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ABSTRACT

USING GRID COMPUTING TO ENABLE

HYPERSPECTRAL IMAGING ANALYSIS

By

Carmen Liliana Carvajal-J́ımenez

Hyperspectral imaging analysis demands large input data sets and in turn re-

quires significant CPU time and memory capacity. Grid Computing has the potential of

improving the performance of these types of data and computational intensive applications.

In this thesis we describe the design and implementation of Grid-HSI, a Service Oriented

Architecture-based Grid application to enable hyperspectral imaging analysis. Grid-HSI

provides users with a transparent interface to access computational resources and perform

remotely hyperspectral imaging analysis through a set of Grid services. The base of the

system is composed by a Portal Grid Interface, a Data Broker and a set of specialized Grid

services. The system is based on the Open Grid Service Architecture (OGSA), and imple-

mented on the top of Globus Toolkit 3 (GT3). We have conducted experiments that show

the suitability of Grid-HSI to perform efficiently hyperspectral analysis.
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RESUMEN

USANDO COMPUTACION EN MALLA PARA

HABILITAR EL ANALISIS DE IMAGENES

HIPERESPECTRALES

Por

Carmen Liliana Carvajal-J́ımenez

Las imágenes hiperespectrales demandan gran tiempo de procesamiento al igual

que gran requerimiento de capacidad de memoria. La computación en malla tiene el po-

tencial de mejorar el rendimiento para el análisis de imágenes hyperespactrales y de apli-

caciones de computación intensiva. En esta tesis se describe el diseño y la implementación

de Grid-HSI, una aplicación en malla basada en una arquitectura orientada a servicio para

habilitar el análisis de imágenes hyperespactrales. Grid-HSI provee a los usuarios una inter-

fase transparente para acceder a recursos computacionales y ejecutar remotamente análisis

de imágenes hyperespectrales a través de un conjunto de servicios grid. El sistema esta

basado en Open Grid Services Architecture (OGSA), e implementado con Globos Toolkit

3.0.
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CHAPTER 1

Introduction

1.1 The Problem

Applications such as the monitoring of coastal environments often use broad area

passive sensors mounted on space or airborne platforms, which collect data over many

frequency bands. Current operational sensors deployed by NASA collect data over few low

spectral resolution bands. However, new sensor concepts based on imaging spectrometry

or so called hyperspectral imagers (HSI) collect high spectral resolution data over a couple

of hundred of wavelengths effectively producing an image where at each pixel we get the

spectral response of the object(s) in the field of view of the sensor.

Hyperspectral Imaging (HSI) data contains high spectral resolution and spatial

information of the object under study. HSI analysis is based on the concept of imaging

spectrometry where spectral and spatial information is used to identify or detect objects,

or estimate parameters of interest (Figure 1.1). As the object of interest is embedded in a

complex media (i.e. coastal waters or skin), the measured signature is a distorted version of

the original object signature (e.g. a coral reef or a blood vessel) mixed with clutter. By large

hyperspectral imaging analysis concentrates on dimensionality reduction and classification

algorithms. Dimensionality reduction algorithms reduce the data information, so that it can
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Figure 1.1: Hyperspectral Imaging.

be processed efficiently. Classification of a hyperspectral image sequence, in turn, identifies

which pixels contain various spectrally distinct materials. Once all pixels are classified

into one of several classes or themes, the data may be used to produce thematic maps.

Depending on the nature of the application, the thematic maps may be used to produce

summary statistics regarding the objects in a scene or for object or target recognition

purposes.

Different classification metrics have been proposed from minimum distance, such

as Euclidean, Fisher Linear Discriminant, and Malahanobis, to maximum likelihood [1] to

correlation matched filter-based approaches such as spectral signature matching [2]. There

are two major techniques to image classification: supervised and unsupervised. In super-

vised classification techniques, an analyst develops quantitative descriptions of the spectral

characteristics of the various classes of interest for a particular scene. These descriptions

are then used as reference spectral signatures against which every pixel in an image is

compared. The pixels are classified according to the spectral signature they most closely
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resemble. In unsupervised classification, the algorithms do not use training data as the

basis for classification. Instead, the algorithms examine the unknown pixels in the image

and aggregate them into various classes according to the clusters found in the spectral space

that contains the image.

With the rapid advances in the resolution, frame rate, and dynamic range of spec-

trometers, the required bandwidth will soon exceed throughput limits inherent in store and

process systems. Consider the following table (Table 1.1) of existing and future hyperspec-

tral sensor arrays. Hyperspectral algorithms require more operations per pixel, and thus,

higher processing throughput is necessary.

AVIRIS TRWIS HYDICE Future sensor array
Image resolution (pixels) 614x512 512x512 320x240 1000x1000

Dynamic range (bits/pixel) 12 12 12 12
Spectral Bands 224 384 210 200

Image Data Size Mbytes 105 150.9 24.1 300

Table 1.1: Data bandwidth and for a selection of sensor arrays

Researchers and scientists at the NSF Engineering Research Center for Subsurface

Sensing and Imaging Systems (CENSSIS) need access to heterogeneous and distributed

resources to perform hyperspectral imaging data analysis.

Thus, hyperspectral imaging analysis demands large input data sets and requires

significant CPU time and memory capacity. It is then expected that Grid-level resources

can play a significant role in improving performance while increasing pervasity of the image

processing algorithms.

This thesis addresses the problem of demonstrating the suitability of Grid Com-

puting technologies to advance hyperspectral imaging analysis.
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The remainder of this chapter is organized as follows:

Section 1.2 describes the proposed solution.

Section 1.3 presents our research objectives.

Section 1.5 summarizes our most important contributions.

Section 1.6 presents the structure of this writing.

1.2 The Solution

We have designed Grid-HSI, a Service Oriented Architecture-based Grid applica-

tion to enable hyperspectral imaging analysis. Our first Grid-HSI prototype is composed by

a Portal Grid Interface, a Data Broker and a number of Grid services to enable HSI analysis.

Grid-HSI provides users with a transparent interface to access computational resources and

perform remotely hyperspectral imaging analysis through a set of Grid services.

Our results suggest that the use of Grid-HSI is a new source of computational

power that is accessible and applicable to the remote sensing problem set.

1.3 Research Objectives

The goal of this research is the development of a Grid infrastructure suitable for

hyperspectral imaging analysis. The system will provide a transparent user interface and

access to computing resources at a local environment at the University of Puerto Rico

(UPRM). The specific objectives of the research can be listed as follows:

• Design and develop a service oriented architecture - based Grid platform suitable to

hyperspectral imaging analysis.
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• Implement a Grid Portal where users will be able to test hyperspectral imaging anal-

ysis algorithms remotely though Internet.

• Develop a study of performability in a Grid platform.

1.4 Summary of Contributions

In summary, this research makes the following contributions:

• A complete description of the methodology and technical issues when developing ser-

vice oriented Architecture - based Grid applications.

• A demonstration of the suitability of Grid computing technologies to enable hyper-

spectral imaging analysis.

• Implementation of a Grid Portal with a transparent interface where users be able to

execute hyperspectral imaging analysis algorithms remotely by Internet accessing to

computing resources at a local environment at the University of Puerto Rico (UPRM)

• A preliminary discussion of performability issues in Grid computing platforms.

1.5 Thesis Structure

The reminder of this thesis is organized as follows: Chapter 2 presents an overview

of Grid computing technologies. In particular, the definition, specification and implemen-

tation of the Open Grid Services Architecture (OGSA). Chapter 3 presents the design and

implementation of the proposed solution (Grid-HSI), it also discusses the esperimental re-

sults. Chapter 4 presents a study of performability issues in Grid platforms. And finally,

chapter 5 lists our conclusions and suggests some areas for future work.



CHAPTER 2

Background and reviews related

work

2.1 Introduction

In this chapter, we present an overview of Grid Computing and related work.

