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A problem of interest in finite dynamical systems is to determine when such a

system reaches equilibrium, i.e., under what conditions is it a fixed point system.

Moreover, given a fixed point system, how many time steps are required to reach a

fixed point, i.e., what is its transient? Bollman and Colón have shown that a Boolean

Monomial Dynamical System (BMDS) f is a fixed point system if and only if every

strongly connected component of the dependency graph Gf of f is primitive and in

fact, when Gf is strongly connected, the transient of f is equal to the exponent of Gf .

Furthermore, every directed graph gives rise to a unique BMDS and hence

every example of a primitive graph with known exponent gives us an example of

a fixed point BMDS with known transient. Unfortunately, the general problem of

determining the exponent of a primitive graph is unsolved. In this work we give

several families of primitive graphs for which we can determine the exponent and

hence the transient of the corresponding BMDS.
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Un problema de interés en sistemas dinámicos finitos es determinar cuándo

tales sistemas alcanzan equilibrio; es decir, bajo cuales condiciones es un sistema

de punto fijo. Por otra parte, dado un sistema de punto fijo, cuánta cantidad de

pasos son requeridos para alcanzar el punto fijo; es decir, ¿cuál es su tiempo de

transición?. Bollman y Colón han mostrado que un Sistema Dinámico Monomial

Booleano (SDMB) f es un sistema de punto fijo śı y solo śı cada componente fuerte-

mente conecto del grafo de dependencia Gf de f es primitivo y en efecto, cuando

Gf es fuertemente conecto, el tiempo de transición de f es igual a el exponente de Gf .

Además, cada grafo dirigido da lugar a un único SDMB y por tanto todo ejemplo

de un grafo primitivo con exponente conocido provee un ejemplo de un SDMB de

punto fijo con tiempo de transición conocido. Desafortunadamente, el problema

general de determinar el exponente de un grafo primitivo es abierto. En este trabajo

se muestran varias familias de grafos primitivos para las cuales se puede determinar

el exponente y por tanto el tiempo de transición de los correspondientes SDMB.
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Chapter 1

INTRODUCTION

A finite dynamical system (FDS) is a function f : X → X, where X is a finite set

and these systems are time discrete. Known examples include cellular automata

and Boolean networks, which have found broad applications in engineering, com-

puter science, and, more recently, computational biology.

More general multi-state systems have been used in control theory, the design and

analysis of computer simulations, and in computational biology.

In [3], Bollman-Colón, talk about the importance of these systems in genetic model-

ing and their ability to model the dynamics of gene expressions and relations among

genes. This approach enables geneticists to determine the long term impact of a

gene on the other genes, see [4]. Dynamical systems over the field with two elements

can be used to model Boolean networks which have applications in both cellular

automata and computational biology, see [4].

B. Elspas also mentions in [8] applications of linear dynamical systems (LDS) in

computer control circuits and communications systems. Some of these applications

reach a point in time where they do not experience a change in the state they are

in.

Dynamical systems that model such phenomena are said to reach a steady state or

fixed point (FP); in all of these applications, an important problem is to give suffi-

cient conditions for a system to be a fixed point system (FPS) and in such a case,

1



2

to determine the maximum number of time steps necessary to reach a FP, i.e. the

transient. Although various authors have given conditions for the existence of or for

the number of fixed points systems, little is known about transients for such systems.

Every linear system over a finite field can be represented as a matrix A and the

state space structure of f can then be determined by finding the factorization of the

characteristic polynomial of A. Bollman-Colón in [3], establish that if f is a LDS,

f : Znq → Znq then f is a FPS if and only if the characteristic polynomial of f is of

the form xi(x− 1) or simply xi.

In [5], Colón describes a nonlinear system called a boolean monomial dynamical sys-

tem (BMDS). He defines a discrete dynamical system f : F n
2 → F n

2 where F n
2 is

the n− fold cartesian product of a finite field with two elements. It is well known

that f can be written as f = (f1, f2, ..., fn) where each fi is a polynomial of the

form xεi1i1 x
εi2
i2
· · ·xεirir where εij ∈ {0, 1} or a constant c ∈ {0, 1}. The dynamics of

a BMDS f is encoded in its state space S(f), which is a directed graph defined as

follows. The vertices of S(f) are the 2n elements of F n
2 . There is a directed edge

(a, b) in S(f) if f(a) = b. In particular, a directed edge from a vertex to itself is

admissible. That is, S(f) encodes all state transitions of f, and has the property

that every vertex has outdegree exactly equal to 1.

Every BMDS has an associated dependency graph G, whose vertices 1, 2, ..., n cor-

respond to f1, f2, ..., fn. There is a directed edge from i to j if xj divides fi.

The main result in [5], shows that the structure of the cycles of S(f) can be deter-

mined from the dependency graph. A principal role is played by strongly connected

graphs, that is, directed graphs in which there is a walk between any two vertices.
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For such a case, Colón defines the loop number to be the minimum positive differ-

ence of lengths of circuits through the same vertex. The dependency graph can be

decomposed into strongly connected components. Colón in [5], proves that if the

loop number of each strongly connected component of the dependency graph of a

BMDS is 1, then f is a FPS.

Furthermore, the loop number of each strongly connected component is equal to the

greatest common divisor of the cycle lengths.

Another very important result was proved by Bollman and Colón in [2] that says

that a BMDS f with a strongly connected dependency graph Gf is a FPS and its

only fixed points are (0, 0, ..., 0) and (1, 1, ..., 1) if and only if Gf is primitive; that is,

if there exist a positive integer k such that for any pair of vertices (i, j) of G there is

a walk of length k from i to j. The smallest positive integer k is called the exponent

of G.

It turns out that the exponent of a primitive dependency graph is precisely the tran-

sient of the corresponding BMDS. This implies that the problem of determining the

transient of a fixed point BMDS reduces to the problem of determining the expo-

nent of a primitive graph. However, methods for finding the exponent of a primitive

graph are known only in special cases.

