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ABSTRACT 

 

This work addresses the estimation of the relative humidity (RH), which is related to the way 

the body reacts under extreme hot events, and in consequence has influence in human health. 

RH is commonly obtained from ground stations, however in areas with few stations data is not 

enough to obtain a reliable spatial estimation of RH. Therefore, an algorithm is proposed to 

retrieve RH based on satellite data from two instruments: Moderate Resolution Imaging 

Spectroradiometer (MODIS), installed on Terra and Aqua satellites, and Imagery, installed on 

a Geostationary Operational Environmental Satellite (GOES).  The proposed models estimate 

RH in hourly basis and at 4 km over the Mesoamerica and Caribbean region.  Results show the 

coefficient of multiple determination (R2) range from 0.49 to 0.70; and the root mean squared 

error and mean absolute error vary from 7.71% to 9.64% and 5.76% to 7.38% respectively. 
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RESUMEN 

 

Este trabajo propone la estimación de la humead relativa (RH), la cual es una variable 

relacionada con la forma en la que el cuerpo humano reacciona ante eventos de calor extremos, 

y está, en consecuencia, relacionada con la salud de las personas. RH es usualmente obtenida 

de estaciones localizadas en la superficie, sin embargo, en zonas donde existen pocas estaciones 

resulta insuficiente la cantidad de datos para obtener una estimación espacial confiable de la 

RH. Se propone un algoritmo para obtener estimaciones de RH basado en data de satélite la 

cual es extraída de dos instrumentos: MODIS, el cual está instalado en los satélites Aqua y 

Terra, y en Imagery, instalado en los satélites GOES.  Los modelos propuestos estiman la RH 

en forma horaria y a una resolución espacial de 4 km sobre la región de Mesoamérica y el 

Caribe.  Los resultados muestran que el coeficiente de múltiple determinación (R2) varía entre 

0.49 y 0.70.  Además, la raíz cuadrada del error cuadrático medio y un error promedio absoluto 

desde 7.71% a 9.64% y 5.76% a 7.38% respectivamente.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work is dedicated to God and especially to Elva Valenzuela Acosta, 

 Carla Aquino Valenzuela and Manuel Salazar Cerreño, to my family,  

and to the memory of Cesar Aquino Quiroz. 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

ACKNOWLEDGMENTS 

 

To God for all his mercy and blessings, for give me the opportunity to pursue this degree. To 

my family, especially to my parents and grandparents. Thanks for being with me during the 

entire process, even at the distance your advice, support and love motivated me to achieve this 

goal. This journey would not be being feasible without you. 

To my advisor Dr. Nazario N. Ramírez Beltran, thanks for your trust and help and financial 

support, this research work will not be possible without your advice. Thanks also for being my 

mentor in this research process, I am learned a lot from you and I enjoyed my time working 

with you. Thanks for give me the opportunity to being part of your research team, I have grown 

thanks to that experience. Also, thanks to my Friend and research team partner Joan M. Castro 

Sanchez, for your help and time during my research time. 

To the Industrial Engineering school at the UPRM and to their professor for guide me thought 

my MS degree, I am proud to be part of this community. Thanks for their economic support 

during my time as TA. 

To my friends in Puerto Rico, for being like a family for all the afternoons talking about 

everything, for all the jokes and lunches that we share, for all the travels together, and in 

summary for the countless time that we spend together. As Edna Buchanan says “Friend are 

the family that one chooses for ourselves”. In summary, to every single person that I had known 

in Puerto Rico, for teach me that you can be at home if they are people that you can count as 

family.  

To NSF/ENG Environmental Sustainability Program with award number: CBET – 1438324, 

for the economical supported. 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENT 

1. INTRODUCTION…………………………………………………………………………..1 

2. OBJECTIVES………………………………………………………………………….........3 

3. JUSTIFICATION…………………………………………………………………………...4 

4. LITERATURE REVIEW…………………………………………………………………...6 

4.1 STATISTICAL MODELS TO ESTIMATE ATMOSPHERIC VARIABLES……..…..6 

4.2 ARTIFICIAL NEURALNETWORKS……………………………………………….....8 

4.3 ENVIRONMENTAL SATELLITES……………………………………………….….11 

4.3.1 GENERAL CHARACTERISTICS OF GOES………………………...…………..11 

4.3.2 GENERAL CHARACTERISTICS OF POLAR SATELLITES TERRA AND 

AQUA……………………………………………………………………………………13 

4.4 DESCRIPTION OF SATELLITE PRODUCTS……………………………………..14 

4.4.1 PRECIPITABLE WATER…………………………………………………………14 

4.4.2 NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI)………………..14 

4.4.3 LAND SURFACE TEMPERATURE……………………………………………...16 

5. METHODOLOGY: SATELLITE DATA PREPROCESSING…………………………...18 

5.1 GEORREFERENCING……………………………………………………………......18 

5.2 PW PREPROCESSING……………………………………………………………......19 

5.3 LST PREPROCESSING……………………………………………………………….20 

5.4 NDVI PREPROCESSING……………………………………………………...……...20 

5.5 STATION DATA PREPROCESSING………………………………………………...21 

5.6 GOES DATA PREPROCESSING……………………………………………………..22 

6. ESTIMATION OF RELATIVE HUMIDITY BASED ON MODIS PHYSICAL 

PARAMETERS – STATION DATA, AND REGRESSION TECHNIQUES…………..…..24 

6.1 DATA DESCRIPTION………………………………………………………………...24 

6.2 METHODOLOGY……………………………………………………………………..26 



vii 

 

6.2.1 MATCH ALGORITHM…………………………………………………………...26 

6.2.2 STRUCTURE AND CLEANING ALGORITHM………………………………...28 

6.2.3 DIVISION AND DEVELOPMENT OF THE MODEL ALGORITHM……….….29 

6.2.3.1 DIVISION IN HOMOGENEOUS ZONES……………………………………30 

6.3 RESULTS………………………………………………………………………………34 

6.3.1 ESTIMATION BASED ON MODIS TERRA…………………………………......34 

6.3.2 ESTIMATION BASED ON MODIS AQUA……………………………………...35 

7. ESTIMATION OF LAND SURFACE TEMPERATURE AND PRECIPITABLE 

WATER, FROM GOES DATA, USING REGRESSION TECHNIQUES………………….37 

7.1 DATA DESCRIPTION………………………………………………………………...37 

7.2 METHODOLOGY……………………………………………………………………..39 

7.2.1 MATCH ALGORITHM…………………………………………………………...40 

7.2.2 STRUCTURE AND CLEANING ALGORITHM……………...…………………41 

7.2.3 DATA PROCESSING………...…………………………………………………...42 

7.2.4 MODEL EVALUATION….……………………………………………………….43 

7.2.5 VALIDATION……………………………………………………………………..44 

7.3 RESULTS………………………………………………………………………………46 

7.3.1 PW-MODIS AQUA…………...…………………………………………………...46 

7.3.2 PW-MODIS TERRA…………………………………………………………….…49 

7.3.3 LST-MODIS TERRA………...……………………………………………………51 

7.3.4 LST-MODIS AQUA……………...………………………………………………..54 

7.3.5 MODEL EVALUATION…………………………….…………………………….56 

7.3.6 VALIDATION……………………………………………………………………..58 

8. ESTIMATION OF RELATIVE HUMIDITY, BASED ON GOES AND MODIS DATA, 

USING REGRESSION TECHNIQUES AND ANN TECHNIQUES……………..………..68 

8.1 DATA DESCRIPTION………………………………………………………………...68 



viii 

 

8.2 METHODOLOGY……………………………………………………………………..71 

8.2.1 MATCH ALGORITHM…………………………………………………………...71 

8.2.2 STRUCTURE AND CLEANING ALGORITHM…………...……………………72 

8.2.3 DATA PROCESSING………...……...……………………………………………74 

8.2.4 MODEL EVALUATION………………………………………….……………….75 

8.2.5 VALIDATION……………………………………………………………………..76 

8.3 RESULTS………………………………………………………………………………77 

8.3.1 RELATIVE HUMIDITY – MODIS AQUA……………………………………….78 

8.3.2 RELATIVE HUMIDITY – MODIS TERRA………...……………………………81 

8.3.3 MODEL EVALUATION……………………………………………………..........84 

8.3.4 VALIDATION……………………………………………………………………..86 

9. CONCLUSIONS…………………………………………………………………………..91 

9.1 CONCLUSIONS CHAPTER 6………………………………………………………...91 

9.2 CONCLUSIONS CHAPTER 7………………………………………………………...92 

9.3 CONCLUSIONS CHAPTER 8………………………………………………………...93 

9.4 GENERAL CONCLUSIONS……………………………………………………….....94 

10. CONTRIBUTIONS………………………………………………………………………95  

11. FUTURE WORK………………...………………………………………………………96 

12. REFERENCES……………………………………………………………………….…..97 

13. APPENDICES…………………………………………………………………………..102 

13.1 APPENDIX 1………………………………………………………………………..102 

13.2 APPENDIX 2………………………………………………………………………..106 

 

 

 

 



ix 

 

FIGURE LIST  

Figure 01: The portion of a MODIS PW image that fall inside the studied area– June 12 2012 

at 02 30 UTC ………………………………………………………………………………...14 

Figure 02: Downloaded NDVI observation from MODIS. Date: June 06 2012………….…15 

Figure 03: Composition of NDVI observations for Caribbean area. Date: June 06 2012…...16 

Figure 04: Preprocessed LST observation from MODIS Terra. Date: January 01 2011 at 

03:10 UTC……………………………………………………………………………………17 

Figure 05: NDVI 01 Sept. 2009 panel a: observation previous to the georeferencing process 

(as downloaded from the servers). Panel b: observation after the georeferencing process…..19 

Figure 06: PW Aqua Date: June 10 2011 at 07:35 am……………...………………………..19 

Figure 07: LST Terra Date: July 16 2011 at 03:00 pm…………..……………………….….20 

Figure 08: NDVI Aqua Date: July 30 2011 at 04:00 pm………………………………...…..21 

Figure 09: Algorithm framework for the station preprocessing process……………..………22 

Figure 10: GOES BT Date: August 02 2011 at 10:00 am. Panel a.: channel 2 BT. Panel b.: 

channel 3 BT Panel c.: channel 4 BT Panel d.: channel 6 BT………………………………..23 

Figure 11: Selected weather stations in the MAC region…………………………...……..…25 

Figure 12: Elevation map 4km. Unit: meters………………………..……………………….25 

Figure 13: Representation of the different zones…………………………...………………..31 

Figure 14: Methodology diagram. Estimation of RH………………………………………..33 

Figure 15: Land covered area Mask. 4 km resolution………………………..………………38 

Figure 16: Methodology diagram. Estimation of LST and PW……………………………...45 

Figure 17: panel a.: Modeled LST Trained using MODIS Aqua. Panel b.: Modeled LST 

Trained using MODIS Terra Date: August 15 2011 at 18:00 UTC…………….……………57 

Figure 18: panel a.: Modeled LST Trained using MODIS Aqua. Panel b.: Modeled LST 

Trained using MODIS Terra Date: August 15 2011 at 08:00 UTC…………………………57 

Figure 19: panel a.: Modeled PW Trained using MODIS Aqua. Panel b.: Modeled PW 

Trained using MODIS Terra Date: August 15 2011 at 18:00 UTC…………………………58 



x 

 

Figure 20: panel a.: Modeled PW Trained using MODIS Aqua. Panel b.: Modeled PW 

Trained using MODIS Terra Date: August 15 2011 at 08:00 UTC…………………………58 

Figure 21: Time series December 2011. Panel a: observations vs MODIS Terra model. Panel 

b.: Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model 

(sample). Panel d. observations vs MODIS Aqua model (sample)………………………….60 

Figure 22: Time series July 2012. Panel a: observations vs MODIS Terra model. Panel b.: 

Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). 

Panel d. observations vs MODIS Aqua model (sample)…………………………………….61 

Figure 23: Time series August 2012. Panel a: observations vs MODIS Terra model. Panel b.: 

Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). 

Panel d. observations vs MODIS Aqua model (sample)…………………...………………..62 

Figure 24: Time series December 2011. Panel a: observations vs MODIS Terra model. Panel 

b.: Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model 

(sample). Panel d. observations vs MODIS Aqua model (sample)………………………….64 

Figure 25: Time series July 2012. Panel a: observations vs MODIS Terra model. Panel b.: 

Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). 

Panel d. observations vs MODIS Aqua model (sample)……………………………...……..65 

Figure 26: Time series August 2012. Panel a: observations vs MODIS Terra model. Panel b.: 

Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). 

Panel d. observations vs MODIS Aqua model (sample)……………………………………..66 

Figure 27: Spectral Analysis of time series………………………….…..…….......................70 

Figure 28: Methodology diagram. Final estimation of RH…………………………………..77 

Figure 29: panel a.: Modeled RH Trained using MODIS Aqua. Panel b.: Modeled RH 

Trained using MODIS Terra Date: August 15 2011 at 18:00 UTC……………………….....84 

Figure 30: panel a.: Modeled RH Trained using MODIS Aqua. Panel b.: Modeled RH 

Trained using MODIS Terra Date: August 15 2011 at 08:00 UTC……………………….....85 

Figure 31 Time series December 2011. Panel a: observations vs MODIS Terra model. Panel 

b.: Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model 

(sample). Panel d. observations vs MODIS Aqua model (sample)…………...…….........87-88 



xi 

 

Figure 32: Time series July 2012. Panel a: observations vs MODIS Terra model. Panel b.: 

Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). 

Panel d. observations vs MODIS Aqua model (sample)………………………..…………88-89 

Figure 33. Time series August 2012. Panel a: observations vs MODIS Terra model. Panel b.: 

Observation vs MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). 

Panel d. observations vs MODIS Aqua model (sample)…………………………..………89-90 

 

 

 

 

 

  



xii 

 

TABLE LIST  

Table 1: Wavelength and common application per GOES’ imagery channel……….………12 

Table 2: Characteristics of the data…………………………...……………………………...25 

Table 3: Description of the variables…………………...……………………………………30 

Table 4.a: Results: Group variable selection technique b: Results: Forward Selection 

technique………………………………………………………………………………….34-35 

Table 5.a: Results: Group variable selection technique b: Results: Forward selection 

technique..................................................................................................................................36 

Table 6: Characteristics of the data……………...…………………………………………...39 

Table 7.a: Description of the variables …………………………...………………………….42 

Table 7.b: Description of the variables……………………..………………………………..43 

Table 8.a: Results Dry season from Group variable selection technique - PW b: Results Dry 

season from Forward selection technique - PW c:  Dry season: Error rate - PW ………..46-47 

Table 9.a: Results Early rain season from Group variable Selection technique – PW b:  

Results Early rain season from Forward selection technique - PW c: Early rain season: Error 

rate – PW……………………………………………………………………………………47 

Table 10.a: Results Late rain season from Group variable Selection technique - PW b: Results 

Late rain season from Forward selection technique - PW c: Late rain season: Error rate – 

PW………………………………………………………………………………………...47-48 

Table 11.a: Results Dry season from Group variable selection technique - PW b: Results Dry 

season from Forward selection technique - PW c:  Dry season: Error rate - PW …………...49 

Table 12.a: Results Early rain season from Group variable Selection technique – PW b:  

Results Early rain season from Forward selection technique - PW c: Early rain season: Error 

rate – PW………………………………………………………..……………………………50 

Table 13.a: Results Late rain season from Group variable Selection technique - PW b: Results 

Late rain season from Forward selection technique - PW c: Late rain season: Error rate – 

PW……………………………………………………………………………………………50 

Table 14.a: Results Dry season from Group variable selection technique - LST b: Results Dry 

season from Forward selection technique - LST c:  Dry season: Error rate - LST ………….52 

Table 15.a: Results Early rain season from Group variable Selection technique – LST b:  

Results Early rain season from Forward selection technique - LST c: Early rain season: Error 

rate – LST…………………………………………………………………………...………..52 

Table 16.a: Results Late rain season from Group variable Selection technique - LST b: 

Results Late rain season from Forward selection technique - LST c: Late rain season: Error 

rate – LST.................................................................................................................................53 



xiii 

 

Table 17.a: Results Dry season from Group variable selection technique - LST b: Results Dry 

season from Forward selection technique - LST c:  Dry season: Error rate - LST 

………………………………………………………………………………………………..54 

Table 18.a: Results Early rain season from Group variable Selection technique – LST b:  

Results Early rain season from Forward selection technique - LST c: Early rain season: Error 

rate – LST………………………………………………………………………………...54-55 

Table 19.a: Results Late rain season from Group variable Selection technique - LST b: 

Results Late rain season from Forward selection technique - LST c: Late rain season: Error 

rate – LST.................................................................................................................................55 

Table 20: LST – MODIS Aqua validation: performance metrics……………..……………..59 

Table 21: LST – MODIS Terra validation: performance metrics………..…………………..59 

Table 22: PW – MODIS Aqua validation: performance metrics…………..………………...63 

Table 23: PW – MODIS Terra validation: performance metrics……………..……………...63 

Table 24: Characteristics of the data…………………………...…………………………….69 

Table 25: Description of the variables……………………..………………………………...74 

Table 26.a: Results Dry season from Group variable selection technique -RH b: Results Dry 

season from Forward selection technique - RH c: Dry season: Error rate - RH d: Results Dry 

season from ANN – RH………………..……………...………………………………….78-79 

Table 27.a: Results Early rain season from Group variable selection technique - RH b: 

Results Early rain season from Forward selection technique -RH c: Early rain season: Error 

rate -RH d: Results Early rain season from ANN - RH……………………………………...79 

Table 28.a: Results Late rain season from Group variable selection technique – RH b: Results 

Early rain season from Forward selection technique - RH c: Early rain season: Error rate - RH 

d: Results Early rain season from ANN - RH……………...…...………………………........80 

Table 29.a: Results Dry season from Group variable selection technique - RH b: Results Dry 

season from Forward selection technique - RH c: Dry season: Error rate - RH d: Results Dry 

season from ANN - RH………………………………………………………...…………81-82 

Table 30.a: Results Early rain season from Group variable selection technique – RH b: 

Results Early rain season from Forward selection technique - RH c: Early rain season: Error 

rate - RH d: Results Early rain season from ANN - RH…………………..………,,,,………82 

Table 31.a: Results Late rain season from Group variable selection technique - RH b: Results 

Early rain season from Forward selection technique - RH c: Early rain season: Error rate - RH 

d: Results Early rain season from ANN -RH…...………………………………………........83 

Table 32.a: RH Validation results: MODIS Aqua models b: RH Validation results: MODIS 

Terra models………………………………………………………...…………………….86-87 

 



xiv 

 

GLOSSARY OF TERMS  

 

ANN - Artificial neural network. 

AVHRR - Advanced Very High Resolution Radiometer. 

BP - Backpropagation algorithm. 

BT - Brightness temperature. 

DEM – Digital elevation model. 

FFT - Fast Fourier Transform. 

GOES – Geostationary Operational Environmental Satellite. 

LST – Land surface temperature. 

MAC – Mesoamerica and Caribbean. 

MAE – Mean absolute error. 

MODIS - Moderate Resolution Imaging Spectroradiometer. 

NCEP - The National Center for Environmental Prediction. 

NDVI – Normalized difference vegetation index. 

NIR – Near infrared. 

PW – Precipitable water. 

RH – Relative humidity. 

RMSE – Root mean squared error. 

VIF - Variance inflation factor. 

 

 

 

 

 

 

 

 

 



xv 

 

TABLE OF DEFINITIONS 

 

Variable Definition 
RH Relative humidity is defined by NASA (2016) 

and Ahrens (2013) as a ratio of the water vapor 

present in the air to the water vapor that is 

necessary for saturation. RH is also defined as the 

ratio of the actual vapor pressure versus the 

saturation vapor pressure, in percentage units 

(Ahrens, 2013). 

LST LST is an atmospheric variable that describes the 

value of temperature captured or sensed over the 

surface of the earth. This product is focused to 

only the land covered areas of the planet. 

Akhoondzade and Saradjian (2008) defines LST 

as the portion of radiation, that the land surface 

emits, perceived by MODIS in a certain angle.    

PW American Meteorology Society defines PW, in 

its Glossary of meteorology, as: the amount of 

water vapor that is inside a column of a specified 

area. This area can be defined as an ideal segment 

of a projected point, or is defined by the spatial 

resolution of the instrument used. This amount of 

vapor is usually limited by two different altitude 

levels. PW is the relation between the volumes of 

condensed water that is occupied divided by the 

specified defined area (AMETSOC, 2016). 

Marin et al. (2015) defines PW as the amount or 

level of liquid water that results when all the 

vapor over a determined area is condensed and 

precipitated. 

NDVI Australian bureau of meteorology defines NDVI 

as an index to measure the level of vegetation and 

is based on the difference of two bands, usually 

visible and infrared. It is usually related to how 

dense the canopy, or the fraction of land that is 

covered with vegetation (BOM, 2016).   

BT It is defined as the temperature value that will be 

assigned to a black body (body with a surface 

emissivity equal to 1) to emit, on the same 

wavelength, the same value of radiation (GES 

DISC, 2016). 
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1. INTRODUCTION 

 

Climate changes has become an important research topic. It is somehow motivated by the 

consequences on human health. One of the main drivers of the climate change is the elevated 

greenhouse gas concentration, where the increment of air temperature is one of the major 

consequences. However, the way that humans feel temperature is influenced by the RH; it 

increases the perceived temperature when both variables are high. The prolonged extreme hot 

events over several days is called a heat wave and impacts human health, causes agricultural 

devastation, etc.  For instance, in Chicago during July 1995 a heat wave killed 522 people 

(Levy et al., 2011). The Caribbean usually shows high levels of temperature and RH and 

consequently people are exposed to those heat waves. However, it does not only affect the 

MAC region. 

To observe the influence of this variables it is necessary to track them on real time for the entire 

area of study, to understand the changes and to identify its effects. This study is focused on the 

opportunity to estimate RH in real time. It will be estimated using information from Terra, 

Aqua and GOES satellites. Terra and Aqua have a sensor called MODIS and provide three 

parameters that has been shown to have a physical relationship with RH. However, information 

from MODIS is limited to only two observations per day, it does not provide enough 

information to obtain hourly estimations. To derive hourly estimation, information from GOES 

satellite data will be used, it provides visible and infrared information every 30 minutes. It will 

be necessary to use information from each of the sources to do a good estimation of RH. This 

project presents the opportunity to apply industrial engineering tools, as: regression analysis, 

quality control techniques, artificial neural networks, optimization algorithms, as well as 

designing computational algorithms to organize and process big data sets.  

