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Never knowing what the waves will bring, but riding them nonetheless.
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Introduction

A general notion of closure operator was previously used to export classical

topological notions to an arbitrary category. The reader interested in this

topic could consult [3] or [4]. The idea of this work is to try to do something

similar but using the notion of interior operator. In Chapter 1 we intro-

duce the reader to the notion of a Galois connection between pre-ordered

classes and some of its properties. In Chapter 2 we define the notion of an

interior operator in the category of topological spaces and also present some

examples and properties. In the following chapter we define the notions of

connectedness and disconnectedness with respect to an interior operator and

we study their basic properties. Chapter 4 is devoted to the construction

of the discrete and indiscrete Galois connections and to the main theorem

that describes their composition. Moreover, we also relate our notions of

connectedness and disconnectedness with respect to an interior operator to

the ones of connectedness and disconnectedness with respect to a subclass

of topological spaces introduced in [2]. Several examples that illustrate the

theory are also included. In Chapter 5 we make some comments to the notion

of interior operator in the category of Groups and give an example.
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Chapter 1

Preliminary Notions

In this chapter we include definition and properties of Galois connections that

will be useful throughout this work.

Definition 1.1

A relation ≤ on a class P is called a “pre-order” if:

1. a ≤ a, ∀a ∈ P .

2. a ≤ b and b ≤ c implies a ≤ c, ∀a, b, c ∈ P .

If in addition to 1 and 2 also the following holds:

3. a ≤ b and b ≤ a implies a = b, ∀a, b ∈ P then the relation ≤ is called a

“partial order”.

Let (P ,≤) and (Q,v) be two partially ordered classes. A Galois connection

P
f ∗
-

�

f∗
Q between them consists of two order preserving functions:

f ∗ : P → Q and f∗ : Q → P , such that for all P ∈ P and Q ∈ Q, we have

that f ∗(P ) v Q if and only if P ≤ f∗(Q). Throughout this work we will use
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certain results that appear in the book by G. Castellini [3] :

Classical Results

Proposition 1.1

The composition of two Galois connections is a Galois connection.

Proof. Let X
f
-

�

g
Y and Y

h
-

�

k
Z be two Galois connections. First let us

recall that the functions h◦f and g◦k are order preserving since the functions

f, g, h, k have the same property. Let x ∈ X, then f(x) ⊆ k(h(f(x))) and

so x ⊆ g(f(x)) ⊆ g(k(h(f(x)))) = (g ◦ k)((h ◦ f)(x)). Letting z ∈ Z, we

have that f(g(k(z))) ⊆ k(z) and so h(f(g(k(z)))) ⊆ h(k(z)) ⊆ z. Hence

(h ◦ f)((g ◦ k)(z)) ⊆ z. Therefore X
h ◦ f

-
�

g ◦ k
Z is a Galois connection.

Proposition 1.2

Let X
f
-

�

g
Y be a Galois connection, then the functions f and g uniquely

determine each other.

Proof. Let g′ : Y → X be a function such that X
f
-

�

g′
Y is a Galois con-

nection. By applying g′ to f(g(y)) ≤ y, we obtain that g(y) ≤ g′(f(g(y))) ≤

g′(y). Moreover, if we apply g to f(g′(y)) ≤ y we get that g′(y) ≤ g(f(g′(y))) ≤

g(y). Hence we conclude that g(y) = g′(y) for every y ∈ Y . Now, let

f ′ : X → Y be such that X
f ′
-

�

g
Y is a Galois Connection. Let us apply

f ′ to x ≤ g(f(x)). This gives us that f ′(x) ≤ f ′(g(f(x))) ≤ f(x). Then

by applying f to x ≤ g(f ′(x)) we obtain that f(x) ≤ f(g(f ′(x))) ≤ f ′(x).

Hence we conclude that f(x) = f ′(x) for every x ∈ X. Thus f and g uniquely

determine each other.
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Definition 1.2

Let (P ,≤) be a pre-ordered class and let {xi}i∈I be a family of elements

of P . An element x0 ∈ P is called the supremum of the family {xi}i∈I

(x0 =
∨

i∈I
{xi}) if:

1. xi ≤ x0, ∀i ∈ I.

2. If x ∈ P satisfies xi ≤ x ∀i ∈ I, then x0 ≤ x.

Similarly y0 ∈ P is called the infimum of the family {xi}i∈I (y0 =
∧

i∈I
{xi})

if:

1. y0 ≤ xi, ∀i ∈ I.

2. If y ∈ P satisfies y ≤ xi ∀i ∈ I, then y ≤ y0.

Proposition 1.3

Let X and Y be two pre-ordered classes and assume that suprema exist in

X. Let f : X → Y be a suprema preserving function. Define g : Y → X as

follows: for every y ∈ Y , g(y) =
∨
{x ∈ X : f(x) ≤ y}. Then X

f
-

�

g
Y is

a Galois Connection.

Proof. Let x1 ≤ x2 ∈ X. Since f preserves suprema, we have that f(x1) ≤

f(x2). Let y1 ≤ y2 ∈ Y . Clearly we have that {x ∈ X : f(x) ≤ y1} ⊆ {x ∈

X : f(x) ≤ y2}. Thus by taking the supremum we obtain that g(y1) ≤ g(y2).

Now, let x′ ∈ X. By applying the definition of g we obtain that g(f(x′)) =∨
{x ∈ X : f(x) ≤ f(x′)} ≥ x′. Finally, let y′ ∈ Y . Since f preserves

suprema, we have that f(g(y′)) = f(
∨
{x ∈ X : f(x) ≤ y′} =

∨
{f(x) ∈ Y :

f(x) ≤ y′} ≤ y′.
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Proposition 1.4

Let X, Y be two pre-ordered classes and assume that infima exist in Y . Let

g : Y → X be an infima preserving function. Define f : X → Y as follows:

for every x ∈ X, f(x) =
∧
{y ∈ Y : x ≤ g(y)}. Then X

f
-

�

g
Y is a Galois

Connection.