In 1964, Dulmage and Mendelsohn [6], introduce a family of graphs with known

exponent. They proved that given positive integers m1 < m2 < · · · < mk such that

gcd(m1,m2, ...,mk) = 1, then

g(m1,m2, ...,mk) + r + 1,

is an upper bound for the exponent of a primitive graph G, where the mi are the

lengths of the cycles of G, r is the length of the longest shortest walk between two



4

vertices that touch at least one vertex of each cycle and g(m1,m2, ...,mk) is the

Frobenius number, i.e., the largest positive integer that is not a non-negative integer

linear combination of the mi. They also proved that for a particular family of graphs

the above upper bound is also a lower bound.

The same year, Heap and Lynn in [9] defined a family of graphs called Frobenius

graphs, and they proved that the exponent of such a graph is given by

g(m1,m2, ...,mk) + 2mk − 1.

In [1], Bollman and Colón determined that an upper bound for the exponent of

a family of graphs consisting of an increasing chain of cycles of coprime lengths is

given by the same formula of Dulmage and Mendelsohn, but although it is suspected

that this formula is a lower bound, there isn’t an established proof.

The rest of the work is organized as follows. In Chapter 2 we present more detailed

explanations of the basic concepts of graph theory, finite dynamical systems and

their graphs and the Frobenius number. In Chapter 3, we give several families of

primitive graphs for which the exponent is known and some interesting results about

the role it plays in determining when a BMDS is a fixed point system. In Chapter

4 we study the general problem of finding the transient of a BMDS and give our

main results on transients, i.e., on the exponent of a family of graphs. We end with

a brief discussion of the conclusions and future work.

Remark 1. The State Spaces in this work were created with the DVD software

developed by the Applied Discrete Mathematics Group at the Virginia Bioinformatic

Institute (http://dvd.vbi.vt.edu). The Dependency Graphs were created using an

algorithm created by Xavier Terán-Batista in Wolfram Mathematica software.



Chapter 2

PRELIMINARIES

In this chapter we give some basic results of graph theory, discrete dynamical

systems and number theory which will help us to understand the mathematical

theory used to solve our problem.

2.1 Graphs

Definition 2.1.1. A directed graph G (or digraph) is an ordered pair (V,E) con-

sisting of a set V of vertices or nodes and a set E of ordered pairs of vertices called

edges.

Example 2.1.2. Graph G = (V,E) where V = {1, 2, 3, 4} and

E = {(1, 2), (2, 2), (2, 3), (3, 4), (4, 3), (4, 1)}.

Figure 2–1: Digraph with 4 vertices

Definition 2.1.3. For any vertex i in a directed graph, the number of edges of the

form (i, j) is its outdegree.

5
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Definition 2.1.4. A walk of length n in a digraph G = (V,E) is a sequence of edges

(v1, v2), (v2, v3), ..., (vn, vn+1). A walk in which v1 = vn+1 is a circuit. The number

of edges in a walk w is called the length of w and is denoted by |w|.

Definition 2.1.5. A path is a walk (v1, v2), (v2, v3), ..., (vn, vn+1) where the vi are

distinct, except possibly v1 = vn+1; in such a case the path is a cycle of length n. A

cycle of the form (v1, v1) is called a trivial cycle or loop.

Definition 2.1.6. A digraph is said to be strongly connected if there is a path between

any two pair of vertices.

An example of a strongly connected graph is given in the Example 2.1.2.

Definition 2.1.7. The adjacency matrix of a graph G = (V,E) with n vertices

{1, 2, ..., n} is an n× n matrix AG = [aij] such that

aij =

 1, if (i, j) ∈ E,

0, otherwise.

Example 2.1.8. For the graph G in figure 2–1,

AG =



0 1 0 0

0 1 1 0

0 0 0 1

1 0 1 0


.

The following theorem is well known and can be proved by induction.

Theorem 2.1.9. Let G = (V,E) be a digraph with adjacency matrix AG and let

AkG = [a
(k)
ij ] where k is a positive integer. Then a

(k)
ij is equal to the number of walks

of length k from i to j.
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Proof. We proceed by induction on k. If k = 1, A1 = A and a
(1)
ij = aij; for vertices

i, j of G. Therefore, the aij entry of the matrix A is the number of walks from i to

j of length 1 in G.

Assume, for a positive integer k, that a
(k)
ij is the number of different walks from i

to j of length k in G. Observe that every walk from i to j of length k + 1 in G is

obtained from a walk from i to v of length k for some vertex v in G that is adjacent

to j. Since Ak+1 = AkA, it follows that the a
(k+1)
ij entry in Ak+1 can be obtained by

taking the inner product of row i of Ak and column j of A; i.e.,

a
(k+1)
ij = a

(k)
i1 a1j + a

(k)
i2 a2j + ...+ a

(k)
in anj =

n∑
v=1

a
(k)
iv avj. (∗)

By the induction hypothesis, for each integer v with 1 ≤ v ≤ n, the integer a
(k)
iv is

the number of different walks from i to v of length k in G.

Now, if avj = 1, then vertex v is adjacent to vertex j and so there are a
(k)
iv different

walks from i to v of length k + 1 in G whose next to last vertex is v. Otherwise, if

avj = 0, then vertex v is not adjacent to vertex j and there are no walks from i to

j of length k + 1 in G whose next to last vertex is v. In any case, a
(k)
iv avj gives the

number of different walks from i to j of length k + 1 in G whose next to last vertex

is v. Consequently, the total number of different walks from i to j of length k+ 1 in

G is the sum in (∗), which is a
(k+1)
ij .

Hence, by the Principle of Mathematical Induction, a
(k)
ij is the number of different

walks from i to j of length k in G for every positive integer k.

