
CONTRIBUTIONS TO PARALLEL AND DISTRIBUTED COMPUTING

IN KNOWLEDGE DISCOVERY AND DATA MINING

By

Elio Lozano Inca

A Ph.D. thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTATION AND INFORMATION SCIENCE AND ENGINEERING

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS

August, 2006

Approved by

Dr. Edgar Acuña Fernandez Date
President, Graduate Committee

Dra. Dorothy Bollman Date
Member, Graduate Committee

Dr. Robert Acar Date
Member, Graduate Committee

Dr. José Fernando Vega Date
Member, Graduate Committee

Dr. Dorial Castellanos Date
Representant, Office of Graduate Studies

Dr. Manuel Rodriguez Date
Interim Director, CISE Doctoral Program

Dr. José A. Mari Mutt Date
Director, Office of Graduate Studies

Abstract

Recently databases are increasing continuously without bound, due to new data

acquisition technologies. One challenge is how to gain knowledge from these large

data sets. In this thesis, we analyze and improve the algorithmic solution of four

problems related to knowledge discovery and data mining, making use of parallel

computing; we also compare our results with related works. We design two parallel

algorithms for outlier detection; the first one is for finding distance-based outliers

based on nested loops along with randomization and the use of a pruning rule. The

second parallel algorithm is for detecting density-based local outliers. In both cases

data parallelism is used. The star coordinates plot is a useful visualization tech-

nique, but it has some drawbacks. We enhance the traditional star coordinates plot

introducing new parameters that will allow us to visualize the data points in two

dimensions as polygons and in three dimensions as polyhedrons. In order to visu-

alize large data sets and reduce its computational time, a parallel algorithm is also

designed. We design a new meta-classifier algorithm, and its performance is com-

pared with base classifier algorithms and Bagged based meta-classifier algorithms.

Our meta-classifier algorithm gives better results compared to other meta-classifier

algorithms. For speeding up its computation time as well as making it suitable

for large data sets a parallel algorithm is developed. We develop a meta-clustering

algorithm and compare its performance with two Bagged based meta-clustering al-

gorithms, and hypergraph partitioning meta-clustering algorithm. Our proposed

meta-clustering algorithm gives results close to the best clustering algorithm, and

is more robust to the data dependency problem. A parallel algorithm to compute

four meta-clustering algorithm is also designed.

The experimental results of our collection of sequential and parallel programs is

tested in two different clusters of Linux-based workstations using real-world data-

bases available in the Machine Learning Repository of the University of California

at Irvine.

ii

Resumen

Actualmente las bases de datos están en continuo crecimiento debido a los avances

en la recoleción de datos. Los desaf́ıos recientes radican en obtener información útil

de bases de datos grandes. En esta tesis analizaremos y mejoraremos la solución

algoŕıtmica de cuatro problemas relacionados a descubrimiento del conocimiento

y mineŕıa de datos haciendo uso de computación paralela. Nuestros resultados

son comparados también con otros trabajos relacionados. Se diseño dos algorit-

mos paralelos, el primero basado en ciclos anidados conjuntamente con aleator-

ización y una regla de poda. El segundo basado en densidad local. En ambos

casos usamos la técnica de paralelismo de datos. Las coordenadas estrella es una

técnica de visualización muy útil, pero tiene sus limitaciones. Nosotros mejoramos

esta técnica usando nuevos parámetros, la cual nos permite visualizar puntos de

datos en dos dimensiones como poĺıgonos y en tres dimensiones como poliedros.

Con el objetivo de visualizar datos grandes y reducir su tiempo computacional

se desarrolló un algoritmo paralelo. Se diseño un algoritmo meta-clasificador, y

su rendimiento es comparado con meta-clasificadores basados en Bagging. Nues-

tro algoritmo meta-classificador obtiene los mejores resultados. Con el objetivo de

acelerar su tiempo computacional y trabajar con conjuntos de datos grandes se

desarrolla una versión paralela de este algoritmo. En esta tesis desarrollamos un

algoritmo meta-conglomerado y su rendimiento es comparado con dos algoritmos

meta-conglomerados basados en Bagging y un algoritmo meta-conglomerado basado

en particionamiento de hypergrafos. Nuestro algoritmo meta-conglomerado obtiene

resultados cercanos al mejor algoritmo de clustering y es mas robusto que este frente

al problema de dependecia de datos. También se propone un algoritmo paralelo para

el cómputo de cuatro algoritmos meta-conglomerados.

Los resultados experimentales de nuestros programas se hizo en dos redes de esta-

ciones de trabajo basados en Linux, usando datos provenientes del repositorio del

”Machine Learning Repository of the University of California at Irvine”.

iii

Copyright c© 2006

by

Elio Lozano Inca

Dedicated to God, Virgen Maria, my mother Simeona, my father Samuel,

my brothers Rosalio, Rosa, Rafael, Erne�o, Fernando and all my family

v

Acknowledgment

I would like to thank my advisor Dr. Edgar Acuña for his dedication, suggestions

and collaboration in the present investigation; my graduate committee members,

for their valuable suggestions; the administrative staff; faculty members; the CAS-

TLE research group of the Mathematics Department; the Doctoral program CISE

(Computation and Information Science and Engineering) of University of Puerto

Rico, at Mayagüez Campus; and my family and friends, for their appreciation and

dedication.

I would like also to thank the Office of Naval Research (ONR) - (grant number.

N00014-03-1-0359) for their financial support: without the aid provided, the present

work would not have been accomplished.

vi

Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Parallel computing terminology . 2

1.2 Parallel Programming Models . 3

1.3 Outlier Detection . 3

1.4 Data visualization . 4

1.5 Meta-classifiers . 4

1.6 Meta-clustering . 4

1.7 Software and hardware environment 6

1.8 Algorithm Evaluation Criteria . 7

1.9 Thesis structure . 7

1.10 Ethics . 8

2 Distance and Density based Outlier Detection 11

2.1 Introduction . 11

2.2 Distance-based outlier detection . 13

2.2.1 The Bay’s Algorithm . 14

2.2.2 Parallel Bay’s Algorithm . 15

2.3 Density-based local outlier detection 16

2.3.1 Parallel LOF Algorithm . 18

vii

2.4 Experimental results . 19

2.4.1 Description of Input and Output Parameters 19

2.4.2 Speedup . 20

3 Visualization 22

3.1 Star Coordinates . 23

3.2 3D star Coordinates . 25

3.3 Algorithm for 3D star coordinates . 27

3.4 Parallel algorithm for 3D star coordinates 28

3.5 Experimental Methodology . 33

4 Meta-classifiers 38

4.0.1 Literature review . 39

4.0.2 Our Work . 41

4.0.3 Motivation . 41

4.0.4 Organization . 42

4.1 Supervised Classification . 42

4.2 Base Classifier algorithms . 44

4.2.1 The C4.5 algorithm . 44

4.2.2 Radial Basis Function Networks 45

4.2.3 The Kernel Density Classifier 47

4.2.4 The K- Nearest Neighbors Classifier 50

4.2.5 The Naive Bayes Classifier . 51

4.3 Ensemble Methods . 51

4.3.1 Combination of generative and non-generative Ensembles . . . 52

4.3.2 Parallel design of the proposed meta-classifier algorithm . . . 54

4.4 Experimental Results . 54

5 Meta-clustering 59

5.1 Introduction . 59

5.1.1 Literature Review . 60

viii

5.1.2 Motivation . 62

5.1.3 Our Work . 62

5.1.4 Organization . 63

5.2 Clustering Techniques in Data Mining 63

5.2.1 Cluster Definition . 63

5.2.2 Similarity and Dissimilarity measures 63

5.2.3 Taxonomy of Clustering algorithms: 64

5.3 Base Clustering Algorithms . 65

5.3.1 Gaussian Mixture Models . 66

5.3.2 Partition Around Medoids . 67

5.3.3 Fuzzy C-means . 69

5.3.4 DBSCAN . 71

5.3.5 BIRCH . 73

5.4 Meta-clustering . 77

5.4.1 Bagged Clustering . 77

5.4.2 Majority Voting . 79

5.4.3 Graph partitioning . 79

5.5 Cluster Validation Techniques . 81

5.6 Parallel algorithm for Meta-clustering Algorithms 83

5.7 Experimental Evaluation . 84

6 Conclusions 89

6.1 Distance and Density based outliers 89

6.2 Visualization . 90

6.3 Meta-classifiers . 90

6.4 Meta-clustering . 91

7 Future Work 92

A Data sets and cluster description 101

A.1 Data sets used in this thesis . 101

ix

A.2 Cluster Description . 105

B Parallel outlier detection algorithms 106

B.1 Parallel Algorithms to detect outliers 106

B.1.1 Program parameters . 106

C Data visualization 108

C.1 VTK objects used in 3D star coordinate algorithm 108

C.2 Library dependencies . 110

C.3 Building Binaries . 111

C.4 Program parameters . 111

D Meta-classifier 112

D.1 Class hierarchy . 112

D.2 Libraries and programs used . 112

D.3 Building Binaries . 113

D.4 Program parameters . 113

E Meta Clustering 115

E.1 Class hierarchy . 115

E.2 Libraries and programs used . 115

E.3 Building Binaries . 117

E.4 Program parameters . 117

x

List of Tables

3.1 Running time (sec.) and speedup of parallel 3 D star coordinate

algorithm for the Shuttle data set) 36

4.1 Classification Error rates of Base and Ensemble Algorithms 56

4.2 Ranking of Classifiers and Ensembles 57

4.3 Running time (sec.) and speedup of parallel combined voting algo-

rithm for Landsat data set . 58

5.1 Accuracy and Mutual Information (MI) measures 86

5.2 Running time (Sec.) of Parallel Compound Clustering Algorithm for

synthetic Parabola data set . 88

A.1 Data set Description . 104

xi

List of Figures

1.1 Interrelationship between the tasks considered in this thesis 5

2.1 Bay’s Algorithm . 13

2.2 Parallel Bay’s Algorithm . 15

2.3 The LOF Algorithm . 18

2.4 Parallel LOF Algorithm . 19

2.5 Speedup for Parallel Bay’s Algorithm 20

2.6 Speedup for Parallel LOF Algorithm 21

3.1 Star coordinate transformation from 8 dimensional data set 25

3.2 Pipeline of the 3D star Coordinate algorithm. 28

3.3 a) Wire frame view in three dimensions. b) Polyhedrons with different

opacity in three dimensions. 29

3.4 Wire frame view of two overlapping points. 30

3.5 Polygons with different opacity. 30

3.6 Pipeline of the parallel 3-D star Coordinate algorithm. 32

3.7 2D star coordinates plot of Iris dataset 33

3.8 3D zoom of Iris data set . 34

3.9 3D zoom of Iris data set on wire frame view 35

3.10 2D star coordinates of Iris data set with polygons 36

3.11 3D zoom of the first class of Iris data set 37

4.1 Bagging Algorithm . 53

xii

xiii

4.2 Proposed Ensemble Algorithm . 53

5.1 PAM algorithm . 70

5.2 FCM Algorithm . 71

5.3 DBSCAN algorithm . 72

A.1 a) Cassini data set. b) Synthetic Parabola data set. 102

Chapter 1

Introduction

Knowledge discovery is a process composed of many steps such as data cleaning,

data integration, data selection, data transformation, data mining, pattern evalu-

ation and knowledge presentation. From all these steps, data mining is the most

important. Some areas related with knowledge discovery are Machine Learning, Sta-

tistics, Databases, and Data Visualization. This research is focused on almost all of

these major areas. Two well known definitions for data mining are the following:

1. Data Mining is the nontrivial process of identifying valid, novel, potentially

useful, and ultimately understandable patterns in data [FGW02].

2. Data Mining consists in the discovery of interesting, unexpected, or valuable

structures in large data sets [Han98].

Common data mining tasks include classification, clustering, association rule dis-

covery, and regression.

The implementation of data mining ideas in high-performance parallel and dis-

tributed computing environments is becoming crucial for ensuring system scalability

and interactivity as data continues to grow inexorably in size and complexity.

Databases are increasing continuously, in such a way that in many applications

the source of data is physically distributed. Some examples of this phenomena are

network intrusion data which has a large number of instances, and genomic data

which has a high number of variables. The type of problems we treat in this work can

be solved algorithmically in such away that parallelization can be done to reduce the

1. Introduction 2

cost of solution. In Lozano’s master thesis [Loz03] parallel computation was applied

for computing two meta-classifiers, Bagging and Boosting. Both approaches were

applied in kernel density classifier, achieving almost linear speedup. Most of this

research is about the application of parallel computing in the solution of complex

tasks in data mining and knowledge discovery involving large data sets. In this

work we consider the following tasks concerning data mining: outlier detection,

meta-classifiers, meta-clustering, and data visualization.

1.1 Parallel computing terminology

The following are terms used in parallel computing environment [WA99]:

• Task. It is a set of instructions that can be executed by a processor.

• Sequential execution. When the execution of a program is made by using

a single processor one instruction at a time.

• Parallel execution. When the execution of the program can carry out many

tasks simultaneously.

• Synchronization. It is a coordination of the parallel tasks in real time.

• Granularity. It is the rate between the size of computation and the size of

communication. If the size of computation is less than the size of communica-

tion, then it is called fine granularity, otherwise it is called coarse granularity.

• Speedup. It is a performances measure between a system with many proces-

sors and a system with one processor. It is defined as:

S(n) =
execution time using one processor

execution time using p processors

=
ts
tp

1. Introduction 3

where ts is the execution time using only one processor and tp is the execution time

using p processors. The maximum speedup that can be reached using n procs

is n procs (linear speedup).

• Scalability. It is the ability that a parallel system has when more processors

are used. This ability is influenced by the software and hardware.

1.2 Parallel Programming Models

• Data parallelism. In this approach the data is divided into different parti-

tions. The same program runs in each partition, and the results are combined.

• Task parallelism. In this programming model, the task parallelism is speci-

fied explicitly by the programmer, who is responsible for the data partitioning,

and communication between processors.

• Shared memory. Communication between processors can be simplified if

they share a global memory. But, when the number of processors increase, it

is difficult to control the conflict when the processors try to write to the same

memory location.

• Message passing. Each processor has its own memory, and the processors

communicate by explicitly sending or receiving messages, where messages are

buffers of data with specific length.

1.3 Outlier Detection

Among the techniques to detect outliers [BL94, KN98] distance-based and density-

based are the most powerful techniques. One of the major disadvantage of these

techniques is that the order of complexity increases when the data becomes very

large. We use parallel computing to reduce the order of complexity of these algo-

rithms.

1. Introduction 4

1.4 Data visualization

In order to have a better idea of the structure of a high dimensional data set, an

effective visualization technique in either two or three dimensions is needed. Cur-

rently many visualization techniques are proposed, some of them are: RADVIZ

[HGP01], parallel coordinates [Weg90], star coordinates [Kan01], and others. We

propose an extension of the 2D star coordinate algorithm, in such a way that trans-

formed instances can be visualized in two dimensions as a set of polygons and in

three dimensions as a set of polyhedrons. Our enhanced star coordinate helps a

data miner to detect the best features, identify clusters, and outliers, but with the

difference that all data in high dimension is set into a one to one correspondence

between data of two or three dimensions. The main advantage of this technique

is that each point can be visualized uniquely. When the data sets are very large,

parallel computing techniques are used to reduce the order of complexity of these

algorithms.

1.5 Meta-classifiers

Meta-classifier algorithms are considered as ensembles of base classifier algorithms,

since they improve the efficiency of single classifiers, and also because they are

robust. We propose an ensemble to merge effectively five different base classifiers

learned from centralized data sets. The results obtained with the proposed algorithm

are compared with those obtained with other meta-classifier algorithms. Since meta-

classifiers are computationally intensive, parallel computing techniques can help to

reduce the order of complexity of the meta-classifier algorithms.

1.6 Meta-clustering

Like in supervised classification problems, ensembles of clustering algorithms offer

robustness and accuracy when compared to single clustering algorithms. So there is

1. Introduction 5

a necessity to design a meta-clustering algorithm to improve traditionally proposed

algorithms. To reduce the computation time of the proposed ensemble of clustering

algorithms, we design a parallel algorithm for our proposed ensemble algorithm and

three other ensemble algorithms proposed in [DF03], [Lei99], and [SG02].

Figure 1.1: Interrelationship between the tasks considered in this thesis

The four data mining tasks mentioned before are chosen, because they are

interrelated as shown in Figure 1.1. Visualization can be used not only as a data

mining technique, but can also be an effective front-end tool in synergy with other

data mining methods within a hybrid interactive and cooperative Knowledge Dis-

covery in Databases (KDD) framework. Visualization plays an important role in

the KDD process. At the beginning of a KDD process, Visualization can be used in

the initial overall KDD planning, followed by data preprocessing, data mining, and

representing results. Also, Visualization can be used in outlier detection, clustering,

and classification. Classification algorithms can be used to find outliers. On the

other hand, clustering algorithms can be used to find class labels, which is consid-

ered a preliminary step in supervised classification. Clustering algorithms can also

be used to detect outliers. Removing outliers from data sets is a very important

task, because outliers affect adversely the performance of the data mining algorithm.

This doctoral research satisfies the philosophy of CISE (Computing and In-

formation Sciences and Engineering) doctoral program since it falls into the area

of information science and scientific computing. The subjects of this thesis include

intelligent data analysis, simulation, modelling, databases, data visualization, and

1. Introduction 6

parallel and distributed computing.

In summary, the main contributions of this dissertation are the following:

i. The design of two parallel algorithms for outlier detection based on distance

and density;

ii. The enhancement of the two dimensional star coordinates plot to two and

three dimensions, and its parallel algorithm implementation, and

iii. The design of meta-classifier and meta-clustering algorithms, and their parallel

algorithms.

In the next section, we briefly describe the software and hardware environment

used in this research.

1.7 Software and hardware environment

The implementation of the serial and parallel programs proposed in this disserta-

tion is in C++ in conjunction with C and Fortran 77 libraries. Message Passing

(MPI) and Visualization toolkit (VTK) libraries are also used, both of them with

C++ interface. This programming language and libraries are portable to different

architecture environments. A more detailed specification of the software used is

shown in the appendix. The computer platform used is two Linux-based clusters,

one within the Mathematical Department of University of Puerto Rico (UPRM) and

the other one from the High Performance Computing Facilities (HPCF) located in

Rio Piedras, Puerto Rico. These clusters are well equipped with all libraries and

compilers required to implement the serial and parallel programs for the algorithms

proposed in this thesis. Both clusters are fully described in the appendix.

1. Introduction 7

1.8 Algorithm Evaluation Criteria

The serial algorithms used in this work are well known data mining algorithms, and

have been studied by many researchers. The proposed visualization algorithm is

compared graphically with the traditional algorithm [Kan01]. We show that our

proposed algorithm better illustrates high dimensional data sets.

The ensemble algorithms proposed give similar results to the existing ensemble

algorithms. The comparison of our proposed algorithms with these ones is based

on misclassification error rate and mutual information validation index. The pro-

posed parallel algorithms correctly solve our proposed algorithms while reducing

their computation time.

1.9 Thesis structure

This dissertation is composed of 7 chapters and one appendix, which are described

briefly below:

In Chapter 1 we give a brief introduction to Data mining and parallel comput-

ing.

In Chapter 2 we give a brief introduction to outlier detection and review the

most resent research done until now. Bay’ s algorithm, and the local density outlier

factor algorithm are also described. Finally, we make an experimental overview, and

we describe the input parameters of these algorithms, and show their performance.

In Chapter 3 we provide an introduction to data visualization, and the descrip-

tion of the star coordinate algorithm proposed by Kandogan [Kan01]. The enhanced

star coordinate algorithm, and its parallel version is also described. Finally the ex-

perimental results are shown.

In Chapter 4 we give a literature review, and an introduction to supervised

classification. The five base supervised classification algorithms used in this research

are described, namely: Decision trees (C4.5),radial basic functions (RBF), kernel

1. Introduction 8

density (KD), K-nearest neighbors (KNN), and naive bayes (NB). Also we propose

an ensemble method and its parallel version. The input parameters of the ensemble

algorithm are described in the appendix.