Grid computing involves coordination and networking of resources across dynamic and ge-

ographically dispersed organizations in a transparent way for users[3]. Grid technologies

emphasize effective operation in large scale, wide area environments, including access to re-

mote computation, information services, high speed data transfers, special protocols (e.g.,

multicast), and gateways to local authentication schemes. The Open Grid Services Archi-

tecture (OGSA) and its associated implementation, the Globus Toolkit 3.0, are becoming a

standard platform for Grid services and application development, based upon Web services

protocols and open standards.

The remainder of this chapter is organized as follows:

Section 2.2 provides a high level description of the Grid architecture. Moreover,

6
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describes the Open Grid Services Architecture (OGSA) and the Globus Toolkit 3.0.

Section 2.3 presents reviews related work

Section 2.4 summarizes the issues discussed in this chapter.

2.2 Overview of Grid Computing

2.2.1 Architecture of Grid

In this section we present Grid architecture as it is described in the Globus project

[4].Grid architecture (see Figure 2.1) represents a conceptualization of the main principles

and requirements in Grid environments. The motivation for building this architecture is

the need for a new model describing sharing of heterogeneous resources. This architecture

identifies the basic components of a Grid systems, defines the purpose of such components,

and finally indicates how these components interact each other.

The architecture of the Grid is described in terms of layers, each providing a

specific function. In general, higher layers are focussed on the user (user-centric), whereas

lower layers are more focussed on computers and networks (hardware-centric). The different

layers and functionalities are described as follows.

Fabric layer: Interfaces to local control, of physical and logical resources. The

fabric layer is composed by computational resources, storage systems, catalogs, distributed

file systems, network resources, and sensors to be share.

Connectivity layer: Defines core communication and authentication protocols

supporting Grid-specific network transactions.
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Figure 2.1: Architecture of Grid

The authentication protocols are governed by the following principles:

• Single sign on, applies to enabling the user to have multiple access to the resources

from the Fabric layer during the same login, once the authenticity has been established.

That is, once sign on is performed, the user is authenticated for the entire Grid.

• Delegation designates the ability to provide a program with the appropriate rights

such that it could behave on user’s behalf and further access those resources to which

the user has permissions.

• Integration with various local security solutions addresses the issue of allowing com-

munication with the local security solutions by providing mapping to the local envi-

ronment. For instance, Grid security should be able to cooperate with Kerberos and

Unix security which could be implemented by the providers of sites or resources.

• User-based trust relationships is concerned with directing the security constrains from

the user to the intended resources and not further among their providers.

Resource layer: Allows the sharing of a single resource. This layer includes
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protocols for control and management of individual resources.

Two primary classes of resource layer protocols can be distinguished:

• Information protocols are used to obtain information about the structure and state of

a resource, for example, its configuration, current load, and usage policy.

• Management protocols are used to negotiate access to a shared resource, specifying,

for example, resource requirements (including advanced reservation and quality of

service) and the operation(s) to be performed, such as process creation or data access.

Management protocols are responsible for instantiating sharing relationships, ensuring

that the requested protocol operations are consistent with the policy under which the

resource is to be shared. Issues that must be considered include accounting and

payment. A protocol may also support monitoring the status of an operation and

controlling the operation.

Collective layer: Allows resources to be viewed as collections. This layer includes

all the services that allow us to manage several resources.

Examples of services are:

• Directory services enabling the discovery of resources. A directory service supports

queries for resources by name or by attributes such as type, availability, or load.

• Monitoring and diagnostics services enabling fault detection, such as overload, failure,

intrusion.

• Grid-enabled programming systems thus extending their functionality by augmenta-

tion.

• Data replication services, dealing with storage capabilities to overcome issues such as

data access performance measured in terms of response time, reliability and cost.
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• Software discovery services envisaging the discovery and selection of the best software

and platform for solving a selected problem.

Resource and connectivity protocols handle all Grid specific network transactions

between different computers and other resources on the Grid.

Application layer: Uses the appropriate components of each layer to support the

application. Applications Grid access to the infrastructure. According to the requirements

of the application, it can be necessary to happen through all the layers or to connect

themselves directly to the infrastructure.

In the next sections we go deeply in the anatomy of grid architecture to under-

stand aspects of resource sharing with maximum interoperability of the Grid Architecture,

referred to as Open Grid Services Architecture (OGSA); the specification of the archicte-

ture, referred as Open Grid Service Infrastructure (OGSI); and one implementation of the

OGSI specification, the Globus Toolkit 3.0 (GT3).

2.2.2 Open Grid System Architecture (OGSA)

The Open Grid Services Architecture (OGSA) defines Grid Services [10] as ex-

tensions of Web services. Thus, Grid services are basically Web services with improved

characteristics to make them adequate for Grid-based applications.

The two principal elements of the OGSA Platform (See Figure 2.2)are Open Grid

Services Infrastructure (OGSI), and OGSA Platform Services.

Open Grid Services Infrastructure (OGSI) defines mechanisms for creating, man-

aging, and exchanging information among entities called Grid services. Platform Services

provides a set of interfaces that support the negotiation of policies, service level agreements,
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Figure 2.2: OGSA Platform
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reservations, and in addition maps the related agreements to Grid services. Moreover, it

provides the basic functionality to manage data in a Grid environment. This element defines

the Common Management Model (CMM) that provides the manageability infrastructure

for resources in OGSA. CMM defines the base behavioral model for all resources and re-

source managers in the Grid, plus management functionality like relationships and lifecycle

management.

2.2.2.1 Open Grid Service Infrastructure (OGSI)

OGSI [5] is a Grid software infrastructure standardization effort based on the

emerging Web service standards to provide maximum interoperability among OGSA soft-

ware components. Open Grid Service Infrastructure OGSI addresses detailed specifications

of the interfaces and conventions that a service must implement in order to fit into the

OGSA framework.

Next the different interfaces and conventions are detailed.

Factory. The Grid services, which implement this interface, provide a way to

create new grid services. Factories can create provisional instances of limited function, such

as a scheduler creating a service to represent the execution of a particular job. Factories

also may create longer-lived services such as a local replica of a frequently used data set.

Life cycle. Because grid services may be transient, grid service instances are

created with a specific lifetime. The lifetime of any particular service instance can be

negotiated and extended as required.

State management. OGSI specifies a framework for representing state called Ser-

vice Data and a mechanism for inspecting or modifying that state named Find/SetServiceData.

Moreover, OGSI requires a minimal amount of state in Service Data Elements that every
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grid service must support, and requires that all services implement the Find/SetServiceData

portType.

Service groups. Service groups are collections of grid services that are indexed

using Service Data. These services may be members of a group for a specific reason, as

part of a federated service, or they may have no specific relationship such as the services

contained in an index or registry operated for discovery purposes.

Notification. The state information (Service Data) that is modeled for grid ser-

vices changes as the system runs. Many interactions between grid services require dynamic

monitoring of changing state. The notification framework allows for asynchronous, one-way

delivery of messages from a source to a subscribed sink. Grid services support an inter-

face (NotificationSource) to permit other grid services (NotificationSink) to subscribe to

changes.

HandleMap. When factories are used to create a new instance of a grid service,

the factory returns the identity of the newly instantiated service. This identity is composed

of two parts, a Grid Service Handle (GSH) and a Grid Service Reference (GSR). A GSH

is a standard Universal Resource Identifier (URI) - it indicates how to locate the Instance,

but not how to communicate with it. Before the GSH can be used, it must be resolved

into a Grid Service Reference. GSR is a mechanism to convey capabilities of a service to a

client. The HandleMap interface provides a way to obtain a GSR given a GSH.

OGSI creates a new extension model for WSDL called GWSDL. There are two

core requirements for describing Web services based on OGSI:

• The capacity to describe interface inheritance, which is a core concept with most of

the distributed object systems.

• The capability to describe additional information elements with the interface defini-
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tions. One such information element is called service data and is discussed later.

Several software frameworks available today are based on the OGSI specification.

The Globus GT3 is the most prominent and practical implementation of this specification.

