
MODELING AND SIMULATION OF POINT SPREAD FUNCTIONS

FOR ADVANCED SAR SYSTEMS

By

Hilaura Raquel Nava Valles

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

(Digital Signal Processing)

University of Puerto Rico

Mayagüez Campus

2004

Approved by:

Shawn Hunt, Ph.D. Date

Member, Graduate Committee

Manuel Jiménez, Ph.D. Date

Member, Graduate Committee

Domingo Rodŕıguez, Ph.D. Date

President, Graduate Committee

Barbara Calcagno, M.S. Date

Representative of Graduate Studies

Jorge Ortiz, Ph.D. Date

Chairperson of the Department

ABSTRACT

MODELING AND SIMULATION OF POINT SPREAD

FUNCTIONS FOR ADVANCED SAR SYSTEMS

By

Hilaura Raquel Nava Valles

This work deals with the treatment of remotely sensed or sensory data in order to

extract important information to the users. Sensory data are data collected from physical

systems, by using sensors, such as the synthetic aperture radar (SAR) system. A fundamen-

tal stage in SAR processing is computation of its point spread function (PSF), necessary for

raw data generation. The PSF contains the backscattered energy of a single point target

on the Earth, allowing the extraction of surface information. The effort of this work is

concentrated in the development of a mathematical model for PSF simulations and SAR

raw data generation. The SAR impulse response is modeled in a time-frequency analysis

context as the radar ambiguity function of a single point in the spatial object domain.

The simulation algorithms were programmed using the functional programming style to get

modularity. These algorithms were developed and tested in Matlab. The mathematical

model was validated using a methodology based on theoretical formulations available in

the literature. Simulations results demonstrated that not only the model is valid, but also

the efficiency of the implemented algorithms as a tool for modeling and simulation of SAR

impulse response functions.

ii

RESUMEN

MODELAJE Y SIMULACION DE RESPUESTA DE

IMPULSO PARA SISTEMAS SAR AVANZADOS

Por

Hilaura Raquel Nava Valles

Este trabajo atiende el tratamiento de datos obtenidos remotamente a través de

sensores o datos sensoriales, con la finalidad de extraer información importante para los

usuarios de dichos datos. Estos datos son colectados por sistemas f́ısicos de percepción

remota, tales como, los sistemas de radar de abertura sintética (SAR). Una etapa funda-

mental en el procesamiento de datos de SAR es la computación de la función de extensión

de punto (PSF, por sus siglas en inglés) para la generación de los datos crudos, ya que ésta

contiene la enerǵıa reflejada de un sólo punto sobre la Tierra, permitiendo la extracción de

información de la superficie. El esfuerzo de este trabajo se concentró en el desarrollo de un

modelo matemático para la simulación de la respuesta de impulso y la generación de datos

crudos de los sistemas SAR. La respuesta de impulso de los sistemas SAR fue modelada

en un contexto de análisis de tiempo-frequencia como la función de ambigüedad de un sólo

punto en el dominio espacial del objeto. Los algoritmos para las simulaciones fueron desar-

rollados y probados en Matlab. El modelo matemático fue validado con una metodoloǵia

basada en formulaciones matemáticas disponibles en la literatura. Los resultados obtenidos

de las simulaciones no solo demostraron que el modelo es válido, sino también la eficiencia

de los algoritmos implementados como una herramienta para el modelaje y simulación de

la respuesta de impulso de los sistemas SAR.

iii

Copyright c© by

Hilaura Raquel Nava Valles

2004

iv

To the people who will never leave me alone: God, my loved family, and my unconditional friends.

v

ACKNOWLEDGMENTS

I would like to thank deeply my thesis advisor, Dr. Domingo Rodŕıguez for his

valuable encouragements and advises during the preparation of this work. Thank you to

my graduate committee members, Dr. Shawn Hunt, and Dr. Manuel Jiménez, for their

help.

I would like to thank the Electrical and Computer Engineering department, and

the PRECISE Project for their financial support and the research facilities provided during

these years of study. Also, i would like to convey my thanks to my friends of the PRECISE

laboratory for all their support.

vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

1 Introduction 1

1.1 Problem Statement . 3

1.2 Justification . 4

1.3 Objectives . 5

1.4 Thesis Overview . 5

2 Previous Research Work 7

2.1 Previous Research Work on Ambiguity Function Processing 7

2.2 Previous Research Work on SAR Processing Modeling and Simulations . . . 10

3 Mathematical Framework 15

3.1 Basic Linear Algebra Definitions . 15

3.2 Finite Dimensional Signal Algebra . 23

3.3 Signal Algebra Operators on `2 (ZN) . 26

3.3.1 Unary Signal Operators . 27

3.3.2 Binary Signal Operators . 27

3.3.3 Matrix Representation of Signal Operators 29

3.3.3.1 Right Shift Operator S
(−)
N 29

3.3.3.2 Left Shift Operator S
(+)
N 31

4 Modeling of Point Spread Functions as Discrete Ambiguity Functions 33

4.1 Introduction to Modeling and Simulation 34

4.1.1 Modeling . 34

4.1.2 Simulation . 35

4.2 Radar Imaging Systems . 36

4.2.1 Synthetic Aperture Radar (SAR) . 40

4.2.1.1 Mathematical Model of Radar Imaging Systems 42

4.2.2 SAR Imaging System Model . 43

vii

4.3 The Radar Ambiguity Function . 46

4.3.1 Ambiguity Function of Basic Waveforms 49

4.3.2 Discrete Ambiguity Function (DAF) 51

4.4 Algorithms for DAF Computation . 53

4.4.1 Analysis of Complexity . 57

5 Simulation Results 58

5.1 Results on Modeling . 58

5.2 MATLAB Simulations Results . 59

5.2.1 Graphical Results of MATLAB Simulations 61

5.2.2 Comparison between Linear and Cyclic DFT Methods 65

5.3 Methodology Validation . 67

5.4 Future Work . 71

6 Conclusions 75

BIBLIOGRAPHY 76

A Programming with FFTW 79

B MATLAB Functions 86

C C Programs 100

D FORTRAN Programs 107

viii

LIST OF TABLES

4.1 Radar Operational Frequency Bands . 37

5.1 Time Measurements of Matlab Simulations 60

5.2 Simulation Parameters for DFT Method . 65

5.3 Time Measurements of SAR PSFs Simulations on a SMP System 73

5.4 Time Measurements of SAR PSFs Simulations on the IBM Cluster 74

ix

LIST OF FIGURES

1.1 A Typical Imaging Radar System . 2

1.2 Filtering View of the Imaging Process. 4

2.1 SAR Processing Oriented Simulator . 11

2.2 SAR Oriented Simulator . 12

2.3 Strimap SAR Operation Mode. 13

2.4 Scan SAR Operation Mode. 13

2.5 Spotlight SAR Operation Mode. 14

3.1 Algebraic Structures . 22

3.2 Unary Signal Algebra Operator . 27

4.1 The Simulation Process . 36

4.2 Resolution Cell of a Radar Imaging System 38

4.3 Range Resolution . 38

4.4 Azimuth Resolution . 39

4.5 Doppler Variation Computation . 41

4.6 Blahut Model of Imaging Radar Systems . 43

4.7 SAR System Model . 44

4.8 SAR Raw Data Generation Model . 45

4.9 SAR Image Formation Model . 46

4.10 The Ambiguity Function of a Single Pulse (τ = 4). 3-D plot (left). Contour

plot (right) . 50

4.11 The Ambiguity Pulse of 7 Coherent Pulses (τ = 0.4 and PRI = 1).3-D

plot(left). Contour plot (right) . 51

4.12 Discrete Ambiguity Function as a Cyclic Correlation 52

4.13 Index-Reversal and Zero-Padding Operators 53

4.14 DFT Method Algorithm for Ambiguity Function Simulations 54

4.15 Filter Method Algorithm for Ambiguity Function Simulations 56

5.1 SAR imaging system . 58

5.2 Three-dimensional Representation of the Ambiguity Function for a Trans-

mitted Pulse Signal . 62

5.3 Two-dimensional Representation of the Ambiguity Function for a Transmit-

ted Pulse Signal . 62

5.4 Contour Plot of the Ambiguity Function for a Transmitted Pulse Signal . . 63

x

5.5 Three-dimensional Representation of the Ambiguity Function for a Trans-

mitted Chirp Signal . 63

5.6 Two-dimensional Representation of the Ambiguity Function for a Transmit-

ted Chirp Signal . 64

5.7 Contour Plot of the Ambiguity Function for a Transmitted Chirp Signal . . 64

5.8 Chirp Ambiguity Function Computed by the Linear DFT Method 66

5.9 A Chirp Ambiguity Function Computed by the Cyclic DFT Method 66

5.10 Validation Methodology for PSF simulations 67

5.11 Validation Methodology for PSF simulations for a Transmitted Pulse Signal 67

5.12 Single Pulse Ambiguity Function Computed directly from Equation 68

5.13 Single Pulse Ambiguity Function Computed with the DFT Method 69

5.14 Validation Methodology for PSF simulations for a Transmitted Pulse Train 69

5.15 Pulse Train Ambiguity Function Computed directly from Equation 70

5.16 Pulse Train Ambiguity Function Computed with Filter Method 70

5.17 SAR Typical Data Size . 71

5.18 Parallel Approach for SAR Impulse Response Simulations 72

5.19 Run Time Comparison of SMP Simulations 74

A.1 FFTW Computational Scheme . 81

xi

CHAPTER 1

Introduction

The continuous monitoring of the Earth’s surface by remote sensing systems has

contributed with a diversity of geoscience applications in many fields, such as: geology,

hydrology, oceanography, and others. As new technologies and innovative concepts are de-

veloped, the number of applications increase. For instance, the last decade has witnessed

significant advances in our understanding of global geophysical phenomena as a direct con-

sequence of the development of radar imaging technology for sensor systems design.

Imaging radars are systems designed to operate at low intensity in the microwave

region of the electromagnetic spectrum. Basically, the operation of a radar imaging system

starts with the transmission of a sequence of short pulses at a specific wavelength and

polarization while the system platform flies along its trajectory [1]. Then, all returned

signals containing Earth’s surface reflectivity information are combined to form an image

known as raw data. Figure 1.1 depicts a classic radar imaging system and its fundamental

elements. Depending of the antenna length used for signals transmission and reception,

remote sensing radars can be classified into two categories: real aperture radars (RAR)

and synthetic aperture radars (SAR). The main difference between these systems reside in

their spatial resolution capability. The spatial resolution of any radar imaging system can

be defined as the system’s ability to resolve smallest distance between two or more point

targets that are sufficiently separated so that allow individual data measurements among

1

2

them. This important feature of the radar imaging systems is characterized by its point

spread function (PSF) or impulse response function.

Figure 1.1: A Typical Imaging Radar System

This work, deals with the modeling and simulation of SAR systems impulse re-

sponse function. For this, is necessary to concentrate on the formulation of a model for SAR

raw data generation that be used in the study of the characteristics of SAR impulse response

function. Finite dimensional signal algebra operators was employed for the formulation of

the SAR point spread function model.

Modeling is defined in this research as a set of mathematical structures and equa-

tions designed to correspond to a physical system or entity based on a set of prescribed

assumptions [2]. A system, in general, is defined as a set of elements and its interrela-

tionships; whereas, simulation is defined as the execution of a modeling system through

computer programming [2]. The computational effort to process SAR data is expensive in

3

terms of time and hardware requirements due to the large amounts of sensory data collected

by the system. In this regard, is of interest the formulation of an adequate structure to

perform SAR processing simulations. Such structure is known as automated information

system (AIS). An AIS is defined here as a combination of computer hardware and software;

configured to accomplish specific information-handling operations, such as communication,

dissemination, processing, and information storage [3].

The specific application problem of interest in this work is wetlands monitoring

using radar imaging systems to estimate Earth’s surface moisture content. Wetlands are

considered as one of the most productive and biologically diverse environments in the world.

According to the national Wetlands Inventory, the productivity of a wetland is measured by

the total weight of plant and animal material produced per unit area [4]. In this sense, about

6.4 percent of the planet is covered by wetlands, however they account for 24 percent of total

global productivity [4]. Recent estimates show that the world may have lost 50 percent of

the wetlands that existed since 1900. For example, in the USA, more than 50,000 acres of

wetlands are lost annually due to different causes, such as, draining and filling of wetland,

and chemical contamination. This work will contribute to the surface image analysis effort

been conducted in such geophysics applications.

1.1 Problem Statement

The main problem adressed by this thesis work can be stated in the following

manner: There is a need to develop a discrete-time, discrete-frequency computational model

to characterize the imaging kernel in a SAR imaging system. The imaging kernel is defined

as the weight function in a convolution operation with the reflectivity density function

which represents the imaging process. To characterize the imaging kernel of a SAR system

implies to describe all its attributes pertaining to signal processing operations. R. Blahut

[5] suggests in his work on remote surveillance algorithms to use the ambiguity function as

4

the weight function or imaging kernel of radar imaging systems . The radar imaging system

model conceived by Blahut is a continuous model where the system expected output can be

viewed as a two-dimensional convolution operation of the point reflectivity density function

with the radar ambiguity function, as shown in Figure 1.2.

Figure 1.2: Filtering View of the Imaging Process.

1.2 Justification

At the present time there is a great demand at the academic level for low-cost

discrete-time discrete-frequency modeling and simulation tools that could aid in the fur-

ther understanding of the imaging process of SAR systems. Having discrete-time discrete-

frequency models will facilitate to a great extent the design of an entire “all digital” SAR

imaging processing system. It will also facilitate the use of advanced digital signal pro-

cessing techniques in the hardware/software implementations of such systems, taking into

consideration issues such as modularity, scalability, and reconfigurability.

The work presented in this thesis adressed the problem of discrete-time discrete-

frequency modeling for SAR imaging systems by formulating a new mathematical model

utilizing an operator theoretic approach over a signal algebra. The signal algebra was con-

structed using the cyclic or circular convolution operation as the vector product operation

in a finite dimensional complex vector space. The operator theoretic approach taken in this

work allowed the introduction af the concept of modular design in the algorithms developed

5

to simulate the SAR imaging model. A relationship was established between the modular

design concept and the functional programing style used in algorithm source coding. The

author considered this established relationship a major contribution.

1.3 Objectives

Main Objective

The major goal behind this work is to create models and a simulation environment

that allows the study and analysis of impulse response functions characteristics of advanced

SAR systems.

In order to achieve the above enunciated goal, the following secondary objectives

were accomplished:

• Understand the SAR concept, which involves processes such as: data acquisition,

impulse response function computation, raw data generation and image formation

process.

• Formulate a mathematical model for SAR raw data generation simulation.

• Formulate a mathematical model for SAR image formation simulation.

• Perform point spread functions simulation by means of efficient radar ambiguity func-

tion processing.

1.4 Thesis Overview

In chapter two, Previous Research Work, a summary of the most relevant previ-

ous works associated to ambiguity function and SAR processing is provided. Chapter three,

Mathematical Framework, introduces some mathematical preliminaries concepts, and theory

about linear algebra and vector spaces. Chapter four, Modeling of Point Spread Functions

6

as Discrete Ambiguity Functions, presents in detail the mathematical formulations for the

modeling of SAR point spread functions as discrete ambiguity functions. The fifth chapter,

Simulation Results, presents computational implementations and results of the implemen-

tation of the algorithms for PSF simulations. Finally, chapter seven, Research Conclusions,

presents the thesis conclusions.

CHAPTER 2

Previous Research Work

In the last decade, more applications areas have been developed for the imaging

radar research, such as: remote sensing, Earth surface surveillance and automatic target

recognition (ATR) applications. In this sense, the production of a data set of high quality,

be it in analog or digital format, is required for the accurate interpretation and analysis.

In the particular case of SAR processing, many efforts have been conducted through the

years in order to improve the treatment of the collected data and thus the images resolution

quality. Some of the most significant works that have contributed to SAR processing and

those related with the radar ambiguity function processing are summarized below.