Proof. Let y1 ≤ y2 ∈ Y . Since g preserves infima we have that g(y1) ≤ g(y2).

Now let x1 ≤ x2 ∈ X then {y ∈ Y : x1 ≤ g(y)} ⊇ {y ∈ Y : x2 ≤ g(y)}. Thus

taking infima we obtain that f(x1) ≤ f(x2). Now if y′ ∈ Y , by applying

f we obtain that f(g(y′)) =
∧
{y ∈ Y : g(y′) ≤ g(y)} ≤ y′. Lastly since

g preserves infima if x′ ∈ X we obtain that g(f(x′)) = g(
∧
{y ∈ Y : x′ ≤

g(y)}) =
∧
{g(y) ∈ X : x′ ≤ g(y)} ≥ x′.
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Chapter 2

Interior Operators in Topology

The aim of category theory is to identify common ideas among different areas

in mathematics. Roughly speaking, a category consists of objects (X, Y, Z, ...)

and morphisms (X
f
- Y , Y

g
- Z, ...) with an operation of composition

among morphisms (that is not always defined). The most common examples

of a category are: Top, the category of topological spaces and continuous

functions, Grp, the category of groups and groups homomorphisms, V ec,

the category of vector spaces and linear transformations, Set, the category

of sets and functions. Since the work presented here is done mostly in the

category of topological spaces we will not present any further details about

the concept of category and we refer the interested reader to the book Abstract

and Concrete Categories by J. Adámek, H Herrlich and G.E. Strecker [1], for

instance. The notion of closure operator in an arbitrary category was used to

generalize most notions of topological nature to an arbitrary category X
¯

. We

refer the interested reader to the books Categorical Closure Operators by G.

Castellini [3] and Categorical Structure of Closure Operators by Dikranjan-
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Tholen [4]. The purpose of this thesis is to try a similar approach but by

using a “dual” notion of interior operator instead. For the time being we will

confine ourselves to the category Top of topological spaces.

A general notion of interior operator on an arbitrary category was introduced

by S.J.R. Voster [6]. We specialize it here to the category of topological

spaces, Top.

Definition 2.1

An interior operator I on Top is a family of functions {i
X
}X∈Top on the subset

lattices of Top with the following properties for every X ∈ Top:

Contractiveness: For M ⊆ X then i
X

(M) ⊆M .

Order Preservation: For each pair of subsets M1,M2 of X with M1 ⊆M2

then i
X

(M1) ⊆ i
X

(M2).

Continuity: For every continuous function f : X → Y and any subset

M ⊆ Y then f−1(i
Y
(M)) ⊆ i

X
(f−1(M)).

The subscript X in i
X

(M) is omitted whenever no confusion is possible.

Examples of Interior Operators

Here we present a few examples of interior operators. Let X ∈ Top:

Example 2.1

For M ⊆ X define k
X

(M) =
⋃
{O open in X with O ⊆M}. That is, k

X
(M)

is the union of all open subsets O of X that are contained in M .

Proof. Clearly by definition we have that k
X

(M) ⊆M . Now for order preser-

vation, let M1 ⊆ M2 be subsets of X. Then k
X

(M1) is the union of all open
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sets O1 contained in M1 and by transitivity this union is also contained in

M2. Since k
X

(M2) =
⋃
{O open in X with O ⊆ M2} we have that already

all the open sets inside M1 are included and therefore k
X

(M1) ⊆ k
X

(M2).

Lastly, let f : X → Y be a continuous function and let M ⊆ Y . Then,

f−1(k
X

(M)) = f−1(
⋃
{O open in Y with O ⊆ M}) =

⋃
{f−1(O) : O open in

Y with O ⊆ M} ⊆
⋃
{K open in X: K ⊆ f−1(M)} = k

X
(f−1(M)), since

inverse images of continuous functions preserves open sets. Therefore we ob-

tain that f−1(k
X

(M)) ⊆ k
X

(f−1(M)). We have just proved that K is indeed

an interior operator.

Example 2.2

For M ⊆ X define q
X

(M) =
⋃
{C clopen in X : C ⊆ M}, namely q

X
(M) is

the union of all clopen (closed and open) subsets C of X that are contained

in M . This is known as the clopen interior operator.

Proof. By definition we have that q
X

(M) ⊆ M . Let M1 ⊆ M2 ⊆ X, then

q
X

(M1) =
⋃
{C1 clopen in X : C1 ⊆ M1}. Now, every clopen subset C1

contained in M1 is also contained in M2 and therefore q
X

(M1) ⊆ q
X

(M2). To

check continuity, let f : X → Y be a continuous function and let M ⊆ Y .

Then, f−1(q
X

(M)) = f−1(
⋃
{C clopen in Y : C ⊆ M}) =

⋃
{f−1(C)

clopen in X : f−1(C) ⊆ f−1(M)} ⊆
⋃
{K clopen in X : K ⊆ f−1(M)} =

q
X

(f−1(M)). Here we have used the fact that open and closed subsets are pre-

served by inverse images of continuous functions. Therefore Q is an interior

operator in Top.
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Example 2.3

For M ⊆ X, define h
X

(M) =
⋃
{C closed in X : C ⊆M}.

Proof. The proof of this case can be obtained from the one in Example 2.1 by

replacing “open” with “closed” since closed subsets are preserved by inverse

images of continuous functions. Therefore, we omit the details.

Example 2.4

For M ⊆ X, define l
X

(M) = {x ∈ X : Cx ⊆ M} where Cx is the connected

component of x in X.