�

Definition 2.1.10.

i. A directed graph is said to be primitive if there exists a positive integer t such that

for any two vertices i and j there is a walk from i to j of length t. The smallest

such t, is called the exponent of the graph, and is denoted by γ(G).
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ii. For any vertex i of G we also define the exponent of i, denoted expi(G), to be the

smallest positive integer wi such that for every vertex j there is a walk from i to j

of length wi. Clearly, γ(G) = max{expi(G)}.

Remark 2. Let wi be the exponent of vertex i of the graph G, then if p ≥ wi, there

exists a walk of length p from i to any vertex j.

Now, we mention a very important theorem cited by several authors and whose

proof is given in [13] and [14].

Theorem 2.1.11 (Rosenblatt, [14]). A digraph G is primitive if and only if G is

strongly connected and gcd(m1,m2, ...,mn) = 1, where {m1,m2, ...,mn} is the set of

lengths of all cycles in G.

2.2 Boolean Monomial Dynamical Systems

Definition 2.2.1. A finite dynamical system (FDS) is a function f : X → X, where

X is a finite set.

These systems are time discrete.

Definition 2.2.2. The dynamics of an FDS f : X → X is represented by its state

space, denoted S(f), which consists of the directed graph whose vertex set is X and

whose edges consist of all pairs (u, v) where u, v ∈ X and f(u) = v.

Example 2.2.3. Let f : X → X be a function with X = {1, 2, 3, 4, 5} such that

f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5 and f(5) = 3. Then, the state space of f is

Figure 2–2: State Space of f = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}
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Definition 2.2.4. Given a dynamical system f : X → X, and a state a ∈ X, the

transient of a is the minimum value of t, for which f t(a) reaches an “attractor”.

That is, given a there exists s = s(a) such that f t+s(a) = f s(a), see figure 2–3.

Moreover, the transient tf of a system f is the maximum of the transients t, among

all the states a.

Figure 2–3: Transient of a dynamical system f

In Example 2.2.3 it can be seen that the transient is 2.

The cycle consisting of f t(a), f t+1(a), ..., f s+t−1(a) is called a limit cycle.

If s = 1, then f t(a) = f 1+t(a) is a fixed point (FP). f is a fixed point system (FPS)

if for every a ∈ X, there exists a t for which f t(a) = f 1+t(a).

Definition 2.2.5. A field F with a finite number of elements q is called a finite field

and is denoted by Fq.

It can be shown that the number q of elements in a finite field is a power of a prime.

Fq[x1, x2, ..., xn] denotes the polynomial ring with n variables over Fq.

Let f : F n
q → F n

q be a FDS where F n
q is the n−fold cartesian product of Fq. It is well

known that every function defined on a finite field can be expressed as a polynomial.

Therefore, f can be written as a tuple of polynomials, i.e., f = (f1, f2, ..., fn) where

each fi ∈ Fq[x1, x2, ..., xn].

Definition 2.2.6. If all the fi are linear polynomials without a constant term, then

f is a linear system.
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When f is linear, then its dynamics can be completely determined from its matrix

representation. Let A be a matrix representation of a linear system f : F n
q → F n

q .

Then the number of limit cycles and their length, as well as the structure of the

transients, can be determined from the factorization of the characteristic polynomial

of the matrix A.

For example, it is shown in [3] that a linear finite dynamical system is a FPS if and

only if its minimal polynomial is of the form xi(x− 1) or simply xi and in this case,

i is the transient.

Example 2.2.7. Let L : F 3
2 → F 3

2 be defined by the matrix

M =


0 0 0

1 0 0

0 1 1

 .

Then the minimal polynomial is λ2(λ + 1) and L = (0, x1, x2 + x3) has transient 2

as can be verified by the following graph.

Figure 2–4: State Space of Linear Dynamical System L
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Definition 2.2.8. A boolean monomial dynamical system (BMDS) is a finite dy-

namical system f : F n
2 → F n

2 with f = (f1, f2, ..., fn) where each fi is assumed to

be a monomial, that is fi is a polynomial of the form xai1i1 x
ai2
i2
· · · xairir , where each

aij ∈ {0, 1}, but not all aij = 0.

Example 2.2.9. A very simple example of a BMDS is given by

f : F 7
2 → F 7

2 such that f = (x2x4, x3, x1, x5, x6, x7, x1).

Another graph that plays an important role in determining the dynamics of a BMDS

is the “dependency graph”.

Definition 2.2.10. The dependency graph of a BMDS f : F n
2 → F n

2 is defined to

be a directed graph whose vertices consist of 1, 2, ..., n and such that (i, j) is an edge

if and only if xj divides fi.

The dependency graph of the BMDS f of Example 2.2.9 is given in figure 2–5.

Figure 2–5: Dependency Graph of f

Dr. O. Colón in [5] defines one of the most important tools necessary to determine

if a BMDS is a FPS called the “loop number”.

Definition 2.2.11. Given a strongly connected graph G, let v be a vertex of G, the

loop number of v is the minimum of all integers l ≥ 1 with l = ||p| − |q||, for all

walks p, q : v → v.
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Example 2.2.12. Consider the figure 2–6. The loop number of 1 is 2. This can be

seen by considering walks of lengths p = 4 and q = 2 by walking around cycles of

lengths 4 and 2 that contains 1.

The loop number of every another vertex is also 2. It is not a coincidence that two

different vertices have the same loop number. In fact, it is a result proved in [5].

Figure 2–6: Graph with loop number 2

Some important results about loop numbers are given in the following Theorems.

Theorem 2.2.13 (O. Colón, [5]). Let G be a strongly connected graph. The loop

number of G is the greatest common divisor of the lengths of all cycles of G.

Proof. Observe that a circuit p can be decomposed into a number of cycles m1,m2, ...,mk

sharing vertices.