2.1 Previous Research Work on Ambiguity Function Pro-

cessing

Most of the research work conducted in the ambiguity functions processing area

has been focused on theoretical representations and analysis. The integration of theory,

algorithms formulation, and computer implementations is poorly evidenced in the current

available literature. In this regard, a brief chronological explanation of certain relevant

works on radar ambiguity functions processing is presented below, emphasizing its main

contributions to this work.

7

8

In 1984, Auslander and Tolimieri, developed a theory for the characterization of

radar ambiguity functions in terms of the cross-ambiguity functions associated with a par-

ticular orthonormal basis of signal space resulting from the rectangular pulse [6]. The set

of ambiguity functions associated to the orthonormal standard basis is presented here as

another orthonormal basis used to write the ambiguity function of any signal. The theo-

rems proposed in this work for the characterization of ambiguity functions are applied to

stablish two important mathematical results: the set of ambiguity functions is closed on the

square-integrable topology, and the sum of two ambiguity functions is never an ambiguity

function.

A year later, 1985, Tolimieri and Winograd, presented for the first time an algo-

rithmic formulation for the computation of the discrete ambiguity function [7] using signal

processing operators. The proposed algorithms are based on two different approaches de-

pending on how the ambiguity function be written. These approaches gave rise to the

development of the following methods for computing the discrete ambiguity function: the

filter method and the transform method. The filter method consists of computing the

ambiguity function as a filter or cyclic convolution operation. The formulated algorithm

applies the object-domain convolution theorem allowing cyclic convolution be computed

in an efficient manner through indirect methods using fast Fourier transform (FFT) algo-

rithms. In the transform method the ambiguity function is computed directly by means of

the one-dimensional discrete Fourier transform (DFT). The computational complexity of

both algorithms in terms of complex multiplications operations is presented in this work.

In this sense, the transform method resulted more computationally efficient than the filter

method.

In 1988, Auslander and Tolimieri, exploited the parallelism intrinsic in the com-

putation of the discrete ambiguity function [8] through a computational method called

the transform method [7]. This method was redesigned to compute the ambiguity surface

9

by means of the two-dimensional Fourier transform as the major step of this algorithm.

Only decimated values of the ambiguity function, ranging over selected points in the en-

tire domain, can be computed with the algorithm proposed in this work [8]. The authors,

presented a novel way to implement the two-dimensional FFT operation on a parallel ar-

chitecture by means of computing multiple one-dimensional FFTs. However, results on

computer implementations of the algorithm were not presented.

In 1993, Rodŕıguez, Seguel and Cruz formulated a methodology based on algebraic

methods for the analysis, design, and modifications of time-frequency signal processing

algorithms [9]. These algebraic methods are integrated within a computational mathematics

environment (CME) developed to assist the implementation of time-frequency algorithms

on a given computational hardware structure (CHS). This environment allows the design

of algorithms as a composition of several signal processing operators that can be described

using computational mathematics structures (CMS), such as, the tensor product algebra.

The filter method algorithm was formulated in this work in terms of linear, finite signal

operators acting on finite complex sequences [7]. Also, a variant of this algorithm was

obtained using algebraic methods and some properties of the operators.

Richman, Parks and Shenoy, presented in 1998 an extension of their work on dis-

crete time-frequency representations introduced in 1995 [10]. Group representation theory

is used in this work for the formulation of discrete-time, discrete-frequency Wigner distribu-

tion for analysis of discrete-time, periodic signals [11]. The ambiguity function is related to

the Wigner distribution through the Fourier transform, i.e., obtaining Wigner distribution

is possible taking the two-dimensional Fourier transform of the discrete ambiguity function.

An important contribution of this work is the formulation of time-frequency representations

in terms of the Heisenberg group, which is the group corresponding to discrete cyclic shifts.

10

For year 2001, Özdemir and Arikan proposed new algorithms to compute uniformly

spaced samples of the ambiguity function and the Wigner distribution on arbitrary line

segments [12]. This approach is based on the fractional-Fourier transformation (FrFT) of the

time-domain signals to obtain novel closed-form expressions for the slices of the ambiguity

function and the Wigner distribution. Algorithm implementation for the ambiguity function

computation uses a digital computation algorithm for the FrFT proposed by H. M. Ozaktas

that compute the required samples in O(NlogN) flops [13] .

In 2002, Mozeson and Levanon presented a publicly available Matlab code for

academic and pedagogical purposes [14] . The code computes and plots the ambiguity

function of many different radar signals. The program computes only two of the four

quadrants of the ambiguity function because the symmetry of this function respect to the

origin.

2.2 Previous Research Work on SAR Processing Modeling

and Simulations

In this section, a review of some research works related to SAR processing modeling

and simulations is presented. Special attention is given to those works associated to SAR

raw data generation.

G. Franceschetti, M. Migliaccio and D. Riccio proposed two different approaches for

SAR processing simulation: the SAR processing oriented simulation and the SAR oriented

simulation [15]. The SAR simulator is based on the generation of the raw signal starting

from the reflectivity function (right side figure 2.1) as the counter part of the SAR processor

(left side) that perform an inversion process to retrieve the scene reflectivity. This approach

is termed as processing oriented simulator because it is based on the inversion of the SAR

processor operational mode. On the other hand, the SAR oriented simulator depicted in

figure 2.2, includes models of the electromagnetic interactions of the SAR signal with the

11

scene in order to estimate some geophysical parameters from the reflectivity. However, the

upper blocks in figure 2.2 are difficult to implement due to the non-linear effects (foreshort-

ening, layover and shadowing) created by the geometric non-linear projection that SAR

operates from the ground to the slant coordinate system. Therefore, this block is not being

well defined, and most important is that the inversion procedure (right side) not aimed at

producing the same parameters as shown at the input of the chain (left side).

Figure 2.1: SAR Processing Oriented Simulator

There are three main operating modes of SAR systems: stripmap, scan, and spot-

light [16]. In stripmap mode, the radar antenna pointing is fixed in a direction with respect

to the flight platform path as in figure 2.3. The antenna footprint covers a strip on the

illuminated surface as the platform moves and the system operates. The image generated

is limited in the range direction but not in the azimuth.

12

Figure 2.2: SAR Oriented Simulator

In scan mode the antenna beam is periodically stepping to neighboring subswaths

in the range direction (see figure 2.4) allowing an increase of the range swath dimension.

Finally, in spotlight mode the radar steers its beam during the overall acquisition time to

illuminate the same area as is presented in figure 2.5. It allows an increment of the available

antenna length improving azimuth resolution.

G. Verdone et al. presented a description of the existing processing algorithms

implemented to focus images obtained in the three different operational modes of SAR

systems [17]. For the scanSAR mode a time domain algorithm is presented which consists

of perform range and azimuth compression separately

For the spotlight operational mode of SAR systems, a raw data simulator of ex-

tended scenes was proposed by G. Franceschetti, A. Iodice, D. Riccio and G. Ruello [18].

This approach is based on the two-dimensional Fourier transformation. The proposed sim-

ulator is an extension of the efficient frequency domain approach presented by the same

authors for the stripmap mode [19]. This simulator consists of two main stages: the first

one is the reflectivity map evaluation given the orbit data and the scene geometric and

13

Figure 2.3: Strimap SAR Operation Mode.

Figure 2.4: Scan SAR Operation Mode.

14

electromagnetic parameters. The second one corresponds to the SAR raw signal computa-

tion by weighting the reflectivity map by the SAR system two-dimensional PSF. For the

spotlight mode case, the system transfer function depends on the azimuth coordinate of the

surface point, and then the spectral domain formulation is not straightforward. However,

this problem is overcome by considering a long acquisition time, and then truncating the

obtained raw signal. This approach meets some stringent requirements such as: be able to

deal with extended scenes, and not only with a limited number of point scatterers. The

simulating algorithm is efficient and time and memory saving.

Figure 2.5: Spotlight SAR Operation Mode.

CHAPTER 3

Mathematical Framework

The aim of this chapter is to present a mathematical framework to be utilized for

the theoretical formulation of modeling and simulation of the impulse response function of

synthetic aperture radar (SAR) systems. The main objective of the theoretical formula-

tion is to model SAR imaging systems as a discrete two-dimensional space invariant linear

systems. In addition, this theoretical framework was used to facilitate the transition from

mathematics to algorithmic formulations in a systematic and comprehensible manner.

3.1 Basic Linear Algebra Definitions

In this section, some fundamental notions on linear algebra are briefly recalled,

such as, basic algebraic structures, vector spaces, and linear operators. A more extensive

introduction to these subjects can be found in [20] and [21]. These definitions are used to

formulate a finite dimensional signal algebra. This section is useful to understand the main

results of this research, and the notation used in later chapters.

Definition 3.1 A set is any collection of objects such that these objects are members of

the set. If there is a positive integer n such that a set, say A, contains exactly n, and not

more different elements, the set A is finite; otherwise A is infinite [22].

For instance, some important sets of numbers are introduced, such as:

15

16

1. Z = {. . .− 2,−1, 0, 1, 2, . . .} which corresponds to the set of all integer numbers.

2. R = {t : t is a real number}, the set of all real numbers.

3. C =
{

α = ar + jbi : ar, bi ∈ R; j =
√
−1
}

which correspond to the set of all complex

numbers.

Definition 3.2 Let A and B be two arbitrary sets of elements. If every element of A also

belongs to B, then A is called a subset of B [23]. For example, the set of integer numbers

Z is a subset of the set of real numbers R, and this is a subset of the set of complex numbers

C.

Definition 3.3 For two arbitrary sets of elements, say A and B, denoted by A = {ak :

ak ∈ A} and B = {bl : bl ∈ B}; the Cartesian product of A and B is defined as a new

set, denoted by C = A×B. This cartesian product is formed in the following manner:

C = {(ak, bl) : ak ∈ A , bl ∈ B} (3.1)

The Cartesian product of two sets of elements is not commutative, i. e., A×B 6=

B ×A

Definition 3.4 A relation ρ ⊂ A × B, of a cartesian product A × B is any subset of

the cartesian set. In this case, A is related to B through the relation ρ. For a relation

ρ ⊂ A×B, the following notation is presented:

ρ : A → B

ak 7→ b`

; (ak, b`) ∈ ρ; b` = ρ (ak) (3.2)

ρ : A→ B is used to denote a relation ρ from a set A to a set B.

Definition 3.5 A function, say f ⊂ A × B, is any relation in a cartesian set A × B,

where each first entry of every ordered pair appears once and only once.

17

Definition 3.6 A mapping is any function, say f : A→ B. The domain of the function

is the entire set A and the co-domain of the function is the entire set B. The range of the

function is the set r (f) = {b` : ak and f (ak) = b`}

Definition 3.7 A numeric function say g ⊂ A×B, is a relation where, both, A and B

are sets of numbers; for example the set of complex numbers or the set of integer numbers.

The first set, A, is called the domain of the function, and the second set B is called the

co-domain. The following notation is used in this work for a numeric function.

g : A→ B

ak 7−→ g(ak) = bl or (ak, bl) ∈ g ⊂ A×B
(3.3)

A function is complex or is real depending on its co-domain. If its co-domain is

the set of real numbers R, the function is real. If the function’s co-domain is the set of

complex numbers C, then the function is complex.

Definition 3.8 A function, say x, defined by its domain, which is always a discrete set or

countable is called a discrete function. In this work, we call discrete signal to a discrete

function.

Example 3.1 Discrete cosine function

The set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} is a discrete set. Then, it is had

a discrete cosine signal which domain is the set Z as follows:

x : Z → R

n 7−→ x [n] = cos 2πf0nTs

(3.4)

Square brackets are used to enclose the domain valuations of a discrete signal. An

index set is defined here by any set used as domain for a discrete signal. The standard

finite indexing set will be used.It is a finite subset of the set of integers given by: ZN =

{0, 1, 2, . . . N − 1}.

18

Definition 3.9 A digital signal is defined by its co-domain, which is always a finite,

discrete set.

Example 3.2 Continue-digital signal

µ : R → {0, 1}

t 7−→ µ (t)
, where µ (t) =

1 , t > 0

0 , t < 0
(3.5)

Example 3.3 Discrete-digital signal

y : Z → ZN

k 7−→ y [k] = 〈k〉N
, where 〈k〉N = remainder

(

k

N

)

(3.6)

Definition 3.10 A binary operation takes any two arbitrary elements from a particular

set, say A, and it relates them to a new element that also belongs to the set A. In other

words, a binary operation on a set A is a mapping of the form f : A×A → A. The binary

operation of two arbitrary elements a and b of a set A is denoted as f (a, b).

Definition 3.11 Let G be an arbitrary set that contains n elements and a single binary

operation defined between any two elements of G . This binary operation can be an arith-

metic operation such that addition is denoted by (+), or multiplication is denoted by (·).

The set G is called a group if it satisfies the following fundamental properties [24]:

• Closure: If a, b are elements of G, then the multiplication operation denoted by a · b

results in an element of G.

• Identity: There exists an element e ∈ G such that a · e = a, for all a ∈ G.

• Inverse: For every a ∈ G, there is an element b ∈ G such that a · b = e.

• Associativity: For arbitrarily chosen elements of G we have (a · b) · c = a · (b · c).

Definition 3.12 A commutative group or an Abelian group is a group that satisfies the

commutative property under its binary operation. This property establishes that for every

19

element a, b ∈ G we have a · b = b · a .

Definition 3.13 A ring is any set, say R, with two associated binary operations (addition

and multiplication) satisfying the following conditions:

• Additive Identity: For every a ∈ R, there is an element 0 ∈ R such that a+ 0 = a.

• Inverse: For every a ∈ R, there is an element −a ∈ R such that a+ (−a) = 0.

• Additive Associativity: For every a, b, c ∈ R we have (a+ b) + c = a+ (b+ c) .

• Additive Commutativity: For every a, b ∈ R we have a+ b = b+ a.

• Multiplicative Associativity: For every a, b, c ∈ R we have (a · b) · c = a · (b · c) .

• Distributivity: For every a, b, c ∈ R we have a · (b+ c) = (a · b) + (a · c) .

Thus, a ring is an Abelian group under the addition operation. A ring that satisfies

the commutative property under the multiplication operation is called a commutative ring.

Definition 3.14 An integral domain, say D, is a commutative ring that has an identity

element. Also, an integral domain satisfies the cancellation property under the multiplication

operation. This property establishes that the product of every two non-zero elements, say

a, b ∈ D, is always a non-zero element [25]. The set of integer numbers Z forms an integral

domain.

Definition 3.15 A field F is defined as a commutative ring for which the associative,

commutative, and distributive properties hold under its binary operations. This also contains

both, a multiplicative and an additive identity element, as well as, a multiplicative and an

additive inverse element [24]. In other words, a field is a special set of elements, which can

be added and multiplied under defined conditions.

For instance, the sets of complex and real numbers, C and R respectively, satisfy

all the conditions to be fields.

20

Definition 3.16 A linear vector space, `, defined over a specific field, say F , is a set

composed of elements called vectors that has two associated arithmetic operations such as

addition and scalar multiplication [26]. If the field over which the vector space is defined is

an infinite set, such as the set of complex numbers C, then we have an infinite linear vector

space. Any linear space must satisfy the following conditions:

1. Homogeneity:

For a vector space `, and any v0 ∈ `, and any scalar a ∈ F, then it is had a · v0 ∈ `

2. Superposition:

For a vector space `, and any v0, v1 ∈ `, we have v0 + v1 ∈ `

Definition 3.17 Let F n be the set of n-tuples elements of the field F . Let B and C be

two arbitrary vectors of F n, denoted by B = [b0, b1, b2, . . . , bn−1] and C = [c0, c1, c2, . . . , cn−1]

respectively. Then, the addition of B and C is given by:

B + C = [b0 + c0, b1 + c1, b2 + c2, . . . , bn−1 + cn−1] (3.7)

Let γ be a scalar that belongs to F , then the product of γ and B is defined by:

γ ·B = [γ · b0, γ · b1, γ · b2, . . . , γ · bn−1] (3.8)

Definition 3.18 Let ` be a vector space over the field F , and v0, . . . , vn−1 are vectors in `.