In Chapter 5 we provide an introduction to clustering and a literature review

of research done up to now. Similarity and dissimilarity measures, as well as the

taxonomy of clustering algorithms are described. A description of five base clustering

algorithms used in this thesis is given, namely: Partition around medoids (PAM),

fuzzy C-means (FCM), gaussian mixtures (EM), density based clustering algorithm

(DBSCAN), and balanced iterative reducing hierarchical clustering (BIRCH). Also

ensemble clustering, and the clustering validation techniques are studied. Finally

a parallel algorithm to compute two ensemble clustering algorithms together with

the five base clustering algorithms are designed. In the experimental overview the

performance of the ensemble of clustering algorithm is compared with the existing

ones. The input parameter of this ensemble algorithm is described in the appendix.

In Chapter 6 we give the main conclusions. In Chapter 7 we list some open

problems which arise from this work, and are proposed for future work. In the appen-

dix we include a description of some data sets used in this research, followed by the

description of hardware and software environments used in this work. VTK classes

used in the implementation of the visualization algorithm are also described. Finally

a description of implementation of the meta-classifiers, meta-clustering algorithms,

input parameters, installation, libraries, and programs used for the implementation

of these ensemble algorithms is given.

1.10 Ethics

Ethics refers to a set of attitudes, values, beliefs and habits that a person or a group

displays. Computer ethics are important when it comes to issues related to the

profession such as safety, environmental impact, and quality. The aim of ethics in

science and engineering is to give future professionals the ability to recognize and

solve ethical problems, to accept different ethical perspectives and ethical pluralism.

1. Introduction 9

We are committed to ensure that our research is ethical, which includes protect-

ing ourselves from being harmed, which can be physical, psychological, economical

or spiritual. We are conducting this research within laws concerning intellectual

property and privacy; therefore, we are protecting our individual and institutional

interests.

Our parallel algorithms for detection of outliers can be used by other re-

searchers to find outliers in large data sets. We provide our implementation to

researchers that are interested in this specific area. These parallel algorithms were

compared to the sequential ones giving the same results. In the same way, the data

visualization system that we designed can be used by researchers to explore and find

useful patterns in their specific data sets. We will provide our code upon request.

The meta-classifier and meta-clustering algorithms will be used as a tool for

comparison with other classification and clustering process. The data sets used for

validating our algorithms are available on the web (KDD and UCI repositories).

They are public, and do not contain private or harmful data. These data sets are

used by many people in the world. We use neither data collection techniques nor

data reduction. We rigorously performed the tests and collected the data results,

which is then presented as tables and figures.

Knowledge discovery allows considerable insight into data. This insight brings

with it the inherent risk that may be inferred, private or ethically sensitive.

We must be careful in mentioning work that has been done and ideas proposed

by different authors throughout this entire thesis; because we must avoid plagiarism

in the whole sense.

We take care not to fall into ethical mistakes, using appropriate text or ideas,

and mentioning previous works, and by also mentioning from where the motivations

and principal sources in our thesis research come from.

There are two privacy problems of KDD, the input and the output problem.

Sensitive data (in genetics, military, and financial fields) can be used as input to

KDD methods. Academic and legal regulations must determine whether an analyst

1. Introduction 10

may access especially sensitive data set and use KDD methods to analyze the data.

If data analysis techniques are allowed for pre-existing databases, also KDD methods

can be applied to these data sets. In this case, some methods to exclude the re-

identification risk of a sensitive data set and preserving the statistical content of data

as far as possible can be used to allow KDD methods to be applied in a modified

data set. The output problem refers to the results of KDD applications, which

can be used for making decisions. KDD ethics must surely be developed outlawing

e.g. discrimination, manipulation, or watching of groups. Since ethics alone cannot

exclude these applications, legal regulations may be needed.

Chapter 2

Distance and Density based

Outlier Detection

2.1 Introduction

According to Hawkins [Haw80], ”An outlier is an observation that deviates so much

from other observations as to arouse suspicion that it was generated by a different

mechanism”. Almost, all the studies that consider outlier identification as their

primary objective are in the field of statistics. A comprehensive treatment of outliers

appears in Barnett and Lewis [BL94]. They provide a list of about 100 tests for de-

tecting outliers in data following well known univariate distributions. However,

real-world data are commonly multivariate with unknown distribution.

Detecting outlier instance in a database with unusual properties is an impor-

tant data mining task. People in the data mining community have been interested

in outliers. Knorr and Ng [KN98] proposed a non-parametric approach to outlier

detection based on the distance of an instance to its nearest neighbors. Outlier de-

tection has many applications, among them: Fraud detection and network intrusion,

and data cleaning. Frequently, outliers are removed to improve accuracy of the es-

timators. However, this practice is not recommendable because sometimes outliers

can have very useful information. The presence of outliers can indicate individuals

or groups that have behaviors very different from a standard situation.

One might think that multivariate outliers can be detected based on the uni-

2. Distance and Density based Outlier Detection 12

variate outliers in each feature, but this is not true, because an instance can have

values that are outliers in many features, but the whole instance might not be a

multivariate outlier. A basic method for detecting multivariate outliers is to observe

the outliers that appear in the distribution of the Mahalanobis square distance of

all instances. Rocke and Woodruff [RW02] stated that the Mahalanobis distance

works well identifying scattered outliers. However, in data with clustered outliers

the Mahalanobis distance measure fails in detecting some outliers, because it cannot

deal well with the masking and swamping effects. In the Masking effect, an outlier

masks a second one that is close by if the latter can be considered an outlier by

itself, but not if it is considered along with the first one. In the Swamping effect, an

outlier swamps another instance if the latter can be considered outlier only under

the presence of the first one. The masking and swamping problem can be solved by

using robust estimates of the centroid (location) and the covariance matrix (shape).

There are several methods for detecting multivariate outliers such as: Ro-

bust statistical based outlier detection [HR04, RW02, Rod04], outlier detection

by clustering [HR04, KR90, RL87], outlier detection by neural networks [HC04],

distance-based outlier detection [BS03, KNT00, NH94, RRS00], and density-based

local outlier detection [BKNS00].

Hung and Cheung [?] propose parallel algorithms for mining distance-based

outliers [KNT00, NH94]. They claim that their algorithm can be used to parallelize

the density-based local outlier algorithm; but, they did not carry out any experiment.

On the other hand, Ruoming and Agrawal [RA01] use locally the nearest neighbor

property to parallelize the K-nearest neighbors classifier. In this thesis we use this

property to parallelize Bay’s algorithm, along with some strategies described by

Skillircon [Ski01]. We also parallelize the density based local outlier factor algorithm.

This chapter is organized as follows: Section 2 focuses on distance-based outlier

detection. Section 3 of this chapter considers density local-based. The experimental

results appear in section 4.

2. Distance and Density based Outlier Detection 13

Input: k: the number of nearest neighbors;
n: the number of outliers;
D: the dataset ordered randomly;
B: the size of blocks in which D is divided.
distance(x,y) is the Euclidean distance between x and y.
maxdist(x,Y) is the maximum distance between x and an example in Y.
Closest(x,Y,k) returns the k closest examples in Y to x.
Begin
1. c← 0 // the cutoff is initialized to 0
2.O ← ∅ // It is initialized to the empty set
3.while B← get-next-block(D){ // B loads a block from D
4. Neighbors(b)← ∅ for all b in B
5. for each d in D {
6. for each b in B, b6= d{
7. if | Neighbors(b)| < k or

distance(b,d) < maxdist(b,Neighbors(b)) {
8. Neighbors(b)← Closest(b ,Neighbors(b)∪d,k)
9. if (score(Neighbors(b),b)<c){
10. Remove b from B
11. }}}}
12. Top(B∪O,n)//Keeps only the top n outliers
13. c←min(score(o)) for all o ∈ O
14.}
15.Return O
end
Output: O, a set of outliers

Figure 2.1: Bay’s Algorithm

2.2 Distance-based outlier detection

Given a distance measure in a feature space, two different definitions of distance-

based outliers are the following:

1. An instance x in a dataset D is an outlier with parameters p and λ if at

least a fraction p of the objects are at a distance greater than λ from x [KNT00],

[NH94]. This definition has certain difficulties such as the determination of λ and

the lack of a ranking for the outliers. Thus, an instance with very few neighbors

within a distance λ can be regarded as strong an outlier as an instance with more

2. Distance and Density based Outlier Detection 14

neighbors within a distance λ. Furthermore, the time complexity of this algorithm

is O(vn2), where v is the number of features and n is the number of instances. Hence

it is not adequate to use with datasets having a large number of instances.

2. Given the integer numbers k and n (k<n), the outliers are the top n instances

with the largest distance to their k-th nearest neighbor [RW02]. One shortcoming

of this definition is that it considers only the distance to the k-th neighbor and

ignores information about closer points. An alternative is to use the greatest average

distance to the k nearest neighbors. The drawback of this alternative is that it takes

longer to calculate.

2.2.1 The Bay’s Algorithm

Bay and Schwabacher [BS03] propose a simple nested loop algorithm. It tries to

reconcile definitions 1 and 2. This algorithm gives near linear time performance

when the data is ordered randomly and a simple pruning rule is used. The order of

the algorithm in the worst case is quadratic. The algorithm is described in Figure

2.1.

The main idea in the algorithm is that for each instance in D, it keeps track of

the closer neighbors found so far. If an instance is closer to its neighbors, it achieves

a score lower than a cutoff parameter. Then, the instance is removed, because it

can no longer be an outlier. Bay and Schwabacher use the score function as the

sum of the distances to the k neighbors. Also, the average distance as well as the

median distance can be considered. As more instances are processed the algorithm

finds more extreme outliers and the cutoff increases along with pruning efficiency.

Bay and Schwabacher [BS03] show experimentally that their algorithm is linear

with respect to the number of neighbors and that is almost linear with respect to

the number of instances. Using six large datasets they find a complexity of order

O(nα) where α varies from 1.13 to 1.32. Although, this reduction is favorable, it

is still costly for large data sets. For this reason we propose to design a parallel

algorithm.

2. Distance and Density based Outlier Detection 15

2.2.2 Parallel Bay’s Algorithm

We construct a parallel algorithm for Bay’s algorithm based on the local nearest

neighbors property [LA05]. Once the data is distributed uniformly among processes,

each process computes its local neighbors and sends its results to the master process,

which computes the global neighbors and then finds the top outliers. After that, it

sends the cutoff parameter to each process. The proposed algorithm is given in the

Figure 2.2.

Begin
1. c← 0 // It sets the cutoff for pruning to 0
2.O ← ∅ // It is initialized to the empty set
3.while B← get-next-block(D){//It loads a block from D
4. Neighbors(b)← ∅ for all b in B
5. for each d in LocalD {

//Each process computes its local neighbors
6. for each b in B, b6= d{
7. if | Neighbors(b)| < k or

distance(b,d) < maxdist(b,Neighbors(b)) {
8. Neighbors(b)← Closest(b,Neighbors(b)∪d,k)
9. if (score(Neighbors(b),b)<c){
10. Remove b from B
11. }}}}
12. Each process sends its local neighbors to the master
13. The master process {
14. Computes global neighbors from local neighbors
15. Computes top(B∪O,n)// keeps only the top n outliers
16. Computes c←min(score(o)) for all o in O
17. Broadcasts the cutoff parameter }
18.}
19.Return O
end

Figure 2.2: Parallel Bay’s Algorithm

Bay claim that his algorithm runs in O(N2) in the worst case, in addition

to N/blocksize ∗ N data access. Experimentally, using polynomial regression of

empirical runtime, he found an exponent varying from 1.13 to 1.32. This exponent

2. Distance and Density based Outlier Detection 16

was found from fitting t = aN b; where t is the total time, and a and b are constants.

We can suppose that our algorithm has similar complexity for our experimental data

set. We denote this complexity as O(Nα); where 1.13 ≤ α ≤ 1.32. Therefore, the

total time complexity of our parallel Bay’ algorithm is O((
Nα

p
+ n)tcomp +

N

p
tI/O +

Nαktcomm), where tcomp is the computation time, tI/O is the I/O time and tcomm is

the communication time, and p is the number of processes.

2.3 Density-based local outlier detection

For this type of outlier the density of the neighbors of a given instance plays a

key role. Furthermore, an instance is not explicitly classified as either outlier or

non-outlier; instead for each instance a local outlier factor (LOF) is computed.

This factor gives an indication of how strongly an instance can be considered as an

outlier. Breuning et al. [BKNS00] show through an example, the weakness of the

distance-based method identifying certain type of outliers.

In order to formalize the algorithm, the following definitions are needed to

detect density-based local outliers:

i. k−distance of an instance x. For any positive integer k, the k−distance of

an instance x, denoted by k−distance(x), is defined as the distance d(x,y)

between x and instance y ∈ D such that:

(i) for at least k instances y’ ∈ D–{x}, d(x,y’) ≤ d(x,y),

(ii) for at most k-1 instances y’ ∈ D–{x}, d(x,y’) < d(x,y).

ii. k−distance neighbor of an instance x. Given the k−distance of x, the k−distance

neighborhood of x contains every instance whose distance from x is not greater

than the k−distance; i.e.

Nk−distance(x)(x) = {q ∈ D − {x} : d(x, q) ≤ k−distance(x)}

iii. Reachability distance of an instance x w.r.t. object y. Let K be a positive

integer number. The reachability distance of an instance x with respect to the

2. Distance and Density based Outlier Detection 17

instance y is defined as

reach−distk(x, y) = max{k−distance(y), d(x, y)}

iv. Local reachability density of an instance x. It is given by:

lrdMinPts(x) =

∑

o∈NMinPts(x)

reach−distMinPts(x, o)

|NMinPts(x)|

−1

lrd is the average reachability distance based on the MinPts-nearest neighbor

of the instance x.

v. Local outlier factor of an instance x. The local outlier factor of x is defined as:

LOFMinPts(x) =

∑
o∈NMinPts(x)

lrdMinPts(o)

lrdMinPts(x)

|NMinPts(x)|

The density-based local algorithm to detect outliers requires only one para-

meter, MinPts, which is the number of nearest neighbors used for defining the local

neighbor of the instance. The LOF measures the degree to which an instance x can

be considered as an outlier. Breuning et al. [BKNS00] show that for instances deep

inside a cluster, their LOF’s are close to 1 and should not be labelled as a local

outlier. Since LOF is not monotonic, they recommended finding the LOF for each

instance of the datasets using MinPts-nearest neighbor, where MinPts assumes a

range of values from MinPtsLB to MinPtsUB. They also suggest MINPtsLB=10

and MinPtsUB=20. Once the MInPtsLB and MinPtsUB is found, the LOF of each

instance is computed within this range. Finally, all the instances are ranked with

respect to the maximum LOF value within the specified range, that is, the ranking

of an instance x is based on:

max{LOFMinPts(x) / MinPtsLB≤MinPts≤MinPtsUB}

The LOF algorithm to detect density-based local outliers is shown in Fig. 2.3.

Breuning et al. discuss in detail the time complexity of the LOF algorithm.

2. Distance and Density based Outlier Detection 18

The serial LOF algorithm appears in Figure 2.3

Input:
klb and kub the lower and upper bounds of k-distance
neighborhoods.
D is a data set of examples.
The number of top outliers
Output: lof, which is a vector with local density factors
kdis-neighbors(D,k) returns a matrix that containts
the k-distance neighbors and their k-distances.
reachability(KDNeighbors) returns the local reachability
density of each p in D
Begin
1.lof ←NULL
2.for each k in {klb,..., kub} {
3. KDNeighbors ← kdis-neighbors(D,k)
4. lrddata ← reachability(KDNeighbors,k)
5. for each p in KDNeighbors
6. templof[i] ← sum(lrddata[o∈ N(p)])/lrddata[i])/ |N(p)|
7. lof ←max{lof , templof}}
8.return top(lof)
End
Output: lof

Figure 2.3: The LOF Algorithm

2.3.1 Parallel LOF Algorithm

The major task to be carried out in the serial LOF algorithm relies on the computa-

tion of KDNeighbors (which is the matrix that contains the elements of D with its

respective k-neighbors). For this reason we attempt to parallelize that step. Each

process computes its respective KDNeighbors matrix, and then sends its result to

the master process, which collects the results and then computes the reachability

and local outlier factor. The proposed parallel algorithm [LA05] is given in Figure

2.4.

2. Distance and Density based Outlier Detection 19

1.lof ←NULL
2.for each k in {klb,..., kub} {
3. Each process computes its respective KDNeighbors
and sends it to the master
4. The master process collects the partial KDNeighbors
and finds the KDNeighbors matrix
5. The master process {
6. lrddata ← reachability(KDNeighbors,k)
7. for each p in KDNeighbors {
8. templof[i] ← sum(lrddata[o∈ N(p)])/lrddata[i])/ |N(p)|
9. lof ←max{lof , templof}}
10. }
11.return lof

Figure 2.4: Parallel LOF Algorithm

Parallel LOF algorithm uses the master slave paradigm. The master process

sends the data set to the slaves, which calculate distances between its parts. Then

the master process collects the results and finds the LOF factor for each observation.

The total upper bound of computation time of LOF algorithm is NvtI/O +

(kub−klb)((N2v+2Nk)tcomp). Where N is the number of instances, klb and kub are

the lower and upper bounds, v the number of variables, k is the k-distance neighbors.

Therefore, the parallel LOF algorithm has a total upper bound of NvtI/O + (kup−

klb)((N(N
p
v + 2Nk)tcomp + Nktcomm)), where p is the number of processes.

2.4 Experimental results

We tested our algorithms using four datasets from UCI(Landsat, Shuttle, Cen-

sus, Covtype). These data sets are described in the Appendix A.1. The cluster

environment used are also described in the Appendix.

2.4.1 Description of Input and Output Parameters

For each b ∈ B in Bay’s algorithm (see line 4 of figure 2.2), we setup with long

numbers (of order 106) for the initial k distances to the k neighbors. Also, we use

2. Distance and Density based Outlier Detection 20

the following parameters: Block size = 1000, number of neighbors = 10, number of

top outliers = 10. In The LOF algorithm, we set up k-lower bound = 10, k- upper

bound = 20, number of top outliers = 10. For both algorithms we detect outliers

only in the first class (class number one).

2.4.2 Speedup

In Figures 2.5 and 2.6 we show the speedups of our parallel algorithms for differ-

ent number of processors and different data sets. The slowdown on Figure 2.5 for

Covtype is mainly due to the high communication cost in the neighbors exchange

phase. It occurs because the block size is small for our choice of parameters. For

Landsat this slowdown also occurs because the data set is small, but for the other

data sets, the speedup is almost linear. The speedup of parallel LOF (Figure 2.6)

reaches linear speedup for all data sets.

Figure 2.5: Speedup for Parallel Bay’s Algorithm

2. Distance and Density based Outlier Detection 21

Figure 2.6: Speedup for Parallel LOF Algorithm

Chapter 3

Visualization

Data visualization plays an important role in the process of Data Mining, because

our eyes learn more quickly and we can discover some useful patterns such as outliers,

distributions, clusters, etc. There are many question about visualization like: How

to effectively separate data in high dimension? How can we improve classification

accuracy? To answer these questions many algorithms for high dimensional data

visualization have been introduced, like RADVIZ [HGP01] and Parallel Coordinates

[Weg90]. The latter visualization technique is one of the most widely used.

Kandogan [Kan01] introduced the star coordinates system, where the data is

arranged in a circle with axes corresponding to each feature. The data representation

is clear when it is used with scaling as well as axis rotation. Scaling the length of an

axis allows one to see the contribution of a particular feature on the visualization

display, whereas the axis rotation allows one to see the degree in which a particular

feature is correlated with other features.

We propose to extend the two dimensional star coordinates algorithm to three

dimensions, because the classical technique has some limitations and drawbacks.

In order to improve this visualization, we introduce new parameters to make the

transformation one to one. We visualize these parameters using polygons in two

dimensions and polyhedrons in three dimensions, where the data point is visualized

using its original values. The overlapped points can be visualized using a wire frame

view or using different opacity levels. Our algorithm can be used for supervised and

unsupervised classification. In supervised classification, we colour each data point

3. Visualization 23

according to its pre classified label. In unsupervised classification we cluster similar

polyhedrons in the same group. Outliers can be detected easily, because they have

different polyhedral forms.