Let d be the greatest common divisor of the lengths of all cycles of G. Take a vertex

i in G and suppose that the loop number of i is l. Let p and q be circuits through

i for which |p| − |q| = l of G. We want to show that d = l. Decompose p and

q into a number of cycles of lengths m1,m2, ...,mk and q1, q2, ..., qr. Then, we get

|p| = |m1|+ |m2|+ · · ·+ |mk| and |q| = |q1|+ |q2|+ · · ·+ |qr|. Hence

|p| − |q| = |m1|+ |m2|+ · · ·+ |mk| − |q1| − |q2| − · · · − |qr| = l,
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so that d divides l.

Otherwise, assume that there is a cycle p′ through of the vertex j of G whose length

s = |p′| is not divisible by l. Consider walks of lengths q1 from i to j and q2 from

j to i. Let m = |q1| + |q2| and let l′ = gcd(m, s, l). Then l′ can be written as

l′ = αl − βm− δs with α, δ ≥ 0 and β > 0. So

|pα| − |qαq2(q1q2)β−1(p′)δq1| = l′,

i.e., we have constructed two circuits whose lengths differ by l′. Hence l′ = l is the

loop number of G. Then l′ = l divides s = |p′|, a contradiction. Thus all lengths of

cycles in G are divisible by l, so that l divides d, hence d = l.

�

Theorem 2.2.14 (O. Colón, [5]). A BMDS f is a FPS if and only if every strongly

connected component of its dependency graph has loop number 1.

The dependency graph of the BMDS f given in Example 2.2.9 has loop number 1

and its state space is shown in figure 2–7. Furthermore, the system illustrated is

a fixed point system, and reaches a steady state after 16 time steps, that is, the

transient is 16.
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Figure 2–7: State Space of f = (x2x4, x3, x1, x5, x6, x7, x1)
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2.3 Frobenius Number

Theorem 2.3.1 (Ramirez, [13]). If gcd(m1,m2, ...,mn) = 1, then there exists an

integer N such that any integer s ≥ N is representable as a non-negative integer

combination of m1,m2, ...,mn.

Proof. There exists integers a1, a2, ..., an s.t. a1m1 +a2m2 + ...+anmn = 1. Denote

by P and −Q the sum of positive and negative terms respectively in this decomposi-

tion. Thus P −Q = 1.

By the division algorithm, any integer k ≥ 0 can be written as hm1 + k′ with h ≥ 0

and 0 ≤ k′ < m1. Then

(m1 − 1)Q+ k = (m1 − 1)Q+ hm1 + k′

= (m1 − 1)Q+ hm1 + k′(P −Q)

= hm1 + (m1 − 1− k′)Q+ k′P.

P and Q belong to the semigroup W generated by m1,m2, ...,mn. Hence,

(m1 − 1)Q+ k ∈ W ∀k ≥ 0

Let be N = (m1 − 1)Q, then every integer s ≥ N is representable in terms of

m1,m2, ...,mn.

Therefore, there is a least integer f(m1,m2, ...,mn) such that each integer s ≥

f(m1,m2, ...,mn) can be expressed as a non-negative linear combination of m1,m2, ...,mn.

Then,

g(m1,m2, ...,mn) = f(m1,m2, ...,mn)− 1.

�
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Definition 2.3.2. Let m1,m2, ...,mn be distinct relatively prime positive integers

and let g(m1,m2, ...,mn), the Frobenius Number, denote the largest positive integer

which is not expressible in the form a1m1 + a2m2 + ... + anmn where each ai is a

non-negative integer.

It is well known that, if p and q are relatively prime, then

g(p, q) = pq − p− q.

For example,

g(5, 6) = 5 ∗ 6− 5− 6 = 29.

That is, 29 is the largest integer which is not a non-negative integer linear combi-

nation of 5 and 6.



Chapter 3

A FAMILY OF GRAPHS WITH KNOWN

EXPONENT

In this chapter, we present several family of graphs for which the exponent

is known and some interesting results and properties about particular families of

BMDSs.

3.1 A Simple Example

It follows from Theorem 2.1.9 that the transient of a BMDS f is equal to the smallest

power of the adjacency matrix of the dependency graph Gf for which all entries are

positive. We illustrate this in the following example, but as we shall later see there

is a much more efficient method for computing the transient of this system.

Example 3.1.1. Consider the BMDS f = (x2x4, x3, x1, x5, x6, x7, x1), whose depen-

dency graph G is given in figure 2–5.

Its adjacency matrix is:

A =



0 1 0 1 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0
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A15 =



2 4 3 4 3 1 3

3 1 3 1 3 1 1

4 3 1 3 1 3 1

3 1 1 1 1 2 0

1 3 1 3 1 1 2

3 1 3 1 3 1 1

4 3 1 3 1 3 1



, A16 =



6 2 4 2 4 3 1

4 3 1 3 1 3 1

2 4 3 4 3 1 3

1 3 1 3 1 1 2

3 1 3 1 3 1 1

4 3 1 3 1 3 1

2 4 3 4 3 1 3



.

Thus, the transient is t = 16.

Computing powers of matrices is computationally very expensive; In fact, just one

multiplication of two n×n matrices has complexity O(n3). Our goal is to determine

BMDSs whose transients can be computed by means of a formula. Some important

results that advance this idea are given by the following Theorems.

Theorem 3.1.2. A BMDS f whose dependency graph Gf is strongly connected is

a FPS and its only fixed points are (0, 0, ..., 0) and (1, 1, ..., 1) if and only if Gf is

primitive. Furthermore, the transient of f is equal to the exponent of G.

Proof. Let f be a BMDS and Gf its dependency graph. If Gf is primitive, then by

Theorem 2.1.11, it follows that gcd(m1,m2, ...,mn) = 1 where m1,m2, ...,mn are the

cycle lengths. By Theorem 2.2.13, the loop number of a strongly connected graph G

is equal to the greatest common divisor of the lengths of all cycles of Gf . Then by

Theorem 2.2.14 it follows that f is a FPS.