2.2.2.2 Web Services

Web services is a subset of a service-oriented architecture [6]. A web service is

an application or application component accessible on the web and intended to be used by

another application, a client application [7]. The concept relies heavily on XML and its

family of technologies.

A web service is a specific kind of service that is identified by a Uniform Resource

Identifier (URI)[8] and exhibits the following characteristics:

• It exposes its features programmatically over the Internet using standard Internet

languages and protocols, and

• It can be implemented via a self-describing interface based on open Internet standards

(e.g., XML interfaces which are published in a network-based repositories).

The Web Services are oriented to clients with not a previous knowledge of the

service until this is invoked to the user, meaning, exists a strong undocking between client

and servant of the service. One main feature of Web Service it is that they do not handle

services with state information (stateful), that is to say, ”do not remember” values from a

call to another one.

Web services provide a set of XML-based protocols and processes for service dis-

covery (UDDI), description (WSDL), and interaction (SOAP) (See Figure 2.3).

Universal Description, Discovery, and Integration (UDDI) [9] provides
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Figure 2.3: Web Services Platform

a platform-independent way of describing and discovering Web services and Web service

providers. The UDDI data structures provide a framework for the description of basic ser-

vice information, and an extensible mechanism to specify detailed service access information

using any standard description language through a centralized registry of services.

UDDI provides two basic specifications that describe a service registry’s structure

and operation:

• A definition of the information to provide on each service, and how to encode it.

UDDI encodes three types of information about Web services:

◦ ”white pages” information includes name and contact details.

◦ ”yellow pages” information provides a categorization based on business and ser-

vice types

◦ ”green pages” information includes technical data about the services.

• A query and update API for the registry that defines how this information can be

accessed and updated.

UDDI defines a SOAP-based API for querying centralized Web Service repositories.

UDDI makes possible to discover the technical details of a Web Service (WSDL) as well as

other business-oriented information and classifications.
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Web Services Description Language (WSDL) [10] is the de-facto XML-based

standard for describing Web services, provides documents to achieve self-describing, discov-

erable services and interoperable protocols, standard mechanisms for creating, naming, and

discovering transient Grid service instances; provides location transparency and multiple

protocol bindings for service instances; and supports integration with underlying native

platform facilities. These WSDL documents drive the communication between the parties

in the grid, and are identical across all platforms, tools, and programming languages im-

plementing OGSA.WSDL complements the UDDI standard by providing a uniform way of

describing the abstract interface and protocol bindings of arbitrary network services. In

OGSA, services adhere to specified Grid service interfaces and behaviors defined in terms of

WSDL interfaces and conventions and mechanisms for creating and composing sophisticated

distributed systems.

The basic elements of a WSDL document include data descriptions, abstract in-

terface definitions, and bindings to actual implementations. They are embodied in a set

of XML constructs that build upon each other. The first part of a document consists of a

types section that acts as a container for data type definitions using XML schemas. The

types section is followed by a message section that defines abstract definitions of data to be

communicated based on the types already defined. Messages define exchanges between the

service provider and requestor,in turn and are abstractly described and later on bounded

to a concrete network protocol and a message format. The next XML section defines one

or more portTypes, which consist of a collection of operations, where each operation defines

an action supported by the service. Each action is defined in terms of an exchange of the

messages already defined in the previous XML section. A serviceType section defines a

collection of portTypes provided by the service. Finally, mappings of these abstract defi-

nitions to concrete implementations occurs using ports and services, where a service is an

implementation of a serviceType and consists of a collections of network endpoints or ports,
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where a port is an implementation of a portType, and is defined by a binding that contains

a concrete protocol and data format spec for a particular portType.

Simple Object Access Protocol (SOAP) [11] is a language standardized by

the consort W3C, that defines a simple and extensible XML messaging framework that can

be used over multiple protocols with a variety of different programming models. SOAP also

defines a complete processing model that outlines how messages are processed as they travel

through a path. Overall, SOAP provides a rich and flexible framework for defining higher-

level application protocols that offer increased interoperability in distributed, heterogeneous

environments.

The architects of SOAP based it on two common protocols: HTTP [12] and XML

[13]. SOAP treats XML as an encoding scheme for request and response parameters of

the method calls and uses HTTP as a transport layer.At its core, a SOAP message has a

very simple structure: an XML element with two child elements, one of which contains the

header and the other the body. The header contents and body elements are themselves

arbitrary XML. In addition to the basic message structure, the SOAP specification defines

a model that dictates how recipients should process SOAP messages. The message model

also includes actors, which indicate who should process the message.

2.2.2.3 Grid Services

OGSA [14] specifies three conditions that a web service must have before it qualifies

as a Grid Services. First it must be an instance of a service implementation of some service

type as described above. Second, it must have a Grid Services Handle (GSH), which is

a type of Grid URI for the service instance. The GSH is not a direct link to the service

instance, but rather it is bound to a Grid Service Reference (GSR). The GSR might be

(the OGSA allows for other representations) the WSDL document for the service instance
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with the required ”instanceOf” and other OGSA extensions. The idea is that GSH provides

a constant way to locate the current GSR for the service instance, because the GSR may

change if the service instance changes or is upgraded.

A Grid Service is a locatable instance and, potentially with state (stateful), that

implements one or more interfaces described by way of portTypes of WSDL. The inter-

faces address discovery, dynamic service creation, lifetime management, notification, and

manageability. These additional mechanisms can be grouped in four areas:

• Naming It assures the existence a unique name for each instance on Grid Service and

allows the location of Grid services (discovering) by means of name

• Service Data. It manages the data sets associated to the execution of a Grid Service.

It is useful to index Grid Services according to their characteristics and capabilities

• Notification These are the mechanisms used for the communication between the com-

ponents of a Grid application. The notifications are very closely related to service

data. Because when any change occurs in any Service Data the notification source

will notify to all notifications sinks.

There are two types of notification:

◦ Push - The data is sent to the client as soon as it is received at the service end.

This gives the client no control over what it receives but it is very efficient.

◦ Pull - A message is sent to the client saying data is available for pickup, the client

then has to request the data from the service in a separate call. The purpose of

this implementation is that it gives far more control to the client end to select

what data it receives. However, it does however increase the overheads.

• Lifecycle management¿ Mechanisms for the creation and destruction of instances of

Grid services.

A Grid service implements one or more interfaces, where each interface defines a
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set of method operations that is invoked by constructing a method call through method

signature adaptation using SOAP. Grid service interfaces correspond to portTypes in WSDL

used in current Web services solutions. The standard interface of a Grid service includes

multiple bindings and implementations (such as the Java and C# languages).

A web service can only have a single port type - the interface exposed by the

web service in WSDL. A grid service however can define a new port type as an extension

of another port type, an example of this is: a service always extends the GridService port

type, which is defined by the OGSA. Other port types that can be extended to provide extra

functionality to a grid service are defined by the OGSA, for example the NotificationSource

port type that is extended if a service is to act as a notification source. An important point

is that the NotificationSource port type will extend the GridService port type [15]. Figure

2.4 illustrates the concepts surrounding OGSI, and its relation to Web Services.

Figure 2.4: Web service vs Grid service



20

Table 2.1 summarizes the OGSA Grid Services interfaces.

Grid services can be deployed on different hosting environments – even different

operating systems. OGSA also provides a Grid security mechanism to ensure that all the

communications between services are secure. All the services (persistent or transient) are

built on the Globus Toolkit.

2.2.3 Globus ToolKit 3.0

The Globus project is a multi-institutional initiative for the investigation the de-

velopment of fundamental technologies for Grid computing. Globus is the standard de facto

for the implementation of Grid applications. The toolkit addresses issues for resource mon-

itoring, discovery, management, security and file management. The version Globus ToolKit

3.0 has been implemented to adjust to the OGSA requirements. Globus is based on three

pillars: Resource management, information services and data management [16]. These com-

ponents use the Grid Security Infrastructure (GSI) protocol for security at the connection

layer (See Figure 2.5).