Proof. First we have that l
X

(M) ⊆ M since every element x belongs to

its connected component. Next, let M1 ⊆ M2 ⊆ X. Then, we have that

l
X

(M1) ⊆ l
X

(M2) because for any x ∈ l
X

(M1), Cx ⊆ M1 ⊆ M2. Now, let

f : X → Y be a continuous function and let N be a subset of the topological

space Y . If x ∈ f−1(l
Y
(N)) then, f(x) ∈ l

Y
(N) and so Cf(x) ⊆ N . We

wish to conclude that x ∈ l
X

(f−1(N)). Suppose this is not the case, then

C
X

⋂
(X− f−1(N)) 6= φ and consequently f(C

X
)
⋂

(Y −N) 6= φ. Clearly this

is true otherwise if f(C
X

) ⊆ N then C
X
⊆ f−1(f(C

X
)) ⊆ f−1(N), which is

a contradiction. Now, continuity of f implies that f(C
X

) ⊆ Cf(x) and con-

sequently Cf(x)
⋂

(Y − N) 6= φ which contradicts the fact that Cf(x) ⊆ N .

Therefore x ∈ l
X

(f−1(N)) and we conclude that f−1(l
Y
(N)) ⊆ l

X
(f−1(N)).

Therefore L is an interior operator in Top.
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Example 2.5

For M ⊆ X, define θ
X

(M) = {x ∈M : ∃ a nbhd Ux of x such that Ux ⊂M}.

Here, Ux denotes the usual kuratowski closure of the neighborhood Ux.

Proof. The first two conditions are straightforward therefore we present the

proof for the last one. Let f : X → Y be a continuous function and let

N ⊆ Y . We have that: f−1(θ
Y
(N)) = f−1({y ∈ N : ∃ a nbhd Uy of y:

Uy ⊆ N}). Now, if x ∈ f−1(θ
Y
(N)), then f(x) ∈ θ

Y
(N) that is, there is a

neighborhood U
f(x)

such that U
f(x)
⊆ N . Consequently, x ∈ f−1(U

f(x)
) ⊆

f−1(N). This implies that x ∈ θ
X

(f−1(N)), since f−1(U
f(x)

) is a neigh-

borhood of x and f−1(U
f(x)

) ⊃ f−1(U
f(x)

) since f−1(U
f(x)

) is closed. Hence,

f−1(θ
Y
(N)) ⊆ θ

X
(f−1(N)). Thus, Θ is an interior operator.

We denote the collection of all interior operators on Top by IN(Top) pre-

ordered as follows: I v J if i
X

(M) ≤ j
X

(M) for all M ⊆ X ∈ Top.

The following propositions show that arbitrary suprema and infima exist

in IN(Top). Let {Ik}k∈K be a family of interior operators belonging to

IN(Top).

Proposition 2.1

For every M ⊆ X ∈ Top define
∧
k∈K Ik as follows i∧

Ik
(M) =

⋂
k∈K

ik(M).

Then,
∧
k Ik belongs to IN(Top) and is the infimum of {Ik}k∈K

Proof. We prove that
∧
k Ik is an interior operator. Let M ⊆ X, then

i∧
Ik

(M) =
⋂

k∈K
ik(M) with Ik ∈ IN(Top). Then, since for every k ∈ K,

Ik is an interior operator we have that ik(M) ⊆ M , ∀k ∈ K. Consequently
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we have that
⋂

k∈K
ik(M) ⊆ ik(M) ⊆ M and therefore i∧

Ik
(M) ⊆ M . Now

let M1 ⊆ M2 ⊆ X. Since for every k ∈ K, Ik ∈ IN(Top), we have

that ik(M1) ⊆ ik(M2), it follows that
⋂

k∈K
ik(M1) ⊆

⋂
k∈K

ik(M2) and so

i∧
Ik

(M1) ⊆ i∧
Ik

(M2). Lastly, let f : X → Y be a continuous function and let

M ⊆ Y . Since for all k ∈ K, f−1(ik(M)) ⊆ ik(f
−1(M)) then f−1(i∧

Ik
(M)) =

f−1(
⋂

k∈K
ik(M)) =

⋂
k∈K

f−1(ik(M)) ⊆
⋂

k∈K
ik(f

−1(M)) = i∧
Ik

(f−1(M)).

Therefore
∧

k∈K
Ik ∈ IN(Top).

Let Iα ∈ IN(Top) be such that for M ⊆ X it satisfies that for all j ∈ K,

iα(M) ⊆ ij(M). This means that Iα is a lower bound of the family {Ik},

and by taking intersection yields iα(M) ⊆
⋂
j∈K ij(M) = i∧ Ik(M). Therefore∧

Ik is the greatest lower bound, i.e. the infimum, of the family {Ik}k∈K .

Proposition 2.2

For every M ⊆ X ∈ Top, define
∨
k∈K Ik as follows: iW

Ik
(M) =

⋃
k∈K

ik(M).

Then,
∨
k Ik belongs to IN(Top) and is the supremum of the family {Ik}k∈K .

Proof. Let M ⊆ X, then iW
Ik

(M) =
⋃
k∈K ik(M). Since for every k ∈ K,

ik(M) ⊆ M , it follows that
⋃
k∈K ik(M) ⊆ M . This implies that iW

Ik
(M) ⊆

M . Now if we haveM1 ⊆M2 ⊆ X, iW
Ik

(M1) =
⋃
k∈K ik(M1) ⊆

⋃
k∈K ik(M2) =

iW
Ik

(M2) since ∀k ∈ K, ik(M1) ⊆ ik(M2) due to the fact that all Ik’s

are interior operators. Therefore iW
Ik

(M1) ⊆ iW
Ik

(M2). Finally, let f :

X → Y be a continuous function with M ⊆ Y . Then f−1(iW
Ik

(M)) =

f−1(
⋃
k∈K ik(M)) =

⋃
k∈K f

−1(ik(M)) ⊆
⋃
k∈K ik(f

−1(M)) = iW
Ik

(f−1(M)).