Let 1, 2, ..., n be the vertices of G and let x1, x2, ..., xn be the variables of f . By the

definition of dependency graph, (i, j) is an edge if and only if xj divides fi. It can be

shown by induction that there exists a walk of length m from i to j if and only if fmi

contains the factor xj. Now since Gf is primitive, there exists a smallest positive

integer t such that f ti = x1x2...xn for all i.
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Hence f t(x1, x2, ..., xn) = (x1x2...xn, ..., x1x2...xn) for all (x1, x2, ..., xn) ∈ Fn2 .

Also, fk(0, 0, ..., 0) = (0, 0, ..., 0) and fk(1, 1, ..., 1) = (1, 1, ..., 1), for all k ≥ t, i.e.,

(0, 0, ..., 0) and (1, 1, ..., 1) are fixed points and t is the transient.

On the other hand, if f is a FPS, then by Theorem 2.2.14 it follows that Gf has loop

number 1 and by Theorem 2.2.13 the greatest common divisor of the cycle lengths

in Gf is 1. Then by Theorem 2.1.11, Gf is primitive.

�

Theorem 3.1.3. Every BMDS f has a unique dependency graph and conversely,

every dependency graph G all of whose vertices has outdegree at least one is the

dependency graph of a BMDS whose state space is unique up to isomorphism.

Proof. Let G be a directed graph whose vertices all have outdegree ≥ 1 and let V =

{1, 2, 3, ..., n} be the set of vertices. Let f = (f1, f2, ..., fn) : Zn2 → Zn2 where for each

fi is the product of all xj for which (i, j) is an edge. Then, fi has depedency graph

G. Let G′ be the graph obtained from G by relabeling the vertices, by a permutation

σ : V → V and let

φσ(f) = (fσ−1(1)(xσ(1), ..., xσ(n)), ..., fσ−1(n)(xσ(1), ..., xσ(n))).

φσ(f) is a well defined map. Now, consider the map ψσ : S(f) → S(φσ(f)) such

that ψσ[(x1, x2, ..., xn)] = (xσ−1(1), ..., xσ−1(n)). Note that ψσ is well-defined too and

is a one-to-one map. In fact, if ψσ[(x1, x2, ..., xn)] = ψσ[(y1, y2, ..., yn)], then

(xσ−1(1), ..., xσ−1(n)) = (yσ−1(1), ..., yσ−1(n))

⇒ xσ−1(i) = yσ−1(i) ∀i = 1, 2, ..., n.

Since σ−1 is a bijective map, we have that for any j = 1, 2, ..., n, there exists i =

1, 2, ..., n such that σ−1(i) = j; hence xj = yj ∀j ⇒ (x1, x2, ..., xn) = (y1, y2, ..., yn).

Therefore, there is a one-to-one correspondence between the vertices of S(f) and
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S(φσ(f)). Now we need to show that S(f) and S(φσ(f)) preserve edges, that is,

suppose that ((x1, x2, ..., xn), (y1, y2, ..., yn)) is an edge of S(f), thus by definition

f((x1, x2, ..., xn)) = (y1, y2, ..., yn). Then

φσ(ψσ[(x1, x2, ..., xn)]) = φσ((xσ−1(1), ..., xσ−1(n)))

= (fσ−1(1)(xσ(σ−1(1)), ..., xσ(σ−1(n))), ..., fσ−1(n)(xσ(σ−1(1)), ..., xσ(σ−1(n))))

= (fσ−1(1)(x1, ..., xn), ..., fσ−1(n)(x1, ..., xn))

= (yσ−1(1), yσ−1(2), ..., yσ−1(n))

= ψσ[(y1, y2, ..., yn)].

This shows that (ψσ[(x1, x2, ..., xn)], ψσ[(y1, y2, ..., yn)]) is an edge of S(φσ(f)). There-

fore, the state space is unique up to isomorphism.

�

Example 3.1.4. Consider the BMDS f = (x2, x2x3, x1x2) whose dependency graph

is given by

Figure 3–1: G1 dependency graph of f = (x2, x2x3, x1x2)

Now, consider the same graph obtained by relabeling the vertices, that is, applying

the permutation σ = (312), as it is shown in figure 3–2.
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Figure 3–2: G2 dependency graph of φσ(f)

Then, by the map in Theorem 3.1.3, we have

φσ(f) = (fσ−1(1)(xσ(1), xσ(2), xσ(3)), fσ−1(2)(xσ(1), xσ(2), xσ(3)), fσ−1(3)(xσ(1), xσ(2), xσ(3)))

= (f2(x3, x1, x2), f3(x3, x1, x2), f1(x3, x1, x2))

= (x1x2, x1x3, x1).

That is, φσ(f) = (x1x2, x1x3, x1) is the BMDS corresponding to the graph G2 in

figure 3–2. Then, by Theorem 3.1.3 the state spaces are isomorphic, i.e., S(f) ∼=

S(φσ(f)); and for example in figure 3–3, we can observe that ψσ((0, 1, 0)) = (1, 0, 0),

that is, the vertex (0, 1, 0) of S(f) correspond to (1, 0, 0) of S(φσ(f)). Moreover, if

we exchange the positions of the edges ((0, 0, 1), (0, 0, 0)) and ((1, 0, 0), (0, 0, 0)) of

S(f), the result is the same state space as S(φσ(f)).

(a) S(f) state space of f (b) S(φσ(f)) state space of φσ(f)

Figure 3–3: State Space of S(f) and S(φσ(f)) of the BMDS f = (x2, x2x3, x1x2)
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Now, the problem of determining the transient of a fixed point BMDS reduces to

the problem of determining the exponent of a primitive graph. However, methods

for finding the exponent of a primitive graph are known only in special cases, as for

example in the following theorem.

Theorem 3.1.5 (1.11.2 see [16] p.75-77). For each n ≥ 2 define the adjacency

matrix Bn of a graph Gn as follows:

B2 =

1 1

1 1

 , B3 =


0 1 0

1 0 1

1 1 0

 , Bn =



0 1 0 0 ... 0 0 0

0 0 1 0 ... 0 0 0

0 0 0 1 ... 0 0 0

. . . . ... . . .

