MITOCHONDRIAL DNA ANALYSES FOR SPECIES IDENTIFICATION OF SNAPPERS FROM CARIBBEAN WATERS

by

Áurea E. Rodríguez-Santiago

A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in MARINE SCIENCES (Biological Oceanography)

UNIVERSITY OF PUERTO RICO MAYAGÜEZ CAMPUS 2008

Approved by:

Jorge R. García-Sais, PhD Member, Graduate Committee

Fernando J. Bird-Picó, PhD Member, Graduate Committee

Juan C. Martínez-Cruzado, PhD Member, Graduate Committee

Ernesto Otero Morales, PhD Chairperson, Graduate Committee

John H. Gill, PhD Representative of Graduate Studies

Nilda E. Aponte, PhD. Chairperson of the Department Date

Date

Date

Date

Date

Date

ABSTRACT

This study examined phylogenetic relationships among fifteen species of the Lutjanidae family occurring within the Caribbean Basin, based on mitochondrial 12S rDNA analysis. Previous investigations have limited their scope to species occurring in the western Atlantic (WA) and Cuba, or to several species within the Lutjaninae subfamily. This is the first phylogenetic study that includes all 3 subfamilies of lutjanids occurring in the Caribbean. We identified diagnostic polymorphisms within the mitochondrial DNA (mtDNA) for 15 lutjanid species in the Caribbean. Specimens were obtained from local catches at La Parguera, Puerto Real and Rincón, western Puerto Rico and Cataño, at the north. DNA variation was quantified through the use of polymerase-chain-reaction (PCR) amplification of fragments corresponding to 450 bp of the mtDNA 12S rRNA gene followed by sequencing. Intraspecific variation was not found within any species for the adult specimens analyzed during this study. Assessment of phylogenetic relationships of species was conducted using Neighbor Joining (NJ) and Bayesian Inference (BI) analyses. Phylogenetic relationships within the subfamily Lutjaninae remained rather unresolved for some species. Nevertheless, our study suggests that even if not strongly supported, the groups found are associated according to morphology, habitat or feeding preferences. In addition, the consistency in the sequence data for each species in this study demonstrates that the 12S rRNA gene is a reliable tool for taxonomic identification within this family. These sequences constitute a sort of molecular key for all the 15 species of lutjanids studied, useful for identification of early stages and processed tissues or fillets for fisheries management regulations.

Lutjanidae is one of the largest teleostean families, commonly known as snappers and is one of the most important in Caribbean fisheries. For appropriate management, description of dispersion patterns for each species is needed. However, specific identification of lutjanid larvae is still difficult despite published larval descriptions and is one of the main bottlenecks in our understanding of their early life history. To address this problem, we identified diagnostic polymorphisms within the mitochondrial DNA (mtDNA) for 15 lutjanid species in the Caribbean. Adult specimens were obtained from local catches and larvae from plankton tows using a 202 µm mesh net. DNA variation was quantified through the use of polymerase-chain-reaction (PCR) amplification of fragments corresponding to 450 bp of the mtDNA 12S rRNA gene followed by sequencing. Phylogenetic trees were constructed from DNA sequence data including adults and larvae. Seven species were identified among the collected larvae: Lutjanus apodus, Lutjanus synagris, Lutjanus analis, Lutjanus griseus, Lutjanus mahogoni, Ocyurus chrysurus and Rhomboplites aurorubens. Identification of these larvae increases our understanding of early larval stages taxonomy. In addition, this information is useful for the design of research leading to the description of spawning, dispersal and recruitment patterns, as well as habitat selection for these species. These analyses are of vital relevance for assessments regarding the establishment of Marine Protected Areas (MPAs) as a management option to restore diminishing stocks of fish populations.

RESUMEN

En este estudio se examinaron las relaciones filogenéticas entre quince especies de la familia Lutjanidae que habitan en la cuenca del Mar Caribe, por medio de análisis de un fragmento del gen 12S rRNA del ADN mitocondrial. Investigaciones previas limitaron su enfoque a especies del Atlántico occidental y Cuba, o a algunas especies de la subfamilia Lutjaninae. Este es el primer estudio filogenético que incluye las tres subfamilias de lutjánidos del Caribe. Se identificaron polimorfismos diagnósticos dentro del ADN mitocondrial para las quinces especies analizadas. Los especimenes se obtuvieron en pescaderías locales de La Parguera, Puerto Real, Rincón, al oeste de Puerto Rico y en Cataño, al norte. La variación en el ADN se cuantificó por medio de la reacción de polimerasa en cadena (PCR) de un fragmento correspondiente a 450 pb del gen mitocondrial 12S rRNA, seguido de secuenciación. No se encontró variación intraespecífica entre los individuos de las especies analizadas en este estudio. La relaciones filogenéticas fueron investigadas utilizando análisis de Neighbor Joining (NJ) e Inferencias Bayesianas (BI). Los resultados de nuestro estudio sugieren que, aunque no apoyado robustamente, los grupos encontrados en los árboles filogenéticos se asociaron de acuerdo a morfología, hábitat o hábitos de alimentación. Además, la consistencia en las secuencias de cada especie en este estudio demuestra que el gen 12S rRNA se puede utilizar como una herramienta confiable para la identificación de especies dentro de esta familia. Las secuencias encontradas constituyen un tipo de clave molecular para las quince especies de lutjánidos estudiados. Estas secuencias pueden ser útiles para la identificación de larvas de lutjánidos, así como de filetes de especies protegidas por regulaciones de manejo.

La familia Lutjanidae es una de las más grandes de entre los peces óseos, se conocen como pargos o chillos, y es una de las mas importantes en las pesquerías del Caribe. Para su manejo es necesario describir los patrones de dispersión de las larvas de cada especie. Sin embargo, la identificación de las larvas de lutjánidos es aún muy difícil a pesar de la existencia de descripciones publicadas y representa uno de los mayores obstáculos en el entendimiento de sus ciclos de vida. Para atender este problema, identificamos polimorfismos diagnósticos en el ADN mitocondrial (mtADN) para 15 especies de lutjánidos del Caribe. Los especimenes se obtuvieron en pescaderías locales de La Parguera, Puerto Real, Rincón, al oeste de Puerto Rico y en Cataño, al norte. Las larvas fueron obtenidas mediante arrastres de plancton utilizando redes con malla de 202 µm. Se cuantificaron variaciones en el mtADN amplificando fragmentos correspondientes a 450 pb del gen de 12S rRNA por medio de la reacción de polimerasa en cadena (RPC) seguido de secuenciación. Se construyeron árboles filogenéticos utilizando las secuencias de ADN de los adultos y larvas. Siete especies de lutjánidos fueron identificadas dentro de las muestras de larvas: Lutjanus apodus, Lutjanus griseus, Lutjanus synagris, Lutjanus analis, Lutjanus mahogoni, Ocyurus chrysurus y Rhomboplites aurorubens. La identificación de estas larvas puede facilitar el entendimiento de investigaciones sobre patrones de dispersión en las que fueron identificadas sólo a nivel de familia. Esta información también será de gran valor para diseñar investigaciones mas detalladas dirigidas a describir patrones de dispersión y reclutamiento, así como la selección de lugares de desove y habitáculo para estas especies. Estos análisis son de vital importancia para realizar evaluaciones para el establecimiento de Áreas Marinas Protegidas (AMPs) como opciones de manejo dirigidas a reestablecer los abastecimientos de poblaciones de peces de arrecife de coral en disminución.

To my family . . .

ACKNOWLEDGEMENTS

During the development of my graduate studies in the University of Puerto Rico many persons and institutions collaborated directly and indirectly with my research. Without their support it would have been impossible for me to finish my work.

I want to start expressing a sincere acknowledgement to my advisor, Dr. Ernesto Otero for his encouragement since the beginnings of the idea till the completion of this work. Thanks to my Co- advisor Dr. Juan C. Martinez-Cruzado for his support writing the proposal and for the opportunity to do research at his laboratory under his guidance and supervision. Dr. Jorge R. García-Saís deserves my gratitude not only for his support during this research, but for his help during my whole graduate and professional work. To Dr. Fernando Bird-Picó who offered me trust and direction throughout my research.

Particular thanks to Dr. Jennie T. Ramírez-Mella for sharing her scientific understanding of fish larvae, but especially, I would always be grateful for her friendship and unconditional support.

I want to thank the example, motivation, inspiration and support I received from Dr. Juan G. Gonzalez-Lagoa and late Dr. Almodóvar. From these two persons, I am completely grateful for many of the achievements I have gained during my whole academic career.

To all the staff and laboratory partners at the Marine Sciences and Biology Departments of the University of Puerto Rico, in particular to Dr. Carlos Ríos-Velásquez for his scientific and personal support. To the staff from the Biology Research Center at UPR- Río Piedras for their support in a significant phase of my research, in particular to Dr. Tugrul Giray for allowing me to work at his lab.

To all fishermen who provided most of the adult tissue samples. To Marcos Rosado and Litzamar Irizarry for their invaluable help in the field and in the laboratory. Martha Prada generously prepared the maps. I am thankful to Deborah Cedeño for her careful review of the manuscript, for her support in distress times and for sharing the joy of the good ones. Countless friends have been supportive all these years, mentioning all of them would be almost impossible, many have been present at different instances throughout these years. However, I am indebted to my lifetime friends Alicia Riesgo, Isyla Vazquez and Pedro Alvarez for their unconditional friendship, even in my nastiest moments. To my neighbors, who as a family, gave me support (and food) over difficult times.

This research was funded by NOAA award R-31-1-00 from Puerto Rico Sea Grant. Graduate fellowships to the first author were provided by NSF Graduate fellows for K-12 Education (GK-12), PR-AGEP and CNY-PR AGEP.

At last, but not least, I would like to thank my family; my parents, my dear brothers, my beloved sister and all relatives for their trust, love and support in all my ventures.

ABSTRACT	II
RESUMEN	IV
ACKNOWLEDGEMENTS	VII
TABLE OF CONTENTS	IX
TABLE LIST	X
FIGURE LIST	XI
1 GENERAL INTRODUCTION	2
LITERATURE CITED	7
2 PHYLOGENETIC RELATIONSHIPS OF CARIBBEAN SNAPPERS	(FAMILY LUTJANIDAE)
BASED ON MITOCHONDRIAL DNA SEQUENCES.	11
INTRODUCTION	
MATERIALS AND METHODS	14
Sample collection	14
DNA extraction, amplification, and sequencing	14
Phylogenetic analyses	15
RESULTS	19
DISCUSSION	
LITERATURE CITED	
3 MITOCHONDRIAL DNA ANALYSIS FOR SPECIES IDENTIFICATION	N OF SNAPPER LARVAE
(PISCES: LUTJANIDAE) FROM CARIBBEAN WATERS.	40
INTRODUCTION	40
MATERIALS AND METHODS	
Study Site	43
Collections of larvae and voucher tissue	
DNA extraction, amplification, and sequencing	46
Phylogenetic analyses	47
RESULTS	
DISCUSSION	61
LITERATURE CITED	64
4 CONCLUSIONS AND RECOMENDATIONS	

Table of Contents

Table List

Tables	Page
Table 2.1. Lutjanid reference sample collection location and sample size.	18
Table 2.2. Estimates of evolutionary divergence (Tajima and Nei, 1993) among sequences of15 lutjanids and outgroups (C. carpio and C. melampygus) based on 12S rRNA data	
Table 3.1. Relative abundance of species of identified lutjanid larvae	50
Table 3.2. Identified lutjanid larvae.	51
Table 3.3. Sequence Identity Matrix for lutjanids species and larvae	52

Figure List

Figures Page
Figure 2.1. Sampling sites for adult vouchers
Figure 2.2. Sequence alignment of the 12S rRNA gene fragment for lutjanids and outgroups 22
Figure 2.3. Plot of the number of transitions (s) and transversions (v) versus nucleotide divergence for the 12S rRNA data set
Figure 3.1. Sampling sites for larvae collections
Figure 3.2. Sequence alignment of the 12SrRNA gene fragment for lutjanids and identified larvae
Figure 3.3. Neighbor Joining (NJ) tree for consensus 12r RNA sequences of Caribbean lutjanids and a consensus sequence of the identified larvae clustered with their respective species 57
Figure 3.4. Relative frequency of species identified for lutjanid larvae
Figure 3.5. Total lutjanid larvae collected
Figure 3.6. Total identified lutjanid larvae60

1 GENERAL INTRODUCTION

Fishes of the Lutjanidae family are widely distributed in tropical and subtropical waters. The family has 123 species, 21 genera and 5 subfamilies (Anderson, 2003; Froese and Pauly, 2006). Of the above, 5 genera and 18 species are believed to be present in the western Atlantic, while 5 genera, 15 species and 3 subfamilies (Lutjaninae, Apsilinae and Etelinae) are reported for the Caribbean (Robins and Ray, 1986; Anderson, 2003). The largest subfamily is the Lutjaninae with 73 species and the smallest is the subfamily Paradicichthyinae with two species. The subfamilies Etelinae and Apsilinae have 18 and 10 species, respectively (Allen, 1985).

The subfamily Lutjaninae represents about two thirds of the species in the family which is the best known; however, the others also deserve attention and are relevant aquatic resources in many regions of the world (FAO, 2005). The species in the subfamily Lutjaninae constitute an important component of the reef fisheries in tropical and subtropical latitudes throughout their geographical range, while the deep-water subfamilies Apsilinae and Etelinae represent by far the most important component of the deep-bottom fishery in the Pacific, Atlantic, Indian oceans and in the Caribbean Sea (Cummings and Matos-Caraballo, 2003).

Landings of snappers are of significant volume and economic value due to the excellent quality of the meat and high demand, making them some of the most appreciated species in the market today. However, there is concern about the status of several fisheries. In the Gulf of Mexico alone, red snapper (*Lutjanus campechanus*) and vermilion snapper (*Rhomboplites aurorubens*) are currently over-fished (Coleman *et al.*, 1999). Cubera snappers (*Lutjanus campetrus*) and mutton snapper (*Lutjanus analis*) are listed as vulnerable by the International Union for Conservation of Nature, and considered at risk of extinction (IUCN, 2007).

Snappers are of important economic and ecological value in the tropical western Atlantic and the Caribbean. Lutjanids are heavily exploited by extractive fisheries, with their stocks declining. Efforts on the protection and management of fishes of this family are imperative. Decreases in natural populations of snappers have motivated broad attention in comprehensive studies on reproduction, species identification, early life histories, larval identification, diversity, population structure and phylogenies (Sarver et al., 1996; Lindeman et al., 2007; Moura and Lindeman, 2007; Liu, 2007; Zhu, 2006; Chow and Walsh, 1992; Chow et al., 1993; Miller and Cribb, 2007; Loftus, 1992). Approaches to determine stock assessments commonly include the assembly and review of all available fishery data and life history information.

Exploration of the taxonomic identification, early life history and phylogenetic relationships of lutjanids is far from complete and continually under review (Rivas, 1949; Rivas, 1966; Vergara, 1980; Johnson, 1980; Lee and Tsoi, 1988; Chow and Walsh, 1992; Sarver et al., 1996; Leis, 2005, 2007; Miller and Cribb, 2007). New species have been identified recently (Moura and Lindeman, 2007) and species previously described as valid have been recognized as natural intergeneric hybrids of lutjanids (Loftus, 1992; Domeier and Clarke, 1999).

Phylogenetic studies of lutjanids have intended to increase the understanding of relationships of the Lutjanidae with related families (Johnson, 1980, 1993; Carpenter, 1990), among lutjanid subfamilies and of closely related species in the subfamily Lutjaninae (Miller and Cribb, 2007; Zhu et al., 2006; Sarver et al., 1996). Detailed descriptions of larvae have also led to inferences of relationships among lutjanid subfamilies (Leis, 2005).

Phylogenetic inferences could provide a way to establish the present value of species. The close relationship between taxonomic and genetic diversity is clearly expressed by a phylogenetic tree. If it is considered that each species has diverged genetically from its relatives by an amount roughly proportional to the time since their common ancestor, branch lengths scaled to observed genetic divergence between species provide a quantitative measure of diversity within a clade (Erwin, 1991; Krajewski, 1991). From this perspective, old, monotypic lineages often make large contributions to diversity, thus, their conservation should be a high priority. Phylogenetic systematics, in combination with conservation genetics, provide a critical framework for understanding diversity (Féral, 2002) and predict vulnerability to exploitation of tropical reef fishes (Jennings et al., 1999).

Dynamics of larval dispersal also constitutes a critical feature of control on fish communities and populations. Many unresolved issues in the ecology and evolution of marine populations center on how far planktonic larvae disperse away from their parents (Levin, 2006). Regardless of the importance of the ecological processes affected by larval fish dynamics, the inability of unambiguous taxonomic identification of early life stages of many taxa is still a major burden that impairs the proficient management of these populations. Early larval stages of lutjanids are extremely similar and difficult to distinguish to genus and species level (Chow et al., 1993; Clarke et al., 1997; Victor, 2008). Effective management of valuable snapper fisheries depends upon the availability of life history information concerning the biology, habitat requirements and spatial distribution of individual species. The ability to identify individuals of snapper species throughout ontogeny is critical for a better understanding of the early life history and population dynamics of these species under natural conditions. Therefore, is it imperative to develop alternate methods for the identification of each species at their early life stages.

Conventionally, phylogeny, ontogenetic descriptions and species identification of lutjanids relied on morphological features (Rivas, 1949, 1966; Vergara, 1980; Johnson, 1980). However, the development of molecular techniques has helped enliven studies of fish systematics and evolution (Lecointre, 1996; Kosher, 1997; Sotka and Palumbi, 2006). The realm of methods developed for molecular systematics (Hillis et al., 1996; Richardson, 2007) offers new sets of characters to explore relationships among fishes. Molecular methods can provide keys for species in cases where morphological methods are worthless (Zhang, 2004; Victor, 2008).

Mitochondrial DNA (mtDNA) has become a standard molecule of choice amongst most ichthyologists and herpetologists doing comparative molecular genetics. Animal mitochondria own several properties which make them attractive to work with: (1) they are passed on from generation to generation directly from mother to offspring, thus providing a direct chain of ancestry across generations; (2) they are independent units and numerous within a cell and therefore, they are easy to extract and separate from genomic DNA (Avise, 1994). Since different regions of mtDNA evolve at different rates, specific mtDNA genes have been targeted for phylogeny reconstruction (Hillis et al., 1996), species identification and assays of intraspecific variation (Chow et al., 1993). Analysis using conserved genes like mtDNA 12S ribosomal RNA (rRNA) is a very useful tool for molecular taxonomic studies and is a frequently used marker in genetic studies (Ward et al., 2005; Zhang and Liu, 2006). Given that the substitution rate of the 12S rRNA gene is half that of the protein-coding genes (Brown et al., 1982), it is more appropriate to identify species (Féral, 2002).

The main objectives of this study are: (1) to describe mitochondrial DNA (mtDNA) sequence motifs in the 12S rRNA gene that are diagnostics to species of lujanids (Family Lutjanidae); (2) to reassess previous molecular phylogenetic analyses of Caribbean lutjanids using diverse methods; (3) to address the complexity in the identification of lutjanid larvae by means of mtDNA sequence motifs in the 12S rRNA gene diagnostics to lutjanid species.

This dissertation is written in a manuscript format and consists of two major chapters, each with its own abstract, introduction, materials and methods, results and discussion. In the first chapter, the phylogenetic relationships of Caribbean snappers (Family Lutjanidae) based on mitochondrial DNA sequences are explored. In the second chapter, mitochondrial DNA analyses are applied to species identification of snapper larvae from Caribbean waters.