Then a vector v̄ ∈ ` is called a linear combination of the vectors vi if it can be written

as follows:

v̄ = a0 · v0 + a1 · v1 + . . .+ an−1 · vn−1 (3.9)

=
n−1
∑

i=0

ai · vi , ai ∈ F

21

Definition 3.19 Let v0, v1, . . . , vn−1 be elements of a vector space ` over a field F . The

vectors v0, v1, . . . , vn−1 are linearly independent, if and only if, the following condition

is satisfied on its linear combination:

a0 · v0 + a1 · v1 + . . .+ an−1 · vn−1 = O (3.10)

Then, ai = 0 for all i = 0, 1, 2, . . . , n− 1. Notice that the symbol O on the right is the zero

element in the vector space `, not the zero element in the field F .

Definition 3.20 Let {v0, v1, . . . , vn−1} be a set of vectors linearly independent that belongs

to the vector space `. Then, it can be said that the set {v0, v1, . . . , vn−1} is a basis of `.

Definition 3.21 The inner product between two arbitrary vectors, A and B, is defined

as the dot product between these vectors as follows: A ·B = a0 ·b0+a1 ·b1+ . . .+an−1 ·bn−1.

This operation produces a scalar, for this reason, is also known as scalar product. The inner

product between two vectors is shortly denoted by 〈A,B〉.

Definition 3.22 Let ZN be a finite subset of integer numbers given by ZN = {0, 1, 2, . . . , N−

1}. Any vector space conformed by a basis with a finite number of elements, is called finite

dimensional vector space and is denoted by ` (ZN).

Definition 3.23 A Hilbert space is a linear finite-dimensional vector space that has an

associated inner product. This vector space is defined over the field of complex numbers C

and is denoted by `2 (ZN).

Definition 3.24 A linear algebra over a field F , is a vector space ` which has a defined

binary operation, such as, the vector multiplication. This operation relates two vectors,

v0, v1 ∈ ` to a new vector v0 · v1 ∈ ` called the product of v0 and v1, such that, the following

conditions are satisfied:

• The multiplication is associative: v0 · (v1 · v2) = (v0 · v1) · v2

22

• The multiplication is distributive with respect to the addition: v0 · (v1 + v2) = v0 · v1 +

v0 · v2 and (v0 + v1) · v2 = v0 · v2 + v1 · v2

• For every scalar a ∈ F , a (v0 · v1) = (a · v0) · v1 = v0 · (a · v1)

If there exists an element 1 in `, such that, 1 · v0 = v0 · 1 = v0 for every vector

v0 ∈ `, ` becomes a linear algebra with unity over F , and 1 is called the identity of `. This

algebra is said commutative if v0 · v1 = v1 · v0 for every v0, v1 ∈ ` [20].

Definition 3.25 An algebraic structure is an arbitrary set with one or more operations

defined in the set. While more operations are defined on the set, richer in structures is

considered to be the set.

The algebraic structures introduced in previous definitions are illustrated in figure

3.1. Notice that the algebra is the richest structure in operations.

+

Identity

Associativity

Distributivity

Cancellation

Inversibility

Commutativity

Identity

Associativity

Commutativity

Inversibility

Identity

Associativity

Closeness

Distributivity

Scalar Product

*

Integral
Domain

Field

Algebra

Binary
Operatiorn

Group

Group
Abelian

Ring

Figure 3.1: Algebraic Structures

23

Definition 3.26 Let V and W be vector spaces over a field F . A linear operator T is a

mapping of the form T : V → W , such that the following two conditions are satisfied:

1. For any vectors v0, v1 ∈ V ,

T {v0 + v1} = T {v0}+ T {v1} (3.11)

2. For any scalars a, b ∈ F and v0 ∈ V ,

T {av0} = aT {v0} (3.12)

then,

T {av0 + bv1} = aT {v0}+ bT {v1} (3.13)

The notation T {v0} denotes the action of the operator T over the vector v0 ∈ V .

It results on a new vector that also belongs to the space V .

Definition 3.27 If V and W are vector spaces over a field F , every linear transformation

T of V in W , is called isomorphism of V on W . If there exists an isomorphism of V on

W , then is said that the sapce V is isomorphic to the space W . All vector space of finite

dimension, over a field F , is isomorphic to the space F n.

3.2 Finite Dimensional Signal Algebra

Signals are represented mathematically as numeric functions of one or more inde-

pendent variables, which carry information about the behavior or nature of some physical

system [27]. This work is concentrated in the treatment of physical signals that admit a

mathematical representation. These signals are finite and discrete, and are considered here

as vectors belonging to a complex finite-dimensional Hilbert space. This space, denoted by

24

`2 (ZN), is composed of all complex signals of length N , of the followig form:

x : ZN → C

n 7→ x [n]
(3.14)

Where ZN = {0, 1, 2, . . . , N − 1} and x = [x [0] , x [1] , . . . , x [N − 1]].

This representation of signals is used to introduce a finite dimensional signal alge-

bra, which is defined here as any linear algebra whose elements can be represented as vectors

in a finite dimensional Hilbert space, a linear vector space over the scalar body of field of

complex numbers C. Thus, a signal algebra is defined in this work as a vector space, such

as, `2 (ZN) with an associated binary operation. This binary operation takes two arbitrary

signals, say x, h ∈ `2 (ZN), and relates them to a new signal, say y ∈ `2 (ZN). In this work,

the cyclic convolution operation is used as the binary operation that turns the space `2 (ZN)

into an N -dimensional signal algebra. Thus, all the definitions stated in section 3.1 can be

applied on this signal algebra in order to perform operations with signals, such as, addition

and scalar multiplication.

In the space `2 (ZN), the set of anyN linearly independent vectors is called basis. It

is of interest a special finite set of linearly independent vectors denoted by
{

δ{k} : k ∈ ZN

}

,

where:

δ{k} [n] =

1,

0,

k = n

otherwise
(3.15)

This set forms a basis for the space `2 (ZN) called the standard basis set. This

basis is denoted by ∆N =
{

δ{0}, δ{1}, ..., δ{N−1}

}

.

Then, it is established that any signal x ∈ `2 (ZN) can be expressed in terms of a

linear combination of the standard basis set ∆N as follows:

x [n] =
N−1
∑

k=0

c [k] δ{k} , n ∈ ZN (3.16)

= c [0] δ{0} + c [1] δ{1} + ...+ c [N − 1] δ{N−1}

25

The coefficients c [k]’s are called the coefficients of the representation, they are

obtained using the fact that the basis set ∆N is an independent set.

The space `2 (ZN) has a defined inner product, denoted by 〈x, y〉, where x and y

are two arbitrary signals. Thus, the inner product for x and y is given by:

〈 , 〉 : `2 (ZN)× `2 (ZN) → C

(x, y) 7−→ 〈 , 〉 {(x, y)} = 〈x, y〉 = ∑

k∈ZN
x [k] y∗ [k]

(3.17)

Where the symbol ∗ denotes complex conjugation.

Notice that 〈x, y〉 6= 〈y, x〉. It is said that a signal, say x, is orthogonal to another

signal, say y, if the following condition is satisfied: 〈x, y〉 = 0. If x = y, we have the total

energy of the signal x as follows:

〈x, x〉 =

N−1
∑

k=0

x [k]x∗ [k] (3.18)

=
N−1
∑

k=0

|x [k]|2

Thus, the norm of a finite, discrete signal x, is given by the square root of its total

energy as follows:

‖x‖ = 〈x, x〉1/2 (3.19)

=

√

√

√

√

N−1
∑

k=0

|x [k]|2

The inner product operation defined on `2 (ZN) is used to obtain the coefficients

of the representation. Taking the inner product on both sides of the expression x =

∑

k∈ZN

c [k] δ{k} we have:

〈

x, δ{l}
〉

=
∑

k∈ZN

c [k]
〈

δ{k}, δ{l}
〉

(3.20)

26

The standard basis ∆N is an orthogonal set, then we have:

〈

δ{k}, δ{l}
〉

=

0,

N,

k 6= l

k = l
(3.21)

Therefore, using the orthogonality condition of the elements of the standard basis

set, it is obtained an expression that defines the projection of a signal with respect to the

elements of ∆N as follows:

〈

x, δ{l}
〉

= c [l]
〈

δ{l}, δ{l}
〉

(3.22)

And the coefficients of the representation of a signal x ∈ `2 (ZN) , with respect to

the basis ∆N are given by:

c [l] =

〈

x, δ{l}
〉

〈

δ{l}, δ{l}
〉 (3.23)

3.3 Signal Algebra Operators on `2 (ZN)

From mathematics, it is known that an operator transform functions into other

functions. In other words, an operator maps a function to another. In the signal algebra

defined before, we deals with operators who act on the signals to produce other signals.

These operators are called signal algebra operators. A signal operator on `2 (ZN), can

be viewed in this work as a system that accepts as its input a finite-discrete signal, say

x ∈ `2 (ZN) , and acts on it in order to produce and output signal, say y, that also belongs

to the space `2 (ZN). Consider figure 3.2 to understand this definition of a signal algebra

operator. All the signal operators introduced in this work are defined as actions on signals

that belong to the Hilbert space `2 (ZN), which is isomorphic to the space CN .

27

Figure 3.2: Unary Signal Algebra Operator

Mathematically, inputs to an operator receive the name of operands. According to

the number of operands that the operators can have, they can be classified as unary, binary,

etc. For example, figure 3.2 display the representation of a unary signal operator. In this

work, it is given special attention to unary and binary signal algebra operators. Below

are presented the general mathematical formulations of unary and binary signal algebra

operators on the space `2 (ZN).

3.3.1 Unary Signal Operators

A unary signal operator Th in `2 (ZN) is a mapping of the following form:

Th : `2 (ZN) → `2 (ZN)

x 7→ Th {x} = y
(3.24)

In this case, the operand is the signal x who receives the action of the operator Th.

3.3.2 Binary Signal Operators

A binary signal operator Th in `2 (ZN) is a mapping of the following form:

Th : `2 (ZN)× `2 (ZN) → `2 (ZN)

(x, h) 7→ Th {(x, h)} = y
(3.25)

28

Thus, it is noticed that a binary operator on `2 (ZN) takes any two arbitrary

signals, say x, h ∈ `2 (ZN), and it relates them to a new signal, say y ∈ `2 (ZN).

The algebra of the cyclic convolution operation, also called the algebra of the shift

operators and the algebra of the Hadamard product operation are two specific algebras

of special interest in this work. Therefore, it is necessary to define two important binary

operators called cylic convolution and the Hadamard product.

Definition 3.28 The cyclic convolution operator over the space `2 (ZN) is denoted by

the symbol ~N , and is a mapping of the form:

~N : `2 (ZN)× `2 (ZN) → `2 (ZN)

(x, h) 7→ ~N {(x, h)} = y , x ~N h
(3.26)

Where y ∈ `2 (ZN) results from the cyclic convolution between the signals x [n] and

h [n] , n ∈ ZN as follows:

y [n] =
N−1
∑

k=0

x [k] · h [〈n− k〉N] , n ∈ ZN (3.27)

Where 〈n− k〉N denotes the remainder of the quotient
(

n+k
N

)

.

Definition 3.29 The Hadamard product operator over the space `2 (ZN) is denoted by

the symbol ¯N , and is a mapping of the form:

¯N : `2 (ZN)× `2 (ZN) → `2 (ZN)

(x, h) 7→ ¯N {(x, h)} = z , x¯N h
(3.28)

where z ∈ `2 (ZN) results from the Hadamard product between the signals x [n] and h [n] , n ∈

ZN as follows:

z [n] = x [n] · h [n] , n ∈ ZN (3.29)

29

3.3.3 Matrix Representation of Signal Operators

For any operator, which is linear and acting in a N -dimensional vector space, say

`2 (ZN), its matrix representation is given with respect to the standard basis set ∆N .

Let TN be a N × N matrix representing any signal operator, and acting over a

signal x ∈ `2 (ZN) as follows:

TN : `2 (ZN) → `2 (ZN)

x 7−→ y = TN

(3.30)

If we have x =
N−1
∑

k=0

c [k] δ{k}, for δ{k} ∈ ∆N ; k ∈ ZN , then:

y = TN {x} = TN

∑

k∈ZN

c [k] δ{k}

=
∑

k∈ZN

c [k]TN
{

δ{k}
}

(3.31)

3.3.3.1 Right Shift Operator S
(−)
N

Let S(−) be the right shift operator. This operator acting over the ordered standard

basis produces the following result:

S
(−)
N : `2 (ZN) → `2 (ZN)

δ{k} 7−→ S
(−)
N

{

δ{k}
}

= δ{〈k+1〉N}
(3.32)

Example 3.4 Right Shift Operator S
(−)
4

S
(−)
4 : `2 (Z4) → `2 (Z4)

δ{k} 7−→ S
(−)
4

{

δ{k}
}

= δ{〈k+1〉
4}

(3.33)

The standar basis set for N = 4 is given by:

∆4 =
{

δ{0}, δ{1}, δ{2}, δ{3}
}

(3.34)

30

Then, the right shift operator S
(−)
4 acting over ∆4 is given as follows:

S
(−)
4 {∆4} =

{

δ{〈0+1〉
4}, δ{〈1+1〉

4}, δ{〈2+1〉
4}, δ{〈3+1〉

4}
}

=
{

δ{1}, δ{2}, δ{3}, δ{0}
}

(3.35)

Then,

S
(−)
4 =

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

(3.36)

Example 3.5 S
(−)
4 acting over a signal x

S
(−)
N : `2 (ZN) → `2 (ZN)

x 7−→ S
(−)
N {x} = g

, where g [n] = x [〈n− 1〉N] , n ∈ ZN (3.37)

Let, x =

x [0]

x [1]

x [2]

x [3]

then S
(−)
4 acting over the signal x is obtained as follows:

S
(−)
4 {x} = g , g =

g [0] = x [〈0− 1〉4]

g [1] = x [〈1− 1〉4]

g [2] = x [〈2− 1〉4]

g [3] = x [〈3− 1〉4]

=

g [3]

g [0]

g [1]

g [2]

(3.38)

31

In matrix-vector product operation it is obtained:

S
(−)
4 · x =

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

·

x [0]

x [1]

x [2]

x [3]

=

x [3]

x [0]

x [1]

x [2]

(3.39)

3.3.3.2 Left Shift Operator S
(+)
N

Let S(+) be the left shift operator. This operator acting over the ordered standard

basis produces the following result:

S
(+)
N : `2 (ZN) → `2 (ZN)

δ{k} 7−→ δ{〈k−1〉N} = S
(+)
N

{

δ{k}
}

(3.40)

Example 3.6 Left Shift Operator S
(+)
4

S
(+)
4 : `2 (Z4) → `2 (Z4)

δ{k} 7−→ S
(−)
4

{

δ{k}
}

= δ{〈k−1〉
4}

(3.41)

The left shift operator S
(+)
4 acting over ∆4 is given by:

S
(+)
4 {∆4} =

{

δ{〈0−1〉
4}, δ{〈1−1〉

4}, δ{〈2−1〉
4}, δ{〈3−1〉

4}
}

=
{

δ{3}, δ{0}, δ{1}, δ{2}
}

(3.42)

Then,

S
(+)
4 =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

(3.43)

32

Example 3.7 Left shift operator S
(+)
4 acting over a signal x

S
(+)
N : `2 (ZN) → `2 (ZN)

x 7−→ S
(+)
N {x} = g

, where g [n] = x [〈n+ 1〉N] , n ∈ ZN (3.44)

S
(+)
4 {x} = g , g =

g [0] = x [〈0 + 1〉4]

g [1] = x [〈1 + 1〉4]

g [2] = x [〈2 + 1〉4]

g [3] = x [〈3 + 1〉4]

=

g [1]

g [2]

g [3]

g [0]

(3.45)

In matrix-vector product operation it is obtained:

S
(+)
4 · x =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

·

x [0]

x [1]

x [2]

x [3]

=

x [1]

x [2]

x [3]

x [0]

(3.46)

CHAPTER 4

Modeling of Point Spread

Functions as Discrete Ambiguity

Functions

Modeling and simulation, are tasks for developing a level of understanding of the

behavior of a real system, its structure, elements, and processes; to a greater extent than is

possible by other educational means. For this reason, this work is formulated in the context

of mathematical modeling and system simulation. This chapter presents the theoretical

basis of modeling and simulation, as well as, the methodology employed in this research

to perform PSFs simulations. In addition, concepts about radar imaging systems, real

aperture radar, and synthetic aperture radar are introduced. As a contribution, a model

for SAR raw data generation and mathematics of the radar ambiguity function in terms of

signal algebra operators are proposed. Finally, the simulations algorithms are presented.