Figure 2.5: Globus Toolkit 3.0 Architecture Layers
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Port Type Operation Description
GridService: all Grid services
implements this interface and
provides these operations and
behaviors.

FindServiceData Allows a client to discover in-
formation about the service’s
state, execution environment,
and additional semantic de-
tails not available in the GSR.

SetTerminationTime Set and get termination time
for Grid service instance.

Destroy An operation to explicitly de-
stroy an instance.

Notification-Source: allows
interested parties to sub-
scribe to service data elements
and receive notification events
when their value is modified.
(Optional)

SubscribeTo
NotificationTopic

Subscribe to be notified of
subsequent changes to the tar-
get instances service data.

Notification-Sink:enables a
Grid Service instance to
receive notification messages
based in a subscription.
(Optional)

DeliverNotification Used to send a given message
to all subscribers to a partic-
ular topic.

Registry: maintains a collec-
tion of Grid Service Handles,
with policies associated with
that collection (Optional)

RegisterService Add or atomically update a
Grid Service Handle to the
registry.

UnregisterService Remove a Grid Service Han-
dle from the registry.

Factory: provides a stan-
dard WSDL operation for
creation of Grid service in-
stances. (Optional)

CreateService Create a new Grid service in-
stance

HandleMap: defines a option
for mapping one GSH to one
GSR

FindByHandle Returns a Grid Service Refer-
ence for a Grid Service Han-
dle.

Table 2.1: OGSA Grid services interfaces
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The Globus Toolkit Version 3.0 (GT3) provides three components referred as GT3

Base Services.

2.2.3.1 Resource Management Components

The Resource Management component, involves the allocation of Grid resources.

It includes packages such as the Globus Resource Allocation Manager (GRAM) and Globus

Access to Secondary Storage (GASS).

Grid Resource Allocation Manager (GRAM) Reports, monitors and pub-

lishes information about the identity and state of local computations (registry). Moreover,

it allows users to schedule and manage remote computations. Specifically, various classes

and methods allow users to submit jobs, bind to already submitted jobs, and cancel jobs

on remote computers. Other methods allow users to determine whether or not they can

submit jobs to a specific resource (through a Globus gatekeeper) and to monitor the job

status (pending, active, failed, done, and suspended).

A Grid may comprise more then one GRAM, each of them controlling a set of

resources. By means of control or management we defer operations such as submission,

monitoring, pausing or stopping. The job manager is created by the gatekeeper located

on the remote computer and is responsible for starting and monitoring the job as well as

for sending back to the client information regarding the changes in the job’s status. A

job manager exists for every client request and consists of a Common Component and a

Machine-Specific Component. The later implements the internal API used by the former.

The Resource Specification Language (RSL), which is a structured language for specifying

the resource requirements and parameters, is also parsed by GRAM. A gatekeeper is a

process running as root on the server before any requests are sent from the client machine

and its tasks are:
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• Mutual authentication with the client

• Mapping the remote user to a local one

• Activating a job manager on the local host as a local user

• Pass the allocation arguments to the job manager

When the job is finished, the job manager sends the status information back to

the client and terminates

Global Access to Secondary Storage (GASS) simplifies the porting and run-

ning of applications that use file I/O, eliminating the need to manually log onto sites and

ftp files or to install a distributed file system. Globus provides an essential subset of GASS

services to support the copying of files between computers on which the Grid Services are

installed.

2.2.3.2 Information Services Components

Information service components, implemented as the Index Service, is one of the

GT3 Base Services. It can be used to index Service Data carrying state information from

multiple grid service instances for use in resource discovery, selection and optimization. The

Index Service uses an extensible framework for managing static and dynamic data for Grids

built using GT3. It aggregates Service Data from multiple grid service instances using the

subscription-notification mechanism defined by the OGSI specification. It uses a Service

Data Provider program to create and manage dynamic service data and can also perform

registration of the instances of Grid Services.

Service data is an interface that is easily to query and allows clients to access data

elements, it has two forms:

• State information - provides information about the current service state. An example
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of this would be a service that performs a calculation and the service data it updated

to state what the operation was and the results.

• Service metadata - provides information describing the service being provided. An

example of this is a service that performs calculations. The service data describes

what calculations the service can provide and at what cost.

Service data is defined in a separate Service Data Elements (SDE)which is pointed

to in the GWSDL file. A single service can have multiple SDE’s and each element within

a single SDE can have a defined cardinality [15]. Service data is modeled in the OGSI -

defined namespace attribute.

2.2.3.3 Data Management Components

Data Management components, involves the ability to access and manage data in

a Grid environment. This involves utilities such as GridFTP and globus-url-copy, which are

used to move files between grid enabled .

The Reliable File Transfer (RFT) is an OGSA based service that provides interfaces

for controlling and monitoring 3rd party file transfers using GridFTP servers. GridFTP is

based on the FTP protocol [RFC 959] and provides a file transfer service with linked with

grid security mechanisms. GridFTP Is the protocol proposed for all data transfers on the

Grid. It extends the standard FTP protocol with facilities such as multistreamed transfer,

autotuning and globus based security. GridFTP must support Grid Security Infrastructure

(GSI) and Kerberos authentication, with user controlled setting of various levels of data

integrity and/or confidentiality.
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2.2.3.4 Grid Security Intrastructure (GSI)

GSI delivers a secure method of accessing remote resources. It enables a secure,

single sign-on capability, while preserving site control over access control policies and local

security infrastructure. GSI uses X.509 certificates, a widely employed standard for PKI

certificates, as the basis for user authentication. This service Support robust and flexi-

ble authentication, integrity, and confidentiality features are critical when transferring or

accessing files. GSI is a hierarchical infrastructure with distributed services allowing for

scalability and fault tolerance (a resource failure does not affect other resources). GSI

provides the following two protocols:

• Enquiry protocol: Grid Resource Inquiry Protocol (GRIP)

• Registration protocol: Grid Resource Registration Protocol (GRRP)

The Grid imposes two types of servers from which information is stored. These

components interact with each other and higher-level services (or users) using two basic

protocols: a soft-state registration protocol (GRRP) for identifying entities participating in

the information service, and an inquiry protocol (GRIP) for retrieval of information about

those entities. In brief, a GRIS uses the registration protocol to notify a GIIS (or other

higher-level service) of its existence. A GIIS uses the inquiry protocol to obtain information

from the known to that provider, which merges into an aggregate view.

2.2.4 Web Services -Resource Framework

WSRF defines a new approach for accessing stateful resources which supports the

grid computing infrastructure and also provides for stateful Web services in general - in

other words, the special-case solution for grid computing (in OGSI) was generalized to the

benefit of all Web services (through WSRF). With the WSRF, new standard interfaces for

Grid services has been introduced which makes it necessary to change the implementations
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using OGSI, if they should comply with the new upcoming standard.

2.2.5 Globus ToolKit 4.0

Globus Toolkit 4 Based on the new standard WSRF interfaces, a new version of

Globus, the Globus Toolkit 4.0 has been announced for the final of 2004. This new version

will still have the same native interfaces like Globus Toolkit 2.4. The Globus Toolkit 3.0

interfaces will be dropped and replaced by new WSRF compatible interfaces. GT4 will be

incompatible with GT3.

2.3 Related Works

In this section, we discuss relevant work related to the parallelization and distributing of

hyperspectral imaging codes.

Lugo [17] developed a parallelization and distribution of dimensionality reduction algo-

rithms (Feedback Iterative Method and Principal Component Analysis) and classification algorithms

(Euclidean Distance Classifier and Maximum Likelihood Classifier). This was performed using the

C programming language Message Passing Interface (MPI). The Parallelized Linear Algebra PACK-

age (PLAPACK) based on MPI was used to leverage complex matrix manipulations operations.

This hyperspectral parallelized algorithm suite provides researchers with a powerful tool that allow

flexibility and increase considerably new results by being able to combine algorithms and reduce

dramatically the time of execution.