Computational algorithms are important to organize data in time and space domains, and to 

identify the physical characteristics such as daytime, nighttime, clear sky, land ocean areas. 

Hence, if data is not properly organized the regression and mathematical tools will become 

useless. Quality control techniques are especially useful to remove inconsistent data. 

Regression methods will be important to develop the empirical models to estimate RH. 

Optimization algorithms are used to choose the variables or group of variables that better 
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explain the variability of RH. Artificial neural network was used to model the nonlinear 

behavior between the physical parameters and infrared brightness temperature with RH.  
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2. OBJECTIVES 

 

The objective of this investigation is to derive a group of models to estimate RH from different 

satellite data, especially GOES infrared channels and MODIS physical parameters. RH 

estimations will be limited to land covered areas and under clear sky conditions. These models 

will be obtained based on two different techniques: Regressions and feed-forward artificial 

neural network techniques. This study is being developed for the Mesoamerica and Caribbean 

(MAC) region. 

The following specific objectives were proposed as the axis to complete this project: 

• To develop a model for estimating RH based on physical parameters and surface 

characteristics. The physical parameters are: PW, LST and the normalized difference 

vegetation index (NDVI) and the surface characteristics are: latitude, longitude, 

elevation and time.  

• To estimate hourly LST and PW parameters for the MAC region.  

• To develop a new set of models to estimate RH. These models are based on satellite 

data to derive hourly estimates of RH over the land of the MAC region.  
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3. JUSTIFICATION 

 

RH is an atmospheric variable that affects the air temperature human perception and is closely 

related to the Heat Index, which is a function of air temperature and RH and is used to measure 

the human’s perception temperature. The human body usually adapts to hot temperatures by 

perspiration, when heat is removed from our body by sweat evaporation. However, high values 

of RH reduce the evaporation rate causing lower heat removal from the body and hence the 

sensation of being overheated.  A prolonged period of excessively hot weather may cause heart 

strokes, human death, and sever economic impacts (Kunkel et al. 1999). When the values of 

temperate and RH humidity became larger than average, human body feels temperature higher 

than its real value. In consequence, it is expected to observe an increase in the frequency of the 

use of air conditioning systems, which in consequence causes an increase in energy 

consumption. 

RH is traditionally obtained from ground stations that are in charge of observing and storing 

weather data. However, in some regions, the number of stations that provide this product are 

scarce. For example, the MAC region has a low number of stations that provides RH compared 

to the continental U.S. Moreover, the time gaps in some of those stations decrease the quantity 

of available information. This problem limits the applicability of this data in scientific studies. 

The National Center for Environmental Prediction (NCEP) offer global grids of RH based on 

reanalysis. However, these data provide poor time resolution (4 times a day) and spatial 

resolution (2.5 º). Consequently, the MAC region is poorly covered by 234 grids (NCEP, 2016).  

Satellite data appears to be a good solution to estimate RH, since it increases the time and 

spatial resolution and cover the MAC region. However, satellites do not offer RH observations. 

Nevertheless, the information and products from those satellites can be used to derive a real 

time estimate of RH for the MAC region. There are a couple of empirical models that are 

described in the literature, to estimate RH but those cannot be implemented since they were 

developed for some specific sensors and for a very limited area. Therefore, there is a need to 

derive an algorithm to retrieve RH.  We expect to contribute to this area providing an hourly 

estimation model of RH that provides information for the land covered areas for the MAC 

region and under clear sky conditions and at 4 km spatial resolution.  
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RH is a key variable to improve the performance of the atmospheric models. The models that 

are used to estimate the weather and climate use data from the surface and the atmosphere. 

These models usually have issues in terms of precision motivated by the data that is also 

imprecise. The proposed algorithm will help to improve the performance of those models, since 

it will provide hourly estimation of RH at 4 km of spatial resolution. 
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4. LITERATURE REVIEW 

 

The literature review is organized in four sections. The first one describes the literature that 

supports the physical parameters to estimate RH that are based on regression. The second 

section describes the artificial neural networks, which are helpful especially when relations 

between variables follows a nonlinear behavior. A third section describes the basic 

characteristics of the satellites. Finally, the fourth section describes the characteristics of the 

products and bands that will be used for estimating RH.  

4.1 STATISTICAL MODELS TO ESTIMATE ATMOSPHERIC 

VARIABLES  

In this section, different models studied in literature will be discussed. A particular focus will 

be given to the estimation of RH based on satellite data. It is proper to start this section by 

defining RH. It is defined by NASA (2016) and Ahrens (2013) as a ratio of the water vapor 

present in the air to the water vapor that is necessary for saturation. This means that RH does 

not have physical units. Furthermore, it is concluded that RH is always in the range from 0 to 

1 or 0 to 100%. RH is also defined as the ratio of the actual vapor pressure versus the saturation 

vapor pressure, in percentage units (Ahrens, 2013). 

The literature suggests that it is feasible to estimate surface RH based on satellite data. The 

research done by Peng et al. (2006), describes a model to estimate RH from satellite data. It is 

based on Moderate Resolution Imaging Spectroradiometer (MODIS) information against RH 

from ground observations. MODIS level 1 and level 2 products were included as the input 

variables. Those products were used to derive a set of variables related with RH and those are: 

specific humidity and air temperature. Specific humidity is closely related with PW, which is 

calculated from 5 different MODIS bands. Three of them are absorption bands: 17                  

(0.905 µm), 18 (0.936 µm) and 19 (0.940 µm); and the other two are atmospheric window 

bands: 2 (0.865 µm) and 5 (1.24 µm). The 5 bands are in the near infrared (NIR) spectrum. 

Specific humidity is estimated, as explained before, from PW using regression techniques, and 

obtaining a quadratic expression with a R2 value of 0.922 and Root Mean Squared Error 

(RMSE) less than about 0.00032. Air temperature is available from MODIS as a product. 

Another important variable is the air pressure. This is a MODIS product; however, this product 

is quite inexact. Air pressure could be derived as a function of the elevation, which is obtained 
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from the Digital Elevation Model (DEM). DEM can be obtained from: 

http://www.ngdc.noaa.gov/mgg/dem/demportal.html (NGDC, 2016). From those variables, 

and using some mathematical equations RH is calculated obtaining a good approximation when 

comparing with observed values. Their method provides an estimation of RH but it is                  

an 8 day-average. This model cannot be replicated in this study because it is required to obtain 

hourly estimations. Also, the results may be different, because training the model using 8 day-

averages reduces the variability compared to hourly observations provided by the proposed 

model. 

K.S. Han et al. (2005) studied the feasibility to derive surface level RH based on satellite      

data. This study was performed over the area of Quebec, at the west side of Canada. The time 

interval includes the first ten days of June and July 1997. It used two instruments mounted in 

different satellites: Advanced Very High Resolution Radiometer (AVHRR), mounted on 

NOAA number 12 and 14, and imagery, mounted on GOES 8. Both instruments have 5 bands, 

also called channels. GOES has one visible and 4 infrared bands and AVHRR has 1 visible, 

one near infrared (NIR) and 3 Infrared bands. The wavelength of bands 4 and 5 are similar. 

These bands sense radiation that is centered on 10.7 and 12.0 µm respectively. Bands 4 and 5 

from both satellites and regression techniques were applied to derive RH. Those bands were 

used to derive emissivity that will work as input data to estimate surface temperature, PW and 

NDVI. These products are the basis of the calculation. However, some other variables were 

included as input variables, such as: elevation, local time and Julian day. On the other hand, 

the response variable came from observations of RH gathered from stations. An average error 

of 10.6% was obtained. However, in some stations, especially those located around mountains 

and over forest areas the error had a higher value.  

Temperature and sometimes even RH can be obtained from ground stations. However, this 

information is by definition punctual, it means that station information is only valid for the 

position of the station.  

Satellites, on the other hand, are a greater option for estimating atmospheric variables over 

larger areas. A group of satellite images can provide enough amounts of information to perform 

the spatial estimation task, for example, estimation of physical parameters over the entire 

Mesoamerica and Caribbean region. This however creates a new problem to solve, and it is the 

spatial and temporal resolution of those satellites. This spatial resolution is related with the 

pixel size and the minimum amount of area covered by it. Spatial resolution is                        
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defined as the minimum amount of resolution that an image is capable to differentiate. This 

spatial resolution is different even on the same satellite and it depends on the chosen band or 

product. However, Satellites with a good spatial resolution may sometimes suffer from low 

temporary resolution. 

4.2 ARTIFICIAL NEURAL NETWORKS 

Other alternative to estimate RH is the use of the artificial neural network technique. For 

instance, Kuligowski and Barros (2001) applied the artificial neural networks techniques as 

well as data analysis to estimate vertical profiles of temperature and dew point based on satellite 

data. Akbari et al. (2008) also applied neural networks techniques to estimate Temperature and 

humidity based on MODIS satellite data. The challenge of the current work is use satellite data 

and ANN technique to estimate RH at the surface level.   

When is suspected that there is a nonlinear relationship between a group of variables, neural 

networks appear as a good alternative to work with them. As a matter of fact, this group of 

techniques have been developed to work with this kind of data. From different types of neural 

network implementations, the backpropagation algorithm (BP) has been chosen in many 

studies. For example, Li et al. (2015) describes backpropagation as an algorithm commonly 

applied to approximate a model, however it is commanded by a local optimum vision rather 

than offering a global optimum vision.  

The algorithm described in this section was presented by Hagan et al. (2014). Backpropagation 

is an algorithm based on neural networks. It is used over different applications, one of them 

being to approximate different functions. It is based on multilayer network which means that 

it contains a set of different layers between inputs and outputs. The common notation for those 

networks, is:  

R-S1- S2…-Sn                                                                (1) 

Where R is the number of inputs, Si is the number of neurons inside the layer i, and n is the 

total number of layers proposed. It is common to find in literature that a good approximate of 

the number of layers is 2 or 3 layers, where the last one is the output layers and the others are 

hidden layers. To decide the number of neurons, is necessary to study the characteristics of the 

data to be estimated. The number of neurons is closely related in a direct way the number of 

inflection points. Each neuron is defined as a combination of a weight (w) multiplied by a 

transfer function and with a bias (b) value added. 
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𝑛 = 𝑤 ∗ 𝑓(𝑥) + 𝑏                                                        (2) 

The transfer functions of the last layer depend on the data and the scale expected to obtain, it 

can be: Linear, log-sigmoidal, hyperbolic tangent, Step function, as others. The transfer 

function in the hidden layer is obtained by trial and error. The weight and bias are randomly 

obtained to create the starting point. Usually the number of neuron in the last layer is closely 

associated to the number of variables that are wanted to approximate. Each layer has its own 

inputs and outputs, and the outputs from one layer will be the input to the following layer. The 

outputs of the last layer are associated with the approximate values for the studied variables. 

The output of each layer is calculated on the following way: 

𝑎𝑖+1 = 𝑓𝑖+1(𝑤𝑖+1 ∗ 𝑎𝑖 + 𝑏𝑖+1)                                           (3) 

Equation 3 is defined as a matrix operation if one or more layers has more than one neurons. 

Where 𝑎𝑖 is the output of the previous layer and acts as the input of the current layer and 𝑎𝑖+1 

is the output of the current layer. On the last layer, the output is called “a”. 

Initial weights and bias have to be trained and changed to obtain the best approximation, 

adapting its values during the process. These changes will be determined as a function of the 

error between observations and estimations from the training data and Function respectively. 

This stage is usually called performance index, and the error defined as: 

𝐹(𝑥) = 𝐸[𝑒2] = 𝐸[(𝑡 − 𝑎)2]                                       (4) 

Where 𝑡 correspond to the array of observed values, and x the vector that contain both bias and 

weights. If it is more than one output, the function will be expressed as a matrix operation, see 

equation 5:  

𝐹(𝑥) = 𝐸[𝑒𝑇 ∗ 𝑒] = 𝐸[(𝑡 − 𝑎)𝑇 ∗ (𝑡 − 𝑎)]                                       (5) 

This algorithm is called backpropagation because the error will be used as an indicator to 

change the weight and bias for each layer, starting from the last layer in a recursive form until 

arriving to the initial layer in order to minimize the sum of squared errors. This iteration will 

be repeated until the sum of squared errors are minimized, this is usually when the algorithm 

accomplished convergence.  

The gradient algorithm is used to perform the actualization of weights and bias, as follows: 

𝑤𝑖,𝑗
𝑚(𝑘 + 1) = 𝑤𝑖,𝑗

𝑚(𝑘) − 𝛼 ∗ 𝑠𝑖
𝑚 ∗ 𝑎𝑗

𝑚−1                                    (6) 
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𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝛼 ∗ 𝑠𝑖
𝑚                                          (7) 

Where alpha (𝛼) is the learning rate and is a value selected between 0 through 1. Usually low 

values are the most common. The indicator “i” corresponds to the neuron in the “m” layer, “j” 

correspond to the neuron in the previous layer where the input comes from, and “k” is related 

to the number of iteration. Variable “s” is the sensitivity of the layer and it is the retrospective 

value that determines the change from the error calculated. The indicator “m” corresponds to 

the analyzed layer. If weights or bias are determined as matrix the BP equations will be: 

𝑊𝑚(𝑘 + 1) = 𝑊𝑚(𝑘) − 𝛼 ∗ 𝑠𝑚 ∗ (𝑎𝑚−1)𝑇                                    (8) 

𝑏𝑚(𝑘 + 1) = 𝑏𝑚(𝑘) − 𝛼 ∗ 𝑠𝑚                                          (9) 

Sensitivity is the direction of the optimization search and it corresponds to the derivative of the 

squared errors with respect to the weights or bias. This algorithm is called backpropagation due 

to the nature of its calculations that start with the last layer and ends up with the first one. In 

consequence, the first sensitivity to be calculated corresponds to the last layer, using the 

following equation that is expressed in a matrix form:  

𝑠𝑀 = −2 ∗ 𝐹𝑀(𝑛𝑀) ∗ (𝑡 − 𝑎)                                        (10) 

Where M is the last layer on the network, and 𝐹𝑀(𝑛𝑀) is a matrix that express the derivatives 

of the transfer function𝑓𝑀(𝑛), with respect to the net input to the neuron, “n”.  The propagation 

of the sensitivity throughout the layers is expressed by the following recursive equation: 

𝑠𝑚 = 𝐹𝑚(𝑛𝑚)(𝑊𝑚+1)𝑇𝑠𝑚+1, for m=M-1… 2, 1                   (11) 

In this case, to calculate the sensitivity for a previous layer, it will be necessary to include in 

the calculations the sensitivity from the next layer.  

The equations (8) and (9) are applied at each iteration and the algorithm stops once the 

convergence is accomplished; i.e., when the changes on the objective function are very small. 

In this case, the objective function it is defined as the sum of squared errors.   

Literature suggest that this method has been applied before to approximate functions on 

different areas. Cheng et al. (2016) show in their work the utility of using BP compared with 

the regression method. Authors wanted to estimate and predict the ignition temperature and 

activation energy using a sample of 64 different Chinese coals and their blends. Using the 

Pearson correlation, they founded that the most relevant factors to estimate them were: 

moisture, volatile matter, calorific value and oxygen of coals. These factors were used into two 
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methodologies one is a nonlinear regression using a quadratic polynomial regressing and the 

other is BP with 3 layers: input layer, hidden layer and output layer. Results with BP algorithm, 

gave a better output in terms of the relative mean when compared to the regression model, 

obtaining error values of 1.22% and 3.89% respectively. However, this methodology results 

complex in application for the multiple unknown elements involved. For example, in the 

determination of the number of neurons included in the hidden layer specifically the first and 

the second layers. Another complication is the difficulty of the mathematical explanation of 

the model, because at the end it is a black box. However, results obtained with BP are promising 

for authors.  

4.3 ENVIRONMENTAL SATELLITES 

There are two different satellites that appear to be important when modeling RH. Both are 

included in the present investigation. Low Earth orbit or polar satellites such as Terra and Aqua 

and geosynchronous satellites such as GOES.  

4.3.1 GENERAL CHARACTERISTICS OF GOES 

Geostationary Operational Environmental Satellites (GOES) is the name received by a group 

of geosynchronous satellites, launched over different generations that are orbiting the Earth. 

Air University (2009) defines geosynchronous satellites as flying rockets that orbit the earth at 

about 35786 km, following a circular orbit and an inclination of zero degrees. They orbital 

period is the same when compared to the earth rotation (1 day or 24 hours). Rumerman (2009) 

also includes that these satellites are aligned with the equator, with an orbital speed that is the 

same when compared to the speed on the surface of the earth that is below.   This generates the 

illusion of constant floating over a static position (Air University, 2009), which means, that at 

any time the satellite will be located over the same geographic area. In consequence, it is 

feasible to obtain observations over a specific area in a good temporal resolution. GOES-13 for 

example corresponds to the current satellite that covers the Caribbean area and offers images 

every 30 minutes. 

To maintain this geosynchronous orbit is necessary to be at high altitudes, which has a negative 

effect over the data that leads to the loss of detail on the observations. It has been shown when 

analyzing the spatial resolution that it is considerably low, of about 4 km for the infrared 

channels. GOES-13 was mentioned as an example before because it is the latest generation of 
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satellites that is constantly offering images over the east side of the United States, and in 

consequence offering information for the MAC region.  

GOES satellites have different instruments installed, for example, this investigation is based 

on the data gathered from the Imagery instrument. Imagery in its different generations 

throughout time has improved some of the channel installed on it.  For example, the version 

installed on GOES 8 to 11 has 5 channels from 1 to 5, but since GOES 12, channel 5 has been 

replaced for channel 6. Table 1 show the different Imagery channels configurations per 

satellite:  

Table 1: Wavelength and common application per GOES’ imagery channel, extracted from Hillger and Schmit 

(2010). 

GOES 

Imager 

Band 

Wavelength 

Range (µm) 

Central 

Wavelength (µm) 

Meteorological Objective Spatial resolution 

1 0.53 to 0.75 0.65 (GOES-8/12) 

0.63 (GOES-13/15) 

Cloud cover and surface 

features during the day. 

Up to 1km 

2 3.8 to 4 3.9 Low cloud/fog and fire 

detection. 

Up to 4km 

3 6.5 to 7.0 

5.8 to 7.3 

6.75 (GOES-8/11) 

6.48 (GOES-12/15) 

Upper-level water vapor.  Up to 4km 

4 10.2 to 11.2 10.7 Surface or cloud-top 

temperature. 

Up to 4km 

5 11.5 to 12.5 12.0 (GOES-8/11) Surface or cloud-top 

temperature and low-level 

water vapor. 

Up to 4km 

6 12.9 to 13.7 13.3 (GOES-12/15) CO2 band: Cloud  

detection. 

Up to 8km (GOES 12/13) 

Up to 4km (GOES 14/15) 

GOES does not provide products by itself, data downloaded from it are usually data from their 

different channels that are called Counts. These values are divided in different datasets 

depending on which band was used to collect the measurements. Those can be either values of 

8 or 16 bits. Channel 1 are in 16 bits and channels 2 to 6 are in 8 bits. (Hillger and Schmit, 

2010). 

Data from GOES is available online in the following web page: 

http://www.class.ngdc.noaa.gov/saa/products/welcome (NOAA, 2016) 
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4.3.2 GENERAL CHARACTERISTICS OF POLAR SATELLITES 

TERRA AND AQUA.  

Moderate resolution Imaging Spectroradiometer (MODIS) is an instrument to collect 

environmental data and is mounted in two different polar satellites Terra and Aqua. A polar 

satellite, different from the geosynchronous one, flown at lower altitudes, of about 705 km. It 

flies around both poles of the earth, either way from north to south or vice versa (MODIS, 

2015).  

In consequence of both characteristics, the spatial resolution is higher when compared to 

geosynchronous satellites, and the entire planet surface is covered for each satellite. However, 

the temporal resolution became poor. The number of daily observations is related to the number 

of times that the satellites pass over one specific area, and MODIS Terra and MODIS Aqua 

have the capacity to offer two passes per day. 

In contrast from GOES, the amount of information, in terms of products that can be obtained 

from MODIS is higher, due to the existence of 36 bands. The corresponding spatial resolution 

for those are: 250 m. for bands numbers 1 and 2, 500 m. for bands 3 to 7 and 1 km for bands 8 

to 36 (MODIS, 2016). However, bands are useful to estimate even more products. The data 

offers products in different levels, the raw data is given by level 1, and products by levels 2 to 

4. Some of those products are: LST, PW, cloud mask, sea ice cover or NDVI. However, NDVI 

has a lower temporal resolution when compared to the others because it just offers 1 

observation every 16 days. Usually most of the products have a spatial resolution of 1km 

however NDVI has a spatial resolution that increase up to 250m. 

Data from MODIS is available online in the following web page: 

https://ladsweb.nascom.nasa.gov/data/ (LAADS WEB, 2016) 

It is proposed to estimate RH using satellite variables as predictors and observations from 

stations as an input variable. It is expected that a linear regression can be enough to express the 

relationship between the described variables. However, it is also possible that a linear 

regression could not be enough to obtain good results. To solve this issue, it is proposed to 

implement a neural networks technique, using a feedforward multilayer structure with the 

Levengberg-Marquardt Backpropagation as the learning algorithm.  

 



14 

 

4.4 DESCRIPTION OF SATELLITE PRODUCTS 

4.4.1 PRECIPITABLE WATER 

American Meteorology Society defines PW, in its Glossary of meteorology, as: the amount of 

water vapor that is inside a column of a specified area. This area can be defined as an ideal 

segment of a projected point, or is defined by the spatial resolution of the instrument used. This 

amount of vapor is usually limited by two different altitude levels. PW is the relation between 

the volumes of condensed water that is occupied divided by the specified defined area 

(AMETSOC, 2016). Marin et al. (2015) defines PW as the amount or level of liquid water that 

results when all the vapor over a determined area is condensed and precipitated.  

PW is one of the products available to download from MODIS. However, as it was explained 

when defining MODIS, this product has some characteristics that limit its application as a 

predictor variable for the RH estimation model. From the different problems detected the most 

important is its availability, twice a day and only for areas captured by the satellite. Most of 

the time figures do not bring information about the entire studied area. This effect is observed 

in figure 01.  

 

Figure 01: The portion of a MODIS PW image that fall inside the studied area – June 12 2012 at 02 30 UTC. 

This product is calculated only over clear sky conditions areas, areas with no cloud 

interference. Pixels covered by clouds will be assigned a missing value code. 

To process PW, the products downloaded from MODIS are MOD05_L2 (MODIS Terra) and 

MYD05_L2 (MODIS Aqua). Both have a spatial resolution of 5km.  