We implement our algorithm using the Tcl/Tk interface and C++ with the

VTK [SML96] library, which is an open source visualization toolkit. Another im-

portant use of our algorithm can be to visualize outliers using outlier metrics based

on distance and local density. Each point might be scaled according to its attribute

values. The user can manipulate and display the dataset in different forms using

Tcl/Tk interface and C++. These interfaces include several tools such as: zooming,

panning, scaling, etc. We used the well known Iris data set from the UCI [BMNH]

Machine Learning Repository to test our proposed algorithm. The outliers we find

are compared with other outlier detection algorithms such as: LOF [BKNS00] and

Bay [BS03] algorithm. When we want to visualize large data sets, the overall compu-

tation of the polyhedrons corresponding to each instance becomes computationally

heavy. For this reason a parallel version of this algorithm is also introduced (like

in Ahrens et al. [ALS+01]). The computation of each polyhedron is independent of

each other. So, data parallelism technique can be used for this purpose.

This chapter is organized as follows: In Section 2 we introduce classical star

coordinates. Section 3 introduces our enhanced algorithm of star coordinate to

improve some limitations and drawbacks. The parallel algorithm and technical

specifications are described in Section 4.

3.1 Star Coordinates

Kandogan [Kan01] introduced the star coordinates plot, where data is arranged in a

circle with axes corresponding to each feature. His work was motivated from Bertin’s

permutation matrix which helps users to rearrange rows and columns to discover

patterns and clusters from coarse graphical depiction of data. Another inspiration

of his work was the parallel coordinates plot in which a vertical line is used for

the projection of each dimension or attribute, with the maximum and minimum

3. Visualization 24

values of each dimension usually scaled to the upper and lower boundaries on those

vertical lines. A polyline made up of n-1 lines at the appropriate dimensional values

connects the axes to represent an n-dimensional point. On the other hand, the star

coordinate technique is quite similar to RADVIZ [HGP01], which maps a set of m

dimensional points onto two dimensional space. This technique places dimensional

anchors (dimensions) around the perimeter of a circle, and then spring constants are

used to represent relational values among points - one end of a spring is attached

to a dimensional anchor, the other is attached to a data point. The values of each

dimension are usually normalized from 0 to 1. Each data point is displayed at the

point where the sum of all spring forces equals zero. The position of a data point

depends largely on the arrangement of dimensions around the circle.

The star coordinates technique arranges the coordinate axis in a circle on a

two dimensional plane with equal angles between the axis and origin at the center of

the circle. The points are scaled according to the length of the axis. The mapping

of a n dimensional point in a two dimensional Cartesian coordinate, is determined

by the sum of all unit vectors in each coordinate multiplied by the value of the data

element for that coordinate.

Pj(x, y) = (ox +
n∑

i=1

uxi(dji −mini), oy +
n∑

i=1

uyi(dji −mini))

where dji is the jth data with ith value, mini is the minimum value of scaled

values in each coordinate, uxi and uyi are the unit vectors in each coordinate direc-

tion, and (ox, oy) is the origin of the coordinate system. In figure 3.1 an example of

calculation of one data point location in 8 dimensional dataset appears.

Kandogan applies transformations to start coordinates, such as scaling and ro-

tation transformation. The data representation is clear when it is used with scaling

as well as axis rotation. Scaling the length of an axis allows one to see the contri-

bution of a particular feature on the visualization display. On the other hand, the

axis rotation allows one to see the degree in which a particular feature is correlated

with other features.

3. Visualization 25

Figure 3.1: Star coordinate transformation from 8 dimensional data set [Kan01]

3.2 3D star Coordinates

We propose an extension of star coordinates to three dimensions, where we can

use rotation with axis scaling to find some patterns that do not appear on the two

dimensional star coordinate plot.

The 3D star coordinate plot is the result of a non-linear transformation,

which maps high dimensional data to a three-dimensional coordinate system. Let

O(x, y, z) = (ox, oy, oz) be the origin of the system, and An =< a1, a2, ..., an > be

a sequence of n three dimensional vectors representing the axis (cosine directors in

three dimensions). These axes follow the direction of the three dimensional unit

vectors −→ui = (uxi, uyi, uzi), i = 1, ..., n.

The 3D star coordinates plot arranges the coordinate axes in a three dimen-

sional sphere, with equal angles between the axes, and same origin at the center of

the sphere. The mapping of n-dimensional data point (Dj) to a three dimensional

data point (Pj) is determined by the sum of unit vectors mentioned above.

Pj(x, y, z) = (ox+
∑n

i=1 uxi(dji−mini), oy+
∑n

i=1 uyi(dji−mini), oz+
∑n

i=1 uzi(dji−

mini))

3. Visualization 26

where: Dj = (dj1, dj2, ..., dji, ..., djn), |−→ui | =
−→
|ai|

maxi−mini
mini = min{dji, 0 ≤ j <

|D|}, maxi = max{dji, 0 ≤ j < |D|}

Let S : Rn → Rp (where p ≤ n) be the p-dimensional star coordinate projec-

tion. We discuss the relation between the distances |−→x1 - −→x2|1 and |S(−→x1)− S(−→x2)|1.

We choose norm L1 to measure distances between high dimensional vectors, because

it is more robust than the L2 norm [Agg01].

|−→x1 −−→x2|1 = |x11 − x21|+ ... + |x1n − x2n|

|S(−→x1)− S(−→x2)|1 =

p∑
j=1

|
n∑

i=1

uji(x1i − x2i)| (3.1)

≤
n∑

i=1

(

p∑
j=1

|uji|)|x1i − x2i| (3.2)

≤ |−→x1 −−→x2|1 (3.3)

The last inequality is right, because for each i = 1, ..., n,
∑p

j=1 |uji| ≤ |−→u i|1
From this result, we can see that the distance in L1 of the images of two n-

dimensional vectors is less than or equal to the distance of the vectors. Therefore,

two points in high dimension are projected to p dimensions preserving some class of

similarity (at least in norm L1). In other words, two close points cannot be projected

to different locations, because, their distance cannot be larger than the distance of

the original vectors. The last inequality does not hold if we choose the Euclidean

norm.

On the other hand, we choose to visualize the data points in three dimensions,

because there are fewer overlapped points compared to two dimensions. For example

the set of points {xj = (xj1, xj2, xj1 + c, xj2) : x1, x2 ∈ R} is mapped to (−c, 0)

using two dimensional star coordinates, but using three dimensional star coordinates

system this set of data points is mapped to collinear points.

The overlapping problem continues in three dimensions. For instance, the pair

of points x1 = (x11, x12, x13, x14) and x2 = (x21, x22, x23, x24) , with x11 = x21, x13 =

3. Visualization 27

x23, x12 = x14 + x22 − x24 are mapped to the same point using star coordinates in

three dimensions.

To avoid this overlapping problem we introduce new parameters like in [TK99a]

to represent uniquely transformed points.

Pi =
cP + xiui

c + xi

, i = 1, ..., n

where P is the projected point by the three dimensional star coordinate transforma-

tion. When c → 0, then Pi → ui; therefore the parameter Pi does not depend on

the projected point. On the other hand, if c → ∞, then Pi → P . In order to scale

the size of each polyhedron, we vary c from 1000 to 10000.

3.3 Algorithm for 3D star coordinates

We choose to visualize the transformed points using polyhedrons in three dimensions

and polygons in two dimensions. Similar shapes represent similar points. The main

reason for this choice is to visualize the projected points using their original values.

Another reason is that the computation of a polyhedron is less expensive than the

computation of spheres around the point (this technique was introduced by Theisel

[TK99a]).

The algorithm is as follows: (the VTK classes used in this algorithm are de-

scribed in the Appendix).

For each observation, a three-dimensional star coordinate transformation is

applied. The result is added as input to an instance of the vtkPoints class; next it

is added to an instance of the vtkVoxel class, and its result is added to an instance

of the vtkUnstructuredGrid class. Finally, it is added as input to an instance of the

vtkAppendFiler class, which collects these objects. The output of this collection

of objects is added to an instance of the vtkRenderer class. The result is added

as an instance of the vtkRenderWindows class. Finally the geometry generated is

visualized on the screen.

The pipeline of the proposed algorithm is given in Figure 3.2.

3. Visualization 28

Figure 3.2: Pipeline of the 3D star Coordinate algorithm.

When many points are mapped to the same point the largest polyhedron hides

the other ones. The hidden polyhedrons can be visualized using a wire frame view

or using different opacity (Figs. 3.4, 3.3, and 3.5). The opacity of a polyhedron is

chosen inversely proportional to the sum of their coordinates. A data point with a

large coordinate sum has low opacity.

3.4 Parallel algorithm for 3D star coordinates

In order to assure the scalability of this algorithm to large data sets we introduce

a parallel algorithm for the proposed three-dimensional star coordinates. This par-

allel algorithm is based on data parallelism, because the computation of each each

3. Visualization 29

Figure 3.3: a) Wire frame view in three dimensions. b) Polyhedrons with different

opacity in three dimensions.

polyhedron is independent of every other.

The proposed parallel algorithm is as follows:

The number of instances is partitioned according to the number of processes.

Each process applies a three dimensional star coordinate transformation to its re-

spective observations. Its result is added as input to an instance of the vtkPoints

class, next it is added to an instance of the vtkVoxel class, and its result is added

to an instance of the vtkUnstructuredGrid class. Finally, it is added as input to

an instance of the vtkAppendFiler class, which collects these objects. Each slave

process uses ports to send its vtkAppendFilter objects to the master process. Each

slave process adds its vtkAppenFilter object to an instance of the vtkOutputPort

class to send to the master process, which receives the results as an instance of

the vtkInputPort class, and collects each of them in an instance of the vtkAppend-

Filter class. Finally, the master process adds the output of the vtkAppendFilter

object as input to an instance of the vtkRender class, and consequently it is added

to an instance of the vtkRenderWindows class, which visualizes the data geometry

generated on the screen.

In summary, the parallel algorithm is like this:

i. Each process computes its respective star coordinate transformation and builds

its polyhedrons.

ii. Each process sends its work to the master process, which aggregates and dis-

3. Visualization 30

Figure 3.4: Wire frame view of two overlapping points.

Figure 3.5: Polygons with different opacity.

3. Visualization 31

plays the visualization.

The pipeline sequence of the parallel three dimensional star coordinate algo-

rithm is shown in Figure 3.6.

3. Visualization 32

F
ig

u
re

3.
6:

P
ip

el
in

e
of

th
e

p
ar

al
le

l
3-

D
st

ar
C

o
or

d
in

at
e

al
go

ri
th

m
.

3. Visualization 33

3.5 Experimental Methodology

Our visualization method was tested using the well-known Iris dataset, which is

available at the UCI Machine Learning repository. This dataset contains 150 in-

stances; each of them having 4 attributes and one column of class labels. A display

of the 2D star coordinates plot is shown on Figure 3.7 .

Figure 3.7: 2D star coordinates plot of Iris dataset

The unit vectors are located in a unit sphere. They have the following cosine

directors: uix = sin(φ)cos(θ), uiy = sin(φ)sin(θ), uiz = cos(φ), θ ∈ [0, 2π] and

φ ∈ [0, π].

The visualization was carried out on a Linux-based cluster within the ”High

Performance Computing Facility” (HPCF) located at Rio Piedras, Puerto Rico (see

Appendix for a description of the cluster and the software needed to run the appli-

cation).

3. Visualization 34

Figure 3.8: 3D zoom of Iris data set

We can distinguish objects in detail, not just as simple points, but as polyhe-

dra. The shape of this objects is directly proportional to the normalized attribute

value in its respective dimension. With this representation we can differentiate

objects mapped from high dimension to either two or three dimensions.

The navigation and interaction on the visualization scene is dynamic and in-

teractive. We can visualize objects from any angle using rotation. Also, it helps

to see patterns that are not shown in a traditional star coordinates display. Rota-

tion and zooming help to identify which instances are outliers and which of them

are in groups. Observations with different attribute values look different on the

visualization scene (see Figures 3.8 and 3.11).

The process of classification and/or detection of outliers are made by the user,

who is responsible for this task. For example in figure 3.11, the observation 42 is

considered an outlier, because it is away from the others, and has different shape and

3. Visualization 35

Figure 3.9: 3D zoom of Iris data set on wire frame view

form. A similar result is also achieved using outlier detection algorithms such as:

density based method (LOF algorithm) and distance based method (Bay algorithm).

Also, from Figure 3.10 we can see that the second feature seems to be the most

relevant and the features 3 and 4 are highly correlated.

The computation time of the parallel algorithm includes the I/O time, the

computation of the star coordinate transformation, and the creation of the visual-

ization objects until the rendering process. The run time and the speedup of the

parallel algorithm for the Shuttle dataset is shown in table 3.1. The parallel algo-

rithm based on data parallelism gives good results. This parallel algorithm does

not reach linear speedup because of the following reasons: 1) The data movement

between processes at the beginning of the algorithm. 2) The communication cost

of the vtkAppendFilter objects. 3) The final rendering process takes considerable

computational time, and it is done by one process only.

3. Visualization 36

Figure 3.10: 2D star coordinates of Iris data set with polygons

Table 3.1: Running time (sec.) and speedup of parallel 3 D star coordinate algo-

rithm for the Shuttle data set)

of processors 1 2 3 4 5 6 7 8 9 10

Run time (sec.) 48.50 25.83 17.54 13.5 12.8 12.2 11.7 11.3 11.0 10.8

Speedup 1.00 1.88 2.76 3.60 3.79 3.96 4.15 4.30 4.41 4.50

3. Visualization 37

Figure 3.11: 3D zoom of the first class of Iris data set

Chapter 4

Meta-classifiers

Data mining and knowledge discovery play an important role in engineering, sci-

entific, and medical databases, which are reaching gigantic proportions and require

both large memory and disk usage, and high speed computing. Data mining will

continue to grow in size and complexity. Thus, Distributed Computing is needed

for ensuring system scalability and interactivity. Distributed Computing for Data

Mining refers to designing parallel algorithms for Data Mining tasks which can be

mapped efficiently onto parallel computers. The goal is to design and develop algo-

rithms and methods that scale to thousands of attributes and observations.

Data gathering and data warehousing has generated large databases, for in-

stance, medical institutes, financial bank institutions, mega market chains such as

Sears, Wall Mart, etc. They have millions of records in their databases ready to

mine, and to extract useful information about these databases. Mining information

from such databases regards issues such as: (1) data may be in several files as in

multi-relational databases, (2) the data set may be spread across several disk or dif-

ferent geographical locations, (3) the statistical data may vary widely, and (4) Data

privacy. Usually, learning algorithms are computationally complex and require all

data to be memory resident. In some cases the data sets are distributed and cannot

be localized in one machine for various reasons such as security, competitive reasons,

network bandwidth, storage costs, etc. On the other hand, one can try to assemble

the data set in a single file, and then a specific algorithm can be used to sub-sample

this file, but useful information might be lost.

4. Meta-classifiers 39

4.0.1 Literature review

Ensembles of multiple classifiers [TG00], are found in several fields such as combining

estimators in econometrics, evidence in rule-based systems, and multi-sensor data

fusion.

Experiments with classifier combining rules are described by Duin and Tax

[DT00], and Dietterich [Die00]. The latter uses various fixed and trained combin-

ing rules. Six methods for fusing multiple classifiers are presented by Roli et al.

[RGV01]. They measure classifiers’s diversity and performance of such methods.

Prodromidis et al. [PCS00] computed a global classifier from large and inherently

distributed databases. It was accomplished by computing multiple classifiers and

applying learning programs to a collection of independent and inherently distributed

databases.

Meta-learning refers to learning from prediction of base classifiers in a common

validation data set. The sequence of this process is as follows:

i. Classifiers are trained from the initial training sets.

ii. Prediction is generated by the learned classifiers in a separate validation set.

iii. A meta-level training set is composed from the validation set and the prediction

generated by the classifiers in the validation set.

iv. The final classifier (meta-classifier) is trained from the meta-level training set.

Valentini and Masulli [VM02] cite two general ensemble methods, which are

the following:

i. Non-generative methods such as: majority voting, weighted voting, Bayes

rule, rules based on the Bayes approach, order statistic operators, minimum,

maximum, simple average, product, and weighted average.

ii. Generative methods such as: Bagging [Bre94], Boosting [FS96], cross vali-

dation, feature selection, random subspace method, test and select methods,

randomized ensemble methods, and linear combiners.

4. Meta-classifiers 40

Roli et al. [RGV01], and Tumer and Ghosh [TG00], presente and analyze

combiners based on order statistics. They conclude that the combiner’s robustness

helps to improve the performance of certain individual classifiers. Their experimental

results shows that, if there is significant variability among the classifiers, the order

statistics-based combiners substantially outperform simple combiners.

Prodromidis et al. [PCS00], introduced a meta-classifier system called JAM

(Java agents for meta-learning). They address the efficiency and scalability prob-

lems by employing distributed and asynchronous protocols at the architecture level;

evaluating and combining only the most essential classifiers. In order to achieve

portability across heterogeneous platforms they built a JAM upon existing agent in-

frastructure available on the internet. Compatibility is obtained by special bridging

agents to resolve any differences in the schemata among the distributed databases.

Adaptivity is attained by extending the meta-learning techniques to combine both

existing and new classifiers. Extensibility is ensured by decoupling JAM from the

learning algorithms and by introducing plug and play capabilities through objects.

Duin and Tax [DT00] conclude that combining classifiers trained in different

feature sets is very useful. Especially, when the probabilities are well estimated by

the classifier in these feature sets. On the other hand, combining different classifiers

trained in the same data set may also improve the classifier performance, but it is

generally less useful. They conclude that there is no combiner winning rule such as:

mean, median, majority in case of correlated errors, and the product of independent

errors perform roughly as expected, but others may be good as well. The divide

and conquer strategy as well as the independent use of separate feature sets perform

efficiently. Difficult data set should not be thrown away, because it might contain

important information. The use of randomly selected feature sets appears to give a

very good result in their examples, especially for the Bayes-normal-1 classifier. The

Nearest neighbor algorithm appears to be useful and stable when used as combiner.

They suggest re-mapping the posterior probabilities to distances for the trained

combiners, and combining results of combination rules in the different feature-sets.

4. Meta-classifiers 41

Dietterich [Die00] concludes that in low-noise cases, Adaboost [FS96] gives

a good performance, because it is able to optimize the ensemble without over fit-

ting. However, in high-noise cases, Adaboost puts a large amount of weight on the

mislabeled examples, over-fitting badly the classifier. Bagging and Randomization

perform well in both the noise and noise-free cases, because they focus on the sta-

tistical problem (over-fitting), and noise increases this statistical problem. In very

large data sets, randomization can be expected to do better than Bagging, because

bootstrap replications of a large training set are similar to the training set itself,

hence the learned decision tree may not be very diverse. Randomization creates di-

versity under all conditions, but at the risk of generating low-quality decision trees.

He was interested in seeing if the local algorithms (such as radial basis functions

and nearest neighbors methods) can be profitably combined via Adaboost to yield

interesting new learning algorithms.

4.0.2 Our Work

In this thesis we introduce a new meta-classifier algorithm based on the combination

of two ensemble methods: one of them coming from non-generative methods and the

other coming from generative methods. We also compare the accuracy of five well

known base classifiers (Radial Basis Function networks, Decision trees C4.5, Kernel

Density, Naive Bayes, and K-nearest neighbors). We carry out single Bagging for

each of them and their combined Bagging and compare their performance based on

the classification error rate. Also, we design a parallel algorithm for our proposed

meta-classifier algorithm.

4.0.3 Motivation

Some benefits of Meta-learning are the efficiency of executing in parallel the base-

learning processes (each one implemented in a serial program) on a subset of the

training data set. Thus we can use the same code without the time consuming

process of parallelizing it, and we can learn from a small subset of data that fits

4. Meta-classifiers 42

in main memory. On the other hand, distributed data mining systems are oriented

to discover and combine information that is distributed across multiple databases.

Data mining requires extensive research in all issues concerned to mining large and

distributed databases, and there are still open problems in this area.

4.0.4 Organization

This chapter is organized as follows: In Section 1 we introduce some definitions about

supervised classification. Section 2 describes the five classifiers used in this thesis.

Ensemble methods, and the proposed algorithm with its corresponding parallel al-

gorithm are described in Section 3. Finally, applications and results are presented

in Section 4.