33

34

4.1 Introduction to Modeling and Simulation

In this section, modeling and simulation are presented as two separate activities.

First, a general perspective of mathematical modeling and its inherent aspects are exposed.

Later, simulation is presented as a set of systematically organized steps that describe the

execution of a mathematical model. Finally, modeling is presented as an implicit part within

the simulation process.

4.1.1 Modeling

In general, modeling can be defined as a way of representing a physical system or

entity. In this work, this representation is carried out through a mathematical model, which

consists of a set of mathematical structures and equations based on a group of established

assumptions, designed to correspond to a physical system. A system, in general is defined

here as a set of elements and its interrelationships.

As it is stated by Karplus, the construction of a valid mathematical model requieres

the knowledge of the type of elements which are present in the system and how these

elements are interconnected [28]. These interconnections represent the way in which the

matter or energy flows within the system. Also, a mathematical model is valid only if the

system to be modeled satisfies the following three conditions:

• Separability: The system to be modeled can be studied as a separate entity, i.e., its

elements can be enumerated and some interactions with the external world can be

omitted.

• Selectivity: Assume that of all possible interactions, only a small subset are relevant

to a specific study or purpose. In mathematical terms, the selectivity condition of a

system model can be expressed as the following relation: S ⊂ X×Y . Where S denotes

the system being modeled. X and Y denote input and output sets respectively.

• Causality: This condition establishes that the input and output sets must be related

35

by a mapping function, so that S : X → Y . This means that the system behaves like

an operator which acts on the input set to produce the output set.

The mathematical expressions that describes the system model, is composed of

variables which represents some properties of the system. The values assigned to these

variables can be of any types; real or complex numbers, logical values or strings, for example.

The parameters are numerical values assigned to the coefficients appearing in the equations,

which generally are related to the magnitudes of the elements constituting the system.

There are different types of mathematical models, they can be deterministic or

stochastic. Deterministic models perform the same way for a given set of initial conditions.

While stochastic models present randomness, even when an identical set of initial conditions

is given. A mathematical model handling with continuous variables is called a continuous

model. In another way, if the variables associated to the mathematical model are discrete,

then it is a discrete model.

4.1.2 Simulation

Once the mathematical model has been developed, the parameters have been fixed,

and the initial conditions have been established; is of interest to see the system model in

operation. In few words, when it is talked about the model in action, it is referred to the

meaning of simulation.

Another point of view of simulation, is presented by Fishwick [29]. Here, simulation

is viewed as the composition of the following three processes: model design, model execution,

and execution analysis. This interpretation is illustrated in figure 4.1. Notice that the

modeling process is considered as part of the simulation process. The model is executed

through a program running on a computer. This program can be implemented in serial or

parallel modes.

36

Figure 4.1: The Simulation Process

4.2 Radar Imaging Systems

Radar imaging systems can be described in few words as devices carried on an

aircraft or spacecraft platform at uniform speed and altitude, which transmit a series of

electromagnetic pulses to illuminate an area on the Earth surface. These systems can

operate at different bands in the microwave region of the electromagnetic spectrum as is

displayed in table 4.1. The system antenna emits a narrow beam of microwave pulse signals

directed perpendicularly to the flight path of the carrier platform. Then, the reflected

energy is used to form an image of a narrow strip of the ground.

An important parameter of any imaging system is its spatial resolution, which is

defined as the minimun distance at which two different objects are detected by the system

as separated [16]. The spatial resolution of a radar imaging system is governed by two

important spects: the length of the transmitted pulse signal and the antenna beam width.

The pulse length determines resolution in the direction in which the signals are transmitted.

This is called the range direction. In the other hand, the antenna beam width determines

resolution in the direction in which the carrier platform flies. This is called azimuth direction.

Thus, the produced images are composed of rectangles called resolution cells whose sides

37

are given by a range component, say ∆R; and an azimuth component, say ∆A. Figure 4.2

depicts a graphical representation of a map resolution cell.

Table 4.1: Radar Operational Frequency Bands

Letter Frequency New band designation
designation (GHz) (GHz)

HF 0.003− 0.03 A
VHF 0.03− 0.3 A< 0.25; B> 0.25
UHF 0.3− 1.0 B< 0.5; C> 0.5

L-band 1.0− 2.0 D
S-band 2.0− 4.0 E< 3.0; F> 3.0
C-band 4.0− 8.0 G< 6.0; H> 6.0
X-band 8.0− 12.5 I< 10.0; J> 10.0
Ku-band 12.5− 18.0 J
K-band 18.0− 26.5 J< 20.0; K> 20.0
Ka-band 26.5− 40.0 K
MMW Normally> 34.0 L< 60.0; M> 60.0

Radar imaging systems are classified into two main categories: real aperture radar

(RAR) and synthetic aperture radar (SAR) systems. The main difference between these

systems reside in their spatial resolution capability. Range resolution is the same for both

systems, and depends on the pulse width of the transmitted signal as shown in figure 4.3.

In this figure θ is the angle of incidence, τp is the pulse width or pulse duration, and C

is the speed of light. Obtaining high range resolution is possible by transmitting a pulse

with a very short duration and high-power peak. However, the required equipment to

transmit a very short, high-energy pulse is difficult to build. Therefore, these systems use

pulse compression techniques by frequency modulation. For this, a special waveform is

transmitted, such as, a linear frequency modulated (LFM) or chirp signal. The received

signal is processed through a matched filter in order to make the pulse width to a shorter

value.

38

Figure 4.2: Resolution Cell of a Radar Imaging System

Figure 4.3: Range Resolution

Hilaura

Hilaura

39

In general, a RAR system, also called SLAR (Side Looking Airborne Radar) em-

ploys a fixed antenna length for transmission and reception, and the backscattered signal

are received from the same location as the initial transmitted signal. The azimuth or

cross-range resolution for a real antenna is determined by the antenna beam width and the

distance between the radar and the target (slant range) as shown in figure 4.4. Where β is

the antenna beam width, λ is the wavelength, D is the aperture length, and ∆A1 and ∆A2

are azimuth resolutions for target 1 and 2 respectively.

Figure 4.4: Azimuth Resolution

In order to obtain high azimuth resolution, short wavelengths and a big antenna size

are needed. However, it is hard to fix a large antenna on an airborne or spaceborne platform.

For example, a 1Km diameter antenna is required to obtain 25m of azimuth resolution

with a wavelength of 25cm (L band) and 100Km distance from the target. Therefore, RAR

systems present a technical limitation for increasing azimuth resolution.

40

4.2.1 Synthetic Aperture Radar (SAR)

SAR technology systems were developed as a solution to the problem of limited

resolution present in RAR systems. A synthetic aperture is produced by using the forward

motion of the system platform. The radar transmits and receives from different positions.

The reflected pulses and phases are recorded and combined, such that, by means of signal

processing techniques SAR can synthesise an aperture that is longer than the real.

The effective synthetic aperture length is twice that of a real array, the azimuth

resolution for a synthetic array is then given by [30]:

∆A =
λR

2L
(4.1)

Where L is the synthetic aperture length.

Azimuth resolution can be impoved by taking advantage of the frequency variation

or Doppler history within a beam. Let R(t) denote the range to a scatterer at time t, and

vr be the corresponding radial velocity; thus the Doppler shift, fd, is given by:

fd = −
2R′ (t)

λ
=

2vr
λ

(4.2)

Where R′ (t) corresponds to the range rate to a scatterer. From figure 4.5, t1 and

t2 are times when the scatterer enters and leaves the radar beam, respectively, and tc is the

time that corresponds to minimum range. Doppler frequency is maximum at t1, zero at tc,

and minimum at t2.

From the geometry of figure 4.5 the maximum Doppler frequency at t1 and the

minimun Doppler frequency at t2 becomes [30]:

fdmax
=

2v

λ
cos

(

90− θ

2

)

sinβ (4.3)

41

fdmin
=

2v

λ
cos

(

90 +
θ

2

)

sinβ (4.4)

Figure 4.5: Doppler Variation Computation

Thus, the maximum Doppler spread is given by:

∆fd = fdmax
− fdmin

(4.5)

After substituting (4.3) and (4.4) in (4.5), the maximum Doppler history equation

obtained is:

42

∆fd =
2v

λ
θ sinβ (4.6)

It is possible to resolve two adjacent points or scatterers at the same range, based

on the difference between its Doppler histories. For this, is assumed that the two scatterers

are within the kth range bin. Using equation (4.6) the minimum Doppler spread between

the scatterers is given by:

∆fdmin
=

2v

λ
∆θ sinβk (4.7)

Where ∆θ is the angular displacement between the scatterers, and βk is the eleva-

tion angle corresponding to the kth range bin. The synthetic aperture length L is equal to

vTob, where Tob is the coherent integration interval. Then, substituting L in equation (4.7)

and solving for ∆θ obtain the following:

∆θ =
λ

2L sinβk
(4.8)

Finally, the SAR azimuth resolution within the kth range bin is given by:

∆A = ∆θRk = Rk
λ

2L sinβk
(4.9)

4.2.1.1 Mathematical Model of Radar Imaging Systems

The mathematical model of radar imaging systems considered in this work is the

fomulated by R. Blahut on his work on remote surveillance algorithms [5]. Figure 4.6 depicts

this model.

Let γ(τ, v) be the reflectivity density function of an input scene to a radar imag-

ing system. The expected output of the system, I (τ, v), is obtained by performing the

two-dimensional convolution of the reflectivity density function and the impulse response

43

Figure 4.6: Blahut Model of Imaging Radar Systems

function of the system as follows:

I (τ, v) =

∫ ∞

−∞

∫ ∞

−∞
γ
(

τ ′, v′
)

A
(

τ − τ ′, v − v′
)

dτ ′dv′ (4.10)

The system impulse response function or PSF of a radar imaging system is modeled

as the radar ambiguity function between the transmitted and received radar signals, denoted

by A(τ, v).

Suppose that the two-dimensional impulse response, A(τ, v), be equal to a two-

dimensional delta Dirac impulse function:

A (τ, v) = δ (τ, v) (4.11)

Then, the image I would be equal to the reflectivity density function of the observed

scene. In practice, the impulse response function introduce degradations and blur that affect

the appearance of the output image. For this reason, it must be processed in order to retrieve

the scene reflectivity.

4.2.2 SAR Imaging System Model

The SAR imaging system model is composed of three main stages: point spread

function, raw data generation and image formation. This work, is concentrated on the point

spread function modeling and simulation. However, models for SAR raw data generation

44

and SAR image formation are formulated as follows:

• Raw data generation: In general the SAR raw data generation system accepts as

input the scene reflectivity and produce as output the raw data image. This system

is represented in figure 4.7.

Figure 4.7: SAR System Model

In this work, the mathematical model of a radar imaging system proposed by Blahut

is used to formulate a model for SAR raw data generation. Following the Blahut

formulations, the raw data is the output of a radar imaging system which is obtained

from the two-dimensional cyclic convolution of the scene reflectivity with the system

impulse response function. The raw data generation model is depicted in figure 4.8.

The impulse response function or PSF of this model is the ambiguity function between

radar transmitted and received signals. In this model it is assumed that the SAR

system is discrete, space-invariant and linear.

st and sr correspond to the transmitted and received radar signals respectively, the

symbol ~2 denotes two-dimensional cyclic convolution, γ[n, τ, θ] is the reflectivity

density function, g[lx, ly] is the SAR raw data, and A[m, k] is the discrete ambiguity

45

Figure 4.8: SAR Raw Data Generation Model

function which will be described in later sections. Raw data is also called level zero

data.

From figure 4.7, notice that raw data is a noisy image that not provides visual in-

formation about the original image. This occurs since each point in the raw data

image is the result of the convolution between the entire two-dimensional impulse re-

sponse function with all the information contained in the reflectivity density function

as presented in equation (4.10).

• Image formation: Image formation consists of processing the level zero data in order

to extract the surface reflectivity information corresponding to a given area on the

ground. The model used in this work is a model proposed by Franceschetti [16].

Figure 4.9 illustrates this model. In this model, the raw data is available but the

system impulse response is unknown. Then, this process must be treated as an inverse

problem in order to recover the reflectivity of the scene.

From the cyclic convolution theorem, raw data becomes:

G [ξ, η] = (Γ¯H) [ξ, η] (4.12)

Where H is the system transfer function or the Fourier transform of the estimated

value of the impulse response function. Γ is the Fourier transform of the reflectivity.

46

Figure 4.9: SAR Image Formation Model

x and r represents azimuth and range respectively in time domain. ξ and η represents

azimuth and range in space domain.

To estimate the reflectivity of the scene from the equation 4.12:

Γ [ξ, η] = (G¯H∗) [ξ, η] (4.13)

Therefore, the estimated reflectivity density function is obtained using the inverse

two-dimensional Fourier transform as follows:

γ̃ [x, r] = FFT2−1 ((G¯H∗) [ξ, η]) (4.14)

Where H∗ is the complex conjugate of of the system transfer function.

4.3 The Radar Ambiguity Function

The ambiguity function defined in this work can be viewed as a generalized signal

autocorrelation tool to simultaneously estimate time delay and Doppler frequency offset

parameters between a transmitted radar signal and its returned echo or delayed version of

47

the transmitted signal. This function accepts the transmitted and received signals as input,

and generates a two-dimensional surface, one dimension being time and the other frequency.

This simultaneous parameters determination allows for a time-frequency representation of

this tool. These parameters can, in turn, be used to estimate, through basic algebraic

transformations, range and cross-range (azimuth) parameters in a spatial object domain.

The combined range and cross-range differentials or parameter increments determine a given

unit resolution cell for a particular point in the spatial object domain. To obtain the range

and velocity, the maximum peak in the ambiguity surface is found. The time and frequency

that correspond to this peak in the ambiguity surface are the time delay and frequency shift

of the received signal.

Following the formulations of Blahut, it is stablished in this work that the ambi-

guity function is the two-dimensional point spread function for the two-dimensional scenes

observed by SAR systems.

The ambiguity function for a finite-energy signal s (t) is defined as the absolute

value of its two-dimensional correlation function denoted by |A (τ, υ)|:

|As (τ, υ)| =
∣

∣

∣

∣

∫ ∞

−∞
s (t) s∗ (t+ τ) e−j2πυtdt

∣

∣

∣

∣

(4.15)

The ambiguity function can be represented in two forms as follows:

• Symmetrical Form:

A (τ, v) =

∫ ∞

−∞
s (t+ τ/2) s∗ (t− τ/2) e−j2πvtdt (4.16)

• Asymmetrical Form:

A (τ, v) =

∫ ∞

−∞
s (t) s∗ (t− τ) e−j2πvtdt (4.17)

48

In this work, the asymmetrical form was used to model SAR point spread function.

