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ABSTRACT

The use of networks as computational tools has been fundamental in Com-

puter Information Science and Engineering research. As computers have evolved,

the demands for faster data transmission have incremented. Protocol processing

and application processing compete for a share of CPU time when the underlying

network evolves.

Offload Engines have been proposed as ways to alleviate the CPU of the

host of the cost of processing the protocols used in an end-to-end communication.

These engines are proposed as part of the network interface hardware or as a

component near or even inside the CPU. However, an increase in performance is

not guaranteed after the installation of this type of engine. The operating system

of the host is capable of processing the protocols faster than the engine in some

particular occasions. A probabilistic model that estimates the performance metrics

of utilization and delay, before and after extracting the protocol processing from

the CPU of the host is presented in this document. This novel approach focuses on

solving the issues presented by abstracting the inherent characteristics of protocol

processing. A test bed was setup to validate the analytical model. The test bed

was designed using an emulation-based approach mixed with a real implementation

to reproduce the behavior of a TCP Offload Engine installed as part of a server

that runs Apache 2.2. The file system used for populating the Web server has

been divided into five different classes based on its sizes. Each file class has been

requested using benchmarks to stress the server in different ways.

The analysis of the results obtained shows that the analytical model estimates

the utilization and delay of the system. The analysis shows that, for some cases,
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the inclusion of an offload engine improves overall system performance. The in-

clusion of the model into the operating system can be used to determine when

and which objects are going to be handled by the offload engine and which are

going to be handled by the operating system. Also, by using our model, we can

provision the operating system with the capability of balancing the load between

the offload engine and the host.
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RESUMEN

El uso de redes como instrumentos de investigación ha sido fundamental en

Ciencias e Ingeniera de la Información y la Computación. La demanda por una

transmisión de datos más rápida ha incrementado gracias a la evolución en la

computación. El procesamiento de los protocolos de comunicación aśı como el

procesamiento de programas de aplicación compiten por una fracción de tiempo

del procesador principal cuando la red que transmite los datos evoluciona de una

velocidad menor a una mayor.

Los motores de descarga1 han sido propuestos como una alternativa para

aliviar al procesador principal del computador anfitrión del costo de procesar los

protocolos de comunicación. Estos motores pueden ser incluidos como un equipo

adicional que se añade a la tarjeta de red o como un componente cerca, o dentro,

del procesador principal. Sin embargo, un aumento en el desempeño del com-

putador no está garantizado después de la instalación de un motor de descarga.

El sistema operativo del computador anfitrión es capaz de procesar los protoco-

los de comunicación más rápido que el motor de descargue en algunas ocasiones

particulares. Un modelo probabiĺıstico que estima utilización y demora, antes

de y después de extraer el procesamiento de los protocolos de comunicación del

procesador principal, se presenta en este documento. Este enfoque novedoso se

centra en resolver los asuntos expuestos representando en el modelo anaĺıtico las

caracteŕısticas inherentes del procesamiento de los protocolos de comunicación. El

1 “Offload Engines”
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modelo anaĺıtico fue validado utilizando un experimento. Nuestra base experimen-

tal fue diseñada utilizando un enfoque basado en la emulación y complementado

con una implementación real que reproduce la conducta de un motor de descarga

de TCP/IP instalado como parte de un servidor que corre Apache 2.2. El sis-

tema de archivos que se utilizó para poblar el servidor de Web ha sido dividido en

cinco clases que están basadas en el tamaño del archivo. Archivos de cada clase

fueron solicitados del servidor de Web utilizando los programas de estándar de

comparación (”benchmarks”) de diferentes maneras.

El análisis de los resultados expone que el modelo anaĺıtico estima la uti-

lización y la demora del sistema. El análisis muestra, que para algunos casos, la

inclusión de un motor de descarga mejora el desempeño general del sistema. La

inclusión del modelo como parte del sistema operativo puede ser utilizada para

determinar cuando y cuales objetos serán manejados por el motor de descarga y

que será manejado por el sistema operativo. También, utilizando nuestro modelo,

se le puede proveer al sistema operativo con la capacidad de equilibrar la carga

entre el motor de descarga y el procesador principal del computador anfitrión.
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CHAPTER 1

INTRODUCTION

The computer has evolved from been a solely independent computational

device to be a significant component that provides computational services within

a network. Traditionally, network protocols are implemented in software as part

of the operating system of the host. Increases in the quantity and resolution of the

data, and the need for faster data transmission, encourage their implementation in

specialized hardware. Hardware implementations have a tendency of achieving a

higher performance increase than software ones, but with a significant increase in

the implementation effort due to their complexity and cost. Meanwhile, advances

in technology have made software implementation attractive. Novel methods for

understanding the specific features of protocol processing are needed for deciding

if a hardware or software implementation suffices.

On the advent of multi-core multi-threaded processors and new technologies

on outboard processors, a new debate related to where protocol processing must

be performed arises. An offload engine (OE) is a specialized entity outside the

main CPU that processes in whole or in part the communication protocols that

traditionally are processed by the operating system of the host. The intention

of including an offload engine is to reduce the load incurred when processing

communication. Some protocol offload engines have been proposed as part of the

1
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Network Interface Card (NIC) [1, 2]. Others have proposed placing the OE near

the CPU or even inside the CPU [3–6]. The most common offload engine is used to

process the TCP and IP protocols. This engine has been called the TCP Offload

Engine (TOE) (see Figure 1–1) [7]. The main issue addressed by processing the

protocols efficiently is to alleviate the problem that arises when the speed of the

underlying network transfers data in a way that imposes a heavy load on the CPU

of the server. The same CPU also processes the network application that uses the

data transferred. Consequently, the CPU becomes the bottleneck of the system.

Physical Layer

MAC Protocol

Internet Layer

Transport Layer

Application

No Offload

Physical Layer

MAC Protocol

Internet Layer

Transport Layer

Application

TCP Offload

Handled by
Network Card

Processed at
main CPU
or core

Processed at
main CPU or
core

Handled by
Network Card

Processed at
the TCP
Offload Engine

Figure 1–1: Internet Protocol Suite with and without a TCP Offload Engine

1.1 Motivation

There is no guarantee that the inclusion of an OE within the system results

in performance increases. The interactions between the CPU and the protocol

offload engine are independent of the underlying network technology. A poorly

designed interface between the host and the OE is likely to ruin most of the

performance benefit brought by protocol offload [9]. There are some situations in

which the OE could be lagging behind the server and degrading the system [10].
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The system is degraded if converting a file into an object to be transfered takes

more time after the inclusion of the offload engine. Also the system is degraded

when the actual overhead used to communicate with the offload entity is equal or

takes longer than performing the actual transmission at the OS. This results in a

system that is unable to provide its clients with better or similar response times

than the traditional-host1 . However, the inclusion of an OE could be beneficial in

some cases [11].

Most of the protocol offload research found during our survey of literature is

experimental. The experiments focus in processing the protocols in an OE as part

of the Network Interface Card (NIC), into another core of the same CPU, or into

a dedicated General Purpose Processor (GPP). However, during our exhaustive

survey of literature, we were unable to find a Queueing Theory based model for

estimating the change in performance for protocol offload engines. A limited

number of articles deal with protocol offload using analytical modeling [10, 12].

The models found are deterministic and oriented to a single aspect of protocol

offload [12].

Performance modeling is an important part of the research area of Web

servers. Without a correct model, it is difficult to give an accurate prediction

of performance metrics. Queueing Theory has been used for performance mod-

eling of Web servers and also for Web traffic generation2 . However, there is no

consensus whether which distribution is the best for modeling the length of the

1 a host without protocol offload

2 The M/G/1 queue is used for both topics
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files that are going to be converted into traffic streams [13–15]. Classical modeling

gives a very poor approximation [16, 17]. A probabilistic model was design using

the tools provided by the M/G/1 queue after examining the available literature.

This model is centered on protocol offload engines.

1.2 Problem Definition

This dissertation presents a probabilistic model that is capable of estimat-

ing the performance increase in utilization and delay of a system when protocol

processing is extracted from the OS and performed in another entity. The model

uses Queuing Theory for approximating these performance measures. The proba-

bilistic model was devised under the context of a Web Server that handles HTTP

requests. Finally the model was validated using a case study oriented to TCP

offload.

The uniqueness of our research abstracts analytically some of the inherent

characteristics of protocol processing for estimating the performance metrics to

determine a priori in what situations protocol offloading is beneficial. This is

performed by modeling the system as a network of queues as presented in Figure

1–2. Using the steady state properties of the M/M/1 and M/G/1 queues we

obtained a new formulation of the problem for the utilization and delay of the

system.

In our case study, the model is validated using a mixture between a real

implementation at the Web Server (WS) and an emulator of an OE in an external

PC (Figure 1–3). The experimental setup includes a study focused on the behavior

of the host CPU when confronted to different object sizes using an approach similar

to the one presented in [18]. This research aims to study the pros and cons of

protocol offloading and its related environment.
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Figure 1–2: Abstraction of a CPU Supported by an Offload Engine

1.3 Contributions and Significance

The first main contribution was producing a probabilistic model that

estimates the performance increase or decrease in utilization and delay

when protocol processing is shifted from the operating system to a

protocol offload engine. Our analytical model considers the stochastic nature

of the end-to-end transmission. Consequently our model includes the process for

converting the requested object R into packets of protocol P and how it was

distributed. The analytical model is simple and extensible.
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...................
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Figure 1–3: Experimental Setup
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The second contribution was the development of a TCP Offload Engine

emulator as a tool used to validate the model. The emulator provides

an insight of the real problem beyond the limitations of the analytical

model. The levels of detail of our emulation-based approach are finer than those

provided by the oversimplification of the probabilistic model. The emulation-based

approach provides our research with an experimental platform.

Our approach of classifying files based on their sizes present an inno-

vation for studying offloading from a totally different perspective. This

is our third main contribution. Dependencies on the size of the requested object

stresses the host in different ways [18, 19]. This approach has been followed for

further improvements on the Web server application but has not been oriented to

protocol processing improvements. We were unable to find investigations on the

standpoint of protocol offload that segregated the requested objects and analyzed

its impact on performance. Most of the research conducted in TCP offload ab-

stract the file system as a whole [20–22] or even uses workloads that benefits their

test bed [4, 21, 23]. Studying only the general case, or the extreme case, could

conceal the real benefits of protocol offload over a wide variety of different situ-

ations [24]. As mentioned before, it is known that the server behaves differently

when handling different file sizes.

The fourth main contribution was investigating the performance of the

Web server before and after protocol processing extraction not only

when the system saturates but also when the system is in equilibrium.

Related research [6, 11, 20] used benchmarks to saturate the system and obtained



7

measures for analyzing what happens under these extreme conditions. Our ap-

proach not only studies the behavior when the system is saturated but also studies

the behavior of the system when it is not.

The fifth main contribution was confronting the analytical model with

a real implementation of the common Web server used today. Apache

2.2 was used as part of the test bed. Infimal changes have been done to Apache 2.2

core application when interfaced with the TCP offload engine emulator. Therefore,

our research implies that a network application does not need to be modified

substantially if an offload engine is included as part of the system.

1.4 Marginal Contributions

The research conducted provided a mathematical model that was validated

with a test bed composed of an emulator and a real-implementation. Since the

analytical model uses the notions of Queuing Theory our research scope is not

bound to a specific hardware or coded into any specific on-board embedded pro-

cessor. Therefore, it is not limited by a specific hardware constraint that can ruin

or bias our findings.

This research uses full TCP and IP offload. The test bed used in this research

allows no constraints for achieving full protocol offload.

1.5 Dissertation Overview

This document is divided into six chapters. Chapter 2 provides a review

of published work, both theoretical and experimental, that are fundamental for

sustaining the relevance of the problem, analyze the accomplishments of other

research and to study the areas of knowledge that contribute to our findings.

Chapter 3 formally states the problem, presents the methods used to conduct the

research, and describes the test conducted on our experimental setup. Chapter
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4 presents the results obtained from the validation of the analytical model. Also

this chapter presents some additional results obtained by stressing the test bed

beyond our original intentions. Chapter 5 reviews the main findings of the inves-

tigation highlighting its contributions. Also this chapter presents the limitations

encountered during the whole research process. Moreover, Chapter 5 presents final

remarks and future directions for further improvements on this research area. The

ethical considerations taken into preparing this research are presented in Chapter

6. Finally, a series of appendices present supporting material related to the scope

of this dissertation.



CHAPTER 2

SURVEY OF LITERATURE

A fundamental part of our research consisted in reviewing the literature on

the nature of performance modeling, protocol processing, and network application

behavior. The uniqueness of this research contributes in finding how these areas

can complement each other for further understanding of the problem. This chapter

reviews both the analytical and the experimental studies in the field emphasizing

the issues and techniques that are closely related to the contributions presented

on this document.

2.1 Analytical Modeling

This section summarizes, discusses, and presents the issues that are related

when modeling the system analytically. Experimental studies have shown that

Web traffic can have different characteristics than traditional voice traffic [16, 17,

25]. These characteristics are directly related to the objects from within the traffic

originates.

2.1.1 Limitations of Classic Modeling

Some features of classical models used for telephonic and telegraphic research

are not suitable for modeling the traffic over a wide area network. Classically the

Poisson distribution has been used to describe job arrivals in a server. Hanning,

Samorodnitsky, Marron, and Smith state that modeling packets as jobs arriving

9
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into a server following a Poisson distribution is an assumption that could be mis-

leading [16]. In [17], Paxson and Floyd presented that modeling Web area traffic

as Poisson is not appropriate for some Upper Layer Protocols (ULP). Perhaps,

the problem can be approached from a different point of view by analyzing the

behavior of the sessions.

A session initiation is a natural phenomenon that is consonant with the arrival

rate of a job in telephonic and telegraphic research. In Web traffic, a human behind

a computer initiates a session. Therefore, session arrivals for FTP and HTTP

can be modeled as a Poisson process. On the contrary, sessions with other ULPs

as the Network News Transfer Protocol (NNTP) and the Simple Mail Transfer

Protocol (SMTP) have inter-arrival times that are far from exponential [17].

The actual data transfer is not well described with a Poisson process. The

inter-arrival times between packets within a session does not follow an exponential

distribution [16, 17]. Also, session length modeling using the approach of the

traditional voice traffic is not suitable for modeling the Web session lengths [25].

Within a Web session, the data is carried by a series of bursts [26]. A burst is a

collection of related packets from the same connection that constitute an active

period of data transmission. In [16] it is demonstrated that modeling bursts using

the classical approach leads to deceptive results. The article presents a graphical

representation of the real traffic and the traffic generated using a simulation. It

is concluded then that an exponential distribution is a poor approximation to the

service distribution [16].

2.1.2 Novel Approaches of Analytical Modeling

Novel research has explored the use of the Poisson distribution to model the

arrival of Web sessions. In [27], Miorandi, Kherani, and Altman present a queuing



11

model for HTTP traffic over wireless LANs. Time in between Web sessions was

modeled using an exponential distribution. In [28], Kherani and Kumar modeled

the request for file transfers as a Poisson process. In [29], Guo, Crovella, and

Matta, studied Web traffic under chaotic conditions. Arrivals were modeled us-

ing a Poisson process. In [30], Cao, Andersson, Nyberg, and Kihl presented a

Web server performance analysis using Queuing Theory. Sessions followed a Pois-

son distribution. In [16], Hanning, Samorodnitsky, Marron, and Smith suggested

modeling the Web traffic initiations using an homogeneous Poisson process. In

[25], Tudjarov, Temkov, Janevski, and Firfov presented an Empirical modeling

of Internet traffic at middle-level burstiness that uses a Poisson process to model

Web session arrivals. Most of the investigations found in our survey of the litera-

ture modeled the arrival of sessions as a Poisson process. Therefore, it is common

in the scientific community to use the Poisson distribution to model this type of

process.

Queuing Theory emerges as a candidate for modeling Web Servers when-

ever the arrival process of a session is asserted as Poisson. Markov models are

performance analysis tools that capture the inherent uniqueness of Web session

initiations. In [30], Cao and others presented an M/G/1/K queue for Web server

performance modeling. Another approach using tandem queues was used by Van

der Mei, Hariharan, and Resser in [31]. The model was used to predict Web server

performance metrics and was validated through measurements and simulations.

In [32], Cherkasova and Phaal, presented a similar Markovian model with Poisson

arrivals and deterministic session times. The novelty of our approach relies on

characterizing protocol offload in Web servers using M/G/1 queues. This model

is simple and renders a smaller parameter space, thus it is easier to estimate. A
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simple model (e.g. M/M/1/K or M/D/1/K ) can predict some Web server per-

formance metrics, but making the assertion that the service time distribution is

exponential or deterministic is risky [30]. In the survey of literature conducted

we were unable to find models that used these type of queues applied to protocol

offload engines.

Queuing Theory emerges as a candidate for modeling Web Servers when-

ever the arrival process of a session is asserted as Poisson. Markov models are

performance analysis tools that capture the inherent uniqueness of Web session

initiations. In [30], Cao and others presented an M/G/1/K queue for Web server

performance modeling. Another approach using tandem queues was used by Van

der Mei, Hariharan, and Resser in [31]. The model was used to predict Web server

performance metrics and was validated through measurements and simulations.

In [32], Cherkasova and Phaal, presented a similar Markovian model with Poisson

arrivals and deterministic session times. The novelty of our approach relies on

characterizing protocol offload in Web servers using M/G/1 queues. In the survey

of literature conducted we were unable to find models that used Queuing Theory

for protocol offload. This model is simple and renders a smaller parameter space,

thus it is easier to estimate. A simple model (e.g. M/M/1/K or M/D/1/K ) can

predict some Web server performance metrics, but making the assertion that the

service time distribution is exponential or deterministic is risky [30].

Web sessions are initiated whenever a task is required from the server. In

our context, a session consists of a client requesting an object that is going to

be transferred from the server’s location to its destination. This web object is

converted to a series of packets that constitute a data stream, also called a burst.

We can approximate the behavior and length of these bursts by studying traffic
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over the Internet. Characterizing the length and behavior of the traffic streams

was a key issue that was not overlooked during the research process.