LITERATURE CITED

- Allen, G.R. 1985. FAO species catalogue. Snappers of the world. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fish. Synop. No. 125, vol. 6, 208 pp.
- Allen, G.R. 1987. Synopsis of the circumtropical genus *Lutjanus* (Pisces: Lutjanidae). In Polovina, J.J. and Ralston, S. (Eds.), Tropical snappers and groupers: Biology and fisheries management. Westview Press, Boulder. pp. 33-88.
- Avise, J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, Inc. New York. 511 pp.
- Anderson, W.D. 2003. Lutjanidae. In: Carpenter, K.E. (Ed) The living marine resources of the Western Central Atlantic. Volume 3: Bony fishes part 2 (Opistognathidae to Molidae).
 FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologist and Herpetologists Special Publication, 5, pp. 1479–1504.
- Brown, W.M., E.M. Prager, A Wang, and A.C Wilson. (1982). Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol., 18: 225-239.
- Chow, S. and P.J. Walsh. 1992. Biochemical and morphometric analyses for phylogenetic relationships between seven snapper species (subfamily Lutjaninae) of the western Atlantic. Bull. Mar. Sci., 50: 508–519.
- Chow, S., M.E. Clarke and P.J. Walsh. 1993. PCR-RFLP analyses on thirteen snappers (subfamily Lutjaninae): a simple method for species and stock identification. Fish. Bull., 91: 619–627.
- Clarke, M.E., M.L. Domeier and W. A. Laroche. 1997. Development of larvae and juveniles of the mutton snapper (*Lutjanus analis*), lane snapper (*Lutjanus synagris*) and yellowtail snapper (*Lutjanus chrysurus*). Bull. Mar. Sci., 61:511–537.
- Carpenter, K.E. 1990. A Phylogenetic Analysis of the Caesionidae (Perciformes: Lutjanoidea). Copeia, 3: 692–717.
- Coleman, F.C., C.C. Koenig and C.B. Grimes. 2000. Long-Lived Reef Fishes: the Grouper-Snapper Complex. Fisheries, 25:14-16.

- Cummings, N. J. and D. Matos-Caraballo. 2003. Summarized reported commercial landings in Puerto Rico from 1969-2001 with specific notes on the Silk Snapper landings category. Sustainable Fisheries Division Contribution No. SFD 2003-0023 Caribbean Deepwater SEDAR Data Workshop Report 4 SEDAR DOC-5.
- Domeier, M.L. and M E Clarke. 1992. A laboratory produced hybrid between *Lutjanus synagris* and *Ocyurus chrysurus* and a probable hybrid between *L.grisesus* and *O. chrysurus* (perciformes: Lutjanidae). Bul. Mar. Sci. 50(3): 501–507.
- Erwin, T.L. 1991. An Evolutionary Basis for Conservation Strategies. Science, 253:750-752.
- FAO. 2005. Western Atlantic Review. Fisheries Review of the state of world Marine Fishery Resources. FAO Technical Paper No. 457. Rome: Food and Agricultural Organization, Fisheries Department.
- Féral, J.P. 2002. How useful are genetic markers in attempts to understand and manage marine biodiversity. J. Exp. Mar. Biol. Ecol., 268: 121-145.
- Hillis, D.M., C. Moritz, and B.K. Mable (eds.). 1996. Molecular Systematics (2nd ed.). Sinauer Associates, Sunderland, MA. 655p.
- IUCN 2007. International Union for the Conservation of Nature (IUCN) 2007 Red List of Threatened Species. www.iucnredlist.org. Downloaded on May 31, 2008.
- Jennings, S., J.D. Reynolds and N.V.C. Polunin. 1999. Predicting the vulnerability of tropical reef fishes to exploitation with phylogenies and life histories. Cons. Biol., 13: 1466-1475.
- Johnson, G.D., 1980. The limits and relationships of the Lutjanidae and associated families. Bull. Scripps Inst. Ocean., 24: 1–114.

Johnson, G.D., 1993. Percomorph phylogeny: progress and problems. Bull. Mar. Sci., 52: 3–28.

Kocher, T.D. and C.A. Stepien. 1997. Molecules and morphology in studies of fish evolution. *In*. Molecular systematics of fishes. Kocher, T.D. and Stepien C. A. (Eds.), Academic Press, pp. 1-11.

Krajewski, C. 1991. Phylogeny and Diversity. Science, 254:918-915.

- Moura R.L. and K.C. Lindeman. 2007. A new species of snapper (Perciformes: Lutjanidae) from Brazil, with comments on the distribution of Lutjanus griseus and L. apodus. Zootaxa, 1422: 31-43.
- Lecointre, G. 1996. Methodological aspects of molecular phylogeny of fishes. Zool. Stu., 35:161-177.
- Lee, S.C. and S.C.M. Tsoi. 1988. Isozymic analyses of the systematic relationships of some closely related lutjanid species from Taiwan (Pisces, Lutjanidae). Zool. Anz., 220: 245– 254.
- Leis, J.M. 2005. A larva of the eteline lutjanid, *Randallichthys filamentosus* (Pisces : Perciformes), with comments on phylogenetic implications of larval morphology of basal lutjanids. Zootaxa, 1008: 57–64.
- Leis, J.M. 2007. Larval Development in the Lutjanid Subfamily Lutjaninae (Pisces): the Genus *Macolor*. Records of the Australian Museum. Vol. 59: 1–8.
- Levin, L.A. 2006. Recent progress in understanding larval dispersal: new directions and digressions. Int. Comp. Biol., 46: 282-297.
- Lindeman, K.C., W.J. Richards, J. Lycskowski-Shultz, D.M. Drass, C.B. Paris, J.M. Leis, M. Lara and B.H. Comyns. 2005. Lutjanidae: Snappers. Pages 1549-1585 in: W. J. Richards (ed.). Early Stages of Atlantic Fishes, An Identification Guide for the Western Central North Atlantic. Vol. II. Taylor and Francis Group (CRC), Boca Raton, USA.
- Liu, L. and C.W. Liu. 2007. Genetic diversity and molecular markers of five snappers species. Chin. J. Agri. Biotec., 4: 39-46.
- Loftus, W.F. (1992) *Lutjanus ambiguus* (Poey), a natural intergeneric hybrid of *Ocyurus chrysurus* (Bloch) and *Lutjanus synagris* (Linnaeus). Bull. Mar. Sci., 50: 489–500.
- Miller, T.L. and T.H. Cribb. 2007. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae. Mol. Phyl. Evol., 44: 450-460.
- Robins, C.R. and G.C. Ray. 1986. A field guide to Atlantic coast fishes of North America. Houghton Mifflin Co. Boston. 354 p.

- Richardson, D.E., J.D. Vanwe, A.M. Exum, R.K. Cowen and D.L. Crawford. 2007. Highthroughput species identification: from DNA isolation to bioinformatics. Mol. Ecol., 7: 199-207.
- Rivas, L.R. 1949. A record of the Lutjanid fish (*Lutjanus cyanopterus*) for the Atlantic coast of the United States, with notes on related species of the genus. Copeia, 2:150-152.
- Rivas, L.R. 1966. Review of the *Lutjanus campechanus* complex of of red sanppers. J. Q. Flor. Acad. Sci., 29:117-136.
- Sarver, S.K., D.W. Freshwater and P.J. Walsh. 1996. Phylogenetic relationships of western Atlantic snappers (family Lutjanidae) based on mitochondrial DNA sequences. Copeia, 3: 715-721.
- Sotka, E.E. and S.R. Palumbi. 2006. The use of genetic clines to estimate dispersal distances of marine larvae. Ecology, 87: 1094–1103.
- Vergara, R.R. 1980. Phylogenetic considerations on the Cuban species of the genus *Lutjanus* (Lutjanidae, Perciformes, Teleostei).). Inf. Cient.-Tec. Inst. Oceanol. Acad. Cienc. Cuba. 113, Acad. Cienc. Cuba, Havana (Cuba), 39 p.
- Victor, B. 2008. A photographic guide to the larvae of coral reef fishes. www.coralreeffish.com/larvae. Downloaded on January 10, 2008.
- Ward, R.D. T.S. Zemlack, B.H. Innes, P.R. Last and P.D.N. Herbert. 2005. DNA Barcoding Australia's fish species. Philosophical transactions of the Royal Society of London, Series B, Biological Sciences, 360: 1847-1857.
- Zhang, J. and X. Liu. 2006. The phylogenetic relationship of the family Lutjanidae based on analyses of AFLP and mitochondrial 12S rRNA sequences. Chin. Sci. Bull., Vol. 51 Supp. 1-6.
- Zhang, J.B., L.M Huang, H.Q. Huo. 2004. Larval identification of Lutjanus Bloch in Nansha coral reefs by AFLP molecular method. J. Exp. Mar. Biol. Ecol., 298: 3–20.
- Zhu, S.-H., Yang, Y.-C., Shen, X.-Q., Zou, J.-X., Zheng, W.-J., Yu, H.-W., Huang, B. 2006. Phylogenetic relationships of Lutjanus inferred from mitochondrial cytochrome b sequences. Acta Zool. Sin., 52: 514–521.

2 Phylogenetic relationships of Caribbean snappers (Family Lutjanidae) based on mitochondrial DNA sequences

INTRODUCTION

Fishes of the Lutjanidae family are widely distributed in tropical and subtropical waters. The family has 123 species, 21 genera and 5 subfamilies (Anderson, 2003; Froese and Pauly, 2006). Of the above, 5 genera and 18 species are believed to be present in the Western Atlantic while 3 subfamilies (Lutjaninae, Apsilinae and Etelinae), 5 genera, 15 species and are reported for the Caribbean (Robins and Ray, 1986; Anderson, 2003).

Within those assemblages there are several of the most important components of Caribbean fisheries. Species in the subfamily Lutjaninae constitute an important component of the reef fisheries in tropical and subtropical latitudes throughout their geographical range, while the deep-water subfamilies Apsilinae and Etelinae represent by far the most important component of the deep-bottom fishery in the Pacific, Indian and Atlantic oceans, and the Caribbean.

Despite the importance of this family, substantial gaps exist on the systematic and ecological information of each species. Most of the Caribbean *Lutjanus* species currently recognized as valid (Allen 1985, 1987; Anderson 2003; Loftus 1992) were described in the 18th and 19th centuries (Bloch, 1790; Poey, 1860). Following these earlier descriptions and subsequent taxonomic reassessments (Jordan and Swain, 1884; Jordan and Fesler, 1893; Ginsburg, 1930) Rivas (1949, 1966), Anderson (1967, 2003), and Vergara (1977) reviewed some of the Lutjanidae taxonomy. Allen (1987) provided an identification key for twelve *Lutjanus* species in the western Atlantic. Several new species of snappers and even genera have been described (Anderson, 1987;

Randall et al., 1987, 1993; Allen, 1985; Moura and Lindeman, 2007). Species described as valid by Poey (1860), such as *Lutjanus ambiguus* and *Lutjanus lutjanoides*, have been reevaluated. Loftus (1992), Domeier and Clake (1992) and Williams and Rodríguez, (*unpubl. data*) provide evidence to suggest that those species are indeed natural hybrids of lutjanids. Nevertheless, there is still debate within the scientific community about the validity of some of these species (Moura and Lindeman, 2007). The high similarity of morphology and interspecific crossbreeding (Domeier and Clarke, 1992) within lutjanids increases taxonomic uncertainty and hampers inference of phylogenetic relationship assessments.

The phylogeny of the Lutjanidae family was originally based only on morphological characteristics (Rivas, 1966; Vergara, 1980; Johnson, 1980). Based on morphology, three phenetic groups within western Atlantic *Lutjanus* was hypothesized. Phylogenetic relationships of several western Atlantic species were examined using biochemical and molecular data. Chow and Walsh (1992) analyzed phylogenetic relationships between seven species within the Lutjaninae subfamily by both enzyme electrophoresis and skull morphometry and suggested at least two distinct groups within the genus *Lutjanus* and a close relationship between these and the monotypic *Ocyurus chrysurus*. Sarver et al., (1996) explored the relationships of fourteen western Atlantic species using mitochondrial DNA (mtDNA) sequences including species from two subfamilies: Lutjaninae and Etelinae. Their data strongly supported one clade composed of *L. campechanus and L. jocu*; moderate support was found for the sister relationship of *L. campechanus and L. vivanus*, while the relationships and placement of the remaining species were not fully resolved. Sequences of mtDNA of 3 western Atlantic lutjanines included with those of Indo-Pacific snappers formed a well defined clade within the former group. Although

considerable efforts to verify systematics in this family have been made, the phylogenetic relationships between species of the Lutjanidae, or even among the *Lutjanus sp.*, are still unclear.

While some efforts to elucidate phylogenetic relationships of snappers found in Cuba and the western Atlantic were done, none have included all members of the Lutjanidae family in the Caribbean. The distribution of many snapper species overlaps among these regions; however, some of the species in the Caribbean are not reported for the western Atlantic or Cuba and vice versa (Anderson, 2003). Here we include fifteen species of lutjanids reported to date for the area of Puerto Rico, most with a Caribbean-wide distribution. In this study we present the results of phylogenetic analyses based on molecular sequence data from a 12S rRNA mtDNA gene fragment. This gene has been used to examine phylogenetic relationships of morphologically similar perciform taxa (Sarver et al., 1996, 1992; Kocher, 1997; Miller and Cribb, 2007; Zhang and Liu, 2006). Sarver et al., (1996) analyzed a fragment of the 12S rRNA gene as well; our analyses are based in a sequence somewhat corresponding to theirs but extended at both ends. We included 2 additional species that were not previously incorporated: Apsilus dentatus (subfamily Apsilinae) and Pristipomoides aquilonaris (subfamily Etelinae). Thus, our phylogenetic study is, so far, the first to include all the 3 subfamilies of lutjanids occurring in the Caribbean.

We aim to reassess previous molecular phylogenetic analyses of Caribbean lutjanids using diverse methods. Assessments of phylogenetic relationships of species in this study were conducted using Neighbor Joining (NJ) and Bayesian Inference (BI) analyses.

MATERIALS AND METHODS

Study Site

La Parguera is located in southwestern Puerto Rico, where the shelf extends offshore to approximately 11 km before dropping abruptly from 20 to 3,800 m. To the south, the shelf break defines the end of the insular platform, while to the north a deeper sandy fringe borders the inner boundary of the shelf edge reef (Figure 2.1).

Sample collection

Samples from 15 species of lutjanids (52 individuals) were collected from local markets at La Parguera, Puerto Real and Rincón, western Puerto Rico (Fig. 2.1). Species from 3 subfamilies were included: Lutjaninae (*Lutjanus analis, Lutjanus apodus, Lutjanus bucanella, Lutjanus cyanopterus, Lutjanus jocu, Lutjanus griseus, Lutjanus mahogoni, Lutjanus synagris, Lutjanus vivanus, Ocyurus chrysurus and Rhomboplites aurorubens*), Apsilinae (*Apsilus dentatus*) and Etelinae (*Etelis oculatus, Pristipomoides macrophtalmus and Pristipomoides aquilonaris*) (Table 2.1). Additional samples of *L. jocu* and *O. chrysurus* were collected from local markets at Cataño, northern Puerto Rico. The Marine Forensic Team, Center for Coastal Environmental Health and Biomolecular Research, National Centers for Coastal Ocean Science (NCCOS), NOAA, Charleston, SC provided 2 samples of *L. cyanopterus*. Muscle or liver tissue was dissected from fresh specimens and preserved frozen at -20 °C.

DNA extraction, amplification, and sequencing

Total genomic DNA was extracted from 25 mg of tissue using the QIAamp[®] DNA Mini Kit (QIAGEN, Inc.), according to manufacturer's protocol. A fragment of the 12S rRNA gene of ~450 bp was amplified with the primers 5'-TCAAACTGGGATTAGATACCCCACTAT-3' and 5'-TGACTGCAGAGGGTGACGGGCGGTGTGT-3' (Kocher et al., 1989). Polymerase chain reaction (PCR) was conducted in a total volume of 50 µl with 80 ng of template DNA, 0.75 µl of each primer (20 µM), 1.5 µl (25µM) MgCl2, 5 µl 10X reaction buffer, 8 µl dNTP's (each 2.5 mM), and 2 µl (2 units) of RED Taq^{TM} genomic DNA polymerase (Sigma Chemical Co.). Amplifications were carried out in an Eppendorf® Mastercycler with an initial denaturation step at 95 °C for 2 min., followed by 30 cycles of 95 °C denaturation for 30 secs., 55 °C annealing for 1 min. and 72°C extension for 1.5 min., and a final extension step at 72°C for 10 min. Amplified DNA was purified using the QIAquick[®] PCR purification kit (QIAGEN, Inc.), according to manufacturer's protocol. Cycle sequencing was conducted using the same primers utilized for PCR amplification. Automated sequencing was performed at external facilities¹. Corresponding fragments of the 12S rRNA gene sequence from *Cyprinus carpio* and *Caranx melanpygus* were acquired from GenBank to be used as outgroups (Accession numbers: X61010 and AP004445).

Phylogenetic analyses

Sequences from the 12S rRNA gene fragment from the above species as well as those from *C. carpio* and *C. melampygus* outgroups were aligned and edited with *MEGA4* (Tamura, 2007).

¹ Sequences were performed at Nevada Genomics Center: INBRE Grant # 2P2RR016463, UPR – Sequencing and Genotyping facility (IMBRE NCRR – NIH grant P20 RR0 16470, NSF – CREST – CATEC, S.C.O.R.E. grant S06GM8102) and UPR – Mayaguez NSF-MRI # 0503541.

Alignment was done under the following parameters: pairwise alignment parameters = gap opening 10.00, gap extension 0.10, DNA weight matrix IUB; multiple alignment parameters = gap opening 10.00, gap extension 0.20, delay divergent sequences 30%, DNA weight matrix IUB. All sequences aligned unambiguously.

The resulting alignment was visually verified and then exported to NEXUS format for further analysis in other programs. The ends of the aligned sequences were trimmed afterwards to match the length of the shortest. Data was analyzed by Neighbor Joining (NJ) and Minimum evolution using MEGA4.

Analyses of Maximum parsimony (MP) and maximum likelihood (ML) were done, using PAUP* version 4.0b (Swofford, 2003), and Bayesian inferences (BI) using MrBayes version 3.1.1 (Ronquist and Huelsenbeck, 2003). Mean uncorrected pairwise distances were calculated. Pairwise comparisons of uncorrected sequence divergence were calculated with gaps treated as missing data. Site saturation was examined by plotting transitions (s) and transversions (v) against sequence divergence. Modeltest version 3.7 (Posada and Crandall, 1998) was used to estimate the best substitution model and parameters for MP, ML, ME and BI analyses. Maximum parsimony analyses used heuristic searches with all characters equally weighted. Nodal support was inferred by bootstrap analysis. Bayesian inference analysis was run over 1,000,000 (ngen = 1,000,000) via simultaneous Metropolis-coupled Monte Carlo Markov (MCMC) chains and every 100^{th} tree was saved (samplefreq = 100). Posterior probabilities estimates were conducted for nodal support in BI analyses. Tree topologies from the various analyses (NJ, ME, MP, ML and BI) were compared for clade arrangements and nodal support.

Figure 2.1. Sampling sites for adult vouchers

Species name	Common name	Catch location (no. of samples), date collected	Sample size	Sample numbers
Apsilus dentatus (A. d)	Black snapper (Chopa negra)	Parguera (1), 2001; Puerto Real (1), 2004, Rincon (1), 2004	3	A070, A092, A116
Etelis oculatus (E. o)	Queen snapper (Cartucho)	Puerto Real (2), 2002; Rincon (2), 2004	4	A067, A068, A093, A094
Lutjanus analis (L. ana)	Mutton snapper (Sama)	Parguera (3), 2001	3	A009, A010, A020
Lutjanus apodus (L. apo)	Schoolmaster (Pargo amarillo)	Parguera (3), 2000, 2001, 2002	3	A007, A019, A032
Lutjanus bucanella (L. b)	Blackfin snapper (Negrita)	Parguera (2), 2000, 2001; Rincon (1), 2004	3	A005, A069, A108
Lutjanus cyanopterus (L. c)	Cubera snapper (Cubera)	Parguera (1), 2000; Florida Keys (1) , 1999; St. Petersburg, FL, 2001 (1)	3	A003, Lcya001*, Lcya004*
Lutjanus griseus (L. g)	Gray snapper (Pargo gris/prieto)	Parguera (4), 2000, 2001	4	A004, A016, A017, A018
Lutjanus jocu (L. j)	Dog snapper (Pargo perro)	Parguera (1), 2000, Puerto Real (1), 2004; Cataño (1), 2007		A008, A101, A126
Lutjanus mahogoni (L. m)	Mahogani snapper (Pargo ojón/Manchego)	Parguera (3) 2002	3	A073, A078, A079
Lutjanus synagris (L. s)	Lane snapper (Arrayao)	Parguera (5), 2001	5	A011, A012, A013, A014, A015
Lutjanus vivanus (L. v)	Silk snapper (Chilla rubia)	Parguera (2) 2000, 2002; Puerto Real (1), 2004	3	A006, A071, A100
Ocyurus chrysurus (O. c)	Yellowtail snapper (Colirrubia)	Parguera (6) 2000, 2002, 2007; Cataño (2), 2007	8	A001, A026, A029, A030, A051, A128, A129, A130
Pristipomoides macrophtalmus (P. m)	Cardinal snapper (Muniama)	Rincón (2), 2004	2	A095, A096
Pristipomoides aquilonaris (P. a)	Wenchman (Muniama limosnera)	Rincón (2), 2005	2	A106, A108
Rhomboplites aurorubens (R. a)	Vermillion snapper (Tunaro)	Puerto Real (3), 2001, 2004	3	A066, A083, A084

 Table 2.1. Lutjanid reference sample collection location and sample size.

