readers interested in

extending DMAGIC in this manner are referred to [44] for related data structures.

166

perl dmagic.pl -type DFT -size 128 -top 4_ring_xbar_XC2VP4.top -fam virtex2pro.res

Performing first level split
Current split tree: 7@4+3-x+x+x+x
Performing second level split
Current split tree: 7@4+3-x+x+2+1-x+x+x+x
The final expression is: 7@4+3-x+x+2+1-x+x+x+x

Partitioning ...
Results:
Cost = <16,16,16,16,64>

Cost by stage: <0,0,0,0,0>
Cost by stage: <16,16,16,16,32>

The execute latency was: 89

Most congested stage: 1
Will split between leaves 4 and 2

Exploring children 4 (1,3)
Current split tree: 7@4+3-1+3+2+1-x+x+x+x+x+x+x+x

Partitioning ...
Results:
Cost = <24,24,24,24,32>

Cost by stage: <0,0,0,0,0>
Cost by stage: <24,8,24,8,16>
Cost by stage: <0,16,0,16,0>

Most congested stage: 1

The execute latency was: 57
Better latency than parent!!!

Exploring children 4 (2,2)
Current split tree: 7@4+3-2+2+2+1-x+x+x+x+x+x+x+x

Partitioning ...
......

This exploration has found that the best formulation is:
7@4+3-2+2+2+1-x+x+x+x+x+x+x+x with latency = 46

Figure A–12: Extract from DMAGIC’s output.

167

Input: Command line arguments (CLA)
Output: Exploration information, best formulation found.

// Extracts strings from the command line argument.
(DST_type, DST_size , topo_filename, fam_filename) =

parse_command_line_arguments(CLA);

// Initialize split tree structure (create the split tree root).
split_tree = init_split_tree(DST_size);

// Perform the initial split tree splits based on experimentally
// obtained heuristics.
best_split_leaf_tree = perform_initial_splits(split_tree, DST_type, topo_filename);
best_latency = Infinite;
best_split_leaf_latency = 0;

// Explore the formulation space, as presented in Section 5.3, Algorithm 9.
while (best_split_leaf_latency < best_latency && split leaves != 0) {

best_latency = best_split_leaf_latency;
split_tree = best_split_leaf_tree;

// Based on the latency results determine which leaf to split.
leaf_to_split = analyze(latency, split_tree);

// Determine the DST formulation for the split tree.
expression = tree_to_expression(split_tree, DST_type);

// Partition using dgp and obtain inter column and global latencies
latency = dgp(expression, topo_filename, fam_filename);

best_split_leaf_latency = Inf;

// Explore the possible split combinations for the chosen split leave.
for each possible split_combination of leaf_to_split {

// Create a candidate split tree by splitting the chosen leaf
candidate_split_tree =

split_leaf_of_tree(split_tree, leaf_to_split, split_combination);

expression = tree_to_expression(candidate_split_tree);
latency = dgp(expression, topo_filename, fam_filename);

if (latency < best_split_leaf_latency) {
best_split_leaf_latency = latency;
best_split_leaf_tree = candidate_split_tree;

}
}

}
output(split_tree);

Figure A–13: Pseudocode for the DMAGIC prototype implementation.

APPENDIX B

CT-like FFT formulation derivation

The FFT Cooley-Tukey-like formulation used in our experiments and formula-

tion exploration derives from the Cooley-Tukey version of the FFT. For hardware

implementation and formulation exploration purposes, our formulation has the ad-

vantage of requiring the same amount of multiplications for any breakdown strategy

of a given size FFT. Furthermore, the derived formulation consists of recursively

decomposable functional primitives which are ultimately composed of the same

butterfly·twiddle primitive. This appendix details the derivation of the CT-like

FFT formulation.

The Cooley-Tukey version of a 2t-point FFT corresponds to the factorization

F2t =

(
1∏

q=t,t−1

(I2t−q ⊗ B2,2q−1)

)
R2t , (B.1)

where

Bp,m = (Fp ⊗ Im) Tp,m , (B.2)

R2t is the size-2t bit reversal permutation matrix, and

Tp,m (j, j) = ω(jmodm)�j/m�
pm for j = 0, . . . , pm− 1 , (B.3)

where ωn = exp
(

2πpqi
n

)
.