0 0 0 0 ... 0 1 0

1 0 0 0 ... 0 0 1

1 1 0 0 ... 0 0 0



for n ≥ 4.

Then γ(Gn) = (n− 1)2.

Proof. The graphs Gn associated with Bn are as follows:

Figure 3–4: The digraph Gn associated with the matrix Bn
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Clearly, Gn is strongly connected. Since Gn contains only three different directed

cycles, one of length n, two of length (n− 1), and since gcd(n, n− 1) = 1, we have,

by Theorem 2.1.11, Gn is primitive.

Let i, j ∈ G be two arbitrary vertices. Let Pij be a shortest path from i to j in Gn,

and denote its length by p. Then p ≤ n− 1.

Let

q = g(n, n− 1) + n− p.

Since n− p ≥ 1, we have q ≥ g(n, n− 1) + 1. Then, by definition of the Frobenius

number, q must be a linear combination of n and n − 1. Thus, there exists a walk

from i to j of length q + p in Gn.

Now, since i, j are arbitrary and g(n, n− 1) = n(n− 1)−n− (n− 1) = (n− 1)2−n.

We have

γ(Gn) ≤ q + p = g(n, n− 1) + n− p+ p = (n− 1)2 − n+ n = (n− 1)2.

On the other hand, Gn contains a unique path from i to j of length n . Therefore,

the length of every walk from i to j in G can be expressed as n + r, where r is a

linear combination of n and n − 1. Then Gn contains no directed walk of length

(n+ g(n, n− 1)− 1), because g(n, n− 1) is not a linear combination of n and n− 1.

Thus, we have

γ(Gn) ≥ g(n, n− 1) + n = (n− 1)2 − n+ n = (n− 1)2.

�

Corollary 3.1.6. For every n ≥ 2, let φn be the BMDS whose dependency graph is

Gn. Then

φn = (x2, x3, ..., x1xn, x1x2)

and the transient of φn is (n− 1)2.
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3.2 BMDSs whose Dependency Graphs have The Unique Walk
Property

In this section, we describe a family of primitive graphs for which the exponent

is known and we state some results introduced by Dulmage and Mendelsohn in [6].

Let G be a primitive graph in which the cycle of lengths are m1,m2, ..., or mk. For

any ordered pair (i, j) of vertices, a non-negative integer rij is defined as follows. If

i = j and if for s = 1, 2, ..., k there is a cycle through vertex i of length ms then

rij = 0; otherwise rij is the length of the shortest walk from i to j which has at least

one vertex on some cycle of length ms for s = 1, 2, ..., k.

Let r = max(rij) taken over all ordered pairs (i, j).

In other words, r is the length of the longest shortest walk between two vertices that

includes at least one vertex of each cycle.

Theorem 3.2.1 ([6]). If G is a primitive graph then

γ(G) ≤ g(m1,m2, ...,mk) + r + 1.

Proof. For any set of non-negative integers a1, a2, ..., ak and any ordered pair (i, j)

of vertices of G, if i 6= j there is a walk from vertex i to vertex j of length rij that

contains a vertex on a cycle of length mi for each i and hence a walk from i to j of

length mi.

rij + a1m1 + a2m2 + ...+ akmk.

Thus there is a walk from vertex i to vertex j of length

g(m1,m2, ...,mk) + rij +N
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for every N ≥ 1, by definition if N ≥ 1, g(m1,m2, ...,mn) + N can be expressed as

a linear combination of the m’s and so there is a walk of length g(m1,m2, ...,mk) +

rij +N . Choosing N = 1 + r− rij, we have a walk from vertex i to vertex j of length

g(m1,m2, ...,mk) + r + 1,

so that

wi ≤ g(m1,m2, ...,mk) + r + 1 ∀i,

where wi is the exponent of the vertex i; thus by definition 2.1.10 (ii)

γ(G) = max{wi} ≤ g(m1,m2, ...,mk) + r + 1.

�

Definition 3.2.2. An ordered pair (i, j) of vertices in a primitive graph G is said

to have the unique walk property (uwp) if every walk from vertex i to vertex j which

has length ≥ rij consists of some walk α of length rij augmented by a number of

cycles each of which has a vertex in common with α. G has the uwp if it has a pair

(i, j) of vertices with the uwp and r = rij.

The figure 2–5 is an example of a graph with the uwp, and in particular, the pair

(4, 7) satisfies r = r47.

Theorem 3.2.3 ([6]). If G is a primitive graph in which the ordered pair of vertices

(i, j) has the uwp, then

γ(G) ≥ g(m1,m2, ...,mk) + rij + 1.

Proof. Since G is a graph with the uwp, set the order pair of vertices (i, j) has the

uwp; thus there is no walk from vertex i to vertex j of length

α = g(m1,m2, ...,mk) + rij
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for such a walk would imply the existence of non-negative a1, a2, ..., ak with

g(m1,m2, ...,mk) = a1m1 + a2m2 + ...+ anmk.

Thus by Remark 2,

g(m1,m2, ...,mk) + rij ≤ wi

where wi is equal to the exponent of i. But wi ≤ max{wj} = γ(G). Then

γ(G) ≥ g(m1,m2, ...,mk) + rij + 1.

�

Corollary 3.2.4. If G is a graph with the uwp, then

γ(G) = g(m1,m2, ...,mk) + r + 1.

This is a very important result about graph exponents and even though it has been

known for a long time, other researchers have not used it. For example, Theorem

3.1.5 has an alternate, much simpler proof.

In fact, the graph Gn in Figure 3–4 has the uwp, that is, r = rij where rij = n− 1.

Then by above corollary we have

γ(G) = g(n, n− 1) + n− 1 + 1 = (n− 1)2.