*Tissue sample provided by The Marine Forensic Team, Center for Coastal Environmental Health and Biomolecular Research, National Centers for Coastal Ocean Science (NCCOS), NOAA, Charleston, SC.

RESULTS

Sequencing of the 12S rRNA mtDNA gene fragment produced an average of approximately 415 bp for all lutjanid taxa. Multiple alignments resulted in a consensus length of 405 characters (base pairs and gaps) available for analysis (Fig. 2.2). Mean uncorrected sequence divergence for all taxa (including outgroups) was 7.5%. Mean uncorrected divergence among lutjanid species was 4.3%. The largest sequence divergence among lutjanids species was between *P. aquilonaris* and *R. aurorubens* at 11.1%. The smallest sequence divergence of 0.26% was observed for two pairs of species within the Lutjaninae subfamily: *L. bucanella - O. chrysurus* and *L vivanus - O chrysurus*. The second smallest sequence divergence of 0.53% was observed for the pairs: *L. mahogoni* and *O. chrysurus*, *L. analis and L. synagris*, and *L. vivanus - L. bucanella* (Table 2.2).

Saturation of nucleotide substitutions can be inferred from nonlinearity in plots of number of transitions or transversions relative to sequence divergence. Evidence for saturation effects at sequence divergence levels of 25% was not observed in a plot of transitions and transversions vs sequence divergence (Fig. 2.3), indicating that there is phylogenetic signal in the data set.

Analysis of the sequence set using Modeltest indicates that the best substitution model to be applied is the general time reversal (GTR) model, incorporating estimates of invariable (I) sites with among-site variation (G) or GTR + I + G; I = 0.4875, G = 0.4810.

The inferred evolutionary relationships of the 17 taxa examined produced an optimal tree with a total branch length = 0.624 using the Neighbor-Joining (NJ) method (Fig. 2.4). The topology of the NJ tree place outgroups and three major groups within lutjanids as monophyletic

taxa, with low to moderate support. The groups formed by lutjanids correspond to subfamilies already recognized using morphological characters. The most basal group was formed by the genera *Pristipomoides* and *Etelis*. Strong support was observed for *Pristipomoides* species, but not for *Etelis oculatus*. *Apsilus dentatus*, the only species of Apsilinae occurring in the study area, was located as a basal taxon to the Etelinae and Lutjaninae. The most speciose group corresponds to the Lutjaninae subfamily. A clade formed by *L. jocu, L apodus* and *L. griseus* (griseus group) was strongly supported within lutjanines. Moderate support was observed for a clade formed by *L. analis, L. mahogoni* and *L. synagris* (black spot group). A clade including a group of *O. chrysurus, L. vivanus* and *L. bucanella* (a deep water group) was poorly supported. The relationship of *L. cyanopterus* and *R. aurorubens* as paraphyletic taxa to the griseus group was weakly supported.

Bayesian Inference (BI) analysis yielded a strict consensus tree produced form 1001 trees after "burning" (Fig. 2.5). Species included as outgroups: *C. carpio* and *C. melampygus* were resolved as basal to the subfamilies Apsilinae, Etelinae and Lutjaninae. Subfamilies Apsilinae and Etelinae resolved as paraphyletic to Lutjanidae with *A. dentatus* basal to Etelinae. Within etelines, the clade formed by *P. aquilonaris*, *P. macrophtalmus* and *E. oculatus* was recovered, as did in the NJ tree. Likewise, the relationship *P. aquilonaris*, *P. macrophtalmus* was resolved with high posterior probability and *E. oculatus* as sister taxa (paraphyletic) with moderate posterior probability. The clade *L. jocu, L apodus* and *L. griseus* (griseus group) was also recovered with high posterior probabilities. As in the NJ tree, the BI tree showed moderate support for a clade of *L. bucannella*, *O. chrysurus* and *L. vivanus*, except that *R. aurorubens* was also included as sister taxa in BI tree. Placement of *L. analis, L. mahogoni, L. synagris* and *L.*

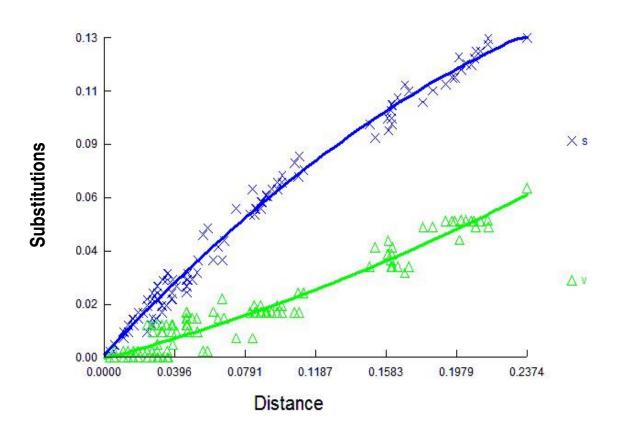
cyanopterus were not resolved by BI, but as sister taxa to the other *L. sp.* Nevertheless, *L. cyanopterus* position was basal to all other lutjanines. Both NJ and BI trees showed relatively low node support for many of the ingroup Lutjaninae taxa. This lack of resolution and support for some species suggest that they may form a genetically and morphologically plastic group, with affinities with diverse groups, as the griseus or deep water group.

Following comparisons of tree topologies from each analysis (NJ, ME, MP, ML and BI), we decided to include and discuss only those produced by NJ and BI. Trees produced by ME, MP and ML showed comparable topologies to both NJ and BI, thus the latter were chosen as representatives of the possible arrangements formed with our data. Intraspecific variation was not found within any species for the adult specimens analyzed during this study.

		10	20	30	40	50	60	
						 	.	
С.	carpio	TGTC	CGCCAGGGT	ACTACGAGCA	TTAGCTTAA	ACCCAAAG	GACCTGACGGT	3
С.	melampygus	CATCAAACATC	CGCCTGGGA	ATTACGAACA	TTAGTTTAA	ACCCAAAG	GACTTGGCGGT	3
P .	aquilonaris	TACCC	CGCCCGGGT	ACTACGAGCA	TTAGCTTGA/	ACCCAAAG	GACTTGGCGGT	3
P .	macrophtalmus	TACCC	CGCCCGGGT	ACTACGAGCA	TCAGCTTGA	ACCCAAAG	GACTTGGCGGT	3
E .	oculatus	TACCC	-GCCCGGGT	ACTACGAGCA	TTAGCTTAA	ACCCAAAG	GACTTGGCGGT	3
Α.	dentatus	TACC	CGCCTGGGT	ACTACGAGCA	TCAGCTTGA	ACCCAAAG	GACTTGGCGGT	3
L .	apodus	TATC	CGCCCGGGG	ACTACGAGCA	TCAGCTTAAA	ACCCAAAG	GACTTGGCGGT	3
L .	analis	TATC	CGCCCGGGG	ACTACGAGCA	TTAGCTTGAA	ACCCAAAG	GACTTGGCGGT	3
L.	bucanella	TATCC	TGCCCGGGG	ACTACGAGCA	TCAGCTTGA	ACCCAAAG	GACTTGGCGGT	L L
L.	cyanopterus	TATC	CGCCCGGGG	ACTACGAGCA	TCAGCTTGA	ACCCAAAG	GACTTGGCGGT	L L
L .	griseus	TATC	CGCCCGGGG	ACTACGAGCA	TCAGCTTAAA	ACCCAAAG	GACTTGGCGGT	- F
L.	jocu	TATC	CGCCCGGGG	ACTACGAGCA	TCAGCTTAAA	ACCCAAAG	GACTTGGCGGT	L L
L.	mahogoni	TATC	CGCCCGGGG	ACTACGAGCA	TCAGCTTGA	ACCCAAAG	GACTTGGCGGT	L L
L .	synagris	TATC	CGCCCGGGG	ACTACGAGCA	TCAGCTTGA	ACCCAAAG	GACTTGGCGGT	3
L .	vivanus	TATCC	TGCCCGGGG	ACTACGAGCA	TCAGCTTGA	ACCCAAAG	GACTTGGCGGT	3
Ο.	chrysurus	TATCC	-GCCCGGGG	ACTACGAGCA	TCAGCTTGA	ACCCAAAG	GACTTGGCGGT	- F
R .	aurorubens	TATCTC	TGCCCGGGG	ACTACGAGCA	TCAGCTTAGA	ACCCAAAG	GACTTGGCGGT	3
		70	80				110 12	
C	a a um é a					 	.	I
	carpio	······································	····I····I CCTAGAGGAG	II GCCTGTTCTA	GAACCGATAA	ACCCCCCGTT	· I · · · · I · · · · I CAACCTCACCAC	
С.	melampygus	TCTCAGACCCC CTTAACATCCA	····I····I CCTAGAGGA(CCTAGAGGA(GCCTGTTCTA	GAACCGATAA GAACCGATAA	ACCCCCGTT	· · · · · · · · · CAACCTCACCAC TAACCTCACCCC	
С. Р.	melampygus aquilonaris	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA	 CCTAGAGGAG CCTAGAGGAG CCTAGAGGAG	GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA	ACCCCCGTT ACCCCCGTT ATCCCCGTT	· · · · · · · · · CAACCTCACCAC TAACCTCACCCC CAACCTCACCT	
С. Р. Р.	melampygus aquilonaris macrophtalmus	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA	 CCTAGAGGA(CCTAGAGGA(CCTAGAGGA(CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA	ACCCCCGTT ATCCCCGTT ATCCCCGTT ACCCCCGTT	CAACCTCACCAC TAACCTCACCCC CAACCTCACCCT CAACCTCACCTT	
С. Р. Р. Е.	melampygus aquilonaris macrophtalmus oculatus	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA	CCTAGAGGAG CCTAGAGGAG CCTAGAGGAG CCTAGAGGAG CCTAGAGGAG	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT	CAACCTCACCCC CAACCTCACCCC CAACCTCACCCT CAACCTCACCTT CAACCTCACCTT	
С. Р. Р. А.	melampygus aquilonaris macrophtalmus oculatus dentatus	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCCGTT ACCCCCCGTT ACCCCCCGTT	CAACCTCACCCC CAACCTCACCCC CAACCTCACCCT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT	
С. Р. Р. А. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCCGTT ACCCCCCGTT ACCCCCCGTT ACCCCCCGTT	CAACCTCACCCC CAACCTCACCCC CAACCTCACCCT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT	
C. P. E. A. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCCGTT ACCCCCCGTT ACCCCCCGTT ACCCCCCGTT	CAACCTCACCCT CAACCTCACCCC CAACCTCACCCT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT	
C. P. E. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCCGTT ACCCCCCGTT ACCCCCCGTT ACCCCCCGTT ACCCCCCGTT	CAACCTCACCT CAACCTCACCCC CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT	
C. P. E. A. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT	CAACCTCACCT CAACCTCACCCT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT CAACCTCACCTT	
C. P. E. A. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT	CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT	
C. P. E. A. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT	CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT	
C. P. E. L. L. L. L. L. L.	<pre>melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni</pre>	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT	CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT	
C. P. E. A. L. L. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris	TCTCAGACCCC CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT	CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT	
C. P. E. A. L. L. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris vivanus	TCTCAGACCCA CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT	CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT	
C. P. E. A. L. L. L. L. L. L. C.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris	TCTCAGACCCA CTTAACATCCA CTTTAGACCCA CTTTAGACCCA CTTTAGACCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA CTTTAGATCCA	CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA CCTAGAGGA	GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA GCCTGTTCTA	GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATAA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA GAACCGATTA	ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT ACCCCCGTT	CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT CAACCTCACCT	

Figure 2.2. Sequence alignment of the 12S rRNA gene fragment for lutjanids and outgroups.

		130	140	150	160	170	180
			· · · · · · · ·				
С.	carpio	TTCTAGCCACCCCAC	CCTATATAC	CGCCGTCGTCA	GCTTACCCT	GTGAAGGT	AATAAAAG
С.	melampygus	CCCTAGCTTTTTCCC	CCTATATAC	CACCGTCGCCA	GCTTACCCT	G <mark>T</mark> GAAGG-	ACTAATAG
P .	aquilonaris	TTCTTGTTTAACCCC	CCTATATAC	CACCGTCGCCA	GCTTACCCT	G <mark>T</mark> GAAGG-	CCTCATAG
P .	macrophtalmus	TTCTTGTTTAACCCC	CCTATATAC	CACCGTCGCCA	GCTTACCCT	G <mark>T</mark> GAAGG-	CCTCATAG
E .	oculatus	TTCTTGTTTAACCCC					
Α.	dentatus	TCCTTGTTTTCCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G <mark>T</mark> GAAGG-	CCTTATAG
L .	apodus	TCCTTGTTTCTCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G <mark>T</mark> GAAGG-	ACTTATAG
L .		TCCTTGTTTCCCCCC					
L .	bucanella	TCCTTGTTTTTCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G <mark>T</mark> GAAGG-	ACTCATAG
L .	cyanopterus	TCCTTGTTTTTCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G <mark>T</mark> GAAGG-	GCTCATAG
L .	griseus	TCCTTGTTTCTCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	GTGAAGG-	GCTGATAG
L .	jocu	TCCTTGTTTCCCCCC					
	mahogoni	TCCTTGTTTCCCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G <mark>T</mark> GAAGG-	ACTCATAG
	synagris	TCCTTGTTTCCCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G T GGAGG-	ACTTATAG
L .	vivanus	TCCTTGTTTTCCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G <mark>T</mark> GAAGG-	ACTCATAG
Ο.	chrysurus	TCCTTGTTTTCCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G <mark>T</mark> GAAGG-	ACTCATAG
R .	aurorubens	TCCTTGTTTTTCCCC	CCTATATAC	CACCGTCGTCA	GCTTACCCT	G T GAAGG-	ACTAATAG
		190	200	210	220	230	240
G							
	carpio	TAAGCAAAATGGGCA		III ACGTCAGGTCG	AGGTGTAGC	 GCATGAAG	··· I ···· I TGGGAAGA
С.	melampygus	TAAGCAAAATGGGCA		 ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGC	. GCATGAAG GAATGGGA	 TGGGAAGA GGGGAAGA
С. Р.	melampygus aquilonaris	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCACAATCGGCA	CAGCCCAGAA	ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGT AGGTGTAGT AGGTGTAGT	. GCATGAAG GAATGGGA GTATGGAA	··I···I TGGGAAGA GGGGAAGA AGGGAAGA
С. Р. Р.	melampygus aquilonaris macrophtalmus	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAGAATCGGCA	CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA	ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGGA GTATGGAA GTATGGAA	I TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA
С. Р. Р. Е.	melampygus aquilonaris macrophtalmus oculatus	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAGAATCGGCA TAAGCAAAATTGGCA	CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA	ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	. GCATGAAG GAATGGGA GTATGGAA GTATGGAA GTATGAAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA
С. Р. Р. Е. А.	melampygus aquilonaris macrophtalmus oculatus dentatus	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAGAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA	CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAAAA	ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	. GCATGAAG GAATGGGA GTATGGAA GTATGAAA GTATGAAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA
С. Р. Р. А. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAGAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA	CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAAAA CAGCCCAAAA	ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGGA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA
C. P. E. A. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAGAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA	CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAAAA TAGCCCAAAA	ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGGA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA AGGGAAGA
C. P. E. A. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAGAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA		ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGGA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA
C. P. E. A. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAGAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA		ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA
C. P. E. A. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAGAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA	CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAAAA CAGCCCAAAA CAGCCCAAAA CAGCCCAAAA	ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA
C. P. E. A. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCACAATCGGCA TAAGCAGAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA	CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAGAA CAGCCCAAAA CAGCCCAAAA CAGCCCAAAA CAGCCCAAAA CAGCCCAAAA TAGCCCAAAA	ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA
C. P. E. L. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCACAATCGGCA TAAGCACAAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA		ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGGA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA
C. P. E. L. L. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCACAATCGGCA TAAGCACAAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA		ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGGA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA
C. P. E. A. L. L. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris vivanus	TAAGCAAAATGGCA TAAGCACAATCGGCA TAAGCACAATCGGCA TAAGCACAAATCGGCA TAAGCAAAAATTGGCA TAAGCAAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA		ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGGA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA
C. P. E. A. L. L. L. L. L. C.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris vivanus	TAAGCAAAATGGGCA TAAGCACAATCGGCA TAAGCACAATCGGCA TAAGCACAAATCGGCA TAAGCAAAATTGGCA TAAGCAAAATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA TAAGCAAGATTGGCA		ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG ACGTCAGGTCG	AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO AGGTGTAGCO	II. GCATGAAG GAATGGGA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA GTATGGAA	TGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA GGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA AGGGAAGA

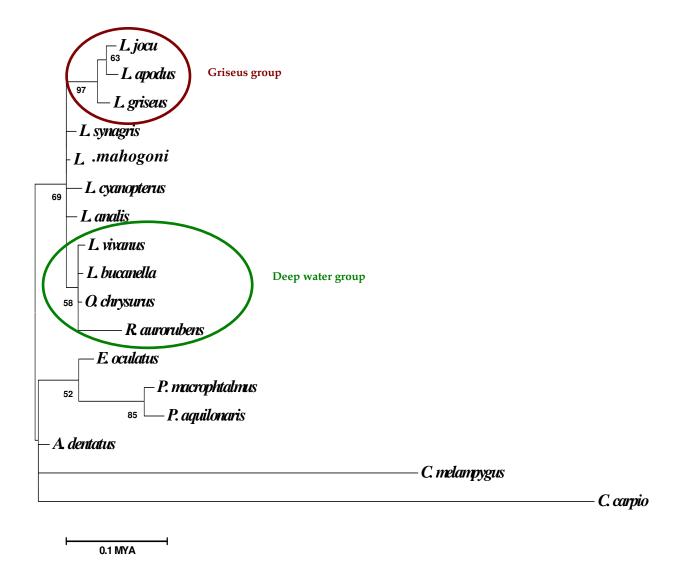

Figure 2.2. Continued.