2.1.3 Innovations on Web Traffic Modeling

It is known that Internet traffic is shown to be self-similar and bursty by

nature [25, 33]. Aggregation of many of these bursts produce self-similar traffic

[34]. Traffic that is self-similar posses fractal behavior when observed in various

time scales [17, 26]. Recent work by Tudjarov leads to stronger self similarity for

UDP traffic than TCP traffic [25]. Their work does not consider the effect that

packet loss imposes in TCP congestion control mechanism. On the contrary, a

transmission using TCP under a congested link is sensitive to packet loss. Even

without any variability in terms of packet lengths or network delays, TCP itself

can sometimes exhibit a behavior that produces traffic series that show properties

similar to those of self-similar traffic. In [29] Guo and others present that a

single TCP connection over a lossy link can produce a time-series that can be

misidentified as self-similar. This phenomenon is called pseudo self-similarity [29].

Understanding the characteristics of the underlying processes that creates

the fractal behavior of Web traffic is a key issue that gears the research toward

understanding the processes that describe the lengths of traffic bursts. One way

of generating Web traffic has been achieved using the Poisson distribution and

the Pareto distribution in what has been called a Poisson Pareto Burst Process

(PPBP) [35]. The PPBP has gained its appeal since it is formed in a way consistent

with the typical behavior of Internet traffic. The PPPB has been used to model

real traffic streams in recent work [36–38]. The Pareto distribution is a heavy

tailed distribution. Heavy-tailed distributions assign relatively high probabilities

to regions far from the mean. These distributions has an asymptotic shape as
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a power-law with exponent α less than 2 [13]. A random variable that follows a

heavy-tailed distribution can give rise to extremely large values with non-negligible

probability:

P [X > x] ∼ x−α 0 < α ≤ 2 (2.1)

where a(x) ∼ b(x) means limx→∞a(x)/b(x) = c for some constant c. These

distributions have heavier tails than other common models, as the exponential

and Weibull distribution [39]. A similar approach for generating traffic is using

an M/G/∞ queue to model Web traffic. This was suggested in a seminal article

by Paxson and Floyd [17]. On this method, the arrival process follows a Poisson

distribution and the service rate follows a power law distribution. Figure 2–1

presents this type of queue.
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Figure 2–1: Poisson Pareto Process M/G/∞ Queue

2.1.4 Innovations in Characterizing File Sizes and Burst Lengths

It has been shown on [26] that the distribution of file sizes is directly related

to the length of the bursts seen in Web traffic. These lengths are described using
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either one or mixed probability distributions. While no standard distribution is ex-

actly right, the heavy tail Pareto and the light tail lognormal distributions appear

sensible in the tails [16]. The goodness of fit over Internet traffic of the lognormal

distribution raises interesting questions about the widely accepted premise that

only heavy tailed/power law distributions lead to long range dependence [16].

Currently, there is no definite consensus on which distribution follows the file

and burst sizes [13, 14, 16, 39, 40]. During the past decade, file sizes and bursts

lengths were modeled by heavy-tailed/power law distributions[17, 26, 40, 41]. In

[14], Downey suggested that the lognormal distribution may be more appropriate

than classic heavy tailed distributions such as the Pareto. Some new theoreti-

cal work revealed that these distributions are not inconsistent as was previously

thought. This question of whether a distribution follows a Pareto or lognormal

distribution has been studied in other fields such as Finance, Biology, Chemistry,

Ecology, Astronomy, and Information Theory [39]. Power law and lognormal dis-

tributions are intrinsically connected. Using Pareto for approximate the burst

lengths results in a poor fit for small data values. The lognormal yields a sub-

stantially better fit in the body of the distribution at the price of poorer fit on

the upper tail [16]. The problem arises for fitting the bulk of the sample (small

files), instead the emphasis is on the tail where the fit is reasonable acceptable.

Large files, above a certain size, might be rare currently, and hence, both lognor-

mal and power law distributions might capture the rare events adequately [39].

Some data analysis suggested that both the heavy tail Pareto and the light tail

lognormal give reasonable fits in the upper tail by choosing the right parameters,

although neither the Pareto nor the lognormal distribution is a perfect fit. Also,

second moments, finiteness of variance, provide a poor way of understanding the
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type of distributional properties that are important to Internet traffic and file size

distribution [16].

A decade ago, Crovella and Bardford proposed the creation of a workload

generator based on the characteristics inherent to Web traffic [15]. They applied

a number of observations of Web Server (WS) usage to create a realistic Web

workload generation tool that acts a set of real users accessing a server. The result

was called the Scalable URL Reference Generator (SURGE). This tool generates

references matching an empirical measurements of file size distribution, request

size distributions among other characteristics of the workload. The distributions

used during the development of SURGE agreed with the empirical measurements

obtained from the files stored on the server. Crovella and Bardford criticized their

work on [26] and they modeled the file system for SURGE with a distribution that

is accurate not only for the tail but also for its body. A similar approach based

on a lognormal-Pareto distribution for modeling web file sizes has been studied

recently in [43]. Crovella and Bardford used censoring techniques to determine

where to split between the lognormal distribution for the body and distribution

for the tail.

2.1.5 Linear and other models

Deterministic models have been proposed for estimating the impact of offload-

ing all or some parts of the protocol processing. In [12], Maccabe and Gilfeather,

present the Extensible Message Oriented (EMO) model for protocol offload. They

defined a conceptual model that captures the benefits of protocol offload in the

context of high performance computing systems. The EMO is a linear extensible

model that emphasizes communication in terms of messages rather than bursts
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length. Their model allows protocol developers to consider the tradeoffs associ-

ated with offloading protocol processing. This includes the reduction in message

latency along with benefits associated with the reduction in overhead. Also the

EMO model allows the developer to observe the behavior of the model to predict

throughput improvements [12]. The EMO is extensible since it can be used to

model the behavior beyond transport protocol layers. Shiviam and Chase, [10]

map this model into the LAWS model presented. The LAWS model was created

to begin and quantify the debate over offloading the TCP and IP protocols. Also,

the model attempts to characterize the benefits of transport layer offload. LAWS

model reduces then to the classical LogP model. However, the LogP model was

not designed for protocol offload. The probabilistic model presented on this docu-

ment aims to achieve a higher level of abstraction and complexity than EMO and

LAWS.

2.1.6 Summary

Performance modeling is an important part of the research area of Web

servers. Without a correct model, it is difficult to give an accurate prediction

of performance metrics. A Poisson process cannot describe the individual packet

arrivals. However, a Poisson process can describe the initiation of sessions. M/G/1

queues has been used for performance modeling of Web servers and also for Web

traffic generation (i.e. PPBP). Moreover, this model was the ideal candidate for

developing the offload framework presented in this document. However, it is not

clear which distribution is the best for modeling the length of the files that are

going to be converted into traffic streams. The exponential distribution is a very

poor approximation. The Weibull distribution gives much worse fit than either

the Pareto or lognormal distributions [16]. As presented by Mitzenmacher in [39],
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“just because one finds a compelling mechanism to explain a power law does not

mean that there are no other, perhaps simpler, explanations”. Given the close

relationship between the two distributions, it is not clear that a definitive answer

is possible. Mitzenmacher states that “for a more pragmatic view, it might be

reasonable to use whichever distribution makes it easier to obtain results” [39].

2.2 Experimental Research

Most of the scientific research related to protocol offload found through the

survey of literature is experimental. The experimental research steers in three

different directions. The first is focused on processing the protocols outside the

CPU into a special purpose processor. Most of the experiments focus in processing

the protocols in an OE as part of the Network Interface Card (NIC). The second

direction is geared on processing the protocols within the CPU but into another

core or into a dedicated General Purpose Processor (GPP). The third approach is

focused into performance of the protocol processing itself. The application of this

technology is centered on two main fields: High Performance Computing (HPC)

and Web server performance. The models are also tested either in an outboard

processor near the NIC, another processor in a Symmetric Multi-Processor (SMP),

or into another node.

2.2.1 State of the Art

In order to address the increasing bandwidth demands of modern networked

computer systems, there has been significant interest in offloading TCP/IP pro-

cessing from the operating system of the host [4]. TCP offloading can potentially

reduce the number of host processor cycles spent on networking tasks, reduce the

amount of local I/O interconnect traffic, and improve overall network throughput

[4, 5, 46].
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Today, network hardware manufacturers are commercializing Intelligent Net-

work Interface Cards (iNIC)s that are capable of executing TCP/IP on a special

purpose processor. These types of iNICs are referred as TCP Offload Engines

(TOE). The term was first defined in a white paper published in 2002 by the 10

Gigabit Ethernet Alliance (10GEA)1 . The purpose of their research is producing

technology necessary to handle data flow at link speed of 10 Gbps and beyond2

[5]. Network protocol processing can saturate servers when running high-speed

TCP/IP based applications. High overhead for packet processing can leave few

CPU cycles available for actual application processing. In [6], Brecht, Janaki-

raman, Lynn, Saletore, and Turner stated that while future TOE designs will

likely show improvements, the processing elements in TOE are likely to always be

behind the performance curve of mainstream processors. Furthermore, if proces-

sor performance is incremented by the current trend of multi-threaded multi-core

CPUs, then fast processors of future TOEs might not be adequate for a single

connection[5].

2.2.2 Offload Engine Technology Issues

Although offloading selected functions of a protocol has proved to be success-

ful, so far there is limited use of them. This type of technology relies on firmware

and specialized hardware implementations, which are more difficult to upgrade

and customize than software based implementations. TOE devices have not yet

1 Hewlett Packard, Intel Corp., Alacritech, Adaptec, and Qlogic Corp.

2 40 Gbps



20

demonstrated significant performance benefits [9, 10, 47] possibly because the cur-

rent lack of NIC hardware resources that limits scalability [6]. Full offload is not

new, however, it has never succeeded for complex general-purpose protocols such

as TCP and IP, as vendors claim [5]. The resource limitations of a peripheral

device limit the maximum processing capability and memory capacity of a TOE

device [4].

In clusters of hundreds of thousands of nodes, resource management of com-

munication will become more critical. One of the aspects of this scalability bot-

tleneck is the amount of memory necessary to maintain communication. This

problem is severe when offloading protocol processing onto different architectures

is considered. One way to make TCP competitive with respect to latency and over-

head for large clusters is to offload some protocol processing. However, protocol

offload engines for TCP/IP are very expensive and limited [48].

Recent NIC designs provide some degree of offloading ability to execute some

packet processing operations that previously had to be executed on the CPU. In

particular, modern mainstream NICs can perform TCP/IP checksums and seg-

mentation, and provide programmable timers used for interrupt moderation (ex-

ample Intel PRO/1000). However, OS device drivers and protocol software must

be designed or modified to take advantage of these capabilities and most of the

time, they are not suited for that purpose [6].

Problems in current TCP offload NICs can be summarized in various aspects.

The first one are bottlenecks at the TOE and/or the network interface that disrupt

performance. The second issue identified is related to difficulties in designing

efficient software interfaces between the operating system and the OE. The third

problem is that modifying the existing network stack implementations is difficult
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and sometimes unfeasible due to the inflexibility of the hardware. Consequently,

accessing the internals of a TOE is cumbersome and sometimes impossible.

As multi-core processors provide mechanisms for fast inter-core communica-

tion, it becomes more attractive to dedicate some cores to protocol processing.

This approach is complementary to proposals for placing the network interface

hardware close to or even integrated onto the processor chip [3] and techniques for

intelligently transferring data directly between network hardware and CPU caches

[3, 49].

2.2.3 TCP and IP Processing Issues

There are five main issues found during the survey of literature that affect

the performance of a host that processes TCP/IP [6, 23]. The first one is the low

availability of processor time for application processing. This is a result concerning

the second aspect which is hardware and software interrupt handling. In some op-

erating systems, handling interruptions is a priority. Switching from interruption

processing to protocol or application processing leads into the next problem: mul-

tiple context switches between the OS mode and user mode affect performance.

The fourth issue is the overhead required for protocol processing. Finally, abusive

use of memory allocation and memory copies results in poor memory management

and degrades overall performance. The following paragraphs present seminal in-

vestigations on TCP/IP performance and innovative research on the issues of

processing TCP and IP.

Most operating systems provide modules for processing the protocols but the

way that these modules are handled by the operating system does not provide a

suitable environment for the protocols. In the seminal paper by Clark, Romkey,

and Salwen, they analyzed the cost of processing TCP and IP packets in the
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context of the OS [50]. They showed that the first overhead is the operating

system. This was also found by Kant in [11] and Ray and Pasquale in [51].

The functions for handling communication turn out to be very expensive. The

other mayor overhead is protocol processing of small packets. Another source of

overhead are the data-touching operations of large packets. The data-touching

operations are all the operations that need to read all the data within a packet.

These are the calculation and verification of the checksum, data movement (data

copy), and memory allocation for storing each packet. Processing of large packets

is dominated by the data-touching overheads while the smaller ones are dominated

by protocol processing. It is important to consider the effects of non-data touching

operations on performance, since most packets observed in real networks are small

[16, 52]. The non-data touching overheads consume a majority of the total software

processing time.

The TCP/IP protocol processing requires a significant amount of host sys-

tem resources and competes with the application processing time. This prob-

lem becomes more critical under high loads. Also, when a packet finally reaches

the socket, it may be dropped because of insufficient resources. However, packet

drops occurs only after a considerable amount of system resources have already

been spent on the protocol processing of the packet. A packet arrival results in

an asynchronous interrupt, which preempts the current execution irrespective of

whether the server has sufficient resources to process the newly arrived packet in

its entirety [53].

Processing the TCP protocol outside the operating system have been sug-

gested as early as 1988. In [9, 50, 51], the authors suggest that some of the oper-

ations needed to handle the packets could be outboard onto a special controller.
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Efficient entities that can process TCP and IP outside the operating system in a

more suitable environment are an attractive idea that could outperform the OS.

This is true only if the entity plus the time that the OS uses to communicate with

it is less than the time used for processing the modules that handle TCP and IP

within the OS. However, in the survey of literature conducted we were unable to

find articles that have been published in ways to abstract these events.

An optimized memory management mechanism is an important issue that

has to be addressed for achieving a flawless transition from traditional protocol

processing to protocol offloading. If memory is not manage adequately, TCP

offload results in a “dumb idea” as Mogul has expressed explicitly in [9]. These

suggestions come in accordance to the ones presented by Nahum, Tsipora, and

Kandlur in [55]. In their article, they proposed a new function for transmitting

files called send file(). This function eliminates the copies from user space to kernel

space whenever a file is transferred. Figure 2–2 presents how this function works.

Traditionally, every time a file is to be transferred, the user reads the file and then

writes its contents via a socket. The data travels from file to kernel space, and

then it is copied from kernel to user space. This data is copied back again from

user to kernel space, into a socket buffer and finally the data is copied from the

socket buffer to the buffer of the network interface card. Lastly, the NIC transfers

the data through the medium. Memory copies are reduced when send file() is

used. The data is not copied into user space as presented in Figure 2–2. However,

the data is copied from kernel to socket buffers and sometimes is mapped directly

from kernel buffers to be transferred then by the NIC.



24

read() and write()

User Space

Kernel Space

Hard Drive

6

Kernel Buffer

6

User Buffer

Socket Buffer
?

NIC Buffer
?

- Transmitted
-Time

send file()

User Space

Kernel Space

Hard Drive

6

Kernel Buffer Socket Buffer

NIC Buffer
?

-

- Transmitted
-Time

Figure 2–2: Function send file() explained

If send file() is tied to an integrated I/O system, which does not copy data, the

function, provides a substantially better performance. This results in incrementing

throughput by 51%. A similar notion was used in [6].

2.2.4 Novel Approaches for Processing TCP/IP on the NIC

Not all the research related to TCP/IP offloading attempt to outboard the

processing into an entity outside main CPU. There exist investigations that are

focused on optimizing TCP processing itself for reducing the resources that TCP

consumes. The goal in [48] is to lessen the overhead of inactive connections by
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deactivating the heavy-weight socket and replacing it with a place holder that

allows the connection to be reactivated when needed. They use mini sockets3

and open requests to efficiently handling the connections by deactivating and

activating them. They were able to drastically reduce memory usage for open

TCP connections, thus increasing the scalability of TCP, especially for offloaded

TCP.

Other research focus on a mixture of hardware and software techniques that

allowed proper processing of the protocols. In [1], Gilfeather and Maccabe present

an alternative offload mechanism called Splintering TCP. The principle of splinter-

ing is not OS bypass rather the use of the OS efficiently. The splintering concept

assumes that the application issues a pre-posted socket read before data has ar-

rived. The OS captures this event by assigning a descriptor to the application

buffer. Whenever, data arrives, the iNIC searches for the list of descriptors and

copies the data directly into user space using Direct Memory Access (DMA), then

makes the header available to the OS for further processing. It can bee seen that

memory management is handled by the OS rather than by the iNIC. The drawback

of this technique is that relies on interrupt coalescing for load balancing the OS

and the iNIC. In [1] Maccabe and others mention that in standard environments,

interrupt coalescing introduces a great deal of jitter in communication. This was

also found by Prasad, Jain, and Dovrolis in [53]. Consequently, packets that arrive

shortly after the iNIC has generated an interruption have longer latencies.

3 also known as minisocks
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2.2.5 Leading Approaches For Protocol Offload on Symmetric Multi
Processors and Multi-cores

The higher degree of parallelism enabled by multi-core multi-thread processors

is a good fit for concurrently processing multiple network streams [6]. This is true

since the memory controller interfaces and network interfaces are integrated much

closer to processor cores reducing memory and I/O overheads and bottlenecks.

This is the direction proposed by Intel Corp. and Hewlett Packard Corp. in [6] and

also has been proposed in [22, 56]. The authors have suggested that network packet

processing efficiency can be improved by dedicating a subset of the server cores for

network processing and by using asynchronous I/O for communication between the

network processing and the application [6] (see Figure 2–3). Connection handoff

has been proposed to allow the OS to selectively offload a subset of the established

connections to the NIC [57, 58]. At any time, the OS can easily opt to reduce the

number of connections on the NIC or not to use offload at all [4]. First, the NIC

must ensure that TCP processing on the NIC does not degrade the performance of

connections that are being handled by the host. Second, the OS must not overload

the NIC since that would create a bottleneck in the system. The NIC can avoid

overload conditions by dynamically adapting the number of connections to the

current load indicated by the length of the receive packet.