4.4.2 NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI) 

NDVI is a normalized index that helps determine the distribution and the healthy conditions of 

the vegetation over the land. It is usually calculated based on the ratio of different bands that 
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are associated with the light absorbance effect that can be observed on the plant’s surface. This 

scale depends on the author or the methodology. It usually falls between -1 to 1 or 0 to 1. 

Values are distributed as: zero if it is related to the presence of water, values below 0.3 for dry 

or low foliage areas, and values over 0.3 for areas with presence of vegetation. Australian 

bureau of meteorology defines NDVI as an index to measure the level of vegetation and is 

based on the difference of two bands, usually visible and infrared. It is usually related to how 

dense the canopy, or the fraction of land that is covered with vegetation (BOM, 2016).   

It has been shown that NDVI is a factor related to humidity (Ulivieri et al., 1994), and could 

be considered important in the analysis. 

Different from PW this product is not available for every satellite pass. Instead, it is a pre-

processed product. Pre-processed images as in this case, offer the chance to correct some of 

the problems with data, for example the quantity of available information offering data for 

every single pixel over the observed area. A negative effect is the temporal resolution decrease. 

NDVI is only available every sixteen days. 

MODIS NDVI, is composed by a group of images, each of those related to a portion of earth. 

For example, MAC region requires 23 images to obtain NDVI over the area. Figure 02 shows 

an example of the area covered by a single file, and Figure 03 shows the NDVI for a portion 

of the MAC region that can be represented using 10 images. 

 

Figure 02: Downloaded NDVI observation from MODIS. Date: June 06 2012. 
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Figure 03: Composition of NDVI observations for Caribbean area. Date: June 06 2012. 

To process NDVI, the products downloaded from MODIS are MOD13A2 (MODIS Terra) and 

MOD13A2 (MODIS Aqua). Both have a spatial resolution of 1km and a time resolution of 16 

days.  

4.4.3 LAND SURFACE TEMPERATURE 

LST is an atmospheric variable that describes the value of temperature captured or sensed over 

the surface of the earth. This product is focused to only the land covered areas of the planet. 

Akhoondzade and Saradjian (2008) defines LST as the portion of radiation, that the land 

surface emits, perceived by MODIS in a certain angle.    

In this study two LST files will be downloaded: MOD11_L2 for MODIS Terra and 

MYD11_L2 for MODIS Aqua, available on NetCDF format. LST captures information for the 

entire earth including the poles, in both day and night. (LPDAAC, 2016). 

Wenhui Wang et al. (2008) provides a table that contains the most important information about 

the different LST products that are available from MODIS Terra. From that, MOD11_L2 in 

particular, has a spatial resolution of 1 km, and an accuracy of 1° Celsius, and the time interval 

between every observation captured by the sensor over its observed position is 5 minutes 

approximately. The area captured per observation is about 2,330 km of latitude by 2,000 km 

of longitude, which is equivalent to approximately a matrix of pixels with a dimension of 2,030 

row by 1,354 Column (LPDAAC, 2016). These characteristics are also valid for MODIS Aqua. 
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LST, and PW data are available twice a day.  In addition, PW is available over clear sky 

conditions (Ji Zhou et al., 2014). Also, every pixel that does not correspond to a land covered 

areas is assigned to missing value (NaN value). Figure 04 shows an instantaneous image of 

LST in Kelvin degrees.  This figure corresponds to a portion of the studied area captured in 

January 1, 2011 at 3:10 UTC.  

 

Figure 04: Preprocessed LST observation from MODIS Terra. Date: January 01 2011 at 03:10 UTC. 

Different from the other MODIS PW, this one does not include a georeference component into 

the file. It is necessary to download a georeference component that should be combined with 

the observations. Geolocation files are downloaded as a product itself and it receives the 

codification MOD03 for MODIS Terra and MYD03 for MODIS Aqua.  
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5. METHODOLOGY: SATELLITE DATA PREPROCESSING 

This chapter corresponds to the discussion of all the algorithms necessary to adequate the data 

obtained from the satellites to be introduced into the regression models. It starts defining a 

general procedure that will be necessary for every satellite dataset that is called georeferencing. 

Subsequently, the algorithms to preprocess each of the satellites variables will be described in 

detail. 

5.1 GEOREFERENCING 

This algorithm will be commonly employed in the preprocessing stage because most of the 

products extracted from satellites requires to be correctly processed. Data from satellites are 

presented as a matrix, where each element is associated to a grid or a pixel, however the original 

projection causes each pixel to appear bigger and smaller depending on their position from the 

equator. The georeferencing is a change in the size of the pixel transforming the original 

information into squares equally distributed with the corresponding geographical location, and 

when it is necessary, a resampling is performed to convert into a uniform spatial distribution. 

This process start reading the coordinates of the original image, looking for their corners in 

terms of both latitude and longitude, and also reading the number of pixels that are found on 

the image in each direction. The corners and the number of pixels define the latitude and 

longitude for each pixel and they will be assigned to look for a uniform distribution and square 

pixels. The new latitude and longitude values for each pixel will be saved and they replace the 

previous values.  

Sometimes the georeferencing process will be accompanied by an interpolation algorithm (or 

resampling) to change the resolution of the image and in consequence the number of pixels 

necessary to cover the same geographical area. An example of the georeferencing process over 

the data is shown in figure 05. 
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a.                                                                      b.  

Figure 05: NDVI 01 Sept. 2009 panel a: observation previous to the georeferencing process (as downloaded 

from the servers). Panel b: observation after the georeferencing process. 

5.2 PW PREPROCESSING 

PW is the easiest variable to be preprocessed from the three physical parameters. This process 

starts opening each of the PW images and performing the georeferencing process for each of 

them. This process also includes the interpolation of the product from its original 5 km to a 4 

km resolution.  

Furthermore, this image is cleaned by looking for missing values. Original missing values are 

linked to a numerical value of -9999 and should be transformed to a standard convention (NaN). 

Finally, a new image is saved which has a group of matrices that contains both the new latitude 

and longitude for each pixel and the corresponding PW values. An example of a preprocessed 

PW file is showed on figure 06: 

 

Figure 06: PW Aqua Date: June 10 2011 at 07:35 am 

(c
m
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5.3 LST PREPROCESSING 

In terms of the LST, to preprocess the data and to do the georeferencing process, it is necessary 

to include a different product called Geolocation which provides the corresponding set of 

coordinates necessary for those files. 

This process starts opening each of the LST files and searching for the corresponding 

Geolocation file for the same time. If no file is found, then the LST file will be skipped. Once 

a match is found, the two files are linked and opened creating the first set of matrix that contains 

the coordinates from the Geolocation files and the temperature for the LST file.  Then, the 

georeferencing process will be performed over these matrices. It becomes necessary to 

interpolate the files changing its original 1 km resolution to a 4 km resolution.  

Similarly, the image is cleaned looking for missing values. Finally, the new image is saved. It 

has a group of matrices that contains both the new latitude and longitude for each pixel and 

also the corresponding values of LST. An example of a preprocessed LST file is showed on 

figure 07: 

 

Figure 07: LST Terra Date: July 16 2011 at 03:00 pm 

5.4 NDVI PREPROCESSING 

NDVI requires a deeper level of preprocessing due to the characteristics of the product, which 

needs to be changed: 

• The first step is to open each of the NDVI files and apply the georeferencing process. 

Also, it is important to interpolate them from their original 1 km to 4 km. 

• The second step is to incorporate small NDVI files for the same time period into a single 

file that contains to the MAC region. To accomplish this task, it is necessary to join 23 
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NDVI images together based on their position (Latitude and Longitude). It is essential 

to be especially careful on the borders of the individual images in order to avoid errors 

in the process. A new image will be saved and it contains different matrices: Latitude, 

Longitude and NDVI. 

• Finally, the time resolution of the NDVI files will be changed, from their original 16 

days into hourly basis. This algorithm start analyzing the difference in time between 

each combination of two different NDVI images, and this time gap will be filled with 

a copy of the oldest of both NDVI files repeated every hour. 

When all those three steps and their corresponding algorithms have been performed now the 

NDVI files are ready to be matched with the other products that serves as input variables. This 

algorithm will be repeated for both, MODIS Terra and MODIS Aqua observations. An example 

of a preprocessed NDVI file is showed on figure 08: 

 

Figure 08: NDVI Aqua Date: July 30 2011 at 04:00 pm 

5.5 STATION DATA PREPROCESSING 

The stations dataset is a complex group of data. It is available online (NCDC, 2016). 

Information comes in two different types of datasets both on .txt format. The first one is a 

compendium of data, for either one station or a group of stations. Thus, if the file has more 

than one station they will be accommodated, one bellows the other, with the variables divided 

in different columns. The second dataset has information related to the station: the name, the 

country, the state, a reference code, the latitude, longitude, elevation and time. 

Preprocessing downloaded station data requires implementing the task described in figure 09: 
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Figure 09: Algorithm framework for the station preprocessing process. 

5.6 GOES DATA PREPROCESSING 

GOES servers (NOAA, 2016) offer the option to download datasets that contain count values. 

Usually GOES provides one dataset per channel for every 30 minutes. To preprocess GOES 

data, it will be reduced to an hourly scale, which is the time interval for the estimation of RH. 

The process consists on finding the nearest observation to every hour, and eliminate the other 

observations for that particular hour, and repeat the process for every hour. 

Then it is necessary to extract the information for each GOES channel. GOES imagery offers 

5 channels (for details, see Table 1), however only the 4 infrared channels are included in the 

model. The visible channel was not included due to computational time in downloading and 

process. GOES imagery provide a set of variables called counts, however it is necessary to 

transform the count values into a more useful variable called the brightness temperature (BT). 

BT is a measure of radiation, and it is defined as the temperature value that will be assigned to 

a black body (body with a surface emissivity equal to 1) to emit, on the same wavelength, the 

same value of radiation (GES DISC, 2016).  

Two different equations were employed to transform count values to brightness temperature, 

the formulas are similar to each one of the channels (2 to 6) and that are divided in two different 

groups depending on the count value (OSPO, 2016). When the count value is lower than 176, 

the brightness temperature is calculated using the equation (12), in other cases it is calculated 

using the equation (13):  

𝐵𝑡𝑛 = 330 − 0.5 ∗ 𝐶𝑜𝑢𝑛𝑡𝑠𝑛                                                   (12) 

𝐵𝑡𝑛 = 418 − 𝐶𝑜𝑢𝑛𝑡𝑠𝑛                                                      (13) 

 

 

 

Convert in Matlab format 
and divide in small subsets  

Complete the time series 
filling the uncomplete 

gaps with a missing value 
code (NaN) 

Unify the data in a matrix 
containing: RH, the 

location and identification 
code of the stations 
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Where: 

• Bt = Brightness temperature (Kelvin degrees). 

• n = channel number. 

It should be noted that, before saving the new brightness temperature from each channel it is 

necessary to georeferencing the information and to change their original resolution to a uniform 

4 km for every channel. This product will be saved and for each hour the file is formed by a 

group of tables, and one table for each variable: latitude longitude and the brightness 

temperature from each channel. An example of a preprocessed GOES file, in terms of their 

brightness temperature is shown on figure 10: 

           

a.                                                                                b. 

            

                                   c.                                                                                                d.  

Figure 10: GOES BT Date: August 02 2011 at 10:00 am. Panel a.: channel 2 BT.  Panel b.: channel 3 BT Panel 

c.: channel 4 BT Panel d.: channel 6 BT 
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6. ESTIMATION OF RELATIVE HUMIDITY BASED ON 

MODIS PHYSICAL PARAMETERS – STATION DATA, 

AND REGRESSION TECHNIQUES 

The literature shows that, the physical parameters that are related to RH are: LST, PW and 

NDVI. However, to include them as important factors on the final model it is necessary to 

analyze what is the actual contribution of this parameter to explain the variability of RH. To 

measure the contribution of the physical parameters a preliminary model is developed in this 

chapter. This model is developed based on MODIS data, which are available twice a day; and 

therefore, all the variables involved in the model must match on time and space with MODIS 

data. 

6.1 DATA DESCRIPTION 

A regression model includes two types of variables regressors or predictors and the dependent 

variable or response variable (Montgomery et al.,2012). 

The response variable is related to the variable or variables that will be estimated, in this case 

it is the RH. It is necessary to obtain observations of this variable to train the model, and these 

observations were obtained from weather stations, which are located across MAC region, and 

the hourly RH data were provided by NCDC (2016). 

There are many stations that are located in the MAC region, but from those only 584 stations 

were selected. These stations were chosen based on two characteristics: those that offer hourly 

observations of RH, and the one that have information during the period 2011-2015.  However, 

it is expected to find some missing values in those observations, and those have a missing value 

code which is 999. Figure 11 shows the location for the selected stations. Although 5 years of 

data are available, preliminary models include information only for 2011. 
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Figure 11: Selected weather stations in the MAC region. 

The second group of variables correspond to the predictors or inputs of the model, which as 

explained on the introduction of this chapter is commanded by three physical parameters: LST, 

PW and NDVI. These products are obtained from MODIS instrument, mounted on Terra and 

Aqua satellites. These products have been preprocessed to modify some of their characteristics 

as the spatial and temporal resolution, those are described in table 2. Every satellite image is 

represented as a group of matrices that contains the product, the position and some other 

information for every pixel observed in the studied area. But there are some pixels that do not 

present information in the image, those will be coded with a missing value. 

The model also includes variable that exhibit the geographical characteristics such as elevation. 

This variable is obtained from a digital elevation model (NGDC, 2016), and it has a spatial 

resolution of 4 km. It is presented as a group of matrices representing the pixel position and the 

product itself. This product is represented in figure 12: 

 

Figure 12: Elevation map 4km. Unit: meters. 

(m
e

te
r)

 



26 

 

Elevation values are not expected to change in a short period of time as the one presented here, 

it means that the same elevation file will be linked to every satellite image. Elevation is 

important to include as part of the components corresponding to the position. The 

characteristics of the elevation product will be found in table 2. 

Table 2: Characteristics of the data 

Product Instrument Spatial 

resolution 

Time resolution 

Land Surface 

Temperature 

MODIS  4 km Twice a day 

Precipitable 

water 

MODIS  4 km Twice a day 

NDVI MODIS  4 km Hourly 

Relative 

Humidity 

Station N.A* Hourly 

Elevation DEM 4 km N.A.* 

 * Does not apply for this product. 

The data described before correspond to the products that are directly gathered from different 

satellites, stations or models (Elevation). However, there exists some other variables that are 

included in the model but that are indirectly obtained from the previous products, those are:  

the location of each pixel (observation) expressed in terms of latitude and longitude and the 

time when each image was captured that are expressed in terms of Month Day and Hour. The 

images also expressed the time in terms of minutes, however this level of information is not 

necessary because the objective is to estimate RH every hour. 

6.2 METHODOLOGY 

Previously, a chapter was advocated to define the methodology in general terms; however, the 

methodology algorithms, change depending on the product that will be estimated and in the 

characteristics of the data. 

6.2.1 MATCH ALGORITHM 

This algorithm, is the start in the methodology to estimate the RH product. It has the function 

to do the match between the products from satellite and station into a single file, and keeping 

only the information necessary to be included into the model. This model has the objective to 

estimate RH based on the physical parameters obtained from MODIS. It means that it is 

necessary in this algorithm to do the match between stations and MODIS products. 

The match process will be based on the stations, because they provide the location of each of 

the points that has information and the hourly time where it can be found. The first step is to 
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load the data from stations, saving the RH product, as well as the time related to each 

observation and the position of each selected station. Based on these data the match process is 

developed: 

• Using the time information, the station data is trimmed, saving only the information 

corresponding to the year to train the model (2011). Every other year will be discarded 

from the dataset. 

• Based on the time information a first match with the MODIS files will be performed. 

Every hour that exists in the station file is analyzed searching for the images from 

MODIS that correspond to this hour, using a window of 30 minutes up and 30 minutes 

down. If no images are found for this specific hour, the corresponding variables related 

to each station are filled with missing values. If a group of images are found, it is 

necessary to study each pixel searching for the closest to each station.  

• The group of images corresponding to the hour are opened and the position values are 

studied searching for: the stations that are inside the group of images, and the nearest 

pixel to each station, each station is linked to the nearest pixel and the value for the 

specific variable in that hour for that station is assigned. For all the stations that do not 

have a pixel near to them in the studied hour, then the value of the variable related to 

this station will be a missing value. On the other hand, during the same hour a pixel 

near to them in more than one image corresponding to that hour, in this case the average 

of the values for this pixel in all the image is going to be used. This process is repeated 

for two of the physical parameters, the LST and the PW. 

• However, this match process is a little different for the NDVI. Both variables are 

presented as hourly observations with constant information for the studied area. In this 

case the process is resumed to analyze the images for each hour, search for the nearest 

pixel to each station and save the values for both variables and repeated for every hour. 

If an hour does not have a corresponding image of NDVI, the corresponding values of 

this variable for all the station is a missing value. Also, if the corresponding pixel near 

to each station does not have information, it will be filled with a missing value. For the 

elevation, it is only necessary to search for the pixel nearest to each station and save the 

value corresponding to it.  
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The result of this algorithm is a group of matrices, one for each variable. They have the 

following structure: the number of columns corresponds to the number of stations, and the 

number of rows correspond to the observed RH value, or to the value of the observed physical 

parameter in the corresponding pixel to each station and for each of the hours during the studied 

year. Also, the table of time and position extracted from the stations and used to the match 

process and save results as matrices. For the time table exist 3 columns (month, day and hour) 

and one observation for every hour on the year. For the position table exist 3 columns, two for 

latitude and longitude and one for elevation. This table includes 584 rows, one for each station. 

6.2.2 STRUCTURE AND CLEANING ALGORITHM 

The objective of this algorithm is to generate the regression table that include both the input 

variables and the response. It uses as inputs the different products, which were imported as 

matrices that is how they were saved. But, to create a new table it is necessary to reshape each 

of those matrices to be saved as part of one bigger table where each column represent a specific 

variable and each row one observation. This process is different from each group of variables 

and will be explained bellow: 

• The LST, PW, NDVI and RH were imported as matrices and each matrix has: one 

column for every station (584) and one row for every hour during the entire training 

year (8760). They will be converted and regrouped as vectors, one for variable. Those 

have as many rows as observation for station for each time that exists. The process is 

simple and consists in rearrange one station (column) bellow the other. The size of the 

new vector, corresponding to each variable, is 5115840×1  

• The position matrix was imported as a matrix that has: 3 columns (latitude, longitude 

and elevation) and 584 rows (stations). It will be transform but keeping the 3 columns, 

one for each variable. Each row of the matrix represents one of the station and has 8760 

observations related to it. Each of the values of the rows is the same for each of the 

8760 observation, and it will be copied this number of times creating new rows, later 

in the next row the same process will be repeated for the next value and so on until all 

the original row values will be included. The size of the new matrix is 5115840×3 

• The time matrix contains: 3 columns (month, day and hour) and 8760 observations 

(hours in the training year). It will be transform but keeping the 3 columns, one for a 

variable. This number of hours is the same for each of the 584 stations, in consequence 



29 

 

to transform it is necessary to copy this entire matrix one bellow the other 584 times. 

The size of the new matrix is 5115840×3 

All those vectors and matrices, were aggregated one left to the other as columns in a new table. 

It has the required structure and products necessary to be introduced into the regression. This 

new array has included, per every station, all the variables included that correspond to a 

position near to it in every time that an observation is captured. But, sometimes some of the 

variables were not been captured in that image or in that time, it generates a missing value that 

must be eliminated, estimations will not be possible if any of the variables have at least one 

missing value.  

To eliminate those missing values is necessary to analyze each observation at each time (row), 

and if any row has at least one variable that contains a missing value the entire observation 

(row) is eliminated for that specific time. After finishing this process this table is saved. 

Also, it is necessary to eliminate every observation that presents values that are outside the 

normal limits of temperature for the specific area. In terms of RH every value that is above 100 

or below 0 should be eliminated. In terms of the PW values should be at least 0. Same procedure 

will be employed for every variable. The rule to eliminate those observations is like the one 

implemented for missing values. 

6.2.3 DIVISION AND DEVELOPMENT OF THE MODEL ALGORITHM 

The tables saved before, one set for Terra products and one for Aqua, already provides the 

structure necessary to perform the estimation techniques. It contains, only as inputs the 

variables obtained from the satellites and the DEM. However, those may be insufficient to 

obtain a good estimation model. To improve the performance of this model, it is proposed to 

include some new variables based on combination of products, as well as transformation 

obtained from a statistical software. The entire list of variables included all the original 

variables, their transformation and combinations as well as the response variables are described 

in table 3:  
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Table 3: Description of the variables 

Variable Description Variable Description 

X1 Latitude X27 NDVI2 

X2 Longitude X28 Sin(NDVI) 

X3 Elevation X29 Cos(NDVI) 

X4 Month X30 NDVI-1/2 

X5 Day X31 PW+LST 

X6 Hour X32 PW-LST 

X7 e(4.23113-0.28227/PW) X33 PW*LST 

X8 (24485.5-0.224678*LST2)1/2 X34 PW/LST 

X9 e(4.34226-0.0983105/NDVI) X35 LST/PW 

X10 PW X36 Ln(PW/LST) 

X11 Ln(PW) X37 Ln(LST/PW) 

X12 e(PW) X38 PW+NDVI 

X13 PW2 X39 PW-NDVI 

X14 Sen(PW) X40 PW*NDVI 

X15 Cos(PW) X41 PW/NDVI 

X16 PW-1/2 X42 NDVI/PW 

X17 LST X43 Ln(PW/NDVI) 

X18 Ln(LST) X44 Ln(NDVI/PW) 

X19 e(LST) X45 LST+NDVI 

X20 LST2 X46 LST-NDVI 

X21 Sen(LST) X47 LST*NDVI 

X22 Cos(LST) X48 LST/NDVI 

X23 LST-1/2 X49 NDVI/LST 

X24 NDVI X50 Ln(LST/NDVI) 

X25 Ln(NDVI) X51 Ln(NDVI/LST) 

X26 e(NDVI) Y Station RH 

This table now will be divided first in two different ones: the first one contains all the input 

variables (X) and the second one the response variable (Y).  Two different techniques will be 

implemented to estimate RH those are: Forward estimation technique and group variable 

selection technique. 

To obtain the best estimation of RH, two approximations will be adopted to work with the 

dataset. One is to estimate regression using the data for the MAC region. However, this big 

amount of data may result difficult to estimate based on the different variations in the data. 

Also, the large amounts of data increase considerably the processing time. To improve the 

model results a different approach is being considered. This is to divide the MAC region in 

homogenous zones. 