168

169

In Equation B.3, if n = pm and p = 2 or m = 2, then at least half of the twiddles

factors have a value of 1. For example,

T2,n/2 (j, j) = ω
(jmod(n/2))�j/(n/2)�
n for j = 0, . . . , n− 1

= diag

⎡
⎢⎣ω0

n, ω
0
n, . . . , ω

0
n︸ ︷︷ ︸

n/2 coefficients

, ω0
n, ω

1
n, ω

2
n, . . . , ω

(n/2−1)
n︸ ︷︷ ︸

n/2 coefficients

⎤
⎥⎦ .

(B.4)

Thus, in the expression:

B2,m = (F2 ⊗ Im) T2,m , (B.5)

each F2 will be preceded by at most a single (non-trivial) multiplication. The

functionality of each butterfly·twiddle combination can be encapsulated and repre-

sented by a size-2 matrix β2. The computational structure of Equation B.5 can

then be written as:

B2,m = (β2 ⊗ Im) , (B.6)

and

F2t =

(
1∏

q=t,t−1

(I2t−q ⊗ (β2 ⊗ I2q−1))

)
R2t . (B.7)

Let

β2t =

1∏
q=t,t−1

(I2t−q ⊗ (β2 ⊗ I2q−1)) , (B.8)

then

F2t = β2tR2t , (B.9)

If t = r + s, β2t can be expanded

β2t =

(
t−r+1∏

q=t,t−1

(I2t−q ⊗ (β2 ⊗ I2q−1))

)
︸ ︷︷ ︸

C

(
1∏

q=r,r−1

(I2t−q ⊗ (β2 ⊗ I2q−1))

)
︸ ︷︷ ︸

D

, (B.10)

170

C =

(
1∏

q1=s

(I2t−(q1+r) ⊗ (β2 ⊗ I2q1+r−1))

)
=

(
1∏

q1=s

(I2s−q1 ⊗ (β2 ⊗ I2q1−1))

)
⊗ I2r

= β2s ⊗ I2r ,

(B.11)

D =

(
1∏

q2=r,r−1

(I2t−q2 ⊗ (β2 ⊗ I2q2−1))

)
= I2s ⊗

(
1∏

q2=r,r−1

(I2r−q2 ⊗ (β2 ⊗ I2q2−1))

)
= I2s ⊗ β2r .

(B.12)

Therefore,

β2t = (β2s ⊗ I2r) (I2s ⊗ β2r) , (B.13)

and

F2t = (β2s ⊗ I2r) (I2s ⊗ β2r) R2t . (B.14)

REFERENCE LIST

[1] Jari Nikara. Application-Specific Parallel Structures for Discrete Cosine

Transform and Variable Length Coding. PhD thesis, Tampere University

of Technology, 2004.

[2] J. M. Rabaey, W. Gass, R. Brodersen, T. Nishitani, and Tsuhan Chen.

VLSI design and implementation fuels the signal-processing revolution. IEEE

Signal Processing Magazine, 15(1):22–37, January 1998.

[3] Kevin Morris. DSP heats up. FPGA and Programmable Logic Journal, May

2004.

[4] Tom Durkin. SETI researchers sift interstellar static for signs of life. Xcell

Journal, Spring 2004.

[5] Chen Chang, Kimmo Kuusilinna, Brian Richards, and Robert W. Brodersen.

Implementation of BEE: a real-time large-scale hardware emulation engine.

In FPGA ’03: Proceedings of the 2003 ACM/SIGDA eleventh international

symposium on Field programmable gate arrays, pages 91–99. ACM Press,

2003.

[6] Dac Pham, et al. Key features of the design methodology enabling a multi-

core SoC implementation of a first-generation CELL processor. In ASP-

DAC ’06: Proceedings of the 2006 conference on Asia South Pacific design

automation, pages 871–878, New York, NY, USA, 2006. ACM Press.

[7] Vinoo Srinivasan, Sriram Govindarajan, and Ranga Vemuri. Fine-grained

and coarse-grained behavioral partitioning with effective utilization of mem-

ory and design space exploration for multi-FPGA architectures. IEEE Trans.

Very Large Scale Integr. Syst., 9(1):140–159, 2001.

171

172

[8] O. Bringmann, C. Menn, and W. Rosenstiel. Target architecture oriented

high-level synthesis for multi-FPGA based emulation. In Proceedings of the

European Design and Test Conference 2000, pages 326–332, 2000.

[9] Scott Hauck. Multi-FPGA Systems. PhD thesis, University of Washington,

1995.

[10] A. A. Duncan, D. C. Hendry, and P. Gray. An overview of the COBRA-ABS

high level synthesis system for multi-FPGA systems. In FPGAs for Custom

Computing Machines, 1998. Proceedings. IEEE Symposium on, pages 106–

115, Napa Valley, CA, April 1998.