		250	260	270	280	290	300
	carpio	AATGGGCTACATTTT					
С.	melampygus	AATGGGCTACATTCG					
Ρ.	aquilonaris	AATGGGCTACATTCT					
Ρ.	macrophtalmus	AATGGGCTACATTCT					
Ε.	oculatus	AATGGGCTACATTCT					
Α.	dentatus	AATGGGCTACATTCC					
L.	apodus	AATGGGCTACATTCC					
	analis	AATGGGCTACATTCC					
L.	bucanella	AATGGGCTACATTCC				-	
L.	cyanopterus	AATGGGCTACATTCC					
L.	griseus	AATGGGCTACATTCC					
L.	jocu	AATGGGCTACATTCC					
L.	mahogoni	AATGGGCTACATTCC					
L.	synagris	AATGGGCTACATTCC					
	vivanus	AATGGGCTACATTCC					
	chrysurus	AATGGGCTACATTCC					
R.	aurorubens	AATGGGCTACATTCC	CTAGC-ATC	GGGCATATACO	GAACGATACAC	TGAAATAO	CGTAT-
		210	320	330	340	350	360
		310	320	330	340	350	360
C	carnio						
	carpio melamovgus	···· ···· TTGAAGGAGGATTTA	 GTAGTAAAA	┃・・・・┃・・・・┃ GGGAAGTAGAG	II TGTCCCTTTT	GAACCCGGC	II ICTGAG
С.	melampygus	TTGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC	 GGGAAG <mark>T</mark> AGAG AGAAAGCAGAG	 TGTCCCTTTT TGTTCCGCT-	GAACCCGGC GAAGCCGGC	II ICTGAG ICTTAA
С. Р.	melampygus aquilonaris	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC GCAGTAAGC	 GGGAAGTAGAG AGAAAGCAGAG AGGAAATAGAG	II TGTCCCTTTT TGTTCCGCT- TGTTCTGCC-	GAACCCGGC GAAGCCGGC GAAGCCGGC	II ICTGAG ICTTAA CCTGAA
С. Р. Р.	melampygus aquilonaris macrophtalmus	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAGGC. GCAGTAAGC.	III GGGAAGTAGAG AGAAAGCAGAG AGGAAATAGAG AGAAAATAGAG	TGTCCGCT- TGTTCCGCT- TGTTCTGCC- TGTTCTGCC-	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGCCGGC	II ICTGAG ICTTAA CCTGAA CCTGAA
С. Р. Р. Е.	melampygus aquilonaris macrophtalmus oculatus	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAGGC. GCAGTAAGC. GCAGTAAGC.	 GGGAAGTAGAG AGAAAGCAGAG AGGAAATAGAG AGAAAATAGAG	TGTCCCTTTT TGTTCCGCT- TGTTCTGCC- TGTTCTGCC- GCGTTCCGCT-	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA
С. Р. Р. А.	melampygus aquilonaris macrophtalmus oculatus dentatus	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CCGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAGGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	 GGGAAGTAGAG AGAAAGCAGAG AGGAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTGTCCGCT- TGTTCCGCT- TGTTCTGCC- TGTTCTGCC- GCGTTCCGCT- GCGTTCCGCT-	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC GAAATCGGC	II ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA
С. Р. Р. А. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CCGAAGGAGGATTTA CTGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAGGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	 GGGAAGTAGAG AGAAAGCAGAG AGGAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT TGTTCCGCT TGTTCTGCC TGTTCTGCC GCGTTCCGCT GCGTTCCGCT GCGTTCTGCT	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC GAAATCGGC GAAACCGGC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. A. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CCGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	II GGGAAGTAGAG AGAAAGCAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTGTCCGCT GTGTCTGCC GTGTCTGCC GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC GAAATCGGC GAAACCGGC GAAACCGGC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CCGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CCGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	II GGGAAGTAGAG AGAAAGCAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTGTCCGCT GTGTCTGCC GTGTCTGCC GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC GAAATCGGC GAAACCGGC GAAACCGGC GAAACCGGC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CCGAAGGAGGATTTA CTGAAGGAGGAGGATTTA CCGAAGGAGGAGTTTA CTGAAGGAGGAGTTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	II GGGAAGTAGAG AGAAAGCAGAG AGGAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTGTCCGCT GTGTCCGCC GTGTCCGCC GCGTCCCGCT GCGTCCGCT GCGTCCGCT GCGTCCGCT GCGTCCGCT GCGTCCGCT GCGTCCGCT	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC GAAATCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC	ICTGAG ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. A. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CCGAAGGAGGAGTTTA CTGAAGGAGGAGTTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	III GGGAAGTAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTTCCGCT GTGTTCCGCC GTGTTCTGCC GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC GAAATCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. A. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGTTTA CTGAAGGAGGAGTTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	III GGGAAGTAGAG AGAAAATAGAG AGGAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTTCCGCT GTGTTCCGCC GTGTTCTGCC GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCTGCT GCGTTCTGCT	GAACCCGGC GAAGCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. L. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	II. GGGAAGTAGAG AGAAAGCAGAG AGGAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTTCCGCT GTGTTCCGCC GTGTTCCGCC GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT	GAACCCGGC GAAGCCGGC GAAGTTGGC GAAATCGGC GAAATCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC GAAACCGGC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. L. L. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CCGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	II. GGGAAGTAGAG AGAAAGCAGAG AGGAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTTCCGCT GTGTTCCGCC GTGTTCTGCC GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT	GAACCCGGCC GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. A. L. L. L. L. L. L.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris vivanus	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	II. GGGAAAGTAGAG AGGAAATAGAG AGGAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTTCCGCT GTGTTCCGCC GTGTTCTGCC GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT	GAACCCGGCC GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA
C. P. E. L. L. L. L. L. L. C.	melampygus aquilonaris macrophtalmus oculatus dentatus apodus analis bucanella cyanopterus griseus jocu mahogoni synagris	TTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CTGAAGGAGGAGGATTTA CCGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA CTGAAGGAGGATTTA	GTAGTAAAA GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC. GCAGTAAGC.	II. GGGAAAGTAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG AGAAAATAGAG	GTTCCGCT GTTCCGCT GTGTTCCGCT GTGTTCTGCC GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT GCGTTCCGCT	GAACCCGGCC GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	ICTGAG ICTTAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA ICTGAA

Figure 2.2. Continued.

		370 	380	390	400
С.	carpio	ACGCGTACACACCGC			
С.	melampygus	GCGCGCACACACCGC	CCCGTCACCCT	CCCCAAGCAAG	CTGGACCTAA
P .	aquilonaris	GCGCGCACACACCGC	CCCGTCACCCT	CTGCAGTCAA-	AA
P .	macrophtalmus	GCGCGCACACACCGC	CCCGTCACCCT	CTGCAGTCAA-	AA
E .	oculatus	GCGCGCACACACCGC	CCCGTCACCCT	CTGCAGTCAA-	AA
Α.	dentatus	GCGCGCACACACCGC	CCCGTCACCCT	CTGCAGTCAA-	AA
L .	apodus	GCGCGCACACACCGC	CCCGTCACCCT	CTGCAGTCAA-	AA
L .	analis	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
L .	bucanella	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
L .	cyanopterus	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
L .	griseus	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
L .	jocu	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
L .	mahogoni	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
L .	synagris	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
L .	vivanus	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
Ο.	chrysurus	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA
R.	aurorubens	GCGCGCACACACCGC	CCCGTCACCCI	CTGCAGTCAA-	AA


Figure 2.2. Continued.


Figure 2.3. Plot of the number of transitions (s) and transversions (v) versus nucleotide divergence for the 12S rRNA data set.

R a																	
0. c																	0.0273
L. V																0.0026	0.0300
L. 5															0.0133	0.0106	0.0356
Т. т														0.0053	0.0079	0.0053	0.0328
L.b. L.c. L.g. L.j. L.m.													0.0241	0.0242	0.0323	0.0296	0.0440
Г. g												0.0134	0.0242	0.0270	0.0324	0.0297	0.0384
Т. с											0.0215	0.0324	0.0133	0.0187	0.0106	0.0133	0.0301
Г. Р										0.0106	0.0269	0.0323	0.0079	0.0133	0.0053	0.0026	0.0245
E. o A. d L. apo L. ana									0.0133	0.0187	0.0298	0.0297	0.0053	0.0107	0.0133	0.0106	0.0355
L. apo								0.0352	0.0324	0.0269	0.0134	0.0106	0.0296	0.0297	0.0324	0.0351	0.0441
A. d							0.0524	0.0382	0.0298	0.0326	0.0468	0.0467	0.0326	0.0326	0.0298	0.0271	0.0444
						0.0380	0.0643	0.0471	0.0498	0.0470	0.0614	0.0671	0.0470	0.0527	0.0470	0.0498	0.1075 0.0678
Р. т					0.0549	0.0723	0.1067	0.0883	0.0851	0.0880	0.0976	0.0974	0.0821	0.0882	0.0880	0.0851	0.1075
P. a				0.0160	0.0580	0.0812	0.1101	0.0856	0.0883	0.0913	0.1009	0.1008	0.0854	0.0915	0.0913	0.0883	0.1110
С. т			0.1514	0.1572	0.1584	0.1538	0.1565	0.1571	0.1533	0.1472	0.1631	0.1627	0.1565	0.1601	0.1533	0.1565	0.1506
C. c		0.2482	0.2116	0.2221	0.1850	0.2010	0.2051	0.1885	0.2064	0.2138	0.2091	0.1987	0.1961	0.1999	0.2064	0.2030	0.2135
	C. c	C. m	Р. а	P. m	E. 0	A. d	L. apo	L. ana	Г. Ь	Г. с	L. g	L.j	П. т	L. 5	L. v	0.0	R a

Table 2.2. Estimates of evolutionary divergence (Tajima and Nei, 1993) among sequences of 15 lutjanids and outgroups (*C. carpio* and *C. melampygus*) based on 12S rRNA data.

Figure 2.4. Molecular phylogeny produced by the Neighbor-Joining method for Caribbean lutjanids and outgroups inferred from 12S rRNA mtDNA. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (5000 replicates) is shown next to the branches.

Figure 2.5. Molecular phylogeny produced using Bayesian Inference for Caribbean lutjanids and outgroups inferred from 12S rRNA mtDNA data. Posterior probabilities are indicated at the nodes with probabilities <50% not shown.

DISCUSSION

This study examined phylogenetic relationships among all species of lutjanids occurring within the Caribbean Basin, based on mitochondrial 12S rDNA analysis. Previous investigations have limited their scope to species occurring in the western Atlantic (WA) and Cuba, or to several species within the Lutjaninae subfamily (Rivas 1966; Vergara, 1980; Chow et al., 1992 and Sarver et al., 1996). Those studies were based on morphological, biochemical or molecular data. In a molecular study, Sarver et al., (1996) investigated the relationships of 14 western Atlantic snappers using 12S rRNAmt and cytochrome b (cyt b) data. Phylogenetic relationships of lutjanids using molecular data have been explored for the Indo-Pacific and China as well (Miller and Cribb, 2007; Zhang and Liu, 2006 and Zhu et al., 2006).

Based on morphology, Rivas (1966) and Vergara (1980) hypothesized three phenetic groups within western Atlantic Lutjanus: the griseus group (L. griseus, L. apodus, and L. jocu and L. cyanopterus); the synagris or mahogoni group (L. mahogoni and L. synagris); and the analis or vivanus group (L. analis, L. campechanus, L. purpureus and L. vivanus). Vergara and Rivas disagreed on the placement of L. bucanella: Vergara placed it in the mahogoni group, whereas Rivas placed it in the analis group. Based on isozyme and morphological data, Chow and Walsh (1992) analyzed six species within the Lutjaninae subfamily. They suggested only two well defined groups, griseus and analis, with a third group (synagris) that had affinities to both those well defined groups.

This study complements information found in previous investigations based on DNA sequences of lutjanid species investigations (Sarver et al., 1996). Mitochondrial 12S rRNA data from the 15 species of lutjanids reported to date in the Caribbean were included, 13 studied by

Sarver et al., (1996) plus 2 additional species not reported for the western Atlantic specificity. We included an additional species of Pristipomoides (*P. macrophtalmus*) and *A. dentatus*, the only representative of Apsilinae, both limited to the Caribbean.

Different phylogenetic tree arrangements were found using NJ and BI, based on mitochondrial 12SrDNA analysis of Lutjanidae species. It should be noted that the NJ method is based on distances, while Bayesian inference of phylogeny is based on likelihood functions, utilizing Markov Chain Monte Carlo (MCMC) simulation (Metropolis et al., 1953) in combination with the chosen model and data to produce a posterior probability distribution of trees. Thus, since NJ is the less susceptible to inconsistencies between candidate trees of both methods, it inferred a tree with additional and more diverse groups.

The NJ and BI trees, both showed a topology with a well defined group formed by *L. apodus, L. jocu* and *L. griseus* as in Sarver et al., (1996). The NJ tree just weakly supported the inclusion of *L. cyanopterus* and *R. aurorubens* as sister taxa to the *griseus* clade. Rivas (1966) and Vergara (1980) also included *L. cyanopterus* in the *griseus* group. Chow and Walsh (1992) also found a well defined clade of *L. griseus* and *L. apodus*; however, *L. jocu, L. bucanella* and *L. cyanopterus* were not examined in their study. In addition, the NJ method moderately grouped *L. analis, L. mahogoni* and *L. synagris* while these 3 species were placed as sister taxa to the other clades in the BI tree. The NJ tree produced a third clade that grouped *O. chrysurus, L. bucanella* and *L. vivanus* and excluded *R. aurorubens*, while the latter species was clustered with the other those species in the BI tree. In agreement with the one of the phylogenetic trees analyzed by Sarver et al., (1996), we found moderate support for the inclusion of *R. aurorubens* in the "deep water" group in our BI tree. *Rhomboplites aurorubens* is a deep water habitant; therefore placement in the deep water group is more suitable than closer to the griseus group, as in the NJ tree. In contrast to the present work, *L. cyanopterus* was placed basal to all snappers by Sarver et al., Examination of the *L. cyanopterus* sequence used by Sarver et al., with those of other lutjanid sequences deposited in GenBank (Blast), showed too many dissimilarities, thus suggesting that the authors mistakenly incorporated a sequence from other species in their analysis. Another possibility may have been the existence of a variant haplotype exceptionally distinct from specimens from Puerto Rico. Instraspecific variability was not found for any of the *L. cyanopterus* specimens in our study (including samples from U.S.); therefore intraspecific variation was rejected as a possible explanation for such incongruence.

As observed in our results and those of others (Chow and Walsh, 1992; Sarver et al., 1996; Zhu et al., 2006; Zhang et al., 2006), phylogenetic relationships within the subfamily Lutjaninae remains rather unresolved for some species. Nevertheless, our study suggests that even if not strongly supported, the groups found are associated also according to morphology, habitat or feeding preferences.

There is consistent agreement between some morphological characters of the species studied and our molecular analyses. The griseus group, with stronger nodal support in our study, has been also well supported by morphometric examination (Rivas, 1966). In agreement with Miller and Cribb (2007) and Johnson (1980), our NJ tree grouped species with a large black spot above the lateral line and below the anterior portion of the soft dorsal fin: *L. analis, L. mahogoni* and *L. synagris*, the black spot group. Habitat and feeding behavior are common to *L. vivanus, O. chrysurus* and *L. bucanella* and were grouped in both our NJ and BI trees (plus *R. aurorubens* in the BI tree). These species are deep water dwellers, sharing adaptations for a pelagic

environment, and tend to have slender bodies and forked caudal fin. Even though O. chrysurus is not a deep water inhabitant, the present analysis includes it in the "deep water" group. This result supports studies by Domeier and Clarke (1992) who suggested that O. chrysurus may have acquired morphological characters common with pelagic species, probably due to adaptations for swimming and feeding in the water column as this species primarily feeds on zooplankton (Randall, 1967). The taxonomic status of Ocyurus has been controversial for a long time. Evermann and Marsh (1900) and Vergara (1980) separated Ocyurus from Lutjanus based on minor morphological differences. Domeier and Clarke (1992) and Loftus (1992) have argued that Ocyurus should be reclassified as Lutjanus because of the ability of Ocyurus to hybridize with other species of Lutjanus. Both our NJ and BI trees place Ocyurus in clades close to Lutjanus species. These results support suggestions by others (Chow and Clarke, 1992; Sarver et al., 1996) that Ocyurus should be synonymized with Lutjanus. On the other hand, in this study R. aurorubens clustered with Lutjanus but showing the greatest distance among all pairwise comparisons. The status of *Rhomboplites* as a monotypic genus, is supported by our results and by morphologic, electrophoretic and morphometric data (Johnson 1980, 1993; Chow and Walsh, 1992). Rhomboplites may be the offshoot of the three genera in the Lutjaninae, as already suggested by Johnson (1980).

The subfamilies Etelinae and Apsilinae were resolved as monophyletic sister taxa to the Lutjaninae by NJ. Bayesian inference analyses set the Etelinae and Apsilinae as paraphyletic, with Apsilinae as basal to all other lutjanids. Thus, in the present work, the exact placement of *Apsilus* remains uncertain. This difference may be attributed to intrinsic ambiguity in *Apsilus* as a natural group. Based on morphological characters, Johnson (1980) hypothesized that Etelinae

must be the earlier group in the Lutjanidae family, while Johnson stated "that *Apsilus* on the other hand, has never been recognized as a natural group". *Apsilus* has been variously placed as a lutjanine or eteline. *Apsilus* shares with etelines primitive characters such as the abductor mandibulae while the skull is believed to be in a state of transition to the Lutjaninae condition. The fact that *Apsilus* hasnot been included in any comprehensive phylogenetic study hampers a well informed hypothesis about this relationship. Furthermore, the relationship among some genera of the Etelinae and Apsilinae has been questioned based on larval morphology (Leis, 2005). For the Etelinae our trees show moderate support for the inclusion of *E. oculatus* with the well supported clade of *Pristipomoides*, suggesting that *Etelis* may be also in a transitional state between the Etelinae and Apsilinae.

Reduced resolution for some groups in our study may be attributed to several limitations inherent to the data used. The 12S rRNA gene is of conserved nature among species, owed to evolutionary constrains, limiting the degree of mutations at certain positions. The apparent limited freedom for mutations can be explained by substitution reversions, which mask ancestral steps and generate inconsistency in phylogenetic trees. Nevertheless, our data set did not show evidence of substitution saturation; hence adequate phylogenetic signal was present. Adding that we used a relatively short fragment of the gene, a longer fragment will possibly provide an enhanced phylogenetic scheme.

Even when BI analyses showed lower resolution within lutjanines, NJ produced clades that relate with morphology and habitat preferences. Our investigation of the phylogenetic relationships of the Lutjanidae using a fragment of the 12S rRNA gene generally supports the phylogenetic hypothesis based on adult morphology proposed by Johnson (1980) and Rivas (1966). The employment of additional mitochondrial or nuclear genes to explore genetic variation among lutjanid taxa will provide a more complete picture of the evolution of this important family of fishes. Even when relationships of lutjanids were not fully resolved, our phylogenetic study is, so far, the first to include all the 3 subfamilies of lutjanids occurring in the Caribbean. However, as intraspecific variation was not observed, species were characterized unambiguously. The consistency in the sequence data for each species in this study demonstrates that the 12S rRNA gene is a reliable tool for taxonomic identification within this family. These sequences constitute a sort of molecular key for all the 15 species of lutjanids studied, useful for identification of early stages and processed tissues or fillets for fisheries management regulations.

Identification of lutjanid larvae to the species level is still very difficult due to the high similarity among species. Morphological characterization of larvae is still ambiguous for many species, especially for closely related members of the Lutjaninae subfamily. Sequence data from this study may be used as a key for comparison with DNA from unknown lutjanid larvae. Efforts to use a segment of DNA (mtDNA C oxidase subunit I gene or COI) as a barcode of species identity have been successful for various taxa, including fish larvae (Paine et al., 2007; Ward et al., 2005).

LITERATURE CITED

- Allen, G.R. 1985. FAO species catalogue. Snappers of the world. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fish. Synop. No. 125, vol. 6, 208 pp.
- Allen, G.R. 1987. Synopsis of the circumtroprical genus *Lutjanus* (Pisces: Lutjanidae). *In* Polovina, J.J. and Ralston, S. (eds.). Tropical sanppers and groupers: Biology and fisheries management. Westview Press, Boulder. pp. 33-88.
- Anderson, W.D. Jr. 1987. Systematics of the fishes of the family Lutjanidae (Perciformes: Percoidei), the snappers. *In*: Polovina, J.J. & Ralson, S. (eds.). Tropical snappers and groupers: Biology and fisheries management. Westview Press, pp. 1–32.
- Anderson, W.D. 2003. Lutjanidae. *In*: Carpenter, K.E. (Ed) The living marine resources of the Western Central Atlantic. Volume 3: Bony fishes part 2 (Opistognathidae to Molidae).
 FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologist and Herpetologists Special Publication, 5, pp. 1479–1504.