6.2.3.1 Division in homogeneous zones 

To explain the variability of a dataset sometimes became problematic, especially when these 

changes are barely related to a group of variables, and that might reduce the capability of a 

regression model. It can be noticeable when they are irregular groups of data with complex 

characteristics that may subtle the information from a specific and important dataset. To 
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segregate the data in small groups with homogeneous characteristics results in a useful 

methodology to reduce the variability inside of each group. With the delimitation of 

homogeneous zones, the regression can track the variability in a more efficient way without 

the misleading effect of data with different behavior. This solution also indirectly solves the 

problem with processing time, which grows considerably when the number of observations 

introduced in the regression increases. 

The election and definition of this homogenous regions are based on the discoveries from our 

investigation group. And their selection is based on the geographic and climatic characteristics 

of the area, from the tropical Antillean islands to the desert areas of Texas to name a few 

examples. In this exercise the division generates 4 homogenous climatic zones: South America, 

Center America, North America and the Antillean islands. However, a particular case is 

observed on the region of Florida, which has conditions of humidity and temperature similar 

to the observed in the Antillean islands. For this reason, Florida is included in the Antillean 

group rather than in USA. Figure 13 shows the 4 areas defined before: North America (green), 

Center America (black), South America (Red) and Caribbean (Blue). 

 

Figure 13: Representation of the different zones. 

The algorithm necessary to generate these homogeneous zones is based on the latitude and 

longitude positions. They are defined different limits for each zone and every observation will 

be analyzed and compared with those values. When a pixel is defined as part of a specific 

region, it will be aggregated to the tables corresponding to this region, one for the inputs and 

the other for the response. The process will be repeated with each of the following observation 

in the original table. Also, a copy of the table that contains all the observations for the MAC 



32 

 

region is created, and this will also be conserved to compare the models between the entire 

region and the homogeneous zones and decide which the best approximation is. 

After the data are organized in 5 groups, the model identification and parameter estimation are 

conducted. Two different regression techniques are being involved in this process. Those are: 

• Forward Selection Algorithm: This algorithm is one of the stepwise regression 

methods. Following the definition from Montgomery et al. (2012), this algorithm starts 

assuming that does not exist any regressor in the model. Then, it looks for the regressor 

with the largest correlation with the response variable and that also produces the largest 

F statistic value. If this F value is larger than a previously defined Fin value, then the 

variable is added into the model. now the algorithm identifies the next variable that 

contributes to best explain the response variable by calculating the corresponding F 

statistic. Tus, if the statistic is larger than the Fin the variable is included into the model. 

This process will be repeated until the F statistics associated to a given variable does 

not surpass the defined Fin value then, this variable will be discarded and the process 

finished. Also, this process ends if all the variables have been added to the model. 

• Group variable selection algorithm: This technique has been proposed by Ramírez-

Beltran el al. (2007) and included by Castro (2007) in his thesis. This methodology 

starts dividing the number of variables in small groups, usually 5 variables in each 

group. A regression model is fitted on each group and the t-statistic test is used to 

identify the significant variables that are selected and named important variables. Then, 

the important variables from each group will be regrouped and the process starts once 

again. This process will be repeated until it is reached a number of variables less than 

or equal of the group size. 

It is necessary to test if the models suffer from Multicollinearity problems, referred to input 

variables that are almost linearly dependent. This usually affect the performance of the model 

adding unnecessary variable with large coefficients. (Gunst and Webster, 1975 and 

Montgomery et al., 2012). To solved the multicollinearity problems, a routine based on the 

variance inflation factor (VIF) was implemented (Montgomery et al. 2012). This routine 

eliminates values that are large in terms of the VIF. The formula to calculate VIF is showed in 

the equation (14):  

𝑉𝐼𝐹 = 𝑎𝑏𝑠(𝑑𝑖𝑎𝑔((𝑋′𝑋)−1))                                                     (14) 
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Where X correspond to a matrix which contains the set of standardized observations for any of 

the important variables included in the regression model.  

Values of VIF will be contrasted to a delimited threshold, Montgomery et al. (2012) 

recommend that the VIF value should not be higher than 5. When VIF is larger than 5 but 

smaller than 10, the multicollinearity problem is moderate and sometimes the involved model 

is acceptable. In this study the threshold has been defined as a value of 5. The largest VIF value 

is searched and if the value is above the threshold then this variable is discarded because it 

causes problems of multicollinearity, and the VIF are recalculated without it. The process is 

repeated until any of the remaining variables exhibit a VIF value above the threshold. When 

this condition is met, the regression model has been identified and the regression coefficients 

will be recalculated for this new group of variables. This Methodology was successfully 

implemented in (Ramírez-Beltran et al. 2007, Castro 2007). 

The complete methodology is summarized in the diagram presented in figure 14: 

 

Figure 14: Methodology diagram. Estimation of RH. 



34 

 

6.3 RESULTS 

Regression techniques were implemented to derive different models estimate RH based on 

satellite data, specifically physical parameters gathered from MODIS instrument.  

Results are divided in different categories, the methodology employed to build the model and 

the set of data used to train the models. Results are presented and evaluated in terms of the 

important variables in the model, the coefficient of determination R2 and the mean absolute 

error (MAE). As it was mentioned before models included in this chapter were trained using 

data from year 2011. 

Since the MODIS instrument is installed in two different satellites, each of those provides data 

with different characteristics. In consequence, a different set of models were developed for 

each of both, providing different RH products.  

6.3.1 ESTIMATION BASED ON MODIS TERRA 

In this section, it is presented the results corresponding to the models obtained based on the 

data gathered from the instrument installed in Terra satellite. Results show the two criteria 

developed to work with the dataset: one model trained with data from MAC region or a set of 

independent models trained with data from each of the homogeneous zones previously 

described. The results for the MAC region are presented in italics to differentiate them from 

the other results. 

Results are presented in two different tables. Each of those correspond to the results from on 

each of the proposed regression methodologies. Table 4.a contains the results corresponding to 

the group variable selection technique and Table 4.b the results corresponding to the forward 

selection technique. Each of those results were obtained after the application of the 

methodology to eliminate multicollinearity.  

Table 4.a: Results from Group variable selection technique 

Area R2 MAE 

(%) 

Important variables 

MAC region 0.6021 9.5188 X6, X50, X42, X8, X1, X5, X14 

Antilles 0.7057 7.4584 X6, X51, X35, X32, X2, X4, X5, X1 

South America 0.5178 7.2260 X32, X6, X2, X1, X36, X51, X4 

Center America 0.6170 8.7334 X6, X7, X32, X3, X48, X40 

USA 0.5847 10.8123 X6, X3, X7, X2, X1, X41, X48 
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Table 4.b: Results from Forward selection technique 

Area R2 MAE 

(%) 

Important variables 

MAC region 0.6039 9.5034 X6, X42, X8, X1, X5, X2, X15, X12, X35, X14, X41, X4 

Antilles 0.6957 7.6279 X6, X40, X8, X2, X42, X4, X5, X1, X21, X19 

South America 0.5236 7.1816 X32, X6, X2, X1, X15, X21, X14, X27, X4 

Center America 0.6190 8.6823 X6, X32, X3, X48, X49, X1, X22, X14, X42  

USA 0.5985 10.5968 X6, X3, X5, X8, X4, X2, X1, X14, X27, X48, X21, X12, 

X15 

Results show that the performance of these techniques are very similar in terms of the model 

fitting. However, the confidence and prediction intervals is narrower for the group variable 

selection method since the number of variables involved in the models are smaller in this 

method. 

It can be found and average error of about nine percent in the estimation of RH based on this 

dataset and an R2 value of nearly 0.6 which can be explained by the low amount of information 

and the disparity in time and location. Also, it appears that the division in homogeneous zones 

may result important to obtain better estimates, as it can be appreciated in the values of R2 and 

MAE. 

In terms of the most significant variables it can be concluded that some variables related to the 

three physical parameters or their combination, appear as significant. In addition, the time 

component and the variables related to the position, result also significant in most of the model 

independent of the methodology to be applied. This indicate the climate associated to the 

surface characteristics of a given location and seasonal variations help in explaining the 

behavior of the RH. A particular variable that appear as important is the elevation (X3) that 

consistently appear as significant, for the areas of Center America and USA areas with 

complicated topography. It is important to look for the South America region, this region has 

also a complex topography but with low number of stations, usually distributed in coastal areas, 

diminishes the influence of the elevation in the regression exercise. It is interesting to notice 

that the hour (X6) is the most important variable in most of the exercises, it denotes that the 

time change of the RH is important. The constantly inclusion of the hour as a variable to 

estimate RH, because it reinforces the importance to implement an hourly model in order to 

capture this change in a more correct way. 

6.3.2 ESTIMATION BASED ON MODIS AQUA 

This section presents the results corresponding to the estimation of RH using data gathered 

MODIS instrument installed in Aqua satellite. The results table provides similar information 
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that was explained before and are divided in the following structure: Table 5.a provides the 

results from the group variable selection technique and table 5.b the results from the forward 

selection techniques.  

Once again, the results presented here correspond to the models after the application of the 

algorithm to solve the multicollinearity problem. 

Table 5.a: Results from Group variable selection technique 

Area R2 MAE 

(%) 

Important variables 

MAC region 0.7745 8.8694 X6, X20, X35, X30, X10, X5, X2, X3 

Antilles 0.8168 7.2316 X6, X32, X35, X2, X27, X3, X10 

South America 0.7029 7.8310 X6, X3, X2, X8, X51  

Center America 0.7364 8.9804 X6, X48, X8, X3, X2, X43 

USA 0.7721 9.6304 X6, X35, X2, X23, X50, X13, X19, X21 

Table 5.b: Results from Forward selection technique 

Area R2 MAE 

(%) 

Important variables 

MAC region 0.7783 8.7925 X6, X8, X15, X1, X27, X14, X5, X4, X35, X2, X3, X12 

Antilles 0.8135 7.3385 X6, X15, X2, X3, X42, X8, X5, X47, X14 

South America 0.6801 8.2015 X40, X32, X1, X2, X3, X15 

Center America 0.7372 8.9385 X6, X8, X3, X48, X33, X2, X1, X42   

USA 0.7886 9.1987 X6, X3, X8, X15, X4, X5, X12, X2, X1, X48, X14, X42, 

X22 

It is observed a slightly better result in this group of models compared to the results from 

MODIS Terra dataset. In average, the R2 coefficient has augmented in almost 0.1 and the error 

have been reduced in almost 1%. This result is constant except for the region of South America 

where the error appears to augments instead to decrease. 

The difference in the results from the models trained with MODIS Aqua against the trained 

with MODIS Terra might be related to the time when satellite cross over the studied area. 

However, it is difficult to decide whether this dataset or MODIS Terra performs better to 

estimate RH. 

Results in terms of the important variables keeps constant from the observed in MODIS Terra. 

The physical parameters as well as their combination are still considered as important and also 

it is observed the importance of the position. Also, elevation and hour (X3, X6) are the variables 

that appears constantly in most of the models. This effect now it is easy to appreciate for the 

elevation variable that appear as significant in almost every model developed. Results looks 

promising and some conclusions are obtained from this exercise.   
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7. ESTIMATION OF LAND SURFACE TEMPERATURE 

AND PRECIPITABLE WATER, FROM GOES DATA, 

USING REGRESSION TECHNIQUES 

Based on the conclusions from the previous chapter, it has been determined that is possible to 

estimate RH from a group of physical parameters LST, PW and NDVI which can be obtained 

by remote sensing. However, it was also concluded that by the limitations from MODIS the 

developed models are not capable to offer hourly estimations covering always the studied area.  

However, MODIS physical parameters (LST, PW and NDVI) came from a product that, by 

definition, is obtained in an indirect way, it means that those products are calculated from 

validated equations and models that uses different channels, in fact in the description of most 

of MODIS products are included the retrieved algorithm based on raw data (MODIS, 2017). 

From this logic, it is proposed to develop a new set of equations or models to estimate in hourly 

basis the physical parameters LST and PW. GOES Imagery data was the selected instrument, 

because it increases the time resolution and always cover the studied area. This chapter presents 

a new set of models to estimate LST and PW in hourly basis and further to be able to estimate 

RH. 

7.1 DATA DESCRIPTION  

The data required for this group of exercises is mainly focused on the variables necessary to 

estimate LST and PW variables that are mainly obtained from remote sensing. Specifically, 

data comes from two different satellite instruments, MODIS and GOES imagery. Like the 

previous chapter, these variables are divided into two different types: the response variable and 

the regressor variables. (Montgomery et al., 2012). One year and three months of data are used 

to perform model training and validation. The training period that goes from December 2010 

to November 2011, and the validation period is one month for each rain season and corresponds 

to December 2011, July 2012 and August 2012. 

The response variables are the physical parameters from MODIS: LST and PW. These 

variables provide the observations that are used to train and validate the model. Those where 

already preprocessed and have the following characteristics: a spatial resolution of 4 km and a 

temporal resolution of two observations per day. These observations are disaggregated in a set 

of images necessary to cover, in portions, the entire MAC region  
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The regressor variables were mostly obtained from GOES imagery instrument. In addition, 

some other variables as the elevation and MODIS NDVI were also included.  

GOES imagery instrument provides a different set of variables. These variables came from the 

preprocessed files and they are the brightness temperature (BT) from the channels 2 through 6, 

all of them are in the infrared domain (see Table 1). The BT have been prepared to have a 

temporal resolution of one observation per hour and a spatial resolution of 4 km.  It is also 

necessary to include the NDVI from MODIS as a predictor. This product has already been 

preprocessed and has a spatial resolution of 4 km and it is scaled to hourly estimations. It is 

proposed to include this product because it is expected that the vegetation chlorophyll level 

exhibit an indirect measurement of temperature, rain and soil moisture; and therefore, the 

NDVI is an important predictor to estimate RH. 

It has been shown in the previous chapter that the elevation is a relevant regressor variable, and 

therefore it will be included in the model. 

Satellite variables usually provides information for land and oceans areas. However, this study 

is limited to land cover areas. Therefore, the ocean pixels were eliminated. To achieve this, it 

has been derived a Mask file based on the elevation model. This mask discriminates between 

oceans and land covered areas. 

To create this mask, it is necessary to evaluate the elevation value for each pixel, and assign a 

value of 0, if the pixel has an elevation value equal or below 0 m.; otherwise, it is assigned a 

value of 1. The result is a binary file where values of 1 are linked to land covered areas. A 

representation of this mask is shown in figure 15. 

 

Figure 15: Land covered area Mask. 4 km resolution. 
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Table 6 shows a summary of the characteristics of the described variables. There are other 

variables associated to the location and observation time that are going to be included into the 

model: Latitude, Longitude, Month, Day, and Hour. 

Table 6: Characteristics of the data 

Product Source Spatial 

resolution 

Time 

resolution 

LST (Preprocessed) MODIS 

instrument. 

4 km 2 times per 

day 

PW (Preprocessed) MODIS 

instrument. 

4 km 2 times per 

day 

NDVI (preprocessed) MODIS 

instrument. 

4 km Hourly 

GOES Channels 2 to 6 Brightness 

temperature (Preprocessed) 

GOES imagery. 4 km Hourly 

Elevation DEM. 4km N.A.* 

 * Does not apply for this product. 

Datasets presented in those models correspond one year of observations. The time necessary 

to preprocess the data and to develop the time series is one of the issues that requires to be 

optimized. It has already been proposed that data might be segregated in homogenous groups 

to improve the regression and reduce the processing time, it has already been implemented 

dividing the set of observations based on their geographic position. Now, a second division is 

developed, complementing the already established one, this division now divides the dataset in 

terms of climatological periods. This division is based on the work from this investigation 

group that has observed that, in general, during the year the climatic behavior of the MAC 

region could be divided in three rain seasons and those are:  

• Dry season: that correspond to the months of December, January, February and March. 

• Early rain season: that correspond to the months of April, May, June and July. 

• Late rain Season: That correspond to the months of August, September, October and 

November. 

7.2 METHODOLOGY 

This methodology describes the main steps that are necessary to develop the estimation models. 

These steps are mainly focused on the data preprocessing and processing, and the development 

and validation of the models. There is necessary to develop a group of models to estimate both 

PW and LST and depending on which will be estimated the algorithms may have some minor 

changes. These algorithms will be explained in details in the following lines. 
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7.2.1 MATCH ALGORITHM 

This code represents the beginning of the estimation process for the two studied physical 

parameters, LST and PW. It is responsible for the matching process between MODIS physical 

parameters that provides the observations to train the model and the files of input variables: 

BT, NDVI and elevation. All those files have already been preprocessed. There are 4 variations 

of this code, one for each physical parameter that will be estimated (LST and PW) and one for 

the satellite where they come from (Aqua or Terra). However, each of those follow the same 

procedure. 

This algorithm starts opening the set of observations from the response variables and saving 

the corresponding time where they were captured. The same will be done for the set of 

observations from GOES brightness temperature and for MODIS NDVI. And based on this 

information the match algorithms are developed: 

• Based on the time from each MODIS physical parameter observation, the nearest GOES 

and MODIS NDVI observations will be searched. If no file from MODIS NDVI or 

GOES is found, then the physical parameter observation is discarded and the next one 

is examined. On the other hand, if both corresponding images are found, then both and 

the physical parameter observation are matched in terms of time and they will be saved 

and analyzed. 

• GOES is a geostationary satellite and their images have usually the same limits, that 

were defined when the file was downloaded. The limits are latitude: 0 to 30, and 

longitude: -100 to -60. With this information, the MODIS files will be evaluated and 

only the pixels that are inside these limits will be kept, every other pixel will be 

eliminated. This searching has an extra step for the PW algorithm. This product does 

not discriminate between land and ocean and it is necessary to eliminate sea pixels. For 

PW, it is necessary to open the mask, and search the nearest pixel to every pixel in the 

PW observation. If the nearest pixel in the mask has a value related to a land covered 

area, then this pixel will be kept otherwise it will be eliminated. All those pixels that 

were not eliminated will be then compared to the observation from GOES and NDVI 

searching for the nearest pixels in those images. In addition, it is necessary to look for 

the nearest pixel in the elevation file. 

• Once the nearest pixels were found, they are saved in a table that contains the following 

columns: the time for the observation where this pixel came from, their Latitude, 
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Longitude, and the value for the physical parameter, BT for each individual channel, 

NDVI observation and their corresponding elevation. If the pixel does not have a value 

in any of the variables it will be filled with a missing value. This process will be 

repeated for all the pixels in the observation and for every MODIS observation in the 

dataset. 

This table will be saved to be introduced in the next algorithm. There are 4 different tables, 

each one came from the variations of this algorithm, which was explained above. 

7.2.2 STRUCTURE AND CLEANING ALGORITHM 

This algorithm is the responsible for the structure and arrange of the table data and for cleaning 

the variables. It starts reading the table previously saved. This table has already been saved 

with the necessary structure for the estimation process, dividing the variables, which are in the 

columns and the observations in the rows.  

However, the data previously saved have some missing and incorrect values that needs to be 

fixed to improve the results of the regressions. The algorithm to eliminate missing values and 

to clean the data are explained bellow: 

• The table is loaded and every row is analyzed. If a row has at least one missing value 

in any of their variables (columns), then the entire row is eliminated from the table. Any 

value that do not correspond to clear condition. Were in this work clear sky condition 

was based on BT from channel 4. A pixel values bellow 280 Kelvin degrees was 

considered a cloudy or rainy event and the entire row was eliminated from the file.  

• A similar procedure was developed to eliminate incorrect values. To define what an 

incorrect value is, thresholds have been defined for each variable based on the dataset. 

In consequence, every pixel that have at least one variable with an associated value that 

is outside their correspondent threshold will be eliminated. The limits defined for each 

variable were: 260 to 330 Kelvin degrees for the BT of channel 2, 235 to 270 Kelvin 

degrees for the BT of channel 3, 280 to 330 Kelvin degrees for the BT of channel 4, 

240 to 290 Kelvin degrees for the BT of the channel 6, 0 to 320 Kelvin degrees for the 

LST, 0 to 1 for NDVI.  

A last arrangement process is performed over the dataset. To obtain homogeneous dataset and 

to reduce the processing time in the regression, the entire year of data have been divided in the 

three seasons previously described: Dry, Early rain and Late rain season. It is necessary to 
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separate the original 4 datasets and split each of them into three different ones that correspond 

to each of the rainy seasons. 

7.2.3 DATA PROCESSING 

The data processing algorithm is focused on: the organization of the matrix variables, the 

inclusion of some variables that are based on the combinations of variables, the division of 

dataset, which includes the homogeneous regions and the application of the estimation 

techniques. It starts opening the table saved on the previous algorithm that corresponds to either 

the dry, early or late rain season. This table has 4 different variations in terms of the response 

variable: LST or PW from MODIS Aqua or Terra. 

Then the dataset is divided in homogeneous zones. The original table is divided into 4 matrices 

one per zone and the complete table is kept to test also the entire MAC region as a single mode. 

The division criteria base their selection from the latitude and longitude values. After that, each 

table will be divided in two different tables “y” that contains only the response variable (called 

Y) and “x” that contain all the predictors (called X’s) created so far. The predictors and 

response variables are described in the table 7.a. The X value correspond to the value in the 

regression variables and not to their position in the table. 

Table 7.a: Description of the variables 

Variable  Description Variable  Description 

Y LST or PW X6 BT4 

X1 Month X7 BT6 

X2 Day X14 NDVI 

X3 Hour  X15 Elevation 

X4 BT2 X16 Latitude 

X5 BT3 X17 Longitude 

The next step is to generate some other variables that will be included as input variables. Those 

variables are related to the difference between two different BT’s. These variables are included 

to explain a higher level of variability and because the effect of some channels can be enhanced 

when they are combined with another channel. Thus, there is a total of 17 predictors and Table 

7.b shows the used differences of BT as input variables. The literature shows the application 

of the differences of GOES BT. For instance, Ba and Gruber (2001) and Kuligowski (2002) 

used the difference of GOES BT to estimate rainfall. Ramírez-Beltran et al. (2009) also used 

difference of GOES BT to detect rainy clouds.  
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Table 7.b: Description of the variables 

Variable  Description 

X8  BT2-BT3 

X9  BT2-BT4 

X10  BT2-BT6 

X11  BT3-BT4  

X12  BT3-BT4 

X13 BT4-BT6 

The group variable selection and forward selection techniques were used to identify the 

variables that best explain the response variable. Those model identification techniques were 

employed to generate a widely groups of models: one model for the MAC region and a model 

for each individual homogeneous zone. All those 5 models will be independently created for 

each of the 3 season delimited during the training period, and Furthermore, all the models will 

be generated with each individual variation of the dataset: LST and PW from MODIS Terra or 

Aqua. The identified models and their performances are discussed in section of results  

7.2.4 MODEL EVALUATION 

It should be noted that the models were developed using PW and LST observed by MODIS 

only twice a day. Now the regression equations will be evaluated for every hour and for all the 

pixels included in the MAC region, with the purpose of estimate the LST and PW in places 

where there were not MODIS data, and it is referred this process as the model evaluation. The 

output will be maps filled with the estimations of PW and LST and these values will be used 

as the input variables to estimate RH. This task will be described in chapter 8. 