Rivera [18] implemented a system nonsupervised iterative system of reduction of bands

and classification of pixels that integrates these two stages through a closed knot. It considers the

number of pixels classes as entrance parameter to carry out the reduction of the dimension of the

image. The objective of the system is to try to choose a good subset of bands in which the distance is

maximized among the classes or enter its centroids. The system was implemented using MATLAB.
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A MATLAB Toolbox for Hyperspectral Image Analysis [19] focuses on the optimization

and integration of the unsupervised and supervised HSI classification algorithms developed at the

UPRM Laboratory for Applied Remote Sensing and Image Processing (LARSIP). The toolbox

contains algorithms to load images of several file formats, routines for dimensionality reduction,

and both supervised and unsupervised classification algorithms.

The Parallel Computational Environment for Imaging Science (PiCEIS)[20], developed at

the Pacific Northwest National Laboratory, is an image processing software designed for efficient

execution on massively parallel computers. During processing and visualization an image is fully

distributed in contrast to many of the current master-slave model for image processing. The user

has the choices of either displaying the output to their monitors or to the IBM Scalable Graphics

Engine. The heart of the communication strategy is based on the Global Array/ ARMCI Toolkit, an

existing portable NUMA one-way globally addressable ”shared memory” model for distributed SMP

parallel computers. The Global Array model extends the current models of parallel computing using

shared memory, pthread and message passing style of one sided get/put model in MPI-2. While

PiCEIS is focused on distributed SMP parallel computers, Grid-HSI is platform independent.

The WebDedip [21] explores object oriented modeling technique in the web domain. The

WebDedip has a three-tier architecture composed by GUI, DedipServer and Agents. Java distributed

object architecture is used along with the object serialization for network communication among the

components. The GUI is the web enabled graphical user interface to make the entire user interaction

truly system independent. It has a back-end DedipServer running on the web site. When the

GUI submits the request to the DedipServer, it reads the application configuration information

from the configuration file. The DedipServer initiates the execution of the first process in the

interdependency chart. It informs the agent(s) on the target node to start the execution of the

process. The agent sends the status information back to the DedipServer when the process is

completed. While WebDesip is based on Java distributed object architecture, Grid HSI is fully

based on OGSA architecture providing a functional Grid based application system.

JSIM[22], the Java-based SAR image analysis tool environment, is a tool environment for

image analysis of synthetic aperture radar data. The tool environment was designed and developed
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using Java programming language. JSIM use the client-server approach in which multiple clients

from a local or a remote machine can access the same application at any time. The tool runs on

various platforms and can be used through the Internet. Similarly to WebDedip, JSIM does not

provide Grid computing facilities.

2.4 Summary

This chapter provided a high-level overview of Grid computing. It describes the component

structure of OGSA and its associated implementation, the Globus Toolkit (GT3). The Globus GT3

is the most prominent and practical implementation of this specification. OGSA is the critical

component to making Grids work. OGSA authors propose serviceData elements and an operation

FindServiceData to provide introspection in OGSA Web Services.

A major difference between web services and the grid is that web services lack many services

that are required by the potential users of Grid (such as those explained above). Web services

however, are catching up with grid and adding services which will eventually lead to a convergence

of the technologies. Grid based applications, contrary to client-server approaches, provides the

capabilities of persistence and potential transient process on the web. Thus, we can perform a chain

of operations and we would have to get the result of one operation and send it as a parameter to

the next operation.



CHAPTER 3

GRID - HSI: A Grid Service

Oriented Application

3.1 Introduction

This chapter focuses on the description of the architecture, design and implementation

of Grid-HSI, a hyperspectral imaging analysis tool immersed into a grid platform which supports

remote analysis and visualization . The system is based on Open Grid Service Architecture (OGSA)

and implemented on the top of Globus Toolkit 3.0 (GT3). Grid-HSI is composed by a Portal Grid

Interface, a Data Broker and a set of specialized Grid services. Experimental results show the

suitability of the prototype system to perform efficiently hyperspectral analysis.

The remainder of this chapter is organized as follows:

Section 3.2 describes the design of Grid-HSI

Section 3.3 presents our implementation.

Section 3.4 presents experimental results

29
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Section 3.5 summarizes the issues discussed in this chapter.

3.2 Design of Grid - HSI

3.2.1 Grid Computing Environment

A Grid Computing Environment (GCE) is essentially a set of tools and technologies that

provides user-friendly interfaces to access various grid resources and services while hiding the com-

plexities. Such Grid services and resources are accessed through Grid clients. The Commodity Grid

toolkit (COG) provides a programmatic interface to standalone Grid clients written in programmatic

languages such as Java and Python. Thus, web centric applications use CoG application program

interfaces to provide friendly interfaces and make Grid clients accessible from a browser. In this

project a GCE is deployed as a Computational Web Portal built on a multi-tier architecture as

shows in figure 3.1.

Among the major features of a Computational Web Portal we have that it:

• Extends the user desktop by providing a seamless access to remote computational resources

(hardware, software, and data).

• Provides users with capabilities to resolve complex problems, allocate resources, and analyze

results.

• Hides from users the complexity of heterogeneous,distributed, high performance back end.

3.2.2 Multi-tier architecture

The system architecture is logically divided into three tiers: front-end, middle-tier and

back-end.

• The front-end provides easy-to-use graphical user interfaces and programmatic interfaces to

access the back-end resources.

• The Middle -tier provides a common service layer to support these multiple front-end clients

and diverse back-end resources.



31

Figure 3.1: Grid Computing Environment

• The back-end consists of both Grid-based and non Grid based resources.

In a multi-tier architecture the front-end clients present graphical user interfaces (GUIs)

in which user requests are accepted and forwarded to the correct middle-tier services for processing.

The results of processing the user request are also displayed in the front-end client. These interfaces

hide all the complexities involved in performing the needed actions in the middle-tier and back-end.

Web browser-based clients are ideal when middle-tier services are to be accessible from

anywhere on the Internet without requering for any special software. Since all the processing occurs

at the server side, there is sufficient latency involved in getting responses back from the server and

the response time also depends on the networks characteristics.

Grid-HSI portal is a multi-tier system that allows integrating existing commodity com-

ponents into a single, user friendly, web accessible system without compromising security of the

computational resources.
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3.2.2.1 Front-end

The front-end tier accepts user requests, forwards the request to appropriate services in

the middle -tier, and displays the corresponding responses to user requests based on the results

provided by the middle-tier. User requests are typically accepted through wizards based Graphical

User Interfaces (GUIs). These interfaces hide all complexities involved in processing the request,

performing necessary operations to satisfy the request, and generating results. Javascript is used

for providing client-side processing while dynamic content is generated using servlets [23] and Java

Server Pages JSP [24].

Portal Grid Interface: These interfaces allows users to enter the required input param-

eters (See Figure 3.2) for executing Grid services associated to each HSI algorithm implemented in

Grid-HSI. The portal Grid Interface is implemented with servlets, which provides web-based GUI

design for user interfaces. The Portal Grid Interface uses Java servlets hosted within a Tomcat

servlet container environment. All requests to the Portal Grid Interface go through an Apache

server, which forwards requests to the Tomcat using Apache JServ Protocol (AJP).

3.2.2.2 Middle tier

The Middle tier processes the user requests forwarded by the front-end, performing the

necessary operations including accessing back-end resources and middle-tier services.

Data Broker: This component is a link between the Portal Grid Interface and the HSI

Grid services. The Data Broker manages data related to the Grid services available on each resource

so a match between local resources and user requests is met. When the Data Broker receives a user

request it sends the request with information about the selected node to a Grid Service Client.