Studying network protocol by emulation is the approach followed by the re-

search conducted at Sun Microsystem by Westrelin, Fugier, Nordmark, Kunze,

and Lemoine in [5]. On this work, a TOE was emulated by partitioning an SMP

machine to evaluate different protocol offloading scenarios as presented in Figure

2–4. A full processor board run a stand-alone event piece of software emulating an

OE. Their emulated TOE yields 600 to 900% improvement while still relying on
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Figure 2–3: Processing the Protocols in Other Cores

memory copies at the operating system [5]. However, they only confronted their

test bed with transactions that were favorable for their TOE approach [5]. They

encountered that a poorly designed interface between the host and the OE is likely

to ruin most of the performance benefit brought by protocol offload. However, this

issue was not abstracted.

2.2.6 Quantitative Analysis Of Web Server Behavior

Studying the behavior of network applications, especially Web servers, raises

interesting issues related to protocol offload. The time allotted to network pro-

cessing from the execution time of a Web server was quantified by Banerjee in

[23] when the server was overloaded with client requests4 . They measured the

time spent in every function during the execution path during send and receive, as

well as the time spent processing interrupts. They concluded that the time spent

4 The Web server application was Apache HTTP server
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in TCP/IP processing is significantly higher than the time spent on actual appli-

cation processing. This is true for their original configuration. However, further

studies have concluded that the Web server is stressed differently when different

file sizes are requested. This is taken into consideration by our framework.

In [18], Hu, Nanda, and Yang presented the way the Web server interacts

when confronted with different types of workloads. Webstone [59], was used for

studying the behavior of the Web server with different file sizes. Webstone is a

benchmark originally developed by Silicon Graphix and currently supported by

Mindcraft Corporation. This benchmark was configured in such a way that it uses

the files generated by SPECWEB [60] and not by the ones bundled with Webstone.
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SPECWEB was developed by Standard Evaluation Performance Corporation and

is the first standardized benchmark for measuring performance of Web Servers.

The reason for using SPECWEB generated file system is that Webstone 2.5 is not

bundled with a file set that could stress the Web server sufficiently as they intended

to. In their work, files were classified based on their size. Table 2–1 presents these

classes. Class 0 was used for files ranging from 0 to 1 Kilobyte. Class 1 was used

for files with sizes ranging from more than 1 Kilobyte to 10 Kilobytes, and so on.

Classes Range

0 0 - 1KB
1 1KB - 10KB
2 10KB - 100KB
3 100KB - 1 MB

Table 2–1: File Classes

The authors found that, on average, Apache spends about 20 to 25% of the

total CPU time on user code, 35-50% on kernel system calls, and 25-40% on

interrupt handling. Also, they found the TCP/IP stack and the network interrupt

handling were the major performance bottlenecks for systems with reasonable

RAM sizes [18]. Hu, Nanda, and Yang focused their work in the way they could

improve the implementation of the Web server and did not concentrate in the

way it processes the protocols. They proposed seven techniques to improve the

performance of Apache. The most important suggestion was to implement a way

for directly sending data from file system cache to the TCP/IP network [18]. This

is similar to the send file() function that was proposed by Nahum, Tsipora, and

Kandlur in [55] and discussed previously.
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In [61], He and Yang studied Web server performance beyond the use of

static Web pages. They evaluated the Web server based on realistic workloads

representing E-Commerce applications exemplified by a large amount of Common

Gateway Interface (CGI), Active Server Pages (ASP), Servelet calls, and static

Web pages. They found that most Web Servers can obtain higher throughput

and less utilization, under a mixed workload, that under the static page workload.

Static page requests are a little heavier to handle since they demand high disk I/O

activities and memory copies. Therefore, studying the way static pages stress the

server does not underestimate the impact on performance of a Web server, rather,

in some cases, overestimate it. Our research considers the use of static Web Pages.

2.2.7 The Problem of Choosing the Right Workload

Choosing what is the representative workload for a specific network service

had become an important issue with the evolution of the Internet and the introduc-

tion of new technologies that demand higher throughput. In [62], Floyd exposed

that the Internet is an immense moving target. The way the Web is currently used

is not the same way it will be used in the future. The data set collected within a

trace represents only a snapshot at one point in the history of the evolution of the

Web [45]. Analysis of the evolution of the Web and the way objects are requested

raises issues about the way tests should be performed. Through 1995 to early

2000 SPECWEB and SURGE assigned access probabilities of around 80% for files

less than 10KB. This means that most of the files requested by these benchmarks

reside on Class 0 and 1 of Table 2–1 [15, 60]. Web sites had evolved to provide

different type of applications that were not permissive a decade ago as commodity

hardware provided users with higher throughput [63]. Animations used as part

of content on some Web pages had an average file size that reside on Class 3 of
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Table 2–1. These animations became common during early 2000. SPECWEB

changed the access probabilities for each file class and introduced three new pro-

files in 2005 [60]. Different access probabilities were assigned to each class for

each profile. It is evident that the demand for files that reside on Class 4 had

increase with the advent of social networks and sites that provide, video, games

and “heavy” content that was not permissive ten years ago [64, 65]. Therefore,

the researcher has to consider these inherent characteristics of the evolution of

the Web when performing tests and choosing workloads. Conclusions have to be

analyzed carefully. In [18] the authors divided the file set in classes similar to

the ones used by SPECWEB. They stressed the Web server by requesting each

file class individually. This approach is also followed by the tests performed and

presented in this document. Our aim is to surpass the historical constraints and

provide new scenario that could be followed by other researchers in the future.

2.2.8 Summary

On the advent of multi-core multi-threaded processors and new technologies

on outboard processors a new debate related two where protocol processing must

be perform arises. Interactions between the host and the OE are independent of

the underlying network technology. A poorly designed interface between the host

and the OE is likely to ruin most of the performance benefit brought by protocol

offload. The uniqueness of the research presented in this dissertation contributes

into abstracting this characteristic for a proper protocol offload implementation.

Our approach captures the overheads by abstracting them into the analytical

model. In our case study, the model is validated versus a mixture between a real

implementation at the Web server and the emulation of an OE in an external PC.

The experimental setup includes a study focused on the behavior of the host CPU
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when confronted to different files classes using an approach similar to [18]. The

novelty of our research is based on a different perspective about the pros and cons

of protocol offload.



CHAPTER 3

METHODOLOGY

The research methodology was conducted in two stages. The first stage was

the development of an analytical model. The second stage was a case study to

validate the model. This chapter is composed of three main sections. The first

section discusses the methodology alternatives considered during this research.

Also this section compares and contrasted our approach versus other methods of

conducting research. Section 3.2 presents the analytical model used to estimate

the performance metrics for protocol offload. Finally, the last section, presents

the experimental setup used to validate the model.

3.1 Research Methodology

There exist different levels of abstraction and complexity when modeling real

world scenarios. The traditional method of conducting research is usually made

up of the following approaches: (1) analytical modeling, (2) simulation, or (3)

implementation [66]. Another method that has recently surfaced is emulation-

based approach [67–69]. Usually, a combination of these approaches is employed

for increasing the robustness of the research. Combining methods is a way of

dealing with the advantages and disadvantages each approach has (see Figure

3–1). This is true since each method has a different level of abstraction, complexity,

development time, and cost. The methodology used during this research combines

33
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analytical modeling and an emulation-based approach. The following paragraphs

present the methodology followed to confirm our contributions and conduct our

research in more detail.

The first stage of this research was developing an analytical model for ab-

stracting our system. An analytical model is a representation of the essential

aspects of an existing object, an improvement of the object, or an object that will

be constructed [66]. This model can be either deterministic, or probabilistic. A

probabilistic model is characterized by the fact that its future behavior is not pre-

dictable in a deterministic fashion [70]. A queuing model uses Probability theory

and Markov chains to approximate a real system that uses queues and servers [66].

Our approach uses queuing theory to estimate the performance metrics before and

after protocol processing extraction. The benefits of using queuing models are that

there exist a number of useful steady state performance metrics that can be de-

termined. The advantage of an analytical model is that is a generalization of the

system. However, this generalization is also its disadvantage. (see Figure 3–1).

The second stage of our approach includes a high level of complexity us-

ing emulation-based mixed with a real implementation. Emulation-based analysis

can serve as the bridging phase between the simulation and the real implemen-

tation. This analysis focuses on the reproduction of the external behavior of the

device and/or system been implemented. Emulation does serve as an acceptable

replacement for the system been modeled. This is in contrast to some other forms

of computer simulation, which are a reproduction of the abstract mathematical

model of the system been simulated. In simulations, peculiarities inherent to the

problem could be concealed due to the abstractions used to create them [69]. Em-

ulation enables conducting performance analysis of the system in the context of
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real world applications. This approach has been used also recently in [67, 68]

as an alternative to full physical test bed implementation. The complexity of

emulation-based analysis is higher than the simulation as Figure 3–1 presents.

Deterministic Models

Probabilty Models

Simulation

Emulation

Implementation

More Expensive

Less Expensive

6

Reality

Complexity

Build Time

Highest

Lowest

Figure 3–1: Levels of Complexity and Abstraction

The only true reliable evaluation of the system is the implementation [66].

The implementation of a system is the actual realization of that system as it was

described. The main disadvantage is that not always the developer can afford to

build the real system. Implementations are expensive and may impact the envi-

ronment in which they have been applied. Since the implementation is complex is

also time consuming and costly. The level of complexity is the highest as Figure

3–1 presents.

The research conducted uses a combination of the different levels of abstrac-

tion. First, a probabilistic model was devised. This model serves as a gener-

alization of reality and captures the performance measures that are needed for
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approximating, based on the assumptions, the outcomes of the real implementa-

tion. Moreover, a real implementation mixed with an emulator is used to validate

the results obtained from the probabilistic model.

3.2 Probabilistic Model for Protocol Offload

This section presents the analytical model used for estimating the performance

metrics of offload engines. The analytical model abstracts the most relevant fea-

tures of implementing network processors. First, the performance metrics and the

variables used to calculate them are presented. Subsequently, the CPU of the

host is presented as a single server problem and modeled as in [30–32]. Then, the

system is modeled as a network of queues consisting of one queue that abstracts

the CPU of the system and another that models the offload engine. Finally, the

model is extended to obtain the expected number of request within the system.

3.2.1 Performance Metrics

There are certain variables that need to be stated in order to understand the

performance metrics of the system. Therefore, an introduction to these variables is

needed for further understanding of the model. First, let Xa be a random variable

that describes the time it takes to validate and to process the request. This is the

time it takes to the application on top of the communication protocols to process

the request. This process validates the request and initiates a session. Let Xp be

a random variable that describes the time it takes for creating the packets that

constitutes a burst that carries the requested object on the CPU of the host. Let

Xq be a random variable that describes the time it takes for creating the packets

that constitute a burst that carries the requested object on the offload engine.

Then, let E[Xa], E[Xp], and E[Xq] be the expected service time for Xa, Xp, and
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Xq respectively. Throughout this document and for the sake of simplicity, the

notations E[Xa] and E[Xp] are sometimes used as 1/µa and 1/µp interchangeably.

The most important performance metrics in this research is the utilization of

the CPU of the host that is acting as a Web server and the delay of the whole

system. The utilization is the percent of time the system is busy over an interval

of length t. Examining only the utilization does not guarantee a performance

increase even when the utilization of the CPU has been reduced. If the CPU idles

could be for one of two reasons: Either the offload engine is handling the workload

efficiently, or the offload engine has become the bottleneck of the whole system.

Therefore, the delay on the system is a performance measure that must not be

overlooked. An efficient offload engine reduces CPU utilization and maintains

similar or lower response time to the clients in service. If the delay on the system

is greater when the offload engine is added, then its inclusion degrades the whole

system.

3.2.2 Abstraction of a System Without Offload Engine

A system that handles HTTP requests and does not posses a protocol offload

engine is modeled with a single queue. The CPU of this server is represented with

an M/G/1 queue as presented in Figure 3–2. The arrival of requests is modeled

with a Poisson distribution as in [25, 27–32] and suggested by [17]. The service time

for a request is a combination of the time spent processing the request and the time

the protocols used to convert the requested object1 into packets of protocol P . An

exponential process describes only the interpretation and validation of the request.

1 A file
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The random variable that represents the service time of converting the requested

object into a stream of data2 does not follow an exponential distribution. The

time it takes to create these packets depends on the length of the requested file.

A strong relationship between the length of the file and the bursts length exists as

presented in [14, 29]. This is true since the requested object has to be fitted into

n packets of protocol P in order to be transferred back to the sender. Therefore,

this time follows a lognormal or a Pareto distribution.

CPU

-
Poisson
Arrivals

-

&%

'$

General Distributed
Service Time

Figure 3–2: M/G/1 Queue, An Abstraction of a Non-Supported Host

The utilization for a host that has a CPU without the support of an offload

engine is calculated with the following equation:

Ucpu = λ

(
1

µa

+
1

µp

)
. (3.1)

The distributions that describe the expected service time are needed to calcu-

late the following performance measure. It is assumed that the mean service time

for handling the communication between the offload engine and the CPU (Xo and

2 a data stream an bursts are used interchangeably during this document
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Xc) follows an exponential distribution. However, Xp and Xq are described either

by a lognormal or by a Pareto distribution.

The first and second moment of the random variables are needed to obtain

the delay of the CPU using the Pollaczek-Khinchin (P-K) formulas. The P-K

formula require the first and second moments of the distributions that describe

the service time (see Appendix B). The first moment is defined as the mean of

the distribution and this is E[Xa + Xp] = E[Xa] + E[Xp]. However, the second

moment of this random variable is calculated differently. The following paragraphs

describe the approach used to obtain the second moment.

A host without an offload engine has a first moment E[Xa + Xp]. The second

moment is then: E[(Xa + Xp)
2] = E[(X2

a + X2
p + 2XaXp)]. As a result:

E[(Xa + Xp)
2] = E[X2

a ] + E[X2
p ] + 2E[XaXp] (3.2)

Since Xa and Xp are independent random variables, then:

E[(Xa + Xp)
2] = E[X2

a ] + E[X2
p ] + 2E[Xa]E[Xp] (3.3)

Now, if Xp is described by a lognormal distribution. Substituting, results in:

E[(Xa + Xp)
2] =

2

µ2
a

+ e2(ν+σ2) +
2eν+σ2/2

µa

(3.4)

Then, simplifying:

E[(Xa + Xp)
2] =

2

µa

(
1

µa

+ eν+σ2/2

)
+ e2(ν+σ2) (3.5)

The utilization is needed to use the P-K formula for the M/G/1 queue (see

Appendix B). Let Unoe represent the utilization of a system with no offload engine
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and Unoe = λ(1/µa + eν+σ2/2). Let Wnoe be the average waiting time (delay) a

requests lingers before entering service. Substituting in the P-K formula:

Wnoe = λ

[
2µ−1

a (µ−1
a + eν+σ2/2) + e2(ν+σ2)

2(1− Unoe)

]
(3.6)

Moreover, the expected waiting time is simplified as follows:

Wnoe =
2µ−1

a Unoe + λ(e2(ν+σ2))

2(1− Unoe)
(3.7)

Then:

Wnoe =
2Unoe

2µa(1− Unoe)
+

λe2(ν+σ2)

2(1− Unoe)
(3.8)

Simplifying:

Wnoe =
1

(1− Unoe)

(
Unoe

µa

+
λE[X2

p ]

2

)
(3.9)

Notice that a general formula has been found that can be used either if Xp

follows a lognormal or follows a Pareto distribution. Let Tnoe be the expected time

the customer lingers inside the CPU with no offload engine support. Then:

Tnoe =
1

(1− Unoe)

(
Unoe

µa

+
λE[X2

p ]

2

)
+ E[Xa] + E[Xp] (3.10)

3.2.3 Abstraction of a System With The Support of an Offload Engine

An offloaded CPU has an entity whose main function is converting the re-

quested object into packets of protocol P to be transferred through the network.

Therefore, two queues interact for modeling our host. Figure 3–3 present the

network of queues that represent our CPU with an attached offload engine.
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Figure 3–3: Network of Queues for Modeling a Supported Host

The service provided by the first queue is interpreting, validating and pro-

cessing the request. This queue is abstracted as a Markovian model of an M/M/1

queue that represents the CPU. The task of the second queue is transferring the

requested object by creating a series of packets to be transmitted in a data stream.

The last queue represents the offload engine and is an M/G/1 queue.

The utilization of the system in a network of queues is calculated as the

sum of the utilization of both service centers. However, we are only interested

in the calculation of the utilization of the CPU. The utilization of the CPU is

U ′
cpu = λ/µa. After protocol processing extraction, let Xq be the random variable

of the service time for processing the protocols at the offload engine. Then E[Xp]

is not necessarily equal to E[Xq]. The expected time the offload engine uses to

prepare packets of the object requested could be similar, lower, or larger depending

on the capabilities of the offload engine. Now, the utilization of the offload engine

is Uoe = λE[Xq] = λ/µq. The utilization for creating the packets has been shifted

to the offload engine. Consequently, the utilization of the system in a host that

has the support of an offload engine is:
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U = U ′
cpu + Uoe = λ

(
1

µa

+
1

µq

)
. (3.11)

Shifting the creation of the packets to the offload engine can introduce addi-

tional overhead. This aspect cannot be overlooked unless this overhead is negli-

gible. Let E[Xo] be the expected service time of processing the overhead added

to the CPU that represents the actions taken for passing control messages from

the CPU to the offload engine. Consequently, the utilization of the CPU of a host

with the support of an offload engine is:

U ′
cpu = λ

(
1

µa

+
1

µo

)
. (3.12)

Another overhead has been also added to the offload engine. Let Xc be the

random variable that represents the time it takes on the offload engine to process

the control information for communicating with the CPU of the host. Then,

E[Xc] is the expected service time for the overhead added to the offload engine for

processing the control data sent by the CPU3 . Then, the utilization of the offload

engine is:

Uoe = λ(E[Xc] + E[Xq]). (3.13)

The utilization of the CPU after protocol processing extraction must be lower

than before. If E[Xo] is greater than E[Xp] when processing file F , then, the

3 if E[Xc] is substantially low, the expectation of Xc could be negligible



43

inclusion of the offload engine degrades the whole system. These aspects of

offloading a protocol are elusive as it was stated by Shivam and Chase in [10].

