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Recent advances in hyperspectral imaging sensors allow the acquisition of im-

ages of a scene at hundreds of contiguous narrow spectral bands. Target detection

algorithms try to exploit this high-resolution spectral information to detect target

materials present in a scene, but this process may be computationally intensive due

to the large data volumes generated by the hyperspectral sensors, typically hun-

dreds of megabytes. Previous works have shown that hyperspectral data processing

can significantly benefit from the parallel computing resources of GPUs, due to

their highly parallel structure and the high computational capabilities that can be

achieved at relative low costs. In this work, we studied the parallel implementation of

target detection algorithms for hyperspectral images in order to identify the aspects

in the structure of these algorithms that can exploit the parallel computing resources

of GPUs based on the NVIDIA R© CUDA
TM

architecture. A dataset was generated

using a SOC-700 hyperspectral imager to evaluate the performance and detection

accuracy of the parallel implementations. In addition, a library of target detectors

was developed to facilitate the use of the algorithms by future researchers.
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PARA IMÁGENES HIPERESPECTRALES USANDO NVIDIAR©

CUDA
TM

Por

Blas Trigueros Espinosa

Junio 2011

Consejero: Miguel Vélez
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Avances recientes en los sensores hiperespectrales permiten la adquisición de

imágenes de una escena a cientos de bandas espectrales contiguas y estrechas. Los

algoritmos de detección tratan de aprovechar esta alta resolución espectral para

detectar materiales de interés en una escena, pero este proceso puede ser computa-

cionalmente intenso debido al gran volumen de datos generado por los sensores

hiperespectrales, t́ıpicamente cientos de megabytes. Trabajos previos han mostrado

que el procesamiento de datos hiperespectrales se puede beneficiar significativamente

de los recursos de computación en paralelo de los GPUs, debido a su estructura al-

tamente paralela y las altas capacidades de computación que pueden alcanzar a un

precio relativamente bajo. En este trabajo estudiamos la implementación en paralelo

de algoritmos de detección para imágenes hiperespectrales con el fin de identificar

aspectos en la estructura de estos algoritmos que puedan sacar ventaja de los re-

cursos de computación paralela de GPUs basados en la arquitectura CUDA
TM

de

NVIDIA R©. Un conjunto de datos fue generado usando una cámara hiperespectral

iii



SOC-700 para evaluar el rendimiento y la precisión en detección de las implementa-

ciones. En adición, se desarrollo una libreŕıa de algoritmos de detección para facilitar

el uso de los algoritmos por futuros investigadores.
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Chapter 1

Introduction

1.1 Motivation

Remote detection and identification of objects or materials have attracted con-

siderable interest over the last few years and have become a desirable ability in

many civilian and military applications. The use of hyperspectral imaging (HSI)

techniques for remote detection and classification of materials has been widely stud-

ied in many areas like defense and homeland security, biomedical imaging, or Earth

sciences [1–4]. Hyperspectral imagers can collect tens or hundreds of images of the

same scene, taken at different narrow contiguously-spaced spectral bands. This high-

resolution spectral information can be used to identify materials by their spectral

properties but algorithms that exploit HSI data have usually high computational

requirements due to the potentially large volume sizes of these images, typically

hundreds of megabytes. This can be an important limitation in remote sensing

applications that require real-time processing, such as surveillance or explosive de-

tection. Fortunately, many algorithms designed for hyperspectral data processing

show an inherent structure that allows parallel implementations. Previous works

have shown that HSI data processing can significantly benefit from parallel comput-

ing resources of hardware platforms like computer clusters, field-programmable gate

arrays (FPGA), or graphics processing units (GPU) [5–9]. Specifically, GPUs have

1
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proven to be promising candidates as hardware platforms for accelerating hyperspec-

tral processing tasks due to its highly parallel structure and the high computational

capabilities that can be achieved at relative low costs [10, 11]. However, since the

GPU architecture is optimized for data-parallel processing, (i.e., tasks where the

same computation is repeated many times over different data elements), only hyper-

spectral algorithms that show this data-parallel structure can significantly benefit

from GPU-based implementations.