The properties of the ambiguity function are presented as follows:

1. Maximum property:

The maximum value of the ambiguity function always occurs at the origin, i.e, when

(τ, υ) = (0, 0), and is equal to the total energy of the signal, E:

|As (τ, υ)| ≤ |As (0, 0)| = E (4.18)

Where E is given by:

E =

∫ ∞

−∞
|s (t)|2 dt (4.19)

2. Volume property:

The total volume under the ambiguity function squared is a constant, equal to the

square of the signal energy,

∫ ∞

−∞

∫ ∞

−∞
|As (τ, υ)|2 dτdυ = |As (0, 0)|2 = E2 (4.20)

3. Symmetry property:

The ambiguity function is symmetric with respect to the origin,

|As (τ, υ)| = |As (−τ,−υ)| (4.21)

4. Scaling property:

Let s′ (t) = s (at), then the ambiguity function of s′ (t) becomes,

|As′ (τ, υ)| =
1

a
As (aτ, υ/a) (4.22)

5. Quadratic phase property:

49

If s(t) is multiplied by a quadratic phase low (linear frequency), s′ (t) = s (t) ejπαt
2

,

then the ambiguity function of s′ (t) is given by:

|As′ (τ, υ)| = |As (τ, υ + ατ)| (4.23)

Proofs of the different properties of the radar ambiguity function are provided by

Blahut in [5].

4.3.1 Ambiguity Function of Basic Waveforms

1. Single Pulse Ambiguity Function

The normalized rectangular pulse s (t) is defined by:

s (t) =
1√
τ ′
Rect

(

t

τ ′

)

(4.24)

Substituting (4.24) in equation (4.15) and performing integration obtain the ambiguity

function of a rectangular pulse:

|A (τ, v)| =
∣

∣

∣

∣

(

1− |τ |
τ ′

)

sin (πv (τ ′ − |τ |))
πv (τ ′ − |τ |)

∣

∣

∣

∣

; |τ | ≤ τ ′ (4.25)

Figure 4.10 displays a representation of the ambiguity function of a single pulse.

2. Coherent Pulse Train Ambiguity Function

A normalized individual pulse s (t), with pulse width denoted by τ ′ and pulse repeti-

tion interval (PRI) denoted by T , is given by the following expression:

s (t) =
1√
N
Rect

(

t

τ ′

)

(4.26)

Then, normalized coherent train of N rectangular pulses is given by:

50

s (t) =
1√
N

N−1
∑

i=0

s1 (t− iT) (4.27)

Substituting 4.27 in 4.15 and interchanging the summations and integration obtain:

A (τ, v) =
1

N

N−1
∑

i=0

N−1
∑

j=0

∞
∫

−∞

s1 (t− iT) s∗1 (t− jT − τ) e−j2πvtdt (4.28)

After some changes of variables and mathematical manipulations the ambiguity func-

tion associated with the coherent pulse train becomes:

A (τ, v) =
1

N

N−1
∑

q=−(N−1)

|A1 (τ − qT, v)|
∣

∣

∣

∣

sin[πvN − |q|T]
sin (πvT)

∣

∣

∣

∣

; τ ′ < T/2 (4.29)

−5

0

5

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

Delay−secondsDoppler − Hz

A
m

bi
gu

ity
 F

un
ct

io
n

−4 −2 0 2 4

−1

−0.5

0

0.5

1

Delay−seconds

D
op

pl
er

 −
 H

z

Figure 4.10: The Ambiguity Function of a Single Pulse (τ = 4). 3-D plot (left). Contour
plot (right)

51

0

100

200

300

0

50

100

0

0.2

0.4

0.6

0.8

1

Delay−secondsDoppler − Hz

A
m

bi
gu

ity
 F

un
ct

io
n

50 100 150 200

10

20

30

40

50

60

70

80

90

Delay−seconds

D
op

pl
er

 −
 H

z
Figure 4.11: The Ambiguity Pulse of 7 Coherent Pulses (τ = 0.4 and PRI = 1).3-D
plot(left). Contour plot (right)

4.3.2 Discrete Ambiguity Function (DAF)

Let st ∈ `2 (ZL) and sr ∈ `2 (ZM) be the transmitted and received signals, respec-

tively, of a SAR system after the signals have been demodulated, quatized, and stored in

vectors of finite length.

It is defined the discrete cross-ambiguity function of st and sr as follows:

A:`2 (ZL)× `2 (ZN) −→ `2 (ZL × ZN)

(st, sr) 7−→ A { (st, sr)}
;N = L+M − 1 (4.30)

The discrete ambiguity function is a linear correlation between the transmitted

and received radar signals. Its mathematical representation is given by:

A {st, sr} [m, k] =

L−1
∑

n=0

st [n] s
∗
r [m+ n]W kn

L ; k ∈ ZL,m ∈ ZM (4.31)

52

Where, WL = e−j
2π
L . Instead of a linear correlation, the discrete ambiguity func-

tion can be computed as a cyclic correlation operation. This is possible using the zero-

padding operator which turns a linear correlation into a cyclic correlation. The zero-padding

operator acts on transmitted and received signals as follows:

P (L,N) : `2 (ZL) −→ `2 (ZN)

st 7−→ P { st} = s′t

(4.32)

P (L,N) : `2 (ZL) −→ `2 (ZN)

sr 7−→ P { sr} = s′r

(4.33)

Where s′t and s′r are the padded transmitted and received signals. Then, the cyclic

ambiguity function is obtained as showed in Figure 4.12.

Figure 4.12: Discrete Ambiguity Function as a Cyclic Correlation

The representation of Figure 4.12 corresponds to a method for computing the

ambiguity function, called the filter method. This will be discussed in the next section.

Let ς be the index-reversal or reflection operator. The cyclic correlation can be

turned into a cyclic convolution through the action of the index-reversal operator on one of

53

the signals as follows:

ς : `2 (ZN) −→ `2 (ZN)

s′t;k 7−→ ς
{

s′t;k

}

= s′t;k [−n]
(4.34)

Then, the discrete ambiguity function becomes:

A {st;k, sr} [m, k] =
N−1
∑

p=0

s′t;k [p] s
′∗
r [〈m− p〉N] ; k ∈ ZN ,m ∈ ZN (4.35)

Figure 4.13 shows the relation of linear and cyclic conditions through the imple-

mentation of the zero-padding and the index-reversal operators.

Figure 4.13: Index-Reversal and Zero-Padding Operators

4.4 Algorithms for DAF Computation

The algorithms used in this thesis for SAR point spread functions simulations were

introduced in chapter two, from the works presented by D. Rodriguez [31] and R. Tolimieri

[7]. These algorithms are based on two methods described below:

54

1. DFT Method

This method allows the computation of the cross-ambiguity function directly by means

of the discrete Fourier transform (DFT), as follows: From the general formulation of

discrete ambiguity function in equation (4.30), let,

vm [n] = st [n] · s∗r [〈n+m〉N] ; n ∈ ZN (4.36)

Then,

A {st, sr} [m, k] =
∑

n∈ZN
vm [n]W kn

L = Vm [k] (4.37)

Figure 4.14 shows the DFT method algorithm as a composition of signal algebra

operators.

Figure 4.14: DFT Method Algorithm for Ambiguity Function Simulations

55

2. Filter Method The filter method results when the cross-ambiguity function is viewed

as a cyclic correlation. This cyclic correlation can turned into a cyclic convolution

operation through the index reversal of a weighted version of the transmitted signal

st, as presented in equation (4.38) below:

hk [n] = st [n]W
kn
N ; n ∈ ZN . (4.38)

The cyclic convolution can, in turn, be computed in an efficient manner through

indirect methods using fast Fourier transform (FFT) algorithms. Thus the object-

domain correlation version of the cross-ambiguity function is obtained as follows:

A {st, sr} [m, k] =
∑

n∈ZN
hk [n] s

∗
r [〈n+m〉N] (4.39)

Where the signal hk can be thought of, after index reversal, as the impulse response

signal of a finite impulse response (FIR) filter. Under this condition the coefficients

can be pre-computed to reduce the processing effort. Finally, this view allows the

realization of a hardware implementation for real time processing. Due to the com-

mutative property of the convolution operation, the return signal sr [n] could be used

as filter coefficients; but it would require signal data buffering impeding the real time

realization.

Figure 4.15 shows the filter method algorithm as a composition of signal algebra

operators.

56

Figure 4.15: Filter Method Algorithm for Ambiguity Function Simulations

57

4.4.1 Analysis of Complexity

The computational complexity of the DFT method is analized in this part. For

this, the DFT method will be presented as a sequence of computational steps as follows:

1. Step 1: From equation (4.36) it is clear that for each m, compute the N products:

vm [n] = st [n] · s∗r [〈n+m〉N] ; n,m ∈ ZN (4.40)

It is assumed here that N = 2r.

2. Step2: For each 0 ≤ m ≤ N , compute the N -point one-dimensional FFT as follows:

Ast,sr [m, k] =
∑

n∈ZN
vm [n]W kn

L = Vm [k] (4.41)

Vm [k] =
N−1
∑

n=0

vm [n] e−j
2πkn
N (4.42)

Step 1 clearly requires N × N multiplications, but N = 2r, then the number of requiered

multiplications is N2 = (2r)2 = 22r. Hence, Step 2 requieres N 2logN multiplications and

additions, because the overall computational complexity of the FFT algorithm is NlogN .

Summarizing, the DFT method requieres N 2logN calculations. Using big-O nota-

tion the order of the algorithm is: O(N 2logN). Thia implies a O(N 2logN) time which is

efficient since it is a polinomial order.

CHAPTER 5

Simulation Results

This chapter presents the results obtained from the modeling and simulation of

point spread functions as discrete ambiguity functions of synthetic aperture radar (SAR)

imaging systems.

5.1 Results on Modeling

As first result we have the discrete model created for the synthetic aperture radar

(SAR) imaging system based on the discrete ambiguity function as its impulse response

function. Figure 5.1 depicts this model, which consists of two main stages: raw data

generation and image formation.

Figure 5.1: SAR imaging system

58

59

5.2 MATLAB Simulations Results

In this section, results on MATLAB simulations are presented. The computational

methods described in chapter 4 were programmed in MATLAB in order to perform point

spread functions simulations through the computation of the discrete ambiguity function.

The algorithms were programmed using the functional programming approach. This is a

style of programming that envisages computation as the process of applying functions to

arguments [32]. With this approach, operators can be viewed as functions that receive an

input and deliver an output. This output is given by the action of the function over the

input arguments. In general, functions are the basic building blocks constructing the struc-

ture of this kind of programs. The following example presents the index-reversal operator

programmed in MATLAB as a function.

Example 5.1 Index-reversal operator

function reversedsignal = indexrevop(x,N)

if length(x) ~= N

error(’Second input parameter does not correspond

to the true signal length’)

else

for k=0:N-1;

reversedsignal(k+1)=x(N-k);

end

end

In this example, the indexrevop is the function that performs the index-reversal

operation. The input parameters are the signal, x, and its respective length, N . The output

signal is returned in the “reversedsignal′′ array.

One of the advantages of functional programming is that it allows the creation of

well-structured programs easy to debug. In addition, contributes with modularity since it

provides a set of modules that can be re-used to reduce future programming costs [32].

MATLAB simulations were carried out on a PC workstation with one Pentium

III processor running at 800 MHz, with 392,740 KB of RAM, a 9.76 GB hard disk, and

60

Microsoft Windows 2000 operating system. Table 5.1 presents the results obtained from

PSF simulations on MATLAB in terms of the time (in seconds) spent by the system CPU on

MATLAB processes during the execution of the programs developed for each computational

method.

Table 5.1: Time Measurements of Matlab Simulations

CPU Time (sec)
Image Cyclic DFT Filter Linear DFT
Size Method Method Method

8× 23 0.0100 0.1600 0.2000
16× 47 0.0200 0.2000 0.2100
32× 95 0.0400 0.3300 0.22100
64× 191 0.0800 0.5110 0.2200
128× 383 0.1510 1.5630 0.3500
256× 767 0.3400 9.4330 0.6410
512× 1535 1.2920 77.5510 1.5120
1024× 3071 5.1970 575.9690 5.7290
2048× 6143 26.0560 Out of memory 24.8650
4096× 12287 Out of memory Out of memory Out of memory

From table 5.1, notice that the DFT method was faster than the filter method

for both cases, linear and cyclic. For image sizes greater than 2048 × 6143 the MATLAB

environment is out of memory. Therefore, scalability in this simulations is limited due to

the large memory consumption.

61

5.2.1 Graphical Results of MATLAB Simulations

The results of PSFs simulations obtained from the implementation of the compu-

tational methods can be displayed thanks to the visualization tools of MATLAB. As first

result, consider figure 5.2 which displays the ambiguity function corresponding to a trans-

mitted pulse signal of 256 sec of duration and a received signal with time delay of 320 sec

and frequency-shift equal to 130 Hz. This figure shows a three-dimensional representation

of the ambiguity surface. Figures 5.3 and 5.4 shows a two-dimensional representation and a

contour diagram respectively from this result. These results were obtained from simulations

with the cyclic DFT method.

The following results were obtained from the ambiguity function computation of a

transmitted chirp signal of 512 sec of duration and a received signal with time delay of 875 sec

and a frequency-shift equal to 230 Hz. Figure 5.5 shows the three-dimensional representation

of the resulting ambiguity surface. Figures 5.5 and 5.7 depicts two-dimensional and contour

representations for this case respectively. These results were obtained from simulations

performed with the filter method.

62

Figure 5.2: Three-dimensional Representation of the Ambiguity Function for a Transmitted
Pulse Signal

Time Index − Sec

F
re

qu
en

cy
 In

de
x

−
 H

z

 Discrete Ambiguity Function

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250
0

50

100

150

200

250

Figure 5.3: Two-dimensional Representation of the Ambiguity Function for a Transmitted
Pulse Signal

63

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

Time Index − Sec

F
re

qu
en

cy
 In

de
x

−
 H

z

 Discrete Ambiguity Function

50

100

150

200

250

Figure 5.4: Contour Plot of the Ambiguity Function for a Transmitted Pulse Signal

Figure 5.5: Three-dimensional Representation of the Ambiguity Function for a Transmitted
Chirp Signal

64

 Discrete Ambiguity Function

F
re

qu
en

cy
 In

de
x

−
 H

z

Time Index − Sec
0 200 400 600 800 1000 1200 1400 1600 1800

0

50

100

150

200

250

300

350

400

450

500

Figure 5.6: Two-dimensional Representation of the Ambiguity Function for a Transmitted
Chirp Signal

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

Time Index − Sec

F
re

qu
en

cy
 In

de
x

−
 H

z

 Discrete Ambiguity Function

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Figure 5.7: Contour Plot of the Ambiguity Function for a Transmitted Chirp Signal

65

5.2.2 Comparison between Linear and Cyclic DFT Methods

Another significant result is the cyclic formulation of the discrete ambiguity func-

tion in terms of signal algebra operators. An example is presented as follows in order

to make a comparison between the results obtained from linear and cyclic DFT methods

simulated with the parameters shown in table 5.2.

Table 5.2: Simulation Parameters for DFT Method

Signal Type Chirp
Transmitted Signal Length (N) 32

Time Delay (sec) 40
Frequency Shift (Hz) 20

Figure 5.8 displays a two-dimensional representation of the ambiguity function for

a transmitted chirp signal of length N = 32. This result was obtained from the linear DFT

method which implements a linear cross-correlation operation. The resulting surface has

a dimension of L × N , where L = N + M − 1 = 32 + 72 − 1 = 103, i.e., the ambiguity

function was computed as a rectangle or strip. Notice that the maximum is located at the

time-delay and frequency-shift parameters of the received signal.

Now, consider the result depicted in figure 5.9. It was obtained from the cyclic DFT

method which implements a cyclic cross-correlation operation. Then, the image displayed

is a matrix of dimension L × L, i.e., the ambiguity function was computed as a square.

Observe that the ambiguity function appears three times along the frequency index. Why

this happens? This modularity occurs due to the cyclic property introduced by the family

of functions or characters presented in the expression of the ambiguity function. These

characters are given by W kn
L , where WL = e−j

2π
L . From the fraction of the exponent it

was encountered that L/N = 103/32 ≈ 3, which is the number of computed ambiguity

functions.