Since
∨
k∈K Ik satisfies all conditions of an interior operator we conclude that∨

k∈K Ik ∈ IN(Top).
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Now to prove
∨
k∈K Ik is the supremum of the family {Ik}k∈K , let Iβ ∈

IN(Top) be such that for every j ∈ K and M ⊆ X, ij(M) ⊆ iβ(M).

Then by taking the union we obtain that
⋃
j∈K ij(M) ⊆ iβ(M) implying

that iW
Ik

(M) ⊆ iβ(M). Therefore
∨
k∈K Ik is the least upper bound, or the

supremum, of the family {Ik}k∈K .

Definition 2.2

Let I be an interior operator. Then for M ⊆ X we say:

• M is I-open if i
X

(M) = M

• M is I-thin if i
X

(M) = φ

• X is I-discrete if for every M ⊆ X, i
X

(M) = M

• X is I-indiscrete if for every proper subset M ⊂ X, i
X

(M) = φ

Proposition 2.3

Let f : X → Y be a continuous function and let I be an interior operator on

Top. If N ⊆ Y is I-open then so is f−1(N).

Proof. We prove that f−1(N) is I-open namely that i
X

(f−1(N)) = f−1(N).

Since N is I-open and f is continuous we have that f−1(N) = f−1(i
Y
(N)) ⊆

i
X

(f−1(N)) and also i
X

(f−1(N)) ⊆ f−1(N) by contractiveness of I. There-

fore, f−1(N) = i
X

(f−1(N)) implying that f−1(N) is I-open whenever N is

I-open.

12



Chapter 3

Connectedness and Disconnectedness

In this chapter we introduce the notions of connectedness and disconnected-

ness with respect to an interior operator and study their main properties.

We recall that a function f : X → Y is said to be constant if ∀x1, x2 ∈ X,

f(x1) = f(x2). Notice that whenever X 6= φ, this is equivalent to f(X) =

y0 ∈ Y .

Definition 3.1

Given an interior operator I, we say that:

1. X ∈ Top is I-connected if every continuous function from X into an

I-discrete topological space Y is constant.

2. X ∈ Top is I-disconnected if for every continuous function from an I-

indiscrete topological space Y into X is constant.

Next we present some properties of I-connectedness and I-disconnectedness.

Definition 3.2

A subset M of X ∈ Top is I-dense in X if i
X

(X −M) = φ.

13



Properties of I-connectedness

Proposition 3.1

Let M 6= φ be I-dense in X ∈ Top. If M is I-connected then so is X.

Proof. Let f : X → Y be a continuous function with Y I-discrete. We have

by assumption that f(M) = y0 ∈ Y . Now, let x ∈ X −M and assume that

f(x) = y 6= y0. Then, f−1(Y − {y0}) = f−1(i
Y
(Y − {y0}) ⊆ i

X
(f−1(Y −

{y0})) ⊆ i
X

(X −M) = φ, which is a contradiction. Hence, f is constant and

so X is I-connected.

Proposition 3.2

Let {Mi}i∈I be a family of subspaces of X ∈ Top such that
⋂
i∈IMi 6= φ. If

each Mi is I-connected then so is
⋃
i∈IMi.

Proof. Let f :
⋃
i∈IMi → Y be a continuous function with Y an I-discrete

topological space. Since each Mi is I-connected, we have that the restriction

of f to each Mi is constant into yi ∈ Y . Now , let i0, i ∈ I with i0 6= i. We

have that f(Mi0) = yi0 ∈ Y and f(Mi) = yi ∈ Y . By hypothesis, there exists

x0 ∈
⋂
i∈IMi. In particular, x0 ∈ Mi0 ∩Mi and so yi0 = f(x0) = yi. Since

this is true for every i ∈ I such that i 6= i0 we conclude that f is constant,

that is
⋃
i∈IMi is I-connected.

Proposition 3.3

Let f : X → Y be a surjective continuous function. If X is I-connected then

so is Y .

Proof. First we observe that if X = φ then so is Y and the statement is
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true. Now let X 6= φ and let g : Y → Z be a continuous function with Z an

I-discrete topological space. Since g ◦ f is continuous and X is I-connected

we have that g ◦ f is constant, that is g(Y ) = g(f(X)) = z0 ∈ Z. Hence g is

constant and so Y is I-connected.

Properties of I-disconnectedness

Proposition 3.4

Let M ⊆ X in Top. If X is I-disconnected, then so is M .

Proof. Let m : M → X denote the inclusion of the subspace M into X and

let f : Y → M be a continuous function with Y I-indiscrete. As it can be

seen, the fact that m ◦ f is constant and that m is injective implies that f is

constant, therefore M is I-disconnected.

Proposition 3.5

The product of a family of non-empty I-disconnected topological spaces is

I-disconnected.

Proof. Let {Xi}i∈I denote a family of I-disconnected topological spaces, let

f : Y →
∏

i∈I Xi be a continuous function with Y I-indiscrete and let (πi)i∈I

denote the usual projections. Since each Xi is I-disconnected, we have that

πi ◦ f is constant for every i ∈ I. Hence ∀i ∈ I there exists xi0 ∈ Xi such

that (πi ◦ f)(x) = xi0. This implies that f(x) = {xi0}i∈I , that is f is constant

and so
∏

i∈I Xi is I-disconnected.

15



Chapter 4

A factorization of the

connected-disconnected Galois

connection

In this chapter we are going to construct two Galois connections between

the class of all interior operators in Top (IN(Top)) and the collection of all

subclasses of Top (S(Top)) ordered via inclusion. Next we will describe their

composition.

Discrete Galois connection

Proposition 4.1

The function D : IN(Top)→ S(Top) defined by

D(I) = {X ∈ Top : X is I-discrete} preserves infima.