4.1 Supervised Classification

Given a finite set of classes G1, G2, ..., Gg, known a priori, and a p dimensional input

vector x, the classification problem deals with finding the relation between the values

of x and its membership to a group Gi. The probability that a random instance

from group Gi is assigned to Gj, j = 1, 2, ..., g by the classifier C is defined by

eij(C) = Prob [C(x) = j|x ∈ Gi] (4.1)

=

∫
Rj

fi(x)dx , (4.2)

where fi is the i-th class density function and, Rj = {x : C(x) = j} . Given any

member randomly selected from a group Gi, its probability of misclassification is

given by

ei(C) =

g∑
i6=j

eij(C) (4.3)

=

∫
R̄i

fi(x)dx (4.4)

4. Meta-classifiers 43

where R̄i is the complement of Ri (i = 1, 2, ..., g). The error rate of the classifier C

is

e(C) =

g∑
i=1

ei(C)πi (4.5)

where πi represents the prior probability of class Gi.

The training sample is defined as a matrix £ whose elements are of the form

(xj, yj), (j = 1, ..., n). where xj is a p dimensional observation and yj is its

respective label. The training sample is used to build the classifier.

The object x is assigned to class Gi, if πif(x|Gi) > πjf(x|Gj) for all j 6= i,

where f(x|Gi) represents the i− th class conditional density.

The most common estimators of the error rate e(C) are:

• Apparent error. The training sample is used for building as well as for testing

the classifier. The error estimate is the proportion of the misclassified instances

in the training set.

• Error estimation using a test sample. Given a set of instances, a classifier

is built with a percentage of instances and the remaining ones form the test

sample. The error estimation is the proportion of misclassified instances in

the test sample.

• Cross validation Estimation. In this case, the set of instances is partitioned in

m sub-samples. For the i−th (i = 1, ...,m) sub-sample, the classifier is build

with the rest of the sub-samples, and then this i−th sub-sample is tested with

this classifier. Finally, the error estimation is the average of classification errors

for each sub sample.

• Bootstrapping error estimation. The error estimation is the average of clas-

sification errors produced by each bootstrap sample (a sample drawn with

replacement).

4. Meta-classifiers 44

4.2 Base Classifier algorithms

In this thesis, we use the following five classifiers in order to build a meta-classifier

algorithm. These are the C4.5 decision trees and Naive Bayes from Machine Learn-

ing, Kernel density from statistics, radial basis functions from neural networks, and

K-nearest neighbors. We choose these classifiers based on the following reasons: 1)

We want to combine classifiers coming from different fields like Statistics and Ma-

chine Learning. 2) These classifiers have been studied by many researchers, and they

are the most popular classifiers, because they give good results. These algorithms

are described below:

4.2.1 The C4.5 algorithm

It is a decision tree algorithm introduced by Quinlan [Qui93]. Given a training

sample with known labels; this algorithm constructs a decision tree. At each node

a test for each attribute is made. Finally, given an input vector x (unlabeled) the

decision tree determines the class to which it is assigned. The following steps explain

the C4.5 algorithm.

Let T be the training sample and let C1, C2, ..., Ck be the set of possible classes

of the instances in T. The decision tree construction is as follows:

i. If T contains instances belonging to a single class, then the decision tree for

T is a leaf identifying a class Cj.

ii. If T does not contain any samples, then T is a leaf.

iii. If T contain instances with a mixture of classes. T is partitioned into Ti (the

total number of classes). The decision tree of T consists in a decision node.

iv. The same process of tree construction is applied recursively to each non leaf

node.

In step iii, the criterion to select an attribute is given by the info-gain measure

4. Meta-classifiers 45

Info(T) = −
k∑

i=1

((freq(Ci, T)/|T |)log2(freq(Ci, T)/|T |)

InfoX(T) = −
n∑

i=1

((|Ti|/|T |)Info(Ti))

Gain(X) = Info(T)− InfoX(T)

where X is an instance vector. For discrete attributes, frequencies are used to

find the maximum info-gain. For continuous attributes binary tests Y ≤ Z and

Y ≥ Z are defined (Z is a threshold and Y is an attribute value). In the last

case the training instances are first sorted; there are only m-1 possible splits (m is

the number of different attribute values in the test node), each of them should be

examined. Finally the value with the highest information gain is selected.

The time complexity of building a decision tree is O(dfNlogN), where N is

the sample size, f is the number of features, and d is the number of nodes.

4.2.2 Radial Basis Function Networks

The radial basis functions (RBF neural networks) are defined as the combination

of radially symmetric linear basic functions [Bis95]. These functions transform an

input x ∈ Rp into an C-dimensional space

gj(x) =
m∑

i=1

wijφi(‖x− µi‖) + wj0

the parameters wij (j = 1, ..., C, C = number of classes) are called the weights and

µi the centers (i = 1, ...,m).

For instance two kind of basic functions are Thin plate φ(z) = z2log(z) and

gaussian φ(z) = exp(−z2).

The centers µi can be obtained by the following procedures: 1) Random selec-

tion 2) Using clustering algorithms like k-means 3) Gaussian mixtures 4) K- nearest

neighbors.

4. Meta-classifiers 46

There are three ways to find the number of centers: i) Using cross validation,

and then the number of centers are chosen when there is no appreciable increase or

decrease of the classification accuracy in the process of cross validation. ii) Mon-

itoring the performance of the algorithm in a separate test sample, and iii) Using

the Gaussian mixture algorithm.

The weights wij can be found using minimum least squares procedure. This

procedure is described below:

E =
n∑

i=1

|ti − g(xi)|2

= ‖ − T T + WΦT + w01
T‖

tij =

 1 if xi is in Cj,

0 otherwise
(4.6)

where E is the square sum of ti − g(xi); the matrix T is the target (size n x C); Φ

is a nxm matrix, and its rows are the values of the functions evaluated in xi; W is

the weight matrix of size Cxm; wo is a matrix of size Cx1; and 1 is a n dimensional

column vector of ones.

If the matrix ΦT Φ is not singular then:

W = T T Φ+ (4.7)

where Φ+ = Φ
(
ΦT Φ

)−1
.

The bias w0 can be found taking the first derivative of E with respect to w0.

This gives the solution:

w0 = t̄−W Φ̄ (4.8)

where

t̄ =
1

n

n∑
i=1

ti =
1

n
T T1

Φ̄ =
1

n

n∑
i=1

Φ(xi) =
1

n
ΦT1.

4. Meta-classifiers 47

The algorithm is as follows:

1) Assign the form of the radial functions φi(·) which are nonlinear.

2) Give the number of centers.

3) Find the centers using random selection or k-means algorithm.

4) Find the smooth parameter using cross validation (this parameter is a real

number that normalizes the φ(xi) values).

5) Given the training set xi, i = 1, ..., n, find the φi = φ(xi), i = 1, ..., n

6) Find the weights and bias using minimum least squares.

7) Classify the data using the discriminant function

gj(x) =
m∑

i=1

wijφi(‖x− µi‖) + wj0 j = 1, ..., C

The classification rule using radial basis function is: Assign x to the class Ci

if

gi(x) = max
j

gj(x) i = 1, ..., C

x is assigned to the class for which the discriminant function has the largest value.

The time complexity of this algorithm relies on the singular value computation,

which is O(nn2
hidden + n2nhidden + n3

hidden), where n is the number of instances and

nhidden is the number of base units in the hidden layer (equal to number of centers).

4.2.3 The Kernel Density Classifier

Given a univariate data set x1, ... ,xn, its empirical distribution function can be

written as

F̂ (x) =
observations ≤ x

n
, (4.9)

Since the density function of a random variable X is the derivative of its

distribution function, the density function can be estimated as

f̂(x) =
F̂ (x + h)− F̂ (x− h)

2h
(4.10)

4. Meta-classifiers 48

where h > 0. So, f̂(x) is the proportion of observations that fall in the interval

(x− h, x + h) divided by 2h. Equation 4.10 can be written as

f̂(x) =
1

hn

n∑
i=1

K

(
x− xi

h

)
(4.11)

where

K(z) =

 0 If |z| > 1;

1
2

If |z| ≤ 1
(4.12)

K(z) is called the kernel function and h is the bandwidth or smoothing para-

meter. Other univariate kernel functions are

i. Gaussian: K(x) = exp(−x2/2)/
√

2π

ii. Epanechnicov:

K(x) =

 3(1− x2/5)/(4
√

5) If |x| <
√

5;

0 Otherwise
(4.13)

If the kernel K(z) satisfies K(z) ≥ 0 and
∫

R
K(z)dz = 1, then the density

estimation f̂(x) given previously satisfies the necessary density function conditions,

which are f̂(x) ≥ 0 and
∫

R
f̂(x)dx = 1.

There are several methods to estimate the bandwidth parameter. The standard

kernel uses the following:

hopt = s

(
3

4

) 1
5

n−0.2 = s(1.06)n−0.2 (4.14)

where s is the standard deviation of the vector x, The adaptive kernel uses the

variable h, changing in each point according to its neighborhood density.

The following steps should be carried out.

i. Find a pilot estimation f̃(x) such that f̃(xi) > 0 for each i.

ii. Define a bandwidth factor λi = {f̃(xi)/g}
−α

where g is the geometric mean of

f̃(xi) and α is a parameter of sensibility and satisfies 0 ≤ α ≤ 1.

4. Meta-classifiers 49

iii. Define the estimation by adaptive kernel as: f̂(x) =
n∑

i=1

1

nhλi

K{(x− xi)

hλi

}

In the multivariate case (x ∈ Rp), the estimation of the density function is

given by

f̂(x) =
1

nh1h2 · · ·hp

n∑
i=1

Kp

(
x1 − xi1

h1

, ...,
xp − xip

hp

)
(4.15)

where the bandwidth parameters are estimated by

hj = sj

{
4

n(p + 2)

} 1
p+4

(4.16)

sj is the deviation standard of the j-th feature. When we are working with a

multidimensional data set, we have to take care of dimensionality. This problem

requires that the number of observations grows exponentially with the number of

variables, for searching observations in the neighborhood of the point where the

density is estimated. We consider the kernel product estimator, which is defined by

Kp(x) =

p∏
v=1

K(xv) (4.17)

where K(·) is a univariate density function. The estimation of the density using a

fixed bandwidth is

f̂(x) =
1

nh1h2...hp

n∑
i=1

p∏
v=1

K

(
xv − xiv

hv

)
(4.18)

In the same way, the estimation of the density function using a variable band-

width is

f̂(x) =
1

nh1h2...hp

n∑
i=1

(
1

λi

)p p∏
v=1

K

(
xv − xiv

hvλi

)
(4.19)

where λi is calculated as in the univariate case.

An object x is assigned to the class i where the πif̂(x/Ci) is maximum (the

πis are the priors, and f̂(x/Ci) is the class conditional function estimated by the

kernel product).

4. Meta-classifiers 50

The complexity of this algorithm is O(nclasses ntest ntrai nvar), where nclasses is

the number of classes, ntest is the number of instances in the test sample, and nvar

is the number of features.

4.2.4 The K- Nearest Neighbors Classifier

K-nearest neighbors classifier (KNN) [CH67] is a method for classifying objects based

on closest training samples in the feature space. The probability that a point x falls

in a volume V centered at a point x is given by

θ =

∫
V (x)

p(x)dx

The integration is taken over the volume V. For small samples, θ ∼ p(x)V .

The probability θ may be approximated by the proportion of samples falling within

V. If k is the number of instances out of n falling within V , then θ ∼ k/n. Now the

density can be approximated by

p(x) =
k

nV

If xk is the kth nearest neighbor point of x, then V may be taken to be a

sphere, centered at x, of radius ‖x− xk‖ (the volume of a sphere in an n-dimension

space is 2rnπn/2/nΓ(n/2) , where Γ(x) denotes the gamma function).

The classification rule of the k-nearest neighbors algorithm is as follows: Given

an instance of the testing data sample, the k nearest neighbors of a training data

is computed first. Then the testing instance is assigned to the most similar class

of its k nearest neighbors. These k neighbors are the near instances to the testing

instance with respect to Euclidean distance.

The time complexity of this algorithm is O(n2nvar), where n is the number of

samples and nvar is the number of features.

4. Meta-classifiers 51

4.2.5 The Naive Bayes Classifier

The Naive Bayes classifier relies in the classical Bayes theorem. The class posterior

probability given a feature vector x, is fi(x) = P (C = i|X = x). But, P (C =

i|X = x) =
P (X = x|C = i)P (C = i)

P (X = x)
by Bayes theorem. Therefore, fi(x) ∝

P (X = x|C = i)P (C = i). The Bayesian classifier is defined as:

h(x) = arg max
i

P (X = x|C = i)P (C = i) i = 1, ..., g(# of classes)

When the feature space is high dimensional, the Naive Bayes classifier assumes

that features are independent. Therefore, the discriminant function is given by

fNB
i (x) =

n∏
j=1

P (Xj = xj|C = i)P (C = i) n : number of features

For instance, we can assume that the set of instances with continuous features

follows a gaussian distribution.

The time complexity of this algorithm is O(nn3
var).

4.3 Ensemble Methods

We distinguish two types of ensemble methods, one called generative and the other

non-generative. The latter does not generate new base classifiers, instead it combines

base classifiers in a suitable way to find the ensemble. An explanation of both

methods is given below.

• Non-generative Methods

These methods combine a set of base learning algorithms using a combiner

module, which depends in its adaptivity of input and output of its base clas-

sifiers. If labels or if continuous outputs are hardened, the majority voting

among the results of base classifiers is used. Weights can be assigned to each

classifier output to optimize the combined classifier of the training set. Ensem-

bles can be based on the Bayes rule approach. For this purpose the Behavior

4. Meta-classifiers 52

Knowledge Space method considers each possible combination of class labels.

This method computes the frequency of each class corresponding to each com-

bination of the classifiers, but this technique requires a huge training data set.

The base learners can be aggregated using operators such as Minimum, Max-

imum, Average, Product, and Ordered weight averaging. Another method of

combination uses a second level learning machine. This learning algorithm

takes the base learner outputs as features in the intermediate space.

• Generative Methods

Resampling methods may be used to generate different training sets. In order

to produce multiple classifiers, base learning algorithms can be applied to these

sets. In Bagging we draw samples with replacement, but in Boosting at each

iteration we use different distribution or weighting over the training samples.

Another method to get training samples is leaving one disjoint subset out.

This method is called cross-validation, which is a technique to sample without

replacement. Randomized ensemble methods generate classifiers using random

initial values to construct the classifier. For instance, in radial basis function,

we can randomly initialize the initial weights obtaining different classifiers. In

this thesis we use a combination of generative and non-generative methods. A

comparison between the single base classifiers, their respective bagging, and

the proposed ensemble is carried out.

4.3.1 Combination of generative and non-generative Ensem-

bles

In this thesis our original work resides in the combination of two ensemble meth-

ods, majority voting, which is a non-generative method, and Bagging, which is a

generative method.

The Bagging algorithm was introduced by Breiman [Bre94]. This algorithm

consists of taking B bootstrap samples with replacements L1, L2, ..., LB, generated

4. Meta-classifiers 53

from a training sample L. A classifier Ci is built for each bootstrap sample Li.

Finally, a classifier CA is generated, containing the most frequent class estimated by

the Ci classifier (Figure 4.1).

1 Input Training Sample £, Classifier C ,# of bootstrap samples B

2 for i = 1 to B {
3 £′ = bootstrap sample from £

4 Ci = C(£′)

5 }
6 CA(x) = argmax

y∈Y

∑
i:Ci(x)=y

1, (most frequent class) Y = {1, 2, ..., g}

7 Output Clasifier CA.

Figure 4.1: Bagging Algorithm

In majority voting an instance is classified in the most frequent class that

appears in the classifier output.

Combining Bagging and majority voting consists of generating different base

classifiers for each bootstrap sample. Then a majority voting method is applied to

these classifiers. The final output is taken as the classifier output for each bootstrap

sample in the Bagging algorithm (Figure 4.2).

1 Input Training Sample £, Classifier C ,# of bootstrap samples B

2 for i = 1 to B {
3 £′ = bootstrap sample from £

4 ECi = majority vote{BCj(£
′)}

where BCj is a base Classifier, j = 1, ..., # of base classifiers

5 }
6 ECA(x) = argmax

y∈Y

∑
i:ECi(x)=y

1, (the most frequent class) Y = {1, 2, ..., g}

7 Output Clasifier ECA.

Figure 4.2: Proposed Ensemble Algorithm

4. Meta-classifiers 54

4.3.2 Parallel design of the proposed meta-classifier algo-

rithm

Basically, the parallel algorithm for combined Bagging resides in the master slave

paradigm. For each iteration in the Bagging algorithm, the master process generates

the bootstrap sample and sends the works to each slave. Finally, the master process

collects the partial results combining them to find the solution. The algorithm is as

follows:

i. The master process sends the data to slave processes

ii. Each slave builds a classifier and sends its results back to the master process.

iii. The master process continues sending work to slaves until there is no work to

send. When there is no more work, the master process receives its last work

from the slaves, and sends a message to them to finish their work.

iv. Finally, the master process finds the ensemble classifier.

The time complexity of this parallel algorithm is O(B ·O(RBF +BAY ES +C4.5 +

KERNEL + KNN + V OT)/P), where B is the number of bootstrap samples,

O(RBF + BAY ES + C4.5 + KERNEL + KNN) is the time complexity of the

five base classifiers mentioned before, O(V OT) is the time complexity of voting

algorithm, and P is the number of processes.

4.4 Experimental Results

We use eight data sets from Machine learning Database Repository A.1 described

in the Appendix. The error rates of classifiers are estimated using 10-fold cross

validation technique (where the cross validation technique is applied to a data set

partitioned into 10 parts). In table 4.1 are shown these error rates, which are the

average of 10 runs. In this table BC4.5 is the Bagging of C4.5 algorithm, BRBF is the

4. Meta-classifiers 55

Bagging of RBF algorithm, BKD is the Bagging of kernel density algorithm, BNB

is the Bagging of the Naive Bayes algorithm, BKNN is the Bagging of K-nearest

neighbors algorithm, and B1 is our proposed meta-classifier algorithm.

RBF and Knn algorithms have their own parameter for each dataset. These

parameters are chosen according to their lowest classification error rate by cross

validation. Here are the specifications:

1) RBF. This algorithm has hidden nodes (nh, tested from 2 to 30) and a scale

parameter (scl, from 1 to 10000) used to reduce and normalize the values of distance

matrices: iris (nh =5, scl = 1), diabetes (nh = 5, scl = 1), ionosphere (nh = 6,

scl = 1) , breawst(nh = 3, scl = 1) , bupa(nh = 9, scl = 1), vehicle(nh = 20, scl =

1000), segment(nh = 25, scl = 100), and landsat (nh = 36 , scl = 10000).

2) KNN. This algorithm uses the number of neighbors (nn). For iris (nn = 4

), diabetes(nn =7), ionosphere(nn = 3), breawst(nn=7), bupa(nn = 7), vehicle(nn

= 3), segment(nn= 3), and landsat(nn = 11).

Also, table 4.1 shows the classification error rates for our proposed combined

voting algorithm. This table shows that for each classifier the Bagging algorithm

tends to reduce the classification error rate. In almost all data sets, our proposed

algorithm, gives better results and is more robust (the classification accuracy is

more stable) compared to single ones and their ensembles. In the table 4.2, we show

a summary of ranking of each base classifier, their ensembles, and our proposed

combined voting scheme.

Table 4.3 shows the run time of the parallel ensemble algorithm with different

number of processors for the Landsat dataset. We cannot reach linear speedup,

because of the following reasons: 1) The data communication cost between processes

at the beginning of the computation. 2) The communication cost in each iteration.

3) The majority vote at the end of the Bagging loop is made by only one process.

4. Meta-classifiers 56

T
ab

le
4.

1:
C

la
ss

ifi
ca

ti
on

E
rr

or
ra

te
s

of
B

as
e

an
d

E
n
se

m
b
le

A
lg

or
it

h
m

s

D
at

as
et

C
4.

5
R

B
F

K
D

N
B

K
N

N
B

C
4
.5

B
R

B
F

B
K

D
B

N
B

B
K

N
N

B
1

B
re

aw
st

0.
05

7
0.

03
2

0.
04

9
0.

03
7

0.
02

8
0.

04
1

0.
03

2
0.

04
9

0.
03

7
0.

02
9

0.
03

8

B
u
p
a

0.
38

5
0.

35
9

0.
35

9
0.

42
0

0.
35

9
0.

33
5

0.
34

8
0.

37
9

0.
41

4
0.

35
8

0.
36

8

D
ia

b
et

es
0.

25
9

0.
27

7
0.

26
4

0.
24

6
0.

25
5

0.
24

2
0.

25
7

0.
26

5
0.