The research work presented in this thesis focused on studying different state-of-

the-art hyperspectral target detection algorithms in order to analyze the aspects in

the structure of these algorithms that can take advantage of the parallel computing

resources of GPUs based on the NVIDIA R© CUDA
TM

[12] architecture. Different

GPU-based implementations were proposed and evaluated in terms of running time,

speedup, and detection accuracy.

1.2 Objectives

The main objectives of this work were to study the parallel implementation of

target detection algorithms for hyperspectral imagery using CUDA-capable NVIDIAR©

GPUs and develop efficient implementations of the algorithms that exploit the pa-

rallel hardware architecture. The specific objectives of this work were:

• To study and develop GPU-based parallel implementation of different target de-

tection algorithms for both full-pixel and sub-pixel detection in HSI using the

CUDA C
TM

environment.

• To study and identify elements in the structure of the algorithms that can be

exploited by the NVIDIA R© CUDA architecture to get better performance.

• To develop CPU-based serial and parallel implementations to be used as a baseline

for comparison of resulting running times and speedup estimation.



3

• To evaluate the performance and detection accuracy of the GPU-based parallel

implementations and study potential applications in real time detection.

• To develop a CUDA library of target detection algorithms to facilitate future use

by researchers.

1.3 Contribution of the Work

This work presents an analysis of the parallel implementation on GPU of three

different target detection algorithms: the RX algorithm, the matched filter (MF),

and the adaptive matched subspace detector (AMSD). The structure of these al-

gorithms was analyzed to identify the aspects that can be exploited by the CUDA

architecture and the aspects that cannot be exploited due to limitations of the GPU.

An implementation approach based on the Cholesky decomposition of the back-

ground covariance matrix was proposed for the GPU-based implementation of the

full-pixel detectors (RX and MF). For the AMSD, two methods for estimating the

background subspace were evaluated in the GPU-based implementation: SVD and

MaxD. In addition, the running times of the proposed implementations were mea-

sured for different data sizes to analyze the speedup and the real time performance

of the GPU-based implementations.

As a final result of this work, a library of target detectors that includes all

the proposed GPU-based implementations was developed to facilitate future use by

researchers.

1.4 Thesis Outline

Chapter 2 starts presenting background concepts related to hyperspectral ima-

ging and target detection in hyperspectral images. It presents a brief description

of the target detection theory and describes different target detection algorithms
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proposed in the literature. Chapter 2 also describes the concepts related to the

Graphics Processing Units (GPU) and the NVIDIA R© CUDA
TM

parallel computing

architecture. Finally, previous works related to hyperspectral data processing using

GPUs are presented.

Chapter 3 describes the GPU implementation of three target detection algo-

rithms for hyperspectral images: RX algorithm, matched filter (MF), and adaptive

matched subspace detector (AMSD). Two different implementations for the RX al-

gorithm are described. The first one uses global estimates of the background para-

meters using training samples from the entire image. In the second implementation,

the background parameters are locally estimated using a window centered at the

test pixel. In the implementation of the AMSD algorithm, two methods for estima-

ting the background subspace were evaluated: SVD and the MaxD algorithm. This

chapter also discusses some aspects related to the parallel implementation of the

algorithms on the GPU to exploit the CUDA architecture: the task decomposition,

the organization of the data in memory, and how to map the computations on the

GPU.

Chapter 4 describes the experiments performed to evaluate the running times

and the detection accuracy of the algorithms. Finally, the experimental results are

presented and analyzed.

Chapter 5 presents the conclusions of this research and final remarks for future

work.



Chapter 2

Background and Literature Review

2.1 Hyperspectral Imaging

Spectral imaging is the acquisition of images where every pixel measures the

amount of electromagnetic radiation reaching the sensor at different spectral bands,

providing both spatial and spectral information of a scene [13]. In hyperspectral

imaging, hundreds of images are registered simultaneously at spectrally contiguous

narrow bands. This high-resolution spectral information can be used to discriminate

between the different materials present in the image, since the spectral distribution

of the radiation emitted, absorbed and reflected by the materials depends on their

physical and chemical properties.

A hyperspectral image can be viewed as a three-dimensional data cube with

two spatial dimensions and a third spectral dimension, so every pixel is a vector co-

rresponding to a single spectrum. The concept of a hyperspectral cube is illustrated

in Figure 2–1.