[11] A. Jones, A. Nayak, and P. Banerjee. Parallel implementation of matrix and

signal processing libraries on FPGAs. In Proc. Intl. Conf. on Parallel and

Distrib. Computing and Systems, 2001.

[12] Frank Vahid. Partitioning sequential programs for CAD using a three-step

approach. ACM Trans. Des. Autom. Electron. Syst., 7(3):413–429, 2002.

[13] Petru Eles, Krzysztof Kuchcinski, and Zebo Peng. System Synthesis with

VHDL. Kluwer Academic Publishers, 1997.

[14] Frank Vahid. A three-step approach to the functional partitioning of large

behavioral processes. In ISSS, pages 152–157, 1998.

[15] Michael C. McFarland, Alice C. Parker, and Raul Camposano. Tutorial on

high-level synthesis. In Proceedings of the 25th ACM/IEEE conference on

Design automation, pages 330–336. IEEE Computer Society Press, 1988.

[16] A.A. Duncan, D.C. Hendry, and P. Gray. The COBRA-ABS high-level syn-

thesis system for multi-FPGA custom computing machines. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, 9(1):218–223, 2001.

[17] Scott Hauck and Gaetano Borriello. Logic partition orderings for multi-

FPGA systems. In Proceedings of the International Symposium on Field-

Programmable Arrays, 1995.

173

[18] Ron Wilson. Structured ASICs arrive. EETimes, May 5, 2003.

[19] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and

D. Lopresti. Building and using a highly parallel programmable logic array.

Computer, 24(1):81–89, 1991.

[20] Jeffrey M. Arnold, Duncan A. Buell, and Elaine G. Davis. Splash 2. In

Proceedings of the fourth annual ACM symposium on Parallel algorithms

and architectures, pages 316–322. ACM Press, 1992.

[21] J.M. Arnold, D.A. Buell, D.T. Hoang, D.V. Pryor N. Shirazi, and M.R.

Thistle. The SPLASH 2 processor and applications. In Proceedings IEEE

International Conference on VLSI in Computers and Processors, pages 482–

485, 1993.

[22] N. Shirazi, A. Walters, and P. Athanas. Quantitative analysis of floating

point arithmetic on FPGA based custom computing machines. In Proceed-

ings. IEEE Symposium on FPGAs for Custom Computing Machines, 1995.

[23] M. Rencher and B.L. Hutchings. Automated target recognition on SPLASH

2. In The 5th Annual IEEE Symposium on FPGAs for Custom Computing

Machines, pages 192–200, 1997.

[24] Liang Xuejun and J.S.-N. Jean. Mapping of generalized template match-

ing onto reconfigurable computers. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 11(3):485–498, 2003.

[25] Steve Guccione. List of FPGA-based Computing Machines .

http://www.io.com/ guccione/HWlist.html, 2000.

[26] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey

of systems and software. ACM Comput. Surv., 34(2):171–210, 2002.

[27] Bob Brodersen, Chen Chang, John Wawrzynek, Dan Werthimer, and Melvyn

Wright. BEE2: a multi-purpose computing platform for radio telescope dig-

ital signal processing applications. In International Square Kilometre Array

174

Meeting, 2004.

[28] C. Chang, J. Wawrzynek, and R.W. Brodersen. BEE2: a high-end reconfig-

urable computing system. IEEE Design and Test of Computers, 22(2):114–

125, 2005.

[29] I. Koren and Z. Koren. Defect tolerance in VLSI circuits: techniques and

yield analysis. Proceedings of the IEEE, 86(9):1819–1838, September 1998.

[30] Kaustav Banerjee, Massoud Pedram, and Amir H. Ajami. Analysis and opti-

mization of thermal issues in high-performance vlsi. In ISPD ’01: Proceedings

of the 2001 international symposium on Physical design, pages 230–237, New

York, NY, USA, 2001. ACM Press.

[31] Jason Cong, Yiping Fan, Guoling Han, Xun Yang, and Zhiru Zhang;. Ar-

chitectural synthesis integrated with global placement for multi-cycle com-

munication. In ICCAD-2003 - International Conference on Computer Aided

Design, pages 536–543, Nov. 2003.

[32] M. Garey, D. Johnson, and L. Stockmeye. Some simplified NP-complete

graph problems. Theoretical Computer Science, (1):237–267, December 30,

1976.

[33] Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist parti-

tioning: a survey. Integr. VLSI J., 19(1-2):1–81, 1995.

[34] Frank M. Johannes. Partitioning of VLSI circuits and systems. In Proceedings

of the 33rd annual conference on Design automation conference, pages 83–87.