The expected waiting time of both queues are needed to obtain the delay of

the system. Appendix B presents the performance measure for calculating the

delay in an M/M/1 queue. Let Tcpu be the time spent inside the queue that

represents the CPU4 . Let Ucpu = λ(E[Xa] + E[Xo]). Then, the delay of the first

queue from the notions of the M/M/1 queue:

Tcpu =

(
1

λ

)
Ucpu

1− Ucpu

(3.14)

Equation 3.14 represents the expected time the request spends in the first

queue. The expected waiting time a request waits before been serviced by the

CPU is obtained by subtracting the mean service time form the previous equation.

Let Wcpu be this expected waiting time then:

Wcpu = Tcpu − E[Xo]− E[Xa]. (3.15)

Let Y = (E[Xo] + E[Xa]) for a moment. Then: Wcpu = Tcpu − Y . Conse-

quently:

Wcpu =

(
1

λ

)
λY

1− λY
− Y, (3.16)

Then:

4 This is also called the delay inside the CPU
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Wcpu =
Y

1− λY
− Y, (3.17)

Simplifying:

Wcpu = Y

(
1

1− λY
− 1

)
, (3.18)

Substituting:

Wcpu = (E[Xo] + E[Xa])

(
1

1− Ucpu

− 1

)
, (3.19)

Obtaining the delay on the second queue is quite differently. The second

moment of Xc + Xq is needed since the offload engine is modeled by an M/G/1

queue. Previously was stated that E[Xo] is exponentially distributed. Let Xc be

similar to Xo. Then, the time it takes to serve the requested object at the offload

engine, is E[(Xc +Xq)] = E[Xc]+E[Xq]. Then the first moment is E[(Xc +Xq)] =

1/µc + e(ν+σ2/2) when Xq follows a lognormal distribution. The second moment is

similar to the one presented in 3.2. Then:

E[(Xc + Xq)
2] =

2

µc

(
1

µc

+ eν+σ2/2

)
+ e2(ν+σ2) (3.20)

The time a customer waits before entering service at the offload engine is

given by the P-K formula. The second moment is plugged into the formula to

obtain the following:

Woe = λ

[
2µ−1

c (µ−1
c + eν+σ2/2) + e2(ν+σ2)

2(1− Uoe)

]
(3.21)

This equation is similar to the equation 3.7, therefore, substituting:
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Woe =
1

(1− Uoe)

(
Uoe

µc

+
λE[X2

q ]

2

)
(3.22)

It is important to state here that the utilization of the offload engine is calcu-

lated using Uoe = λ(µ−1
c + eν+σ2/2). The expected total time in the offload engine

(Toe) is calculated by adding the mean service time in the offload engine (E[Xe]),

therefore:

Toe = Woe + E[Xc] + E[Xq] (3.23)

Then:

Toe =
1

(1− Uoe)

(
Uoe

µc

+
λE[X2

q ]

2

)
+ E[Xc] + E[Xq] (3.24)

Let T be the delay of the system which includes the CPU and the OE. Since

the system is a network of queues, the delay of the system is obtained by identifying

the maximum delay of all the queues composing the network. Therefore:

T = max(Toe, Tcpu) (3.25)

In our previous equation, the random variable that describes the time it takes

to create a burst follows a lognormal distribution. The Pareto distribution is

another candidate for describing the service time for creating a data stream of

protocol P from file F . When Xq follows a Pareto distribution then:

E[Xc + Xq] = E[Xc] +
αk

α− 1
(3.26)
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The second moment of E[Xc + Xq] is obtained by substituting in equation

3.2:

E[(Xc + Xq)
2] =

2

µc

(
1

µc

+
αk

α− 1

)
+

αk2

α− 2
(3.27)

Now plugging the second moment on the P-K formula, the time a customer

waits before acquiring service is:

Woe = λ

(
2µ−1

c [µ−1
c + αk(α− 1)−1] + αk2(α− 2)−1

2(1− Uoe)

)
(3.28)

Then Woe reduces to Equation 3.22, this is:

Woe =
1

(1− Uoe)

(
Uoe

µc

+
λE[X2

q ]

2

)

It was mentioned previously that the expected total time in the offload engine

is given by adding the mean service time in the offload engine, therefore:

Toe = Woe + E[Xe] (3.29)

Then:

Toe =
1

(1− Uoe)

(
Uoe

µc

+
λE[X2

q ]

2

)
+

αk

α− 1
+ E[Xc] (3.30)

As stated previously, the delay in the whole system is then T = max(Toe, Tcpu).

3.2.4 Expected Number of Requests

The model can be used for determining the expected number of customers

waiting to be serviced. Let Nq be the expected number of requests waiting to be

serviced in the queue. Then using Little’s Law:
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Nq = λ(Woe) =
λ

(1− Uoe)

(
Uoe

µc

+
λE[X2

q ]

2

)
(3.31)

The percent of time that the offload engine uses for processing the overhead

is Uc = λ/µc. Therefore, the previous equation can be simplified to:

Nq =
1

(1− Uoe)

(
UcUoe +

λ2E[X2
q ]

2

)
(3.32)

Let Noe be the expected total number of request in the offload engine (waiting

and in service). Then using Little’s Law:

Noe = λ(Toe) =
1

(1− Uoe)

(
UcUoe +

λ2E[X2
q ]

2

)
+ Uc + Uq (3.33)

Notice that in Noe the utilization for handling the data to be transferred and

converted it into packets is given by: Uq = λ(E[Xq]).

3.3 Experimental Setup

In order to validate our model a test bed was setup. The test bed is composed

of two PCs that act as a single host. One of these machines acts as the Web Server

and the other as the TOE device (see Figure 3–4). The PC that acts as the TOE

device, is called the front-end PC. These two PCs are connected together via a

dedicated line. The Web server is connected to the Internet via the front-end

PC. The front-end PC emulates the TCP Offload Engine using an emulator. This

emulator was called the TCP Offload Engine Emulator (TOE-Em) and is discussed

in detail in Section 3.3.1. Two more nodes were used to generate the workload and

the requests sent to the test bed. This is discussed in Section 3.3.7. The software

and hardware used in the test bed is discussed in the following sections.



48

Master Server Front End PC

...................
6

Dedicated Connection

Clients¡
¡

¡
¡

@
@

@
@

Figure 3–4: Experimental Setup Used to Test the System

3.3.1 The TCP Offload Engine Emulator

The TCP Offload Engine Emulator (TOE-Em) is a multi-process program

written in ANSI C that has all the functionality of a TCP Offload Engine. The

TOE-Em resides on the front-end PC and provides the socket interface layer to

the Web server. This program is the gate in which packets come in and go out of

the whole system. The following paragraphs describe the TOE-Em in detail.

The TOE-Em is a program that spawns processes and maps them to similar

processes running at the Web Server by using dedicated processes that interact

with each other. The TOE-Em is composed of three types of processes: The

Commander and Reader Process (CR), the Forker Process (FP), and the Slave

Processes (SP). All of them interact by UNIX System V Inter-Process Commu-

nication (IPC), share memory, semaphores and signals [71–73]. The Commander

and Reader is the most important process of the TOE-Em. It is the one that

reads all the commands sent by the Web server. Also, the CR is the one who

signals any of its slave processes for processing the command. The slave process
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is the process that executes the command assigned by the commander and reader.

The FP spawns new slave processes and allocates their resources. The following

paragraphs discuss the main functionality of each one of the processes presented.

The Commander and Reader Process is the most important process of the

TOE-Em. Upon start up, the Commander and Reader Process enters into a

critical loop that only end when an error is found or when the OS removes it. If

there is a command waiting to be read, the CR reads and stores the command.

If not, the process halts. This is a case that has been presented in the flowchart

of Figure 3–5. If the read is successful then three conditions are tested. The first

condition is to examine the command and if it is a command that is not destined

to a particular SP, then, the Commander and Reader Process looks for an available

slave that could handle it. Second, if the command is destined to a specific SP,

then, the CR checks if the SP is available to handle the command. If not, the CR

waits until the SP finishes. The SP receives this signal from the CR, whenever

the SP is idling or blocked (see Figure 3–5). Finally, if the command is intended

to the FP, then the CR checks if the FP is available and not in used by another

command. Then, the CR signals the FP. If any of these conditions is not met the

command is unknown and an error occurs. Notice that if an error occurred the

TOE-Em stops.

The function of the slave process is executing the commands that have been

chosen for it by the CR. Immediately, after a slave is spawned, the slave process

enters into a critical loop. Figure 3–6 presents the flowchart that describes the

functionality of the SP. Each and every SP, including the FP, checks if there is a

notification from the CR indicating that a command is awaiting to be processed.

If there is a command destined to it, the SP identifies the command and validates
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Figure 3–5: Commander Reader Flowchart

it. If the command is invalid, the process ends. If the command is valid, the SP

issues the command. After issuing the command the SP releases its resources and

loops back to the beginning (see Figure 3–6). The SP blocks if there is nothing to

do.

The Forker Process is another SP. The only purpose of the Forker Process is

to spawn more slaves and allocate resources for them. Also, the FP could remove

any slaves and free the resources used by it. The FP is created when the first fork
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Figure 3–6: Slave Process Flowchart

command is received by the TOE-Em. In [74] the source code of the TOE-Em is

available. Please refer to [74] for detail information.

3.3.2 TOE-Em Memory Management

During the design and implementation phase of the TOE-Em memory man-

agement was a key issue that was not overlooked. The design had as a top priority

avoiding heavy memory allocations and copies. Stacks were used to reduce mem-

ory management. Figure 3–7 presents the memory map of the TOE-Em. The

TOE-Em initializes a share memory area of a size that is around 370 KB upon

startup. This size is the result of multiplying the maximum number of processes

that the TOE-Em can handle (250) by the size of the Ethernet Frame (1514

octets). This is done since the maximum frame size, in our implementation is of

1514 octets and every command that the Web server generates travels within a
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frame. Consequently, the 370 KB area can be partitioned in 250 slots of 1514

bytes each. This makes addressing an easy task that can be carried by offsetting

from the address of the first byte of our memory area. This simple calculation is

faster than searching over the entire memory area for a slot. The stack is used

to store all the addresses that are free. Therefore, every time a command arrives

from the Web server the TOE-Em pops an address from this stack, and uses this

address to store the incoming command. After identifying the target SP, the CR,

assigns the slot to an SP and then signals it. This slot is not pushed into the stack

again until the SP releases its resources (recall Figure 3–6). When this happens,

the SP pushes the address of the slot it was using onto the stack. Therefore, this

slot becomes a free slot. Then the CR, without the need to allocate more memory,

could reuse this buffer whenever it pops a free slot from the stack. Notice that

race conditions could surface by using this design, however, semaphores were used

to avoid this type of errors.

Memory management was a key issue to optimize our implementation. Any

other implementation of a similar engine has to consider the way the memory is

handled. One thing that has to be avoided at all costs is copying and dynamic

memory allocation and de-allocation on user space.

3.3.3 Process Mapping

Every process in the TOE-Em needs to be mapped into a process in the

Web server. This is used since the Web Server application is a multi-process

program. Therefore, the task of the Commander and Reader Process is mapping

every command to an appropriate Slave Process that could handle the command

efficiently. The CR process does not designate a command to an SP at random.

It uses a criterion for that purpose.
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Figure 3–7: TCP Offload Engine Emulator Memory Map

A socket descriptor is an identifier returned by the OS used to reference an

instance that is associated to a socket. The descriptors created by each SP are

only available for that particular SP. This happens since the kernel at the front-

end PC assigns the socket descriptor to a specific process identifier (PID). Also,

all the state variables used to handle the TCP module are in a memory area

assigned by the OS kernel for that specific PID. However, there was an issue. Two

different PID could assign the same socket descriptor number, but reside in two

different contexts. Since two processes can have the same socket descriptor a way

of identifying to which process the socket descriptor number belongs was devised.

This socket descriptor is an integer value and the Web server is expecting that

from the TOE-Em. Therefore, a new descriptor was created for the Web server

that is a combination of the PID and the socket descriptor. This was done by a



54

function that maps the socket descriptor within the right context. This function

was called the build key function and is presented in Figure 3–8. The function

prepares the new descriptor by multiplying the actual socket descriptor number

by 106 and then adds the PID to it. This works since the maximum size for a PID

in LINUX is six digits. This new socket descriptor is given to the Web server. The

benefit of using this type of socket descriptor is that the appropriate PID that has

this socket is known by the TOE-Em and also by the Web server. There is also

a function that converts this socket descriptor to the PID and socket descriptor

number pair. This function is called the break key function and is illustrated in

Figure 3–8.

#define PID_KEY_ 1000000

int build_key(u_int mypid, int skt) {
return (mypid + skt * PID_KEY_);

}

void break_key(int k, u_int *npid, int *rskt) {
(*rskt) = (int) k / PID_KEY_;
(*npid) = (u_int) k % PID_KEY_;

}

Figure 3–8: Source Code to Build and Break the Key

3.3.4 Process Coordination

In order for the CR and SP to coexists and work together they need to

communicate with each other. This is done via a table that resides in shared

memory. Both the SP and the CR consult this table. This table is called the

process control table (PCT). The data structure for the PCT is depicted in Figure

3–9. This data structure is used as the data type of an array. The CR uses the

PCT for consulting if the SP is available or busy. Also, the CR uses the PCT for
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struct mini_control {
u_int pid; /* Process Pid */
int data_entry; /* Slot on share memory area */
int rtable_entry; /* Entry on socket table */
char state; /* Process state */
int sons; /* If I am an accept parent how many sons I have */
int available; /* is available for reuse */
int blocked; /* is blocked? */

};

Figure 3–9: Process Control Table Data Structure

indicating the address of the next command that the SP is going to execute. The

SP consults the table to know if there is a next command to execute. This is done

by examining the data entry field of the structure. If this field is empty there is

nothing to do and the process blocks. If there is a slot to handle, the SP begins

processing right away. The process remains blocked until a signal is received from

the CR.

One advantage that this approach has is that the SP always points to its

appropriate control slot. Upon creation, a slot to this table is assigned to the PID

of the SP. The address to this slot references the record in the PCT for the PID

of the SP. The SP uses this address to consult the PCT.

3.3.5 Raw Sockets and Protocols

Raw Sockets were used to bypass the IP and TCP layers of the Web Server.

UNIX raw sockets let the developer bypass any protocol modules used by the

OS and handle any frame directly into the data link layer. Sometimes, this type

of socket is referred as a packet socket. The use of raw sockets provides the

developer with the capability of creating a frame directly from user space. In

order to send commands to and from the TOE a special control protocol was used.
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The protocol was called the raw protocol and is presented in Figure 3–10. This

emulates the communication between the CPU and the TOE. The raw protocol

header is composed of four main fields. The first one is the command field, which

is an identifier that labels the command to be executed at the destination, either

the Web server or the TOE. The second field is the optional parameters length.

This is zero when no parameters are sent. The third field is the data length and

is used on some commands that send data directly via the payload of the frame.

The fourth field is the destination PID. This is used to indicate which PID is going

to handle the command. Not all the commands use this field. The last field is

optional and is used to send additional data. The length of this field varies and is

indicated by the second field.

The raw protocol header consumes at most 16 octets from each frame. This

maximizes the payload size of the frame by reducing overhead. However, the

header allows for additional parameters to be sent. These are referenced at the

end of the protocol header. The length used by the additional parameters depends

directly on the command used. The commands that consume the largest parameter

space are the getaddrinfo() and getnameinfo(). However, these commands are only

issued once per connection.

Every POSIX socket command is mapped into the TOE-Em. Therefore, every

time a socket function is invoked at the server, a frame is created containing the

raw protocol header. The TOE-Em reads this frame, validates the raw protocol

header and executes the command. If the TOE-Em needs to send results back to

the Web server another frame containing a raw protocol header is created.

There are three type of commands implemented on the whole test bed. The

first commands are the ones used to provide the Web server with the proper socket
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Figure 3–10: Raw Protocol

interface layer. These commands are presented in Table 3–1. The second type are

fourteen additional commands used to return the results obtained at the TOE-Em.

These commands have been supported in the Web server application. The method

used for handling these commands is presented in Section 3.3.6. The third type

of commands are specific control commands for fine tunning the TOE-Em. These

commands are presented in Table 3–2.

The TOE-Em provides a way of emulating the way whole files are sent through

a stream socket using sendfile(). It is important to notice that whenever files are

going to be sent via sendfile() the file resides on both PCs. The file is open and

processed normally as the Web server application does it. However, to emulate

the sendfile() system call, all the files required for our test are replicated on the

front-end PC. This emulates a TOE with the capabilities of using a zero copy

mechanism [9, 55].
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Command Comment

RAW CREATE Initialize a connection
RAW BIND POSIX bind()
RAW LISTEN Listen to a TCP port
RAW CONNECT Establish a connection via TCP
RAW ACCEPT Passively listen to a TCP port and blocks
RAW OPTIONS Used to set options on a TCP socket
RAW GETSOCKNAME Use to store the bound name of the specific socket
RAW GETPEERNAME POSIX getpeername()
RAW GETADDRINFO Resolves DNS names into OS format
RAW GETNAMEINFO Translates a socket address to a node name
RAW SEND Used to send using a TCP socket
RAW SENDFILE Used to send a file send file()
RAW RECEIVE Receive data from a TCP socket
RAW SHUTDOWN Close one side of full-duplex TCP connection
RAW CLOSE Close a connection

Table 3–1: Main commands supported by the TOE-Em

Our approach, emulates this exchange of control messages between the of-

fload engine and the web server. The raw protocol creates an abstraction of the

commands involved in the communication between the TOE and the Web server.

In a real implementation, this happens inside the host. We assumed that when

the TOE is part of the host, the communication between the TOE and the CPU,

is faster than in our current test bed. However, the contribution of this research

Command Comment

RAW BLOCK OPT Used to turn on or off the non-blocking sockets
RAW TIMEOUT Sets timeout on a non-blocking socket
RAW REGISTER PID Matches a PID from a PID at the Web server
RAW KILL PID De-allocates resources in the TOE-Em
RAW FORK Creates a new process on the TOE-Em
RAW EPIPE Indicates if one half of the connection has been closed

Table 3–2: TOE-Em Specific Control Commands
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is using the experimental setup to validate the abstractions of the mathematical

model. Also, our approach is apt for analyzing the performance of the system.