3.3 BMDSs whose Dependency Graphs are The Frobenius Graphs

Now, we define another family of particular graphs given by Heap and Lynn

in [9], which we will call the Frobenius graphs, associated with the relatively prime

integers {mi}. This is the graph G which is the finite directed graph whose adjacency

matrix A = (aij) is of order n = mk +mk−1 − 1, where,
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aij =



1, if j = i+ 1 (i = 1, ..., n− 1; i 6= mk−1),

1, if j = 1, i = n or ms (s = 1, ..., k − 1),

1, if i = 1, j = mk−1 + 1,

0, otherwise.

This Frobenius graph is illustrated in figure 3–5, the left hand cycle being of length

mk.

Figure 3–5: The Frobenius Graphs

The following Theorem was proved by Heap and Lynn in 1964, the same year which

Dulmage and Mendelsohn presented their paper mentioned in this work, but al-

though Heap and Lynn cited Dulmage and Mendelsohn in their paper, they did not

take advantage of the fact that their Frobenius graph has the uwp.

Theorem 3.3.1 ([9]). Let 0 < m1 < m2 < · · · < mk be relatively prime integers,

and let G be the graph in figure 3–5. Then

γ(G) = g(m1,m2, ...,mk) + 2mk − 1.

Proof. Clearly, G is strongly connected and by hypothesis gcd(m1,m2, ...,mk) = 1,

where {ms} are the cycles lengths of G for s = 1, 2, ..., k. Thus G is primitive. Also,

every pair of vertices of G has the uwp.
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Now, consider the pair (mk−1 + 1, n) of vertices of G. We show that

rmk−1+1,n = r

To prove this we consider 4 cases as follows: Let (i, j) be an ordered pair of vertices.

Case 1. If (i, j) are on the cycle of length mk, there is a positive integer d such that

rij = mk + d ≤ mk +mk − 2 = 2mk − 2

and the equality holds when i = mk−1 + 1 and j = n.

Case 2. If (i, j) are on the cycle of length mk−1, then

rij = mk−1 + d ≤ mk−1 +mk−1 − 2 = 2mk−1 − 2

and the equality holds when i = 2 and j = mk−1.

Case 3. If the vertex i is on the cycle of length mk and vertex j is on the cycle of length

mk−1 then

rij = mk − 1 + d ≤ mk − 1 +mk−1 − 1 = mk +mk−1 − 2

and the equality holds when i = mk−1 + 1 and j = mk−1.

Case 4. If the vertex i is on the cycle of length mk−1 and vertex j is on the cycle of length

mk then

rij = mk−1 + d ≤ mk−1 − 1 +mk − 1 = mk +mk−1 − 2

and the equality holds when i = 2 and j = n.

Thus,

r = max{2mk − 2, 2mk−1 − 2,mk +mk−1 − 2},

since mk−1 < mk it is clear that

2mk−1 − 2 < mk +mk−1 − 2
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and also

mk > mk−1 ⇒ 2mk > mk +mk−1 ⇒ 2mk − 2 > mk +mk−1 − 2

Therefore,

r = 2mk − 2.

Then, by Corollary 3.2.4 it follows that

γ(G) = g(m1,m2, ...,mk) + r + 1 = g(m1,m2, ...,mk) + 2mk − 1.

�

Example 3.3.2. When m1 = 3 and m2 = 5, then n = m2 + m1 − 1 = 7 and the

Frobenius graph is the same as the graph of figure 2–5.

Figure 3–6: The Frobenius Graph G

Thus, the BMDS of the figure 3–6 is given by f(x2x4, x3, x1, x5, x6, x7, x1) and its

transient is

t = γ(G) = g(m1,m2) + 2mk − 1 = g(3, 5) + 2(5)− 1 = 16.

In particular, when k = 2 the graph consists of an increasing chain of 2 cycles.



Chapter 4

THE GENERAL PROBLEM OF FINDING THE

TRANSIENT OF A BMDS

In this chapter we consider BMDSs whose dependency graphs are ordered wedges

of cycles.

4.1 The General Problem

For example, if the number of cycles is k = 2, then the graph G is a chain of two

cycles with a common vertex (adjacent cycles), as is shown in figure 4–1. This is a

special case of the graphs of Heap and Lynn, and also of Dulmage and Mendelsohn.

In particular, this graph has the uwp and in fact,

r = rm1+1,n = m2 +m2 − 2 = 2m2 − 2.

Figure 4–1: Chain with two cycles

Then, by Corollary 3.2.4, it follows that

γ(G) = g(m1,m2)+rm1+1,n+1 = m1m2−m1−m2+2m2−2+1 = m1m2−m1+m2−1

∴ γ(G) = (m2 − 1)(m1 + 1).

30
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We thus have the following theorem.

Theorem 4.1.1. Let G be a digraph consisting of the union of two cycles of lengths

m1 and m2 and having exactly one vertex in common. If m1 < m2 and gcd(m1,m2) =

1, then

γ(G) = (m2 − 1)(m1 + 1).

It is natural to ask if this idea can be extended to cycles chains consisting of more

than two cycles, that is for graphs of this form:

Let Cm1 , Cm2 , ..., Cmk
be cycles of lengths m1,m2, ...,mk respectively, where Cmi

=

(Vi, Ei), be a finite sequence of cycles where

• For each i = 1, 2, ..., k − 1 the edges of Cmi
and Cmi+1

have opposite orientations.

• Vi ∩ Vj = ∅ for i < j except if 1 ≤ i ≤ k − 1 and j = i+ 1, then Vi ∩ Vj = {ui}.

• The ui with i = 1, 2, ..., k − 1 are distinct.

Here, one can see the general form of these graphs:

Figure 4–2: Cycles Chains of Coprime Lengths

In general, we denote G by Cm1 ∨u1 Cm2 ∨u2 · · · ∨uk−2
Cmk−1

∨uk−1
Cmk

. G is clearly

strongly connected and if gcd(m1,m2, ...,mk) = 1, G is primitive.