ACM Press, 1996.

[35] Roman Kuznar, Franc Brglez, and Krzysztof Kozminski. Cost minimization

of partitions into multiple devices. In DAC ’93: Proceedings of the 30th

international conference on Design automation, pages 315–320, New York,

NY, USA, 1993. ACM Press.

175

[36] Nan-Chi Chou, Lung-Tien Liu, Chung-Kuan Cheng, Wei-Jin Dai, and Rod-

ney Lindelof. Circuit partitioning for huge logic emulation systems. In DAC

’94: Proceedings of the 31st annual conference on Design automation, pages

244–249, New York, NY, USA, 1994. ACM Press.

[37] Chunghee Kim and Hyunchul Shin. A performance-driven logic emulation

system: FPGA network design and performance-driven partitioning. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

15(5):560–568, May 1996.

[38] Wen-Jong Fang and Allen C.-H. Wu. Multiway FPGA partitioning by

fully exploiting design hierarchy. ACM Trans. Des. Autom. Electron. Syst.,

5(1):34–50, 2000.

[39] Ching-Wei Yeh, Chung-Kuan Cheng, and Ting-Ting Y. Lin. A probabilistic

multicommodity-flow solution to circuit clustering problems. In ICCAD ’92:

Proceedings of the 1992 IEEE/ACM international conference on Computer-

aided design, pages 428–431, Los Alamitos, CA, USA, 1992. IEEE Computer

Society Press.

[40] N. Dutt and C. Ramachandran. Benchmarks for the 1992, high-level synthesis

workshop. In Tech. Report #92-107 - Information and Computer Science

Department, Irvine, 1992.

[41] Vinoo Srinivasan. Partitioning for FPGA-based reconfigurable computers.

PhD thesis, University of Cincinnati, 1999.

[42] Annapolis Microsystems Inc. http://www.annapmicro.com/.

[43] Pinit Kumhom. Design, Optimization, and Implementation of a Universal

FFT Processor. PhD thesis, Drexel University, 2001.

[44] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela

Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Gačić, Yev-

gen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo. SPIRAL:

176

Code generation for DSP transforms. Proceedings of the IEEE, special issue

on ”Program Generation, Optimization, and Adaptation”, 93(2), 2005.

[45] Matteo Frigo and Steven G. Johnson. The design and implementation of

FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[46] E.D. Lagnese and D.E. Thomas. Architectural partitioning for system level

synthesis of integrated circuits. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 10(7):847–860, 1991.

[47] Zhang Yang and Rajesh K. Gupta. A case analysis of system partitioning

and its relationship to high-level synthesis tasks. In VLSID ’98: Proceedings

of the Eleventh International Conference on VLSI Design: VLSI for Signal

Processing, pages 442–448, Washington, DC, USA, 1998. IEEE Computer

Society.

[48] F. Vahid and D. D. Gajski. Specification partitioning for system design. In

DAC ’92: Proceedings of the 29th ACM/IEEE conference on Design automa-

tion, pages 219–224, Los Alamitos, CA, USA, 1992. IEEE Computer Society

Press.

[49] S. Periyacheri, A. Jones, A. Nayak, D. Zaretsky, P. Banerjee, N. Shenoy, and

A. Choudhary. Library functions in reconfigurable hardware for matrix and

signal processing operations in MATLAB. In International Conference on

Parallel and Distributed Computing and Systems (PDCS 1999), November

1999.

[50] C. Chakrabarti and J. JaJa. VLSI architectures for multidimensional trans-

forms. IEEE Transactions on Computers, 40(9):1053–1057, Sept. 1991.

[51] U. Meyer Baese. Discrete signal processing with field programmable gate

arrays. Springer, 2004.

[52] Charles VanLoan. Computational frameworks for the fast Fourier transform.

SIAM, 1992.

177

[53] Fang Fang, James C. Hoe, Markus Pueschel, and Smarahara Misra. Ge-

neration of custom DSP transform IP cores: Case study Walsh-Hadamard

transform. In HPEC 02 Workshop, September 2002.

[54] Xilinx FFT Logic Cores. http://support.xilinx.co.jp/ipcenter/coregen/41i-

1-datasheets.htm.

[55] B.M. Baas. A low-power, high-performance, 1024-point FFT processor. IEEE

Journal of Solid-State Circuits, 34(3):380–387, March 1999.

[56] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar. An application

specific DSP chip set for 100 MHz data rates. In Int. Conf. Acoustics, Speech,

and Signal Processing, volume 4, pages 1989–1992, April 1988.