3.3.6 TCP Offload Engine Support for Web Servers

The Web Sever application selected was Apache version 2.2 [75]. Apache is

a free Unix-based Web server developed by a group of volunteers/contributors

based on NCSA httpd 1.3 [76]. Apache is the most popular Web server running

today. This Web server accounts for approximately 65% of all Web domains on

the Internet [77]. Another important aspect in choosing Apache is that it is open

source. Its source code is available and distributed freely. This is an advantage

for us since the code can be changed for suiting our needs. The version used was

Apache 2.2, which incorporates some of the improvements proposed in [18, 55].

A hacked5 version of Apache 2.2 was used to interface it with our TOE-

Em. This version includes a modified socket interface that uses raw sockets to

communicate to the TOE-Em. All the socket interface of Apache 2.2 was changed

in order to adapt it to our needs. Specifically, four of these sources were modified:

1. sockets.c : mostly used to handle connection establishment

2. sockaddr.c : used to handle address resolution and other calls

3. sockopt.c : used to handle socket options

4. sendrecv.c : used for handling the calls of sending and receiving

The Apache 2.2 core application was mostly maintained intact. Altering

the Web server application substantially would have resulted in diverging from

our scope. However, the socket interface was changed substantially. The hacked

5 A way of altering a computer program beyond its original design goals.
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...
mpm_state = AP_MPMQ_RUNNING;
bucket_alloc = apr_bucket_alloc_create(pchild);
while (!die_now) {

conn_rec *current_conn;
void *csd;

rv = raw_register_child(ap_my_pid);
if (rv < 0) {

fprintf(stderr,"CHILD COULD NOT BE REGISTERED");
clean_child_exit(APEXIT_CHILDFATAL);

}

apr_pool_clear(ptrans);
if ((ap_max_requests_per_child > 0 ...

Figure 3–11: Modified prefork.c on Apache 2.2

version of Apache 2.2 stays as a multi-process program as the original non-modified

version is. No other substantial modification has been made to Apache 2.2 core.

Just a slight modification was made to Apache 2.2 core and is described as follows.

Apache starts and forks into several child process by default. Each child process

listen to TCP port 80 and waits for a connection. In order to alert the TOE-

Em of this event a new function was called from the source code, prefork.c (see

Figure 3–11). This enables the modified Apache to issue a notification that a new

child process has been created. Then, the TOE-Em could spawn a new SP that

is mapped to this newly created child. This is the only instruction added to the

Apache core.

Apache 2.2 has been modified also to run as root. Apache 2.2 could not run as

root by default for security reasons. However, the modified Apache 2.2 has to run

as root since the only valid user for opening a raw socket is the root. The hacked

version bypasses the section where it validates what user is running Apache 2.2.
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3.3.7 System Architecture

This section presents the system architecture used in the test bed. This is the

hardware used to run Apache 2.2, Apache 2.2 with the modified socket interface

layered, and the benchmarks used. The software used to create the workload

was based on two benchmarks: SURGE and Webstone. The benchmarks and the

objects used to test the system are discussed on the following paragraphs.

The hosts have the following configuration: The front-end PC has an Athlon

XP 2600+ 1.9 Ghz with a cache size of 512 KB and 756MB of RAM, the PC

acting as our Web server is a Genuine Intel Pentium 1.8 Ghz with a cache size

of 128KB with 512MB of RAM. Both PCs have the same operating system, i.e.

Linux Fedora Core (FC) 6 with kernel version 2.6-18. The Web server runs Apache

2.2.

Several nodes were used to act as users requesting pages from the Web server.

The main machine was a Genuine Intel Pentium 1.6 Ghz with a cache size 512MB

of RAM. The OS for this PC was Linux Mandriva with kernel version 2.6-18.

Another PC was used for some of our test and this was an AMD K6-2 600Mhz

with Linux kernel 2.4.8. The benchmarks used were run from these nodes and will

be discussed in the following sections.

3.3.8 Benchmarks: Webstone and SURGE

This research combines notions from different benchmarks to stress our test

bed in different ways. Our target is to study how an offloaded host behaves for

different types of requested objects. Webstone 2.5 was used for testing our system

[59]. Originally, Webstone was developed by Silicon Graphix. Currently, Mindcraft

supports the benchmark. Webstone was chosen for the following reasons:

• Webstone is open source
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• Previous works are available for validating our results

• Webstone can be modified in a number of different ways

Since Webstone 2.5 is bundled with a limited file system, SURGE was used

for generating the set of files for our test bed. The benchmark software stresses

the system until it reaches the saturation point. However, SURGE could not be

configured easily for our purposes.

The file set generated by SURGE has been classified and divided into four

different classes similar to what was done in [18]. Table 3–3 presents these classes.

Files with sizes ranging from 0 to 1 KB has been classified as Class 0. Class 1

contains files with length greater than 1KB and less or equal than 10KB. The files

with sizes greater than 10KB and less or equal than 100KB constitute Class 2.

Class 3 files are those files ranging from 100KB to 1MB. Finally, Class 4 files have

sizes greater than 1MB.

Classes Range

0 0 - 1KB
1 1KB - 10KB
2 10KB - 100KB
3 100KB - 1 MB
4 Over 1MB

Table 3–3: Classification of files

Tests were run for all the classes three times for 10 minutes each. Our test

bed was confronted with a default Apache 2.2 configuration for a single proces-

sor system with no protocol offload capabilities. The /proc file system of Linux

was used to acquire our results with a hacked version of the Unix program for

monitoring the host called top.
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3.4 Summary

This chapter presented the methodology used to conduct the research and con-

firm our contributions. The first phase of the research was developing an analytical

model for estimating the utilization and delay before and after the extraction of

protocol processing from the system. The second phase uses an emulation-based

approach mixed with a real-implementation of the most common Web server used

today, Apache 2.2. The implementation of the emulator and the real Web server

is used to validate our model. The TCP Offload Engine Emulator (TOE-Em) is a

multi-process program that have all the functionality of a TCP Offload Engine.

This emulator provides the socket interface layer to the real Web server applica-

tion. The core of the Web server application was almost left intact, however, the

socket interface was changed substantially. This research combines notions from

different benchmarks to stress the experimental setup in different ways. Our tar-

get was studying the performance benefits of an offloaded host handling different

types of requested objects. Since confronting our experimental setup with a gen-

eral case conceals the real benefits of protocol offload, the requested objects were

classified in five different classes based on their size. Tests were run for every class

stressing the server until it reaches the saturation point. Results were obtained

from each configuration and presented in the following chapter.



CHAPTER 4

ANALYSIS OF RESULTS

This chapter presents the analysis of the results when comparing the results

obtained from the analytical model with the ones measured from the emulator.

Section 4.1 presents the validation of the probabilistic model discussed previously.

After validating the probabilistic model, a quantitative analysis was performed

from the data gathered from our test bed. This is presented in Section 4.2 where

the performance metrics of goodput, utilization, and response time were analyzed

further. Also, the number of connections that the system was able to handle when

it was saturated is presented in this chapter.

4.1 Probabilistic Model Validation

Webstone 2.5 was slightly modified in order to compare the estimated uti-

lization obtained by the probabilistic model with the utilization obtained by our

emulated Offload Engine. Webstone was modified for producing arrivals following

a Poisson distribution. This means that Webstone produced sessions with inter-

arrival times that followed an exponential distribution. The following sections

presents the results obtained for these arrivals.

4.1.1 Utilization

The utilization of the host was measured before and after protocol processing

extraction for all of our file classes. Figure 4–1 presents the utilization obtained by

64
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the probabilistic model versus the measurements obtained from the experimental

setup. The graph presents the utilization versus the number of requests per second.

The values obtained by the analytical model are presented as lines. Points in the

graph present the measurements obtained from the emulator. The non-supported

host has been label as the Non-TOE and the supported host as the TOE. The

analytical model is labeled as Non-TOE Model or TOE Model. These labels are

used in some of the plots of this section.

The analytical model estimated that protocol offload via our TOE-Em would

not be beneficial for files with sizes ranging from 0 to 10KB. These are files clas-

sified in Classes 0 and 1.
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Figure 4–1: Utilization for Classes 0 and 1

This was true in our context, since the application plus the overhead for

communicating with the TOE-Em is in fact greater than the application plus the

actual transmission before offloading the CPU. This means that E[Xo] > E[Xp] in
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the probabilistic model. In order to achieve better performance for these classes,

the time to process the overhead has to be reduced.

The expected time to process the overhead (E[Xo]) increases as a result of

processing the protocols on another host. Every time Apache 2.2 uses the socket

interface, a command is invoked via an Ethernet frame to the TOE-Em at the

front-end PC. The process at the Web server must wait until the result of this

command returns. E[Xo] should be smaller in a real implementation since the of-

fload engine resides inside the same host and these overheads bring by the inherent

characteristics of our test bed could be reduced substantially.

Figure 4–2 shows the utilization versus the requests per second for both,

the probabilistic model and the measurements obtained from the TOE-Em. The

analytical model approximates the measurements. Offloading TCP/IP is in fact

beneficial for files with sizes greater than 10KB in our experimental setup. Figure

4–2 presents the results for classes 2, 3 and 4.

As the files grow in size, more arrivals could be handled and the CPU of the

host consumes less time. Table 4–1 presents the saturation point of the system for

classes 2, 3 and 4. Notice that the saturation point of the system is approximately

350, 300, and 40 requests per second for classes 2, 3 and 4, respectively, in the

TOE supported system. However, the saturation point for the non-supported host

was approximately 300, 100, and 12 requests per second. This is an increase of

15% for Class 2. The saturation point was three times higher for class 3 and 3.33

times higher for class 4.

The CPU of the host never reaches the saturation point for files with sizes

greater than 1024 KB. This means that the bottleneck of the system is not the

CPU of the Web Server anymore. The bottleneck now resides on the front-end



67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350

U
ti
liz

a
ti
o

n

Number of Requests Per Second

Non-TOE
Non-TOE Model

TOE
TOE Model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350

U
ti
liz

a
ti
o

n

Number of Requests Per Second

Non-TOE
Non-TOE Model

TOE
TOE Model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35

U
ti
liz

a
ti
o

n

Number of Requests Per Second

Non-TOE
Non-TOE Model

TOE
TOE Model

Figure 4–2: Utilization for classes 2(top left), 3 (top right) and 4 (bottom)

PC where the TCP offload engine is emulated. This is discussed further in Section

4.2.

4.1.2 Delay of The System

An efficient offload engine reduces the utilization of the CPU and maintains

or reduces the delay after protocol processing extraction. This section analyzes

the results obtained from the analytical model and compares them to the results

obtained from the test bed.
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File Non
Class TOE TOE

2 300 350
3 100 300
4 12 40

Table 4–1: Saturation Point for Classes 2, 3 and 4

Figure 4–3 and Figure 4–4 present the delay estimated by the model and the

delay measured from the Web Server for the Non-TOE and TOE configurations

for class 0 and 1. The results obtained from the probabilistic model are plotted

with solid lines while the results obtained by the test bed are plotted with points.

Notice that for every class the model approximates the values obtained from the

model with the ones obtained from the test bed. This is validated further using

the Kolmogorov-Smirnov (K-S) analysis presented in Section 4.1.3. As predicted

by the probabilistic model, the inclusion of an Offload Engine in our system is not

beneficial for these file classes. This is evident for files with sizes lower than 10

KB where the Non-TOE outperformed the TOE configuration.

The mean response time obtained from the Non-TOE and TOE configura-

tions for files with sizes greater than 10KB is presented in the following figures:

Figure 4–5 presents the results for class 2. Figure 4–6 presents the results for

class 3. Then, the results obtained for class 4 are presented in Figure 4–7. The

TOE alternative outperformed the Non-TOE by reducing the average delay while

increasing the number of requests per second that the whole system can handle.

The probabilistic model predicted this behavior.
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Figure 4–3: Estimated and Measured Average Delay for Class 0

4.1.3 Kolmogorov-Smirnov Analysis

A Kolmogorov-Smirnov (K-S) test was done for validating the performance

measurements obtained. The K-S test is a form of minimum distance estima-

tion that determines if two sets of data differ substantially [78]. The K-S test is

non-parametric and distribution independent (see Appendix C). The statistical

software environment used to perform this test was R version 2.7.1 [79]. The R

Statistical Environment is a project developed at Bell Laboratories and mostly

used in scientific computing [79]. This tool was used to generate the values pre-

sented in Table 4–2 which are the values obtained from the K-S test. We obtained

a p-value greater than 0.20 for all of our data sets.
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Figure 4–4: Estimated and Measured Average Delay for Class 1

4.2 Quantitative Analysis of The Experimental Setup

In this section, benchmarks were used to study our design beyond that the ab-

straction of the analytical modeling can provide us. In our context, a benchmark

is the program used to find the upper bound in requests per second, connections,

and goodput that the whole system can handle. The emulation-based approach

provides the capabilities of testing the real system with real workloads to ob-

tain accurate performance measurements beyond the capabilities of the analytical

model. Therefore, this research had been bold into studying what occurs beyond

the results of the analytical model. This is true since Queuing Theory is limited

in estimating performance measurements in an unsteady state.
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Figure 4–5: Estimated and Measured Average Delay for Class 2

Webstone 2.5 was run without any inter-arrival time between session initi-

ations to study the impact on the saturation point. Other performance mea-

surements were obtained and analyzed essentially from the TCP Offload Engine

Emulator.

4.2.1 Utilization

Figure 4–8 presents the utilization for a default configuration of Apache with-

out TOE-Em support. The utilization of the CPU is divided in seven types ac-

cording to the percent of time spent handling:

• software interruptions

• hardware interruptions
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Figure 4–6: Estimated and Measured Average Delay for Class 3

• input and output system calls (I/O)

• kernel (operating system software)

• user (software application software)

• nice (non intrusive calls)

• idling (A CPU doing nothing)

In Figure 4–8 the server is stressed until saturation. However, for classes

2, 3 and 4, files greater than 10KB, the time the CPU spends on the kernel

and handling interrupts increments substantially reducing the percent of time the

system is handling the user space (application). In our work, the reduction in

software interruptions reflect the reduction in processing TCP/IP protocols. It is
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Figure 4–7: Estimated and Measured Average Delay for Class 4

known, by analyzing the source code of the Linux kernel that protocol processing

generates software interruptions [80]. Notice that for every file class the percent

of time used by the CPU for handling each type varies. This has been achieved

using the capabilities provided by Linux Kernel 2.6. The behavior of the whole

system is similar to what has been analyzed by Hu, Nanda and Yang in [18].

No idle time is visible for a server that runs the default Apache 2.2 without

TCP offload. Notice also that the percent of time spent on the kernel and software

interrupts is similar for classes 3 and 4.

Figure 4–9 presents the utilization of the host for the configuration that has

the modified Apache with TOE support. The utilization for handling software
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Configuration D+
− P

Non-TOE Class 0 0.1429 0.9996
Non-TOE Class 1 0.1616 0.9996
Non-TOE Class 2 0.1667 0.9985
Non-TOE Class 3 0.2143 0.9205
Non-TOE Class 4 0.2500 0.8690
TOE Class 0 0.1818 0.9934
TOE Class 1 0.1818 0.9970
TOE Class 2 0.1667 0.9985
TOE Class 3 0.2308 0.8978
TOE Class 4 0.2727 0.8326

Table 4–2: Kolmogorov-Smirnov Test Results

interruptions has decreased to around 7.5% for all file classes. This reduction in

software interruptions is a result of offloading TCP and IP from the server that

handles the Web server application. Notice that the utilization for user space1

remains the same (44% approximately) for all the classes. This utilization is

superior for file classes 0, 1, and 2 of the default Apache configuration (33%, 31%,

24% respectively). The utilization consumed by hardware interruptions increments

for every class on the Non-TOE (see Figure 4–8) and reaches 27% and 34% for

classes 3 and 4. This is not reflected on the host supported by the TCP Offload

Engine Emulator. The percent of time used for handling interruptions reflects a

utilization close to 10.3% for every file class except for file class number 4. File

class 4 showed a 2% of utilization in Figure 4–9. The percent of utilization in user

and kernel space is barely the same for files of classes 0, 1, and 2. The utilization at

1 application time
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Figure 4–8: Default Apache 2.2 (protocols handled by the OS)

file classes 3, and 4 varies. This happens since the Web server, in some occasions,

idles when handling file classes 3, and 4.

Figure 4–10 presents the utilization of the CPU of the machine that is running

the TCP Offload Engine Emulator, (the front-end PC). Notice that for file classes

0, 1, and 2 the CPU of the front-end PC idles for 80%, 77% and 68% respectively.

However for class 3, and 4 this idle time reduces considerably to around 2%. The

bottleneck of the system has been shifted from the host handling the Web server to

the front-end PC for file classes 3, and 4. The utilization for software interruptions
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Figure 4–9: CPU Utilization of Apache 2.2 with the Support of the TOE-Em

increments as the length of the file is incremented. It does not increment so much

for classes 0 and 1 (around 4% and 5% respectively). This issue can be explained

by understanding the behavior of Apache 2.2 core application and the method it

uses for transmitting small files. This is explained on the next paragraph. The

utilization for software interruptions for file classes 2, 3, and 4 is 10.8%, 49.4%

and 58% respectively. Also notice that the time spent in the kernel is greater for

classes 2, 3, and 4 (13.5%, 40%, 35%) than of classes 0, and 1 (9% and 9.7%).
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Figure 4–10: TOE-Em Front End PC Utilization

The host supported by the TOE-Em is stressed similarly for file classes 0

through 3. However, in class 4, the front-end PC became the bottleneck.

Apache 2.2 handles small files differently than large ones. Apache does not

use sendfile for small files (8000 bytes or less). It uses writev instead. This makes

the data travel from I/O to kernel, from kernel to user, and then, from user to

kernel to be transmitted. Then, it reaches the TOE-Em and travels from kernel to

user and then back from user to kernel. Large files are handled differently. Since

a large file uses sendfile, a message is sent to the TOE-Em indicating which file
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is to be transferred. The TOE-Em, then, transfers the file and notifies the Web

server of its success or failure.