24
7

0.
26

1
0.

23
8

Io
n
os

p
h
er

e
0.

12
5

0.
09

9
0.

10
8

0.
26

2
0.

16
2

0.
08

0
0.

10
0

0.
11

4
0.

26
2

0.
16

2
0.

06
6

Ir
is

0.
06

0
0.

04
7

0.
04

6
0.

05
3

0.
05

3
0.

05
3

0.
03

8
0.

03
8

0.
04

8
0.

05
3

0.
03

8

L
an

d
sa

t
0.

26
2

0.
18

9
0.

13
4

0.
21

9
0.

20
7

0.
21

1
0.

15
7

0.
12

9
0.

21
9

0.
19

9
0.

16
1

S
eg

m
en

t
0.

06
2

0.
14

2
0.

13
4

0.
23

0
0.

11
1

0.
05

6
0.

12
2

0.
13

6
0.

23
0

0.
11

0
0.

06
7

V
eh

ic
le

0.
27

1
0.

33
5

0.
37

3
0.

50
8

0.
35

3
0.

26
2

0.
24

5
0.

34
7

0.
50

7
0.

35
7

0.
24

1

4. Meta-classifiers 57

T
ab

le
4.

2:
R

an
k
in

g
of

C
la

ss
ifi

er
s

an
d

E
n
se

m
b
le

s

D
at

as
et

1st
2n

d
3th

4th
5th

6th
7th

8th
9th

10
th

11
st

B
re

aw
st

K
N

N
B

K
N

N
R

B
F

B
R

B
F

N
B

B
N

B
B

1
B

C
4
.5

K
D

B
K

D
C

4.
5

B
u
p
a

B
C

4
.5

B
R

B
F

B
K

N
N

R
B

F
K

D
K

N
N

B
1

B
K

D
C

4.
5

B
N

B
N

B

D
ia

b
et

es
B

1
B

C
4
.5

N
B

B
N

B
B

R
B

F
C

4.
5

K
N

N
B

K
N

N
K

D
B

K
D

R
B

F

Io
n
os

fe
ra

B
1

B
C

4
.5

R
B

F
B

R
B

F
K

D
B

K
D

C
4.

5
K

N
N

B
K

N
N

N
B

B
N

B

Ir
is

B
1

B
R

B
F

B
K

D
K

D
R

B
F

B
N

B
N

B
K

N
N

B
K

N
N

B
C

4
.5

C
4.

5

L
an

d
sa

t
B

K
D

K
D

B
R

B
F

B
1

R
B

F
B

K
N

N
K

N
N

B
C

4
.5

N
B

B
N

B
C

4.
5

S
eg

m
en

t
B

C
4
.5

C
4.

5
B

1
B

K
N

N
K

N
N

B
R

B
F

K
D

B
K

D
R

B
F

N
B

B
N

B

V
eh

ic
le

B
1

B
R

B
F

B
C

4
.5

C
4.

5
R

B
F

B
K

D
K

N
N

B
K

N
N

K
D

B
N

B
N

B

4. Meta-classifiers 58

Table 4.3: Running time (sec.) and speedup of parallel combined voting algorithm

for Landsat data set

of processors 1 2 3 4 5 6 7 8 9 10

Run time (sec.) 4795 3315 1691 1206 1023 900 820 780 720 690

Speedup 1.00 1.45 2.83 3.98 4.69 5.33 5.85 6.15 6.66 6.94

Chapter 5

Meta-clustering

5.1 Introduction

In real life, only humans have an incredible capacity to cluster objects, and identify

which are similar and which are not. But, when we want to automate the process

of clustering objects it becomes a difficult task.

When we do not have training data, the process is called unsupervised classifi-

cation or clustering. The idea in clustering is how to build groups of similar objects,

so that different groups are dissimilar enough. In clustering the principal work re-

sides in how to define the similarity between objects, how to choose the appropriate

measure, and how to cluster similar objects together. A clustering process tries to

separate the data set into groups such that objects in each cluster are more similar

between them than objects that are in other clusters.

Clustering is an important task in the data mining process. It can be used

in many fields. In marketing it is used to find groups of customers with similar

behaviors given a large database of customer data containing their characteristics,

and past buying records. In Biology, clustering is used to classify animal and plants

given their features; in libraries, it is used for book ordering; on the world wide

web, it is used to classify documents, and to cluster weblog data, discovering groups

of similar access patterns; in land use, it is used to study areas of similar land

use in a earth observation database; in insurance, it is used to identify groups of

motor insurance policy holders with high average claim cost and identifying frauds;

5. Meta-clustering 60

in city planning, it is used to identify groups of houses according to their house

type, value, and geographical location; in earthquake studies, it is used to cluster

observed earthquake epicenters, and to identify dangerous zones. Finally, in medical

diagnosis, it is used to classify tumors or anomalous diseases.

Clustering algorithms are classified by the type of attributes they can handle,

scalability to large data sets, ability to work with high dimensional data, ability

to find clusters of irregular shape, handling outliers, time complexity, data order

dependency, labelling or assignment, reliance on a priori knowledge and user defined

parameters, and interpretability of results.

Cluster combination or cluster ensembles, refers to how to combine different

clustering results from different base clustering algorithms. The major challenges in

clustering ensembles are: How to combine clustering results, since different results

can be produced from a single input data, and it is difficult to establish which result

is the best and how much it can be trusted.

5.1.1 Literature Review

Among the recent research in cluster ensembles, we refer to the following:

Zeng et al. [ZTGG02] propose a method to extract information from results of

different clustering techniques. They use a distance measure technique to represent

the statistical signal of each cluster, and show that their approach is able to extract

the information efficiently and accurately from an input clustering structure. Clus-

tering results have different cluster size and different boundaries, and this becomes

worse when the dimension of data increases. The goal is to make use of all the

information combined in the different clustering results to produce a better under-

standing of data. This goal is achieved comparing the different clustering results in

a finer way.

Strehl and Ghosh [SG02] define cluster ensemble problem as an optimization

problem and proposed three effective combiners to solve cluster ensembles based

on a hyper-graph model. They use three algorithms: a) Cluster-based similarity

5. Meta-clustering 61

partitioning, b) Hypergraph partitioning, and c) Meta-clustering. They introduce

two techniques to generate basic clustering results: a) Robust centralized clustering,

where each clustering algorithm has access to all features and to all objects and

b) Feature distributed clustering, where each clustering algorithm has access to a

restricted subset of features. Finally, they claim that cluster ensembles can be used

to introduce robustness and dramatically improve sets of subspace clustering for a

variety of domains.

On the other hand, Greene et al. [GTBC04] discuss a variety of ensemble gen-

eration strategies and integration schemes and suggest an optimal set of parameters

for each data set under consideration. They use the following ensemble generation

methods: a) Plain, b)Random - K , c)Random - K + , d) Bagging, e) Random sub

spacing, f) Random projection, and g) Heterogeneous ensembles. They conclude

that the performance of an ensemble clustering algorithm relies on the choice of

the base clustering algorithm, generation technique, number of ensemble members,

and final meta-clustering algorithm. They suggest that other combination methods

strategies can be more successful in exploiting diversity. Quantifying diversity such

as pair wise or variance-based could also be investigated.

Januzaj et al. [JKP03] clustered the data locally and extracted suitable repre-

sentatives out of these clusters. These representatives are sent to a global server site

where they are restored as a complete clustering based on the local representatives.

This approach is efficient, because the local clustering can be carried out quickly

and independently from each other, taking advantage of distributed clustering. The

transmission cost is much smaller compared to the size of the complete data set.

From the small number of representatives, the global clustering can be done very

efficiently. They developed a distributed algorithm based on DBSCAN [EKSX96].

Based on experimental results they showed that their clustering approach yields

almost the same clustering as a central clustering in all data.

Leisch [Lei99] proposes a combination of partitioning and hierarchical clus-

tering methods. He obtained a collection of training sets by resampling from the

5. Meta-clustering 62

empirical distribution of the original data, and then ran any partitioning clustering

algorithm (K-means, Fuzzy C-means, PAM, etc). The results of the base clustering

algorithms are combined into a new data set, which is used as input for a hierarchical

clustering algorithm. He concludes that his Bagging algorithm gives better results

than single ones.

Dudoit and Friedlyan [DF03], also propose two Bagging clustering algorithms.

They apply the clustering procedure repeatedly to each bootstrap sample, and the

final partition was obtained by plurality voting. They claim that their algorithms

perform better than stand alone algorithms.

5.1.2 Motivation

One of the main advantages of meta-clustering, is its adaptiveness, because it can

be applied to different pools of clustering schemes and is able to pick up the most

suitable candidate. Combining several clustering results can improve quality and

robustness of results. Another advantage is that it can be carried out using dis-

tributed computing without the necessity of parallelizing existing serial clustering

algorithms.

5.1.3 Our Work

In this thesis we design a meta-clustering algorithm based on majority voting along

with relabelling techniques. Also, we compare five different base clustering algo-

rithms: Gaussian Mixtures methods (EM) from the statistics field, Fuzzy C-means

(FCM) from Neural Networks, PAM, DBSCAN, and BIRCH from Machine Learn-

ing, with ensembles based in hypergraph partitioning (MCLA), Bagging and our

proposed voting algorithm. Their performance is compared using clustering valida-

tion techniques, which quantify the performance of a clustering algorithms based

on its classification accuracy. A parallel algorithm to compute four meta-clustering

algorithms altogether is also designed. Two of these algorithms are Bagging based,

the MCLA algorithm, and our voting algorithm.

5. Meta-clustering 63

5.1.4 Organization

This chapter is organized as follows: Section 2 shows the taxonomy of clustering

algorithms. In Section 3 we talk about the five base-clustering algorithms used

in this thesis. Section 4 is concerned with meta clustering algorithms. In Section

5 clustering validation techniques are presented. Parallel clustering algorithm is

described in Section 6. Experiments and results are shown in Section 7.

5.2 Clustering Techniques in Data Mining

Clustering is an active research area in several fields such as Statistics, Pattern

Recognition, and Machine Learning. A variety of algorithms have been proposed

recently and applied to real life problems. Because data mining deals with large

data sets, it imposes a challenge to design efficient clustering algorithms.

5.2.1 Cluster Definition

Clustering is defined as a partition of a set using a similarity criterion. Given the data

set X = {xi, i = 1, ..., N}, let P be the partition of X into m sets Cj, j = 1, ...,m.

These sets are called clusters if they satisfy the following partition condition: 1)

Ci 6= φ, i = 1, ...,m. 2) ∪m
i=1Ci = X. 3) Ci ∩ Cj = φ, i 6= j, i, j = 1, ...,m

5.2.2 Similarity and Dissimilarity measures

Similarity measures are used to find the proximity of a pair of objects in a data

set X. In contrast, dissimilarity measures are used to find the more distant of a

pair of objects in a data set X. There are plenty of similarity and dissimilarity

measures. The most frequently similarity measures used by clustering algorithms

are the following:

1) The Euclidean distance between two points x = (x1, ..., xn) and y =

(y1, ..., yn)) is defined by d2(x,y) =
√∑n

i=1(xi − yi)2, and

5. Meta-clustering 64

2) The Manhatan distance between two points x and y is defined by d1(x,y) =∑n
i=1 |xi − yi|.

5.2.3 Taxonomy of Clustering algorithms:

Clustering algorithms are classified by the type of attributes they can handle, scal-

ability to large data sets, ability to work with high dimensional data, ability to

find clusters of irregular shape, handling outliers, time complexity, data order de-

pendency, labelling or assignment, reliance in a priori knowledge and user defined

parameters, and interpretability of results. Essentially, the clustering algorithms are

classified as:

i. Hierarchical Methods. These methods proceed in the following way: at

each step, an object is assigned to a cluster using information produced in the

previous step. There are two types of these algorithms.

• Agglomerative Algorithms. The algorithm begins with a cluster for

each object. In each step one object is assigned to the most similar

cluster. It is a button-up algorithm.

• Divisive Algorithms. The algorithm begins with a cluster for all data.

At each step it splits the cluster using a dissimilarity measure. It is a

top-down algorithm.

ii. Partitioning Methods. These methods are based on the search of k repre-

sentative objects of the data set. Once the representative objects are known,

each object is assigned to the cluster where the nearest representative object

belongs to. Among the partitioning algorithms are the following: Relocation

algorithms, Probabilistic clustering, K- medoids methods, K- means methods,

Density Based algorithms, Density Based Connectivity clustering, and Density

Functions clustering

5. Meta-clustering 65

iii. Grid based methods. These methods inherit the topology from the un-

derlying attribute space. Multirectangular segments (also called cube, cell,

and region) are considered to bound the search combinations. For instance,

DENCLUE, CLIQUE, BAND, GRIDCLUST, Wavecluster and STING are al-

gorithms based on grid methods.

iv. Methods based on Co-occurrence of Categorical data. When we have

data with categorical variables, conventional clustering algorithms perform

poorly and do not work well. Clustering methods based on the idea of co-

occurrence of categorical data have been introduced. For instance ROCK and

CURE work with categorical variables.

v. Constraint based clustering. Frequently, the data set is constrained. In

this case, an iterative optimization procedure is used. Clustering partition re-

lies in moving objects to their nearest cluster representatives without violating

the constraints.

vi. Gradient descent and artificial neural networks. This is similar to the

EM algorithm, where exponential probabilities are defined based on Gaussian

models. This makes the objective function differentiable with respect to

means, allowing the application of general gradient descent method.

vii. Evolutionary methods. These methods rely on search such as simulated

annealing, tabu search and genetic algorithm.

5.3 Base Clustering Algorithms

In this thesis, we study the combination of five base clustering algorithms. Gaussian

Mixture models (EM) from Statistics, Fuzzy C-means (FCM) from Neural Networks,

Partition around Medoids (PAM), Density based (DBSCAN), and balance iterative

clustering (BIRCH) from Machine Learning.

5. Meta-clustering 66

5.3.1 Gaussian Mixture Models

This technique considers the data to be independently drawn from a mixture model

[DLR77] of several probability distributions.

Each observation x is assumed to belong to one and only one cluster, so we

can estimate the probabilities of the assignments Pr(Cj|x) to jth model j = 1, ..., g.

The overall likelihood of the data is its probability to be drawn from a given mixture

model.

L(X|C) =
∏

i=1:N

τjPr(xi|Cj)

where τj is the prior of the j class. Log-likelihood log(L(X|C)) serves as an ob-

jective function, which is maximized using the EM algorithm. In this algorithm,

expectation and maximization steps are carried out iteratively, until convergence or

certain threshold is satisfied. Step (E) estimates probabilities Pr(x|Cj), which is

equivalent to a soft reassignments. Step (M) finds an approximation to a mixture

model, given current soft assignments. This process continues until log-likelihood

convergence is achieved.

Each cluster is mathematically represented by a parametric distribution such

as: Gaussian (continuous), and Poisson (discrete). The entire data set is modelled

by a mixture of these distributions. An individual distribution used to model a

specific cluster is often referred to as a component distribution.

Suppose that there are g components (clusters). Each component has a Gaussian

distribution parameterized by µj and Σj. The density of component j is

f(x; θj) =
1√

(2π)d|Σj|
exp(
−(x− µj)

tΣ−1
j (x− µj)

2
)

where x ∈ Rd. The prior probability (weight) of component j is πj. Therefore, the

mixture density is

f(x) =

g∑
j=1

πjf(x; θj) where θj = (µj, Σj)

5. Meta-clustering 67

A mixture model with high likelihood tends to have the following traits: Its

Component distributions have high ”peaks”, because data in one cluster are tight.

The mixture model ”covers” the data well, because dominant patterns in the data

are captured by component distributions. It has available well-studied statistical

inference techniques. Also, it has flexibility in choosing the component distributions,

obtaining a density estimation for each cluster. Finally, it has available a ”soft”

classification. The EM algorithm follows two steps until convergence:

E-step

wij =
π

(m)
j p(xi|θ(m)

j)∑
k π

(m)
k p(xi|θ(m)

k)

M-Step

πj =
1

n

n∑
i=1

wij

µj =
1

nπ

n∑
i=1

wijxi

Σj =
1

nπj

n∑
i=1

wij(xi − µj)(xi − µj)
T

The time complexity of this algorithm is O(nn3
varniter), where n is the number

of instances, nvar is the number of attributes, and niter is the number of iteration

achieved until the convergence.

5.3.2 Partition Around Medoids

Partitioning Around Medoids [KR90] (PAM) is a clustering algorithm based on the

search of representative objects, called medoids. PAM starts from an initial set of

medoids and iteratively replaces one of the medoids by one of the non-medoids if it

improves the total distance of the resulting clustering. When medoids are selected,

clusters are defined as subsets of points close to respective medoids. The objective

5. Meta-clustering 68

function is defined as the average distance or another dissimilarity measure between

a point and its medoids.

PAM works effectively for small data sets, but does not scale well for large

data sets. There exists other algorithms to deal with large data sets such as CLARA

[KR90] and CLARANS [NH94].

The k-medoid algorithm (Figure 5.1) is described below as follows:

i. Arbitrarily select k objects from the data as medoids.

ii. Consider swapping the pair of objects (i,h); where i ∈ selected objects and

h ∈ non- selected objects. Denote the swap as i ↔ h. Let d(xi; xh) be the

distance-measure between two objects i and h. Now consider another non-

selected object j.

Calculate Tih, ”the total swap contribution” for i↔ h, as

Tih =
∑

j

Cjih

Where Cjih is the contribution to i ↔ h from object j, defined below. There

are four possibilities to consider when calculating Cjih.

• If j currently belongs to the cluster defined by medoid i (denoted cluster

i), consider the distance d(xj; xh) between object j and object h. If h is

farther from j than the second best medoid i′ is from j, then the contri-

bution from object j to the swap is

Cjih = d(xj, xi′)− d(xj, xi)

The result of i↔ h would be that object j now belongs to cluster i′.

Else if h is closer to j than i′ is to j, the contribution from j to the swap

is

Cjih = d(xj, xh)− d(xj, xi)

5. Meta-clustering 69

The result of i↔ h would be that object j now belongs to cluster h.

• If j currently belongs to cluster k, where k 6= i, check the distance between

object j and object h. If h is further from j than the medoid k is from j,

then the contribution from object j to the swap is

Cjih = 0

The result of i↔ h would be that object j still belongs to cluster k. Else

if h is closer to j than k is to j, the contribution from j to the swap is

Cjih = d(xj, xh)− d(xj, xi)

The result of i↔ h would be that object j now belongs to cluster h.

• Let (i∗, h∗) = argmax
i,h

Tih. If Ti∗h∗ < 0, then swap i∗ ↔ h∗. Now object h

belongs to selected objects and i belongs to non-selected objects. Go to

step ii.

• Allocate each non-selected object to the cluster defined by the nearest

medoid.

The algorithm is shown in Figure 5.1.

The complexity of this algorithm O(niterk(n− k)2), because in each iteration

the are k(n− k) swaps, and each of them accesses n− k distances.

5.3.3 Fuzzy C-means

This algorithm was first introduced by Dunn [Dun73] in 1973 and subsequently

improved by Bezdek [Bez81] in 1981. C-means is a method that allows one instance

to belong to two or more clusters. It is based in the minimization of the following

objective function:

Jm =
N∑

i=1

C∑
j=1

um
ij‖xi − cj‖2, 1 ≤ m <∞

5. Meta-clustering 70

Input:

D = {t1, t2, ..., tn} // Set of elements

k // Number of desired clusters

Output

K //Set of clusters.

PAM Algorithm

Build Phase

1. select k initial medoids from D

Swap Phase

2. repeat

3. for each th not a medoid do {
4. for each medoid ti do {
5. calculate TCik }}
6. find i, h where TCik is the smallest

7. If TCik < 0 then

8. replace medoid ti with th

9. until TCih ≥ 0

10. for each ti ∈ D

11. assign ti to Kj where dis(ti, tj) is the smallest over all medoids

Figure 5.1: PAM algorithm

where m is a real number greater than 1, uij is the degree of membership of xi in

the cluster j, xi is the is the i− th instance of the d-dimensional data set, and cj is

the d−dimensional center of the cluster.

In each iteration of the algorithm the membership uij and the cluster centers

cj are updated by optimization of the objective functions. This gives the following:

uij =
1∑C

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

, cj =

∑N
i=1 um

ij xi∑N
i=1 um

ij

The condition to stop this iteration is when maxij{|uk+1
ij −uk

ij|} < ε, where ε is

the termination criterion (ε ∈ [0, 1]). This procedure converges to a local minimum

5. Meta-clustering 71

or a saddle point of Jm

The algorithm is described in Figure 5.2.