The algorithm for model evaluation is as follow: 

• The algorithm start loading the set of observations corresponding to each of the input 

variables and for the entire studied period. Also, the coefficients and the parameters 

from the best model for each region and for each season are loaded.  

• Then, every image will be studied and the time will be extracted from the 

corresponding file. The images from each of the input variables that correspond to the 

same time will be linked. If at the selected hour there is one or more missing value in 

at least one input variables, the information of this particular hour is discarded. 

• If all the images corresponding to the inputs for a specific hour are found, it is necessary 

to open the files and to study every pixel inside of them. The position variables are 

extracted and the nearest pixel from each pixel is searched, once they are found it is 

necessary to matched them with each other. Once they are matched, the regression 
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equation is evaluated. In contrast if at least one pixel has a NaN value linked to it, then 

the value of their corresponding physical parameter (LST and PW) for this pixel at this 

time will be a NaN. The regression equation to estimate LST or PW are different 

depending on the region and the season, it is necessary to study those parameters to 

select the appropriate model. This step will be repeated for all the pixels included in 

the dataset. 

• Once all the pixel for a specific hour have the corresponding estimated of LST and PW 

then the corresponding map are created for these products. This map file is a 

combination of three tables one correspond to the Latitude a second one to the 

Longitude and a third one has the estimated values of LST or PW for each pixel. This 

process will be repeated for every hour during the studied period. 

This evaluation process was performed for the training period, December 2010 to November 

2011. In addition, the algorithm generates the required image files for the months assigned to 

validation: December 2011, July 2012 and August 2012. 

7.2.5 VALIDATION 

The dataset is divided into data for training and for validation. The data for training is used to 

develop the regression equations and the validation set is used to test how well or bad is the 

estimation. In this exercise 4 months (from 2011) were used for training in each of the rainy 

season and one month (from 2012) for validation. 

A new algorithm is going to be developed to implement the validations for each of the physical 

parameters. This algorithm requires two set of images: the images of the observed physical 

parameters (extracted from MODIS), and the estimations images developed by model 

evaluation. The algorithm is described as follows:  

• First each observed physical parameter (MODIS) image is analyzed and its 

corresponding time is studied, linking this image with the nearest image from the 

estimation set. The estimations are generated every hour, but the observations (twice a 

day) may come in intervals inside of an hour it means that if it exists an image of 

MODIS at the 4:15 pm, it will be linked to the estimated at 4 pm. 

• Once both images are linked it is necessary to eliminate from the observation image 

every pixel that is outside of the limits of GOES (estimation limits), then for every pixel 

inside the limits is necessary to search for the nearest one in the image of estimated 
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products. The difference between observations and estimations are the validation error 

and is calculated for every pixel that is found in both images. This process will be 

repeated for every image in the studied period.   

• Finally, the validation accuracy scores are computed and they are: the RMSE, the MAE, 

the error rate and the R2 coefficient. 

In figure 16, it is presented a diagram that summarizes the methodology employed in this stage: 

 

Figure 16: Methodology diagram. Estimation of LST and PW. 
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7.3 RESULTS 

Results were organized by parameter (LST and PW) and by satellite (Terra, Aqua) and are 

presented in this four sections the next section includes model evaluation results and the last 

section describes the model validation results. 

7.3.1 PW-MODIS AQUA 

Results presented here correspond to the models created to estimate PW. The model was trained 

using MODIS data of the Aqua satellite. Results were obtained from the application of two 

different regression techniques. Five models were developed one associated with the MAC 

region which are given in italic letters, and four models that correspond to homogeneous 

regions. 

Results are presented in 3 different tables: table 8 corresponds to the results for the dry season 

model, table for the early rain season model and table 10 for the late rain season model. Each 

of those tables have 3 sub tables: the results for the Group variable selection technique 

correspond to the sub table a., the results for the Forward selection technique corresponds to 

the sub table b. and the results corresponding to the error rates of both methodologies, are given 

in sub table c. The definition of the error value presented in the tables, is the ratio of the mean 

absolute error divided by the magnitude of the observed value, see appendix 2. 

Table 8.a: Results Dry season from Group variable selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.6792 0.5669 X16, X15, X5, X9, X3, X6, X17, X2, X1 

Antilles 0.4666 0.4239 X16, X8, X4, X15, X1, X3, X9, X17, X2 

South America 0.5920 0.6719 X5, X15, X3, X16, X7, X1, X2, X17, X9 

Center America 0.6044 0.4555 X15, X17, X5, X3, X1, X7, X2, X16, X9 

USA 0.4353 0.3658 X5, X15, X16, X9, X3, X6, X17, X1, X2 

Table 8.b: Results Dry season from Forward selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.6841 0.5608 X16, X15, X5, X9, X14, X3, X12, X17, X1, X2 

Antilles 0.4467 0.4301 X16, X6, X15, X1, X3, X12, X17, X14, X2 

South America 0.5929 0.6715 X5, X15, X3, X16, X12, X1, X2, X14, X17, X9 

Center America 0.6070 0.4538 X15, X17, X5, X3, X1, X7, X2, X16, X14, X9 

USA 0.4385 0.3649 X5, X15, X16, X9, X3, X6, X17, X1, X2, X14 
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Table 8.c: Dry season: Error rate - PW 

Area Error rate (Group variable 

selection) (%) 

Error rate  

(Forward selection) (%) 

MAC region 6.09 6.03 

Antilles 6.49 6.58 

South America 7.36 7.35 

Center America 6.02 6.00 

USA 6.37 6.36 

Table 9.a: Results Early rain season from Group variable Selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.6981 0.5828 X17, X5, X15, X9, X1, X16, X2, X4, X3 

Antilles 0.6576 0.5121 X1, X3, X7, X16, X2, X5, X15, X9, X17 

South America 0.4228 0.6287 X15, X5, X3, X16, X1, X7, X17, X2, X8 

Center America 0.6569 0.5126 X15, X1, X5, X17, X9, X16, X2, X3, X6 

USA 0.6495 0.4205 X1, X5, X9, X15, X2, X17, X16, X6 

Table 9.b: Results Early rain season from Forward selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.6991 0.5816 X17, X5, X15, X9, X1, X16, X2, X7, X3, X14, X13  

Antilles 0.6476 0.5227 X1, X3, X7, X16, X2, X15, X17, X13, X9, X14 

South America 0.4237 0.6282 X15, X5, X3, X16, X1, X12, X17, X2, X14, X13 

Center America 0.6590 0.5116 X15, X1, X5, X17, X9, X14, X16, X2, X3, X6 

USA 0.6497 0.4204 X1, X5, X9, X15, X2, X17, X16, X8, X14 

Table 9.c: Early rain season: Error rate - PW 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 6.13 6.11 

Antilles 5.75 5.87 

South America 6.98 6.97 

Center America 5.49 5.48 

USA 4.96 4.96 

Table 10.a: Results Late rain season from Group variable Selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.7100 0.6296 X5, X17, X15, X9, X16, X1, X3, X6, X2 

Antilles 0.7247 0.5459 X8, X16, X1, X6, X15, X17, X2, X9, X3 

South America 0.4823 0.5727 X15, X5, X3, X1, X4, X16, X17, X2, X9 

Center America 0.7452 0.5867 X5, X15, X9, X17, X2, X6, X3, X1, X16 

USA 0.7165 0.4187 X1, X5, X9, X15, X16, X17, X2, X7 

Table 10.b: Results Late rain season from Forward selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.7172 0.6219 X5, X17, X15, X9, X16, X14, X1, X3, X2, X7 

Antilles 0.7285 0.5408 X8, X16, X1, X7, X15, X17, X2, X14, X13, X3 

South America 0.4860 0.5705 X15, X5, X3, X1, X12, X14, X16, X17, X2, X13 

Center America 0.7466 0.5848 X5, X15, X9, X17, X13, X2, X3, X1, X16, X14 

USA 0.7115 0.4230 X1, X5, X9, X15, X16, X17, X2, X11, X14 
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Table 10.c: Late rain season: Error rate - PW 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 6.39 6.31 

Antilles 6.32 6.26 

South America 6.00 5.98 

Center America 6.54 6.52 

USA 4.82 4.87 

Results obtained from both techniques are pretty comparable, the difference between them is 

not too big. It is difficult to determine which technique offer the best estimation, but to decide 

for the model that will be used to estimate the product in this exercise it has been decided to 

select the alternative that provides the best results in terms of the performance metrics. This 

alternative will be selected individually for every single region and could be different from 

region to region. For example, the selected estimation techniques for the dry season are: 

forward selection techniques (South America, Antilles, Center America) group variable 

selection technique (USA).  

In terms of the important variables, it is appreciated the importance of the time and position 

variables. Also, The GOES variables specially the difference between BT2-BT4 appear as 

important in every single model except for some models on the area of South America during 

the Early and late rain season and the Antilleans in the Late rain seasons, where they were 

replaced by some other differences. NDVI also became important in explain the variability of 

PW. 

South America exhibits the hardest region to estimate PW, offering the lowest value in terms 

of their R2 coefficients for most of the seasons, and shows one of the biggest errors from the 

four regions.  

In terms of the R2, it appears that the best model fit of PW was obtained for the late rain season; 

however, in terms of the error the best estimation was obtained for the dry season which even 

that provide the lowest R2 values also have the lowest errors, it might be explained because the 

PW values in this seasons are constantly lower compared to the other seasons. 

To decide whether estimate PW using one model for the MAC region or to select for the 

homogeneous regions, it was found that the best estimation was obtained using models for each 

region. In terms of the R2 values is hard to obtain a clear decision; however, it becomes clearer 

when looking the error values. Error values are constantly lower for each of the homogeneous 

zones compared with the model for the entire MAC region, except for the area of South 
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America, but this area is problematic for estimating PW. Thus, PW is best estimated by using 

a different model for each of the 4 homogeneous zones. Similar results were observed in terms 

of the error rate, it was noted that the estimation errors became smaller when divided in regions 

compared to the total MAC region, one exception is noticed in dry season where MAC region 

appear to be with less variability in terms of the error rate. 

7.3.2 PW-MODIS TERRA  

Similar results are presented based on observation of MODIS Terra. The statistical models 

were evaluated with the same performance metrics. Results are organized and presented in 

three tables. 

Table 11 shows results of dry season, table 12 of Early rain season and table 13 of Late rain 

season. These tables are divided in three sub tables: a. corresponds to results for the models 

based on group variable selection technique, b. presents results for the models based on forward 

estimation techniques and c. shows the error rate for both techniques. 

Table 11.a: Results Dry season from Group variable Selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.6759 0.4848 X16, X15, X5, X9, X17, X7, X2, X1, X3 

Antilles 0.4012 0.3859 X16, X8, X15, X1, X17, X2, X3, X7 

South America 0.5964 0.5911 X5, X15, X16, X1, X2, X9, X17, X3 

Center America 0.6283 0.3777 X15, X17, X5, X1, X3, X7, X2, X16 

USA 0.4973 0.3053 X5, X15, X16, X7, X3, X17, X9, X2, X1 

Table 11.b: Results Dry season from Forward selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.6751 0.4844 X16, X15, X5, X9, X17, X8, X14, X2, X1, X3 

Antilles 0.4251 0.3742 X16, X12, X15, X9, X1, X7, X17, X3, X2, X14 

South America 0.5843 0.6027 X5, X15, X17, X1, X2, X14, X13, X17, X3 

Center America 0.6314 0.3748 X15, X17, X5, X1, X3, X7, X2, X16, X13, X14 

USA 0.5071 0.3028 X15, X16, X3, X9, X17, X11, X5, X2, X1, X14 

Table 11.c: Dry season: Error rate - PW 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 6.27 6.27 

Antilles 6.62 6.42 

South America 8.15 8.31 

Center America 4.89 4.85 

USA 6.35 6.30 
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Table 12.a: Results Early rain season from Group variable selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.6852 0.5283 X17, X1, X15, X5, X9, X16, X2, X3, X7 

Antilles 0.6894 0.4869 X1, X3, X2, X7, X16, X15, X5, X9, X17 

South America 0.4670 0.5881 X15, X5, X3, X16, X7, X1, X17, X2, X9 

Center America 0.6738 0.4838 X15, X5, X1, X16, X3, X7, X2, X9, X16 

USA 0.7146 0.4035 X1, X9, X15, X5, X2, X7, X16, X17 

Table 12.b: Results Early season from Forward technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.6856 0.5276 X17, X1, X15, X5, X9, X16, X2, X3, X12, X14  

Antilles 0.6887 0.4866 X1, X3, X2, X7, X16, X15, X17, X14, X11 

South America 0.4707 0.5863 X15, X5, X3, X16, X12, X10, X1, X17, X14, X2 

Center America 0.6738 0.4837 X15, X5, X1, X17, X3, X7, X2, X9, X15, X14 

USA 0.7158 0.4028 X1, X9, X15, X5, X2, X7, X16, X17, X14 

Table 12.c: Early rain season: Error rate - PW 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 5.88 5.87 

Antilles 6.05 6.05 

South America 8.59 8.57 

Center America 5.93 5.93 

USA 4.49 4.48 

Table 13.a: Results Late rain season from Group variable selection technique -PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.7120 0.5991 X5, X15, X16, X9, X1, X17, X6, X2, X3 

Antilles 0.6658 0.6324 X1, X16, X15, X6, X17, X10, X2, X3 

South America 0.5329 0.5376 X15, X8, X7, X3, X1, X16, X9, X2, X17 

Center America 0.7510 0.5304 X5, X15, X17, X7, X2, X1, X13, X14, X3 

USA 0.7695 0.4212 X1, X5, X9, X15, X3, X16, X17, X2 

Table 13.b: Results Late rain season from Forward selection technique - PW 

Area R2 MAE 

(cm) 

Important variables 

MAC region 0.7161 0.5946 X5, X15, X16, X9, X1, X14, X17, X2, X7, X3 

Antilles 0.7387 0.5460 X8, X1, X16, X7, X15, X17, X9, X2, X3, X14 

South America 0.5365 0.5373 X15, X5, X10, X3, X1, X16, X14, X13, X2, X17 

Center America 0.7510 0.5304 X5, X15, X17, X7, X2, X1, X13, X14, X3 

USA 0.7467 0.4480 X1, X5, X9, X15, X16, X17, X2, X13, X14 

Table 13.c: Late rain season: Error rate - PW 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 7.06 7.01 

Antilles 7.81 6.74 

South America 6.95 6.95 

Center America 6.80 6.80 

USA 5.17 5.50 
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Results provided by the two methodologies are similar as were described in previous section. 

In terms of the important variable it is similar to the previous exercises the variables related to 

the time and position resulted important in every single model. Also, the difference between 

some BT (BT2-BT4) appear to be important. However, this group of difference are subdued 

by a new variable that appear important in many of the models this is the BT6. The NDVI is 

still being considered as an important variable. 

It is observed that in terms of the results estimations obtained from satellite data provides a 

good set of approximations, however there are some region more problematic than others. 

South America, for example, is constantly providing a quite lower level of fit compared to the 

other regions. This effect is quite understandable looking the complexity of this region and its 

location compared to the other areas. 

To divide the region in homogeneous areas provided a good set of estimations compared to one 

single model to represent the complete MAC region, this is also observed here and it also helps 

to reduce the computational time and to validate the model. 

In summary, the model from different seasons are similar than the observed from MODIS Aqua 

models, the best R2 coefficients were obtained from the early rain season; however, the 

minimum error values were observed in the dry season, and it can be explained by the lowest 

values of PW during this period.  

7.3.3 LST-MODIS TERRA  

This section presents the results corresponding to the estimation of LST based on MODIS data 

of Terra satellite. This section provides the best variables and the performance metrics to 

evaluate the developed modes. The Group variable selection and the Forward selection 

techniques were applied over a specific dataset, which could be the data corresponding to the 

entire MAC region or the data corresponding to each of the defined homogeneous regions. 

Results are divided in three tables: table 14 correspond to the models for dry season, table 15 

for early rain season and table 16 for late rain season. Each table are divided in three sub tables 

that follows the same structure defined for the previous models. 
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Table 14.a: Results Dry season from Group variable selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7055 3.1905 X15, X3, X16, X14, X10, X1, X17, X12, X13 

Antilles 0.7526 3.2015 X16, X3, X14, X10, X1, X15, X13, X12, X17 

South America 0.7834 2.0042 X15, X3, X14, X1, X11, X17, X10 

Center America 0.7857 2.8037 X3, X15, X14, X7, X1, X16, X2, X11, X17 

USA 0.7429 3.1575 X3, X15, X9, X16, X2, X14, X11, X17 

Table 14.b: Results Dry season from Forward selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.6928 3.2650 X15, X3, X16, X14, X1, X2, X17, X11, X9 

Antilles 0.7568 3.1786 X16, X3, X14, X10, X1, X15, X2, X13, X12, X17 

South America 0.7830 2.0018 X15, X3, X14, X1, X17, X13, X16, X11 

Center America 0.7897 2.7809 X3, X15, X14, X6, X16, X1, X2, X11, X10, X17 

USA 0.7373 3.1795 X3, X15, X16, X11, X2, X14, X17, X1 

Table 14.c: Dry season: Error rate - LST 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 5.58 5.71 

Antilles 6.03 5.99 

South America 3.64 3.63 

Center America 4.91 4.87 

USA 6.42 6.46 

Table 15.a: Results Early rain season from Group variable selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7224 3.0489 X3, X14, X15, X8, X16, X2, X17, X1 

Antilles 0.8050 2.6526 X3, X14, X7, X15, X16, X10, X2, X1, X17, X11 

South America 0.6623  2.0991 X4, X15, X14, X3, X16, X1, X17, X2, X9 

Center America 0.7034 2.9315 X3, X14, X15, X6, X5, X2, X10, X16, X1 

USA 0.8437 2.5406 X4, X14, X1, X15, X2, X16, X9 

Table 15.b: Results Early season from Forward selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7423 2.9432 X3, X14, X15, X5, X16, X2, X17, X7, X1, X13  

Antilles 0.8025 2.6789 X3, X14, X7, X15, X16, X2, X1, X17, X9 

South America 0.6631 2.0967 X4, X15, X14, X3, X16, X1, X17, X12, X2 

Center America 0.7030 2.9344 X3, X14, X15, X7, X2, X12, X16, X17, X1, X13 

USA 0.8125 2.8092 X14, X1, X15, X2, X17, X16, X9, X7, X5 

Table 15.c: Early rain season: Error rate - LST 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 4.87 4.70 

Antilles 4.24 4.28 

South America 4.35 4.35 

Center America 4.69 4.70 

USA 5.60 6.20 
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Table 16.a: Results Late rain season from Group variable selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7521 2.6967 X15, X3, X1, X14, X16, X17, X2, X12, X13 

Antilles 0.8176 2.1823 X16, X15, X1, X3, X14, X13, X17, X5 

South America 0.5866 1.8004 X4, X15, X14, X3, X16, X9, X2, X17, X8 

Center America 0.7380 2.4044 X3, X14, X15, X1, X2, X13, X16, X17, X12 

USA 0.8610 2.9316 X1, X15, X16, X14, X3, X11, X2, X9 

Table 16.b: Late rain season from Forward selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7370 2.7780 X15, X13, X1, X14, X16, X17, X2, X10, X12 

Antilles 0.8182 2.1814 X16, X15, X1, X3, X14, X13, X11, X17, X2 

South America 0.5866 1.8001 X4, X15, X14, X3, X16, X9, X2, X17, X1, X11 

Center America 0.7470 2.3658 X3, X14, X15, X1, X6, X2, X9, X16, X17, X12 

USA 0.8353 3.2115 X1, X15, X16, X14, X12, X3, X2, X17, X9 

Table 16.c: Late rain season: Error rate - LST 

Area Error rate (Group 

variable selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 4.95 5.09 

Antilles 4.55 4.55 

South America 3.66 3.66 

Center America 4.46 4.39 

USA 5.38 5.89 

Results follow the same pattern observed in previous exercises both techniques provide good 

estimations of LST and it is hard to determine a winner technique from those two. In this step 

the technique selected to provide the estimation will be defined by the winner from the two 

methodologies on every season and for every region. 

It is observed that the time and position components are significant in every model, these results 

are consistent with results observed in previous models. Variables obtained from GOES are 

also important variables, but in this time, they are not a single variable that capitalize the 

importance, instead depending on the region and the season a different group of variables 

appear as significant variables. NDVI also resulted an important variable in the models to 

estimate LST as it was theorized before. 

It is observed in terms of the performance metrics that observations of LST are estimated better 

when they are divided in homogeneous areas than using a single model to estimate the entire 

MAC region. This is more noticeable in some season but the improvements are even more 

valuable specially on reducing the processing time.  
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Different from PW this models provides a better set of estimations in terms of the error 

specially looking the error rate that is lower than 7% in each model. It appears to be easier to 

estimate LST compared to the estimation of PW.  

Two models were compared to estimate LST one model to estimate the entire MAC region and 

several models for the homogeneous climatic zones. Based on the results both R2 and error are 

improved when the MAC region is divided.  

7.3.4 LST-MODIS AQUA 

This section present the results for estimating LST based on MODIS Aqua satellite data.  

Results are presented in three tables: table 17 for the models corresponding to the dry season, 

table 18 for the early rain season and table 19 for the late rain season.  