Proof. We first prove that D is order-preserving. So, let I1 v I2 and let

M ⊆ X ∈ Top. i1(M) ⊆ i2(M) ⊆ M implies that if M is I1-open then it

is also I2-open. Consequently, if X is I1-discrete then X is also I2-discrete
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that is D(I1) ⊆ D(I2). Now let {Ik}k∈K be a family of interior operators

in Top. Since
∧
Ik v Ik for each k ∈ K, order preservation of D implies

that D(
∧
Ik) ⊆ D(Ik),∀k ∈ K and so D(

∧
Ik) ⊆

⋂
k∈K

D(Ik). Now let

X ∈
⋂
D(Ik). Then, ∀ M ⊆ X, ik(M) = M , ∀k ∈ K, and so by Propo-

sition 2.1, i∧
Ik

(M) =
⋂
ik(M) =

⋂
k∈K

M = M . Hence, X ∈ D(
∧
Ik).

Since D(
∧
Ik) ⊆

⋂
k∈K

D(Ik) and
⋂

k∈K
D(Ik) ⊆ D(

∧
Ik), we conclude that⋂

k∈K
D(Ik) = D(

∧
Ik), implying that the function D preserves infima.

Let IN(Top)op and S(Top)op denote the same classes as IN(Top) and S(Top)

but with the order reversed. In particular, A
¯
≤ B

¯
in S(Top)op means B

¯
⊆

A
¯

. As a consequence of Proposition 4.1 we have that the function Dop :

IN(Top)op → S(Top)op defined by Dop(I) = D(I) preserves suprema. Then,

from Proposition 1.3, there is a function T : S(Top)op → IN(Top)op, defined

for A
¯
∈ S(Top)op by T (A

¯
) =

∨
{I ∈ IN(Top) : D(I) ≤ A

¯
} such that the

diagram

IN(Top)op
D

-

�

T
S(Top)op

forms a Galois connection.

The above definition of the function T is too general to be useful in concrete

situations. However, we have the following more practical characterization of

T .

Proposition 4.2

For every subclass A
¯

of Top and subset M of X ∈ Top, we have that

iT (A)(M) =
⋃
{f−1(N) ⊆M |f : X → Y continuous, Y ∈ A

¯
, N ⊆ Y }.

17



Proof. Define i∗(M) =
⋃
{f−1(N) ⊆ M |f : X → Y continuous, Y ∈ A

¯
, N ⊆

Y }. We are going to show that the assignment I∗ that to each subset M of

X associates i∗(M) is an interior operator that coincides with T (A
¯

). Firstly

for M ⊆ X we have that i∗(M) ⊆ M because it is the union of all inverse

images contained in M . Now if M1,M2 ⊆ X with M1 ⊆M2 we have by mere

inspection that i∗(M1) ⊆ i∗(M2), since inverse images contained in M1 are

also contained in M2 by transitivity.

Let f : Z → X be a continuous function and let M ⊆ X. Now, f−1(i∗(M)) =

f−1(
⋃
{g−1(N)|g : X → Y continuous, Y ∈ A

¯
, N ⊆ Y and g−1(N) ⊆ M}) =⋃

{f−1(g−1(N))|g : X → Y is continuous, Y ∈ A
¯
, N ⊆ Y and g−1(N) ⊆

M} =
⋃
{(g ◦ f)−1(N)|g : X → Y is continuous, Y ∈ A

¯
, N ⊆ Y and

g−1(N) ⊆ M}, since inverse images and unions commute . Notice that (g ◦

f)−1(N) = f−1(g−1(N)) ⊆ f−1(M) and so it occurs in the construction of

i∗(f−1(M)). Moreover, since not all continuous functions from Z to Y are of

the form g ◦ f we obtain that f−1(i∗(M)) ⊆
⋃
{l−1(N)|l : Z → Y continuous,

Y ∈ A
¯

, N ⊆ Y and l−1(N) ⊆ f−1(M)} = i∗(f−1(M)).Therefore we have

proved that I∗ is indeed an interior operator.

Let us now verify that T (A
¯

) = I∗. Let A
¯
∈ S(Top) and let X ∈ A

¯
. The

existence of the identity function id
X

: X → X implies that for every subset

N of X, i∗(N) = N . Consequently A
¯
⊆ D(I∗), in S(Top) which means

D(I∗) ≤ A
¯

in S(Top)op. Hence by definition of T , this implies that I∗ v T (A
¯

)

in IN(Top)op. Now, since D and T form a Galois connection, we have that

D(T (A
¯

)) ≤ A
¯

in S(Top)op, namely if we apply T and then D the image

shrinks. Now, in S(Top) this means that A ⊆ D(T (A
¯

)) and this tells us

18



that the ”objects” in A
¯

are discrete with respect to T (A
¯

). Consequently if

N ⊆ Y ∈ A
¯

, we have that N is T (A
¯

)-open. From Proposition 2.3 we have

that f−1(N) is T (A
¯

)-open too. Moreover if f−1(N) ⊆ M , then f−1(N) =

iT (A)(f
−1(N)) ⊆ iT (A)(M). Now since i∗(M) =

⋃
{f−1(N) ⊆ M |f : X → Y

continuous, Y ∈ A
¯
, N ⊆ Y } ⊆ iT (A)(M) in S(Top), applying the op we

obtain that T (A
¯

) v I∗ in IN(Top)op which together with I∗ v T (A
¯

) yields

I∗ = T (A
¯

).

Indiscrete Galois connection

Proposition 4.3

The function C : IN(Top)→ S(Top)op defined by

C(I) = {X ∈ Top : X is I-indiscrete} preserves suprema.