Bloch, M.E. (1790) Naturgeschichte der ausländischen Fische. Berlin, 4, 128 pp.

- Chow, S. and P.J. Walsh. 1992. Biochemical and morphometric analyses for phylogenetic relationships between seven snapper species (subfamily Lutjaninae) of the western Atlantic. Bull. Mar. Sci., 50, 508–519.
- Chow, S., M.E. Clarke and P.J. Walsh. 1993. PCR-RFLP analyses on thirteen snappers (subfamily Lutjaninae): a simple method for species and stock identification. Fish. Bull., 91: 619–627.
- Domeier, M.L. and M.E. Clarke. 1992. A laboratory produced hybrid between *Lutjanus synagris* and *Ocyurus chrysurus* and a probable hybrid between *L. grisesus* and *O. chrysurus* (perciformes: Lutjanidae). Bull. Mar. Sci., 50: 501–507.
- Evermann, B.W. and M.C. Marsh. 1900. The fishes of Puerto Rico. Bull. US Fish. Comm. 1899: 51-350.

- Froese, R. and D. Pauly, (eds.). 2006. FishBase 2006. www.fishbase.com. Downloaded January 10, 2008.
- Ginsburg, I. 1930. Commercial snappers (Lutjanidae) of Gulf of Mexico. Bulletin of the United States Bureau of Fisheries, 46, 265–276.
- Johnson, G.D., 1980. The limits and relationships of the Lutjanidae and associated families. Bull. Scripps Inst. Ocean., 24: 1–114.
- Johnson, G.D., 1993. Percomorph phylogeny: progress and problems. Bull. Mar. Sci., 52: 3–28.
- Jordan, D.S. and B. Fesler. 1893. A review of the sparoid fishes of America and Europe. Reports of the United States Fisheries Commissioner, 27: 421–544.
- Jordan, D.S. and J. Swain.1884. A review of the species of Lutjaninae and Hoplopagrinae found in American waters. Proceedings of the United States National Museum, 7: 427–474.
- Kocher, T.D. and C.A. Stepien. 1997. Molecules and morphology in studies of fish evolution. *In*. Molecular systematics of fishes. Kocher, T.D. and Stepien C. A. (Eds.), Academic Press, pp. 1-11.
- Kocher, T.D., W.K. Thomas, A., Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca, and A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA. 86: 6196-6200.
- Lee, S.C. and S.C.M Tsoi. 1988. Isozymic analyses of the systematic relationships of some closely related lutjanid species from Taiwan (Pisces, Lutjanidae). Zool. Anz., 220: 245-254.
- Leis, J.M. 2005. A larva of the eteline lutjanid, *Randallichthys filamentosus* (Pisces : Perciformes), with comments on phylogenetic implications of larval morphology of basal lutjanids. Zootaxa, 1008: 57–64.
- Loftus, W.F. 1992. *Lutjanus ambiguus* (Poey), a natural intergeneric hybrid of *Ocyurus chrysurus* (Bloch) and *Lutjanus synagris* (Linnaeus). Bull. Mar. Sci., 50: 489-500.

- Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equations of state calculations by fast computing machines. J. Chem. Phys., 21:1087-1091.
- Miller, T.L. and T.H. Cribb. 2007. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae. Mol. Phyl. Evol., 44: 450-460.
- Moura, R.L. and K.C. Lindeman. 2007. A new species of snapper (Perciformes: Lutjanidae) from Brazil, with comments on the distribution of Lutjanus griseus and L. apodus. Zootaxa, 1422: 31-43.
- Paine, M.A., J.R. McDowell and J.E. Graves. 2007. Specific identification of western Atlantic scombrids using mitochondrial DNA cytochrome C oxidase subunit I (COI) gene region sequences. Bull. Mar. Sci., 80: 353-367.
- Poey, F. (1860) Memorias sobra la historia natural de la Isla de Cuba, acompañadas de sumarios Latinos y extractos en NEW WESTERN ATLANTIC SNAPPER Zootaxa 1422 © 2007 Magnolia Press Francés. Tomo 2. La Habana. Vol. 2, pp. 97–336.
- Posada, D. and K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818.
- Randall, J.E. 1987. Introductions of marine fishes to the Hawaiian Islands. Second International Symposium on Indo-Pacific Marine Biology, Western Society of Naturalists, University of Guam, 23-28 June 1986. 1987. Bull. Mar. Sci., 41: 490-502.
- Ramírez, J.T. and J.R. García. 2003. Offshore dispersal of Caribbean reef fish larvae: How far is that? Bull. Mar. Sci., 72: 997-1017.
- Robins, C.R. and G.C. Ray. 1986. A field guide to Atlantic coast fishes of North America. Houghton Mifflin Co. Boston. 354 p.
- Ronquist, F. and J.P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Richardson, D.E., J.D. Vanwe, A.M. Exum, R.K. Cowen and D.L. Crawford. 2007. Highthroughput species identification: from DNA isolation to bioinformatics. Mol. Ecol., 7: 199-207.

- Rivas, L.R. 1949. A record of the Lutjanid fish (*Lutjanus cyanopterus*) for the Atlantic coast of the United States, with notes on related species of the genus. Copeia, 2:150-152.
- Rivas, L.R. 1966. Review of the *Lutjanus campechanus* complex of of red sanppers. J. Q. Flor. Acad. Sci., 29:117-136.
- Sarver, S.K., D.W. Freshwater and P.J. Walsh. 1996. Phylogenetic relationships of western Atlantic snappers (family Lutjanidae) based on mitochondrial DNA sequences. Copeia, 3: 715-721.
- Swofford, D.L., 2003. PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4.0b10. Sinauer Associates, Sunderland.
- Vergara, R.R. 1977. Family Lutjanidae. *In*: Fisher, W. (Ed.) FAO species identification sheets for fishery purposes. Eastern Central Atlantic, Fishing Area 31. Rome.
- Vergara, R.R. 1980. Phylogenetic considerations on the Cuban species of the genus *Lutjanus* (Lutjanidae, Perciformes, Teleostei). Inf. Cient.-Tec. Inst. Oceanol. Acad. Cienc. Cuba. 113, Acad. Cienc. Cuba, Havana (Cuba), 39 p.
- Ward, R.D., T.S. Zemlack, B.H. Innes, P.R. Last and P.D.N. Herbert. 2005. DNA Barcoding Australia's fish species. Philosophical transactions of the Royal Society of London, Series B, Biological Sciences, 360: 1847-1857.
- Zhang, J. and X. Liu. 2006. The phylogenetic relationship of the family Lutjanidae based on analyses of AFLP and mitochondrial 12S rRNA sequences. Chin. Sci. Bull., 51: Supp. 1-6.

3 Mitochondrial DNA Analysis for Species Identification of Snapper larvae (Pisces: Lutjanidae) from Caribbean waters

INTRODUCTION

Nearly all marine teleost fishes possess a pelagic larval stage that is morphologically distinct from the adults and many orders of magnitude smaller (Moser et al., 1984). Understanding the processes affecting both the survival and transport of larval stages is one of the principal challenges in marine fish ecology, as these processes will influence the spatial distribution, population dynamics, migration strategies and evolution of a species (Cowen et al., 2006). While many indirect methods have been developed over the years to evaluate larval ecology and transport (Doherty, 1981; Swearer et al., 1999; Jones et al., 1999; Limouzy-Paris et al., 1994, 1997) a comprehensive understanding of these issues still requires the sampling of eggs and larvae in their natural environment. Ichthyoplankton collections are a powerful tool for addressing many other important questions in fish ecology and fisheries management including the identification of spawning locations, the extension of larval dispersal (Cowen, 2002; Leis and Mc Cormick, 2002; Mora and Sale, 2002; Ramírez and García, 2003), and the quantification of population levels or biomass of fished species (Ralston et al., 2003). However, these collections are generally underutilized since larval fishes are not frequently identified to species due to their small size and limited morphological development.

Dispersal dynamics of fish larvae, a major key for the design and implementation of Marine Protected Areas (MPAs), have been studied for decades (Palumbi, 2003, 2004). Most fish larvae are planktonic thus, potentially capable of long distance dispersal (Sale, 1980; Leis, 1991). Nevertheless, under certain conditions larvae of coral reef fishes may be retained near natal grounds (Jones et al., 1999; Swearer et al., 1999; Sponaugle, 2002). The balance between long distance dispersion and retention influences the level of genetic and ecological connectivity among fish populations (Palumbi and Sotka, 2006). Thus, the dynamics of larval dispersal constitutes a critical feature of control on fish communities and populations. Regardless of the importance of the ecological processes affected by larval fish dynamics, the inability of unambiguous taxonomic identification of early life stages of many taxa is still a major burden that impairs the proficient management of these populations. Therefore, at present there is the need to design ways for the identification of each species at their early life stages.

The Lutjanidae (snappers) is one of the largest teleostean families with exceptional importance for Caribbean fisheries. Effective management of valuable snapper fisheries depends upon the availability of life history information concerning the biology, habitat requirements, and spatial distribution of individual species. The ability to identify individuals of the various snapper species throughout ontogeny is critical for a better understanding of the early life history and population dynamics of these species under natural conditions.

Early larval stages of the various lutjanids are extremely similar and difficult to distinguish to genus and species level. Clarke et al., (1997) found that within some Caribbean lutjanids there are some subtle differences in pigmentation that may facilitate identification of pre-flexion larvae to the species level. Ontogeny among species in the family Lutjanidae is known for a few species and is very similar among taxa. Developmental series of western Atlantic snapper larvae have been described for *Rhomboplites aurorubens* (Laroche, 1977), *Lutjanus campechanus* (Collins et al., 1980; Rabalais et al., 1980), *Lutjanus griseus* (Richards and Saksena, 1980) and *Ocyurus chrysurus* (Riley et al., 1995). Clarke et al., (1997) described

developmental series of artificially spawned and laboratory reared specimens of three species: *Lutjanus analis, Lutjanus synagris* and *L. griseus*. Pre-transitional larvae (usually from 12-17 mm Standard length (SL) may perhaps be distinguished for some species; however indistinctness persists specially for species in the sub family Lutjaninae (Victor, 2008).

Comparative studies using larval characters to reliably identify field collected specimens are scarce due to the limited available information concerning the co-occurrence of many species. Descriptions of lutjanid larvae are available for various Indo-Pacific species (Reader and Leis, 1996; Leis and Carson-Ewart, 2004; Leis, 2005, 2007). A guide for the identification of the early life stages of lutjanid fish of the western central Atlantic has made the identification of some of these species easier to some extent (Lindeman et al., 2005). Nevertheless, due to the extreme similarity among small larvae (pre-flexion stage), specific identification of other co-occurring species in the western Atlantic is dependent on descriptions of reared series of these larvae.

Victor (2008) is working on a comprehensive photographic guide to the larvae of coral reef fishes. After extensive efforts, he concludes that morphological differences among some species within the Lutjaninae subfamily are too subtle to unambiguously identify them to the species level. He proposes that the only certain way to distinguish among those species is by DNA analysis.

The use of DNA sequencing is the most recent approach used for the identification of fish larvae, thus rapidly becoming a standard for larval identification. Once a library of sequences is developed for a group of species, then individual larvae can be sequenced and matched with sequences of known species (Ward, 2005). This approach is sometimes called molecular key identification (Richardson et al., 2006).

To address the complexity in the identification of lutjanid larvae, we described mitochondrial DNA (mtDNA) sequence motifs diagnostics to Lutjanid species in a fragment of the 12S rRNA gene. Afterwards, these motifs were used to unambiguously identify lutjanid larvae to the species level.

MATERIALS AND METHODS

Study Site

La Parguera is located in southwestern Puerto Rico, where the shelf extends offshore to approximately 11 km before dropping abruptly from 20 to 3,800 m. To the south, the shelf break defines the end of the insular platform, while to the north a deeper sandy fringe borders the inner boundary of the shelf edge reef (Figs. 2.1 and 3.1).

Collections of larvae and voucher tissue

Larval fish samplings

Ichthyoplankton sampling was designed to cover the period when mutton snapper (*Lutjanus analis*) historically aggregates at known spawning sites in La Parguera (Rojas, 1960; Domieier et al., 1996). Plankton tows using a 300 µm mesh net were performed at the shelf edge, specifically at two sites commonly known as "El Hoyo" and "La Cuarta Mella" (Fig. 3.1). These sites are within the area where Ramírez and García (2003) found high abundance of lutjanid larvae and suggested that the area is an important source of snapper larvae. They found higher abundance of snapper larvae during the period February – May, which corresponds to the season of spawning aggregations for these taxa, and covers the period of our samplings.

Plankton samples were obtained by oblique tows encompassing most of the water column down to maximum depths of 25 m. Samples were collected after the full moons of April and May, 2006, and April 2007, following the massive spawning event of *Lutjanus analis* and *Ocyurus chrysurus* (Yellowtail snapper) as documented by local commercial landings. An additional set of samples were collected earlier, during August, 2002 at "El Hoyo", aimed to assess lutjanid larvae occurrence during a season when no spawning aggregations were reported (Figuerola and Torres, 2001). Samples were preserved in 20% ethanol and seawater in the field.

Entire samples were examined under a binocular microscope and lutjanid larvae were sorted out. Larval snappers (Lutjanidae) were identified according to meristic and morphometric characters (Lindeman et al., 2005). Photographs and SL measurements were taken for individual larva and classified as pre-flexion, flexion or post-flexion based on the upward flexion of the urostyle, which comes before the formation of the caudal fin. Each larva was stored in 95% ethanol for subsequent DNA extraction.

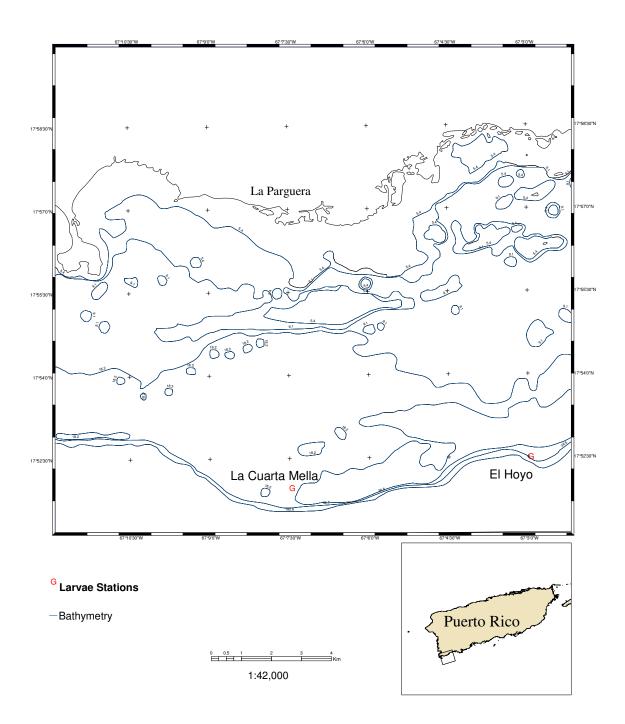


Figure 3.1. Sampling sites for larval collections.

Voucher samples from adult species

Voucher samples for 15 species of lutjanids were collected from local markets at La Parguera, Puerto Real and Rincón, Puerto Rico (Fig. 2.1) including: *Lutjanus analis, Lutjanus apodus, Lutjanus bucanella, Lutjanus cyanopterus, Lutjanus jocu, Lutjanus mahogoni, Lutjanus griseus, Lutjanus synagris, Lutjanus vivanus, Ocyurus chrysurus, Rhomboplites aurorubens, Apsilus dentatus, Etelis oculatus, Pristipomoides macrophtalmus and Pristipomoides aquilonaris.* Additional samples of *Lutjanus jocu* and *Ocyurus chrysurus* were collected from local markets at Cataño, northern Puerto Rico. The Marine Forensic Team, Center for Coastal Environmental Health and Biomolecular Research, National Centers for Coastal Ocean Science (NCCOS); NOAA, Charleston, SC provided 2 samples of *L. cyanopterus*. Muscle or liver tissue was dissected from fresh specimens and preserved frozen at -20 °C.

DNA extraction, amplification, and sequencing

Total genomic DNA was extracted from voucher samples and from individual larvae, using the QIAamp[®] DNA Mini Kit (QIAGEN, Inc.), according to manufacturer's protocol. A fragment of the 12S rRNA gene of ~450 bp was amplified with the primers: 5'-TCAAACTGGGATTAGATACCCCACTAT-3' and 5'-TGACTGCAGAGGGTGA CGGGCGGTGTGT-3' (Kocher et al., 1989). Polymerase chain reaction (PCR) was conducted in a total volume of 50 µl with 80 ng of template DNA, 0.75 µl of each primer (20 µM), 1.5 µl (25µM) MgCl2, 5 µl 10X reaction buffer, 8 µl dNTP's (each 2.5 mM), and 2 µl (2 units) of RED *Taq*TM genomic DNA polymerase (Sigma Chemical Co.). Amplifications were carried out in an Eppendorf® Mastercycler with an initial denaturation step at 95 °C for 2 min., followed by

30 cycles of 95 °C denaturation for 30 secs., 55 °C annealing for 1 min and 72°C extension for 1.5 min., and a final extension step at 72°C for 10 min. Amplified DNA was purified using the QIAquick[®] PCR purification kit (QIAGEN, Inc.), according to manufacturer's protocol. Cycle sequencing was conducted using the same primers utilized for PCR amplification using an automated sequencer at external facilities². Corresponding fragments of the 12S rRNA gene sequences from *Cyprinus carpio* and *Caranx melanpygus* were acquired from GenBank to be used as outgroups (Accession numbers: X61010 and AP004445).

Phylogenetic analyses

Sequences from the 12S rRNA gene fragment from voucher samples and larvae as well as those from *C. carpio* and *C. melampygus* outgroups were aligned and edited with *MEGA4* (Tamura, 2007). Alignment was done under the following parameters: pairwise alignment parameters = gap opening 10.00, gap extension 0.10, DNA weight matrix IUB; multiple alignment parameters = gap opening 10.00, gap extension 0.20, delay divergent sequences 30%, DNA weight matrix IUB. All sequences aligned unambiguously.

The resulting alignment was visually verified, the ends of the aligned sequences were trimmed afterwards to match the length of the shortest. Voucher and larvae sequences were used to calculate mean uncorrected pairwise distances. Pairwise comparisons of uncorrected sequence divergence (SDv) were calculated with gaps treated as missing data. A sequence identity (100-SDv) matrix was constructed with BioEdit©.

² Sequences were performed at Nevada Genomics Center: INBRE Grant # 2P2RR016463, UPR – Sequencing and Genotyping facility (IMBRE NCRR – NIH grant P20 RR0 16470, NSF – CREST – CATEC, S.C.O.R.E. grant S06GM8102) and UPR – Mayagüez NSF-MRI # 0503541.

Intraspecific variation was not found for the adult voucher specimens analyzed during this study. Thus, the consensus sequence of any species was always identical to any sequence of the species. Consensus sequences were aligned with sequences obtained from larvae to evaluate equal matches. The consensus sequences were used as a molecular key that allowed identification of each larva to the species level. A phylogenetic tree was produced by Neighbor Joining (NJ) using *MEGA4* (Tamura, 2007). The tree included one voucher sequence of each lutjanid species and one larval sequence representing each species.

RESULTS

A total of 89 lutjanid larvae were sorted from plankton samples, with 57 being successfully sequenced. Sequencing of the 12S rRNA mtDNA gene fragment produced an average of approximately 415 bp for all lutjanid taxa and larvae. Multiple alignments resulted in a consensus length of 400 characters (base pairs and gaps) available for analysis (Fig. 3.2). The phylogenetic tree produced by NJ clustered each larva with the respective species identified. Bootstrap values for several larva-species matches were low; this was due to the inherent close phylogenetic relationship of the species, all belonging to Lutjaninae subfamily (Fig. 3.3).