Table 17.a: Results Dry season from Group variable selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7499 3.6585 X3, X15, X16, X14, X1, X17, X12, X13 

Antilles 0.7873 3.4658 X3, X7, X16, X1, X14, X15, X2, X9, X12 

South America 0.7864 2.3954 X15, X3, X14, X1, X17, X12, X16, X13 

Center America 0.8198 3.3210 X3, X14, X15, X16, X1, X2, X9, X7, X11 

USA 0.8726 2.6421 X14, X6, X15, X16, X12, X3, X2, X1 

Table 17.b: Results Dry season from Forward selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7414 3.7305 X3, X15, X16, X14, X10, X1, X17, X2, X11 

Antilles 0.8080 3.3147 X3, X7, X16, X1, X14, X15, X2, X8, X10, X17 

South America 0.7850 2.4103 X15, X3, X14, X1, X17, X8, X2, X16, X9 

Center America 0.8049 3.4334 X3, X14, X15, X16, X1, X2, X8, X9, X17 

USA 0.8729 2.6424 X14, X6, X15, X16, X12, X3, X2, X17, X1 

Table 17.c: Dry season: Error rate - LST 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 4.96 5.06 

Antilles 5.41 5.17 

South America 3.70 3.72 

Center America 4.50 4.66 

USA 4.17 4.17 

Table 18.a: Results Early rain season from Group variable selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.8187 3.2663 X3, X14, X15, X5, X13, X17, X2, X1 

Antilles 0.8636 2.8245 X3, X14, X7, X9, X16, X15, X13, X2, X12, X17 

South America 0.5725 2.1139 X15, X14, X3, X16, X1, X17, X13, X12, X9 

Center America 0.8091 3.4921 X3, X14, X15, X9, X12, X1, X13, X17, X16 

USA 0.8850 3.0090 X3, X14, X1, X15, X2, X17, X16, X11 
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Table 18.b: Results Early rain season from Forward selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.8172 3.2983 X3, X14, X15, X13, X17, X16, X2, X12, X1  

Antilles 0.8592 2.8719 X3, X14, X16, X15, X2, X1, X10, X11, X17 

South America 0.5807 2.0961 X4, X15, X14, X3, X16, X1, X2, X17, X12 

Center America 0.8089 3.4969 X3, X14, X15, X1, X17, X2, X16, X13, X9 

USA 0.9010 2.6561 X4, X14, X1, X15, X2, X17, X9, X16, X12 

Table 18.c: Early rain season: Error rate - LST 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 4.36 4.40 

Antilles 4.3 4.46 

South America 3.63 3.60 

Center America 4.75 4.76 

USA 4.82 4.25 

Table 19.a: Results Late rain season from Group variable selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7845 3.0891 X15, X3, X14, X1, X16, X17, X11, X9 

Antilles 0.8414 2.3085 X16, X3, X1, X14, X15, X11, X13, X17 

South America 0.5576 2.0897 X3, X15, X14, X4, X8, X16, X1, X2, X17, X13 

Center America 0.7810 2.7721 X3, X15, X14, X1, X2, X13, X17, X16, X12 

USA 0.9134 2.5189 X1, X3, X14, X15, X16, X2, X13, X5 

Table 19.b: Results Late rain season from Forward selection technique - LST 

Area R2 MAE 

(Kelvin) 

Important variables 

MAC region 0.7968 2.9957 X15, X3, X14, X1, X16, X17, X2, X11, X10 

Antilles 0.8589 2.1609 X4, X16, X3, X1, X14, X15, X2, X12, X17 

South America 0.5576 2.0898 X3, X15, X14, X4, X8, X16, X1, X2, X17, X13, X9 

Center America 0.7848 2.7497 X3, X15, X14, X4, X1, X2, X9, X17, X16, X12 

USA 0.9111 2.5650 X1, X3, X14, X15, X16, X17, X2, X6, X12 

Table 19.c: Early rain season: Error rate - LST 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 4.00 3.88 

Antilles 3.36 3.15 

South America 3.41 3.41 

Center America 4.10 4.07 

USA 3.93 4.00 

Results are very similar to the observed in the previous section, based on that the decision 

criteria is the same that were provided in previous steps: to use the best model to produce the 

estimation, this model is selected independently for each portion of the dataset. Also, the 

important variables have similarities with the previous examples, BT and their differences are 

in fact important as well as the time spatial components and NDVI. 
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Results shows that the alternative to divide the MAC region in homogeneous areas provides 

better results compared to the option to develop one single model to estimate the entire MAC 

region. This effect is clearly appreciated when looking throughout the metrics and in a 

reduction in the processing time. Also, it is observed that difference between the observations 

and estimations of LST (MAE) is lower than 3.5 Kelvin degrees, and that the error rate is less 

than 5.5%.  

The results obtained from MODIS Aqua appear to be slightly better than the obtained from the 

models trained with MODIS Terra observations. It corresponded to the observed in chapter 6 

and can be related to the observation time from the satellites. 

To corroborate the assumptions established in the errors are satisfied, the following residual 

test were implemented: normality test, independence test and test of constant variances. The 

Durbin-Watson test (Montgomery et al.,2012) was applied and it was found that the residuals 

are not independent. The problems with the independence can be attributed to the 

characteristics of the data that are measured in adjacent times, which induced this problem, 

especially in the studies with meteorological variables (Rawlings et al., 1998). The Bartlett test 

(Montgomery et al., 2012) was applied to measure whether or not the variance in the residual 

is constant, and it was found that the variance is not constant. Also, there was implemented a 

subroutine to analyze the distribution of the data to observe if it follows a normal distribution. 

The instability in the variance or heteroscedasticity is usually mitigated using transformations 

to the dataset (Verran and Ferketich,1984 and Lewis and Lewis, 2015) even when 

transformations as box-cox were implemented, the heteroscedasticity is still present. Assuming 

that the problems in the variance and in the autocorrelation in the residuals were negligible 

these models were used to derive the estimates of PW and LST. However, it is recommended 

to improve the models in the future. 

7.3.5 MODEL EVALUATION   

Regression equations are evaluated using the entire set of input variables: it includes 

information that were not considered in the training dataset because it cannot be linked to an 

observation of the studied physical parameter (LST or PW). This analysis has been developed 

to evaluate how adequate are the estimation compared to observe in a real scenario. It consists 

in generate hourly estimations of both physical parameters for the entire year, using the 

regression models developed before. It is difficult to present the images that represent every 

hourly estimation over the MAC region because it means to present a total of 8760 images for 
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each physical parameter. It was selected 4 images per physical parameter, 2 for the model 

trained with MODIS Aqua observations and 2 for MODIS Terra. These images correspond to 

about the maximum sunlight (18 UTC) and the others corresponding to the approximate coldest 

hour of the day (8 UTC). Figure 17 shows the LST estimation at 18:00 UTC and figure 18 

exhibits the estimation at 08:00 UTC. Figure 19 and 20 corresponds to the estimation at the 

same hours but for PW. 

It is observed a good level of correspondence between the estimation of the physical parameters 

provided by the models and the natural behavior of those parameters that is expected in the 

environment. For example, looking the results from the Temperature, it increases during 

daytime hours and get lower during the night time. It also is observed how the topography 

affects the observed temperature. It can be noticed how the mountains are distinguishable by 

the low temperatures observed in those areas, similar effect is observed in the desert areas of 

Texas where the temperature goes to the peak values of the images during the daytime. Similar 

effects are appreciated in the forest areas of South America. 

              

                        a.                                                                                             b. 

Figure 17: panel a.: Modeled LST Trained using MODIS Aqua. Panel b.: Modeled LST Trained using MODIS 

Terra Date: August 15 2011 at 18:00 UTC. 

               

                              a.                                                                                 b. 

Figure 18: panel a.: Modeled LST Trained using MODIS Aqua. Panel b.: Modeled LST Trained using MODIS 

Terra Date: August 15 2011 at 08:00 UTC. 

(K
e
lv

in
) 

 
(K

e
lv

in
) 

(K
e
lv

in
) 

(K
e
lv

in
) 



58 

 

It is observed a similar effect in the results from the evaluation of PW figures 18 and 19. The 

estimation of this physical parameter correspond to the expected values to be observed in real 

conditions. For example, near to the clouds the values are larger probably because of the 

presence of rain. However, on the PW it is not expected to be observed a clear shift between 

day or night. 

                  

                                   a.                                                                         b. 

Figure 19: panel a.: Modeled PW Trained using MODIS Aqua. Panel b.: Modeled PW Trained using MODIS 

Terra Date: August 15 2011 at 18:00 UTC. 

                    

                                 a.                                                                           b. 

Figure 20: panel a.: Modeled PW Trained using MODIS Aqua. Panel b.: Modeled PW Trained using MODIS 

Terra Date: August 15 2011 at 08:00 UTC. 

This estimation is not only valuable for evaluation purposes but also, they provide the products 

of LST and PW that will be introduced as input variables in the RH model. This dataset 

provides observations every hour covering the entire MAC region and only for land covered 

areas. However, to use this information, it is necessary to validate those products and the 

models used to develop. 

7.3.6 VALIDATION  

As it was mentioned in the methodology, 4 months were used for training and one month for 

each season were used for validation. The selected months for validation were: December 2011 
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to validate the dry season models, July 2012 to validate the early rain season and August 2012 

to validate the late rain season.  The scores to measure the accuracy of the models are: The 

coefficient of determination R2, the mean absolute error (MAE), the Root Mean Squared Error 

(RMSE) and the error rate. 

In addition is necessary to clarify that there exists a big number of combination that might be 

created from the model, and that the difference between them are negligible, based on this it 

has been decided to pick the best estimation method (group variable selection or forward 

selection), per each region extracted from the evaluation dataset. 

The estimation for the entire MAC region was validated as a whole, this because it is necessary 

to observe the capability of the group of models to provide a map of estimation that match the 

observations. Results were organized by season and Table 20 provides results corresponding 

to the validation of the LST model trained with data from MODIS Aqua and table 21 to LST 

model trained with data from MODIS Terra. 

Table 20: LST – MODIS Aqua validation: performance metrics 

Season MAE (Kelvin) RMSE (Kelvin) R2 Error rate (%) 

Dry season 3.0934 3.8888 0.7311 5.26 

Early Rain Season 2.8976 3.7129 0.7497 4.00 

Late Rain Season 2.6126 3.4056 0.8097 3.50 

Table 21: LST – MODIS Terra validation: performance metrics 

Season MAE (Kelvin) RMSE (Kelvin) R2 Error rate (%) 

Dry season 2.6323 3.3968 0.7155 4.81 

Early Rain Season 2.5262 3.2877 0.7290 4.59 

Late Rain Season 2.4693 3.2273 0.7584 4.18 

Results show that the model provides a good set of estimation under the validation period. The 

errors are low and the coefficient of determination R2 are quite as good as they were in the 

training process. Models properly represent The LST during the validation process, and the 

highest error rate was about 5.3% of the total variation of values observed in the period but the 

average error rate was about 4.5% of the total variation of values. 

Figures 21, 22 and 23 Shows the time series corresponding to the estimation versus the 

observations of LST for the studied period. Each image corresponds to a particular validation 

period and has 4 panels: one corresponds to the estimations based on the observations from 

MODIS Aqua, and the second one to the estimations from MODIS Terra, the last two are also 

for MODIS Aqua and Terra, but present a time series with a portion of the data in order to 

better appreciate the comparison between observations and estimations. 
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                                                                                        a. 

 

                                                                                        b. 

 

c. 

 

d. 

Figure 21: Time series December 2011. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample). 
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                                                                                        a. 

 

                                                                                        b. 

 

c. 

 

d. 

Figure 22: Time series July 2012. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample). 
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                                                                                        a. 

 

                                                                                        b. 

 

c. 

 

d. 

Figure 23: Time series August 2012. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample) 
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It has been shown that the models are capable provide a good set of estimations of LST in the 

MAC region, as it was observed from results. In general, both set of models (MODIS Aqua 

and MODIS Terra) are good options to estimate LST as it was tested in the validation process.  

Same analysis was performed for validation of PW models. Table 22 present the results from 

the models trained with data from MODIS Aqua and contrasted with observations from this 

instrument, and table 23 the results from the models trained from MODIS Terra and contrasted 

with observations from this instrument. 

Table 22: PW – MODIS Aqua validation: performance metrics 

Season MAE (cm) RMSE (cm) R2 Error rate (%) 

Dry season 0.5342 0.6886 0.7499 7.00 

Early Rain Season 0.6786 0.8455 0.3078 7.74 

Late Rain Season 0.6889 0.8630 0.3038 7.93 

Table 23: PW – MODIS Terra validation: performance metrics 

Season MAE (cm) RMSE (cm) R2 Error rate (%) 

Dry season 0.4934 0.6384 0.7225 7.00 

Early Rain Season 0.6607 0.8341 0.2222 9.47 

Late Rain Season 0.5690 0.7288 0.4309 6.86 

The results are not as good as the results observed for the LST. The R2 values, especially for 

the periods of Early and Late Rain season, are considerably lower than the obtained during the 

training period. This may be caused by the selected months. July and August are in the frontier 

between two rain seasons and located during the summer time this might cause irregularities 

in the rain and in consequence poor estimation of the PW. However, results in terms of the 

error are very comparable to the observed during the training process and the error rate was 

below the 10% and this is consistent with the results observed in the training process. 

Time series helps to compare the observations of PW with the estimated values. Results are 

divided in 3 set of images, figure 24 shows the time series for the dry season (December 2011), 

figure 25 exhibits result for early rain season (July 2012) and figure 26 for the late rain season 

(August 2012). Each of the figures was divided into 4 panels: Panel a compares the observation 

gathered from MODIS Aqua and Panel b presents the same information but using MODIS 

Terra instrument and the last two are also for MODIS Aqua and Terra, but present a time series 

with a portion of the data in order to better appreciate the comparison between observations 

and estimations. 
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                                                                                       a. 

 

                                                                                        b. 

 

c. 

 

d. 

Figure 24: Time series December 2011. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample). 
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                                                                                       a. 

 

                                                                                        b. 

 

c. 

 

d. 

Figure 25: Time series July 2012. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample). 
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                                                                                       a. 

 

                                                                                        b. 

 

c. 

 

d. 

Figure 26: Time series August 2012. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample). 
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It was observed a considerable quantity of values that appear to be extreme values in the 

estimation of PW. It was noted that this values may be caused by an anomaly in the input 

variables obtained from GOES. These values may be related with a rain event that causes a 

difference of about 1 cm. of PW and that may be responsible for the problem with low R2 

values.  

In general PW estimations are acceptable since the error values and error rate and comparing 

them with the values obtained during the training process they are similar. Even the time series 

appears to follow the real behavior of this variable and their changes. The group of models are 

now feasible to obtain the input variables to build the hourly RH humidity models. 
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8. ESTIMATION OF RELATIVE HUMIDITY, BASED ON 

GOES AND MODIS DATA, USING REGRESSION AND 

ANN TECHNIQUES 

This chapter represent the last step in the process to estimate RH from satellite data. Previously, 

a first exercise has been performed. From that exercise, it was discovered that RH can be 

expressed as a combination of different physical parameters as: LST, PW and NDVI. However, 

two of the physical parameters (LST and PW) were obtained from a satellite instrument that is 

not capable to offer hourly observations. Also, those observations do not cover the entire MAC 

region in hourly basis. Thus, the available information limits the RH in terms of it time and 

spatial resolution. 

The second step was implemented to obtain estimations of the physical parameters. A new set 

of models based mainly on GOES imagery where developed to estimate the LST and PW and 

these estimations replace the observations obtained from MODIS. The estimates of PW and 

LST have a spatial resolution of 4 km and are obtained at every hour.  

Now all the required input variables to estimate RH fulfill the proposed objectives. However, 

to estimate RH it became necessary to generate a new set of models, based on the new 

characteristics of the inputs. In this chapter a new approach to estimate RH is be developed.  

8.1 DATA DESCRIPTION 

The Data introduced in this group of models is divided into two different categories: The input 

variables and the response variable. The response variable is related to the observations of RH 

obtained from 584 stations across the MAC region.  

The input variables correspond to a set of products, mostly from remote sensing, that will be 

introduced into the estimation model. This group of variables have been already studied in the 

first exercise presented in chapter 6; however, exists differences in terms of the data. The 

easiest and remarkable difference is the instrument where the physical parameters were 

obtained. In the first model, most of the products were obtained from MODIS instrument, but 

in this new exercise Most of them were derived from GOES imagery instrument. However, 

MODIS will still provide the NDVI input variable. This product has a spatial resolution of 4 

km and are scaled to be given in hourly intervals. 
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GOES imagery replaces MODIS data providing LST and PW physical parameters at a spatial 

resolution of 4 km and a time resolution of hourly estimates. These estimates cover the entire 

land MAC region that are under clear sky conditions.  

DEM is also being included in this model, motivated by the results from the previous set of RH 

estimation models where elevation resulted as an important variable. This product has a 4 km 

spatial resolution. The characteristics of the input variables are described in Table 24. 

Table 24: Characteristics of the data 

Product Instrument Spatial resolution Time Resolution 

Land surface temperature 

(Estimated) 

GOES 4 km Hourly 

Precipitable Water 

(Estimated) 

GOES 4 km Hourly 

NDVI (Observed) MODIS 4 km Hourly (scale) 

Elevation (DEM) DEM 4 km N.A.* 

RH (Observed) Stations N.A.* Hourly 

* Does not apply for this product. 

The brightness temperature calculated from GOES imagery channels 2 to 6 (see Table 1) were 

also included as input variables into this set of models. It is important to include those because, 

as it was explained before, those channels have been designed to capture specific characteristics 

of the atmosphere, characteristics that may be significant to understand some changes in terms 

of the RH. This set of products have a spatial resolution of 4 km and are offer every hour for 

the entire MAC region. The products from GOES imagery does not differentiate between land 

covered areas and sea, it is necessary to include a mask to separate them. This mask has already 

been described in the chapter 7, section 7.1. 

To model the RH, it is necessary to represent the trend and the seasonal components. The trend 

was represented as a linear combination of input variables and the seasonal behavior by a set 

of sinusoidal functions. (Newton, 1988, Brockwell and Davis, 2002 and Ramírez-Beltran et al., 

2010). 

To extract the periods a Fast Fourier Transform (FFT) has been applied over the dataset to 

identify the most important periods in a dataset. (Ramírez-Beltran et al., 2016). To find these 

periods it is important to work with a dataset (Station observation) from the response variable 

that has an enough amount of data, without missing values. From the group of station, it has 

been selected and analyzed a couple of station that fulfill this during the five years. Two factors 

are necessary to obtain the important periods: one is the value of the Fourier Transform which 
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provides the important values and the second one is the frequency of the Fourier Transform 

and its inverse provides the period. The results of the FFT are shown in figure 27. 

 

Figure 27: Spectral analysis of time series. 

To find the most significant periods it resulted necessary to look the highest ordinate values 

and their corresponding frequencies (f), the inverse of the frequency correspond to the 

important periods. There are two important periods in this dataset, and those are: 

• Ordinate value of 2.6248×104 corresponding to a frequency of 0.0417. The 

correspondent period value is 23.981 hours, or equivalent to 24 hours.  

• Ordinate value of 7.4417×103 corresponding to a frequency of 0.0833. The 

correspondent period value is 12.005 hours, or equivalent to 12 hours. 

There are two important periods, 12 and 24 hour cycles. To include those into the regression 

model it is necessary to develop a group of phase components, those are based on trigonometric 

functions. The selected trigonometric functions for this exercise are sine and cosine functions. 

(Ramírez-Beltran et al., 2016). The periods that have been found previously: 12 and 24 hours. 

However, should not be related to this exact number of hours, but with their atmospheric 

significance which is the day-night cycles. These cycles are not exactly every 24 hours, they 

are changing depending of the position of the earth respect to the sun. These changes during 

the year are related to the latitude longitude and to the solar zenith angle. These cycles can be 

tracked based on the sunrise and sunset time for each day during the studied period. The 

algorithm in this works is based an algorithm extracted from ed Williams’ aviation page 

website (Williams, 2016) which is based on (Doggett et al. 1990). This algorithm was modified 

on this work in order to obtain the sunrise sunset hours for the entire MAC region during the 

entire studied period (training and validation), and with this information it was constructed the 

phase variables for the 12 and 24 hour periods.  
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8.2 METHODOLOGY 

The methodology consists on using the developed predictors and apply regression technique to 

identify the variables that best express the variability of RH. ANN technique can also be 

explored to take advantages of modeling the nonlinear relationship that may be present between 

predictors and RH. 

8.2.1 MATCH ALGORITHM 

This algorithm match data from the stations dataset and the variables that will be introduced 

into the regression model. The variables were coded to manage a large amount of data and the 

involved variables are: RH data obtained from the stations, PW and LST estimated from GOES, 

the different infrared BT from the GOES channels, the MODIS NDVI data and the elevation. 

This code starts opening the station dataset and extracting the position of each station. Data 

that are not required for training were eliminated from the file, which includes 5 years of data. 

But, before performing data elimination it is necessary to identify inconsistent data. Data from 

stations were processed by a quality control system to eliminate inconsistent data and this 

procedure was accomplished by using the Chebyshev inequality. One of the major advantages 

of this method is there is no need to know the probability distribution of the underlying data. 

This procedure is summarized as follows:  

• Data from each station was opened, and the mean and standard deviation values were 

computed.  

• Based on these parameters, and to the defined tolerance that is accepted, in terms of the 

standard deviation. Every value in the station series was evaluated and if the value falls 

outside the acceptable range then it is replaced by a missing value. This process is 

repeated for every station. 

The training station data were selected and include from December 2010 through November 

2011. Data from the different variables must be matched in time and space with station data. 

The procedure is explained bellow. 

• Examine each hour from the RH dataset and search for the nearest observation in the 

different variables: LST, PW, GOES BT and NDVI. This closest images should be 

distant in no more than 30 minutes up or down from station data. If no image is found 

during this specific time, then the values of those variables corresponding to each 



72 

 

station at that time will be filled with a missing value. If images are found, then they 

will be matched to derive the regression model. 

• The station positions are analyzed, searching for the nearest pixel from each station in 

every of the variable (images). Once a pixel is found then the value of that variable will 

be saved for each one of the stations. It is possible that a pixel in one or more variables 

may not be found at a specific time because it was covered by a cloud or rain, then this 

pixel will be replaced with a missing value for the specific variables. This process was 

repeated for every hour during the entire studied period. 

• Also for the nearest pixel to each station, the elevation value was extracted and linked 

to that determined position. This process was performed only one time because the 

elevation value does not change during time.  

The output of this algorithm was a set of tables. Those were related with the different studied 

variables and have different sizes. The table time have 3 columns (month, day and hour) and 

as many rows as hour exists during the studied period. The position table have 3 columns 

(Latitude, Longitude and Elevation) and as many rows as station exists. And all the other 

variables (LST, PW, GOES channels 2 to 6 brightness temperatures, NDVI, RH) were saved 

as individual tables and they will have as many columns as station exists, and as many rows as 

hour exists during the studied period. The data corresponding to the different periods will be 

aggregated in the following algorithm. 