Proof. First we prove that C preserves the order. Let I1 v I2, and let φ 6=

M ⊂ X ∈ Top. Then, i1(M) ⊆ i2(M) implies that if M is I2-thin then it is

also I1-thin. Consequently if X is I2-indiscrete then X is also I1-indiscrete

and so C(I2) ⊆ C(I1), that means C(I1) ≤ C(I2) in S(Top)op. Next we show

that C preserves suprema. Let {Ik}k∈K
be a family of interior operators.

Since Ik v
∨
Ik for each k ∈ K, we have that by order preservation of C,

C(
∨
Ik) ⊆ C(Ik) for each k ∈ K and so C(

∨
Ik) ⊆

⋂
k∈K

C(Ik) =
∨
C(Ik)

in S(Top)op. Now if X ∈
∨
C(Ik) =

⋂
k∈K

C(Ik), then X ∈ C(Ik) for all

k ∈ K, and so X is Ik-indiscrete for every k ∈ K. Then for all M ⊂ X

we have ik(M) = φ,∀k ∈ K. Therefore i∨ Ik(M) =
⋃

k∈K
ik(M) = φ implies

that X ∈ C(
∨
Ik) that is,

∨
C(Ik) ⊆ C(

∨
Ik). Now if X ∈ C(

∨
Ik) then we

have that ∀M ⊆ X, i∨ Ik(M) = φ that implies Ik(M) = φ,∀k ∈ K. Hence
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we have that X ∈
⋂
C(Ik) =

∨
C(Ik) in S(Top)op. This, together with the

other containment, implies that
∨
C(Ik) = C(

∨
Ik) that is, the function C

preserves suprema.

As a consequence of the above proposition the function Cop : IN(Top)op →

S(Top) defined by Cop(I) = C(I) preserves infima and consequently from

Proposition 1.4, there exists a function G : S(Top)→ IN(Top)op, defined for

B
¯
⊆ Top as follows: G(B

¯
) =

∧
{I ∈ IN(Top)op : C(I) ⊇ B

¯
} such that the

diagram

S(Top)
G

-

�

C
IN(Top)op

is a Galois Connection.

Next we give a more practical characterization of the function G.

Proposition 4.4

For every subclass B
¯

of Top and subset M of Y ∈ Top, we have that

iG(B)(M) =
⋃
{N ⊆ M : ∀ continuous function f : X → Y with X ∈ B

¯
and

f−1(M) 6= X, f−1(N) = φ}.

Proof. Set i′(M) =
⋃
{N ⊆ M |∀ continuous function f : X → Y with

X ∈ B
¯

and f−1(M) 6= X, f−1(N) = φ}. We will show that the assignment

I ′ that to each subset M of Y associates i′(M) is an interior operator on

Top. Let M ⊆ Y , then i′(M) ⊆ M by definition. Now let M1 ⊆ M2 ⊆ Y

and let N ⊆ M1 occur in the construction of i′(M1). If f : X → Y is

a continuous function that satisfies X ∈ B
¯

and f−1(M2) 6= X, then from

f−1(M1) ⊆ f−1(M2) 6= X, we conclude that f−1(N) = φ. Thus, N also
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occurs in the construction of i′(M2) and so we have that i′(M1) ⊆ i′(M2).

Next we show the continuity condition. So, let Y
g
- Z be a continuous func-

tion and let M ⊆ Z. We have that i′(g−1(M)) =
⋃
{H ⊆ g−1(M) : ∀ continu-

ous X
h
- Y with X ∈ B

¯
and h−1(g−1(M)) 6= X, h−1(H) = φ} ⊇

⋃
{g−1(N) :

N ⊆ M and ∀ continuous X
h
- Y with X ∈ B

¯
and h−1(g−1(N)) 6= X,

h−1(g−1(N)) = φ} ⊇
⋃
{g−1(N) : N ⊆ M and ∀ continuous X

f
- Z with

X ∈ B
¯

and f−1(N) 6= X, f−1(N) = φ} = g−1(
⋃
{N ⊆ M and ∀ continuous

X
f
- Z with X ∈ B

¯
and f−1(M) 6= X, f−1(N) = φ} = g−1(i′(M)). Notice

that in the last containment above we have used the fact that not every func-

tion f : X → Z factors through g and h. Hence I ′ is an interior operator.

Next we show that G(B
¯

) coincides with I ′. First notice that if X ∈ B
¯

then for

every proper subset M ⊂ X, the existence of X
id

X- X, implies that the only

subset N ⊆M that satisfies id−1
X

(N) = φ is N = φ. Consequently i′(M) = φ,

that is C(I ′) ⊇ B
¯

and so I ′ v G(B
¯

) in IN(Top). On the other hand, for every

continuous function X
f
- Y with X ∈ B

¯
and M ⊆ Y such that f−1(M) 6= X,

we have that f−1(iG(B)(M)) ⊆ iG(B)(f
−1(M)) = φ. From the definition of

I ′ follows that iG(B)(M) ⊆ i′(M) that is G(B
¯

) v I ′ in IN(Top). Hence, we

conclude that I ′ = G(B
¯

).

Description of the Composition

The following proposition presents a very classical result for which we omit

the proof (cf. [5]).

Proposition 4.5

Let S(Top)
∆
- S(Top)op and S(Top)op

∇
- S(Top) be defined as follows:

∆(B
¯

) = {Y ∈ Top|∀ continuous X
f
- Y, X ∈ B

¯
, f is constant} ,
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∇(A
¯

) = {X ∈ Top|∀ continuous X
g
- Y, Y ∈ A

¯
, g is constant}.

Then, S(Top)
∆

-
�

∇
S(Top)op is a Galois connection.

The above proposition is known in the literature as the left-right constant

Galois connection. Next we present our main result.

Theorem 4.1

The following diagram of Galois connections

S(Top)
∆

∇
- S(Top)op

IN(Top)op

D
T

-

G
C

-

commutes.