Seven species were identified within the lutjanid larval collection: *Ocyurus chrysurus*, *Rhomboplites aurorubens*, *Lutjanus griseus*, *Lutjanus apodus*, *Lutjanus analis*, *Lutjanus mahogoni* and *Lutjanus synagris* accounting for 64% of the total larvae examined (Table 3.1). The SL range of these larvae was 3.1 - 6.3 mm (Table 3.2). Identified lutjanid larvae in this study included 47 % of the 15 reported species for the Caribbean. All seven species are within the Lutjaninae subfamily, representing 3 genuses (*Lutjanus*, *Ocyurus* and *Rhomboplites*). Lutjaninae is the more speciose subfamily in the area, with 11 species, from which we found 63%. Most of these species are heavily fished coral reef fishes, while *Rhomboplites* is part of deep water fisheries in the area.

Most of identified larvae shared 100% identity with adult voucher consensus sequences (Table 3.3). Ten larvae shared 99.7% sequence identity with *O. chrysurus* (Yellowtail snapper) and were arbitrarily labeled as *O. chrysurus* 2. This substitution in position 261 (Fig. 3.2) was unique for these larval specimens. *Ocyurus chrysurus* was the most abundant lutjanid larva. Larvae of *O. chrysurus* 2 represented 18% of the identified lutjanid larvae (Fig. 3.4). For that reason we incorporated more voucher specimens of *O. chrysurus* than for any other species in the study. However, the *O. chrysurus* 2 haplotype was never found among voucher specimens. Even while *O. chrysurus* and *L. vivanus* haplotypes shared 99.4% of sequence identity (Table 3.3), the possibility that those particular specimens were variants of *L. vivanus* was rejected. Both *O. chrysurus* and *O. chrysurus* 2 shared variations in positions 7 and 258 not shared with *L. vivanus* (Fig. 3.2).

The majority of the larvae collected during spring 2006 were found at El Hoyo, while during the spring of 2007 most were collected at La Cuarta Mella (Fig. 3.5). Although a similar number of lutjanid larvae was collected in springs 2006 and 2007; a higher percent of the 2007 larvae was identified (Fig. 3.6). Higher success of identification of the 2007 samples was achieved by optimized preservation procedures and enhanced DNA quantifications with a NanoDrop[™] spectrophotometer that allowed the use of more precise amounts of starting DNA material in the PCRs.

Identified Species	Year collected	# of Individuals	Relative frequency (% from total lutjanids collected)	Relative frequency (% from total Identified lutjanids)	
O. chrysurus (O. c)	Fall 2002; Spring 2006 and 2007	19	21	33	
<i>O. chrysurus</i> 2 (<i>O. c</i> 2)	Fall 2002; Spring 2006 and 2007	10	11	18	
<i>O. chry.</i> + <i>O. chry2</i>	Fall 2002; Spring 2006 and 2007	29	33	51	
L. apodus (L. apo)	Spring 2006 and 2007	11	12	19	
L. analis (L. ana)	2006 and 2007	8	9	14	
L. synagris (L. s)	Spring 2006 and 2007	6	7	11	
L. griseus (L. g)	Fall 2002	1	1	2	
L. mahogoni (l. m)	Spring 2007	1	1	2	
R. aurorubens (R. a)	Fall 2002	1	1	2	
Total lutjanid larvae identified		57	64		
Total lutjanid larvae collected		89			

 Table 3.1. Relative abundance of species of identified lutjanid larvae.

	1	abic 5.2.]	laentinea n	0	vac.
Date	Sampling Site	Stage	SL (mm)	Sample Id	Species
August 5, 2002	El Hoyo	Pre	3.8	L20	O. chrysurus
August 5, 2002	El Hoyo	Flexion	4.2	L21	O. chrysurus 2
August 30, 2002	El Hoyo	Flexion	4.9	L24	R. aurorubens
August 30, 2002	El Hoyo	Pre	4.1	L23	L. griseus
April 24, 2006	El Hoyo	Post	5.0	L111	O. chrysurus 2
April 26, 2006	El Hoyo	Pre	4.3	L126	O. chrysurus 2
April 26, 2006	El Hoyo	Pre	4.8	L128	O. chrysurus 2
May 3, 2006	El Hoyo	Post	5.7	L107	O. chrysurus
May 3, 2006	El Hoyo	Flexion	4.6	L108	O. chrysurus 2
May 3, 2006	El Hoyo	Pre	5.0	L109	O. chrysurus
May 3, 2006	Cuarta Mella	Pre	3.1	L112	L. apodus
May 3, 2006	El Hoyo	Pre	3.5	L125	L. apodus
May 3, 2006	El Hoyo	Pre	4.0	L122	L. apodus
May 3, 2006	El Hoyo	Post	5.7	L116	L. analis
May 3, 2006	El Hoyo	Pre	4.0	L159	O. chrysurus 2
May 3, 2006	El Hoyo	Flexion	5.1	L160	O. chrysurus
May 3, 2006	El Hoyo	Flexion	4.6	L161	L. analis
May 3, 2006	El Hoyo	Flexion	4.6	L162	O. chrysurus
May 3, 2006	El Hoyo	Flexion	4.3	L163	O. chrysurus
May 3, 2006	El Hoyo	Flexion	4.0	L164	L. analis
May 3, 2006	Cuarta Mella	Post	5.4	L165	L. analis
May 3, 2006	Cuarta Mella	Flexion	4.9	L167	O. chrysurus
May 25, 2006	El Hoyo	Post	6.3	L136	L. apodus
June 5, 2006	Shelf Edge	Post	6.0	L135	L. synagris
April 18, 2007	Cuarta Mella	Flexion	4.5	L175	O .chrysurus
April 18, 2007	Cuarta Mella	Flexion	4.5	L179	O. chrysurus
April 18, 2007	Cuarta Mella	Flexion	5.0	L181	O .chrysurus
April 18, 2007	Cuarta Mella	Flexion	5.0	L182	O .chrysurus
April 18, 2007	Cuarta Mella	Flexion	5.2	L184	O. chrysurus 2
April 18, 2007	Cuarta Mella	Flexion	5.4	L186	O. chrysurus
April 18, 2007	Cuarta Mella	Flexion	5.3	L187	O. chrysurus
April 18, 2007	Cuarta Mella	Pre	4.5	L188	O. chrysurus 2
April 18, 2007	Cuarta Mella	Pre	4.9	L189	O. chrysurus
April 18, 2007	Cuarta Mella	Post	5.8	L191	O. chrysurus
April 18, 2007	Cuarta Mella	Flexion	5.2	L192	O. chrysurus
April 18, 2007	Cuarta Mella	Flexion	4.4	L193	L. apodus
April 18, 2007	Cuarta Mella	Flexion	5.0	L194	O .chrysurus 2
April 18, 2007	Cuarta Mella	Flexion	4.9	L195	O. chrysurus 2
April 18, 2007	Cuarta Mella	Flexion	4.9	L196	O. chrysurus
April 18, 2007	Cuarta Mella	Flexion	5.1	L199	O. chrysurus
April 18, 2007	Cuarta Mella	Flexion	4.4	L200	L. apodus
April 18, 2007	Cuarta Mella	Flexion	4.5	L201	L. apodus
April 18, 2007	Cuarta Mella	Flexion	3.5	L203	L. apodus
April 18, 2007	Cuarta Mella	Flexion	4.1	L204	L. apodus
April 18, 2007	Cuarta Mella	Flexion	4.5	L205	L. apodus
April 18, 2007	Cuarta Mella	Flexion	3.8	L207	L. synagris
April 18, 2007	Cuarta Mella	Flexion	3.1	L208	L. synagris
April 18, 2007	Cuarta Mella	Flexion Flexion	4.0	L209	L. analis
April 24, 2007	El Hoyo	Flexion	4.0	L211	L. synagris
April 24, 2007 April 24, 2007	El Hoyo Cuarta Mella	Post	3.5 5.8	L212 L213	L. synagris L. synagris
April 24, 2007	Cuarta Mella	Post	6.1	L213 L214	L. synagris L. mahogoni
April 24, 2007 April 24, 2007	Cuarta Mella	Post	4.0	L214 L215	L. manogoni L. analis
April 24, 2007	Cuarta Mella	Post	5.0	L215 L216	O. chrysurus
April 24, 2007	Cuarta Mella	Post	6.0	L210	L. apodus
April 24, 2007	Cuarta Mella	Flexion	4.7	L218	L. analis
April 24, 2007	Cuarta Mella	Post	6.0	L219	L. analis
1				/	1

 Table 3.2. Identified lutjanid larvae.

L24																									
R a																									1.000
L21 2. e 2)																								0.966	0.966
L20 (0. e 2)																							799.		
0. e																						000	0.997	966 (9966 (
L.v																					994	994	992 (9966	966 (
L207																				0.984	0.989 0.994	0.989 0	0.986 0	0.958 0.966 0.966 0.966	0.958 0
L.s																			000	0.984	0.989	0.989	0.986	0.958	0.958
																		0.994	0.994	0.989	0.994	0.994	0.992	0.961	0.961
L. m L214																	000	994	994	989	994	994	992	196.	1961
Lj																.973	1973	0.973 0.994 0.994	973 0	963 0	0.968 0.994 0.994	968 0	966 0	0.953 0.961 0.961	953 0
L.23															.984	976 0	976 0	973 0	973 0	966 0	971 0	971 0	968 0	955 0	955 0
L.g.														000	984 0	976 0	976 0	973 0	973 0	9966	0 176.0	0 176.0	968 0	0.955 0	0.955 0
L. c													0.979	0.979 1.000	.948 0.986 0.986 0.968 0.968 0.963 0.963 0.966 0.984 0.984	963 0.971 0.971 0.994 0.994 0.989 0.986 0.976 0.976 0.973	0.963 0.971 0.971 0.994 0.994 0.989 0.986 0.976 0.976 0.973 1.000	0.963 0.971 0.971 0.989 0.989 0.984 0.981 0.973 0.973	963 0.971 0.971 0.989 0.989 0.984 0.981 0.973 0.973 0.973 0.974 0.994 1.000	0.963 0.966 0.966 0.984 0.984 0.994 0.986 0.966 0.966 0.963 0.989 0.989 0.984 0.984	0.968 0.966 0.966 0.989 0.989 0.994 0.986 0.971 0.971	968 0.966 0.966 0.989 0.989 0.994 0.986 0.971 0.971 0.968 0.994 0.994 0.989 0.989 0.994 1.000	0.984	0.963 0.955 0.955	945 0.950 0.950 0.958 0.958 0.971 0.963 0.955 0.955 0.955 0.953 0.961 0.961 0.958 0.958 0.966 0.966 0.966
Г. b												0.986	0.971	0.971	0.963	0.989	0.989	0.984	0.984	0.994	0.994	0.994 (0.992	0.971	176.0
											.984	0.981	0.971	0.971	968	994 (994 (989 (989 (984 (989 (989 (986 (958 (9.958 (
ana										1.000	0.984 (963 0.973 0.973 0.981 0.981 0.986	950 0.986 0.986 0.971 0.971 0.971	0.971	0.968	0.994 (0.994 (0.989 (0.989	0.984 (0.989 (0.989 (0.986	.945 0.950 0.950 0.958 0.958 0.971	0.958 (
L125 1									0.966	0.966	0.966	0.973	0.986	0.986	0.986	172.0	172.0	172.0	172.0	0.966	0.966	0.966	0.963	0.950	0.950
oda								1.000	0.966	958 0.966 0.966 1.000	0.966	0.973	0.986	0.986	0.986	172.0	172.0	172.0	179.0	0.966	0.966	0.966	0.963	0.950	0.950
A. d L. apo L125 L. and L116							0.945	0.945 1.000	0.958	0.958	0.963 0.966 0.966 0.984 0.984	0.963	0.950	0.950 0.986 0.986 0.971 0.971 0.971	0.948	0.963	0.963	0.963	0.963	0.963	0.968	0.968	0.968	0.945	0.945
E. 0						958			0.950	0.950		0.950	.937			0.950	950	0.945		_		947	.947	0.925	0.925
Р. т					0.945	0.924 (0.896 (0.896	0.911	0.911	0.914 (0.911	0.903	0.903	0.901	0.916	0.916	0.911	0.911	0.911	0.914 (0.914 (0.914 (0.891 (0.891 (
P. a				0.984	0.942	0.916 0.924 0.958	0.893 0.896 0.934	0.893 0.896 0.934	0.914	0.914 0.911 0.950 0	0.911 0.914 0.945	0.909	0.901 0.903 0.937 0	0.901	0.898 0.901 0.929	0.914	0.914	0.909 0.911	0.909	0.909 0.911 0.948	0.911 0.914 0.947	0.911	0.911	0.888	0.888
C m			0.842	0.837 (0.839 (.843	0.839 (0.839 (0.839	0.839 (0.839 (0.846 0.909 0.911 0.950 0	0.834 (0.834 0.901 0.903 0.937	0.832 (0.839 0.914 0.916 0.950 0	0.839 0.914 0.916 0.950	0.836 (0.836 0.909 0.911 0.945	0.839 (0.839 (0.839 0.911 0.914 0.947	.841	0.837 (0.837 (
ູ້		0.770	0.807 0	0.799 0	0.827 0	0.814 0.843	0.813 0	0.813 0	0.826 0.839 0.914 0.911 0.950 0.958 0.966 0.966	0.826 0	0.811 0	0.808 0	0.811 0	0.811 0	0.817 0	0.821 0	0.821 0	0.819 0	0.819 0	0.811 0	0.816 0	0.816 0	0.816 (0.802 0	0.802 0
	C. e	C. m 0	P. a 0	P. m 0	E. 0 0	<i>A. d</i> 0	L. apo 0	L125 0	L. ana 0		L. b 0	L. c 0	L.g 0		L. j 0	L.m. 0	L214 0	L. 5 0	L207 0	L. v 0	0. e 0	L20 0	L21 (0. c 2) 0.816 0.841 0.911 0.914 0.947 0.968 0.963 0.963 0.986 0.986 0.992 0.984 0.968 0.968 0.966 0.992 0.992 0.992 0.986 0.986 0.992 0.987 0.997	R a 0	L24 0

Table 3.3. Sequence Identity Matrix for lutjanids species and larvae.

	10	20	30	40	50	60
C. carpio		CAGGGTACTACGA				
C. melampygus		CTGGGAATTACGA				
P. aquilonaris		CCGGGTACTACGA				
P. macrophtalmus		CCGGGGTACTACGA				
E. oculatus A. dentatus		CCGGGGTACTACGA CTGGGTACTACGA				
L. apodus		CCGGGGGACTACGA				
L125		CCGGGGGACTACGA				
L. analis		CCGGGGGACTACG				
1,116		CCGGGGGACTACG				
L. bucanella		CCGGGGGACTACG				
L. cyanopterus		CCGGGGGACTACG				
L. griseus		CCGGGGGACTACG				
L.23	TATCCGC	CCGGGGGACTACG	AGCATCAGCT	ТААААСССАА	AGGACTTGG	CGGTGC
L. jocu	TATCCGC	CCGGGGGACTACGA	AGCATCAGCT	ТААААСССАА	AGGACTTGG	CGGTGC
L. mahogoni	TATCCGC	CCCGGGGGACTACGA	AGCATCAGCT	TGAAACCCAA	AGGACTTGG	CGGTGC
L214	TATCCGC	CCGGGGGACTACGA	AGCATCAGCT	TGAAACCCAA	AGGACTTGG	CGGTGC
L. synagris		CCCGGGGGACTACGA				
<i>L207</i>		CCCGGGGGACTACGA				
L. vivanus		CCGGGGGACTACGA				
0. chrysurus		CCGGGGGACTACGA				
L20		CCCGGGGGACTACGA				
L21 - 0. chysurus 2		CCGGGGGACTACGA				
R. aurorubens		CCGGGGGACTACGA				
L24	TATCTCTGC	CCGGGGGACTACGA	AGCAICAGCI	TAGAACCCAA	AGGACIIGG	GGIGC
	70	80	90	100	110	120
C. carpio						
C. melampygus	CTCAGACCCCCC TTAACATCCACC	AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG	ATAACCCCCG	···· ···· ITCAACCTCA	ACCACT ACCCCC
C. melampygus P. aquilonaris	CTCAGACCCCCCC TTAACATCCACCC TTTAGACCCACCC	AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	···· ···· ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAATCCCCG	···· ··· ITCAACCTCA ITTAACCTCA ITCAACCTCA	ACCACT ACCCCC ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus	CTCAGACCCCCCC TTAACATCCACCC TTTAGACCCACCC TTTAGACCCACCC	AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG	ITCAACCTCA TTTAACCTCA TTTAACCTCA TTCAACCTCA	ACCACT ACCCCC ACCTTT ACCCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus	CTCAGACCCCCCC TTAACATCCACCC TTTAGACCCACCC TTTAGACCCACCC TTTAGACCCACCC	AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG	ITCAACCTCA ITTAACCTCA ITTCAACCTCA ITCAACCTCA ITCAACCTCA	ACCACT ACCCCC ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus	CTCAGACCCCCCC TTAACATCCACCC TTTAGACCCACCC TTTAGACCCACCC TTTAGATCCACCC TTTAGATCCACCC	AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCCG ATAACCCCCCG ATAACCCCCCG ATAACCCCCCG ATAACCCCCCG	ITCAACCTCZ ITTAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ	ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus	CTCAGACCCCCCC TTAACATCCACCC TTTAGACCCACCC TTTAGACCCACCC TTTAGATCCACCC TTTAGATCCACCC TTTAGATCCACCC	AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG	ITCAACCTCZ ITTAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ	ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125	CTCAGACCCCCCC TTAACATCCACCC TTTAGACCCACCC TTTAGACCCACCC TTTAGATCCACCC TTTAGATCCACCC TTTAGATCCACCC TTTAGATCCACCC	AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG	ITCAACCTCZ ITTAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ	ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis	CTCAGACCCCCC TTAACATCCACC TTTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	· I · · · I · · · · I · · · · I · · · ·	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	 TTCAACCTCZ TTTAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116	CTCAGACCCCCC TTAACATCCACC TTTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. CAGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella	CTCAGACCCCCCC TTAACATCCACCC TTTAGACCCACCC TTTAGACCCACCC TTTAGATCCACCC TTTAGATCCACCC TTTAGATCCACCC TTTAGATCCACCC TTTAGATCCACCC TTTAGATCCACCC TTTAGATCCACCC	AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ ITCAACCTCZ	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus	CTCAGACCCCCC TTAACATCCACC TTTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus	CTCAGACCCCCC TTAACATCCACC TTTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. CAGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23	CTCAGACCCCCC TTAACATCCACC TTTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu	CTCAGACCCCCC TTAACATCCACC TTTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ TTCAACCTCZ	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23	CTCAGACCCCCC TTAACATCCACC TTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214	CTCAGACCCCCC TTAACATCCACC TTTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	 ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni	CTCAGACCCCCC TTAACATCCACC TTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris	CTCAGACCCCCC TTAACATCCACC TTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCGTT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207	CTCAGACCCCCC TTAACATCCACC TTAGACCCACC TTTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCGTGT AGAGGAGCCGTGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus	CTCAGACCCCCC TTAACATCCACC TTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20 L21 - O. chysurus 2	CTCAGACCCCCC TTAACATCCACC TTAGACCCACC TTTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT AGAGGAGCCTGT	ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20 L21 - O. chysurus 2 R. aurorubens	CTCAGACCCCCC TTAACATCCACC TTAGACCCACC TTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCGTGT AGAGGAGCCGTGT AGAGGAGCCGTGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT	 ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20 L21 - O. chysurus 2	CTCAGACCCCCC TTAACATCCACC TTAGACCCACC TTAGACCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC TTTAGATCCACC	II. AGAGGAGCCTGT AGAGGAGCCGTGT AGAGGAGCCGTGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT AGAGGAGCCCGT	 ICTAGAACCG	ATAACCCCCG ATAATCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATAACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG ATTACCCCCG	ITCAACCTC/ TTCAACCTC/	II ACCACT ACCCCC ACCTTT

Figure 3.2. Sequence alignment of the 12SrRNA gene fragment for lutjanids and identified larvae.