8.2.2 STRUCTURE AND CLEANING ALGORITHM 

Two set of tables were imported in this algorithm; both were necessary to generate the final 

table with the variables needed for the regression. One set of tables has the variables obtained 

from GOES, MODIS and the elevation values expressed by station every instant of time. The 

second one provides the seasonal components for each of the pixels (stations) that are also 

expressed per station and every instant in time. Each of those variables are arranged in form of 

different tables with a particular distribution, those variables need to be rearranged. However, 

prior to that it is necessary to clean some of them using the same algorithm explained before 

based on Chebyshev’ inequality. These variables were: PW, LST, and the Brightness 

temperature from GOES.  

After doing this cleaning the rearrange process will be executed. The process is described 

below: 
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• The first variables to be rearranged were the LST, PW, NDVI, GOES brightness 

temperature and RH. They were presented as a table, where the columns represent the 

data from the nearest pixel to each station (584) and each of the rows represents the 

corresponding observation of the product for each pixel for every hour during the 

studied period (8760 hours). This table was converted and regrouped as a vector, 

moving one column bellow the other. The size of the new vector is 4599000×1  

• Time matrix was also defined as a 3 column table: one for each one of the variables 

(Month, Day, and Hour). It has as many rows as the number of hours during the studied 

period (8760 hours). This process (table for station) was repeated 584 times one bellow 

the other, because every of the station-pixel have the same number of hours. With this 

rearrange now it is obtained the table corresponding to the 3 time variables. The size 

of this matrix is 4599000×3 

• Four seasonal variables were imported as tables. There were 4 tables: 2 for 12 hour 

periods and 2 for 24-hour period, that correspond to 2 sinusoidal (sin and cosine) 

functions. The number of rows correspond to every hour during the studied period 

(8760 hours). The number of columns correspond to each station-pixel position (584). 

To rearrange this table every column will be allocated below the previous one, 

transforming each table into a vector of size 4599000×1.  

• Another group of variables imported were the position. This table has 3 columns: 

latitude, longitude and elevation, and 584 rows, one for each station-pixel. Each of this 

rows are a position and this table is valid for every hour that has information for this 

station-position (8760 hours). Based on that, this table was rearranged in a new matrix 

repeating each individual row 8760 times, one bellows the other, repeating this same 

process for each of the rows until all of those are being processed. It was generated a 

new array that contains three variables: Latitude, Longitude and Elevation. The new 

size of the new matrix is 4599000×3 

All these variables were grouped as a single table. This table has as columns the variables paste 

one next to each other. 

The next step is to implement the quality control process. It is important to eliminate both 

missing and inconsistent values. The cleaning algorithms have already been discussed in detail 

in previous chapters. However, it is necessary to describe the thresholds defined for each of the 

variables that will be cleaned. Those are: 260 to 330 Kelvin degrees for the BT of channel 2, 
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235 to 270 Kelvin degrees for the BT of channel 3, 280 to 330 Kelvin degrees for the BT of 

channel 4, 240 to 290 Kelvin degrees for the BT of the channel 6, 0 to 320 for the LST, 0 to 1 

for NDVI, and 0 to 1 for all the seasonal components. 

This new table provides the entire set of input variables and the response variable for the entire 

studied cycle. But, before be saved, it is necessary to separate the data corresponding to each 

of the defined periods. The variables to discriminate between periods are the year and the 

month. Three different tables will be saved: one for the dry season (December 2010 through 

March 2011), one for Early Rain season (April 2011 through July 2011) and one for Late Rain 

Season (August 2011 through November 2011). 

8.2.3 DATA PROCESSING 

This algorithm is the responsible for developing regression models. It starts loading the tables 

generated before. There are 6 different modifications for this algorithm, depending on the data 

to be introduced. There are 2 different datasets that can be introduced depending if LST and 

PW were trained using MODIS Terra or Aqua and for each of those exists 3 different tables 

one for each season, it gives a total of 6 possible datasets. For each of those datasets an 

independent model will be generated. 

Once the corresponding dataset has been loaded, it is necessary to divide them into the 

previously defined homogeneous zones. To create these zones different cutting rules will be 

applied over the latitude and longitude variables. Once the table for each zone are created, it is 

necessary to divide each of these into two different ones, one for the response variable (Y) and 

another for the input variables (X’s). The variables that are introduced into the regression are 

presented in table 25: 

Table 25: Description of the variables 

Variable  Description Variable  Description 

Y RH X9 NDVI 

X1 Latitude X10 BT2 

X2 Longitude X11 BT3 

X3 Elevation X12 BT4 

X4 Month X13 BT6 

X5 Day X14 Sinday1 (24 H) 

X6 Hour X15 Sinday2 (12 H) 

X7 PW X16 Cosday1 (24 H) 

X8 LST X17 Cosday2 (12 H) 
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The two regression techniques as well as their routines to eliminate multicollinearity will be 

applied. In addition, the ANN technique is included to explore the nonlinear connection of the 

input variable with RH. The input variable selected by the regression approach are the ones 

that are input into the ANN algorithm with the purpose of eliminating the multicollinearity 

problem. 

The structure of the ANN includes one hidden and one output layer. The number of neurons in 

the hidden layer varies from one to three and each one includes a log-sigmoidal transfer 

function and the output layer has one neuron with a linear transfer function. The best number 

of neurons in the hidden layer was selected by the best performs of the algorithm. The log-

sigmoidal transfer function scheme resulted better than the linear-linear scheme. The training 

process starts with a random initial point. However, before training the best initial point out of 

7 was selected. 

Three different performance metrics were selected to determine the best estimation techniques. 

These performance metrics are: the mean absolute error, the error rate and the coefficient of 

determination R2 value. 

• For the ANN, it was saved: the structure of the net, represented by the starting point, 

number of neurons, weight and bias, and the corresponding variables that enter into the 

net. 

• For the regression models, it was saved: the important variables that enter into the 

model and also their corresponding coefficients including the constant. 

In appendix 1, It can be found an example of the implemented algorithm, using MATLAB. 

8.2.4 MODEL EVALUATION 

To develop the models, only the pixels related to the stations have been studied. However, it 

has been downloaded data from the input variables that can be used to evaluate the identified 

models and create a map the RH for the entire MAC region and almost at every hour. To 

understand the behavior of the RH and to analyze their corresponding cycles and changes 

compared to the real observation, it becomes necessary to develop maps of RH. 

An algorithm has been developed to obtain those maps and it will be explained bellow: 

• The algorithm starts loading the images of the input variables corresponding to the 

entire studied year, as well as the parameters from identified models. The algorithm 

divides the data in 3 different periods based on the corresponding time from each image. 
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• The algorithm identifies all the hours that can be matched (that have all the necessary 

components), and it is necessary to study each one of the pixels inside of it.  

• Each pixel is study first to find if it has a nearest pixel in other images; if it is not the 

case, then a missing value will be assigned to this pixel. Each of those pixels are 

matched and the information related to their position is studied and their corresponding 

region is identified. Based on their corresponding region and season the associated 

parameters of the models are found and applied. RH is estimated based on those input 

variables and the corresponding parameters of the model. This process is repeated for 

each pixel and for this hour. 

• When all the pixels in a determined hour has been studied a new set of tables will be 

created and saved, and those are: The estimation of RH for every pixel in the image, 

the latitude and the longitude tables corresponding to those pixels. These images 

correspond to the estimated RH image for a determined hour. This process was be 

repeated for every available hour during the studied period. 

This process was repeated for every hour during the training period (December 2010 to 

November 2011). This process was also repeated during the validation Period (December 2011, 

July 2012 and August 2012).  

8.2.5 VALIDATION 

It is necessary to validate the previously developed model to test the ability of those model to 

produce correct estimations of RH under a different time period. In this validation stage, three 

months of data were studied, one for each of the delimited seasons: December 2011 for dry 

season, July 2012 for early rain season and August 2012 for late rain season. 

The validation algorithm compares observations with estimated RH values, and it is described 

below: 

• This algorithm starts by cleaning all the observations of RH, by using the Chebyshev’ 

inequality, which was explained before and is used to remove inconsistent observations. 

Then, it is necessary to extract from the observation dataset only the data corresponding 

to the validation months.  

• The estimated RH products that correspond to the validation dataset will also be loaded 

and each hourly file to be analyzed. The image is opened and the pixels nearest to each 

station will be searched. The estimated RH values from each of those pixels will be 
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extracted and linked to the observed RH values in each of the station during that hour. 

This process will be repeated for every hour in the validation studied time period. 

• The difference between the observed and the estimated RH values were calculated and 

the MAE, RMSE, the error rate and the R2 coefficient were calculated and analyzed.  

The error values will be calculated independently for every one of the seasons in order to 

compare each of the model performance. 

In figure 28, it is presented a diagram that summarizes the methodology employed in this stage: 

 

Figure 28: Methodology diagram.  Final estimation of RH. 

8.3 RESULTS 

RH results are based on the Physical parameters estimated from GOES. These results present 

not only the model development but also the evaluation and validation stage.  



78 

 

To develop the models for estimating RH two important input variables were estimated from 

MODIS. On the previous chapters, it was concluded that exists 2 different set of models to 

estimate those variables, one trained using data from MODIS Aqua and other from MODIS 

Terra. It is necessary to work with two models and select the one that provides the best results. 

8.3.1 RELATIVE HUMIDITY – MODIS AQUA 

This section presents the group of models to estimate RH using PW and LST estimated from 

MODIS Aqua, and NDVI which is also obtained from MODIS Aqua.  

This sections provides the results obtained from the three methodologies implemented: 

regression based on forward selection algorithm, regression based on group variable selection 

and ANN. The models are classified by rainfall season, and organized by homogeneous 

climatic zones or for the entire MAC region. 

Table 26 presented the RH models corresponding to the dry season. This table is divided in 4 

sub tables: a. shows the results corresponding to the group variable selection technique, b. the 

results corresponding to the forward selection technique c. shows the error rate for both 

techniques and d. exhibits results corresponding to the ANN. Tables 27 and 28 present the 

corresponding results for Early and Late rain season models, respectively, and using the same 

sub table structure. 

Table 26.a: Results Dry season from Group variable selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5022 8.3532 X14, X16, X9, X17, X15, X10, X13, X11, X6 

Antilles 0.5535 7.1470 X14, X16, X17, X7, X15, X6, X11, X10, X13 

South America 0.5163 6.9581 X10, X16, X14, X2, X15, X1, X7, X8, X5, X9 

Center America 0.5091 8.8009 X14, X16, X9, X17, X15, X10, X13, X11, X6 

USA 0.5449 9.4297 X14, X16, X3, X5, X13, X11, X15, X17 

Table 26.b: Results Dry season from Forward selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5098 8.3339 X14, X16, X9, X17, X15, X13, X1, X10, X6, X5, X3, 

X11, X2, X4  

Antilles 0.5619 7.0323 X14, X16, X17, X9, X15, X6, X13, X10, X4, X11, X2, 

X3, X5 

South America 0.5271 6.8393 X10, X16, X14, X2, X4, X15, X1, X17, X5, X6, X9, 

X11, X13, X3 

Center America 0.5296 8.6026 X14, X16, X9, X17, X1, X2, X15, X10, X3, X4, X5, 

X13, X6 

USA 0.5643 9.2680 X14, X16, X7, X3, X5, X13, X17, X2, X15, X9, X4 

 

 

 



79 

 

Table 26.c: Dry season: Error rate - RH 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 9.83 9.81 

Antilles 9.83 9.67 

South America 9.01 8.86 

Center America 10.95 10.70 

USA 11.10 10.91 

Table 26.d: Results Dry season from ANN - RH 

Area R2 MAE 

(%) 

Error Rate 

(%) 

Antilles 0.6337 6.3456 8.72 

South America 0.5953 6.3132 8.18 

Center America 0.6218 7.6265 9.49 

USA 0.6298 8.3573 9.84 

Table 27.a: Results Early rain season from Group variable selection technique - RH 

Area R2 MAE 

(%) 

Important variables 

MAC region 0.5688 7.5013 X10, X16, X14, X7, X17, X8, X11, X15, X13 

Antilles 0.6238 6.2842 X14, X16, X17, X7, X8, X10, X13, X15, X11 

South America 0.4142 7.3861 X8, X16, X14, X17, X11, X15, X10, X13 

Center America 0.5090 8.4022 X10, X16, X9, X14, X6, X5, X4, X3, X2 

USA 0.6241 7.9711 X16, X3, X14, X7, X13, X17, X15, X11 

Table 27.b: Results Early rain season from Forward selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5819 7.3916 X10, X16, X14, X9, X17, X15, X1, X13, X2, X5, X4, 

X3, X11, X6  

Antilles 0.6417 6.1338 X14, X16, X17, X7, X2, X10, X9, X15, X5, X13, X11, 

X3, X6 

South America 0.4303 7.2224 X16, X14, X17, X11, X2, X9, X15, X6, X4, X12, X3, 

X5, X13 

Center America 0.5283 8.1957 X10, X16, X9, X14, X17, X15, X13, X4, X5, X3, X11, 

X6, X2 

USA 0.6276 7.8509 X16, X3, X14, X13, X17, X15, X9, X2, X1, X6, X4 

Table 27.c: Early rain season: Error rate - RH 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 8.47 8.34 

Antilles 8.95 8.74 

South America 9.26 9.05 

Center America 10.25 10.00 

USA 9.00 8.86 

Table 27.d: Results Early rain season from ANN - RH  

Area R2 MAE 

(%) 

Error Rate 

(%) 

Antilles 0.7161 5.4035 7.70 

South America 0.4891 6.7619 8.48 

Center America 0.6002 7.4758 9.12 

USA 0.6903 7.0769 7.99 
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Table 28.a: Results Late rain season from Group variable selection technique - RH  

Area R2 MAE (%) Important variables 

MAC region 0.5455 7.8147 X14, X16, X7, X13, X17, X15, X10, X11, X6 

Antilles 0.5408 6.0830 X14, X16, X17, X15, X10, X13, X6, X11 

South America 0.4588 7.2258 X17, X16, X14, X2, X6, X4, X3, X9 

Center America 0.5102 7.1506 X14, X16, X7, X2, X8, X9, X3, X5, X1, X4 

USA 0.6389 8.8061 X14, X16, X2, X1, X3, X4, X6, X9, X5 

Table 28.b: Results Late rain season from Forward selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5842 7.5197 X14, X16, X9, X2, X17, X13, X15, X3, X4, X5, X1, X6, 

X10, X11 

Antilles 0.5707 5.8636 X14, X16, X17, X9, X15, X10, X2, X3, X13, X6, X11, 

X5, X4 

South America 0.4725 7.0779 X17, X16, X14, X2, X1, X15, X3, X11, X6, X10, X13, 

X5 

Center America 0.5466 6.7952 X14, X16, X17, X2, X9, X15, X13, X10, X1, X5, X11, 

X3, X6 

USA 0.6756 8.2981 X14, X16, X2, X1, X15, X11, X17, X3, X9, X5, X13, X4 

Table 28.c: Late rain season: Error rate - RH 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 8.90 8.56 

Antilles 8.81 8.49 

South America 9.25 9.06 

Center America 8.89 8.45 

USA 10.03 9.45 

Table 28.d: Results Late rain season from ANN - RH 

Area R2 MAE 

(%) 

Error Rate 

(%) 

Antilles 0.6192 5.4582 7.90 

South America 0.5149 6.8948 8.83 

Center America 0.6121 6.2936 7.83 

USA 0.7333 7.3688 8.39 

The best results were obtained from the ANN. This technique offered the biggest R2 values and 

correspondingly the lowest errors and the ratio between the error rate and the total variability 

is also the lowest. However, to achieve those results different assumptions have been applied 

over the dataset. The input variables that were included in the ANN are the most important 

variables from the best regression techniques, for each model. This decision has been adopted 

to reduce the multicollinearity issues. Also, the routine of ANN used a nonlinear transfer 

function, specifically the log sigmoidal function. The results become better compared to the 

ones obtained with regression, on the downside the processing time increases exponentially. It 

was decided to divide the MAC region into homogeneous zones to improve estimation and to 

reduce the computational time. 
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South America was the hardest regions to estimate RH, this especially noticeable in their higher 

error rate and poor R2 value. This is somehow expected based on the low quantity of stations 

that are presented in this region that are not sufficient to explain the entire variability of the 

data. This problem is also a heritage from the estimations of LST and PW that were used as 

input variables in this model. The dry season correspond to the winter time, a period with 

complex behavior of the RH.  

In terms of the important variables, at least two of the seasonal components were important 

variables, it confirms the fact that the RH follows a periodical behavior. Also, the variables 

related to the GOES brightness temperature as well as some of the physical parameters appear 

as important variables in most of the models, but depending on the combination of region with 

season then the GOES channel and physical parameter combination are different.  

8.3.2 RELATIVE HUMIDITY – MODIS TERRA 

This section presents a set of models to estimate RH using PW and LST estimated from MODIS 

Terra and NDVI obtained from MODIS Terra.  

Table 29 presented results of the models corresponding to the dry season. This table is divided 

in 4 sub tables: a. shows the results corresponding to the group variable selection technique; 

Table 29 b. shows results of the forward selection technique, Table29 c. presents the error rate 

from both techniques and Table 29 d. exhibits results corresponding to the ANN. Tables 30 

and 31 present the associated results for Early and Late rain season models. 

Table 29.a: Results Dry season from Group variable selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5026 8.3576 X14, X16, X9, X17, X15, X10, X13, X11, X6 

Antilles 0.5506 7.1038 X14, X16, X17, X7, X8, X2, X4, X3, X5 

South America 0.5131 6.9760 X10, X16, X14, X2, X4, X1, X8, X5, X3, X9 

Center America 0.5321 8.6240 X14, X16, X9, X17, X12, X1, X2, X15, X7 

USA 0.5113 9.6825 X14, X16, X3, X13, X17, X11, X15, X6 

Table 29.b: Results Dry season from forward selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5088 8.3346 X14, X16, X9, X17, X15, X1, X13, X10, X5, X6, X11, 

X3, 

Antilles 0.5557 7.0672 X14, X16, X9, X17, X7, X15, X13, X10, X4, X2, X3, 

X11, X5 

South America 0.5294 6.8343 X16, X14, X2, X4, X15, X1, X17, X5, X9, X5, X3, X11, 

X12, X6 

Center America 0.5320 8.6356 X14, X16, X9, X17, X1, X2, X15, X10, X3, X4, X13, 

X5, X11, X6 

USA 0.5557 9.2950 X14, X16, X3, X5, X7, X13, X17, X8, X15, X4, X1 
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Table 29.c: Dry season: Error rate - RH 

Area Error rate (Group variable 

selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 9.84 9.81 

Antilles 9.77 9.72 

South America 9.03 8.85 

Center America 10.73 10.74 

USA 11.40 10.94 

Table 29.d: Results Dry season from ANN - RH 

Area R2 MAE 

(%) 

Error Rate 

(%) 

Antilles 0.6344 6.2995 8.66 

South America 0.5676 6.4912 8.41 

Center America 0.5892 8.0238 9.98 

USA 0.6331 8.2587 9.72 

Table 30.a: Results Early rain season from Group variable selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5530 7.6164 X10, X16, X14, X7, X17, X15, X13, X11, X6 

Antilles 0.6276 6.2190 X14, X16, X12, X17, X2, X4, X8, X13, X15 

South America 0.4282  7.2541 X6, X16, X14, X17, X11, X2, X9, X15, X7, X12 

Center America 0.5122 8.3875 X10, X16, X9, X14, X6, X4, X5, X3, X2 

USA 0.6212 7.8996 X10, X16, X3, X14, X4, X5, X6, X2, X1 

Table 30.b: Results Early rain season from Forward selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5809 7.3700 X10, X16, X14, X9, X17, X15, X1, X2, X13, X5, X3, 

X4, X11, X6 

Antilles 0.6362 6.1214 X14, X16, X17, X2, X4, X9, X15, X5, X1, X10, X11, 

X13, X3, X6 

South America 0.4306 7.2160 X6, X16, X14, X17, X11, X2, X4, X15, X5, X3, X1, 

X12, X13 

Center America 0.5319 8.1764 X10, X16, X9, X14, X17, X15, X13, X4, X5, X3, X2 

USA 0.6289 7.8193 X16, X3, X14, X15, X13, X17, X9, X1, X2, X6, X4, X5 

Table 30.c: Early rain season: Error rate - RH 

Area Error rate (Group 

variable selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 8.60 8.32 

Antilles 8.86 8.72 

South America 9.09 9.05 

Center America 10.24 9.98 

USA 8.92 8.82 

Table 30.d: Results Early rain season from ANN - RH 

Area R2 MAE 

(%) 

Error Rate 

(%) 

Antilles 0.7221 5.2862 7.53 

South America 0.5060 6.7379 8.45 

Center America 0.6027 7.4449 9.09 

USA 0.6945 7.0014 7.90 
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Table 31.a: Results Late rain season from Group variable selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5714 7.7582 X14, X16, X9, X12, X2, X7, X1, X4, X5, X6 

Antilles 0.5662 5.8829 X14, X16, X7, X17, X2, X8, X3, X15, X9 

South America 0.4487 7.3207 X14, X16, X17, X11, X1, X10, X15, X6, X13 

Center America 0.5235 7.0731 X14, X16, X7, X8, X2, X3, X12, X9, X5, X1 

USA 0.6419 8.7088 X14, X16, X3, X15, X11, X17, X13, X7 

Table 31.b: Results Late rain season from Forward selection technique - RH 

Area R2 MAE (%) Important variables 

MAC region 0.5828 7.5391 X14, X16, X9, X2, X17, X13, X15, X4, X3, X5, X1, X6, 

X10, X11 

Antilles 0.5591 5.9225 X14, X16, X17, X2, X3, X6, X15, X13, X9, X10, X5, X4 

South America 0.4796 7.0149 X14, X16, X2, X17, X1, X11, X9, X6, X4, X12, X15, 

X3, X5 

Center America 0.5475 6.8131 X14, X16, X17, X2, X3, X9, X15, X1, X11, X5, X10, 

X4, X13 

USA 0.6715 8.3489 X14, X16, X2, X1, X15, X11, X17, X3, X5, X13, X9, X4 

Table 31.c: Late rain season: Error rate - RH 

Area Error rate (Group 

variable selection) (%) 

Error rate (Forward 

selection) (%) 

MAC region 8.84 8.59 

Antilles 8.52 8.58 

South America 9.37 8.98 

Center America 8.80 8.47 

USA 9.92 9.51 

Table 31.d: Results Late rain season from ANN - RH 

Area R2 MAE 

(%) 

Error Rate 

(%) 

Antilles 0.6200 5.4237 8.58 

South America 0.4825 7.0024 8.98 

Center America 0.6279 6.1855 8.47 

USA 0.7113 7.6602 9.51 

It is noticeable that similar from the models obtained in the previous section, the best results 

were obtained modeling RH based on ANN. Results shows that the computational time grows 

exponentially when ANN was trained. This time was reduced after dividing the MAC region 

into homogeneous zones. 