66

 Discrete Ambiguity Function

F
re

qu
en

cy
 In

de
x

−
 H

z

Time Index − Sec
0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

Figure 5.8: Chirp Ambiguity Function Computed by the Linear DFT Method

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Figure 5.9: A Chirp Ambiguity Function Computed by the Cyclic DFT Method

67

5.3 Methodology Validation

The methodology used in this work to validate the proposed model is based in the

theoretical formulations available in some literature and the results obtained by computing

the ambiguity function directly from its mathematical expression [30]. Figure 5.10 presents

the validation methodology employed in this thesis work.

Figure 5.10: Validation Methodology for PSF simulations

Model validation was carried out by two specific cases of ambiguity function com-

putation: for a transmitted pulse signal and for a transmitted pulse train. Figure 5.11

shows the methodology used to validate results on ambiguity function computed with the

DFT method for a transmitted pulse signal.

Figure 5.11: Validation Methodology for PSF simulations for a Transmitted Pulse Signal

68

The results of the DFT method were compared with the computations presented

by Bassem [30]. These results were obtained from computing the ambiguity function of a

single rectangular pulse as the direct computation of equation (4.25):

|A (τ, fd)| =
∣

∣

∣

∣

(

1− |τ |
τ ′

)

sin (πfd (τ
′ − |τ |))

πfd (τ ′ − |τ |)

∣

∣

∣

∣

(5.1)

Figure 5.12 presents the result of the direct computation of the ambiguity function

of a single pulse signal. In figure 5.13 a result obtained with the DFT method for a single

pulse ambiguity function is presented. According with the methodology, the model used to

perform PSF simulations is valid. The results achieved by the DFT method are equivalent

to those presented in the literature.

−5

0

5

−1.5

−1

−0.5

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

Delay−secondsDoppler − Hz

A
m

bi
gu

ity
 F

U
nc

tio
n

Figure 5.12: Single Pulse Ambiguity Function Computed directly from Equation

69

0
50

100
150

200
250

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

50

Time Index − SecFrequency Index − Hz

Figure 5.13: Single Pulse Ambiguity Function Computed with the DFT Method

In the case that the transmitted radar signal be a pulse train the validation method-

ology becomes the illustrated in figure 5.14.

Figure 5.14: Validation Methodology for PSF simulations for a Transmitted Pulse Train

The coherent pulse train ambiguity function was computed with equation (4.29):

A (τ, v) =
1

N

N−1
∑

q=−(N−1)

|A1 (τ − qT, v)|
∣

∣

∣

∣

sin[πvN − |q|T]
sin (πvT)

∣

∣

∣

∣

; τ ′ < T/2 (5.2)

Where N is the number of pulses in the train, T is the pulse repetition interval

(PRI), and τ ′ is the pulse width.

70

Figure 5.15 presents the result of the direct computation of the ambiguity function

of a pulse train [30]. In figure 5.16 a result obtained with the filter method for a pulse train

function is presented.

0
50

100
150

200
250

0

20

40

60

80

100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay−secondsDoppler − Hz

A
m

bi
gu

ity
 F

un
ct

io
n

Figure 5.15: Pulse Train Ambiguity Function Computed directly from Equation

0

50

100

150

0

200

400

600

800
0

5

10

15

Time Index − SecFrequency Index − Hz

Figure 5.16: Pulse Train Ambiguity Function Computed with Filter Method

71

5.4 Future Work

The amounts of sensory data collected from SAR imaging systems receivers, are

essentially, very large two-dimensional arrays of complex numbers (see figure 5.17). There-

fore, the processing of this data is computationally expensive and it requires high memory

and storage capacities. In this regard, large-scale PSFs simulations must be conducted in

order to approximate them to the real SAR system processing problem. The term large-

scale refers to big data sizes which demands scalability. However, the simulations carried

out in Matlab encountered a memory limitation that limited scalability to a problem size

smaller than SAR’s.

Figure 5.17: SAR Typical Data Size

For this reason, it is suggested that the SAR impulse response functions simula-

tions be conducted on high-performance computers (HPC) with additional computational

resources in terms of programming languages, memory, speed, and number of processors.

Also, it is suggested that the SAR raw data generation model be executed on HPCs. Cur-

72

rently, the electrical and computer engineering department of the university of Puerto Rico

at Mayaguez counts with a cluster system that could be used to perform these simulations.

The main system specifications are the following:

• IBM xSeries server, dual processors, 64 computing nodes.

• 130 MB cache Intel Pentium III (1.26 GHz and 512 KHz each).

• 63.8 GB of RAM.

• 1 terayte user disk space.

• Redhat v.7.3 operating system

Taking advantage of these computational resources, specially of the number of

processors available, it is suggested to perform the simulations in a parallel mode. Figure

5.18 depicts a possible parallel approach for the implementation of the DFT method in

which it can be parallelized either the Hadamard product operation or the FFTs.

Figure 5.18: Parallel Approach for SAR Impulse Response Simulations

73

Some preliminary simulations results have been obtained using advanced architec-

tures in preparation for future work on large scale modeling and simulation of SAR impulse

response functions. All the results presented here were obtained from serial mode imple-

mentations. A library called FFTW was used to compute the FFTs operations presented

in the DFT method algorithm. Appendix A describes how to program with FFTW.

The first simulations were performed on a symmetric multiprocessor system (SMP).

This system has four Ultra SPARC II processors running at 400 MHz each, with 4 MB of

local, high-speed external cache memory and Solaris v.8 (UNIX) operating system. The

simulation algorithm was programmed in MATLAB, C and Fortran. Time results of these

simulations are presented in table 5.3.

Table 5.3: Time Measurements of SAR PSFs Simulations on a SMP System

Image Real Execution User System
Size Time (sec) Time (sec) Time (sec)

C FORTRAN C FORTRAN C FORTRAN

128× 383 0.4740 0.2010 0.2200 0.1800 0.2600 0.0100
256× 767 2.1830 0.6110 0.9000 0.5600 1.2700 0.0400
512× 1535 8.0870 2.0530 3.4400 1.8300 4.6200 0.02100
1024× 3071 33.2810 7.7270 13.7400 6.9800 19.4200 0.6200
2048× 6143 134.174 30.6602 52.7300 27.3600 80.9900 2.7700
4096× 12287 566.6400 131.8690 198.4800 111.5500 264.0000 12.8000
8192× 24575 Segmentation Fault/Memory allocation error

Figure 5.19 shows the run times comparison between the different language im-

plementations of the DFT method. From this, notice that the FORTRAN implementation

was the fastest. This is because FORTRAN has the necessary libraries to manage complex

numbers. In addition, this language can adapt to the kind of architecture used, better than

other languages.

74

Figure 5.19: Run Time Comparison of SMP Simulations

Finally, the simulations were performed on the IBM cluster in serial mode using C

and FORTRAN languages. The time results are presented in table 5.4.

Table 5.4: Time Measurements of SAR PSFs Simulations on the IBM Cluster

Image Real Execution User System
Size Time (sec) Time (sec) Time (sec)

C FORTRAN C FORTRAN C FORTRAN

128× 383 0.0330 0.0310 0.0300 0.0200 0.0100 0.0100
256× 767 0.1130 0.0990 0.0900 0.0700 0.0200 0.000
512× 1535 0.3960 0.3570 0.3600 0.2900 0.0300 0.0700
1024× 3071 1.4890 1.4420 1.3200 1.1600 0.1700 0.2800
2048× 6143 8.5210 6.8780 5.0100 5.8400 0.7600 0.8500
4096× 12287 KILLED

CHAPTER 6

Conclusions

The conclusions of this work are presented and resumed in this chapter as follows:

• A discrete-time, discrete-frequency computational model for SAR system raw data

generation was presented, which was used to study the characteristics of Point Spread

Functions (PSF), in a time-frequency context, through the efficient computation of

the discrete ambiguity function.

• The SAR point spread function was modeled and simulated as the discrete ambiguity

function in a time-frequency context.

• A large scale algorithm for Point Spread Functions (PSF) computation using the DFT

method has been implemented in Fortran and C languages.

• The PSF simulations have been performed on a Symmetric Multiprocessor System

(SMP) and a cluster architecture in serial mode using computational methods.

• Two methods for computing the ambiguity function were implemented: the DFT

method, and the filter method.

• The DFT method is the more computationally efficient algorithm to simulate the

ambiguity function.

75

BIBLIOGRAPHY

[1] J. Curlander and R. MacDonough. Synthetic Aperture Radar: Systems and Signal

Processing. Jhon Wiley and Sons, Inc., 1991.

[2] D. Rodŕıguez. Computational Signal Processing and Sensor Array Signal Algebra: A

Representation Development Approach. First book draft, September 2002.

[3] National Communications System Technology and Standards Division. Telecommuni-

cations: Glossary of telecommunications terms. http://www.its.bldrdoc.gov/fs-1037/,

August 1996.

[4] C. Elliot and M. Hektner. Wetland resources of yellowstone national park.

http://wetlands.fws.gov/Pubs Reports/Yellowstone/Yell pdfs/intro.pdf.

[5] R. E. Blahut. Theory of remote surveillance algorithms. Radar and Sonar, Part I, Vol.

32, New York, 1991.

[6] L. Auslander and R. Tolimieri. Characterizing the radar ambiguity functions. IEEE

Transactions on Information Theory, 30:832–836, November 1984.

[7] R. Tolimieri and S. Winograd. Computing the ambiguity surface. IEEE Transactions

on Acoustics, Speech and Signal Processing, 33:1239–1245, October 1985.

[8] L. Auslander and R. Tolimieri. Computing decimated finite cross-ambiguity functions.

IEEE Transactions on Acoustics, Speech and Signal Processing, 36:359–364, March

1988.

[9] D. Rodŕıguez, J. Seguel, and E. Cruz. Algebraic methods for the analysis and design

of time-frequency signal processing algorithms. ISCAS Conference Proceedings, 1:196–

199, May 1993.

[10] M. Richman, T. Parks, and R. Shenoy. Discrete-time, discrete-frequency, time-

frequency representations. International Conference on Acoustics, Speech and Signal

Processing (ICASP’95), 2:1029 –1032, May 1995.

[11] M. Richman, T. Parks, and R. Shenoy. Discrete-time, discrete-frequency, time-

frequency analysis. IEEE Transactions on Signal Processing, 46:1517 –1527, June

1998.

76

77

[12] A. Ozdemir and O. Arikan. Fast computation of the ambiguity function and the

wigner distribution on arbitrary line segments. IEEE Transactions on Signal Process-

ing, 49:381–393, 2001.

[13] H. Ozaktas, O. Arikan, M. Kutay, and G. Bozdagi. Digital computation of the fractional

fourier transform. IEEE Transactions on Signal Processing, 44:2141–2150, September

1996.

[14] E. Mozeson and N. Levanon. Matlab code for plotting ambiguity functions. IEEE

Transactions on Aerospace and Electronic Systems, 38:1064 –1068, July 2002.

[15] G. Franceschetti, M. Migliaccio, and D. Riccio. The SAR simulation: An overview.

IEEE International Geoscience and Remote Sensing Symposium, 1995.

[16] G. Franceschetti and R. Lanari. Synthetic Aperture Radar Processing. CRC Press,

December 1998.

[17] G. Verdone, R. Viggiano, L. Candela, and V. Giannini. Processing algorithms for

COSMO-SkyMed SAR sensor. IEEE International Geoscience and Remote Sensing

Symposium, IGARSS ’02, 5:2771 –2774, 2002.

[18] G. Franceschetti, A. Iodice, D. Riccio, and G. Ruello. A 2-d fourier domain approach

for spotlight SAR raw data simulation of extended scenes. IEEE International Geo-

science and Remote Sensing Symposium and the 24th Canadian Symposium on Remote

Sensing, June 24-28 2002.

[19] G. Franceschetti, M. Migliaccio, D. Riccio, and G. Schirinzi. Saras: A synthetic aper-

ture radar (SAR) raw signal simulator. IEEE Transactions on Geoscience and Remote

Sensing, 30:110–123, January 1992.

[20] K. Hoffman and R. Kunze. Linear Algebra. Prentice Hall, second edition, 1971.

[21] S. Lang. ALGEBRA. Addison-Wesley Publishing Company, third edition, 1993.

[22] N. Hamilton and J. Landin. Set Theory and the Structure of Arithmetic. Allyn and

Bacon, Boston, 1963.

[23] A. Fraenkel. Set Theory and Logic. Addison-Wesley Publishing Company, 1966.

[24] H. Krishna. Digital Signal Processing Algorithms. CRC Press, 1998.

[25] D. Buchthal and D. Cameron. Modern Abstract Algebra. John Wiley and Sons, 1987.

[26] W. Greub. Graduate Texts in Mathematics. Linear Algebra. Springer-Verlag, fourth

edition, New York, 1981.

[27] A. Oppenheim and R. Schafer. Discrete-Time Signal Processing. Prentice Hall Signal

Processing Series, 1989.

78

[28] W. J. Karplus, G. A. Bekey, and B. Y. Kogan. Modeling and Simulation: Theory and

Practice, A Memorial Volume for Professor Walter J. Karplus (1927-2001). Kluwer

Academic Publishers, 2003.

[29] P. A. Fishwick. Computer simulation. IEEE Potentials, 15:24–27, Feb.-March 1996.

[30] B. R. Mahafza. Radar Systems Analysis and Design using MATLAB. ChapmanHal-

l/CRC, 2000.

[31] D. Rodŕıguez. SAR point spread signals and Earth surface property characteristics

(invited paper). SPIE’s 44th Annual Meeting and Exhibition, Denver, Colorado, July

1999.

[32] V. Nallur. Functional programming: the basics.

http://www.ncst.ernet.in/education/apgdst/pgpfac/slides.shtml.

[33] M. Frigo and S. Jhonson. FFTW: An adaptive software architecture for the FFT.

ICASSP Conference Proceedings, 1998.

[34] M. Frigo and S. Johnson. The fastest fourier transform in the west. MIT-LCS-TR-728,

September 1997.

APPENDICES

APPENDIX A

Programming with FFTW

FFTW or the faster Fourier transform in the west is a publicly available C package

of subroutines that computes one-dimensional and multidimensional discrete Fourier trans-

forms (DFT). FFTW can compute transforms of real and complex data of arbitrary input

sizes not restricted to power of two. These subroutines were developed at the Massachusetts

Institute of Technology (MIT) by Matteo Frigo and Steven G. Johnson. FFTW implements

the Cooley-Tukey fast Fourier transform algorithm for serial and parallel environments. Par-

allel implementations of FFTW are also available for shared memory systems using threads

and for distributed-memory systems using the message passing interface (MPI) [33].

The main feature of FFTW is its ability to adapt the computation to the hardware

architecture in order to achieve best performance. This is possible due to the internal

structure of FFTW. The computation of the transform is carried out by three fundamental

operation modules described as follows:

1. FFTW Planner: The FFTW planner uses a dynamic programming algorithm to create

a special data structure called a plan [34]. This structure consists of a efficcient com-

bination of specialized blocks of C code called codelets. Each codelet computes part of

the transform. The planner evaluates different combinations of codelets and its exe-

cution time, selecting the fastest plan. FFTW provides the function fftw create plan,

for interactions with the users. Through this function users can create a plan for a

79

80

specific transform. Once the plan is created it can be used as many times as needed.

When the plan is used for all FFTs computations it must be destroyed calling the

function fftw destroy plan(plan).

2. Codelet Generator: The key of the performance of FFTW reside in the automatic

generation of codelets that computes transforms of small sizes. The generator itself

implements the Cooley-Tukey algorithm using the dive-and-conquer approach to re-

cursively compute the FFT. This generator behaves like a special-purpose compiler

that produces long blocks of optimized code, which are easy to modify with simple

changes[34].

The codelet generator was written in the functional programming language Caml Light

from the ML family, which is free available and highly portable. Caml capabilities

were exploited by FFTW for computing the Cooley-Tukey algorithm using symbolic

arithmetic. This symbolic arithmetic is then simplified by many transformations in a

simplification phase to obtain the optimized blocks of C code.