[57] He Shousheng and M. Torkelson. Design and implementation of a 1024-point

pipeline FFT processor. In Proceedings of the IEEE 1998 Custom Integrated

Circuits Conference, pages 131–134, 1998.

[58] Grace Nordin, Peter A. Milder, James C. Hoe, and Markus Püschel. Automa-

tic generation of customized discrete Fourier transform IPs. In Proceedings

of the 2005 Design Automation Conference, June 2005.

[59] J.H. Takala, T.S. Jarvinen, P.V. Salmela, and D.A. Akopian. Multi-port

interconnection networks for radix-r algorithms. In Proceedings IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP

’01), 2001.

[60] Peter A. Milder, Mohammad Ahmad, James C. Hoe, and Markus Püschel.

Fast and accurate resource estimation of automatically generated custom

DFT IP cores. In FPGA’06: Proceedings of the internation symposium on

Field programmable gate arrays, pages 211–220, New York, NY, USA, 2006.

ACM Press.

[61] Alex Chow. Unleashing the power: A programming example of large FFTs

on Cell. In European Power.org Community Conference, 2005.

178

[62] Matteo Frigo. Portable High-Performance Programs. PhD thesis, MIT, 1999.

[63] Sebastian Egner, Jeremy Johnson, David Padua, Markus Pschel, and Jianxin

Xiong. Automatic derivation and implementation of signal processing al-

gorithms. ACM SIGSAM Bulletin Communications in Computer Algebra,

35(2):1–9, 2001.

[64] Reinhard Diestel. Graph Theory. Springer-Verlag, 2005.

[65] R.A. Arce-Nazario, M. Jimenez, and D. Rodriguez. Functionally-aware par-

titioning of discrete signal transforms for distributed hardware architectures.

In Proceedings of the 49th Midwest Symposium on Circuits and Systems,

pages 1438–1441, 2006.

[66] Mark Davio. Kronecker products and shuffle algebra. IEEE Trans. on Com-

puters, 30(2):116–125, Feb. 1981.

[67] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. Bell Syst. Tech. J., 49(2):291–307, 1970.

[68] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In DAC ’82: Proceedings of the 19th conference on Design

automation, pages 175–181, Piscataway, NJ, USA, 1982. IEEE Press.

[69] Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation: Theory

and Practice. World Scientific Pub Co., 1999.

[70] J. Rose, W. Klebsch, and J. Wolf. Temperature measurement and equilib-

rium dynamics of simulated annealing placements. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 9(3):253–259,

March 1990.

[71] Manuel Jimenez. A placement methodology for low power VLSI circuits. PhD

thesis, Michigan State University, 1999.

[72] Y. C. Zhao, L. Tao, K. Thulasiraman, and M. N. S. Swamy. An efficient

simulated annealing algorithm for graph bisectioning. In Proceedings of the

179

Symposium on Applied Computing, pages 65–68, Kansas City, MO, April

1991.

[73] M. P. Vecchi S. Kirkpatrick, C. D. Gelatt. Optimization by simulated an-

nealing. Science, 220(4958):671–680, 1983.

[74] Steve R. White. Concepts of scale in simulated annealing. In Proceedings

ICCD, pages 646–651, 1984.

[75] John H. Holland. Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis with Applications to Biology, Control, and Artificial Intel-

ligence. The MIT Press.

[76] V. Schnecke and O. Vornberger. Hybrid genetic algorithms for constrained

placement problems. IEEE Transactions on Evolutionary Computation,

1(4):266–277, November 1997.

[77] S.M. Sait, H. Youssef, K. Nassar, and M.S.T. Benton. Timing driven genetic

algorithm for standard-cell placement. In Computers and Communications,

1995. Conference Proceedings of the 1995 IEEE Fourteenth Annual Interna-

tional Phoenix Conference on, pages 403–409, Scottsdale, AZ, March 1995.

[78] J.P. Cohoon and W.D. Paris. Genetic placement. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 6(6):956–964,

November 1987.

[79] V. Krishnan and S. Katkoori. A genetic algorithm for the design space

exploration of datapaths during high-level synthesis. IEEE Transactions on

Evolutionary Computation, 10(3):213–229, June 2006.

[80] L.A. Sanchis. Multiple-way network partitioning. IEEE Transactions on

Computers, 38(1):62–81, 1989.

[81] Shen-Fu Hsiao and Jian-Ming Tseng. Parallel, pipelined and folded architec-

tures for computation of 1-D and 2-D DCT in image and video codec. The

Journal of VLSI Signal Processing, 28(3):205–220, 2001.