	130	140	150	160	170	180
C. carpio	TCTAGCCACCCCAGC					
C. melampygus	CCTAGCTTTTTCCGC					
P. aquilonaris	TCTTGTTTAACCCGC					
P. macrophtalmus	TCTTGTTTAACCCGC					
E. oculatus	TCTTGTTTAACCCGC					
A. dentatus	CCTTGTTTTCCCCGC CCTTGTTTCTCCCCGC					
L. apodus L125	CCTTGTTTCTCCCGC					
L. analis	CCTTGTTTCCCCCGC					
L116	CCTTGTTTCCCCCGC					
L. bucanella	CCTTGTTTTTCCCGC					
L. cyanopterus	CCTTGTTTTTCCCGC					
L. griseus	CCTTGTTTCTCCCGC					
L.23	CCTTGTTTCTCCCGC					
L. jocu	CCTTGTTTCCCCCGC					
L. mahogoni	CCTTGTTTCCCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GAAGG-ACT	CATAGT
L214	CCTTGTTTCCCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GAAGG-ACT	CATAGT
L. synagris	CCTTGTTTCCCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GGAGG-ACT	FATAGT
L207	CCTTGTTTCCCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GGAGG-ACT	FATAGT
L. vivanus	CCTTGTTTTCCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GAAGG-ACT	CATAGT
0. chrysurus	CCTTGTTTTCCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GAAGG-ACT	CATAGT
L20	CCTTGTTTTCCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GAAGG-ACT(CATAGT
L21 – O. chysurus 2	CCTTGTTTTCCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GAAGG-ACT(CATAGT
R. aurorubens	CCTTGTTTTTCCCGC					
L24	CCTTGTTTTTCCCGC	CTATATACCA	CCGTCGTCAC	GCTTACCCTGT	GAAGG-ACTA	AATAGT
	190	200	210	220	230	240
	190 	200 	210 • • • • • • • •	220 	230 	240
C. carpio	190 AAGCAAAATGGGCAC					
C. carpio C. melampygus			GTCAGGTCG	GGTGTAGCGC	ATGAAGTGG	II GAAGAA
	 AAGCAAAATGGGCAC		···· ··· CGTCAGGTCGA CGTCAGGTCGA	AGGTGTAGCGCA	ATGAAGTGG	II GAAGAA GAAGAA
C. melampygus	AAGCAAAATGGGCAC	AACCCAAAAC AGCCCAGAAC AGCCCAGAAC	CTCAGGTCGA CTCAGGTCGA CTCAGGTCGA	AGGTGTAGCGCA AGGTGTAGTGAA AGGTGTAGTGAA	ATGAAGTGGG ATGGGAGGGG ATGGAAAGGG	I I GAAGAA GAAGAA GAAGAA
C. melampygus P. aquilonaris	AAGCAAAATGGGCAC AAGCACAATCGGCAC AAGCACAATCGGCAC	CACCCAAAAC CAGCCCAGAAC CAGCCCAGAAC CAGCCCAGAAC	CTCAGGTCGA CTCAGGTCGA CGTCAGGTCGA CGTCAGGTCGA	AGGTGTAGCGCZ AGGTGTAGCGCZ AGGTGTAGTGAZ AGGTGTAGCGTZ AGGTGTAGCGTZ	ATGAAGTGG ATGGAAGGG ATGGAAAGG ATGGAAAGG	I I GAAGAA GAAGAA GAAGAA GAAGAA
C. melampygus P. aquilonaris P. macrophtalmus	AAGCAAAATGGGCAC AAGCACAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC	CAACCCAAAAC CAGCCCAGAAC CAGCCCAGAAC CAGCCCAGAAC CAGCCCAGAAC	GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGC AGGTGTAGTGA AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAGGGG ATGGAAAGGG ATGGAAAGGG ATGAAAAGGG	I I GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus	AAGCAAAATGGGCAC AAGCACAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC	CAACCCAAAAA CAGCCCAGAAA CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAA CAGCCCAAAAA	GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGC AGGTGTAGTGGA AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGGAGGGG ATGGAAAGGG ATGGAAAGGG ATGAAAAGGG ATGGAAAGGG	I I GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125	AAGCAAAATGGGCAC AAGCACAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAT	CAACCCAAAAA CAGCCCAGAAA CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAA CAGCCCAAAAA CAGCCCAAAAA CAGCCCAAAAA	GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGC AGGTGTAGCGC AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAGGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGGG ATGGAAGGGG	II GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis	AAGCAAAATGGGCAC AAGCACAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAT	CACCCAAAAC CAGCCCAGAAC CAGCCCAGAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGC AGGTGTAGCGC AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAGGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAGGG ATGGAAGGG ATGGAAGGG	II GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116	AAGCAAAATGGGCAC AAGCACAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC	ACCCAAAAC CAGCCCAGAAA CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAA CAGCCCAAAAA CAGCCCAAAAA CAGCCCAAAAA CAGCCCAAAAA	GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGC AGGTGTAGCGC AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAGGG ATGGAAAGG ATGGAAAGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAGGG ATGGAAGGG	II GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella	AAGCAAGAATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	CAGCCCAAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG	II GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA GAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus	AAGCAAGATTGGCAC AAGCAAAATGGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	CAGCCCAAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	I I SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus	AAGCAAGATTGGCAC AAGCAAAATGGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	CAGCCCAAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	I I SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23	AAGCAAGATTGGCAT AAGCAAGAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	CAGCCCAAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	I I SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu	AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAT AAGCAAGATTGGCAT	CAGCCCAAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	I I SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni	AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAT AAGCAAGATTGGCAT	CAGCCCAAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG	I I SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214	AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC	CAGCCCAAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	I I SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris	AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	CAGCCCAAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAGAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	I I SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA SAAGAA
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L.griseus L.23 L. jocu L. mahogoni L214 L. synagris L207	AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAT AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	II CAACCCAAAAAC CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	 I <
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus	AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	II CAACCCAAAAAC CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGGAAGGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	 I <
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus	AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	II CAACCCAAAAAC CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGAAGTGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	 I <
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20	AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	II CAACCCAAAAAC CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA GTCAGGTCGA	GGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGGAAGGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAGGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG	 I <
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20 L21 - O. chysurus 2	AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	II CAACCCAAAAAC CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA	GGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGGAAGGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG ATGGAAAGGG	 I <
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20	AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAGAATCGGCAC AAGCAGAATCGGCAC AAGCAAGAATCGGCAC AAGCAAAATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC AAGCAAGATTGGCAC	II CAACCCAAAAAC CAGCCCAGAAA CAGCCCAGAAA CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC CAGCCCAAAAAC	CTCAGGTCGA GTCAGGTCGA	GGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT AGGTGTAGCGT	ATGGAAGGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAGGG ATGGAAGGG ATGGAAGGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG ATGGAAAGG	 I <

Figure 3.2. Continued.

	250	260	270	280	290	300
C. carpio	ATGGGCTACATTTTC					
C. melampygus	ATGGGCTACATTCG					
P. aquilonaris	ATGGGCTACATTCT					
P. macrophtalmus	ATGGGCTACATTCT					
E. oculatus	ATGGGCTACATTCT					
A. dentatus	ATGGGCTACATTCC					
L. apodus L125	ATGGGCTACATTCCC ATGGGCTACATTCCC					
L. analis	ATGGGCTACATTCC					
L116	ATGGGCTACATTCC					
L. bucanella	ATGGGCTACATTCC					
L. cyanopterus	ATGGGCTACATTCC					
L. griseus	ATGGGCTACATTCC					
L.23	ATGGGCTACATTCC				TGAAATAC	
L. jocu	ATGGGCTACATTCC					
L. mahogoni	ATGGGCTACATTCC					
L214	ATGGGCTACATTCC	TAAT-ATAGT	GAA-ATACGA	ACGATACAC	TGAAATAC	GTAT-C
L. synagris	ATGGGCTACATTCC	CTAAT-ATAGT	GAA-ATACGA	ACGATACAC	TGAAATAC	GTAT-C
L207	ATGGGCTACATTCC	CTAAT-ATAGT	GAA-ATACGA	ACGATACAC	TGAAATAC	GTAT-C
L. vivanus	ATGGGCTACATTCC	CTAAT-ACAGT	GAA-ATACGA	ACGATACAC	TGAAATAC	GTAT-C
0. chrysurus	ATGGGCTACATTCC	CTAAT-ATAGT	GAA-ATACGA	ACGATACAC	TGAAATAC	GTAT-C
L20	ATGGGCTACATTCC	CTAAT-ATAGT	GAA-ATACGA	ACGATACAC	TGAAATAC	GTAT-C
L21 – O. chysurus 2	ATGGGCTACATTCC	CTAAT-ATAGCO	GAA-ATACGA	ACGATACAC	TGAAATAC	GTAT-C
R. aurorubens	ATGGGCTACATTCC	TAGC-ATCGG	GCATATACGA	ACGATACAC	TGAAATAC	GTAT-C
L24	ATGGGCTACATTCC	CTAGC-ATCGG	GCATATACGA	ACGATACAC	TGAAATAC	GTAT-C
	310	320	330	340	350	360
	310 	320	330 • • • • • • • •	340	350	360
C. carpio	310 TGAAGGAGGATTTAC					1
C. carpio C. melampygus	· · · · · · · · · · · ·	• • • • • • • • GTAGTAAAAGG(GAAGTAGAG	GTCCCTTT	 GAACCCGGC <mark>T</mark>	 CTGAGA
	 TGAAGGAGGATTTAC	 GTAGTAAAAGGO GCAGTAAGCAGA	GAAGTAGAG AAAGCAGAG	 IGTCCCTTTT IGTTCCGCT-(GAACCCGGCT GAAGCCGGCT	II CTGAGA CTTAAG
C. melampygus	····· ····· ····· TGAAGGAGGATTTAC TGAAGGAGGATTTAC	I I I GTAGTAAAAGGG GCAGTAAGCAGA GCAGTAGGCAG	GAAGTAGAG AAAGCAGAG GAAATAGAG	I I IGTCCCTTTT IGTTCCGCT-(IGTTCTGCC-(GAACCCGGCT GAAGCCGGCT GAAGCCGGCC	II CTGAGA CTTAAG CTGAAG
C. melampygus P. aquilonaris	 TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO	GTAGTAAAAGGG GCAGTAAGCAG GCAGTAGGCAG GCAGTAAGCAG	GAAGTAGAG AAAGCAGAG GAAATAGAG AAAATAGAG	I I IGTCCCTTTT IGTTCCGCT-(IGTTCTGCC-(IGTTCTGCC-(GAACCCGGCT GAAGCCGGCT GAAGCCGGCC GAAGTTGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus	TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO	GAGTAAAAGG GCAGTAAGCAG GCAGTAGGCAG GCAGTAAGCAG GCAGTAAGCAG	GAAGTAGAG AAAGCAGAG GAAATAGAG AAAATAGAG AAAATAGAG	GTCCCTTTT GTTCCGCT-(GTTCTGCC-(GTTCTGCC-(CGTTCCGCT-(GAACCCGGCT GAAGCCGGCC GAAGCCGGCC GAAGTTGGCC GAAATCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus	TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO	GAGTAAGCAG GCAGTAAGCAG GCAGTAGGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	GAAGTAGAG GAAGCAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	I I IGTCCCTTTT IGTTCCGCT-(IGTTCTGCC-(IGTTCTGCC-(CGTTCCGCT-(CGTTCCGCT-(GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125	TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO TGAAGGAGGATTTAO CGAAGGAGGATTTAO	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	GAAGTAGAG GAAGCAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	GTTCCGCT-(CGTTCCGCT-(CGTTCTGCC-(CGTTCTGCC-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCTGCT-(GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAATCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis	TGAAGGAGGATTTAC TGAAGGAGGATTTAC TGAAGGAGGAGATTTAC TGAAGGAGGAGATTTAC TGAAGGAGGAGATTTAC CGAAGGAGGAGTTTAC TGAAGGAGGATTTAC TGAAGGAGGATTTAC TGAAGGAGGATTTAC	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	AAAGTAGAG GAAATAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	GTTCCGCT-(CGTTCCGCC-(CGTTCCGCC-(CGTTCCGCC-(CGTTCCGCT-(CGTTCCGCT-(CGTTCTGCT-(CGTTCTGCT-(CGTTCCGCT-(CGTTCCGCT-(GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116	TGAAGGAGGATTTAC TGAAGGAGGATTTAC TGAAGGAGGATTTAC TGAAGGAGGAGATTTAC TGAAGGAGGAGATTTAC CGAAGGAGGAGTTTAC TGAAGGAGGAGTTTAC TGAAGGAGGATTTAC TGAAGGAGGATTTAC	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	AAAGTAGAG GAAATAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	GTTCCGCT-(CGTTCCGCC-(CGTTCCGCC-(CGTTCCGCC-(CGTTCCGCT-(CGTTCCGCT-(CGTTCTGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella	Image: Constraint of the second state of the second sta	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	GAAGTAGAG GAAGTAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II CGTCCGCT-(CGTTCTGCC-(CGTTCTGCC-(CGTTCCGCT-(CGTTCCGCT-(CGTTCTGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus	Image: Constraint of the second state of the second sta	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	GAAGTAGAG GAAGTAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II CGTCCGCT-(CGTTCTGCC-(CGTTCTGCC-(CGTTCCGCT-(CGTTCCGCT-(CGTTCTGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus	Image: Constraint of the second state of the second sta	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	GAAGTAGAG GAAGTAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II CGTCCGCT-(CGTTCTGCC-(CGTTCTGCC-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23	Image: Constraint of the second state of the second sta	III GTAGTAAAAGGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG	GAAGTAGAG GAAGTAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II GTCCCCTTT GTTCCGCC- GTTCTGCC- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT-	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu	Image: Constraint of the second state of the second sta	JJ. STAGTAAAAGGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG GCAGTAAGCAGG	 GAAGTAGAG GAAATAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II CGTCCGCT-(CGTTCTGCC-(CGTTCTGCC-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCTGCT-(CGTTCTGCT-(CGTTCTGCT-(II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni	Image: Constraint of the second state of the second sta	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	SAAGTAGAG GAAGTAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II GTCCCCTTT GTTCTGCC- GTTCTGCC- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCTGCT- CGTTCTGCT- CGTTCTGCT- CGTTCTGCT- CGTTCTGCT- CGTTCTGCT- CGTTCTGCT-	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214	Image: Constraint of the second state of the second sta	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	SAAGTAGAG GAAGTAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II CGTCCGCT-(CGTTCTGCC-(CGTTCTGCC-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCTGCT-(CGTTCTGCT-(CGTTCTGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(CGTTCCGCT-(II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris	Image: Constraint of the second state of the second sta	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	SAAGTAGAG GAAGTAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II GTCCCCTTT GTTCTGCC- GTTCTGCC- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCTGCT- CGTTCTGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT-	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207	Image: Constraint of the second state of the second sta	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	SAAGTAGAG GAAGTAGAG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II CGTCCGCT-(CGTTCTGCC-(CGTTCTGCC-(CGTTCCGCT-(CGTCCGCT-(C	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus	Image: constraint of the second state of the secon	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	J SAAGTAGAG SAAATAGAG SAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II GTCCCCTTTY GTTCTGCC- GTTCTGCC- GTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CCTCCGCT- CGTTCCGCT- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCC- CCTCCCCCC- CCTCCCCCC- CCTCCCCC- CCCCCCCC- CCCCCCCC- CCCCCCCC- CCCCCCCC	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus	Image: constraint of the systemTGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTAC	GAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG GCAGTAAGCAG	SAAGTAGAGG GAAGTAGAGG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II GTCCCCTTTY GTTCTGCC- GTTCTGCC- GTTCCGCT- CGTTCCGCT- CGTCCGCT- CGTCCGCC- CGCCCCCCCCC- CGCCCCCCCCCCC- CGTCCGCC- CGCCCCCCCCCCCC- CGCCCCCCCCCCCCC	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20	Image: constraint of the systemTGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGATTACCGAAGGAGGATTACCGAAGGAGGATTACCGAAGGAGGATTAC	GAGTAAGCAG GCAGTAAGCAG	SAAGTAGAGG GAAGTAGAGG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II GTCCCCTTTY GTTCTGCC- GTTCTGCC- GTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTTCCGCT- CGTCCGCC- CGCCCCCCCCC- CGTCCGCC- CGCCCCCCCC- CGCCCCCCCCC- CGCCCCCCCCCC	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTTAAG CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20 L21 - O. chysurus 2	Image: constraint of the second state of the secon	GAGTAAGCAG GCAGTAAGCAG	SAAGTAGAGG GAAGTAGAGG GAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	 GTCCCCTTTY GTTCTGCC- GTTCTGCC- GTTCCGCT- CGTCCGCT- CGTCCGCC- CGTCCGCT-	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTGAAG
C. melampygus P. aquilonaris P. macrophtalmus E. oculatus A. dentatus L. apodus L125 L. analis L116 L. bucanella L. cyanopterus L. griseus L.23 L. jocu L. mahogoni L214 L. synagris L207 L. vivanus O. chrysurus L20	Image: constraint of the systemTGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGAGGATTTACCGAAGGAGGATTACCGAAGGAGGATTACCGAAGGAGGATTACCGAAGGAGGATTAC	JJ. GTAGTAAAAGGG GCAGTAAGCAGG	SAAGTAGAGG SAAATAGAG SAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG AAAATAGAG	II GTCCCCTTTY GTTCTGCC GTTCTGCC CGTTCCGCT CGTCCGCT CGTCCG	II GAACCCGGCT GAAGCCGGCC GAAGTTGGCC GAAATCGGCC GAAATCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC GAAACCGGCC	II CTGAGA CTGAAG

Figure 3.2. Continued.

55

	370	380	390	400
C. carpio	CGCGTACACACCGCC	CGTCACTCT	CCCCTGTCAA	AA
C. melampygus	CGCGCACACACCGCC	CGTCACCCT	CCCCAAGCAAC	IGGACCTAA
P. aquilonaris	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
P. macrophtalmus	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
E. oculatus	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
A. dentatus	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. apodus	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L125	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. analis	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L116	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. bucanella	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. cyanopterus	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. griseus	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L.23	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. jocu	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. mahogoni	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L214	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. synagris	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L207	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L. vivanus	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
0. chrysurus	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L20	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L21 - O. chysurus 2	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
R. aurorubens	CGCGCACACACCGCC	CGTCACCCT	CTGCAGTCAA	AA
L24	CGCGCACACACCGCC			

Figure 3.2. Continued.

Figure 3.3. Neighbor Joining (NJ) tree for consensus 12r RNA sequences of Caribbean lutjanids and a consensus sequence of the identified larvae clustered with their respective species.

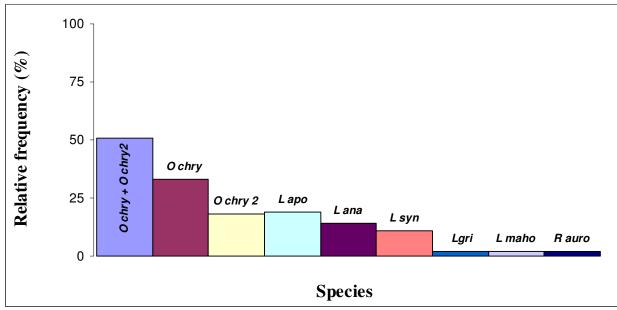


Figure 3.4. Relative frequency of species identified for lutjanid larvae.

Figure 0.1. Total lutjanid larvae collected.

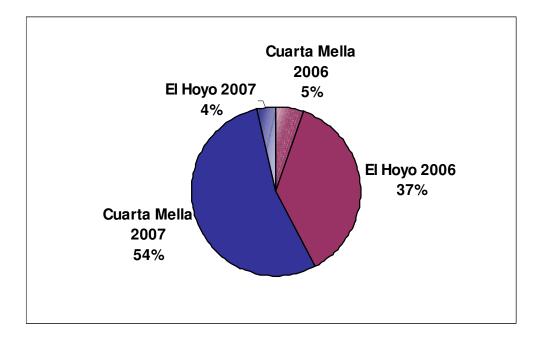


Figure 3.6. Total identified lutjanid larvae.