Input:

D // Set of elements

k // Number of clusters (clusters)

Output

C //Set of clusters.

FCM Algorithm

1. Initialize U = [uij]

2. repeat

3. At step k calculate the center vectors Ck = [cj] with Uk

4. cj =
PN

i=1 um
ij xiPN

i=1 um
ij

5. Update Uk , Uk+1

uij = 1

PC
k=1

�
‖xi−cj‖
‖xi−ck‖

� 2
m−1

6. until ‖Uk+1 − Uk‖ < ε

Figure 5.2: FCM Algorithm

The complexity of this algorithm is O(nc2p), where n is the number of obser-

vations, c is the number of clusters, and p is the number of attributes.

5.3.4 DBSCAN

The algorithm DBSCAN [EKSX96] (Density Based Spacial Clustering of Applica-

tion with Noise) is a clustering algorithm designed to find clusters based on density

properties. This algorithm uses two input parameters ξ and MinPts. The first one

is a ξ-value, which dictates a certain ξ-neighborhood, which is a collection of data

points within a specific ξ-radius. The value of the MinPts parameter is the mini-

mum number of points that must be found in the ξ-neighborhood of a core-object

data point.

5. Meta-clustering 72

Three measurements are used to describe properties of these data points. These

properties are based on whether the point is directly-density-reachable, density-

reachable, or density-connected from a core-object. These properties describe re-

lationships between each of the core objects and determine the most appropriate

clustering of the core objects. This algorithm is excellent at forming non-round

clusters. However, this algorithm suffers from the same problem than the k-means

algorithm, because these parameters must be specified before the clusters can be

formed. This unfortunately leads to cluster formation being determined by the

user.

Input:

D // Set of elements

Eps // Maximum radius of the neighborhood

MinPts // Minimum number of points in an Eps-neighborhood of a point

Output

C //Set of clusters.

O //Set of outliers

DBSCAN Algorithm

1. Arbitrarily select a point p

2. Retrieve all points density-reachable from p wrt Eps and MinPts

3. If p is a core point, a cluster is formed

4. If p is a border point, no points are density-reachable from p

5. visit the next point of the data set

6. Continue the process until all of the points have been processed

Figure 5.3: DBSCAN algorithm

The following definitions are used in the DBSCAN algorithm:

i. An ξ neighborhood of a point x is given by Nx = {y ∈ X|d(x,y) ≤ ξ} of the

point x.

5. Meta-clustering 73

ii. A core object is a point with a neighborhood consisting of more than MinPts

points.

iii. A point y is density reachable from a core object x when a finite sequence of

core objects between x and y exists such that the next core object belongs to

an ξ neighborhood of its predecessors.

iv. Two points x and y are density connected when they are density reachable

from a common core object.

DBSCAN defines a symmetric relation and all the points reachable from core

objects can be factorized into maximally connected components serving as clusters.

The points that are not connected are declared outliers. The no-core points inside

a cluster represent its boundary. Core objects are internal points. Processing is

independent of the data ordering. So far, nothing requires any limitations of the

dimensionality of the data or attribute types. But an effective computing of the ξ

neighborhoods presents a problem. However, in the case of low dimensional spatial

data, different effective indexation schemes exist (O(log(N)) rather than O(N)).

DBSCAN relies on R* trees indexation [EKSX96], therefore, in low dimensional

spatial data, the theoretical complexity of DBSCAN is O(Nlog(N))

Ester et al. [EKSX96] have a detailed definition of DBSCAN algorithm. In

Figure 5.3 we give a synthesis of this algorithm.

5.3.5 BIRCH

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies) is a cluster-

ing algorithm for large data sets introduced by Zhang et al. [ZRL96]. The authors

introduce two new concepts to keep track of clusters that are being formed. The

first is called the cluster feature, which is a triple containing the number of points

in a particular sub-cluster and then the corresponding linear and squared sum of

these points. The second feature is a clustering feature (CF) tree, which is a height-

balanced tree that stores clustering features.

5. Meta-clustering 74

The BIRCH algorithm performs two procedures. It first builds an initial CF

tree, which is stored in memory, by scanning the database. Then, it performs

clustering against the leaf nodes of the CF tree. BIRCH performs quite well compu-

tationally, however it can not handle clusters that do not have spherical or circular

shape very well.

A Clustering Feature is used to represent a sub-cluster by the general statistical

information on it. The definition is: CF = {N, LS, SS}. It has an additive property,

for instance, the CF of the cluster obtained by merging C1 and C2 is CF1 + CF2 =

N1 + N2, LS1 + LS2, SS1 + SS2. Statistical information used by clustering methods

can be calculated easily by using the CF s. For example, by giving the related CF s

of two clusters C1 and C2, it is not difficult to calculate their centroids X01 and X02 ,

the radius R of a single cluster, and the Euclidean distance D between two cluster

centroids. Suppose the two CF s are N1, LS1, SS1 and N2, LS2, SS2, the calculation

is as follows:

X01 =

∑
∀Xi∈C1

Xi

N1

=
LS1

N1

X02 =

∑
∀Xi∈C2

Xi

N2

=
LS2

N2

RC1 =

(∑
∀Xi∈C1

‖Xi −X01‖
N1

) 1
2

=
1

N1

∑
element

(
SS1 −

LS2
1

N1

) 1
2

D = ‖X01 −X02‖ = ‖LS1

N1

− LS2

N2

‖

where,
∑

element{V } is the summation of all the elements in the vector V . In

BIRCH, CF s are stored in a Clustering Feature tree (CF tree), which is used for

hierarchical clustering. For building the CF tree, two parameters are given by the

users: the branching factor B and the threshold T . These two parameters constrain

the growth of the tree. The branching factor B specifies the maximum number of

children per non-leaf node. Therefore, a non-leaf node in the tree can have at most

5. Meta-clustering 75

B children. Every non-leaf node stores the sum of CF s from all its children. For a

leaf node, it stores the CF calculated from all the objects in the sub-cluster which

is represented by the leaf node. The threshold T is used to limit the size of the

sub-clusters, which are represented by leaf nodes (the radius of all the sub-clusters

should be less than T).

The algorithm for inserting an entry ent into the CF tree has three main steps.

Here, an entry can be a single data object or a group of data objects. The BIRCH

algorithm is the following:

i. Identify the appropriate leaf to insert: Find the leaf node, which represents a

subcluster that is closest to the inserted entry. The closeness can be measured

by the Euclidean distance between the centroids of the sub-cluster and the

entry ent. This operation starts from the root and recursively descends the

CF tree by always choosing the closest child node.

ii. Modify the leaf node: Suppose the sub-cluster in the leaf node LNi is closest

to ent. Check if LNi can absorb ent without violating the threshold constraint

T. If so, simply modify the CF in LNi. If not, add a new leaf node, say LNj

to be a new child of the parent node of LNi. Then, form a group of objects by

all the objects in the sub-group represented by LNi and all the objects in ent.

Divide this group to be in two sub-groups by the following methods: First, find

two objects that are the farthest away from each other in the group; Suppose

these two objects are obj1 and obj2, assign all the objects in the group to sub-

group 1 if the objects are closer to obj1 than obj2, the other objects form the

sub-group 2. Now, assign sub-group 1 and 2 to be the sub-clusters represented

by LNi and LNj respectively.

iii. Modify the path to the root node: The CF in each node in the path from the

affected leaf nodes to the root must be modified after ent has been inserted.

If a split did not happen in step 2, only the affected CF s need be modified.

If a split happened, then check if the constraint of the branching factor B is

5. Meta-clustering 76

violated. If so, the parent node has to be split, and this split may affect the

nodes in high levels the same way as well. If the root node is split, the height

of the tree increases by 1. The way to split a non-leaf node is similar to the

way to split a leaf node in step ii, the only difference is that when splitting a

non-leaf node, use all its children to form a group to be divided.

Each time a point is added, the CF s in the affected nodes have to be updated.

BIRCH builds the CF tree by scanning the total data set once, then obtains the

clustering result based on the CF tree, which could be done in main memory of

the computer. This algorithm is significantly appropriate for finding clusters in

a very large data set. Since the CF tree can be constructed incrementally, any

data objects given later can be added to the tree without rebuilding it. So this

incremental clustering is another notable advantage of BIRCH. We can see from the

BIRCH algorithm how these two parameters B and T control the building of the

CF tree. In BIRCH, their choice is mainly determined by memory constraints of

the computers. Since the cluster size is limited by these parameters, a cluster found

from the CF tree does not always correspond to a nature cluster. This is a problem

of BIRCH.

The maximum size of the tree is M/P . The time complexity in phase 1 is as

follows: A point is inserted in the tree in O(1 + logB(M/P)). At each node it is

necessary examine B entries for the closest one, and each of them is proportional

to dimension d. So, inserting all points takes time O(d ∗ N ∗ B(1 + logB(M/P))).

The cost of re-inserting leaf entries is O(d ∗ (M/ES) ∗ B(1 + logB(M/P))), where

there are almost (M/ES) leaf entries. Therefore the total cost in phase 1 is O(d ∗

N ∗ B(1 + logB(M/P)) + log2(N/N0) ∗ d ∗ (M/ES) ∗ B(1 + logB(M/P))), where

O(log2(N/N0)) is the number of times needed to rebuild the entire tree.

5. Meta-clustering 77

5.4 Meta-clustering

Cluster ensembles provide a consolidation of individual clustering results, and offers

quality and robustness, knowledge reuse, and distributed computing.

Different clustering algorithms with different parameter settings may generate

different partitions of the same data, due to the exploratory nature of the clustering

algorithm. We may combine them to provide robustness and quality.

Combining clustering is a difficult task, because patterns are unlabelled, and

thus it is necessary to solve a correspondence problem. There are a variety of

consensus functions to combine clusters. They are based on the co-association matrix

[FJ02], hypergraph cuts [SG02, KK95], mutual information [TJP03], voting [DF03,

FB03], Bipartite Graph Partitioning [ZB04], and soft correspondence [LZY05].

5.4.1 Bagged Clustering

Here we describe two Bagging algorithms for clustering.

i. Bagged Clustering based on combined partitioning and hierarchical method

(BAG1). Leisch [Lei99] proposes a combination of partitioning and hierarchical

clustering algorithms. He obtains a collection of training sets by re-sampling

from the empirical distribution of the original data. Then, he runs a partition-

ing clustering algorithm. The results of the base methods are combined into

a new data set which is then used as input for a hierarchical method.

1) Construct B bootstrap training samples X1
N , ..., XB

N by drawing replace-

ments from the original sample XN .

2) Run the base cluster method (K-means competitive learning) in each set re-

sulting in BxK centers c11, ..., c1k, c21, ..., cBK , where K is the number of centers

used in the base method and cij is the ith center found using X i
N .

3) Combine all centers into a new data set CB = CB(K) = cij, ..., cBK .

5. Meta-clustering 78

4) (Optional) Prune the set CB by computing the partition of XN with respect

to CB and remove all centers where the corresponding cluster is empty (or

below a predefined threshold), resulting in a new set

CB
prune(K, θ) = {c ∈ CB(k)|#{x : c = c(x)} ≥ θ}

Make all members of CB
prune(K, θ) unique.

5) Run a hierarchical cluster algorithm in CB
prune(K, θ), resulting in a dendro-

gram.

6) Let c(x) ∈ CB denote the center closest to x. A partition of the original

data can be obtained by cutting the dendrogram at a certain level, resulting

in a partition CB
1 , ..., CB

m, 1 ≤ m ≤ BK of set CB. Each point x ∈ XN is now

assigned to the cluster containing c(x).

ii. Bagged Clustering based on voting (BAG2). Dudoit and Fridlan [DF03] pro-

pose a bagged clustering algorithm, where they apply a clustering procedure

repeatedly to each bootstrap sample, and the final partition is obtained by

plurality voting.

The algorithm is as follows:

1) Apply the partitioning clustering procedure P to the original set L to obtain

cluster labels P (xi; L) = ŷi. for each observation xi, i = 1, ..., n.

2) Form the bootstrap sample Lb = (xb
1, ..., x

b
n)

3) Apply the clustering procedure P to the bootstrap learning set Lb and

obtain cluster labels P (xb
i ; L

b) for each observation in Lb.

4) Permute the cluster labels assigned to the bootstrap learning set Lb so

that there is a maximum overlapping with the original clustering of these

observations. Specifically, let Sk denote the set of all permutations of the

integer 1,...,k. Find the permutation τ b ∈ SK that maximizes.

5. Meta-clustering 79

n∑
i=1

I(τ(P (xb
i ; L

b)) = P (xb
i ; L))

where I(·) is the indicator function, equaling 1 if the condition in parentheses

is true and 0 otherwise.

5) Repeat Step 2-4 B times and assign a bagged cluster label for each ob-

servation i by majority vote, that is, the cluster label corresponding to xi is

argmax1≤k≤K

∑
b:xi∈Lb I(τ b(P (xi; L

b)) = k).

Also, record a cluster vote, which is the proportion of votes in favor of the

winning cluster assignment, that is,

CV (xi) =
maxb:xi∈LbI(τ b(P (xi; L

b)) = k)

|b : xi ∈ Lb|

5.4.2 Majority Voting

It consist in combining different base clustering algorithms, and assign each obser-

vation to the most frequent cluster. In this thesis we combine five base clustering

algorithms: PAM, FCM, EM, DBSCAN, and BIRCH. Since the base clustering

yield different labels, we need to relabel them, using a permutation of labels that

maximize the classification accuracy with respect to one clustering algorithm. But

this relabelling algorithm is of factorial order in the number of clusters. We use the

Hungarian algorithm (introduced by Harold Kuhn in 1955 and revised by James

Munkres in 1957), which can do this work in cubic polynomial time in the number

of clusters.

5.4.3 Graph partitioning

Another way to make cluster combination was introduced by Strehl and Ghosh

[SG02]. They propose three meta-cluster algorithms, which are based on graph

partitioning algorithms. These algorithms are the following:

5. Meta-clustering 80

• Cluster based similarity partitioning algorithm (CSPA). If two objects are in

the same cluster, then they are considered similar. Similarity can be defined

as the fraction of clustering in which two objects are in the same cluster. The

similarity matrix S of size nxn is computed to a sparse matrix S =
1

r
HH†.

Then, S is re-clustered using METIS [KK95]. This algorithm has complexity

O(n2kr).

• Hyper Graph partitioning Algorithm (HGPA). The cluster ensemble problem

is formulated as partitioning the hypergraph by cutting the minimal number

of hyperedges. All hyperedges and vertices are equally weighted. For this

purpose HMETIS [KAKS97] is used. It has complexity of O(nkr)

• Meta-clustering Algorithm (MCLA). The main idea is to group and collapse

hyperedges and assign each object to the collapsed hyperedge in which it

participates most strongly. Thus, the indicator vectors h (hyperedges of H)

form the vertices of a regular undirected graph. The edge weight wa,b between

two vertices ha and hb is defined by the binary Jaccard measure. Next, find

matching labels by partitioning the meta-graph into k balanced meta-clusters.

This is a clustering of the h vectors in H. Since each vertex in the meta-

graph represents a distinct cluster label, a meta-cluster represents a group

of corresponding labels. Each meta-cluster collapses the hyperedges into a

single meta-hyperedge. Each meta-hyperedge has an associated vector which

contains an entry for each object describing its level of association with the

corresponding meta-cluster. The level is computed by averaging all indicator

vectors h of a particular meta-cluster. Finally, an object is assigned to the

meta-cluster with the highest entry in the association vector. This algorithm

has complexity of O(nk2r2).

In this thesis, we work only with the MCLA algorithm.

5. Meta-clustering 81

5.5 Cluster Validation Techniques

Cluster Validation can be understood as an estimated measure of cluster qualities. In

unsupervised clustering algorithms, the real partitions are not known. In fact, using

the original data set is one of the few ways to validate the results. Of course, that

means that you will never know what the absolute true solution is, but nevertheless

some validation methods could help to understand how well the algorithm worked

with the data. The use of quality indexes for clusters is an important step that

should not be used just as a final analysis but also as a method to review the

parameters of previous steps like preprocessing, or clustering analysis.

In this section we present some index validation techniques, to find out clus-

tering accuracy. These techniques show us how similar or dissimilar two clusters are.

Some data sets do not have cluster structure, so a measure to identify if these data

sets have cluster structure is required. Cluster validity is used to evaluate quanti-

tatively the results of a clustering algorithm. Three different validation techniques

are known [TK99b]:

• External validation measures. This approach is based on a previous knowledge

of the data set.

• Internal validation measures. This approach is based on the information intrin-

sic to the data set alone. Measures of robustness, compactness or separation

can be partially calculated, but there are some indexes to combine all of these

values.

• Relative Criteria. Given a set of parameters associated with a specific clus-

tering algorithm, among the clusters obtained by an algorithm using different

values of the parameter, choose the one that best fits the data set.

Consider C and P , two partitions of the same data set. Let SS = a if both

vectors belong to the same cluster in C and to the same group in P ; SD = b if both

vectors belong to the same cluster in C and to different groups in P ; DS = c if

5. Meta-clustering 82

both vectors belong to different clusters in C and to the same group in P; DD = d

if both vectors belong to different clusters in C and to different groups in P .

The following validation indices are the more frequently used in unsupervised

classification

i. Jaccard Index. This index shows the proportion of pairs that are in the same

cluster, in the same partition and those that are either in the same cluster or

in the same partition. It is an external validation measure.

J =
a

a + b + c

ii. Silhouette. This index measures the compactness and the disjointness of clus-

ters. Let a(i) be the average dissimilarity between i and all the other objects

in cluster Cj. If Ck is different to Cj, and b(i) = minCi 6=Cj
d(i, Ck) (k =

1, ..., c ; k 6= j), where d(i, Ck) denotes dissimilarity between instance i and

cluster Ck. Then, silhouette width is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
The global silhouette width is defined as

GSU =
1

c

c∑
j=1

Sj

where Sj is the average silhouette width of cluster Cj, and U is any partition

of C. This index is an internal validation measure.

iii. Mutual information. This index is a symmetric measure for the degree of

dependency between the clustering and the categorization.

ΛM(k, λ) =
1

n

k∑
l=1

g∑
h=1

n
(h)
l

log

(
nh

l nPk
i=1 n

(h)
i

Pg
i=1 n

(i)
l

)
log(k · g)

where k is the number of clusters, g is the number of clusters given by the catego-

rization, and n
(h)
l is the number of objects in cluster Cl that are classified to

be h. It is an external validation measure.

5. Meta-clustering 83

iv. Hubert’s Γ Statistic. It is useful to measure the correlation between two as-

sociation matrices X and Y , where X(i, j) (or Y (i, j)) equals 1 if the pair of

vectors (xi, xj) are in the same cluster, 0 otherwise.

Γ =
1

M

N−1∑
i=1

N∑
j=i+1

X(i, j)Y (i, j)

Assuming that X and Y have binomial distribution it follows that:

a + b =
N−1∑
i=1

N∑
j=i+1

X(i, j) (5.1)

a + c =
N−1∑
i=1

N∑
j=i+1

Y (i, j) (5.2)

a =
N−1∑
i=1

N∑
j=i+1

X(i, j)Y (i, j) (5.3)

(5.4)

Rewriting the Hubert’s Γ statistic we have

Γ =
Ma− (a + b)(a + c)√

(a + b)(a + c)(M − (a + b))(M − (a + c))

It is an external validation measure.

In this thesis we work only with Mutual information and Classification accu-

racy.

5.6 Parallel algorithm for Meta-clustering Algo-

rithms

We parallelize the Bagged clustering proposed by Dudoit and Fridland [DF03], and

Leisch [Lei99] in conjuntion with the MCLA algorithm and our proposed ensemble

algorithms. The parallel algorithm is as follows:

5. Meta-clustering 84

i. The master process sends tasks to each slave process with a specific tag. Each

tag determines if the work is a basic clustering algorithm or if it is a base

algorithm of the Bagged algorithm.

ii. Each slave process receives a message from the master process with a specific

tag. If the tag is to compute a base clustering algorithm, it sends its labels

back to the master as a result. Otherwise, it computes the centers and the

labels using a base clustering algorithm, sending them back to the master

process.

iii. The master process collects the results according to the tags received. If there

are more jobs, it sends another job to the slave process; otherwise it sends a

message to each slave process to finish its work.

iv. Finally, the master process computes the ensemble by majority voting, and

hierarchical clustering in its collected centers. The MCLA is computed from

the base clustering algorithms.