Notice also the increment in utilization by the kernel for classes 2, 3, and 4

in Figure 4–10. Data travels from I/O to kernel and form kernel to the device

without a memory copy into user space when sendfile is used. Since these files are

read into kernel buffers and then transferred the utilization in the kernel increases.

4.2.2 Connection Handling

Figure 4–11 presents the average number of connections per minute handled

by both configurations when the system is saturated. Notice that for file class

0 the Web server without TOE support could handle more connections than the

supported one. This is approximately 6% more connections for class 0. Also, for

file class 1, the Web server without TOE support handled approximately 1% more

connections than the TOE supported. The Web server with TOE-Em support

out-performed the default one for file classes 2, 3, and 4. The TOE-Em supported

Web server handled 21% more connections for class 2, around 62% more for class

3, and 66% for class 4.

It is worth noticing that the Web server was the bottleneck of the system when

confronted to file with sizes less than 10Kb (class 0 and 1). The system is not

properly balanced and the mean time spent for handling Apache 2.2 core dominates

over the TCP/IP protocol processing. However, improvements in Apache can be

achieved to solve this.

Table 4–3 presents the average time it takes to establish a connection when

the system is saturated. Notice that for all the file classes, the connection estab-

lishment time is around 0.28 ms for the non-supported host. However, for the

supported host, the mean time to establish a connection for classes 0, 1, and 2 is
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Figure 4–11: Mean Connections per Minute Histogram

approximately 0.09 ms. The mean time to establish a connection is around 0.12

ms and 0.8 ms for classes 3, and 4. Connection establishment when the system is

supported by a TCP offload engine is faster because is handled at the front-end

PC. As mentioned previously, the front-end PC is not the bottleneck of the system

for file less than 100KB (class 0, 1, and 2). The CPU at the Web server is handling
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other processes while the CPU of the host running the TOE-Em is handling the

connection establishment2 .

Configuration default WS Test bed

Class 0 0.27 0.09
Class 1 0.28 0.08
Class 2 0.28 0.09
Class 3 0.28 0.12
Class 4 0.29 0.78

Table 4–3: Connection Establishment in Milliseconds

4.2.3 Goodput

Throughput is a performance metric of the capacity of the medium. It is

defined as the rate at which data can be sent through the network, specified in

bits per second (b/s). The performance metric that is obtained by measuring

the amount of data transfer per unit of time is called the goodput [52]. Table

4–4 presents the average goodput in megabytes for both configurations when the

system is saturated (also see Figure 4–12). Notice that for file class 0 the non-

supported Web server transfer 61.4 KB over the supported one. For class 1 both

configurations behave similarly, just a slight performance increase is achieved by

not using the offload alternative. The TOE-Em supported host out performed

the default Web server for classes 2, 3, and 4 by 2.4 MB, 27 MB and 49 MB

respectively. This is 23%, 58% and 67% of improvement. Figure 4–12 presents

these values in an histogram.

2 TCP three way handshake
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Configuration Apache 2.2 Test bed Difference
Testbed - WS

Class 0 317.4 KB/s 256 KB/s (61.4 KB/s)
Class 1 1.36 MB/s 1.35 MB/s (10.24 KB/s)
Class 2 7.8 MB/s 10.2 MB/s 2.36 MB/s
Class 3 19.6 MB/s 46.5 MB/s 26.87 MB/s
Class 4 24.8 MB/s 74.1 MB/s 49.28 MB/s

Table 4–4: Measured Goodput
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions and their implications related to our

contributions of the research presented. Also, this final chapter restates the re-

search problem and reviews the methodology used for the research conducted.

This chapter includes possible future directions that could propel the research

even farther.

5.1 Brief Summary of the Dissertation

As explained in Chapter 1, on the dawn of multi-core multi-threaded pro-

cessors and new technologies on outboard chips, a new debate related to where

protocol processing should be performed arises. TCP offload engines have been

proposed as an option for alleviating the CPU of the host of the cost of processing

TCP and IP. These proposals tend to locate the OE inside the network interface

hardware. Another, approach has been including the OE as a component near or

even inside the CPU of the host. However, the interactions between the host and

the OE are independent of the underlying network technology. The interface be-

tween the host and the offload engine could spoil most of the performance benefits

brought by the inclusion of an OE. The performance of the host is degraded, in

some cases, after including another entity to process the protocols. However, there

are situations when the inclusion of an entity is beneficial. The uniqueness of our

82



83

research abstracts some of the inherent characteristics of protocol processing for

identifying in what situations protocol offloading is beneficial. The research aims

to study the pros and cons of protocol offloading and its related environment.

Chapter 3 presented the methods used to conduct the research and confirm

our contributions. The first part of the research was developing an analytical

model, based on probability theory, for estimating the utilization and delay before

and after the extraction of protocol processing from the system. A network of

queues is used to abstract the system and obtain the performance measures. The

second stage uses an emulation-based approach mixed with a real-implementation

of the most common Web server used today1 . The emulator and a hacked version

of the Web server is used to validate our mathematical model. The TOE-Em2 is

the program that emulates the functionality of a TCP offload engine. The tests

conducted merged features from benchmarks to strain the experimental setup in

diverse ways. Since it is known that the system behaves differently when handling

different types of request, our target was studying the performance benefits of an

offloaded host that handles these requests. Since confronting our experimental

setup with a general case conceals the performance benefits of protocol offloading,

the requested objects were classified based on their size. Tests were run for every

class stressing the server in different ways until the system reaches the saturation

point.

1 Apache 2.2

2 A TCP Offload Engine Emulator
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In Chapter 4 the results obtained from our research were presented. The per-

formance measurements obtained from the probabilistic model were compared and

contrasted with the results obtained from the experimental setup. CPU utiliza-

tion and delay in the system were estimated by the analytical model with p values

greater than 0.75 under the Kolmogorov-Smirnov test. Therefore, we can conclude

that the model estimated the performance measurements very well. Also, results

obtained from the benchmarks were studied to analyze our design even further.

The following paragraphs present our contributions, conclusions and possible

future directions related to the research presented in this document.

5.2 Main Contributions

The main contribution was producing a probabilistic model that esti-

mates the performance increase or decrease in utilization and delay

when protocol processing is shifted from the operating system to a

protocol offload engine. As presented in Chapter 2, most of the research on

protocol offload and engines is experimental. No work related to protocol offload

was found during the survey of literature that handled the issue using Queuing

Theory. Most of the analytical models are deterministic. Our analytical model

considers the stochastic nature of the end-to-end transmission. Consequently, our

model includes the process for converting the requested object R into packets

of protocol P and how it was distributed. The analytical model is simple and

extensible.

The second contribution was the development of a TCP Offload Engine

emulator used to validate the model but also provides an insight of

the real problem beyond the limitations of the analytical model. The

levels of complexity and detail of our emulation-based approach are superior to
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the ones provided by the generalities of the analytical model. We were unable

to find research under our survey of literature that implement an offload engine

emulator using our innovative approach. This approach pitches our research into

the experimental ground. The TOE-Em could be modified for further inclusion

into similar environments. The emulator is going to be available for the scientific

community to study TCP offload engines even further.

Our approach of classifying files based on their sizes present an inno-

vation for studying offloading from a totally different perspective. This

is our third main contribution. Dependencies on the size of the requested object

stress the host in different ways [18, 19, 81]. This approach has been followed for

further improvements on the Web server application but has not been oriented to

protocol processing improvements. We were unable to find investigations on the

standpoint of protocol offload that segregated the requested objects and analyzed

its impact on performance. Most of the research conducted in TCP offload ab-

stracts the file system as a whole [20–22] or even uses workloads that benefit their

test bed [4, 21, 23]. Studying only the general case, or the extreme case, could

conceal the real benefits of protocol offload over a wide variety of different situa-

tions since it is known that the host behaves differently when handling different

objects [18, 81].

The fourth main contribution was studying the behavior of the Web

server before and after protocol processing extraction not only when

the system saturates, but also when the system is in equilibrium. Ex-

perimental work [6, 11, 20] used benchmarks to saturate the system and obtained

measurements for analyzing what happens under these extreme conditions. Our
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approach not only studies the behavior when the system is saturated, but also

studies the behavior of the system when it is not.

The fifth main contribution was comparing the analytical model with a

real implementation of a common Web server used today. Apache 2.2 was

used as part of the test bed. Minimal changes have been done to the Apache 2.2

core application when interfaced with the TCP offload engine emulator. Therefore,

our research implies that a network application does not need to be modified

substantially if an offload engine is included as part of the system.

5.3 Marginal Contributions

These section present marginal contributions that have been obtained from

our research in transport layer protocol offload. Also, the following paragraphs

present some additional conclusions and remarks.

The research conducted provided a mathematical model that was validated

with a test bed composed of an emulator and a real-implementation. Since the

analytical model uses the notions of Queuing Theory our research scope is not

bound to a specific hardware or coded into any specific on-board embedded pro-

cessor. Therefore, it is not limited by a specific hardware constraint that can ruin

or biased our findings as others has faced [82].

This research was focused on full TCP offload. The topology used in this

research allows no constraints for achieving full or partial protocol offload.

The analytical model is not bound to any specific characteristic of the proto-

cols. This means that the model is not limited to the protocols TCP and IP.
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5.4 Conclusions

Protocol offloading is not beneficial in scenarios in which the mean time to

process the overhead of communicating with the offload engine at the CPU3 is

greater than the average time of converting requested object R into packets of

protocol P in the same CPU before protocol processing extraction. The cost of

processing the overhead could not exceed the time it takes to handle the protocols

at the CPU rather than in the OE. In our context, an increase in utilization

that resulted in degrading performance occurred for files with sizes equal or less

than 10KB when the protocol processing was offloaded from the CPU of the Web

Server. If the expected time to process the overhead is less than the expected

time to process the protocols (E[Xo] ≤ E[Xp]), then the CPU of the host has

been offloaded successfully, however, we cannot state that this will result in a

performance increase. The estimated delay in the system needs to be calculated

to confirm an actual performance increase.

The bound on the mean time for processing the overhead can be found using

this model. The bounds on overhead of the CPU and the OE can be found using

the performance metrics. These, bounds are found by comparing the expected

service time for processing the protocols and the overheads4 . Even if the overhead

is unknown, the bound on this variable can be found by examining the expected

time of processing the protocols.

3 Represented in the model with random variable Xo

4 random variables: Xp, Xo and Xc
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The model estimates the behavior of the delay of the system before and after

protocol processing extraction. This is evident when the measurements obtained

from the emulator are compared to the ones obtained by the analytical model.

The results obtained from the K-S analysis performed on the performance mea-

surements acquired from the experimental setup resulted in p values greater than

0.75.

Abstracting the system composed of a CPU with the support of an OE as

an M/M/1 queue in tandem with an M/G/1 queue resulted in a suitable approx-

imation of the real network scenario. Although others have claimed that a Web

server can be modeled as an M/G/1 or an M/G/1/K [30–32], it seems than when

protocol processing is removed from the main CPU, the CPU begins to behave as

an M/M/1 queue. Therefore the research suggests that in an offload scenario the

CPU can be modeled as an M/M/1 queue. Consequently, processing communi-

cation overhead as an exponential process fairly approximates the real scenario.

However, this claim needs further analysis and is left as future work.

The performance measurements obtained from the probabilistic model can be

used to properly balance the system by administering the resources of the host

correctly. The third and fourth main contributions provide the bases for a handoff

technique that uses our probabilistic model as part of the OS for deciding when

to offload protocol processing and what objects to offload.

5.5 Limitations

There are some milestones that were encountered when conducting the in-

vestigation presented in this dissertation. These limitations are presented in the

following paragraphs.
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Obtaining measurements when the host utilization was near 100% on the

TOE supported configuration was cumbersome sometimes. Ethernet frames con-

taining the commands that travel to and from the Web server were dropped when

the front-end PC was saturated. This happens because the front-end PC was un-

able to process the incoming frames while it was preparing the next burst to be

transferred. Frames containing commands began to be dropped when the NIC’s

buffer overflowed. The raw protocol used by the TOE-Em did not provide a way of

detecting this error. Consequently, the whole system hanged near the saturation

point of the front-end PC. This means that the design of the raw protocol that

is handled by the TOE-Em depends on a reliable connection and the underlying

protocol does not provide it. This has to be solved if the TOE-Em is going to be

used in a real scenario as a front-end.

Our TOE-Em could be optimized even further. The TOE-Em has a design

flaw that needs to be improved on a second version of the emulator. This is

a problem of the Commander and Reader Process. This process stops reading

frames from the NIC whenever it finds that the Slave Process that must handle the

command is busy. Therefore, the CR, blocks until the Slave Process is available to

handle the command. All other incoming frames must wait for this slave process

to be ready. Incoming frames are buffered and are not available until the next

recvfrom(). Adding a queue for storing the commands received by the CR and

destined to an unavailable SP seems to unravel this issue. This was analyzed

under the design phase of the TOE-Em, however, the idea of implementing a

queue conflicted with the memory management constraints imposed by us. Two

approaches can be used; either handling the memory in a shared area, or using

dedicated memory for every process and passing the incoming frames via pipes.
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Consequently, this approach impacts the original design heavily. The designer of a

real offload engine must maintain memory copies at minimum for achieving better

performance.

The TOE-Em was confronted using the capabilities of Webstone 2.5. Web-

stone 2.5 is not capable of generating HTTP requests that use pipelines. Simple

HTTP 1.0 requests were used in our test bed. The HTTP 1.1 specifications allow

more than one object to be transferred via a single request. This means that if

two objects are going to be requested from the WS using HTTP 1.0, two sepa-

rate connections are established for transferring each object. HTTP 1.1 uses only

one connection and maintains it open until one of the peers closes the connec-

tion. However, our model is capable of abstracting this event. The experimental

setup was confronted with this type of requests for exploring the capabilities of the

TCP offload engine emulator. These requests are transparent to the functionality

of the TOE-Em because the emulator process the protocols that lie beneath the

application layer (TCP/IP).

Another approach studied during the early stages of this research was imple-

menting the TOE-Em and the Web server application inside an SMP. The imple-

mentation of the TOE-Em required exclusive access and full privileges to change

the OS internals of the SMP resulting in heavy modifications of its functionalities.

This approach was not pursued further due to the issues presented.

5.6 Future Work

The performance metrics presented by the analytical model are: utilization,

delay, and average number of active connections: inside the system, in the server,

and waiting to be serviced. However, there are other performance metrics that

have not been presented. Throughput is a performance metrics that was not
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considered by our analytical model but studied experimentally. A Poisson process

does not necessarily describe this performance metric. Although, the arrival rate

(λ) of requests approximates throughput if and only if the arrival rate is observed

as the same time scales than the throughput, and the system is under equilibrium

(ρ < 1). During the Kolmogorov-Smirnov analysis of the values obtained from

the experimental setup we found evidence that suggests that the output of the

system, in some occasions, follows a lognormal distribution. This was found as a

byproduct of the tool used to perform the K-S test. However, this needs further

analysis and is recommended as a future work.

In our test bed, a requested object is abstracted as a file. This file could

be a static HTML page, an image, an object, an animation, a video feed, and

any other static object. It has been presented on [61] that static objects stress

the Web server more than some workloads that include CGI, ASP, and some

Servlets. However, static pages do not stress the system more than pages that

contain results generated by scripts that use database connections. Extending the

analytical model to include this type of workload is left as a future work.

In order to achieve the maximum benefits from an offload engine the applica-

tion has to be aware of its capabilities. If Apache 2.2 core is aware of the presence

of the TOE-Em, then it could benefit of the capabilities provided by the offload

engine. Moreover, the overhead incurred into communicating with the TOE-Em

could be reduced substantially. The Web server could issue more than one com-

mand to the TOE-Em in order to reduce overhead and maximize parallelism. This

could be used also for reducing the utilization obtained from transferring objects

with lengths less than 10 KB with the current approach. Modifications to Apache

2.2 core to maximize the use of the TOE-Em are left as future work.
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The analytical model can be used in a real environment to predict when to

rely on the offload engine and when to use the operating system of the host to

transfer data of requested object R in packets of protocol P . The input parameters

for our model can be obtained by maintaining statistics at the OS. The OS could

discriminate which objects the OE is going to handle and which is not. This is

beneficial when balancing the load within a system. Moreover, the OS could detect

if the OE is lagging behind the capabilities of the CPU.

This model was applied to an Apache 2.2 Web Server running in a LINUX

environment and using the TCP and IP protocols. This model could also be ap-

plied into a similar situation. It is known, that HTTP and FTP have a similar

behavior [17]. Therefore, this model could be expanded to estimate the perfor-

mance measurements when using FTP. Also, the model could be used to estimate

the performance measurements for other transport layer protocols. These possible

future applications are left as future work.



CHAPTER 6

ETHICS

Today the field of Science and Engineering has been affected by conscious and

unconscious decisions that have consequently ended in negligence. Negligence is

traduced into harm to individuals, the society and especially, the environment. A

responsible research scientist should be aware of the culture of where technology

is going to be introduced. This refers to the ethnical and religious backgrounds

that contribute to the creation of laws that are defined by the society where the

results of the research findings are going to be introduced. Today new technologies

could introduce negative effects as property damage, security issues, and profits

for one at the expense of others. Research scientists and professionals have to

be very sensible in the way they produced new technologies that could impact

positively and also negatively the field of Science and Engineering. Been unaware

of the impact that a special technology could introduce in our society is a risk that

research scientist must not face. The scientist must have the moral responsibility

when using its judgment for preparing and maintaining the trace goals. The goal

of a responsible scientist is the development of usable technology that does not

compromise the security of the social construction where the technology is going

to be introduced.
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6.1 Ethical Statements

6.1.1 Principle of Responsibility

The dissertation and articles publish are not only a technical documents. This

documents should be consider also as responsible acts. From this perspective,

research ethics have to be state as a subset inside the general moral issues but

rather applied to other issues as the professional ethics. A research scientist must

follow a politically correct conduct even if there exists a conflict between the

intentional effect of its actions and the acquired results. Therefore, an ethical

act is the one that is manifested as a responsible action. A responsible action

is the one that eliminates or minimize the harms even if this harm is produced

unconsciously.