Proof. We start by showing that the function ∆ : S(Top) → S(Top)op coin-

cides with the composition of the functions D and G. Now, for B
¯
∈ Top, let

M ⊆ Y ∈ ∆(B
¯

) and let f : X → Y be a continuous function with X ∈ B
¯

such that f−1(M) 6= X. Then, since f is constant and f−1(M) 6= X, we must

have that f−1(M) = φ. Consequently, iG(B)(M) = M and so Y ∈ D(G(B
¯

)).

Conversely, let Y ∈ D(G(B
¯

)) and let f : X → Y be a continuous function

with X ∈ B
¯

. First we observe that if X is empty then for every x, y ∈ X,

f(x) = f(y) is true by default. So, let X be nonempty and for x ∈ X,

take M = {f(x)} ⊆ Y . Now, notice that if f−1(M) = X, since f−1(M) =

f−1({f(x)}), we conclude that f is constant. Now suppose that f−1(M) 6= X.
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By hypothesis, iG(B)(M) = M and so f−1({f(x)}) = f−1(M) = φ. However,

the fact x ∈ f−1({f(x)}) yields a contradiction. Hence, f is constant and so

Y ∈ ∆(B
¯

). Finally we conclude that ∆ = D ◦G.

Now, since the composition of two Galois connection is a Galois connection

as proven in Proposition 1.1 and since the functions in a Galois connection

uniquely determine each other (Proposition 1.2) from ∆ = D◦G we conclude

that ∇ = C ◦ T .

Arhangel’skii and Wiegant in [2] introduced notions of connectedness and

disconnectedness with respect to a class of topological spaces. Precisely,

given a class A
¯

of topological spaces, a topological space X is A
¯

-connected

if any continuous function X
f
- Y, with Y ∈ A

¯
is constant. Similarly for a

class B
¯

of topological spaces, X is B
¯

-disconnected if every continuous function

Y
f
- X, with Y ∈ B

¯
is constant. Many properties of these notions and related

results are presented in [2]. It is important to observe that the strength of the

above theorem is that it allows us to relate our notions of connectedness and

disconnectedness with respect to an interior operator to Arhangel’skii and

Wiegandt notions of connectedness and disconnectedness with respect to a

subclass of topological spaces. More precisely, a topological space X is I-

connected if and only if X ∈ ∇(D(I)) = C(T (D(I))). A consequence of this

result is that if X is I-connected then it is D(I)-connected in the sense of [2].

Conversely, for a subclass A of topological spaces, if X is A
¯

-connected then

X ∈ ∇(A
¯

) = ∇(∆(∇(A
¯

))) = ∇(∆(C(T (A
¯

)))) = ∇(D(G(C(T (A
¯

))))). This

means that X is I-connected with I = G(C(T (A
¯

))). A similar assertion can
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be made about the notions of I-disconnectedness and B
¯

-disconnectedness.

We complete this work with a few examples that illustrate the theory.

Example 4.1

Consider the interior operator K induced by the topology. Clearly, D(K)

coincides with the subcategory Discr of discrete topological spaces. T (D(K))

is the clopen interior operator. In fact, we have that if M ⊆ X ∈ Top and

f : X → Y is a continuous function with Y discrete then f−1(N) is clopen

for every N ⊆ Y . On the other hand, let C ⊆ M be clopen and let D

denote the two-point discrete topological space and f : X → D defined by

f(x) = 0 for x ∈ C and f(x) = 1 otherwise. Hence, C = f−1({0}). So from

Proposition 4.2 we conclude that T (D(K)) is the clopen interior operator.

(cf. Example 2.2).

Now, if X is an indiscrete topological space, then clearly X ∈ C(K). So, let

X ∈ C(K) and suppose that X is not indiscrete, that is X has a non-empty

proper open subset U . Then, k(U) = U 6= φ implies that X /∈ C(K), which

is a contradiction. Hence, we conclude that C(K) = Ind, the subcategory of

indiscrete topological spaces.

We conclude that the K-connected topological spaces are the usual connected

topological spaces and the K-disconnected topological spaces are the T0 topo-

logical spaces since Ind and Top0 are corresponding fixed points of the Galois

connection (∆,∇) (cf. [2]).
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Example 4.2

Let Q be the clopen interior operator (cf. Example 2.2). Clearly, D(Q) =

Discr and consequently from Example 4.1, Q and Discr are fixed points of

the Galois connection (D,T ). So, Q-connected means connected topological

spaces. Now, we see that C(Q) = Conn, that is the subcategory of connected

topological spaces. As a matter of fact, if X is connected then it clearly

belongs to C(Q) since the only proper clopen subset of X is φ. On the other

hand, let X ∈ C(Q) and assume X is not connected. Then, there is a non-

empty proper clopen subset U ⊆ X. Consequently, q(N) = N 6= φ, which is

a contradiction. Hence, the I-disconnected topological spaces coincide with

the subcategory Tdisc of all totally disconnected topological space, i.e., those

topological spaces whose components are single points.

Example 4.3

Let H be the closed interior operator (cf. Example 2.3) and let X ∈ D(H) =

{X : ∀M ⊆ X, M is H-open}. In particular, for M = {x} we obtain

that {x} must be a union of closed subsets which implies that {x} must

be closed, i.e., X is a T1 topological space. On the other hand, if X is T1,

its points are closed and since every subset M of X is the union of all its

points we conclude that M is H-open. Hence, D(H) = Top1. Consequently,

H-connected means absolutely connected topological space (cf. [2]). Now,

if X is indiscrete then it clearly belongs to C(H). On the other hand, if

X ∈ C(H) and is not indiscrete, then there is a non-empty proper closed

subset N ⊆ X. Consequently, h
X

(M) = M 6= φ, which is a contradiction.

Hence, as in Example 4.1, the H-disconnected topological spaces are the T0
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topological spaces.