Thus, by Theorem 3.2.1 we have that g(m1,m2, ...,mk) + r + 1 is an upper bound

for the exponent of this family of graphs. However, we have not proved that it is a

lower bound.
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Note that this family of graphs does not have the uwp when k ≥ 3. As an example,

consider the graph C3 ∨ C4 ∨5 C5 as shown in Figure 4–3.

Example 4.1.2. Let f = (x2x4, x3, x1, x5, x6x10, x7, x8, x9, x5, x1) be a BMDS whose

associated dependency graph is given by

Figure 4–3: G : C3 ∨ C4 ∨5 C5

Then r = r6,9 = 12. Now let α be the walk 6, 7, 8, 9, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9. Then

|α| = 13 = r6,9 + 1, but G contains no “circuit” of length 1. Hence G does not have

the uwp.

But, in the next section we consider a similar family.

4.2 A Similar Family to the General Problem

We can construct a family of directed graphs with the uwp as follows. For each pair

of positive integers u, v and s. Let Su,v(s) be the path graph u → ... → v with s

vertices.

For each positive integer s, let Cs be the directed cycle (1, 2), (2, 3), ..., (n−1, n), (n, 1).

Then, for relatively prime m1,m2, ...,mk with 2 ≤ m1 < m2 < ... < mk, let

G(m1,m2, ...,mk) = Cmk
∪ S1,mk

(m1) ∪ S2,mk−1(m2 − 2) ∪ S3,mk−2(m3 − 4)∪

... ∪ Si,mk−i+1(mi − 2i+ 2) ∪ ... ∪ Sk−1,mk−k+2(mk−1 − 2k + 4).

This graph can be depicted as follows:
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Figure 4–4: Family of Graphs with The uwp

where Hi = Si,mk−i+1(mi − 2i+ 2) for i = 1, 2, ..., k − 1.

Theorem 4.2.1. For every sequence m1,m2, ...,mk of coprimes positive integers

with 2 ≤ m1 < m2 < ... < mk, there exists a BMDS with dependency graph

G(m1,m2, ...,mk) and whose transient is

g(m1,m2, ...,mk) + 2mk − 2k + 2.

Proof. Let f be a BMDS whose dependency graph G = G(m1,m2, ...,mk) is given

as in Figure 4–4; we need to prove that G is a graph with the uwp, that is, rij = r

for some vertices i, j of G with the uwp. If i and j are on the same cycle, say Cmp

then rij ≤ 2mp− 2p+ 1. Suppose i and j are on distinct cycles Cmp and Cmp′
where

mp > mp′. Then rij ≤ 2mp − 2p+ 1.

∴ rij ≤ 2mk − 2k + 1.

But,

rk,mk−k+1 = mk +mk − 2k + 1 = 2mk − 2k + 1 = r,

it follows by Corollary 3.2.4 that

γ(G) = g(m1,m2, ...,mk) + 2mk − 2k + 2.

�
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Example 4.2.2 (see [11] p.826-829). The “lactose operon” can be regarded as a

BMDS f whose dependency graph is

Figure 4–5: Dependency Graph of f = (A,M,B × P,L,A)

where the 5−tuple (L,A,M, P,B) represents the states of Lactose, Allolactose, mRNA,

Permease and β− galactosidase.

Renaming the nodes 1, 2, 3, 4, 5 and drawing the graph in the form of Figure 4–4 we

have

Figure 4–6: Dependency Graph of the BMDS f = (x2, x3, x4x5, x1, x2)

and the transient of f is

g(3, 4) + 2(4)− 2(2) + 2 = 5 + 8− 4 + 2 = 11.



Chapter 5

DISCUSSION OF RESULTS

5.1 Conclusions

We have shown that a BMDS f with a strongly connected dependency graph

Gf is a fixed point system if and only if Gf is primitive and the transient of f is

equal to the exponent of Gf . Furthermore, every directed graph all of whose vertices

have outdegree at least one is the dependency graph of a BMDS.

Thus, every example of a primitive graph with known exponent gives us an example

of a BMDS with known transient. Consequently we have focused on primitive graphs

with known exponent. We have presented an upper bound for the exponent of a

primitive graph G given by

γ(G) ≤ g(m1,m2, ...,mk) + r + 1,

where m1,m2, ...,mk are the cycle lengths of G.

Moreover, we have described a particular family of graphs called “Graphs with the

uwp” for which there is an explicit formula for the exponent. This family was defined

by Dulmage and Mendelsohn in [6]. Also, we have described a type of graph called

“The Frobenius graph” introduced by Heap and Lynn in [9] for which the exponent

is given by

g(m1,m2, ...,mk) + 2mk − 1.
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In chapter 4, we have presented a family of BMDS whose dependency graph is a

chain of cycles of increasing coprime lengths m1,m2, ...,mk and we conjecture that

its exponent is given by

g(m1,m2, ...,mk) + 2mk +mk−1 + · · ·+m2 − 1. (1)

However, in general, this family does not have the uwp. Then, we constructed a

similar family of graphs with the uwp and we proved that the exponent is given by

g(m1,m2, ...,mk) + 2mk − 2k + 2.

In general, we have shown that the Frobenius number can be expressed in terms

of the exponent of a primitive graphs. Therefore, the problem of determining the

exponent of a primitive graph is a class of problems that are, informally, “at least

as hard as the hardest problems in NP”, in fact, is NP-HARD.

5.2 Future Work

We present some important questions to advance the theory of FDS.

• Show that (1) is a lower bound for the problem of “Cycle Chains”.

• Find an explicit formula for the transient of any BMDS.

We believe that answering these questions will contribute greatly to FDS. Since

there are numerous applications such as reverse engineering problem and modeling

of gene regulatory networks; exploring the above questions will provide interesting

and challenging research directions as well.
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