3.2.2.3 Back-end

The back-end consists of Grid-based and non-Grid-based resources, which includes services

for data transfer, job submission, job monitoring, and specific Grid Service Clients.
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Figure 3.2: Interface of Grid-HSI

HSI Grid Services: These services implement the HSI algorithms. For each service a

grid service client is implemented so continuous access to Grid services will be performed through

the associated client stub. Jobs are submitted by users through the Portal Grid Interface. A

Master Manager Job Factory Server (MMJFS), implemented in GT3, executes the task in the remote

resources indicated by the Data Broker, examines results of submitted jobs, evaluates information

of resources, and so on. After the client stub receives the request from the Data Broker it proceeds

to send the request to the node specified by the Data Broker. Table 3.1 summarizes the main HSI

Grid Services.

Figure 3.3 depicts the complete Grid-HSI architecture as described above. The Grid

Infrastructure includes the local resources, the HSI Grid services and the associated clients stubs.

Each HSI Grid service has a Grid Service Client associated to provide access through the Data

Broker.
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Name Description
CmeansClassifier Generates the classification vector (.txt) using the C Means

algorithm according to selected parameters.
FimClassifier Generates the classification vector (.txt) using the feedback

iterative algorithm according to selected parameters.
PcaReduction Generates a new matrix of reduced dimensionality (.txt) us-

ing the Principal Component Analysis (PCA) according to
selected parameters.

TxtPng Converts a ClassificationVector.txt file that contains the re-
sult membership for each pixel on the image to a Portable
Network Graphics (PNG) format file.

Table 3.1: HSI Grid Services

Figure 3.3: Grid-HSI architecture
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3.2.3 Functional Design of Grid-HSI

The Functional design of Grid-HSI system as depicted in Figure 3.4 is constituted by a set

of components interconnected logically to accomplish the system objective.

The functional process is described as follows:

1. Initially the Portal Grid user using a web Browser sends a service request with classifier

parameters through a HTML Form.

2. The Data Broker Servlet reads these parameters, defines which resource to use and sends such

parameters to the Classifier Grid Client.

3. The Classifier Client sends these parameters to Classifier grid service in the selected node.

4. The Classifier Grid Service invokes its local Classifier Algorithm. This algorithm yields a

result txt File and sends to the Classifier Grid Service an algorithm report.

5. The Classifier Grid Service sends back to the Classifier Grid Client the algorithm report and

the result txt File Id.

6. The Classifier Client receives the algorithm report and the result File id, it proceeds to send

these parameters to the Data Broker.

7. The Data Broker sends to the Server Result Displayer the algorithm report and sends to the

Txt-Png Converter Grid Client the Result File Id.

8. Txt-Png Converter Grid Client sends Result File Id to Txt-Png Converter Grid Service.

9. Txt-Png Converter Grid Service invokes its Txt-Png Converter with Result File Id as param-

eter.

10. Txt-Png Converter reads from Hard disk Result Txt File wrote by the Classifier algorithm

and processes it to get it in a Png file.

11. The Png File Id is sent back to the Data Broker although Txt-Png Converter Grid Service

and Txt-Png Converter Grid Client.

12. The Data broker with this Png File Id invokes a Transfer File Client which, using a TCP

Socket and performs the transference from the resource Hard Drive to Client Hard Drisk.

13. Finally, the Servlet Data Displayer receives Png File id from the Data Broker, reads the Png

File from its hard Disk and sends the Png file to Web user.
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3.2.4 Infrastructure of Grid-HSI

The Infrastructure of the system is divided in three components (see Figure 3.5).

Figure 3.5: Infrastructure of Grid-HSI

Web Server: Provides access to end users through a web browser. The portal uses java

servlets hosted within a Tomcat servlet container environment. All requests to the grid portal pass

through an Apache server. Apache server forwards requests to the Tomcat using AJP protocol.

Infrastructure Server: Contains a database with information about all the available

nodes for the execution of tasks in a given instant of time and about on the tasks that are already

being executed in the Grid. The server takes charge of the administration of nodes that continually

are added or eliminated on the Grid. This server finally, communicates with the portal grid to

provide the available resources and to inform of possible changes.

Nodes: Resources available potentially as part of the grid for the execution of works. Each

resources contains an activity demon (DA) that notifies to the Infrastructure Server the readiness

of that node for the execution of remote tasks.
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3.3 Implementation

3.3.1 Setting up the environment

The necessary steps for installing and setting up the environment are described in this

section. The Globus Toolkit is a free software that can be obtained from [25]. We have worked with

Globus Toolkit 3.0.2. The proper bundle has to be chosen according to the Operating System. The

prerequisite software also needs to be installed.

• The Certificate Authority (CA) in the infrastructure is independent from the grid installation.

For our grid environment we chose to have our own local grid CA, with self-signed certificates.

The authentication of a grid-service request consists of two separate parts: host-authentication

and user-authentication. In orden to run a remote grid service, the user must be accepted

by the remote machines, and the grid user must be mapped to a local user on the remote

machine. Therefore, two certificates are necessary: one for the user, and one for the host.

• Two security files need to be created. These files essentially contain a list of users that are

to be given access to the Globus environment and located in the /etc/grid-security directory.

These files are grid-map file and grim-port-type.xml.

The grid-map file is allocated in /usr/grid security/. This file has a list of authorized users

has to be updated.

The grim-port-type.xml file is an XML document that maps the user ID to the Grid service

name.

• Testing can be performed using globus-run command once a gatekeeper has been initiated

on a server machine and as soon as a proxy has been created on the local machine. This

command is used for submitting jobs to the remote machine which is viewed as a resource in

the grid environment.

3.3.2 Implementation of Grid Service

Writing and deployment a grid services implicate:
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1. Define the interface of service: the operations that allow the service are defined through of

GWSDL document, called Port Type. This dococument contains data about the interface,

semantic and management of a request to the Web Service.

2. Implement the service: The operations described in the GWSDL document are implemented

through Java class.

3. Configuring the deployment in Web Service Deployment Descriptor (WSDD): Put the Port

Type and the service implementation together, and make them available through a Grid

Services-enabled web server. The WSDD file contains information to be used by the server

on how to publish the grid service.

4. Create a GAR file with Ant : This GAR file is a single file that includes all the files and

information that the grid services container need to deploy the service and make it available

to the whole world. This is made with Ant tool [26]. A GAR target is available to archive

all created components into an archive file that serves as the unit of deployment. The GAR

target depends on several other targets that perform the following steps. 1) Converting the

GWSDL file to WSDL file 2) Creating the stubs classes grom the WSDL. 3) Compiling the

stubs classes, and 4) Compiling the service implementation.

5. Deploy the service into a Grid services container : This is also performed with the Ant tool.

It unpacks the GAR file and copies the files into (WSDL, compiled stubs, compiled imple-

mentation, WSDD) key locations in the GT3 directory tree. It uses the deploy target from

build.xml to deploy the generated GAR package into a Grid service hosting environment.

Figure 3.6 depicts the complete steps for implementing and deploying Grid Services.

3.4 Experiments and Analysis

For experimental purposes our local resources consists of a low cost commodity PC cluster

consisting of eight nodes connected using a 100 Mbps Ethernet switch. Each node is an Intel P3-650

Mhz with 256 MB of memory running RedHat Linux 3.2.2-5.

The hyperspectral sensors employed in this work is AVIRIS. The AVIRIS sensor consists
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Figure 3.6: Steps for writing Grid Services
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of 224 spectral bands. The images obtained from the AVIRIS sensor can have a size of up to

approximately 460 Mbytes. The image used for these experiments was the North West Indian Pine

Test Site in Indiana, consisting of 145 x 145 pixels and 220 spectral bands.

Successfully every local resource can accomplish the requests sent by users with not regard

to the sources of the request, and users can submit jobs to several nodes at the same time. The

results obtained from the test cases for Grid HSI services match with those of the earlier C++

algorithms. Table 2 and table 3 show the results of the C-Means method with Euclidean distance

and the Principal Component Analysis implemented using C language, respectively.

Table 3.2. Results C-Means method with Euclidean distance.