Example 4.4

Let L be the interior operator of Example 2.4, that is for M ⊆ X, l
X

(M)

consists of the union of all connected components ofX insideM . We are going

to see that D(L) = Tdisc. First we observe that if X is totally disconnected

then it clearly belongs to D(L) since every subset M of X is a union of

connected components inside M ,i.e., its points. On the other hand, if X ∈

D(L) and x ∈ X, then {x} is L-open. So, for x ∈ {x}, its connected

component Cx ⊆ {x}, which clearly implies that Cx = {x}, i.e., X is totally

disconnected. Consequently the L-connected topological spaces are the usual

connected topological spaces.

Now we see that C(L) = Conn. If X is connected then for any proper subset

M of X, no x ∈ M can possibly satisfy Cx ⊆ M and so l(M) = φ, i.e.,

X ∈ C(L). On the other hand, let φ 6= X ∈ C(L) (the empty set belongs

to both) and let x0 ∈ X. For every x 6= x0, set Mx = X − {x}. Since

l
X

(Mx) = φ then Cx0
* Mx which implies that x ∈ Cx0

. Since this is true

for every x ∈ X, we conclude that Cx0
= X, i.e., X is connected. Hence

C(L) = Conn and consequently, the L-disconnected spaces are the totally

disconnected topological spaces.

Example 4.5

Let Θ be the interior operator of Example 2.5. Clearly we have that Discr ⊆

D(θ). Now, if X ∈ D(θ), then for every x ∈ X, θ
X

({x}) = {x}. This

implies that there is a neighborhood Ux of {x} such that x ∈ Ux ⊆ {x}.

Hence, we conclude that Ux = x and so X is discrete. As a consequence, the
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Θ-connected topological spaces are the usual connected topological spaces

We call a topological space X nowhere separated if for any two distinct points

x, y ∈ X and neighborhoods Ux and Uy, Ux
⋂
Uy 6= φ. Notice that this class

of topological spaces properly contains all indiscrete topological spaces. For

instance if X is an infinite set with the cofinite topology, i.e., the open sets

are complements of finite subsets, then X is certainly not indiscrete but it is

nowhere separated. As a matter of fact, if there would exists neighborhoods

Ux, Uy in X such that Ux
⋂
Uy = φ then we would have that X = X − φ =

X − (Ux
⋂
Uy) = (X − Ux)

⋃
(X − Uy) wich is a contradiction since X − Ux

and X − Uy are finite.

Now we are going to show that C(θ) consists of all nowhere separated topo-

logical spaces. So, let X ∈ C(θ) and for x ∈ X consider M = X − {x}.

Since θ
X

(M) = φ, then for every y ∈ M and neighborhood Uy, we have

that Uy * M . This implies that x ∈ Uy, that is for every neighborhood

Ux, Ux
⋂
Uy 6= φ and so, X is nowhere separated. On the other hand, sup-

pose that X is nowhere separated and let M be a proper subset of X. For

x ∈ M and y ∈ X −M , we have that for every pair of neighborhoods Ux,

Uy, Ux
⋂
Uy 6= φ. This implies that y ∈ Ux and so Ux * M , i.e., x /∈ θ

X
(M).

Hence, θ
X

(M) = φ, that is X ∈ C(Θ).

We do not have a characterization for the Θ-disconnected topological spaces.
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Chapter 5

Interior operators in Algebra

Even though the definition of interior operator given in 2.1 can be translated

into the category Grp of groups by simply replacing the word “subset” by

“subgroup” and “continuous function” by “homomorphism”, we could not

find a way to prove Theorem 4.1 in Grp. The problem lies in the following

fact. Although the two Galois connections (D,T ) and (G,C) of Propositions

4.1 and 4.3, respectively, can be defined in Grp, we could not find appropriate

characterization of the functions T and G that would allow us to prove The-

orem 4.1. So this particular problem in Grp remains open. Nonetheless we

include one example that shows that interior operators exist in the category

of groups.

Example 5.1

Let H be a subgroup of a group G ∈ Grp. Define i(H) =
∨
{K ≤ H : K E

G} that is iG(H) consist of the subgroup generated by all normal subgroups

of G contained in H. Then the function that to each subgroup H associates

the subgroup iG(H) is an interior operator in Grp.
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Proof. The first two conditions are straightforward so we just need to verify

the continuity condition. So, let G
φ
- G′ be a group homomorphism. Since,

the subgroup generated by the family of normal subgroups is normal, we

have that iG′(N) / G′. This, together with the fact that the inverse image of

a normal subgroup is normal, yields that f−1(iG′(N)) is a normal subgroup

of G contained in f−1(N). Consequently, by definition of iG(f−1(N)) we

conclude that f−1(iG′(N)) ≤ iG(f−1(N)). Hence, all the conditions of interior

operators are satisfied.
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Conclusions and Future Work

The work done in this thesis can be summarized as follows.

• A previously introduced notion of interior operator on an arbitrary cat-

egory was used in Topology to define the notions of connectedness and

disconnectedness with respect to an interior operator.

• The main properties of connectedness and disconnectedness with respect

to an interior operator were studied and it was shown that they have

a similar behavior to classical connectedness and disconnectedness in

Topology.

• The notions of discrete and indiscrete objects with respect to an inte-

rior operator were introduced and related Galois connections were con-

structed.

• The left-right constant Galois connection was shown to factor through

the discrete and indiscrete Galois connections. This allowed us to relate

our notions of connectedness and disconnectedness with respect to an in-

terior operator to existing notions of connectedness and disconnectedness

with respect to a subclass of topological spaces.
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• Examples that illustrate the theory were found.

The open problems can be divided into two types. The first type consists in

trying to define other classical topological notions like separation and com-

pactness with respect to an interior operator and study their properties in the

category of topological spaces. The other type consists in trying to extend

the above results outside topology.
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