180

[82] C. F. Bornstein, A. Litman, B. M. Maggs, R. K. Sitaraman, and T. Yatzkar.

On the bisection width and expansion of butterfly networks. In Proceedings of

the 12th International Parallel Processing Symposium, pages 144–150, March

1998.

[83] R.N. Bracewell. The fast Hartley transform. Proceedings of the IEEE,

72(8):1010–1018, 1984.

[84] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocat-

ing directed task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–

471, 1999.

[85] C. Brandolese, W. Fornaciari, and F. Salice. An area estimation metho-

dology for FPGA based designs at SystemC-level. In Design Automation

Conference, 2004. Proceedings. 41st, pages 129–132, 2004.

[86] Xilinx, Inc. Xilinx Virtex-II Pro Platform FPGA Data Sheet. 2005.

[87] Altera, Inc. Stratix II Device Handbook . 2006.

[88] Jen-Chuan Chi and Sau-Gee Chen. An efficient FFT twiddle factor generator.

In Proceedings of the 12th European Signal Processing Conference, 2004.

[89] Marcus Püschel, et al. SPIRAL: Code generation for DSP transforms. Pro-

ceedings of the IEEE, 93(2), 2005.

[90] M. Kandemir. 2D data locality: definition, abstraction, and application.

In Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACM International

Conference on, pages 275–278, 2005.

[91] George Karypis. Multilevel Hypergraph Partitioning, chapter 1. Kluwer Aca-

demic Publishers, 2002.

[92] Bryan Singer and Manuela Veloso. Learning to construct fast signal process-

ing implementations. J. Mach. Learn. Res., 3:887–919, 2003.

[93] W.H. Chen., C.H. Smith, and S. C. Fralick. A fast computational algorithm

for the discrete cosine transform. IEEE Transactions on Communications,

181

25(9):1004–1009, 1977.

[94] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. Practical fast 1-d DCT

algorithms with 11 multiplications. In Proceedings of the International Con-

ference on Acoustics, Speech, and Signal Processing, pages 988–991, Glasgow,

May 1989.

[95] Zhongde Wang. Reconsideration of ”a fast computational algorithm for

the discrete cosine transform”. IEEE Transactions on Communications,

31(1):121–123, January 1983.

[96] M. Puschel. Cooley-Tukey FFT like algorithms for the DCT. In Proceed-

ings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 2, pages 501–504, April 2003.

[97] Zhongde Wang. Pruning the fast discrete cosine transform. IEEE Transac-

tions on Communications, 39(5):640–643, May 1991.

[98] J. Takala, D. Akopian, J. Astola, and J. Saarinen. Constant geometry algo-

rithm for discrete cosine transform. IEEE Transactions on Signal Processing,

48(6):1840–1843, 2000.

[99] Lars W. Hagen, Dennis J. H. Huang, and Andrew B. Kahng. Quantified sub-

optimality of VLSI layout heuristics. In Proceedings of the 32nd ACM/IEEE

conference on Design automation, pages 216–221, New York, NY, USA, 1995.

ACM Press.

[100] G. Moriarty. Three kinds of ethics for three kinds of engineering. IEEE

Technology and Society Magazine, 20(3):31 – 38, Fall 2001.

[101] Health and Human Services Commission on Research Integrity. Profes-

sional Misconduct Regarding Involving Research. Professional Ethics Report,

VIII(3), Summer 1995.

[102] Xfig Drawing Program for the X Windows System. http://www.xfig.org.

182

[103] METIS - Family of Multilevel Partitioning Algorithms.

http://glaros.dtc.umn.edu/gkhome/views/metis.

[104] METIS - A Software Package for Partitioning Unstructured Graphs, Parti-

tioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices.

http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf.

BIOGRAPHICAL SKETCH

Rafael Arce-Nazario started CISE doctoral studies in August 2002, after obtaining

a study leave from UPR-Humacao, where he is an Auxiliary Professor with the

Department of Physics and Electronics since 1997. Mr. Arce-Nazario holds a

BS Computer Engineering from UPR-Mayagüez (May 1992) and a MS Electrical

and Computer Engineering from the University of Wisconsin-Madison (December

1993). He has worked both in private industry as well as in academia.

During the past five years, Rafael worked under the supervision of Dr. Manuel

Jiménez Cedeño, with whom he researched various themes related to the general

area of electronic design automation. From 2002-03, he focused his research efforts

on the representation and manipulation of logic functions, helping expand a method

previously proposed by Dr. Jiménez’s. A related paper, ‘Integer Pair Represen-

tation for Multiple-Output Logic’ by Arce-Nazario and Jiménez was published in

the Proceedings of the IEEE-Midwest Symposium on Circuits and Systems 2003.