3. FFTW Executor: Finally, the FFT computation is performed by a C function called

the executor, which accepts as input the plan generated by the FFTW planner and

the data array to be transformed. The plan provides to the executor a sequence of

intructions that specifies the type of transform that will be computed. Then, the

executor function varies according to the transform that is desired to compute.

81

Figure A.1 summarizes the interaction of the user, the planner, the codelet gen-

erator and the executor in order to compute the FFT. As it can be viewed in this figure

the users interact with FFTW through the planner and the executor. They create the plan

using the function fftw create plan which accepts as inputs the length of the transform, the

direction of the transform (forward or barckward), and other optional flags. Then, using

another function that accepts as inputs the plan and the data, FFTW executes the plan to

obtain the resulting transform.

Codelet
Generator

Planner

Executor

Codelets

Plan

User

Create a plan

FFT parameters

FFT

Figure A.1: FFTW Computational Scheme

Algorithm A.1 shows the basic usage of the FFTW functions in C to compute

one-dimensional FFTs of complex data in serial mode. In this case, the function to execute

the plan for a complex one-dimensional FFT is fftw one. This function varies according

with the dimension of the transform.

Algorithm A.1

#include <fftw.h>

...

{

fftw_complex *in, *out;

fftw_plan plan;

...

82

// Create a specific plan

plan=fftw_create_plan(N, FFT_DIR, flags);

...

// Execute the plan

fftw_one(plan, in, out);

...

fftw_destroy_plan(plan);

}

In the example above, the first argument, N, in the function fftw create plan

corresponds to the size of the transform and must be any non-negative integer, the sec-

ond argument can be either FFTW FORWARD or FFTW BACKWARD which computes

forward and inverse FFT respectively. The last argument can be either of two flags

FFTW MEASURE or FFTW ESTIMATE. FFTW MEASURE is used to measure the ex-

ecution time of several FFTs in order to find the best plan to compute the transform. On

the other hand, FFTW ESTIMATE constructs a reasonable plan that may be sub-optimal

for the FFT computation.

Algorithms A.2 and A.3 present the codes for compute the one-dimensional and

the two-dimensional FFTs respectively in C. Both, one-dimensional and multi-dimensional

FFTs must be compiled as follows in a Solaris environment with the GNU C compiler: gcc

file.c -lfftw -lm -o executable file

Algorithm A.2

#include <fftw.h>

#include <stdio.h>

int N;

int main(int argc,char* argv[])

{

fftw_complex *in, *out;

fftw_plan p;

int i;

in = (fftw_complex *) malloc(N*sizeof(fftw_complex));

out = (fftw_complex *) malloc(N*sizeof(fftw_complex));

p=fftw_create_plan(N,FFTW_FORWARD,FFTW_ESTIMATE);

fftw_one(p,in,out);

fftw_destroy_plan(p);

return 0;

83

}

Algorithm A.3

#include <fftw.h>

#include <math.h>

#include <stdio.h>

int N, M;

int main(int argc,char* argv[])

{

fftw_complex *in;

fftwnd_plan p;

in = (fftw_complex *) malloc(N*M*sizeof(fftw_complex));

p=fftw2d_create_plan(N,M,FFTW_FORWARD,

FFTW_MEASURE|FFTW_IN_PLACE);

fftwnd_one(p,in,NULL);

fftwnd_destroy_plan(p);

return 0;

}

In the multidimensional case is possible to have an additional flag such as FFTW IN PLACE,

in which the output data overwrite the input data. Thus, it requires half as much memory

as the out-of-place transform (the default). The arguments N and M correspond to the

number of rows and the number of columns respectively.

The following two algorithms present FORTRAN codes for one and two-dimensional

transforms respectively. The parameters used in the functions that creates the plans are the

same described for the C examples. Compile these routines using f77 compiler as follows:

f77 file.F -lfftw -lm -o executable file

Algorithm A.4

program fftw1D

implicit none

#include "fftw_f77.i"

integer N

parameter(N=32)

double complex in

dimension in(N)

integer*8 plan

call fftw_f77_create_plan(plan,N,M,FFTW_FORWARD,

+ FFTW_ESTIMATE + FFTW_IN_PLACE)

call fftw_f77_one(plan,in,0)

call fftw_f77_destroy_plan(plan)

84

end

Algorithm A.5

program fftw2D

implicit none

#include "fftw_f77.i"

integer N, M

parameter(N=32)

parameter(M=64)

double complex in

dimension in(N,M)

integer*8 plan

call fftw2d_f77_create_plan(plan,N,M,FFTW_FORWARD,

+ FFTW_ESTIMATE + FFTW_IN_PLACE)

call fftwnd_f77_one(plan,in,0)

call fftwnd_f77_destroy_plan(plan)

end

The available functions to compute multidimensional FFTs using FFTW routines

provide for parallel implementations on distributed-memory machines supporting MPI. In

this case, the transform data is distributed over multiple processes, so that each process

gets only a portion of the array. In algorithm A.6 the basic C code to compute complex

two-dimensional FFTs using MPI FFTW is presented. To compile this use: mpicc file.c

-lfftw mpi -lfftw -lm -o executable file

Algorithm A.6

#include <fftw_mpi.h>

#include <math.h>

#include <stdio.h>

int Nx, Ny;

int main(int argc,char* argv[])

{

fftw_complex *in;

fftwnd_mpi_plan p;

MPI_Init(&argc,&argv);

in = (fftw_complex *) malloc(Nx*Ny*sizeof(fftw_complex));

p = fftw2d_mpi_create_plan(MPI_COMM_WORLD,Nx,Ny,FFTW_FORWARD,

FFTW_ESTIMATE);

fftwnd_mpi(p,1,in,NULL,FFTW_NORMAL_ORDER);

fftwnd_mpi_destroy_plan(p);

MPI_Finalize();

85

return 0;

}

Algorithm A.7 presents the basic C code to compute complex two-dimensional

FFTs using the parallel FFTW routines for shared-memory threads on SMP systems. These

routines take extra parameters such as the number of threads to use. Compile this routine

as follows: gcc file -lfftw threads -lfftw -lm -lpthread -o executable file

Algorithm A.7

#include <fftw_threads.h>

#include <math.h>

#include <stdio.h>

int N, M, NT;

int main(int argc,char* argv[])

{

fftw_complex *in;

fftwnd_plan p;

int T;

T = fftw_threads_init();

in = (fftw_complex *) malloc(N*M*sizeof(fftw_complex));

p = fftw2d_create_plan(N,M,FFTW_FORWARD,

FFTW_MEASURE|FFTW_IN_PLACE);

fftwnd_threads_one(NT,p,in,NULL);

fftwnd_destroy_plan(p);

return 0;

}

APPENDIX B

MATLAB Functions

This appendix contains the MATLAB functions developed for the SAR point

spread function modeling and simulation. These functions are presented as follows:

1. directcomp.m

%%

% LINEAR AMBIGUITY FUNCTION: Direct Computation

%

% This function accepts as input two radar signals:

% transmitted (st) and received (sr) signals.

% It returns the discrete ambiguity function

% from the linear cross-correlation of these signals

% computed in direct form.

%%

function A = directcomp(st,sr)

lst=length(st);

lsr=length(sr);

srcon=conj(sr);

L=lst+lsr-1;

M = L + lsr;

srcp = zeropaddingop(srcon,M);

A=zeros(L,lst);

for m=0:lsr-1

for k=0:lst-1

for n=0:lst-1

86

87

h = st(n+1)*srcp(n+m+1);

A(m+1,k+1)=A(m+1,k+1) + h*exp(-j*2*pi*k*n/lst);

end

end

end

A = abs(A);

2. cycdirectcomp.m

%%

% CYCLIC AMBIGUITY FUNCTION: Direct Computation

%

% This function accepts as input two radar signals:

% transmitted (st) and received (sr) signals.

% It returns the discrete ambiguity function

% from the cyclic cross-correlation of these signals

% computed in direct form.

%%

function A = cycdirectcomp(st,sr)

lst=length(st);

lsr=length(sr);

srcon=conj(sr);

L=lst+lsr-1;

srcp = zeropaddingop(srcon,L);

stp = zeropaddingop(st,L);

B=zeros(L,L);

for m=0:L-1

for k=0:L-1

for n=0:L-1

g =srcp(mod(n+m,L)+1);

t = stp(n+1);

h = g.*t;

B(m+1,k+1)=B(m+1,k+1) + h*exp(-j*2*pi*k*n/lst);

end

end

end

A = abs(B)

88

3. DFTmethod.m

%%

% DFT METHOD FUNCTION

%

% Implemented Method: Linear Transform (DFT) Method

% This function accepts as input two radar signals:

% transmitted (st) and received (sr) signals.

% It returns the discrete ambiguity function

% from the linear cross-correlation of these signals

% using the DFT method.

% Programmed by: Hilaura Nava

%%

function A = DFTmethod(st,sr)

lst = length(st);

lsr = length(sr);

L=lst+lsr-1;

src=conj(sr);

srp = zeropaddingop(src,L);

sri=indexrevop(srp,L);

sti=indexrevop(st,lst);

A=zeros(L,lst);

for shift=0:1:lsr-1

sris=linleftshift(sri,lst,shift);

z=sti.*sris;

A(lsr-shift,:)=fft(z);

end

G = abs(A);

89

4. cycDFTmethod.m

%%

% CYCLIC DFT METHOD FUNCTION

%

% Implemented Method: Cyclic Transform (DFT) Method

% This function accepts as input two radar signals:

% transmitted (st) and received (sr) signals.

% It returns the discrete ambiguity function

% from the cyclic cross-correlation of these signals

% Programmed by: Hilaura Nava

%%

function A = cycDFTmethod(st,sr)

lst = length(st);

lsr = length(sr);

L=lst+lsr-1;

src=conj(sr);

stp = zeropaddingop(st,L);

srp = zeropaddingop(src,L);

A=zeros(L,L);

stp=stp(1:L);

for shift=0:L-1

sris=cycleftshift(srp,L,shift);

z=stp.*sris;

A(shift+1,:)=fft(z);

end

A = abs(A);

90

5. filtermethod.m

%%

% FILTER METHOD FUNCTION

%

% Implemented Method: Filter Method

% This function accepts as input two radar signals:

% transmitted (st) and received (sr) signals.

% It returns the discrete ambiguity function

% from the autocorrelation of these signals

% using the Filter method.

% Programmed by: Hilaura Nava

%%

function A = filtermethod(st,sr)

lst = length(st);

lsr = length(sr);

L=lst+lsr-1;

src=conj(sr);

srp = zeropaddingop(src,L);

sri=indexrevop(srp,L);

Fsri=fft(sri);

z =zeros(1,L);

for k=0:lst-1

for n=0:lst-1

z(n+1)=st(n+1).*exp(sqrt(-1)*2*pi.*n.*k/lst);

end

Z=fft(z);

Gfsz=Fsri.*Z;

Grev=ifft(Gfsz);

Gc=indexrevop(Grev,L);

G(:,k+1)=Gc’;

end

A=abs(G(1:lsr,:));

91

6. indexrevop.m

%%

% INDEX REVERSAL OPERATOR (Reflection Operator)

%

% This function accepts two parameters as input:

% A signal (or vector) and its length.

% This function returns the index reversed version

% of the input signal

% Programmed by: Hilaura Nava.

%%

function reversedsignal = indexrevop(signal,N)

if length(signal) ~= N

error(’Second input parameter does not correspond ...

to the true signal length’)

else

for k=0:N-1;

reversedsignal(k+1)=signal(N-k);

end

end

7. zeropaddingop.m

%%

% ZERO PADDING OPERATOR

%

% Zero pad program for 1-d signals

% This function accepts two parameters as input:

% A 1-d signal (or vector) and the desired maximum

% length that will have the input signal

% This function returns the zero padded version

% of the input signal

% Programmed by: Hilaura Nava

%%

function paddedsignal = zeropaddingop(signal, maxlength)

if length(signal) > maxlength

error(’Signal length is larger than desired maximum length’)

else

padlength = maxlength - length(signal);

paddedsignal = [signal, zeros(1,padlength)];

end

92

8. linleftshift.m

%%

% LINEAR LEFT SHIFT OPERATOR

%

% This function accepts three parameters as input:

% A signal (or vector) x, the length of the Hadamard product

% operation M, and the number of shifts.

% This function returns the same input vector but

% shifted to the left, from a shift zero to N-1

% Programmed by: Hilaura Nava

%%

function shiftedsignal = linleftshift(x,N,shift)

shiftedsignal=zeros(1,N);

for i=0:N-1

shiftedsignal(i+1)=x(i+shift+1);

end

9. cindexrevop.m

%%

% CYLCIC INDEX REVERSAL OPERATOR

%

% This function accepts two parameters as input:

% A signal (or vector) and its length

% This function returns the index reversed version

% of the input signal

% Programmed by: Hilaura Nava.

%%

function reversedsignal = cindexrevop(signal,N)

reversedsignal(1)=signal(1);

if length(signal) ~= N

error(’Second input parameter does not ...

correspond to the true signal length’)

else

for i=0:N-2

reversedsignal(i+2)=signal(N-i);

end

end

93

10. cycleftshift.m

%%

% CYCLIC LEFT SHIFT OPERATOR

%

% This function accepts three parameters as input:

% A signal (or vector) x, and the number of shifts.

% This function returns the same input vector but

% shifted to the left, from shift zero to N-1

% Programmed by: Hilaura Nava

%%

function shiftedsignal = cycleftshift(x,L,shift)

shiftedsignal=zeros(1,L);

for i=0:L-1

shiftedsignal(i+1)=x(mod(i+shift,L)+1);

end

11. cycrightshift.m

%%

% CYCLIC RIGHT SHIFT OPERATOR

%

% This function accepts three parameters as input:

% A signal (or vector) x, the x signal length L,

% and the number of shifts.

% This function returns the same input vector but

% shifted to the right, from shift zero to N-1

% Programmed by: Hilaura Nava

%%

function shiftedsignal = cycrightshift(x,L,shift)

shiftedsignal=zeros(1,L);

for i=0:L-1

shiftedsignal(i+1)=x(mod(i-shift,L)+1);

end

94

12. signals.m

%%

% SIGNAL GENERATION FUNCTION

%

% This function returns the transmitted and received

% radar signals. Its input consists of:

% * Signal parameters:

% type: type of signal (pulse, cos, chirp)

% leng: signal length

% delay: time delay of teh received signal

% shif: frequency shift of the received signal

% Programmed by: Hilaura Nava.

%%

function [st,sr]=signals(type,leng,delay,shif,Fs)

if type==1

%--- Single Pulse Signal ----%

st=[ones(1,leng)];

sr=[zeros(1,delay) st];

shift=exp(j*2*pi.*(0:length(sr)-1)*(shif)/length(st));

sr=sr.*shift;

elseif type==2

%--- Cosine Signal ---%

st=[cos(2*pi.*(1:leng)/leng)];

sr=[zeros(1,delay) st];

shift=exp(j*2*pi.*(0:length(sr)-1)*(shif)/length(sr));

sr=sr.*shift;

elseif type==3

%--- Chirp Signal---%

Fs=1000;

Ts=1/Fs;

fc=100;

tinc=Ts;

Tm=100*Ts;

m=leng/100;

V=m*Tm;

N=V*Fs;

t=-V/2:tinc:V/2-Ts;

finc=Fs/N;

f=-(Fs/2):finc:(Fs/2)-finc;

M=5;

a=2*pi*100/V;

b=2*pi*fc;;

c=0.25*pi;

95

%**%

st=M*cos(1*a*(t.*t)+b*t+c);

sr=[zeros(1,delay) st];

shift=exp(j*2*pi.*(0:length(sr)-1)*(shif)/length(st));

sr=sr.*shift;

end

13. readComplex.m

%%

% READ COMPLEX FUNCTION

%

% This function reads a sequence of complex numbers

% from a file. The data contained in the file must

% have the following format:

% Ex: 1.0000 0.80000

% 0.2300 1.21000

% Two columns, separated by one space. The first

% column correspond to the real part of the number,

% and the second column to the imaginary part.