Number of Classes Iterations Bands Used Execution Time (s)
5 4 220 41.75
5 5 220 50.593
5 6 220 59.13

Table 3.2: Results C-Means method with Euclidean distance

Table 3.3. Results Principal Component Analysis.

Number Components Percent amount Energy Bands Used Execution Time (s)
3 90 220 9.50
5 90 220 9.74
7 90 220 10.00

Table 3.3: Results Principal Component Analysis

Our experiments aim in to evaluating the grid system accomplisment running C-means and

Principal Components Analysis. In order to demonstrate the effectiveness of the proposed approach

many test cases were used. We present two of these simulation cases. The first scenario the node

that receives user request via internet (node02) is the same node that provided the grid service and

executes the request because this node matches the available resources to the user request. In such

a scenario we get that the grid system can complete the user request.
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Figure 3.7: Results of container for one node scenario

The container shows the classifier parameters and the results of execution. After the

classifier service through classifier algorithm performs all the iterations a classification vector is

returned. This classification vector contains the result membership for each pixel on the image. This

classification vector is then stored on a directory of the container node as ClassificationVector.txt.

Then, the TxtPng service through JAI API transform the ClassificationVector.txt on a Portable

Network Graphics (PNG) format file. After the PNG File invokes a TCP Socket and performs the

transference to Client Browser Hard Disk (See Figure 3.7).

The servlet Data Displayer receives the algorithm report and Png File from the Data

Broker. Then, reads the Png file from its hard disk and shows the algorithm report and the png file

to the web browser. The graphical output in this case shown in figure 3.8.

In the second scenario, the node that receives user request via internet is a different node

that provides the grid service and executes the request because this node matches the available

resources to the user request. In this scenario we also get that the every local resource can complete

the user request. All nodes presents the similar behavior. We present the container output for node
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Figure 3.8: Results of user interface for one node scenario.

Figure 3.9: Results of container for two nodes scenario
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Figure 3.10: Results of user interface for two nodes scenario

2 in figure 3.9 and the graphical output for node 4 is illustrated in figure 3.10.

The table 3.11 show the total Execution Time of the request where the node that receives

user request is a different node than the one which provides the grid service. We can see that the

Execution Time obtained with a local C-Means Algorithm was a little faster than the obtained in

a Portal Grid on all iterations. This is due to overtime generated by communications and servlets

process.

In table 3.12 we can see a similar behavior as above. The local Principal Component

Algorithm was a little faster than the obtained in a Portal Grid on several number of components;

again, this is due to overtime generated by communications and servlets process.

Table 3.13 shows the time for each stage: Execution Algorithm Time, Transform Txt to

Png, Connection Time by TCP to transfer PNG file, Send PNG File Time and the Total Execution

Time. We can see again that the Execution Algorithm Time was just faster than the Total Execution

Time.
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Figure 3.11: Results C-Means Classifier (Euclidean distance discriminant and 5 classes)

Figure 3.12: Results principal Component Analysis
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In all cases the time overhead due the communications and servlets process is nor greater

than 8.5%. This is not relevant if we take all advantage of using the proposed Architecture in terms

of portability and accessability.

Figure 3.13: Results principal Component Analysis

3.5 Summary

This chapter describes the design and implementation of Grid-HSI, a system prototype

that provides users with a transparent interface to access computational resources and perform

remotely hyperspectral imaging analysis through a set of Grid services.

This Grid based application, contrary to client/server approaches, provides the capabilities

of persistence and potential transient process on the web. Thus, we can perform a chain of operations

and be able to get the result of one operation and send it as a parameter to the next operation.

In all experiments the time overhead due the communications and servlets process is nor

greater than 8.5%. This is not relevant if we take all advantage of using the proposed Architecture

in terms of portability and accessability.



CHAPTER 4

STUDY OF PERFORMABILITY

ISSUES IN GRID COMPUTING

4.1 Introduction

Usual metrics such as response time, resource usage, throughput and efficiency are not

necessarily applicable to grids because grid performance is not characteristic to an application itself

rather to the interaction between the application and the infrastructure. Performance tuning is

more difficult due to dynamic environment, changing infrastructure, and heterogeneity of resources.

While there exist practical solutions for performance evaluation of parallel and distributed systems

, in most cases these techniques cannot be transferred directly to grids. In the last years the Grid

Computing research communities has introduced novel approaches to performance monitoring and

evaluation. In this chapter, we discuss important issues related to performability.

The remainder of this chapter is organized as follows:

Section 4.2 Surveys the most relevant performance evaluation tools for Grid environments.

Section 4.3 presents some critical issues.
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Section 4.4 summarizes the issues discussed in this chapter.

4.2 A survey of Grid performance tools

A number of performance analysis tools have been developed to enable Grid Computing.

Among then we can point at:

4.2.1 Network Weather Service (NWS)

The forecasting methodology used by the NWS assumes that each resource performance

characteristic can be measured quantifiably [27]. Each resource can be described by a stream of

performance measurements, and predictions of future measurement values are the quantities that are

of interest. Another assumption is that performance measurements can be gathered non-intrusively.

Finally, because the methods are time series based, the NWS forecasting method assume that the

characteristics being measured have an instantaneous value that can be sampled at any given point

in time. NWS have sensors that report the observed performance that a resource is able to deliver

at the time a measurement is taken. A network link sensor reports periodic measurements of latency

and bandwidth across a particular link. Measurement are taken as close to the application level as

possible.

In NWS the Throughput is then calculated as the data size divided by the transfer time

(4.1).

Throughput = data size/(data transfer time) (4.1)

This resulting measure includes the overhead necessary to iniciate a TCP/IP communication stream,

which can be significant. To calculate the effective Throughput rate, the latency is subtracted from

the time recorded for the data transfer, and the result is used as the actual time to transfer the data

(4.2).

Effective throughput = data size/(data transfer time− latency) (4.2)

NWS presents the following limitations:
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The model for communication time ((datasize/bw) + latency) is impractical for Grid

environments. The current trend indicates that while latencies are bounded below by the speed of

light, network bandwidth increases at an exponential rate. For example the TeraGrid platform has

established a 40GB/sec dedicated link between SDSC and NCSA. The expected network latency is

in the 100m/s range. Thus, one third of the time to transfer 1 GByte of date is due to network

latency. Therefore, the latency component must be taken into considerations in the model for Grid

platform performance.

4.2.2 REsource MOnitoring System (Remos)

The Remos (REsource MOnitoring System) allows network-aware applications to obtain

relevant information about their execution environment. The major challenges in defining a uniform

interface are network heterogeneity, diversity in traffic requirements, variability of the information,

and resource sharing in the network. The Remos system serves as a foundation for a range of

application specific approaches to dealing with network resources and their changes [28]. Remos

aims to provide resource measurements across a wide range of network architectures environments

and implementations. It uses a logical topology to capture the network information ready to be

used by any network-aware applications as needed. Network measurements are performed by an

independent service and hence simplifies the task of the application developer since the task of

collecting network information has been moved to network developers.

By measuring the bandwidth and latency between sites, Remos has a component that

determine the performance of the links connecting the network in a manner similar to the technique

used by NWS.

The equation to determine the transmission time of a data is (4.3) :

Ttransmission = (datasize/bw) + latency (4.3)

The bandwidth of an alternative path is the minimum of the two individual bandwidths

and the latency is the sum of the individual latencies. For small amounts of data, as for text, the
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latency is the dominant factor, whereas the bandwidth becomes more important with the increasing

data size. The current values of the available bandwidth and the latency can easily be gathered

using Remos.

Remos presents the following limitations

• Techniques used by Remos are attractive since the resultant logical topology could clearly

shows where application flows could be competing with each other for bandwidth. However,

the methods used in Remos could results in heavy usage of network resources and though

much information is created it may not all be relevant to network aware applications.

• The design of Remos ignores a number of important network properties. It does not deal with

multicasting, or with networks that provide guaranteed services. Both of these are important

features that would be of interest to Grid applications.