6.1.2 Research Findings

Scientist must based its findings in reliable valid proofs that are of key im-

portance in the process of making decisions, assumptions and conclusions. The

research scientist must be aware of the assumptions taking in consideration in or-

der not to fall into the manipulation of certain variables to create artificial context

that bias its research out of its original scope. Research in Engineering per se is

a process that seeks to comprehend new or updated technologies that their appli-

cation ends in a real environment. Therefore, the analysis of the results obtained

must be a responsible and moral act.

6.1.3 Plagiarism

The research scientist must be aware on the impact on science and engineering

that plagiarism represents today. Copying literally a research project from other

research scientists and present it as their own is a serious ethical fault that must

be avoided at all cost. All texts extracted from articles, proceedings, textbooks
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and other type of sources must be identified and properly cited. Another type of

plagiarism is to attribute work that has been done by a research team as work

achieved by an individual. All the collaborators that have taken part actively on

the research project must be included or acknowledged and be considered as part

of it.

6.1.4 Trimming and Result Forging

A responsible research scientist should not commit the act of results forging

and trimming. These acts represent a direct attack to the fields of Science and

Engineering. Reckless scientific methods should be avoided at all costs. Trimming

and forging does not contribute to the state of the art of science and engineering. It

is impossible to repeat research projects that have been carried out using reckless

scientific methods. The harms that this type of research project could generate

are incalculable and intractable. These type of actions are an open act of pure

negligence.

6.2 Research Ethics

This dissertation presents a protocol offload framework that acts as a guideline

for the research scientist to properly implement an OE. This research spans and

opens a new trail on the investigation of a true TCP Offload Engine and their

behavior on the scenarios exposed. The basic foundations of ethics have been

part of the methodology of this research project. The principles of reversibility

have been applied in order to minimize or eliminate harms and maximize goods

to the field of Computing Information Science and Engineering and consequently

to society.
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APPENDIX A

PROBABILITY THEORY CONCEPTS

A.1 Definitions

An experiment has a finite or infinite number of outcomes. Let Ω be the set

of all possible outcomes {ω1, ω2, . . . ωn} of an experiment. A collection of these

outcomes is called an event. Let A be an event, then A ⊆ Ω. Therefore:

⋃

x∈R

Ax = Ω (A.1)

Let p(ωj) be the the weight assigned to the likelihood that a given outcome

ωj will occur for each j = 1, 2, . . . , n. This weight satisfies that 0 ≤ p(ωj) ≤ 1 and:

n∑
j=1

p(ωj) = 1 (A.2)

This weight is called the probability [83]. Therefore, the probability that

outcome ωk will occur is p(ωk) and ωk ∈ Ω. The likelihood that a given event Ax

will occur is P (Ax).

A probability space is a triple (Ω, F , P ) where Ω is the set of all possible

outcomes, F is a σ-algebra on Ω, and P is a measured from F to R satisfying

that:

1. P (Ω) = 1

2. 0 ≤ P (A) ≤ 1 for all A ∈ F
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3. if {Aj} is a finite or infinite disjoint sequence that defines an event 1 in F

then:

P (∪Aj) =
∑

P (Aj) (A.3)

A map X : Ω → R is a random variable if the range of X is a countable set

{x1, x2, . . .}, finite or infinte, and {ω|X(ω) ≤ xj} ∈ F for all j ≥ 1 . Then X

is a function that maps the outcomes into the real numbers [70]. The notation

{ω|X(ω) ≤ xj} is written as (X ≤ xj) and the event {ω : a < X(ω) ≤ b} is

compressed as (a < X ≤ b) [70, 83].

A.2 Probability Distribution Concepts

Let X be a discrete random variable with range {x1, x2, . . .} and {ω|X(ω) =

xj} for all j ≥ 1. The probability mass function f is a function on the range of X

defined by:

f(xj) = P (X = xj), j = 1, 2 . . . (A.4)

P is a function on F with values in R [83]. The probability mass function

has its domain consisting of the random variable X and its range in the close

interval [0,1]. The probability that a value of the random variable X obtained on

a performance of the experiment is equal to x. The following properties hold for

f :

1. Since pX(x) is a probability then: 0 ≤ pX(x) ≤ 1 for all x ∈ R.

1 This means that every outcome ωl is independent
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2. Since the random variable assigns some value x ∈ R to each outcome ω ∈ Ω

then the sum of all pX(x) has to be equal to 1.

3. For a discrete random variable X, the set {x|pX(x) 6= 0} is a finite or count-

able infinite subset of real numbers. Let {x1, x2, x3, . . .} be this set then:

∑
i

pX(xi) = 1 (A.5)

The probability density function (pdf) is the equivalent probability mass func-

tion of a continuous random variable. Let X be a continuous random variable with

range {x1, x2, . . .}. The density function f is the real-valued function on the range

of X defined by:

f(xj) = P (X ≤ xj), j = 1, 2, . . . (A.6)

The probability density function f satisfies the following properties:

1. f(x) ≥ 0 for all x

2.
∫∞
−∞ f(x) dx = 1

3. f(x) > 1 is acceptable since the values of the probability density function

are not probabilities2 .

Let A be a collection of outcomes, then, the probability of the set {ω|X(ω) ∈
A} is given by:

{ω|X(ω) ∈ A} =
⋃

xj∈A

{ω|X(ω) = xj} (A.7)

2 The probabilities are obtained by integrating the density function
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For the sake of simplicity and as in [70], {ω|X(ω) ∈ A} is written [X ∈ A]

and its probability P (X ∈ A). If pX(ω) denotes the probability mass function of

random variable X then:

P (X ∈ A) =
∑
xj∈A

pX(xj) (A.8)

Therefore, A is an interval with endpoints a and b and −∞ < a < b < ∞.

The probability of this interval is written as P (a < X < b). If A is the set of

the interval (a, b], then, A is written as P (a < X ≤ b). If A is the set of all

probabilities in the interval from (−∞, x], then the probability of set A is written

as P (X ≤ x).

The function FX(t) on the interval −∞ < t < ∞ is called the cumulative dis-

tribution function (CDF). The cumulative distribution function is the probability

distribution of random variable X. The CDF is defined as:

FX(t) = P (X ≤ t) =
∑
x≤t

pX(x), −∞ < x < ∞ (A.9)

The probability distribution has several properties:

1. 0 ≤ F (x) ≤ 1 for −∞ < x < ∞.

2. F (x1) < F (x2) since the interval (−∞, x1] is also in (−∞, x2] assuming

x1 < x2.

3. P (−∞ < X ≤ x1) < P (−∞ < X ≤ x2) assuming x1 < x2

4. If random variable X is finite then F (x) = 0 for all x sufficiently small and

F (x) = 1 for all x sufficiently large. For all other cases:

lim
x→−∞

F (x) = 0 ; lim
x→∞

F (x) = 1 (A.10)
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Moreover, dF (x)/dx is equal to the probability density function f(x) [70].

The probability density function and the cumulative distribution function are

related. Since f(x) = dF (x)/dx, then
∫

f(x) = F (x). Moreover:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt, −∞ < x < ∞ (A.11)

Let A = (a, b], then P (X ∈ A) is:

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) (A.12)

Therefore, P (a < X ≤ b) is represented by the area under the curve fX

between a and b.

If X is a continuous random variable then P [X = c] = 0 since:

P (X = c) = P (c ≤ X ≤ c) =

∫ c

c

f(k) dk = 0 (A.13)

Consequently:

P (a ≤ X ≤ b) = P (a < X ≤ b) = P (a < X < b) = Fx(b)− Fx(a) (A.14)

Including or excluding a or b of the interval is the same since P [X = a] =

P [X = b] = 0.

A.3 Expectation,Variance and Moments

One of the most common calculations used in performance analysis is the

average or mean value in which the experimentation converges. This is called the

expected value. The expected value (E[X]) is the weighted sum of all possible

values of a random variable X as defined in [83], and is given by :
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E[X] =





∑
i xip(xi) , if X is discrete,

∫∞
−∞ xf(x)dx , if X is continuous.

(A.15)

The expected value is also called the average or the mean of the distribution.

It is a measure of the center of mass of the probability density [66].

The variance is a measure of dispersion. Variance measures the distance

between the sample xi and the mean E[X]. Let σ2 be the variance then:

σ2 =





∑
i(xi − E[X])2p(xi) , if X is discrete,

∫∞
−∞(xi − E[X])2f(x)dx , if X is continuous.

(A.16)

The square root of the variance is called the standard deviation and is de-

noted by σ. Another measure of dispersion commonly used is the moment of a

distribution. The first moment of a probability distribution is the mean. The

expected value of random variable X in X2 and X3 are the first, second and third

moments denoted by E[X], E[X2] and E[X3]. The second moment is also a mea-

sure of the spread of the distribution. The second moment is not the same as the

variance. Let σ2 be the variance of distribution F , then σ2 = E[X2] − (E[X])2.

Therefore, the second moment can be found if the variance of the distribution and

the expected value are known since: E[X2] = σ2 + (E[X])2.

A.4 Relevant Probability Distributions

In this section the distributions that are relevant for the research are pre-

sented. A summary of the Poisson, Exponential, Lognormal and Pareto distribu-

tion is presented.
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A.4.1 Poisson Distribution

The Poisson distribution is used to calculate the probability of k customers

arriving in the interval of duration t with a known expected rate λ. Customer

arrivals are independent of each other during the interval observed [66, 70].

The probability mass function for the Poisson distribution with shape param-

eter λ, and λ ∈ R is:

f(k, λ) =





(λke−λ)/k! if k = 0, 1 . . .

0 otherwise
(A.17)

Since {0, 1, . . .} is a countable set, then, f(k) = 0 for the complement of that

set. This is the same as stating, k 6∈ {0, 1, . . .}. Consequently:

∞∑

k=0

(λke−λ)

k!
= 1 (A.18)

This is true since the Poisson distribution is mapped by a discrete random

variable and the range of X(ω) is countable. Figure A–1 presents and example of

the probability mass function for the Poisson distribution.

If parameter λ determine the expected arrivals in an interval of length t, then,

λ is the success rate of an arrival on that interval [66]. Therefore, the probability

of k successes given by discrete random variable X is:

P [X = k] =
(λt)k

k!
e−λt (A.19)

The expected value of the Poisson distribution is λ and also its variance.
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Figure A–1: Poisson Probability Mass Function

A.4.2 Exponential Distribution

The exponential distribution is used to describe the probability of the com-

pletion of a job at rate λ on an interval of time t [66]. The following random

variables are modeled as exponential as presented in [70]:

1. Time between two successive job arrivals to a file server.

2. Service time at a server in a queueing network; the server could be a resource

such as CPU, an I/O device, or a communication channel.

3. Time to failure or lifetime of a component.

4. Time required to repair a component that has malfunctioned.
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The assertion that the above distribution are exponential is not a given fact

but an assumption [70]. Experimentation should validate and verify that indeed

the previous random variables could be modeled with an exponential distribution.

The exponential density function with parameters λ as the success rate in an

interval of time t is given by:

f(t, λ) =





λ e−λt , if t > 0,

0 , otherwise.
(A.20)

The exponential distribution function is given by:

F (x, λ) =





1− e−λx , if 0 ≤ x ≤ 1,

0 , otherwise.
(A.21)

This distribution sometimes is called the negative exponential distribution.

The exponential distribution its applied in queuing theory and reliability theory

(see Section B). Reasons for its use include its memoryless property. This property

is named memory less because no matter how long it has been since an event has

started, if observed later, the distribution of time remaining since it is observed

is precisely the same as it was observed since the start of the event. The process

forgot that any time had been expended [66]. The exponential distribution has

this property.

The expected value of the exponential distribution is 1/λ, and its variance is

1/λ2. The second moment is then:

E[X2] =
1

λ2
+

(
1

λ

)2

=
2

λ2
(A.22)
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If X is a continuous random variable whose logarithm is normally distributed,

then ln(X) has a normal distribution. The lognormal distribution has a probability

density function with parameters ν and σ and is given by:

f(t, ν, σ2) =
1

tσ
√

2π
e

(
− (ln t−ν)2

2σ2

)

(A.23)

for t > 0 where ν is the mean of the natural logarithm of the time to complete

a job and σ is the standard deviation of the natural logarithm of the time to

complete a job.

The cumulative distribution function is given by:

F (x, ν, σ2) = Φ(
ln(x)

σ
) x ≥ 0; σ > 0 (A.24)

where Φ is the cumulative distribution function of the normal distribution.

The expected value for the lognormal distribution is E[X] = eν+σ2/2 [70]. The

second moment is given by:

E[X2] = e2(ν+σ2) (A.25)

A distribution is heavy-tailed if:

P [X > x] ∼ 1

xα
; x →∞, 0 < α < 2 (A.26)

The Pareto distribution is a heavy-tailed distribution used to describe and

approximate situations in which equilibrium is found in the distribution of the

small to the large. On this research context, the Pareto distribution is used to

approximate the file size distribution of Internet traffic. The probability density
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function for the Pareto distribution with shape parameter α and scale parameter

k:

f(t, α, k) =
αkα

tα+1
for t ≥ k, (A.27)

The Pareto distribution is power law over its entire range. The Pareto cumu-

lative distribution function is:

F (x, α, k) = 1−
(

k

x

)α

(A.28)

The expected value of a random variable following a Pareto distribution is:

E[X] =
αk

α− 1
(A.29)

If α ≤ 1 the expected value is infinite. Also, as said before, E[X] is our first

moment. The second moment of the Pareto distribution is given by:

E[X2] =
αk2

α− 2
(A.30)
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Figure A–2: Exponential Distribution
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Figure A–3: Lognormal Distribution
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Figure A–4: Pareto Distribution with Location Parameter (1.5)



APPENDIX B

QUEUEING THEORY CONCEPTS

A queue models the basic concept of one or more customers that require

services from one or more service centers. A model that uses Queuing Theory has

also the capability of modeling the events encountered by a customer when the

service centers are busy. The system is able to capture the actions performed by

a customer that either waits and is serviced later or never enters the system. This

type of model has a special notation that is based on five features of the queue

[66] :

1. The distribution that describes the time between the arrival of customers.

2. The distribution that describes the time to service a customer.

3. The number of servers available to handle customers in the queue.

4. The number of spaces or slots reserved for customers that may actually wait

in the queue.

5. The exact number of the population of customers that are available to enter

the queue.

6. The order of removal of a customer from the queue.

This five features are the possible parameters used to model a system using

queues. The notation uses letters and numbers to describe a specific queue. Let L

be a letter and N be a natural number, then, the five feature notation of a queue
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is of the form L/L/N/N/N. The letters are used for determining the probability

distributions used to describe time. The letters used are: M for memoryless, D

for deterministic, and G for general. A notation as M/G/. . . describes a queue

with the inter-arrival time of customers described by a memory-less distribution

(Poisson) and with a general distribution for describing the time it takes to service

a customer.

The first N in the notation determines the amount of service centers available

to handle a customer. Sometimes, an arriving customer could not be serviced

immediately. This happens when the server is busy. The customer must wait

until the customer been serviced by the center departs the system. The second N

determines the number of available slots that a queue has for allocating waiting

customers when the server is busy. If an arriving customer could not find an

available slot, then, the customer never enters the system. The term drop is used

to define this event. The last N in the notation give the total number of customers

in the population. This last N is rarely used. The notation is simplified for some

cases. If a queue is defined as an M/M/1 in fact is defined as an M/M/1/∞/∞/.

However, ∞ is omitted [66, 70].

The service discipline specifies the order in which customers are selected from

the queue. These are: first comes first serve (FCFS) or also called first in first out,

last comes first serve (LCFS) or also called last in first out (LIFO), round robin

(RR), processor sharing (PS), priority and more. The service discipline used for

the probabilistic model presented is FCFS. The other disciplines can be found in

[66, 70, 84].

A queue has a notation and a graphical representation. Figure B–1 presents

the graphical representation of a queue. Customers arrive from the left directly
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into the queue. The circle represents the service center and there could be more

than one1 . The arrow that exits the circle represents the exit point of the queue.

- -

"!

#Ã
Customer
Arrivals

Waiting Line

Service
Center

Customer
Departures

Figure B–1: Graphical Representation of a Queue

Queuing Theory is used to study performance measures based on input pa-

rameters. Among these measures are:

• The percent of time a server is busy.

• The mean time a customer waits in a system.

• The mean time a customer waits before been serviced.

• The average number of customers waiting to be serviced.

• The average number of customers inside a system.

• The average number of customers served by a system.

• The number of customers unable to be serviced.

The percent of time the server is busy is known as the utilization. Let B be

this time and T the total time the system was observed. Then, the utilization

is U = B/T [84]. In queuing theory, utilization is calculated differently. Let λ

be the arrival rate of customers to a service center. Let X be a random variable

1 Figure B–1 only presents one service center
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that represents the service time a customer spends on the service center. The

utilization (ρ) is obtained by multiplying λ by the expected service time of center

(E[X]), then, ρ = λE[X]. The expected service time, by definition, is the inverse

of the service rate and this rate is denoted by µ [66]. Then, E[X] = 1/µ and

ρ = λE[X] = λ/µ [66, 70].

The M/M/1 notation is a simplification used to described a queue with an

arrival rate described by a Poisson distribution with service time described by an

Exponential distribution and only one service center. The first M determines the

distribution used to describe the inter-arrival times. The inter-arrival times of a

Poisson arrival process are exponentially distributed with mean 1/λ.

The queue is actually an M/M/1/∞/∞/FCFS queue. Therefore, the number

of customers that can be waiting for service and the total population are infinite.

The default service discipline is the FCFS.

The utilization of a service center in an M/M/1 queue is calculated as ρ =

λE[X] where X is described by an Exponential distribution. Consequently, E[X] =

1/µ and µ is the service rate of the service center.

The expected time in the system on an M/M/1 queue is given by the equation:

W =
1

µ− λ
=

(
1

λ

)
ρ

1− ρ
(B.1)

The expected time that a customer waits to be service after its arrival is

obtained by subtracting the expected service time from Equation B.1:

Wq = W − E[X] =
1

µ− λ
− 1

µ
=

ρ

µ− λ
(B.2)

Using Little’s Law the expected number of customers is:
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Ns = λW = λ

(
1

λ

)
ρ

1− ρ
=

ρ

1− ρ
(B.3)

The expected number of customers in waiting to be serviced is obtained also

with Little’s Law:

Nq = λWq =
ρ2

1− ρ
(B.4)

The M/M/. . . systems are tractable due to the memoryless property of the

service times. There are situations where random variable X is not approximated

by an Exponential distribution. The M/G/1 queue, like the M/M/1 queue has a

Poisson arrival process, but it allows a general distribution for describing the ser-

vice times. The distribution that describes the service time have to be identically

distributed, mutually independent and independent of inter-arrival times.