In terms of the results itself once again is noticeable that models provide good estimations of 

RH, but South America is still being the hardest region to estimate compared to the results 

obtained on the other regions. In terms of the rainy seasons, the hardest region to estimate RH 

was the dry season which provides the lowest results in terms of the error, error rate and R2 

coefficient. 

The sinusoidal functions resulted important predictors to estimate RH. The position and time 

related variables resulted also important variables to estimate RH. The satellite variables BT 
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and some of the physical parameters contribute with a set of important variables, but this set is 

different depending on the combination of season and region that was modeled. 

Comparing the results obtained in this section with the models from MODIS Aqua, both models 

resulted competitive. In general terms, it is difficult to determine which of those models provide 

the best set of estimators. Most of the input variables remains the same for both models except 

for three variables: LST, PW and NDVI.  

It has been observed that even using a nonlinear estimation technique (ANN) the residuals still 

exhibits problems related to the constant variance and the independence. To attend these 

problems, require further research. 

8.3.3 MODEL EVALUATION 

The model has been developed using 584 weather stations. However, the main objective of this 

work is to derive hourly and gridded estimates of RH; therefore, model evaluation produces 

the RH over the MAC region. 

Model evaluation provides images of estimated RH from the entire MAC region during every 

hour during the training period. Each image has been studied to determine how adequate are 

the estimation for a specific hour of time and for a specific region. The change of the values 

during the day and night cycles and during the different months and seasons have also been 

analyzed. However, it is not possible to present the entire set of developed images based on the 

huge number of images that has been generated and studied. Figure 29 shows estimates of RH 

for August 15, 2011 during the daytime (at 18 UTC) the left panel exhibits estimates based on 

Aqua and the right panel shows estimates based on Terra. Figure 30 is similar but it present 

estimates for August 15, 2011 during nighttime (at 08 UTC). 

                

                        a.                                                                                         b. 

Figure 29: panel a.: Modeled RH Trained using MODIS Aqua. Panel b.: Modeled RH Trained using MODIS 

Terra Date: August 15 2011 at 18:00 UTC. 
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                        a.                                                                                         b. 

Figure 30: panel a.: Modeled RH Trained using MODIS Aqua. Panel b.: Modeled RH Trained using MODIS 

Terra Date: August 15 2011 at 08:00 UTC. 

Results shows that the estimations follow correctly the variation of RH throughout the day, in 

general it is observed that estimated RH increase during the night hours reaching its peak during 

the early morning and their minimum values during the daytime about the 18 UTC, but with 

small time shifts depending on the local times. This effect is clearly appreciated in the figures, 

for the 08 UTC image, the values or RH are very high about 80 or 90%. In contrast, at the 18 

UTC images the values of RH decreases to about 60%. Also, it is observed that the minimum 

values do not fall below 40% as it was expected. Thus, it is not expected to see values of RH 

close to 0% specially in a month that is the starting of the late rain season where the large 

percentage of RH is expected. 

A particular effect is noticed on the South America estimations. The models provide acceptable 

results on the training process, however looking the evaluation images it is noticeable that it 

has some limitations and issues. The estimations follow correctly the changes for the day night 

cycles, but they look very even specially for an area with a complex geography. It was expected 

that the influence of the amazon forest (the Andean mountains) would be more notorious the 

estimation of RH but it was not the case. It can be explained looking for the location and 

quantity of the stations used to train the model, most of these were located in the coastal areas 

of this region and in consequence the effect of the elevation and NDVI were marginal. This 

effect was not completely noticeable in the training process and is not expected to be noticed 

in the validation stage, because in those stages the estimations of the stations were only 

compared with these stations and their position. To solve this limitation, it is necessary to 

include weather station located in the mountains to obtain a more representative sample. 
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Even that, the evaluations have shown that the models develop are capable to offer estimations 

of RH that matches with the real behavior of the RH product. Even the limitations with South 

America, the model follows the patterns and trends that are expected for the estimates of RH. 

It observed that estimates of RH follow the correct day night cycles and they follow the changes 

in value expected for the mountains, deserts, Caribbean islands. In general, it presents a correct 

panorama of the behavior of the RH in areas with low quantity of stations, which was one of 

the objectives proposed for this model. However, this evaluation was performed under the same 

period of time used to train the model, it is necessary to validate this model in order to conclude 

that it can be used as a tool to estimate RH.   

Comparing the two different set of developed models, it can be confirmed that both provides 

similar values of RH. However, results based on MODIS Aqua is quite superior to represent 

the joint areas between different zones and this effect can be appreciated in the limits of center 

and North America for example, and have a bigger level of contrast between areas with high 

RH and areas with low values of RH.  

8.3.4 VALIDATION  

Validation consists on comparing a set of RH model estimates with station observations. It is 

based on the ANN models, which have resulted to be the best technique for this application. It 

is important to clarify in the validation, even when the estimations were obtained from different 

models depending on the region, the comparison are performed based on the MAC region 

indistinctly of those regions. This is to be coherent with the objective to model the entire MAC 

region in a correct way.  

Table 32 shows validation results in terms of four performance metrics MAE, RMSE error rate 

and R2. This table is divided in two sub tables: a. presents results when using input variables 

from MODIS Aqua, b. table shows results based on MODIS Terra. Each of the sub tables 

present the results corresponding to each individual season. 

Table 32.a: RH Validation results: MODIS Aqua models 

Season MAE (%) RMSE (%) R2 Error rate (%) 

Dry season 7.3800 9.6350 0.4911 9.59% 

Early Rain Season 5.7822 7.7372 0.6479 7.58% 

Late Rain Season 5.7579 7.7068 0.6982 7.46% 

 

 

 



87 

 

Table 32.b: RH Validation results: MODIS Terra models 

Season MAE (%) RMSE (%) R2 Error rate (%) 

Dry season 7.5456 10.0054 0.4522 9.81% 

Early Rain Season 5.9381 8.1868 0.6010 7.78% 

Late Rain Season 5.7869 7.7463 0.6979 7.49% 

It is observed that the difference between the observations and estimations remains about the 

same in comparison with what has been observed on the training results. The four metrics are 

being evaluated using a different period of time and the results matched the observed during 

the training process being very close one to the other. It is good to observe these kinds of results 

and to observe how small was in general the error and the error rate. All the error performance 

metrics were in general below 10%. This is a positive sign since in different times and space 

the models provided satisfactory estimates. 

To represent in a more visual way the difference between the estimations and observations of 

RH, a group of figures corresponding to the time series of both for the validation set are 

presented below. There are presented three figures: 31, 32 and 33; one for each of the validation 

months, and each figure was divided into 4 panels: panel a. compares observations versus 

estimations based on MODIS Terra models and panel b. observation versus estimations based 

on MODIS Aqua models. Panels c. and d. present the time series for a small sample of data to 

observe in more detail the difference between observations and estimations. 

 

                                                                                         a. 
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                                                                                        b. 

 

c. 

 

d. 

Figure 31: Time series December 2011. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample). 

 

                                                                                         a. 
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                                                                                        b. 

 

c. 

 

d. 

Figure 32: Time series July 2012. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample). 

 

                                                                                         a. 
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                                                                                        b. 

 

c. 

 

d. 

Figure 33: Time series August 2012. Panel a: observations vs MODIS Terra model. Panel b.: Observation vs 

MODIS Aqua model. Panel c. observations vs MODIS Terra model (sample). Panel d. observations vs MODIS 

Aqua model (sample). 

The RH errors between MODIS Terra and MODIS Aqua appear to be small. More important, 

the figures 31, 32 and 33 show that MODIS Aqua provides a more stable set of estimations 

than MODIS Terra. 

It can be noted that both models provide a good set of RH, however in some the estimations do 

not cover the entire range of values given by the station dataset.  
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9. CONCLUSIONS 

 

9.1 CONCLUSIONS CHAPTER 6 

In this chapter, it was proposed to estimate RH based on variables from remote sensing. A 

group of models were developed to test the importance of three proposed physical parameters 

(LST, PW and NDVI) in the estimation of RH. These physical parameters are obtained from 

MODIS instruments. The conclusions are presented below: 

• It has been confirmed, based on the results, that the proposed physical parameters result 

significant to estimate RH. In each model, at least one of the physical parameters 

variations appear as significant variables. It is also noted that to obtain a good 

representation of RH it is necessary to include some other variables as the location or 

variables related with the time of the observation.  Furthermore, it may be necessary 

the inclusion of some other variables to represent the variability and behavior of this 

product in a more precise way. In future experiments, it is recommended to study new 

variables that may be included to improve the model result. 

• From the two MODIS datasets used to train the models, MODIS Aqua provides better 

estimations compared with MODIS Terra. It is theorized that this may be related to the 

time when the observations are taken. MODIS Aqua provides images during the early 

morning and about 18 or 19 both in UTC time. And those can be related to the time 

where the higher and lower observation of RH are captured in the stations. On the other 

hand, MODIS Terra provide images approximately at 2 to 3 and about 15 to 17 hours, 

both in UTC, when there is large variability of RH, and in consequence introducing 

larger errors. 

• The results from the best set of models provides R2 between 0.68 and 0.81 and the MAE 

has values between 7.33 and 9.63 percent. Those results are acceptable but it is used 

just as a reference point. In future experiments, it might be obtained different result in 

the estimation of the same product. 

• MODIS physical parameters in general provides a good set of variables to estimate RH. 

However, the amount of information obtained is not enough to generate a model that 

fit the required characteristics of hourly observations over the entire MAC region. 
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Furthermore, it is observed the importance of the hour as a variable to estimate RH as 

well as the position and elevation component. However, LST and PW observations 

from MODIS are limited to only twice a day. To solve this limitation, it is proposed to 

estimate LST and PW using data from another satellite that increase the amount of 

available data to hourly observations and covering MAC region in every observation, 

and the selected satellite is GOES-13. 

9.2 CONCLUSIONS CHAPTER 7 

This second step in the process of estimating RH, has resulted in an improvement of the limited 

information provided for MODIS. The major conclusions of this chapters are summarized 

below: 

• Regression techniques with MODIS and GOES data is a feasible and efficient 

alternative to develop the gridded and hourly estimates of LST, PW and NDVI, which 

are required to estimate the RH 

• It has been confirmed the importance to include the elevation, the time and the position 

to explain the variability of LST and PW.  

• It has been concluded that better estimates are usually obtained when the MAC region 

is divided in Homogeneous zones.  

• The division of the year in different seasons provide good results in terms of the 

estimations. It has helped to solve two different problems that are the processing time, 

and to reduce the problems with the variation distributing the period in seasons with 

defined characteristics. 

• There are residual problems related to the independence and the constant variance. 

However, these problems may be associated to the data and a more advance 

transformation process or a more detail dataset would help on the solution of it. 

• The evaluation of the models shows how good the models follow the natural behavior 

of the observations. It is also confirmed in the validation stage where the models 

provide low errors compared to the range of values from the variables. However, there 

is a problem with the validation for the PW that may be explained by the nature of the 

selected months. 
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9.3 CONCLUSIONS CHAPTER 8 

A new set of models to estimate RH from satellite data have been developed. These new models 

improved the developed product because it is trained with more information and are capable to 

produce estimations with a most accurate hourly interval.  

• The proposed model provides hourly RH estimations at 4km spatial resolutions over 

the entire MAC region under clear sky condition.  

• The implementation of the ANN resulted in improves in the estimation of RH. It has 

constantly produced the best results when compared to the regression techniques. Also, 

there is observed better results when using a nonlinear transfer function, which provides 

evidence that the RH and their input variables follows a nonlinear behavior that requires 

more advanced techniques to fully understand it. The main drawback of the ANN is the 

large computational time required for model training. 

• It has been shown that there is a small improvement in the models trained using LST 

and PW estimated from MODIS Aqua and NDVI also observed from MODIS Aqua, 

this advantage is hard to observe in the metrics, but it became more evident during the 

validation and evaluation process. 

• There persist some problems related to the residuals related to the independence and 

the constant variance. Thus, it is required to perform further research to mitigate this 

problem.  

• South America is one of the hardest region to estimate RH. It is caused by the lowest 

quantity of information obtained from this region. The selected sample is not 

representative of the characteristics of this complex region.  

• It is important to include the seasonal components to captured the variations of the RH 

during the 24 hours’ variation. At least one of the sinusoidal functions appears to be 

significant variables in each of the models. During the evaluation period, it can be 

observed that this change of RH during the daytime correspond to the real changes. 

This effect is also observed in the validation process noticing that it corresponds to the 

real shift observed in the stations. 
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9.4 GENERAL CONCLUSIONS 

• It has been shown the importance of Industrial Engineering techniques as: regression, 

optimization, quality control and neural network in the solution of problems related to 

meteorological applications. 

• The proposed model is capable to estimate hourly RH, LST and PW at 4km spatial 

resolutions over the entire MAC region under clear sky condition. 

• The inclusion of the seasonal components, division in homogeneous zones and in rain 

seasons resulted important to improve the performance of the RH estimations. 

• It was noticed that it is hardly to generate estimation mostly in the southern region. The 

proposed model can be improved by using additional transformations to stabilize the 

variance and independence on residuals. 
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10. CONTRIBUTIONS  

 

This work helped in the estimation of an important atmospheric product which is the RH. This 

product can be estimated now in a spatial resolution of 4 km and every hour. Also, this product 

has been trained to cover the entire MAC region offering estimation for all the land covered 

areas that are under clear sky conditions.  

This models contribute as the possibility to obtain an operational product from RH, product 

that can be useful in the calculations of products as Heat index. Also, thank to this model now 

it can be developed an operational RH product that can be introduced as an input variable in 

correlation analysis with different atmospheric and non-atmospheric variables as energy 

consumption. 

This model also offer a model trained with a big amount of data and in a good time resolution. 

It was trained using an entire year of data divided in 3 different rain seasons. Also, the 

validation time include one entire month per each season. 
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11. FUTURE WORK 

 

Several models have been developed, evaluated and validated to estimate RH for the MAC 

region. However, these models are not perfect, as it was discussed in the previous chapters. 

Here a group of alternatives are introduced to improve current work: 

• Include some other physical parameters and satellite products as input variables. Some 

of those products are the air temperature that could also be estimated from MODIS data. 

Also, it will be recommended to include some other RH humidity products from 

numerical models, as the one offered by NCEP that provides a low-resolution product. 

This product may be included as an input variable to increase the level of variability 

captured by the model. 

• It is necessary to solve the problems of instable variance and autocorrelation in the 

residuals on the models for LST, PW and RH. Different approximation has been tested 

to achieve a solution; however, advanced techniques specifically designed for this end 

should be implemented. It is necessary to include some advanced transformation 

combined with a new data segmentation based in more advanced clustering techniques. 

It is expected that those implementations may be helpful to reduce these problems. 

• The RH model requires of the LST, PW and NDVI data in hourly basis. To derive these 

variables regression models were developed; however, these models include some 

estimation errors. Thus, to avoid these errors it would be desirable to have 

measurements of the actual physical parameters. In the future, it is recommended to 

replace the estimation with direct measurements from GOES-R which was launched in 

November 19, 2016. In the near future, this satellite will offer LST, PW, NDVI and 

other products that can be used to improve the RH (GOES-R, 2016 and GOES-R. b, 

2016). It is expected that this change will reduce the error in the estimation of RH, 

specifically the error generated from LST and PW. 
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13. APPENDICES 

 

13.1 APPENDIX 1 

In this appendix, it is presented an example of the code developed using MATLAB software. 

This code corresponds to the model training process to estimate RH, based on MODIS Aqua, 

in the final stage (explained in chapter 8). Also, this code requires functions for specific tasks 

as the regression or ANN functions. The code is presented bellow 

 

clear all; 

clc; 

close all; 

warning off all 

%%Load 

tables%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

directory='/usr/local/Data/jean/Estimate Relative Humidity/Tables AQUA/1 Create Inputs'; 

file='tabledata_rh_aqua_late_2011.mat'; 

regressiontable=table_generator(directory,file); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

tic 

%% Creating clusters 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

aas1=find(regressiontable(:,2)<=25 & regressiontable(:,2)>=16 & regressiontable(:,3)<=-60 & regressiontable(:,3)>=-85); 

aas2=find(regressiontable(:,2)<=16 & regressiontable(:,2)>=12 & regressiontable(:,3)<=-60 & regressiontable(:,3)>=-65); 

aas3=find(regressiontable(:,2)<=30 & regressiontable(:,2)>=25 & regressiontable(:,3)<=-60 & regressiontable(:,3)>=-87); 

aas=[aas1;aas2;aas3]; %Lesser Antilles 

mas=setdiff([1:length(regressiontable)]',[aas]); %Greater Antilles 

reg=regressiontable; 

reg([aas],2)=-9999; 

usa=find(reg(:,2)>23); %USA 

cas=find(reg(:,2)<=23 & reg(:,2)>=8 & regressiontable(:,3)<=-77); %Central America 

sas=setdiff(mas,[usa;cas]); %South America 

%%Selecting a particular region%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

regressiontable=regressiontable(sas,:); 

seltime=find(regressiontable(:,4)>=0); 
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regressiontable=regressiontable(seltime,:); 

seltime2=find(regressiontable(:,8)>=0); 

regressiontable=regressiontable(seltime2,:); 

%%Dividing Regressors and response variables%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

x1=regressiontable(:,[2:4 6:8 11:13 15:18 19:22]); 

y=regressiontable(:,1); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

clear regressiontable reg 

%%Model 

Training%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

n=size(x1); 

toc 

tic 

x=x1; 

disp('Division Method')        %% Division method 

[varws3,xwins3,beta3,R23,pval3,t03]=division_sel(1,10,x,y,0.95); 

disp('VIF') 

[Xa3,vars3a,beta3a,R23a,VIF3a,pval3a,t03a]=variance_factor(y,xwins3,5); 

ye5=[ones(n(1),1) x(:,varws3)]*beta3'; 

ye6=[ones(n(1),1) Xa3]*beta3a'; 

%% 

disp('Forward Selection') %% Forward selection 

[R24,Xs4,beta4,Ye4,pval4,Fu4,vars4,t04]=forward_sel(y,x,0.95); 

disp('VIF') 

[Xb4,vars4a,beta4a,R24a,VIF4a,pval4a,t04a]=variance_factor(y,Xs4,5); 

ye7=Ye4; 

Xb4=[ones(n(1),1) Xb4]; 

ye8=Xb4*beta4a'; 

%% 

R2p2=[R23 R23a;R24 R24a]; 

% 

R2f(1)=R23a; 

R2f(2)=R24a; 

MAEf(1)=sum(abs(y-ye6))/length(y); 

MAEf(2)=sum(abs(y-ye8))/length(y); 

RMSEf(1)=sqrt(sum((y-ye6).^2)/length(y)); 

RMSEf(2)=sqrt(sum((y-ye8).^2)/length(y)); 
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errate(1)=mean(abs(y-ye6))/(max(y)-min(y)); 

errate(2)=mean(abs(y-ye8))/(max(y)-min(y)); 

 

figure 

plot([y ye5 ye6 ye7 ye8],'linewidth',2); 

grid 

title('Relative Humidity') 

xlabel('samples (Center America)') 

ylabel('RH') 

legend({'Observed';'Division Method';'Division Method VIF';'Forward Sel';'Forward Sel VIF'}); 

toc 

 

ed=(sum(abs(y-ye6)))/length(y);     

ef=(sum(abs(y-ye8)))/length(y);   

 

savevar1=varws3(vars3a); 

savevar2=vars4(vars4a); 

 

if(R24a>=R23a) 

     xnn=x(:,vars4(vars4a)); 

     savevar3=vars4(vars4a); 

else 

     xnn=x(:,varws3(vars3a)); 

     savevar3=varws3(vars3a); 

end 

 

net=tryNN_fun(xnn,y);  %%ANN 

ye9=sim(net,xnn'); 

ye9=ye9'; 

 

 

figure 

plot([y ye9],'linewidth',2); 

grid 

title('Relative Humidity') 

xlabel('samples (South America)') 

ylabel('RH') 

legend({'Observed';'Neural Network'}); 
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e9=y-ye9; 

SSE=e9'*e9; 

SST=y'*y-length(y)*mean(y)^2; 

R29=1-SSE/SST; 

en=(sum(abs(y-ye9)))/length(y);   

beta5a=net; 

 

R2f(3)=R29; 

MAEf(3)=sum(abs(y-ye9))/length(y); 

RMSEf(3)=sqrt(sum((y-ye9).^2)/length(y)); 

errate(3)=mean(abs(y-ye9))/(max(y)-min(y)); 

%%Figure obs. vs 

est.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure 

subplot(2,2,1) 

plot([y ye6 ye8 ye9],'linewidth',2); 

grid 

title('Relative Humidity') 

xlabel('samples (South America)') 

ylabel('RH') 

legend({'Observed';'Division Method VIF';'Forward Sel VIF';'Neural Network'}); 

subplot(2,2,2) 

plot(y-ye6,'linewidth',2); 

grid 

title('Division Method') 

xlabel('samples (South America)') 

ylabel('RH') 

%legend() 

subplot(2,2,3) 

plot(y-ye8,'linewidth',2); 

grid 

title('Foward Selection') 

xlabel('samples (South America)') 

ylabel('RH') 

%legend() 

subplot(2,2,4) 

plot(y-ye9,'linewidth',2); 

grid 

title('Neural Network') 
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xlabel('samples (South America)') 

ylabel('RH') 

%legend() 

%%Saving 

results%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

results=[MAEf' RMSEf' R2f' 100*errate']; 

save rh_aqua_clear_coef_late_sas.mat R2p2 beta3a beta4a beta5a savevar1 savevar2 savevar3 

 

13.2 APPENDIX 2 

Calculation of the error rate: 

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝑀𝐴𝐸

𝑚𝑎𝑥𝑜 −  𝑚𝑖𝑛𝑜
 

𝑀𝐴𝐸 =  
∑|𝑣𝑒 − 𝑣𝑜|

𝑛𝑒𝑙
 

Where: 

• 𝑚𝑎𝑥𝑜 = Maximum observed value. 

• 𝑚𝑖𝑛𝑜 = Minimum observed value. 

• 𝑣𝑒 = Estimated value 

• 𝑣𝑜 = Observed value 

• 𝑛𝑒𝑙 = Number of elements 

 