During July-October 2004, Rafael did a graduate internship with IBM, Rochester,

working with the Chip Physical Design and CAD Tools group, where he was ex-

posed to areas of the Physical Design automation of VLSI Circuits. Along with

his mentor, Dr. Bob Lembach, he coauthored the paper ‘A diagnostic method for

detecting and assessing the impact of physical design optimizations on routing’,

which was published in the Proceedings of the ACM-International Symposium on

Physical Design 2005.

The research conducted by Arce-Nazario during his Ph.D. studies generated the

following publications and presentations:

Journal Articles

(a) R. Arce Nazario, M. Jiménez, D. Rodŕıguez. ‘Mapping of Discrete Cosine

Transforms onto Distributed Hardware Architectures’. Submitted to the Jour-

nal of VLSI Signal Processing. April 2007. Springer. Status: Under revision.

183

184

(b) R.. Arce Nazario, M. Jiménez, D. Rodriguez. ‘Algorithmic-level Exploration

of Discrete Signal Transforms for Partitioning to Distributed Hardware Archi-

tectures’. Accepted on May 2007 for publication in IET Computers & Digital

Techniques.

Papers in Conference Proceedings

(a) R. Arce Nazario, M. Jiménez, D. Rodŕıguez. ‘DMAGIC: A High-level Parti-

tioning Methodology for Discrete Signal Transforms onto Distributed Hard-

ware Architectures’. Submitted to the 11th Annual Workshop on High Per-

formance Embedded Computing. MIT Lincoln Lab. September 2007

(b) R. Arce Nazario, M. Jiménez, D. Rodŕıguez. ‘Partitioning Exploration for Au-

tomated Mapping of Discrete Cosine Transforms onto Distributed Hardware

Architectures’. Accepted to the 50th IEEE Midwest Symposium on Circuits

and Systems. August 2007. Montreal, Canada.

(c) R. Arce Nazario, M. Jiménez, D. Rodŕıguez. ‘High-level Partitioning of Dis-

crete Signal Transforms for Multi-FPGA Architectures’. 16th IEEE Interna-

tional Conference on Field Programmable Logic and Applications. August

2006. Madrid, Spain.

(d) R. Arce Nazario, M. Jiménez, D. Rodŕıguez. ‘Functionally-aware Partitioning

of Discrete Signal Transforms for Distributed Hardware Architectures’. 49th

IEEE Midwest Symposium on Circuits and Systems. August 2006. San Juan,

PR.

(e) R. Arce Nazario, M. Jiménez, D. Rodŕıguez. ‘Effects of High-Level Discrete

Signal Transform Formulations on Partitioning for Distributed Hardware Ar-

chitectures’. IEEE on Symposium Field-Programmable Custom Computing

Machines. April 2006. Napa, CA

(f) R. Arce Nazario, M. Jiménez, D. Rodŕıguez. ‘An Assessment Of High-Level

Partitioning Techniques For Implementing Discrete Signal Transforms On

Distributed Hardware Architectures’. 48th IEEE Midwest Symposium on

Circuits and Systems. August 2005. Cincinnati, Ohio.

(g) R. Lembach, R. Arce-Nazario, D. Eisenmenger, and C. Wood. ‘A diagnostic

method for detecting and assessing the impact of physical design optimizations

on routing’. ACM International Symposium on Physical Design. April 2005.

San Francisco, CA. April 2007.

(h) R. Arce Nazario, M. Jiménez, ‘Integer Pair Representation for Multiple Out-

put Logic’, 47th IEEE Midwest Symposium on Circuits and Systems. Cairo,

Egypt. December 2003.

185

Others posters, presentations and papers

(a) R. Arce-Nazario and Manuel Jiménez. ‘High-Level Partitioning of Discrete

Signal Transforms for Distributed Hardware Architectures’ . Poster presenta-

tion: Puerto Rico Interdisciplinary Scientific Meeting. Bayamn, Puerto Rico.

February 2007.

(b) R. Arce-Nazario and Manuel Jiménez. ‘High-Level Partitioning of Discrete

Signal Transforms for Distributed Hardware Architectures’ . Poster presen-

tation: Workshop on Grid Services, Automated Information Processing, and

Wireless Sensor Networks. San Juan, Puerto Rico. February 2007.