• The static features of the network may have to be collected through SNMP (Simple Net-

work Management Protocol). But dynamic bandwidth and latency information are somewhat

harder to track. The mechanisms used by Ramos for colleting that information is through

benchmarking. Benchmarking can be used to collect anny type of information. However,

benchmarking is time consuming and introduces a significant amount of overhead in the net-

work

4.2.3 Networked Application Logger (NetLogger)

Using NetLogger, distributed application components are adapted to produce timestamped

logs of relevant events at different critical points of a distributed system. Events from each component

are correlated, which allows one to characterize in detail the performance of all aspects of the system

and network. [29]. The events are correlated with the system’s behavior in order to characterize

the performance of all aspects of the system and network in detail during actual operation. The

monitoring is designed to facilitate identification of bottlenecks, performance tuning, and network

performance research. It also allows accurate measurement of throughput and latency characteristics

for distributed application codes. NetLogger includes a tool for analyzing and monitoring events

based on visualization of the timestamp correlated event data. This performance analysis requires

monitoring data for hosts (CPU, memory, disk), networks (bandwidth, latency, route), and the FTP
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client and server programs.

The NetLogger Toolkit itself consists of four components: an API and library of functions

to simplify the generation of application-level event logs, a set of tools for collecting and sorting

log files, an event archive system, and a tool for visualization and analysis of the log files. In order

to instrument an application to produce event logs, the application developer inserts calls to the

NetLogger API at all the critical points in the code, then links the application with the NetLogger

library.

NetLogger presents the following limitation

• NetLogger can dynamically provide real-time access to monitoring information with minimal

system perturbation. However, the tool is intended for control and monitoring of the state of

the whole grid rather than for analyzing performance of single application.

4.3 Grid Performability

Performance usually refers to quality of service, assuming the system is correct. Depend-

ability, on other hand, refers to the ability of a system to perform appropriate when a failure of

the system occurs. Thus, dependability include reliability(continuity of failure-free service), avail-

ability (readiness to serve), safely (avoidance of catastrophic failures), and security (prevention of

failures due to unauthorized access). As system become complex(e.g. Grid Computing), measures of

performability are needed to address issues of both performance and dependability simultaneously.

At system start all components are assumed to be operational and the system will operate

at maximum performance. When a component faults, the system should reconfigurated itself and

restart its activities subject to degraded performance.

Let S denote the set of possible configurations. The stochastic process X = {x(t), t ≥ 0}
on S describes the structure of the system at time t. This process is defined in such a way that

knowing x(t), we must be able to know which components are up at time t. The performance of the

system when state i ∈ S is denoted by ri=r(i).
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The real function r : S → R called reward rate function on the state space S. In specific

context ri may signify a performance metrics such as throughput or efficiency. Thus, the value ri

somehow summarizes the performance of the system in the structure state i.

For i ∈ S, let Πi denote the steady-state probability of residing in state i and pi(t) the

probability of residing in i at time t. The steady-state performability is defined as

SSP =
∑

i∈S

Πiri (4.4)

The trasient analog of this measure is

TP (t) =
∑

i∈S

pi(t)ri (4.5)

Thus, SSP is the expected asymptotic rewards, while TP(t) is the expected rewards at

time t.

If we define the cumulative performability as

CP (t) =
∫ t

0

rx(t)ds (4.6)

Which is a random variable, then the performability is defined as

PrCP (t) ≤ y = D(t, y) (4.7)

In classical performability analysis X is a continuous-time Markov chain. Because of the

heterogeneity of Grid Computing environments. We have the following challenging problem in Grid

performability analysis.
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• The models usually assume that in a particular state i ∈ S at time t, the system performs

with rate ri. However, the rates may also depend on the global time, thus having a reward

rate function ri(t) for every state i. This might be the case in Grid Computing environments.

• We face the problem of deciding if a reward function is well defined for a specific Grid environ-

ment: Stochastics Active Networks have been used to define rewards function in a tradictional

distributed systems. It is important investigate if this type of models apply to Grid Computing

environments.

4.4 Summary

Grid computing system is different from conventional distributed computing systems by its

focus on large-scale resource sharing, where processors and communication have significant influence

on grid computing performance. Most previous research on conventional small-scale distributed sys-

tems ignored the communication time and processing time when studying the distributed program

performance, which is not practical in the analysis of grid computing systems. The presence of com-

munication heterogeneities reduces the accuracy from the communication models used to optimise

collective communications in wide-area networks.

The issue of predicting resource performance is essential to Computational Grid research.

Not only is it critical to effective program and system design, but also dynamic schedulers and fault

diagnosis tools requires on-line access to prediction data as part of the Grid infrastructure.

In this chapter, we have discussed relevant tools for performance analysis of Grid environ-

ments, identifies advantages and limitations of those tools, and finally presented how the concept of

performability relates to Grid environments.



CHAPTER 5

Conclusions and Future Work

In this thesis we have presented the design and development of a Service Oriented Archi-

tecture - based Grid platform suitable to hyperspectral imaging analysis. The result is Grid-HSI, a

system prototype that provides users with a transparent interface to access computational resources

and perform remotely hyperspectral imaging analysis through a set of Grid services. The system

is based on Open Grid Service Architecture (OGSA) and implemented on the top of the Globus

Toolkit 3.0 (GT3).

This Grid based application, contrary to client/server approaches, provides the capabilities

of persistence and potential transient process on the web. Thus, we can perform a chain of operations

and be able to get the result of one operation and send it as a parameter to the next operation.

In all experiments the time overhead due the communications and servlets process is nor

greater than 8.5%. This is not relevant if we take all advantage of using the proposed Architecture

in terms of portability and accessability.

While the Grid-HSI system is a first prototype, our results suggest that this is a new source

of computational power that is accessible and applicable to the remote sensing problem set.

Among the main features of Grid-HSI we can list:

1. Grid-HSI is fully based on OGSA architecture providing a functional Grid based application
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system.

2. The Grid-HSI Grid Services provides the capabilities of persistence and potential transient

process on the web.

3. Multiuser, make it possible for several users through a web browser to use the same Grid

Service in the same node at time.

Although the operation of the proposed design, was implemented in a Grid formed by

equipment located in UPRM, their adaptation to Grid environment with other characteristics would

practically be immediate.

In this thesis, we have discussed relevant tools for performance analysis of Grid environ-

ments, identifies advantages and limitations of those tools, and finally presented how the concept of

performability relates to Grid environments.

5.1 Future Work

There are several areas which might be improved by subsequent work:

• The Grid-HSI services that implement the hyperspectral analysis algorithms focus on using

feature selection and feature extraction to reduce the dimensionality of the problem or seek

representations with improved properties for the rapid analysis. Another approach is the

application of the distributed learning techniques as a divide-and-conquer method. Distributed

learning can be done by training classifiers on distinct subsets of data. The result of the

combination of classifiers is referred to as ensemble of classifiers. The Grid-HSI infrastructure

opens an avenue for research on ensembles of classifiers.

• It is important that Grid resources be used efficiently. Executing the application on a large

scale can have as a result that a HSI grid service job has to be slit up into many subjobs.

To find out how the Grid-HSI application scales using very large Grids, the efficiency has to

be investigated. Further more is needed to provide appropriate performance metrics for Grid

environments and mechanism to guarantee scalable systems.

• Fault-tolerance is a critical issue in grid computing. It includes fault-detection and failure
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recovery. As the number of machines in a Grid grows the probability that there is a fail in a

particular node or network connections increases dramatically. It follows that when a service

is delivered by composing several other services, possibly on several different machines, the

probability that it completes decreases as the number of machines increases. In order to make

Grid-HSI highly reliable it is required constant attention and care to handling failure.

• An issue that we need to investigate is the interaction between the fault tolerance mechanism

and the data consistency protocols. This is a very challenging problem as the scale of Grid

Computing environments continues to increase.

We believe that the deployment of Grid-HSI will facilitate the investigation of more fun-

damental problems related to performance, fault tolerance and extension of algorithms.
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