DISCUSSION

In this study sequencing of a fragment of mtDNA 12S rRNA proved to be useful for the identification of lutjanid larvae to the species level. This fragment met two requirements of a good molecular marker for Caribbean lutjanids: consistent interspecific differences and minimal instraspecific variation. All sorted larvae were assigned to a lutjanid species, except for a small uncertainty with the *O. chrysurus 2* larvae. Findings of some larvae with a haplotype similar to *O. chrysurus* may point toward certain degree of instraspecific variation within Yellowtail snapper populations in the area. As the distinct haplotype was not found in any of the adult voucher specimens, we recommend further screening to investigate polymorphism within species. Haplotype *O. chrysurus 2* came out 10 times, at each year we sampled, both at El Hoyo and La Cuarta Mella, thus representing a widespread variant.

Chow et al., (1993) used PCR-Restriction fragment length polymorphisms (RFLP) to access genetic species and stock discrimination of lutjanid larvae. They were not able to single out all species since the close phylogenetic relationship among lutjanids limits the resolution of RFLPs. In the present study, sequence analysis provided for better resolution and a reliable option for species identification of early life stages of fishes, in comparison to the limitations of morphological identification (Victor, 2008). It is argued that sequencing has drawbacks, including limitations imposed by cost and time, but this technology is being continuously improved making it evermore an attractive high resolution technique for species identification.

Even though the present study did not examine the total abundance of lutjanid larvae in the natural environment, i.e. not quantitative, there was a tendency towards higher frequencies of lutjanid larvae during spring samplings, than during the fall. Furthermore, higher frequencies of snapper species were also found within larval specimens during the spring (Table 3.1). Six of the seven species identified in this study are part of the typical assemblage of coral reef fishes in La Parguera (Randall, 1968), most with reported spawning peaks during the spring (SAFMC, 2005). Ramírez and García (2003) found higher abundance of snappers during the period February – May, which corresponds to the months of massive spawning aggregations for this taxon within insular shelf waters.

Large groups of adult Yellowtail snappers, the species more frequently found in our study, were fished in "corridas", as termed by fishermen, about a month prior to our samplings in spring 2006 and 2007 at La Parguera shelf edge (fishermen interviews). Yellowtail snappers are known to exhibit schooling behavior (Thompson and Munro, 1974). Spawning aggregations (SA) of yellowtail snappers have not been reported in Puerto Rico, hence, it is uncertain if those aggregations observed in La Parguera were actually SAs. Large spawning aggregations are reported to occur seasonally off Cuba, the Turks and Caicos and the USVI (SAFMC, 2005). Large spawning aggregation occurs during May-July at Riley's Hump near the Dry Tortugas Key West, Florida (Muller et al., 2003).

Our study was designed to collect larvae after mutton snapper spawning aggregation events. Accordingly, we expected higher frequencies of mutton snapper larvae. In contrast we found more Yellowtail snapper larvae than of any other species. The present data suggests that a spawning peak of yellowtails was as well detected. Some aggregation sites may be used by various species, either simultaneously or at different times of the day, month or year. Others host a single species (Domeier and Colin, 1997). Another possibility is that larvae might have been exported or imported to the area as well, however the examination of larval transport was outside the scope of this study, therefore this possibility was not examined further. However, Ramirez and García (2003) reported lutjanids as part of an assemblage of coral reef fish families that were concentrated within a relatively narrow belt fringing both the neritic and oceanic sides of the shelf edge. They found high abundance of lutjanids at a neritic station 10 km off the coast and suggested this corridor as an important source of snappers.

In conclusion, the 12S rRNA gene is appropriate for the identification for Caribbean lutjanids. The molecular key created in this study will facilitate further larval studies focusing on individual species. As ichthyoplankton surveys are still the most direct approach to investigate larval dynamics, specific identification of fish larvae is essential. In comprehensive plankton surveys thousands of fish larvae may be collected. Molecular analyses are becoming increasingly accessible, with costs reduced these may be feasible tools for studies were large quantities of larvae are collected (Richardson, 2006).

The need for taxonomic identification of early life stages of commercially important coral reef fishes have grown as efforts to develop stock assessment tools are becoming imperative. To date it is believed that a significant portion of reef fish larvae are retained to recruit back into their natal populations rather than being dispersed to other sites, therefore influencing the degree of connectivity among populations (Roberts, 1997; Sale, 2004; Cowen, 2000). Information on this connectivity among local populations is critically important for management, which is increasingly based on the use of marine protected areas (e.g. no-take zones) both to conserve, and to provide sustainable fisheries.

LITERATURE CITED

- Allen, G.R. 1985. FAO species catalogue. Snappers of the world. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fish. Synop. No. 125, vol. 6, 208 pp.
- Allen, G.R. 1987. Synopsis of the circumtroprical genus *Lutjanus* (Pisces: Lutjanidae). *In* Polovina, J.J. and Ralston, S. (eds.). Tropical snappers and groupers: Biology and fisheries management. Westview Press, Boulder. pp. 33-88.
- Anderson, W.D. Jr. 1987. Systematics of the fishes of the family Lutjanidae (Perciformes: Percoidei), the snappers. *In*: Polovina, J.J. & Ralson, S. (eds). Tropical snappers and groupers: Biology and fisheries management. Westview Press, pp. 1–32.
- Anderson, W.D. 2003. Lutjanidae. *In*: Carpenter, K.E. (ed). The living marine resources of the Western Central Atlantic. Volume 3: Bony fishes part 2 (Opistognathidae to Molidae).
 FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologist and Herpetologists Special Publication, 5, pp. 1479–1504.
- Chow, S. and P.J. Walsh, 1992. Biochemical and morphometric analyses for phylogenetic relationships between seven snapper species (subfamily Lutjaninae) of the western Atlantic. Bull. Mar. Sci., 50: 508–519.
- Chow, S., M.E. Clarke and P.J Walsh. 1993. PCR-RFLP analyses on thirteen snappers (subfamily Lutjaninae): a simple method for species and stock identification. Fish. Bull., 91: 619–627.
- Collins, L.A., J.H. Finucane, and L.E. Barger. 1980. Description of larval and juvenile red snapper, *Lutjanus campechanus*. U.S. Natl. Mar. Fish. Serv. Fish. Bull., 77: 965-974.
- Cowen, R. K, K.M. Lwiza, S. Sponaugle, C.B. Paris and D.B. Olson. 2000. Connectivity of marine populations: open or closed? Science, 287: 857-859.
- Cowen, R.K. 2002. Larval dispersal and retention and consequences for population connectivity. *In*: Sale PF (ed.). Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 149–170.

Doherty, P.J. 1981. Coral reef fishes: Recruitment-limited assemblages? 4th Proc. Int. Coral Reef Symp., 2: 465-470.

65

- Domeier, M.L. and M.E. Clarke. 1992. A laboratory produced hybrid between *Lutjanus synagris* and *Ocyurus chrysurus* and a probable hybrid between *L.grisesus* and *O. chrysurus* (perciformes: Lutjanidae). Bull. Mar. Sci., 50: 501-507.
- Domeier, M.L., C. Koenig and F. Coleman. 1996. Reproductive biology of the gray snapper (Lutjanidae: *Lutjanus griseus*) with notes on spawning for other western Atlantic lutjanids. Pages 189-201 in: F. Arreguin- Sanchez,, J.L. Munro, M.C. Balgos and D. Pauly (eds). Biology, fisheries and culture of tropical groupers and snappers. ICLARM Conf. Proc., 48.
- Domeier, M.L. and P.L. Colin. 1997. Tropical reef fish spawning aggregations: defined and reviewed. Bull. Mar. Sci., 60(3):698-726.
- Evermann, B.W. and M.C. Marsh. 1900. The fishes of Puerto Rico. Bull. US Fish. Comm., 1899: 51-350.
- Figuerola-Fernández, M. and W. Torres-Ruiz. 2001. Aspectos de la biología reproductiva de la sama (*Lutjanus analis*) en Puerto Rico y recomendaciones para su manejo. Informe final Laboratorio de Investigaciones Pesqueras, Puerto Rico Departamento de Recursos Naturales y Ambientales.
- Froese, R. and D. Pauly, (eds.). 2006. FishBase 2006. www.fishbase.com. Downloaded January 10, 2008.
- Ginsburg, I. 1930. Commercial snappers (Lutjanidae) of Gulf of Mexico. Bulletin of the United States Bureau of Fisheries, 46:265–276.
- Johnson, G.D., 1980. The limits and relationships of the Lutjanidae and associated families. Bull. Scripps Inst. Ocean., 24: 1–114.

Johnson, G.D., 1993. Percomorph phylogeny: progress and problems. Bull. Mar. Sci., 52: 3-28.

Jones, G.P., M.J. Milicich, M.J. Emslie and C. Lunow. 1999. Self-recruitment in a coral reef fish population. Nature, 402: 802-804.

- Jordan, D.S. and B. Fesler. 1893. A review of the sparoid fishes of America and Europe. Reports of the United States Fisheries Commissioner, 27: 421–544.
- Jordan, D.S. and J. Swain.1884. A review of the species of Lutjaninae and Hoplopagrinae found in American waters. Proceedings of the United States National Museum, 7: 427–474.
- Kocher, T.D., W.K. Thomas, A., Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca, and A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA, 86: 6196-6200.
- Kocher, T.D. and C.A. Stepien. 1997. Molecules and morphology in studies of fish evolution. *In*. Molecular systematics of fishes. Kocher, T.D. and Stepien C. A. (eds.). Academic Press, pp. 1-11.
- Laroche, W.A. 1977. Description of larval and early juvenile vermillon snapper, *Rhomboplites aurorubens*. Fish. Bull., 75: 547-554.
- Lee, S.C. and S.C.M. Tsoi. 1988. Isozymic analyses of the systematic relationships of some closely related lutjanid species from Taiwan (Pisces, Lutjanidae). Zool. Anz., 220: 245-254.
- Leis, J.M. 1991. The pelagic stage of reef fishes: the larval biology of coral reef fishes. Pages 183-229 *in* P. F. Sale (ed.). The ecology of fishes on coral reefs. Academic Press, Inc. New York.
- Leis, J.M. 2005. A larva of the eteline lutjanid, *Randallichthys filamentosus* (Pisces: Perciformes), with comments on phylogenetic implications of larval morphology of basal lutjanids. Zootaxa, 1008: 57–64.
- Leis, J.M. 2007. Larval Development in the Lutjanid Subfamily Lutjaninae (Pisces): the Genus *Macolor*. Records of the Australian Museum, 59: 1–8.
- Leis, J.M. and K. Lee, 1994. Larval development in the lutjanid subfamily Etelinae (Pisces): the genera *Aphareus, Aprion, Etelis* and *Pristipomoides*. Bull. Mar. Sci., 55: 46–125.
- Leis, J.M, H.P.A. Sweatman and S.E. Reader. 1996. What the pelagic stages of coral reef fish are doing out in blue water: daytime observations of larval behavioral capabilities. Mar. Fresh. Res., 47: 401-411.

- Leis, J.M., S. Bullock, D.J. Bray and K. Lee. 1997. Larval development in the lutjanid subfamily Apsilinae (Pisces): the genus *Paracaesio*. Bull. Mar. Sci., 61: 697-742.
- Leis, J.M., M.I. McCormick. 2002. The biology, behavior and ecology of the pelagic, larval stage of coral-reef fishes. In: Sale, P.F. (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 171–199.
- Leis, J.M., and B.M. Carson-Ewart (eds.), 2004. The Larvae of Indo-Pacific Coastal Fishes: a Guide to Identification. Leiden: Brill.
- Leis, J.M. and D.S. Rennis, 2004. Lutjanidae (Snappers and Fusiliers). *In* The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae, ed. J.M. Leis and B.M. Carson-Ewart, pp. 329–337. Leiden: Brill.
- Limouzy-Paris, C.B., M.F. McGowan, W.J. Richards, J.P. Umaran and S.S. Cha, 1994: Diversity of fish larvae in the Florida Keys: results from SEFCAR. Bull. Mar. Sci., 54: 857-870.
- Limouzy-Paris, C. B., H. C. Graber, D. L. Jones, A. W. Röpke and W. J. Richards. 1997. Translocation of larval coral reef fishes via sub-mesoscale spin-off eddies from the Florida Current. Bull. Mar. Sci., 60: 966–983.
- Loftus, W.F. 1992. Lutjanus ambiguus (Poey), a natural intergeneric hybrid of Ocyurus chrysurus (Bloch) and Lutjanus synagris (Linnaeus). Bull. Mar. Sci., 50: 489–500.
- Miller T.L. and T.H. Cribb. 2007. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae. Mol. Phyl. Evol., 44: 450-460.
- Mora, C. and Sale, P.F. 2002 Are populations of coral reef fish open or closed? Trends Ecol. Evol. 17: 422–428.
- Moser, H.G (ed.). 1996. The early stages of fishes in the California current region. CALCOFI Atlas 33: Allen Press, Inc., Lawrence. 1505 p.
- Moura R.L. and K.C. Lindeman. 2007. A new species of snapper (Perciformes: Lutjanidae) from Brazil, with comments on the distribution of *Lutjanus griseus* and *L. apodus*. Zootaxa, 1422: 31-43.

Palumbi, S.R. and R.R. Warner. 2003 Why gobies are like hobbits. Science, 299: 51–52.

- Palumbi, S.R. 2003. Population genetics, demographic connectivity and the design of marine reserves. Annu. Rev. Environ. Res., 29: 31–68.
- Palumbi, S.R. 2004. Marine reserves and ocean neighbor hoods: The spatial scale of marine populations and their management. Ecol. Applic. 13: S146–S158.
- Poey, F. (1860) Memorias sobra la historia natural de la Isla de Cuba, acompañadas de sumarios Latinos y extractos en NEW WESTERN ATLANTIC SNAPPER Zootaxa 1422. 2007 Magnolia Press. Tomo 2. La Habana. Vol. 2, pp. 97–336.
- Posada, D. and K.A. Crandall, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
- Rabalais, N.N., S.C. Rabalais and C. R. Arnold. 1980. Description of Eggs and Larvae of Laboratory Reared Red Snapper (*Lutjanus campechanus*). Copeia, 4: 704-708.
- Ralston, S., J.R. Bence, M.B. Eldridge and .H. Lenarz. 2003. An approach to estimating rocky shore biomass based on larval production, with application to *Sebastes jordani*. Fish. Bull., 101:129.146.
- Ramírez, J.T.and J.R. García. 2003. Offshore dispersal of Caribbean reef fish larvae: How far is that? *Bul. Mar. Sci.* 72(3): 997-1017.
- Reader, S.E. and J.M Leis. 1996. Larval development in the lutjanid subfamily Caesioninae (Pisces): The genera *Caesio*, *Dipterygonotus*, *Gymnocaesio* and *Pterocaesio*. Bull. Mar. Sci, 59: 310–369.
- Roberts, C.M. 1997. Connectivity and management of Caribbean coral reefs. Science, 278: 1454-1457.
- Robins, C.R. and G.C. Ray. 1986. A field guide to Atlantic coast fishes of North America. Houghton Mifflin Co. Boston. 354 p.

- Rojas, L. E. 1960. Estudios estadísticos y biológicos sobre el pargo criollo, *Lutjanus analis*. Centro de. Ivestigaciones.. Pesqueras. Notas Sobre Investigacion. 2: 16.
- Ronquist, F., Huelsenbeck, J.P., 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
- Richards, W.J., and V.P. Saksena. 1980. Description of larvae and early juveniles of laboratoryreared gray snapper, *Lutjanus griseus* (Linnaeus) (Pisces, Lutjanidae). Bull. Mar. Sci., 30: 515-522.
- Richardson, D.E., J.D. Vanwe, A.M. Exum, R.K. Cowen and D.L. Crawford. 2007. Highthroughput species identification: from DNA isolation to bioinformatics. Mol. Ecol., 7: 199-207.
- Riley, C.M., G.J. Holt and C.R. Arnold. 1995. Growth and morphology of larval and juvenile captive bred yellowtail snapper, *Ocyurus chrysurus*. Fish. Bull., 93: 179-185.
- Rivas, L.R. 1949. A record of the Lutjanid fish (*Lutjanus cyanopterus*) for the Atlantic coast of the United States, with notes on related species of the genus. Copeia, 2:150-152.
- Rivas, L.R. 1966. Review of the *Lutjanus campechanus* complex of of red snappers. J. Q. Flor. Acad. Sci. 29:117-136.
- Sale, P.F. 1980. The ecology of fishes on coral reefs. Oceanogr. Mar. Biol. Rev., 18: 367-421.
- Sarver, S.K., D.W. Freshwater and P.J. Walsh. 1996. Phylogenetic relationships of western Atlantic snappers (family Lutjanidae) based on mitochondrial DNA sequences. Copeia, 3: 715-721.
- Sotka, E.E. and S.R. Palumbi. 2006. The use of genetic clines to estimate dispersal distances of marine larvae. Ecology, 87: 1094–1103.
- Sponaugle, S., R.K. Cowen, A. Shanks, S.G. Morgan, J.M. Leis, J. Pineda, G.W. Boehlert, M.J. Kingsford, K. Lindeman, C. Grimes and J.L. Munro. 2002. Predicting self-recruitment in marine populations: Biophysical correlates and mechanisms. Bull. Mar. Sci., 70: 341-375.

- Swearer, S.E., J.E. Caselle, D. W. Lea and R.R. Warner. 1999. Larval retention and recruitment in an island population of a coral-reef fish. Nature, 402: 799-802.
- Swofford, D.L., 2003. PAUP. Phylogenetic Analysis Using Parsimony (and other methods). Version 4.0b10. Sinauer Associates, Sunderland.
- Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10: 512-526.
- Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 10.1093/molbev/msm092.
- Vergara, R.R. 1977. Family Lutjanidae. *In*: Fisher, W. (Ed.) FAO species identification sheets for fishery purposes. Eastern Central Atlantic, Fishing Area 31. Rome.
- Vergara, R.R. 1980. Phylogenetic considerations on the Cuban species of the genus *Lutjanus* (Lutjanidae, Perciformes, Teleostei).. Inf. Cient.-Tec. Inst. Oceanol. Acad. Cienc. Cuba. 113, Acad. Cienc. Cuba, Havana (Cuba), 39 p.
- Ward, R.D. T.S. Zemlack, B.H. Innes, P.R. Last and P.D.N. Herbert. 2005. DNA Barcoding Australia's fish species. Philosophical transactions of the Royal Society of London, Series B, Biological Sciences, 360: 1847-1857.
- Zhang, J. and X. Liu. 2006. The phylogenetic relationship of the family Lutjanidae based on analyses of AFLP and mitochondrial 12S rRNA sequences. Chin. Sci. Bull., 51: Supp. 1-6.

4 CONCLUSIONS AND RECOMENDATIONS

Our investigation of the phylogenetic relationships of the Lutjanidae using a fragment of the 12S rRNA gene generally supports the phylogenetic hypothesis based on adult morphology proposed by Johnson (1980) and Rivas (1966). The employment of additional mitochondrial or nuclear genes to explore genetic variation among lutjanid taxa will provide a more complete picture of the evolution of this important family of fishes. Even when relationships of lutjanids were not fully resolved, our phylogenetic study is, so far, the first to include all the 3 subfamilies of lutjanids occurring in the Caribbean. However, as intraspecific variation was not observed, species were characterized unambiguously.

The consistency in the sequence data for each species in this study demonstrates that the 12S rRNA gene is a reliable tool for taxonomic identification within this family. These sequences constitute a sort of molecular key for all the 15 species of lutjanids studied, useful for identification of early stages and processed tissues or fillets for fisheries management regulations.

As a distinct haplotype of *Ocyurus chrysurus* was found within larval specimens but was not found in any of the adult voucher specimens, we recommend further screening of Yellowtail snapper populations to investigate polymorphism within species.

In conclusion, the 12S rRNA gene is appropriate for the identification for Caribbean lutjanids. The molecular key created in this study will facilitate further larval studies focusing on individual species. As ichthyoplankton surveys are still the most direct approach to investigate larval dynamics, specific identification of fish larvae is essential.