% Both numbers are floating-point numbers.

% Programmed by: Hilaura Nava

%%

function out = readComplex(fname)

fid = fopen(fname, ’r’);

if fid == -1

error([’Could not open file : ’ fname ’ for reading.’])

end

cnt = 1;

sizeofV = 500;

inc = 100;

R = zeros(sizeofV,1);

I = R;

while(~feof(fid))

line = fgetl(fid);

tmp = sscanf(line, ’%f’, 2);

R(cnt) = tmp(1);

I(cnt) = tmp(2);

cnt = cnt+1;

if cnt > sizeofV

R(sizeofV + inc) = 0;

I(sizeofV + inc) = 0;

end

end

96

out = complex(R(1:cnt-1),I(1:cnt-1));

out=transpose(out);

14. writecomplex.m

%%

% WRITE COMPLEX FUNCTION

%

% This function writes the real and imaginary parts of a complex

% vector (from the Matlab workspace) in two files separately in

% fixed-point notation and 8 decimals.

% This function accepts three parameters:

% input: a complex vector located in the Matlab Workspace

% fname1: the name of the output file where the real part of

% the vector will be stored

% fname2: the name of the output file where the imaginary part

% of the vector will be stored

%%

function writecomplex(input, fname1, fname2)

realPart = real(input);

imagPart = imag(input);

fid = fopen(fname1,’W’);

fid1 = fopen(fname2,’W’);

for i=1:length(realPart)

fprintf(fid, ’%.8f\r\n’, realPart(i));

fprintf(fid1,’%.8f\r\n’, imagPart(i));

end

fclose(fid);

fclose(fid1);

97

15. writecomplex2.m

%%

% WRITE COMPLEX FUNCTION 2

%

% This function writes a complex vector from the Matlab

% workspace to a file in fixed-point notation and 8 decimals.

% The function accepts two parameters:

% input: a complex vector located in the Matlab Workspace

% fname: the name of the output file where the vector will be

% stored

%%

function writecomplex(input, fname)

realPart = real(input);

imagPart = imag(input);

fid = fopen(fname,’W’);

for i=1:length(realPart)

fprintf(fid, ’%.8f %.8f\r\n’, realPart(i), imagPart(i));

end

fclose(fid);

98

16. complexsig.m

%%

% COMPLEXSIG FUNCTION

%

% This function accepts as input the name of the

% files that contains the real part and the imaginary

% part of the transmitted and received radar signals.

% fname1 : File name of the transmitted signal real part

% fname2 : File name of the transmitted signal imaginary part

% fname3 : File name of the received signal real part

% fname4 : File name of the received signal imaginary part

% The function returns to MATLAB workspace the transmitted and

% received signals in complex format.

% Programmed by: Hilaura Nava

%%

function [st,sr]= complexsig(fname1, fname2, fname3, fname4)

rst = load(fname1,’-ascii’);

ist = load(fname2,’-ascii’);

rsr = load(fname3,’-ascii’);

isr = load(fname4,’-ascii’);

st = complex(rst,ist);

sr = complex(rsr,isr);

st=transpose(st);

sr=transpose(sr);

17. writeptoh.m

%%

% WRITE FILE .h FUNCTION

%

% This function writes a complex vector from the Matlab

% workspace to a file in fixed-point notation and 8 decimals.

% The function accepts two parameters:

% input: a complex vector located in the Matlab Workspace

% fname: the name of the output file where the vector will be

% stored

%%

function writeptoh(input, fname, N)

realPart = real(input);

imagPart = imag(input);

fid = fopen(fname,’W’);

99

fprintf(fid,’%s%d%s’,’float datare[’,N,’]={’);

for i=1:N-1

fprintf(fid, ’%.8f,’, realPart(i));

end

fprintf(fid, ’%.8f’, realPart(N));

fprintf(fid,’%s\n’,’};’);

fprintf(fid,’%s%d%s’,’float dataim[’,N,’]={’);

for i=1:N-1

fprintf(fid, ’%.8f,’, imagPart(i));

end

fprintf(fid, ’%.8f’, imagPart(N));

fprintf(fid,’%s\n’,’};’);

fclose(fid);

APPENDIX C

C Programs

This appendix contains the C programs and functions developed for SAR point

spread function modeling and simulation.

1. amblindftm.c

/***

This program computes the Ambiguity Function through the

Linear DFT Method. In this program we use the FFTW libraries

To compile use: gcc amblindftm.c -lfftw -lm -o exec_file

To execute: exec_file data1.txt N M

data1.txt: contains transmitted and received signals(st,sr)

N: is the transmitted signal length

M: is the received signal length

**/

#include <fftw.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

int Readsig(char *,int, int, int, fftw_complex *, fftw_complex *);

int N, M, K;

char input1[20];

int main(int argc,char* argv[])

{

fftw_complex *st;

fftw_complex *sr;

fftw_complex *in, *out;

100

101

fftw_plan p;

FILE *output;

int i, j, k;

N = atoi(argv[2]);

M = atoi(argv[3]);

K=N+M-1;

fftw_complex **Matrix;

in = (fftw_complex *) malloc(N*sizeof(fftw_complex));

out = (fftw_complex *) malloc(N*sizeof(fftw_complex));

st = (fftw_complex *) malloc(K*sizeof(fftw_complex));

if (st==NULL)

printf("Error/n");

sr = (fftw_complex *) malloc(K*sizeof(fftw_complex));

/*Zero padding using memset function

sr = (fftw_complex*) memset(sr,0,K*sizeof(fftw_complex));

if (sr==NULL)

printf("Error/n");

Matrix = (fftw_complex **) malloc(M*sizeof(fftw_complex*));

for(k=0;k<M;k++){

Matrix[k]=(fftw_complex *)malloc(N*sizeof(fftw_complex));

}

strcpy(input1,argv[1]);

if(Readsig(input1, N, M, K, sr, st)==-1)

return -1;

p=fftw_create_plan(N,FFTW_FORWARD,FFTW_ESTIMATE);

/***********Shift & Hadamard & FFT*************/

for(i=0;i<M;i++){

for(j=0;j<N;j++){

in[j].re=(st[j].re*sr[j+i].re) - (st[j].im*sr[j+i].im);

in[j].im=(st[j].re*sr[j+i].im) + (st[j].im*sr[j+i].re);

}

fftw_one(p,in,out);

102

for(k=0;k<N;k++){

fftw_one(p,in,out);

for(k=0;k<N;k++){

Matrix[M-i-1][k].re = out[k].re;

Matrix[M-i-1][k].im = out[k].im;

}

}

fftw_destroy_plan(p);

free(st);

free(sr);

free(srz);

free(in);

free(out);

return 0;

}

2. amblindftm2.c

/***

This program computes the Ambiguity Function through the

Linear DFT Method. In this program we use the FFTW libraries

To compile use: gcc amblindftm2.c -lfftw -lm -o exec_file

To execute: exec_file data1.txt data2.txt N

data1.txt: contains transmitted signal (st)

data2.txt: contains received signal (sr)

N: is the transmitted signal length

In this program the received signal has its minimum

length, i.e, 2N

The result of thsi program is a Matrix, which is the

discrete ambiguity function

**/

#include <fftw.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

int readVector(fftw_complex[],int,int,char[]);

int N, M, K;

char input1[20];

103

char input2[20];

int main(int argc,char* argv[])

{

fftw_complex *st;

fftw_complex *sr;

fftw_complex *sm, *in, *out;

fftw_plan p;

FILE *output;

int i, j, k;

N = atoi(argv[2]);

M=(2*N)-1; //Minimun Received Signal Length

K=N+M-1;

fftw_complex **Matrix;

in = (fftw_complex *) malloc(N*sizeof(fftw_complex));

out = (fftw_complex *) malloc(N*sizeof(fftw_complex));

st = (fftw_complex *) malloc(K*sizeof(fftw_complex));

if (st==NULL)

printf("Error/n");

sr = (fftw_complex *) malloc(K*sizeof(fftw_complex));

sr=(fftw_complex*) memset(sr,0,K*sizeof(fftw_complex));

if (sr==NULL)

printf("Error/n");

sm = (fftw_complex *) malloc(N*sizeof(fftw_complex));

Matrix = (fftw_complex **) malloc(M*sizeof(fftw_complex*));

printf("Separando memoria\n");

for(k=0;k<M;k++)

Matrix[k]=(fftw_complex *)malloc(N*sizeof(fftw_complex));

strcpy(input1,argv[1]);

strcpy(input2,argv[3]);

printf("Leyendo file %s \n",input1);

if(readVector(st,N,N,input1)==-1)

return -1;

printf("Leyendo file %s \n",input2);

104

if(readVector(sr,M,K,input2)==-1)

return -1;

/* ReadFiles(sr, st, N, K, M, input1, input2);*/

/***********Shift & Hadamard*************/

for(i=0;i<M;i++){

for(j=0;j<N;j++){

Matrix[M-i-1][j].re=(st[j].re*sr[j+i].re)-(st[j].im*sr[j+i].im);

Matrix[M-i-1][j].im=(st[j].re*sr[j+i].im)+(st[j].im*sr[j+i].re);

}

}

/************* FFTW ***********************/

fflush(stdout);

for(i=0;i<M;i++){

for(j=0;j<N;j++){

in[j]=Matrix[i][j];

}

p=fftw_create_plan(N,FFTW_FORWARD,FFTW_ESTIMATE);

fftw_one(p,in,out);

for(k=0;k<N;k++){

Matrix[i][k]=out[k];

}

}

fftw_destroy_plan(p);

return 0;

}

3. I/O Functions

/**/

This routine reads st and sr from a file and perform

index-reversal of sr

/***/

int Readsig(char *filename, int N, int M, int K,

fftw_complex *sr, fftw_complex *st){

FILE *FIDinputfile;

int i;

if((FIDinputfile = fopen(filename, "r")) == NULL){

printf("File could not be opened\n");

return -1;}

105

else {

for(i=N-1;i>=0;i--){

if(feof(FIDinputfile)){

printf("Error EOF found\n");

fclose(FIDinputfile);

return -1;

}

fscanf(FIDinputfile, "%lf %lf %lf %lf",&sr[i+(K-N)].re,

&sr[i+(K-N)].im,&st[i].re,&st[i].im);

}

for(i=K-N-1;i>=K-M;i--)

fscanf(FIDinputfile, "%lf %lf", &sr[i].re,&sr[i].im);

fclose(FIDinputfile);

}

return 0;

}

/***/

This program writes the 2-d output of the linear DFT method

algorithm in a file

/***/

if((output=fopen("OUT.txt", "w")) == NULL)

printf("File could not be opened for write operation\n");

else{

for(j=0; j<M; j++){

for(i=0; i<N; i++){

fprintf(output,"%lf\t%lf\n", Matrix[j+M*i].re,

Matrix[j+M*i].im, "\n");

}

}

fclose(output);

}

/***/

4. createdata.c

/**/

This routine creates a file "datain.txt" with complex, double

-precision, and floating-point random numbers. This data is

used in the ambiguity fuction simulations

/***/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

int main() {

106

int i;

FILE *outfile;

if ((outfile = fopen("datain.txt","w")) == NULL) {

printf("Error\n");

return -1;

}

for(i =0;i<1024;i++){

fprintf(outfile,"%lf %lf\n",drand48(),drand48());

}

fclose(outfile);

return 0;

}

5. cretedata.c

/**/

This routine creates a file "data.txt" with complex, double

-precision, and floating-point random numbers. This data

is stored in teh file data.txt in the FORTRAN complex format.

This data is to be read by a FORTRAN program.

/***/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

int main() {

int i;

FILE *outfile;

if ((outfile = fopen("data.txt","w")) == NULL) {

printf("Error\n");

return -1;

}

for(i =0;i<1024;i++){

fprintf(outfile,"(%lf,%lf)\n",drand48(),drand48());

}

fclose(outfile);

return 0;

}

APPENDIX D

FORTRAN Programs

This appendix contains the FORTRAN programs and functions developed for dis-

cret ambiguity function modeling and simulation.

1. DAFsubru.F

c---c

Program DAF

c This program reads the transmitted (St) and received (Sr) c

c signals from a file and compute the Discrete Ambiguity c

c Each operator were programmed as a separate FORTRAN c

c subroutine. c

c Function by means of the Linear DFT Method c

c The parameters of this program are: c

c LT = transmitted signal length c

c LR = received signal length c

c LZ = output length c

c Compile this program as follows: c

c f77 DAFsubru.F -lfftw -lm -o exec_file c

c---c

Parameter(LT=8)

Parameter(LR=2*LT-1)

Parameter(LZ=LT+LR-1)

Complex*16 St(LT),Sr(LR)

c---c

Open(unit=27,file=’transig2’,status=’old’)

Do j = 1 ,LT

Read(27,fmt=*,end=99)St(j)

c print *,St(j)

EndDo

107

108

99 close(unit=27)

c---c

Open(unit=27,file=’recsig2’,status=’old’)

Do j = 1 ,LR

Read(27,fmt=*,end=100)Sr(j)

Sr(j)=conjg(Sr(j))

c print *,Sr(j)

EndDo

100 close(unit=27)

Call Zeropad(St,Sr,LT,LR,LZ)

END

c---------------ZERO PADDING-----------------c

SUBROUTINE Zeropad(St,Sr,LT,LR,LZ)

Complex*16 Sr(LR),Srz(LZ)

Do 15 j=1,LR

Srz(j)=Sr(j)

15 CONTINUE

Do 18 k=LR+1,LZ

Srz(k)=(0,0)

18 CONTINUE

Do 30 i=1,LZ

c print *,Srz(i)

30 CONTINUE

Call IndexRev(St,LT,Srz,LR,LZ)

RETURN

END

c-------------INDEX REVERSAL---------------c

SUBROUTINE IndexRev(St,LT,Srz,LR,LZ)

Complex*16 St(LT),Srz(LZ)

Complex*16 Sti(LT),Sri(LZ)

Do 40 k=0,LT-1

Sti(k+1)=St(LT-k)

c print *,Sti(k+1)

40 CONTINUE

Do 50 j=0,LZ-1

Sri(j+1)=Srz(LZ-j)

c print *,Sri(j+1)

50 CONTINUE

Call Shift(Sti,Sri,LT,LR)

RETURN

END

109

c-------------Shift & Hadamard-------------c

SUBROUTINE Shift(Sti,Sri,LT,LR)

Complex*16 Sti(LT),Sri(LT+LR-1)

Complex*16 G(LT),B(LR,LT)

Do 60 i=0,LR-1

Do 70 j=0,LT-1

G(j+1)=Sti(j+1)*Sri(j+i+1)

70 CONTINUE

Do 80 j=0,LT-1

B(LR-i,j+1)=G(j+1)

80 CONTINUE

60 CONTINUE

Call FFT(B,LT,LR)

RETURN

END

c---------------- FFTW --------------------c

SUBROUTINE FFT(B,LT,LR)

Complex*16 A(LR,LT),B(LR,LT)

#include "fftw_f77.i"

Integer N

N=LT

double complex in, out

dimension in(N),out(N)

integer i

integer plan

Do 10 i=1,LR

Do 20 j=1,LT

in(j)=B(i,j)

20 CONTINUE

call fftw_f77_create_plan(plan,N,FFTW_FORWARD,FFTW_ESTIMATE)

call fftw_f77(plan,1,in,1,0,out,1,0)

Do 30 k=1,LT

A(i,k)=out(k)

30 CONTINUE

10 CONTINUE

Open(unit=27,file=’AFmatrix’,status=’new’)

Do 40 j = 1,LT

Do 50 i = 1,LR

110

Write(27,fmt=*)A(i,j)

50 CONTINUE

40 CONTINUE

call fftw_f77_destroy_plan(plan)

RETURN

END