The time complexity of the sequential compound algorithm is

O(EnsembleAlgorithm) + O(B(O(FCM) + O(k3)) + O(HC) + O(MCLA)

where B is the number of bootstrap samples, O(k3) is the complexity of Hungarian

algorithm to relabelling the output labels (k is the number of centers), O(HC) is the

time complexity of hierarchical clustering which is quadratic, and O(MCLA) is the

time complexity of the MCLA algorithm . Therefore the parallel time complexity is

(O(EnsembleAlgorithm)+B(O(FCM)+O(k3)))/P +O(HC)+O(MCLA), where

P is the number of processors.

5.7 Experimental Evaluation

We compare mutual information indices and accuracies of five basic clustering al-

gorithms (EM, FCM, PAM, BIRCH, and DBSCAN) and four meta-clustering algo-

5. Meta-clustering 85

rithms (BAG1, BAG2, MCLA, and VOT). The data sets used for this experiment

are described in Appendix A.

In the experimental evaluation we use the following parameters for each data

set. The FCM, PAM, BIRCH and EM algorithms use the number of classes as the

number of centers for each data set.

The DBSCAN algorithm uses Eps = 1.6 and MinPts = 5 for the Iris data set;

Eps = 0.18 and MinPts = 5 for the Cassini data set; Eps = 5.0 and MinPts = 7

for the Breawst data set; and Eps = 120 and MinPts = 50 for the synthetic

Parabola data set.

Bagging algorithm uses B = 50 as the number of bootstrap samples for the

two Bagging algorithms.

5. Meta-clustering 86

T
ab

le
5.

1:
A

cc
u
ra

cy
an

d
M

u
tu

al
In

fo
rm

at
io

n
(M

I)
m

ea
su

re
s

C
as

si
n
i

Ir
is

B
re

as
tw

P
ar

ab
ol

a

A
cc

u
ra

cy
M

I
A

cc
u
ra

cy
M

I
A

cc
u
ra

cy
M

I
A

cc
u
ra

cy
M

I

E
M

0.
99

9
0.

99
3

0
.9

6
7

0
.8

9
9

0.
94

6
0.

72
8

0.
53

8
0.

35
4

F
C

M
0.

97
0

0.
88

8
0.

89
3

0.
75

0
0.

95
6

0.
73

0
0.

78
5

0.
57

7

P
A

M
0.

96
2

0.
86

7
0.

89
3

0.
75

8
0.

95
9

0.
74

1
0.

78
2

0.
57

1

B
IR

C
H

0.
99

3
0.

96
4

0.
80

7
0.

69
9

0.
95

8
0.

73
6

0.
77

8
0.

56
7

D
B

S
C

A
N

1
.0

0
0

1
.0

0
0

0.
68

7
0.

72
5

0.
82

0
0.

70
9

0
.8

5
0

0
.6

3
8

B
A

G
1

1
.0

0
0

1
.0

0
0

0.
91

3
0.

79
5

0
.9

6
4

0
.7

4
4

0.
79

4
0.

58
3

B
A

G
2

0.
97

1
0.

88
9

0.
90

7
0.

78
2

0.
95

7
0.

73
5

0.
78

1
0.

57
0

M
C

L
A

0.
98

6
0.

94
0

0.
90

0
0.

77
8

0.
95

8
0.

73
6

0.
78

4
0.

57
3

V
O

T
0.

99
3

0.
96

4
0.

95
3

0.
85

0
0.

95
9

0.
74

1
0.

78
4

0.
57

3

5. Meta-clustering 87

Now, we compare the performance of each clustering algorithm on each data

set. Table 5.1 shows the classification accuracy and the mutual information measure

of five base clustering algorithms and four ensemble clustering algorithms. These

algorithms are ranked by their classification accuracy and mutual information index.

For the Cassini data set, the clustering algorithms are ranked as: BAG1 and

DBSCAN first, EM second, our Voting and BIRCH third, MCLA fourth, FCM and

BAG2 fifth, and PAM last. For this data set, the accuracy of DBSCAN and BAG1 is

perfect, because this data set has instances that can be clearly separated in clusters.

The Iris data set has two overlapping classes, therefore the DBSCAN algorithm

joins the second and third classes. The clustering algorithms are ranked as: EM first,

our voting algorithm second, BAG1 third, MCLA and BAG2 fourth, FCM and PAM

fifth, BIRCH sixth, and DBSCAN last.

For the Breawst data set, these algorithms are ranked as: BAG1 first, our

voting algorithm, BAG2, BIRCH and MCLA, PAM and FCM second, EM third,

and DBSCAN last.

Finally, the synthetic parabola data set has three separable classes. Therefore

the clustering algorithms are ranked as DBSCAN first, BAG1 second, our voting

algorithm, FCM, MCLA, PAM and BAG2 third, and BIRCH last.

Table 5.2 shows the run time and the speedup of the parallel algorithm for

compound clustering algorithm. We cannot reach linear speedup because of the

following reasons: 1) The data communication costs at the beginning of the compu-

tation. 2) The communication cost at each iteration in the Bagging algorithm. 3)

The hierarchical clustering algorithm, the MCLA algorithm, and our VOT algorithm

are made only by one process.

5. Meta-clustering 88

Table 5.2: Running time (Sec.) of Parallel Compound Clustering Algorithm for

synthetic Parabola data set

of processors 1 2 3 4 5 6 7 8 9 10

Run time (sec.) 780 676 425 350 305 255 215 188 170 160

Speedup 1.00 1.15 1.83 2.22 2.55 3.05 3.62 4.14 4.58 4.87

Chapter 6

Conclusions

6.1 Distance and Density based outliers

There are many algorithms for detecting outliers. Two of them are the LOF al-

gorithm and Bay’s algorithm, which have good performance both in runtime and

outlier detection. We have designed parallel versions of these algorithms. In the first

one, we exploit the nearest neighbor property of Bay’s algorithm. In the parallel

algorithm, each process runs the same Bay algorithm but locally in its own data

set. Then, it sends its local neighbors to the master process. The master process

receives the partial neighbors and computes the cutoff value and sends it to the

slaves for the next iteration. This parallel algorithm reduces computational time of

the algorithm.

On the other hand, the heavy work in the LOF algorithm resides in the com-

putation of the k-distance nearest neighbors for each observation. In our proposed

parallel LOF algorithm, the master process sends the entire data set to the slave

processes, and assigns their tasks. Each slave process computes its respective k-

distance nearest neighborhoods of its respective data, sending it back to the master.

The master process receives the results from the slaves, and then computes the lo-

cal reachability and LOF factor for each observation. This parallel algorithm also

reduced considerably the computational time of this algorithm.

6. Conclusions 90

6.2 Visualization

We studied and analyzed drawbacks and limitation of two dimensional star coordi-

nates. We enhanced this visualization technique, and extended it to three dimen-

sions. We introduced new parameters to improve the star coordinate visualization,

making this transformation one to one. These parameters are visualized with polyhe-

drons or polygons, using their original data values. Overlapping points are visualized

on wire frame view or with different opacity. Our visualization algorithm performs

well in supervised as well as unsupervised classification. We tested our visualization

technique in the well-known Iris data set. In order to visualize large data sets, we

proposed a parallel version of our algorithm. This parallel algorithm is based on

data parallelism. It was tested in the Shuttle data set, reducing considerably the

computational time. The speedup decreases because of the communication costs

and the rendering process.

6.3 Meta-classifiers

We compared the performance of five base classifier algorithms (C4.5, Naive Bayes,

KERNEL, KNN, and RBF), as well as their ensemble Bagging algorithms. We in-

troduced a hybrid ensemble algorithm (combination of generated and non generated

ensembles). This proposed algorithm gives good results, and is robust, compared to

their single ones and other ensemble algorithms. The proposed parallel algorithm

uses a simple task parallelism to distribute tasks equally to each process. Also, this

parallel algorithm reduced the computation time of the proposed meta-classifier

algorithm. The parallel algorithm proposed cannot reach linear speedup because

communication costs and the voting process is made only by one process.

6. Conclusions 91

6.4 Meta-clustering

We compared the performance of five base clustering algorithms, using classification

accuracy and cluster validation techniques. Also, a comparison of the ensembles gen-

erated by these clustering algorithms was carried out. The ensembles were based

on Bagging, majority voting, and graph partitioning. We can conclude that each

clustering algorithm performs better on a specific data set. For instance, the best

performance of DBSCAN algorithm is obtained in a totally separated non convex

data sets like Cassini and Parabola, while, in overlapping data sets, it performs

poorly. Bagging algorithm BAG1 performs better than the other clustering algo-

rithms almost in all data sets. Our voting algorithm performs quite well, and its

performance is similar to BAG1. Also, BAG2 outperforms the single clustering al-

gorithms. Therefore, we can conclude that combining base clustering algorithms im-

proves the performance, and is more stable than single ones. The parallel algorithm

proposed computes two Bagged clustering algorithms in conjunction with our voting

based clustering algorithm and the MCLA algorithm. The computational time of

this compound algorithm is reduced considerably with this parallel algorithm. The

proposed parallel algorithm cannot reach linear speedup because communication

costs and the serial processing of the hierarchical clustering, MCLA, and our voting

algorithm.

Chapter 7

Future Work

Future work can be addressed in the following directions:

• Designing clustering algorithm ensembles is necessary, because these have more

robustness, better quality, and performance than single clustering algorithms.

• Classification algorithms play an important role in the Data Mining process.

New classification and clustering algorithms can be designed based on existing

algorithms.

The ensemble of more base classifiers can also be designed. For instance,

applying learning algorithms to clean data gives better results than applying

these algorithms to unclean data. It will be interesting to design an algorithm

that performs cleaning and learning tasks at same time.

• New visualization methods can be designed from existing ones, and their per-

formance must be compared with traditional methods. On the other hand,

one can try to enhance visualization methods or combine them to get better

results.

• Preprocessing is another challenge in Knowledge Discovery. Future work can

be done in the design of an algorithm that works with oversetting, handling

missing data, and detecting outliers and clusters in distributed data sets.

• Parallel and Distributed Computing is a necessary tool to ensure scalability

to large databases, because these databases will continue to increase in size

7. Future Work 93

in both the number of instances and the number of attributes. On the other

hand, some databases are inherently distributed, because of privacy reasons

or communication costs. Actual data mining algorithms do not work in dis-

tributed databases. Therefore, in order to work in a distributed environment

the development and design of new parallel and distributed data mining algo-

rithms is necessary.

Bibliography

[Agg01] Aggarwal, C.C. and Hineburg, A. and Kein, D. On the surprising behavior

of distance metrics in high dimensional space. Proceedings of the Eighth

International Conference on Database Theory, Lecture Notes in Computer

Science, 1973:420434, 2001.

[ALS+01] J. Ahrens, C. Law, W. Schroeder, K. Martin, and M. Papka. A Par-

allel Approach for Efficiently Visualizing Extremely Large, Time-Varying

Datasets. Los Alamos National Laboratory. Tech. Rep. LAUR-00-1620,

2001.

[Bez81] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algo-

ritms. Plenum Press, New York, 1981.

[Bis95] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University

Press, 1995.

[BKNS00] M Breuning, H. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying

density-based local outliers. ACM SIGMOD International Conference on

Management of Data, pages 93–104, 2000.

[BL94] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley, New

York, 1994.

[BMNH] C. L. Blake, C. J. Mertz, D. J. Newman, and C. L. Hettich.

UCI Repository of machine learning databases. Irvine, CA: Univer-

94

Bibliography 95

sity of California, Department of Information and Computer Science.

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[Bre94] L. Breiman. Bagging predictors. Machine Learning, Technical Report.

Department of Statistics, University of California, 1994.

[BS03] S. D. Bay and M. Schwabacher. Mining distance-based outliers in near

linear time with randomization and a simple pruning rule. Proceedings of the

Ninth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 29–38, 2003.

[CH67] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. In-

stitute of Electrical and Electronics Engineers Transactions on Information

Theory, 13:21–27, 1967.

[DF03] S. Dudoit and J. Fridland. Bagging to improve the accuracy of a clustering

procedure . Bioinformatics, 19:1090–1099, 2003.

[Die00] T. Dietterich. Ensemble Methods in Machine Learning. Lecture Notes in

Computer Science, 1857:1–15, 2000.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. JRSSB, 38:1–38, 1977.

[DT00] W. Duin and D. Tax. Experiments with Classifier Combining Rules. Pro-

ceedings 1st International Workshop of Multiple Classifier System, Cagliari,

Italy. Lecture Notes in Computer Science, Springer-Verlag, 1857:16–29,

2000.

[Dun73] J. C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in

Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3:32–

57, 1973.

[EKSX96] M. Ester, P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm

for Discovery Clusters in Large Spatial Databases with Noise. Published in

http://www.ics.uci.edu/~mlearn/MLRepository.html

Bibliography 96

Proceedings of 2nd International Conference on Knowledge Discovery and

Data Mining , pages 226–231, 1996.

[FB03] B. Fischer and J. M. Buhmann. Bagging for Path-Based Clustering .

IEEE Trans. on Pattern Analysis and Machine Intelligence, 25(11):1411–

1415, 2003.

[FGW02] U. M. Fayyad, G. Grinstein, and A. Wierse. Information visualization in

Data Mining and Knowledge Discovery. Morgan Kaufman Publishers, San.

Francisco, 2002 .

[FJ02] A. Fred and A. K. Jain. Evidence Accumulation Clustering Based on

the K-Means Algorithm . Proceeding Structural, Syntactic, and Statistical

Pattern Recognition, LNCS, 2396:442–451, 2002.

[FS96] Y. Freund and R. Schapire. Experiments with a new booosting algorithm.

Machine Learning, Proceedings of the thirteenth International Conference.

San Francisco, Morgan Kauffman, pages 148–156, 1996.

[GTBC04] T. Greene, A. Tsymbal, N. Bolshakova, and P. Cunningham. Ensemble

Clustering in Medical Diagnostics. 17th IEEE Symp. on Computer-Based

Medical Systems. Bethesda, MD, National Library of Medicine/National

Institutes of Health, IEEE CS Press, pages 576–581, 2004.

[Han98] D. J. Hand. Data mining: statistics and more ? The American Statistician,

52:112–118, 1998.

[Haw80] D. Hawkins. Identification of Outliers. Chapman and Hall, London, 1980.

[HC04] E. Hung and D. Cheung. Parallel Mining of Outliers in Large Database.

Distributed and Parallel Databases, 12(1):5–26, 2004.

[HGP01] P. Hoffman, G. Grinstein, and D. Pinkney. Visualizing multi-dimensional

clusters trends, and outliers using star coordinates. Proc. ACM SIGKDD,

New York, NY, USA, pages 107–116, 2001.

Bibliography 97

[HR04] J Hardin and D. M. Rocke. Outlier Detection in the Multiple Cluster Setting

using the Minimum Covariance Determinant Estimator. Computational

Statistics and Data Analysis, 44:625–638, 2004.

[JKP03] E. Januzaj, H. P. Kriegel, and M. Pfeifle. Towards Effective and Efficient

Distributed Clustering. Workshop on Clustering Large Data Sets, 3rd Int.

Conf. on Data Mining (ICDM’03), Melbourne, FL, pages 49–58, 2003.

[KAKS97] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hyper-

graph partitioning: Applications in VLSI domain . In Proceedings of the

34th Conference, Design automation, ACM, pages 526–529, 1997.

[Kan01] R. Kandogan. Visualizing Multi-Dimensional Clusters Trends, and Outliers

using Star Coordinates. Proceedings ACM SIGKDD ’01, pages 107–116,

2001.

[KK95] G. Karypis and V. Kumar. Analysis of Multilevel Graph Partitioning.

Technical Report 95-037 Published in Supercomputing, 1995.

[KN98] E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large

datasets. In Proc. 24th Int. Conf. Very Large Data Bases VLDB, pages

392–403, 1998.

[KNT00] E. Knorr, R. Ng, and V. Tucakov. Distance-based outliers: Algorithms

and applications. VLDB Journal: Very Large Data Bases, 8:237–253, 2000.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction

to Cluster Analysis. Wiley, New York, 1990.

[LA05] E. Lozano and E. Acuña. Parallel algorithms for distance-based and

density-based outliers . Proceeding of the Fifth IEEE International Confer-

ence on Data Mining, Houston, Texas, USA, pages 729–732, 2005 .

[Lei99] F. Leisch. Bagged Clustering. Working paper Series No 51. Adapta-

tive Information Systems and Modelling in Ecnomics and Management sci-

Bibliography 98

ence, Institut für Informations verarbeitung, Abt. Produktions management,

Wien, 1999.

[Loz03] E. Lozano. Density Estimation by Kernel and its Applications using Parallel

Programming. M.S. thesis at Mathematics Department UPR Mayagüez,

2003.

[LZY05] B. Long, Z. Zhang, and P. Yu. Combining Multiple Clustering by Soft

Correspondence . Published on International Conference on Data Mining

ICDM’ 05, pages 282–289, 2005 .

[NH94] R. Ng and J. Han. Efficient and effective clustering methods for spatial

data mining. Proc. 20th Int. Conf. on Very Large Databases. Morgan and

Kaufmann Publishers, San Francisco, 8:44–155, 1994.

[Pac97] P. Pacheco. Parallel Programming with MPI. Morgan Kauffmann Publish-

ers Inc., 1997.

[PCS00] A. Prodromidis, P. Chan, and S. Stolfo. Meta-learning in distributed data

mining systems: Issues and Approaches. In Advances in Distributed and

parallel knowledge discovery. Chapter 3, AAAI/MIT Press, 2000.

[Qui93] R. Quinlan. C4.5 A Program for Machine Learning. Morgan Kaufmann

Series in Machine Learning, 1993.

[RA01] J. Ruoming and G. Agrawal. A Middleware for developing parallel data

mining applications. In Proceedings of the First SIAM Conference on Data

Mining, Chicago IL, April, 2001.

[RGV01] F. Roli, G. Giacinto, and G. Vernazza. Methods for Designing Multi-

ple Classifier Systems. Proc. of MCS 2001, Cambridge, UK, LNCS 2096

(Kittler and Roli Eds.), Springer, pages 78–87, 2001.

[RL87] P. J. Rousseeuw and A. Leroy. Robust Regression and Outlier Detection.

John Wiley, 1987.

Bibliography 99

[Rod04] C. Rodriguez. A Computational Environment for Data Preprocessing in

Supervised Classification. M. S. thesis at Mathematics Department UPR

Mayagüez, 2004.

[RRS00] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for min-

ing outliers from large data sets. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 427–438, 2000.

[RW02] D. Rocke and D. Woodruff. Computational Connections Between Robust

Multivariate Analysis and Clustering. In COMPSTAT 2002 Proc. in Com-

putational Statistics, Wolfgang Härdle and Bernd Rönz eds. Heidelberg:

PhysicaVerlag, pages 255–260, 2002.

[SG02] A. Strehl and J. Ghosh. Cluster Ensembles - A Knowledge Reuse Frame-

work for Combining Partitionings. Journal of Machine Learning Research,

3:583–617, 2002.

[Ski01] D. B. Skillicorn. Strategies for Parallel Data Mining. IEEE Concurrency,

4(7):36–35, 2001.

[SML96] W. J. Schroeder, K. M. Martin, and E. M. Lorensen. An Object Oriented

Approach to 3D Graphics. Prentice Hall, 1996.

[TG00] K. Tumer and J. Ghosh. Robust Order Statistics-based ensembles for dis-

tributed data mining. Advances in Distributed and parallel knowledge dis-

covery. AAAI/MIT Press, pages 185–210, 2000.

[TJP03] A. Topchy, A. K. Jain, and W. F. Punch. Combining Multiple Weak Clus-

terings. Proceedings IEEE Intl. Conf. on Data Mining 2003, Melbourne,

Fl, pages 331–338, 2003.

[TK99a] H. Theisel and M. Kreusel. An Enhanced Spring Model for Information Vi-

sualization. In Proceedings Eurographics Ferreira and M. Gobel, 17(3):335–

344, 1999.

[TK99b] S. Theodoridis and K. Kotroumbas. Pattern Recognition. Academic

Press , 1999 .