(c) R. Arce-Nazario, Manuel Jiménez, and Domingo Rodriguez. ‘High-level Parti-

tioning of Discrete Signal Transforms for Multi-FPGA Architectures’. Poster

presented at WALSAIP Project HP Labs research visit. Mayagez, Puerto

Rico. October 2006.

(d) R. Arce-Nazario and Manuel Jiménez. ‘High-Level Partitioning of Discrete

Signal Transforms for Distributed Hardware Architectures’ . Poster presen-

tation: Puerto Rico Interdisciplinary Scientific Meeting. Cayey, Puerto Rico.

March 2006.

(e) R. Arce Nazario, M. Jiménez, D. Rodŕıguez. ‘High-Level Partitioning Tech-

niques For Implementing Discrete Signal Transforms On Distributed Hard-

ware Architectures’. Poster presentation in Annual EPSCoR conference. Rio

Grande, PR. September 2005.

(f) R. Arce Nazario, M. Jiménez, ‘High-Level Partitioning Of DSP Algorithms

For Multi-FPGA Systems’. Poster presentation. GEM Consortium Future

Faculty and Professionals Symposium. Las Vegas, NV, June 2004.

(g) R. Arce Nazario, M. Jiménez, ‘High-Level Partitioning Of DSP Algorithms

For Multi-FPGA Systems - A First Approach’, Proceedings of the Computing

Research Conference, Mayagez, PR, April 2004

(h) R. Arce Nazario, M. Jiménez, ‘Integer Pair Representation for Multiple Out-

put Logic’, PRSGC Second Congress on Integrating NASA Research and

Education Projects in Puerto Rico, San Juan, PR, November 2003

(i) R. Arce Nazario, M. Jiménez, ‘Integer Pair Representation for Multiple Out-

put Logic’, Proceedings of the Computing Research Conference, Mayagez,

PR, April 2003.

	ABSTRACT ENGLISH
	ABSTRACT SPANISH
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Objectives and Scope of Research
	Dissertation Overview

	Related Work
	Electronic Design Automation
	Distributed Hardware Architectures
	Partitioning to DHAs
	Graph partitioning algorithms
	Partitioning for Distributed Hardware Architectures
	Structural partitioning
	Behavioral-level Partitioning
	Limitations of Previous Methods
	A glimpse into our approach

	Hardware implementation of signal transforms
	General DST Definition
	DFT implementations

	Optimizing discrete signal transform implementations for specific architectures
	Summary

	Problem Formulation
	Problem Statement
	Methodology
	Summary

	Tools
	Kronecker Product Algebra
	Definitions and Basic Rules

	Stride Permutations
	From Kronecker Products Algebra to Dataflow Graph
	Problem Formulation
	Implementation

	Graph Partitioning
	Problem Formulation
	Algorithms for Graph Partitioning
	Preliminaries
	Kernighan-Lin Bipartitioning Heuristic
	Fiduccia-Mattheyses
	Simulated Annealing
	Genetic Algorithms
	k-way Partitioning

	k-way Implementation
	Cost Function
	DST Considerations in Graph Partitioning
	Complexity

	Scheduling
	 Resource Estimation
	Architectural Model
	 Target Technology
	 Resource Estimation Model
	 Module Components Resource Estimation
	Resource estimation scheme validation

	Summary

	Formulation Exploration
	General Considerations
	Experiments to Assess Effect of Transformations on Partition Quality
	Inter-stage Permutations
	Kernel Granularity
	Breakdown Strategy

	FFT Formulation Exploration Heuristic
	Partitioning the Discrete Cosine Transform
	DCT Regular Algorithms
	Püschel's Cooley-Tukey-like DCT Algorithms
	Hsiao and Tseng's DCT Algorithm
	Morikawa's Simple Structured Fast DCT algorithm
	Nikara's Perfect Shuffle DCT Algorithm

	CT-like Decomposition for NPS-DCT
	Experiments
	Summary

	Results and Analysis
	Graph Considerations
	Initial Partitioning Solution
	Stage-limited Node Swapping

	Effect of Formulation Exploration
	Comparison Against Established Methodology
	Srinivasan's DFGP Methodology
	Results Comparison

	Scaling the Suboptimality
	Summary

	Conclusions
	Contributions
	Limitations
	Future Work

	Ethics
	APPENDICES
	Prototype Documentation
	Kronecker to dataflow graph tool (KTG)
	KTG Usage
	KTG implementation functions and data structures

	Graph partitioning heuristic
	Usage
	DGP prototype functions and data structures

	DMAGIC
	Usage
	DMAGIC functions and data structures

	CT-like FFT formulation derivation
	References

	BIOGRAPHICAL SKETCH