The Pollaczek-Khinchin formula, also known as the P-K formula, provides

some performance metrics for the M/G/1 queue [66]. The P-K formula is based

on the analysis of the residual service time. This is the residual time seen by a

customer β of another customer α that is been served upon the arrival of β. Let

Wq be the average time a customer waits in line before entering service. Let Nq the

average customers in the system waiting to be served. Let E[X] be the expected

service time. If R is the average residual time of the customer been in service, then:

Wq = R+NqE[X]. Applying Little’s Law Nq = λWq, then: Wq = R+(λWq)E[X].

Then: Wq − (λWq)E[X] = R. Symplifying: Wq(1− λE[X]) = R, but λE[X] = ρ.

Substituting: Wq(1− ρ) = R. Finally:

Wq =
R

1− ρ
(B.5)
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The expected residual time (R) is obtained by analyzing the graph generated

by the random variable that describes the service time (see Figure B–2). Let r(t)

be the residual time at time t and m(t) is the number of service completions up

to time t.

X1

X1

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@@

Residual

Service

Time

6

-
Time t

Figure B–2: Graphical Representation of Residual Time

The distribution of the residual time is obtained by computing the integral of

the graph presented in Figure B–2. The time average of r(t) in the interval (0, t)

is given by:

1

t

∫ t

0

r(s)ds =
1

t

m(t)∑
i=1

1

2
X2

i (B.6)

The CDF of this distribution is obtained using the area bellow the curve.

This area is represented by a series of triangles. The equation is then multiplied

and divided by m(t) to obtain:

1

t

m(t)∑
i=1

1

2
X2

i =
1

2

(
m(t)

t

) (∑m(t)
i=1 X2

i

m(t)

)
(B.7)

The expected residual time converges when t →∞. Therefore:
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lim
t→∞

1

t

∫ t

0

r(s)ds =
1

2

(
lim
t→∞

m(t)

t

) (
lim
t→∞

∑m(t)
i=1 X2

i

m(t)

)
(B.8)

The first limit ( limt→∞
m(t)

t
) converges to λ when the system is in equilibrium

(ρ < 1). The second limit (limt→∞
∑m(t)

i=1 X2
i

m(t)
) converges to the average of all the X2

i

and this is E[X2]. Therefore:

R =
1

2
λE[X2] (B.9)

The expected waiting time in the queue before been serviced is obtained by

substituting in the P-K formula:

Wq =
λE[X2]

2(1− ρ)
(B.10)

The second moment of random variable X is needed to calculate Wq. The

expected total time in the system is obtained by adding the expected service time:

W = Wq + E[X] = E[X] +
λE[X2]

2(1− ρ)
(B.11)

The expected number of customers in the queue is given by using the P-K

formula and Little’s Law:

Nq = λWq =
λ2E[X2]

2(1− ρ)
(B.12)

Consequently, the expected total number in the system is given by: N =

λW = λ(E[X] + Wq) then:

N = λE[X] +
λ2E[X2]

2(1− ρ)
= ρ +

λ2E[X2]

2(1− ρ)
(B.13)



APPENDIX C

KOLMOGOROV-SMIRNOV TEST

The Kolmogorov-Smirnov test (K-S) is a non-parametric test of minimum

distance estimation. The K-S test is used for computing the distance between the

empirical distribution of the sample and a known cumulative distribution function.

The K-S test is a distribution free test that can be used for computing the distance

between the empirical distribution functions of two samples.

The empirical distribution function also called the cumulative fraction func-

tion is a step function defined by:

P [Xi < x] = F (x) =
1

n

n∑
i=1

I(Xi < x)

where I(Xi < x) is a characteristic function defined on a set X that indicates

membership of the element x in A and A ⊆ X. This function is defined as:

IA(x) =





1 : if x ∈ A

0 : if x 6∈ A

Figure C–1 presents the empirical distribution of A.

The null distribution of this statistic is calculated under the null hypothesis

that the samples are drawn from the same distribution (in the two-sample case) or

that the sample is drawn from the reference distribution (in the one-sample case).
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Figure C–1: Empirical Distribution Function Example

In each case, the distributions considered under the null hypothesis are continuous

distributions but are otherwise unrestricted.

The probability distributions of these two curves, given a null hypothesis that

both distributions were plotted from the same distribution, does not depend on

what the hypothesized distribution is, as long as it is continuous. The KS-test is

a robust test that cares only about the relative distribution of the data.

The KS-test uses the maximum vertical deviation between the two curves as

the statistic D. This is obtained by finding the maximum vertical distance be-

tween two distributions. Let Fa(x) and Fb(x) be empirical cumulative distribution

functions of two samples, then, the maximum vertical distance (D+
−) is:
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D+
− = sup

x
|Fa(x)− Fb(x)|

Where sup is the supremo. The maximum vertical distance can be viewed

graphically when the two empirical distributions are plotted. Figure C–2 presents

graphically the maximum vertical deviation between the two distributions.
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Figure C–2: Maximum Vertical Distance Between Empirical Distributions

The null hypothesis is accepted when the p-values obtained are greater than

0.20. The p-value is obtained by the following equation:

p =

√
ab

a + b
Da,b (C.1)

.



Glossary of Terms

10GEA : the 10 Gigabit Ethernet Alliance. An alliance formed by corporations

that aims to define the 10 Gigabit Ethernet standard.

Active Server Page (ASP) : is an HTML page that includes one or more

scripts that are processed exclusively on a Microsoft Web server before the

page is sent to the user. An ASP is somewhat similar to a server-side in-

clude or a common gateway interface (CGI) application in that all involve

programs that run on the server, usually tailoring a page for the user.

Address : An integer value represented in hexadecimal numbers used to identify

a particular node. The address must appear in every packet residing on the

medium and is used to identify for whom and to whom the packet is destined

for.

Application Layer : This is the upper layer protocol that defines the interface

with the user. It is labeled as layer 7 of the OSI model.

bps : Bits per Second.

b/s : a formal notation for bits per second.

Broadcast : A way of transmitting a packet over a network that is capture by

all the hosts attached to the network.

CGI : acronym for Common Gateway Interface.

Checksum : An error-detection code based on the summation of all the octets

within a packet.
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Circuit-Level Multi Processor (CMP) : An integrated circuit that combines

two or more independent CPUs into a component that enclosed them to-

gether. This single component is called a die. A CMP is also called a

chip-level multiprocessor.

Common Gateway Interface (CGI) : is a standard for external gateway pro-

grams to interface with information servers such as HTTP servers. A CGI

program is any program designed to accept and return data using a Web

server. The program could be written in any programming language been

the most common Perl.

Congestion : A situation in which the load imposed by the amount of traffic on

the network saturates it.

Connection : An abstraction provided by protocol software that logically links

more than one host in an end-to-end communication.

Connection-oriented Protocol : A protocol that exchanged data by establish-

ing a logical connection between the end-points involved.

Connectionless Protocol : A protocol that exchanged data informally without

previous coordination between the parties involved.

CPU : stands for Central Processing Unit. A general-purpose processor that is

responsible for running the operating system.

CR : acronym for Commander and Reader. This is the most important process

of the TOE-Em and is used for reading and writing commands to and from

the offload engine and the Web Server.

DDP : an acronym for Direct Data Placement. See direct data placement.
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Datagram : An IP packet. The basic unit of information passed across the

Internet. Each datagram contains the source and destination addresses as

well as data.

De-capsulate : Is the process in which an agent extracts the data contents inside

the packet destine to it.

De-multiplex : Is the process used by IP to extract incoming datagrams, sending

each piece of information extracted to the appropriate upper layer protocol

module or application program.

DHCP : Dynamic Host Configuration Protocol. Nodes running DHCP does

not own a static IP address. These nodes consult the server and the server

assigns an IP address usually at boot time. (See also BOOTP).

Direct Data Placement (DDP) : An Upper Layer Protocol proposed as a way

for placing data directly into a buffer linked to a specific application. This

mechanism place data directly into memory without CPU intervention. This

mechanism is currently proposed by the RDMA consortium.

empirical : originating in or based on observation or experience. Relying on ex-

perience or observation alone often without due regard of system and theory.

Capable of being verified or disproved by observation or experiment.

Encapsulation : The process in which a lower level protocol accepts a message

from a higher level protocol and places it in the data portion of the low-level

frame.

End-to-end : Feature of any delivery mechanism that operates only on the source

and final destination.
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Ethernet : Ethernet is a frame carrier protocol. Ethernet was design by XE-

ROX at the Palo Alto Research Center and is a best-effort delivery system.

Ethernet have a peak speed of 10 Mbps.

FCFS : an acronym for First Come First Serve. The first customer arriving at

queue Q is the one who will be served first. A synonym for FIFO.

File Server : A hosts that provides access to files within the host file system to

remote nodes that are connected to it.

Flow : A general term used to characterize a sequence of packets sent from a

source to a destination.

Flow Control : Control of the rate at which hosts or routers inject packets into

the Internet to avoid congestion.

Forwarding : The process of accepting an incoming packet and sending the

packet to another node that is part of the path from source to destination.

Fragmentation : The technique of splitting a datagram into parts for the pur-

pose of fitting them into the data portion of a lower layer that is smaller

than the length of the whole datagram.

Frame : A formal term used to described a packet that is transmitted accross a

serial line. A packet described in the data-link layer context.

Frame Carrier : The agent responsible of placing frames on the medium and

extracting them when they match is physical address. Typically, the lower

layer of a protocol stack. Examples: Ethernet, Token Ring, Appletalk.

FTP : The File Transfer Protocol. An upper layer protocol used to transfer files

from source to destination on the end-to-end communication.

FP : acronym for Forker Process. Is a process of the TOE-Em entitled of spawn-

ing and removing slave process.



125

Full-duplex : A mechanism that allows simultaneous transfer of data in two

directions.

Gateway : Any technology that interconnects two or more systems and translate

among them. Dedicated nodes that route datagrams from one network to

another. A synonym for router.

Gbps : Gigabits per second.

Gb/s : a formal notation of Gbps.

GPPs : acronym for General Purpose Processors.

Gigabit Ethernet : Ethernet with peak speeds of 1Gbps and 10Gbps

Hack : It is a term that refers to a clever fix to a computer program problem. A

hack refers to a way of altering a computer program beyond of its original

design goals.

Header : Information at the beginning of the packet that describes the contents

and specifies the source and destination. Necessary overhead placed by the

upper layer protocols to achieved the end-to-end communication.

Host : Any end-user processing node that connects to a network and provides

a service. Is a formal term for describing a computer node rather than a

router or gateway.

HTTP : acronym for Hypertext Transfer Protocol is an upper layer protocol

(application protocol) that provides a standard for Web browsers and web

server to communicate.

IETF : The Internet Engineering Task Force. A group of people who work on

the design and engineering of TCP/IP and the global Internet.

Intranet : A private network consisting of hosts and routers that use TCP/IP

as their primary protocol for achieving end-to-end communication.
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IP : the Internet Protocol.

IPC : acronym for Inter-Process Communication (see System V IPC).

IP address : A 32-bit unique address assigned to each hosts that identifies each

participant in a TCP/IP network.

iSCSI : Also called Remote SCSI. This is a term used for host-independent SCSI

device with stand-alone communication capabilities. Most of the times the

term refers to SCSI device that are capable of sending datagrams using a

net device attached to them (see SAN).

iNIC : acronym for Intelligent Network Interface Card. An iNIC is a network

interface with programmable capabilities than the traditional network inter-

face card does not have.

Jumbo Frames : Frames with payloads greater than 1500 octets. This term

is used formaly for defining the Gigabit Ethernet frames with 9000 octet

payloads.

Kbps : 1000 bits per second. Acronym for Kilobits per second.

Kb/s : a formal notation of Kbps.

KBps : 1024 bytes per second. Acronym for Kilobytes per second.

KB/s : a formal notation of KBps.

LAN : Local Area Network. A private corporate network that only spans through

a few buildings or blocks in a city.

LLP : acronym for Lower Layer Protocols.

MAC Address : A synonym for the physical address used by Ethernet, Fast

Ethernet and Gigabit Ethernet.
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MTU : Maximum Transmission Unit. The largest amount of data space within

a frame that can be transfered across a given physical network. The MTU

is determined by the physical layer.

Mbps : One million of bits per second.

Mb/s : a formal notation for Mbps.

MBps : 1,048,576 bytes per second.

MB/s : a formal notation for Mbps.

MSS : Maximum Segment Size. The MSS is the largest amount of data that can

be transmitted inside a TCP segment. The MSS is negotiated between the

sender and receiver on the initial handshake of the end-to-end communica-

tion.

Multi-homed Host : A host using TCP/IP that has more than two net devices

and connects to various physical networks.

NIC : the Network Interface Card. Is a hardware device responsible of sensing

the medium and extract any frame destine to it.

NP : acronym for Network Processors. A device that is capable of processing the

network code either by its own ASICs or by using an embedded operating

system.

Octet : An 8-bit unit of data. A synonym for an 8-bit byte but within the

networking context. An octet either can be used to identify a data unit or a

communication unit of 8 bits.

Offload Engine : An entity outside the main CPU of the host that is a specific

purpose processor use for reducing the utilization of the CPU by processing

specific commands. This aids the system in processing its workload.
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Packet : Used to refer to a small block of data sent accross packet switching

networks.

Path Length : A measure of the number of lines of code required to process

every datagram through the IP stack code.

Payload : The data contents of any packet used by a protocol. This term is

typically used for the data section of the frame carrier.

Process Identifier (PID) : A label used by some operating systems to idetify

a process.

Protocol Offload Engine : An offload engine that reduces the utilization of the

CPU by processing the protocols used in and end-to-end communication.

Physical Address : see MAC Address.

Port : The abstraction used by some protocols to distinguish among multiple

sockets within a given host.

RDMA : Remote Direct Memory Access. A node capable of using RDMA can

place data directly into the memory of a remote node without CPU inter-

vention.

RFC : Request for Comments. The acronym for a series of notes that contains

surveys, measurements, ideas, techniques and observations, as well as pro-

posed and accepted TCP/IP protocol standards.

Route : A route is the path that a packet traverses from source to destination.

Router : see gateway.

Segment : A TCP packet. The unit of transfer sent from the TCP module at

the sender and is destine to the TCP module of the receiver at some port.

Self-similar : is a statistical property in which the characteristics for the entire

data set are the same for sub-sections of the data set. For example, the two
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halves of the data set have the same statistical properties as the entire data

set.

Server : A processing node that serves costumers inside a network or queues.

Servlet :A network application written on JAVA that runs in a Web server and

provides server-side processing such as accessing a database and e-commerce

transactions.

Sliding Window : Is the number of packets that the sender will transmit with-

out waiting for the reception of an acknowledge.

SP : acronym for Slave Process. Is a subprocess of the TOE-Em that handles

the socket interface layer for a matching process on the WS. It can only be

triggered by the commander and reader process of the TOE-Em.

System V IPC : is a set of rules and functions for the exchange of data between

one or more processes. IPC is divided into methods for message passing,

synchronization, shared memory, and remote procedure calls.

TCP : Transmission Control Protocol. A transport layer protocol that provides

the reliable, connection-oriented, full duplex, stream service on which many

applications depends.

TCP/IP Protocol Suite : The formal name of the protocols forms by TCP

and IP.

TELNET : The TCP/IP standard protocol for terminal service.

Three-way Handshake : The segment exchange used by TCP to reliably start

or gracefully terminate a connection.

TOE : stands for TCP/IP Offload Engine. An entity outside main CPU that is

capable of processing the TCP and IP protocols.
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TOE-Em : a TCP Offload Engine Emulator. A program that mimics the func-

tionality of an Offload Engine.

UDP : User Datagram Protocol. The protocol that allows an application pro-

gram on one machine to send a datagram to an application program on

another machine. UDP is simpler than TCP and does not provide conges-

tion control mechanisms.

ULP : Upper Layer Protocol. High level protocol.

Web Server (WS) : A host that provides Web pages via the HTTP protocol.

Window : See sliding window.

Window Advertisement : A positive integer value used by the receiver TCP

module to advertise to the sender the amount of data that can be received

and stored in a buffer.
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[98] Alberto León-Garćıa and Indra Widjaja. Communication Networks Funda-

mental Concepts and Key Architectures. Mc Graw-Hill, Boston Burr Ridge,

IL, second edition, 2003.



144

[99] Allyn Romanov, Jeff Mogul, Tom Talpey, and Stephen Bailey. Remote direct

memory access (RDMA) over IP problem statement. Internet draft, April

2005.

[100] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. R. Stevens. Basic

socket interface extensions for IPv6. Technical report, Internet Engineering

Task Force, 2003. RFC-3494 Internet Engineering Task Force: Intransa Inc.,

Cisco Co., Hewlett-Packard Co.

[101] M Allman, Vern Paxson, and W Stevens. TCP congestion control. RFC-2581

Internet draft, 2001. NASA Glenn/Steerling Software.

[102] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high perfor-

mance. RFC-1323 Internet draft, 1992. http://www.ietf.org.

[103] J. Satran, C. Sapuntzakis, K. Meth, E. Zeider, and M. Chadalapaka. iSCSI.

RFC 3720 Internet Draft, April 2004. http://www.ietf.org.

[104] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanov. TCP selective acknowl-

edgment options. RFC-2018 Internet draft, 1996. http://www.ietf.org.

[105] John Postel. User Datagram Protocol. RFC-768 Internet draft, 1980.

http://www.ietf.org.

[106] John Postel. Internet Protocol. RFC-791 Internet draft, 1981.

http://www.ietf.org.

[107] John Postel. Transmission Control Protocol. RFC-793 Internet draft, 1981.

http://www.ietf.org.

[108] Angus Telfer. Front-end communications processors and their place in an IP

world. Technical report, INTECO Systems Limited, February 2002. [avail-

able online at] http://www.inteco.com.



145

[109] John Valley. UNIX Programmer’s Reference. Que Coorporation, Carmel,

Indiana, 1991. QUE Programming series.