[VM02] G. Valentini and F. Masulli. Ensembles of Learning Machines. in M. Mari-

naro and R. Tagliaferri, editors, Neural Nets WIRN Vietri-02, Series Lec-

ture Notes in Computer Sciences, Springer-Verlag, Heidelberg (Germany),

Springer-Verlag, Heidelberg (Germany) (invited review), 2486:3–19, 2002.

[WA99] B. Wilkinson and M. Allen. Parallel Programming Techniques and Applica-

tions using Networked Workstations and Parallel Computers. Prentice-Hall,

Inc, 1999.

[Weg90] E. J. Wegman. Hyperdimensional Data Analysis Using Parallel Coordi-

nates. Journal of the American Statistical Association, 85(411):664–675,

1990.

[ZB04] X. Zhang and C. E. Brodley. Solving Cluster Ensemble Problems by Bipar-

tite Graph Partitioning . Proceedings of the 21 st International Conference

on Machine Learning, Banff, Canada , page 36, 2004 .

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livni. BIRCH: an efficient data

clustering method for very large databases . Proc. ACM-SIGMOD Int.

Conf Management of Data, Montreal, Canada , pages 103–114, 1996 .

[ZTGG02] Y. Zeng, J. Tang, J. Garcia-Frias, and G. R. Gao. An Adaptive Meta-

clustering Approach: Combining the Information from Different Clustering

Results. Bioinformatics Conference, 00:276, 2002.

Appendix A

Data sets and cluster description

A.1 Data sets used in this thesis

In the experimental evaluation we consider data sets, which are available in the

Machine Learning database repository at the University California, Irvine [BMNH].

These data sets are the following:

• Breastw. This data set comes from the University of Wisconsin Hospital. It

contains clinical cases, which were collected in the period 1989-1991. This data

set contains 699 instances; each instance has 9 continuous attributes and one

categorical attribute with two classes (benign and malignant). In this thesis,

we use only 683 instances, because 16 instances have missing values.

• Bupa. This medical data set was created by BUPA Medical Research Ltd.

It has 7 attributes: 1. mcv (mean corpuscular volume). 2. alkphos (alkaline

phosphotase) 3. sgpt (alamine aminotransferase). 4. sgot (aspartate amino-

transferase) 5. gammagt (gamma-glutamyl transpeptidase) 6. drinks (number

of half-pint equivalents of alcoholic beverages drunk per day). 7. selector field

used to split data into two sets. It has 345 instances and two classes.

• Cassini. This data set comes from the R package called ”CLUE”. It consists

of 1000 points in a 2-dimensional space which are drawn from the uniform

distribution in 3 structures. The two outer structures are banana-shaped; the

”middle” structure between them is a circle (Figure A.1).

101

Appendix 102

Figure A.1: a) Cassini data set. b) Synthetic Parabola data set.

• Census. This data set consists of 14 features measured in 32561 subjects.

The features try to classify the subjects in two classes: ”income < 50k”, and

”income ≥ 50k”. A 7% of subjects have incomplete information and we have

deleted them.

• Covtype. This data set comes from the US Forest Service (USFS). It contains

measures of seven types of soils with 581,012 instances, and 54 attributes.

• Diabetes. This data set is also known as the Pima Indians Diabetes data set.

It was introduced by National Institute of Diabetes and Digestive and Kidney

Diseases. The diagnostic, binary-valued variable investigated is whether the

patient shows signs of diabetes. All patients are females at least 21 years old

of Pima Indian heritage. This data set has 8 attributes all numeric-valued,

768 instances, and two classes.

• Ionosphere. This data set comes from Johns Hopkins University. This radar

data was collected by a system in Goose Bay, Labrador, Nfld, Canada. This

system consists of a phased array of 16 high-frequency antennas with a total

transmitted power in the order of 6.4 kilowatts. The targets were free electrons

in the ionosphere. ”Good” radar returns are those showing evidence of some

type of structure in the ionosphere. ”Bad” returns are those that do not; their

signals pass through the ionosphere. There were 17 pulse numbers for the

Goose Bay system. Instances in this database are described by two attributes

Appendix 103

per pulse number.

The original data set contains 34 predictors, but the two first features were

eliminated, because the first feature has the same value in one of the classes

and the second feature assumes the value 0 in all observations. The data set

contains 351 instance and 2 classes: ”Good”, and ”Bad”.

• Iris. This data set contains 3 classes with 50 instances in each class. The class

refers to a variety of iris: Iris Setose, Iris Versicolor, and Iris Virginica.

• Landsat. It consists of 4435 instances, each instance represents a satellite

image with 36 features. The data is classified in six classes.

• Parabola. Synthetic data set, generated from two concentric parabolas (4000

observations each) and one ellipse (1000 observations). These observations

come from a three normal distribution with zero mean and constant variance.

• Segment. This Image Segmentation data was created by the Vision Group,

University of Massachusetts. The instances were drawn randomly from a data-

base of 7 outdoor images. The images were hand segmented to create a clas-

sification for every pixel. Each instance is a 3x3 region. It has 19 continuous

attributes, 2310 instances and 7 classes.

• Shuttle. The NASA Shuttle (Catlett, 1991) contains 43500 training instances,

with 9 continuous attributes. It has 7 classes.

• Vehicle. This data set comes from the Turing Institute at Glasgow, Scotland.

Originally gathered by JP Siebert 1986-87. The original purpose was to find

a method of distinguishing 3D objects within a 2D image by application of an

ensemble of shape feature extractors to the 2D silhouettes of the objects. It

has 18 continuous attributes, 846 instances, and 4 classes.

Appendix 104

Table A.1: Data set Description

Data set Instances Classes Features

Breastw 683 2 9

Bupa 345 2 6

Cassini 1000 3 2

Census 32561 2 14

Covtype 581012 7 54

Diabetes 768 2 8

Ionosphere 351 2 32

Iris 150 3 4

Landsat 4435 6 36

Parabola 9000 3 2

Segment 2310 7 16

Shuttle 43500 7 9

Vehicle 846 4 18

Appendix 105

A.2 Cluster Description

The computer environment where we tested our programs consists of two different

clusters.

i. A cluster of 4 nodes HP Itanium 2 6M zx6000 (IA64 Architecture). Each node

has 2 processors running at 1.5 GHz with 4 GB of main memory, each running

Red Hat Advanced Workstation 2.1. We have implemented our algorithms in

C++ (gcc version 3.2.3) using some libraries of LAM MPI version 7.0 [Pac97].

ii. A cluster called espresso.hpcf.upr.edu, which is a distributed memory Linux

cluster (Atipa Model), This cluster has Intel Pentium4 Xeon processors 1with

2.4 GigaHertz. It is composed of 85 compute nodes (total number of processors

is 172) + 1 master node. It uses a Gigabit Ethernet backplane. The total

amount of memory is 86 Gigabytes. The total amount of disk space is (85x40

Gigabytes) + (1x600Gigabytes). The current Operating System is SDSC’s

Rocks clustering system, with compiler gcc version 3.2.3.

Appendix B

Parallel outlier detection

algorithms

B.1 Parallel Algorithms to detect outliers

In this section we discuss the input parameters of the two parallel algorithms for

outlier detection.

B.1.1 Program parameters

The following input parameters are used for these programs:

−pbay dfile

The name of the input file

−pbay rows

The number of rows of the input data

−pbay cols

The number of columns of the input data

−plof dfile

The name of the input file

106

Appendix 107

−plof rows

The number of rows of the input data

−plof cols

The number of columns of the input data

The distribution of the source code for these programs is available on demand

(please send an email to elozanoi@gmail.com). The binaries can be built by execut-

ing the following commands:

> tar -zxvf ElioLozano PhdThesis Source.tar.gz

> cd ElioLozano PhdThesis Source/baylof

> make

These commands will generate two executables: pbay and plof. For instance,

one of these binaries can be executed as:

> mpirun -np 8 ./pbay -pbay dfile dfile -pbay rows x1 -pbay cols x2

where dfile is the input file, x1 and x2 are the number of rows and columns of the

data set.

Appendix C

Data visualization

Now, we give details of the implementation of the visualization algorithm.

C.1 VTK objects used in 3D star coordinate al-

gorithm

In this section we discuss the classes used in the 3D star coordinate algorithm.

• vtkPoints. It represents 3D points. The data model for vtkPoints is an array

of vx-vy-vz triplets accessible by (point or cell) id.

• vtkVoxel. It is a concrete implementation of vtkCell to represent a 3D or-

thogonal parallelepiped. Unlike vtkHexahedron, vtkVoxel has interior angles

of 90 degrees, and sides are parallel to coordinate axes. This results in large

increases in computational performance.

• vtkUnstructuredGrid. It is a data object that is a concrete implementation

of vtkDataSet. vtkUnstructuredGrid represents any combinations of any cell

types. This includes 0D (e.g., points), 1D (e.g., lines, polylines), 2D (e.g.,

triangles, polygons), and 3D (e.g., hexahedron, tetrahedron).

• vtkAppendFiler. This class is a filter that appends one of more datasets into

a single unstructured grid. All geometry is extracted and appended, but point

attributes (i.e., scalars, vectors, normals, field data, etc.) are extracted and

108

Appendix 109

appended only if all datasets have the point attributes available. (For example,

if one dataset has scalars but another does not, scalars will not be appended.)

• vtkRenderer. It provides an abstract specification for renderers. A renderer

is an object that controls the rendering process for objects. Rendering is

the process of converting geometry, a specification for lights, and a camera

view into an image. vtkRenderer also performs coordinate transformation

between world coordinates, view coordinates (the computer graphics rendering

coordinate system), and display coordinates (the actual screen coordinates on

the display device). Certain advanced rendering features such as two-sided

lighting can also be controlled.

• vtkRenderWindows. This class is an abstract object to specify the behavior

of a rendering window. A rendering window is a window in a graphical user

interface where renderers draw their images. Methods are provided to syn-

chronize the rendering process, set window size, and control double buffering.

The window also allows rendering in stereo. The interlaced render stereo type

is for output to a VRex stereo projector. All of the odd horizontal lines are

from the left eye, and the even lines are from the right eye. The user has to

make the render window aligned with the VRex projector, or the eye will be

swapped.

• vtkOutputPort. It connects the pipeline in this process to one in another

process. It communicates all the pipeline protocol so that the fact you are

running in multiple processes is transparent. The output port is placed at the

end of the pipeline (an output for a process). It can have multiple correspond-

ing input ports in other processes that receive its data. Updates in a port are

triggered asynchronously, so filter with multiple inputs will take advantage of

task parallelism.

• vtkInputPort. It connects the pipeline in this process to one in another process.

It communicates all the pipeline protocol so that the fact that it is running in

Appendix 110

multiple processes is transparent. An input port is used as a source (input to a

process). One is placed at the start of a pipeline, and has a single corresponding

output port in another process (specified by RemoteProcessId).

The implementation of 3D star coordinates was in C++, using visualization

toolkit VTK. In the next section we discuss the library dependencies needed by this

implementation.

C.2 Library dependencies

In order to build the 3D star coordinate binaries, it is necessary to install the fol-

lowing libraries:

• TCL/TK libraries (http://www.tcl.tk/software/tcltk/). Once these libraries

are downloaded, follow the installation steps. Usually these steps are:

> ./configure

> make

> make install

• VTK library [SML96](http://public.kitware.com/VTK/)

We have used library versions 4.0 and 4.2. This library is installed using cmake

utility. This library can be installed executing the following commands:

> cmake -i

On the cmake utility window type ”configure”

Then, on the same window type ”generate”

Finally, type ”q” to quit from the cmake utility

> make

> make install

Appendix 111

C.3 Building Binaries

Now it is time to build the star coordinate binaries. These binaries are generated

executing the following commands:

> tar -zxvf ElioLozano PhdThesis Source.tar.gz

> cd ElioLozano PhdThesis Source/graphics

> cmake .

> make

These commands will generate two executables: star and pstar.

C.4 Program parameters

The followings are the program parameters used in the visualization algorithm.

−star dfile

The name of the input file

−star rows

Number of rows of the input data

−star cols

Number of columns of the input data

−star factor

A constant factor to set the size of the polyhedron

For instance, one of these binaries can be executed as:

> mpirun -np 8 ./pstar -star dfile dfile -star rows x1 -star cols x2 -star factor f

where dfile is the input file, x1 and x2 are the numbers of rows and columns of the

data set, and f is real number used to scale the size of the objects.

Appendix D

Meta-classifier

D.1 Class hierarchy

The class hierarchy of the implementation of the meta-classifier algorithm is given

below:

SupervisedClassifier

|
` RBF

` KERNEL

` KNN

` C45

` BAY ES

|
`MetaClassifier

D.2 Libraries and programs used

The proposed classifier ensemble algorithm was implemented using the following

libraries:

112

Appendix 113

i. C4.5 Decision trees. We have written a C++ wrapper for the C4.5 C source

code. The C4.5 software was developed by Quinlan (Copyright c© J.R. Quin-

lan, 1987, 1988, 1989, 1990, 1991, 1992). It is available on the author’s web

page.

ii. CPPLapack. It is a C++ class wrapper for BLAS and LAPACK. We have

used this wrapper to find the pseudo inverse of a matrix, calling general svd

procedures from LAPACK library. This wrapper is available on

http://cpplapack.sourceforge.net/.

D.3 Building Binaries

The binaries of the meta-classifier program can be built executing the following

commands:

> tar -zxvf ElioLozano PhdThesis Source.tar.gz

> cd ElioLozano PhdThesis Source/ClassEnsemble

If you want to make all the programs:

> make

If you want to make stand alone programs:

> make program name

where program name is the name of the stand alone program (mclass, rbf, kernel,

knn, c45, bayes)

The binary of the parallel algorithm is mclass.

D.4 Program parameters

The input parameters for the meta-classifier program are the following:

Appendix 114

−mclass dfile

The name of the input file

−mclass rows

Number of rows of the input data

−mclass cols

Number of columns of the input data

−mclass nclass

The number of classes

−rbf nhidden

The number of hidden layers

−c45 dnames

The data names file as in C4.5 algorithm

−knn kneigh

The number of k-neighbors

For instance, these binaries can be executed as:

> mpirun -np 8 ./mclass -mclass dfile dfile -mclus rows x1 -mclus cols x2 -

mclass nclass nc -mclus nhidden nh -mclus kneigh kn

where dfile is the input file, x1 and x2 are the number of rows and columns of the

data set, nc is the number of classes, nh is the number of hidden layers, and kn is

the number of k-nearest neighbors.

Appendix E

Meta Clustering

E.1 Class hierarchy

The class hierarchy of the implementation of meta clustering algorithm is given

below:

UnsupervisedClassifier

|
` EM

` PAM

` DBSCAN

` BIRCH

` FCM

|
`MetaClustering

E.2 Libraries and programs used

In order to implement the proposed clustering ensemble algorithm, we have written

wrappers for existing libraries. These libraries and programs are listed below.

115

Appendix 116

i. DBSCAN. We used ltilib library to implement the DBSCAN algorithm. This

library was implemented by Pablo Alvarado, Ulle Canzler, Jochen Wickel, and

Suat Akyol (Copyright c© 1998-2005 by Chair of Technical Computer Science,

RWTH-Aachen University). It is available at

http://ltilib.sourceforge.net/doc/homepage/index.shtml.

ii. PAM. We wrote a C++ wrapper to implement the PAM algorithm. This wrap-

per calls C source code (translated from fortran with f2c translator) available

in R cluster package.

This package was first developed by Peter Rousseeuw, Anja Struyf and Mia

Hubert (Swiss Federal Institute of Technology in Zurich), posteriorly, it was

extended and maintained by Martin Maechler. This package is available at

the CRAN web page (http://cran.r-project.org/).

iii. EM. We have written a C++ wrapper to implement EM algorithm. This

wrapper calls Fortran code available in the MCLUST R package. This package

was developed by Fraley, Raftery, and Ron Wehrens (Copyright c© 1991-2005

Dept. of Statistics, University of Washington). It is also available on the

CRAN web page and at http://www.stat.washington.edu/mclust.

iv. BIRCH. We have used the Birch library to implement the Birch algorithm.

This library was developed by Tian Zhang (Copyright c© 1995 CS Dept.,

Univ. of Wisconsin-Madison). The original source code is available at

http://www.cs.wisc.edu/ vganti/birchcode/

v. FCM. We wrote a C++ wrapper to implement the fuzzy C-means algorithm.

This wrapper calls C source code written by Kurt Hornik (Copyright c© by all

authors of e1071 R package, Vienna University of Technology). This package

is available at the CRAN web page.

vi. MCLA. We have used the Metis library to implement the MCLA algorithm.

This library was developed by George Karypis (Copyright c© 1998, Regents

Appendix 117

of the University of Minnesota). This library is available on the author’s web

page.

E.3 Building Binaries

The binaries of the meta-clustering program are generated executing the following

commands:

> tar -zxvf ElioLozano PhdThesis Source.tar.gz

> cd ElioLozano PhdThesis Source/ClusterEnsemble

If you want to make all programs:

> make

If you want to make a stand alone program:

> make program name

where program name is the name of the stand alone program (mclus, em, pam,

dbscan, birch, cmeans). The binary of the parallel compound program is mclus.

E.4 Program parameters

The following input parameters are used for the meta-clustering program.

−mclus dfile

The name of the input file

−mclus rows

The number of rows of the input data

−mclus cols

The number of columns of the input data

−mclus nclus

The number of clusters

Appendix 118

−em maxiter

The maximum number of iterations

−dbscan minpts

The minimum number of points in a core point’s ξ-neighborhood

−birch para

The parameter file, which is needed by the Birch algorithm

−birch scheme

The scheme file, which is needed by the Birch algorithm

−birch proj

The project file, which is needed by the Birch algorithm

For instance, one of these binaries can be executed as:

> ./pam -pam dfile dfile -pam rows x1 -pam cols x2 -pam nclus c

where dfile is the input file, x1 and x2 are the numbers of rows and columns of the

data set, and c is the number of clusters.

	List of Tables
	List of Figures
	Introduction
	Parallel computing terminology
	Parallel Programming Models
	Outlier Detection
	Data visualization
	Meta-classifiers
	Meta-clustering
	Software and hardware environment
	Algorithm Evaluation Criteria
	Thesis structure
	Ethics

	Distance and Density based Outlier Detection
	Introduction
	Distance-based outlier detection
	The Bay's Algorithm
	Parallel Bay's Algorithm

	Density-based local outlier detection
	Parallel LOF Algorithm

	Experimental results
	Description of Input and Output Parameters
	Speedup

	Visualization
	Star Coordinates
	3D star Coordinates
	Algorithm for 3D star coordinates
	Parallel algorithm for 3D star coordinates
	Experimental Methodology

	Meta-classifiers
	Literature review
	Our Work
	Motivation
	Organization

	Supervised Classification
	Base Classifier algorithms
	The C4.5 algorithm
	Radial Basis Function Networks
	The Kernel Density Classifier
	The K- Nearest Neighbors Classifier
	The Naive Bayes Classifier

	Ensemble Methods
	Combination of generative and non-generative Ensembles
	Parallel design of the proposed meta-classifier algorithm

	Experimental Results

	Meta-clustering
	Introduction
	Literature Review
	Motivation
	Our Work
	Organization

	Clustering Techniques in Data Mining
	Cluster Definition
	Similarity and Dissimilarity measures
	Taxonomy of Clustering algorithms:

	Base Clustering Algorithms
	Gaussian Mixture Models
	Partition Around Medoids
	Fuzzy C-means
	DBSCAN
	BIRCH

	Meta-clustering
	Bagged Clustering
	Majority Voting
	Graph partitioning

	Cluster Validation Techniques
	Parallel algorithm for Meta-clustering Algorithms
	Experimental Evaluation

	Conclusions
	Distance and Density based outliers
	Visualization
	Meta-classifiers
	Meta-clustering

	Future Work
	Data sets and cluster description
	Data sets used in this thesis
	Cluster Description

	Parallel outlier detection algorithms
	Parallel Algorithms to detect outliers
	Program parameters

	Data visualization
	VTK objects used in 3D star coordinate algorithm
	Library dependencies
	Building Binaries
	Program parameters

	Meta-classifier
	Class hierarchy
	Libraries and programs used
	Building Binaries
	Program parameters

	Meta Clustering
	Class hierarchy
	Libraries and programs used
	Building Binaries
	Program parameters