Figure 2–1: Structure of a hyperspectral imaging data cube. From [13].

5
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An example of an airborne hyperspectral imager is the NASA’s Airborne Vi-

sible/Infrared Imaging Spectrometer (AVIRIS) [14] developed by the NASA Jet

Propulsion Laboratory. This sensor is able to record images in the visible and near

infrared region (from 0.4 µm to 2.5 µm) using 224 contiguous 10-nm width spec-

tral channels, resulting in hyperspectral data cubes comprising from hundreds of

megabytes to several gigabytes. Another example is the HYDICE (HYperspectral

Digital Imagery Collection Experiment) sensor [15], which can collect spectral radi-

ance data in 210 bands from 0.4 µm to 2.5 µm. In this case, a hyperspectral data

cube consisting of 320 × 1,280 pixels has a size of 164.1 MB.

2.2 Target Detection in HSI

One of the most important tasks in hyperspectral imaging exploitation is target

detection. A target detection algorithm tries to identify the presence of objects or

materials in a scene by exploiting the spatial and high spectral resolution informa-

tion contained in a hyperspectral image. A detection problem can be described as

a binary hypothesis test, where two competing hypotheses are generated to differ-

entiate the pixels containing the target of interest from the pixels containing only

background spectra [13]:

H0 : target absent

H1 : target present

Based on the measured pixel spectrum, a detection algorithm has to decide which

hypothesis is true. A criterion for an optimum design of a detector could be the

maximization of the detection probability (the probability of selecting H1 as true,

when H1 is true) while keeping the probability of false alarm (the probability of

selecting H1 as true, when H0 is true) as low as possible.

The optimal detection statistic is the likelihood ratio test, which is optimum for

a wide range of performance criteria [13]. In this approach, the measured spectrum
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is treated as a random vector with a specific probability distribution. If x is the

observed pixel spectrum, the likelihood ratio test is given by:

Λ(x) =
p(x|H1)

p(x|H0)
(2.1)

where p(x|H1) and p(x|H0) are the conditional probability density functions of x

under the two hypothesis. If the ratio Λ(x) exceeds a given threshold η, then the

hypothesis H1 (target present) will be selected as true. Otherwise, the target absent

hypothesis H0 will be selected.

In many practical situations, the conditional probability densities of the likeli-

hood ratio are not known or depend on some unknown parameters (for example, the

mean and the covariance matrix of the background class distribution are usually not

known a priori). A common approach to handle this scenario is to replace the un-

known parameters in the likelihood ratio with their maximum-likelihood estimates.

This estimated likelihood ratio is known as Generalized Likelihood Ratio (GLR).

The variability of the target and background spectra can be described by using

subspace or statistical models. The target signatures can be estimated from the

pixels of the image, from ground truth, or library spectra.

2.2.1 Full-Pixel Target Detectors

Full-pixel target detectors assume that the pixels of the image do not contain

mixed spectra, and, therefore, every pixel vector represents the spectral information

of only one class (target or background). The spectral variability of every class

present in the image can be modeled using some statistical distribution. Multivaria-

te normal distributions are usually chosen since they lead to simple mathematical

models and show good performance for a wide range of scenarios. In this case, the
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detection problem can be described using the following hypotheses:

H0 : x ∼ N(µ0,Γ0) target absent

H1 : x ∼ N(µ1,Γ1) target present

where x is the pixel random vector; µ0, Γ0 are the mean vector and covariance

matrix of the multivariate normal distribution that characterize the background

class, respectively, and µ1, Γ1 are the mean vector and covariance matrix of the

multivariate normal distribution that characterize the target class, respectively.

Taking the natural logarithm of the likelihood ratio defined in Equation 2.1

and using the multivariate normal distribution as a probability density under each

hypothesis, the following detector is derived:

y = D(x) = (x− µ0)
TΓ−1

0 (x− µ0)− (x− µ1)
TΓ−1

1 (x− µ1)

H1

>

<

H0

η (2.2)

This detector basically compares the Mahalanobis distance [16] of the pixel vector

from the centers of the two target and background classes, and makes a decision

based on a given threshold.

If we assume that the target and background classes have the same covariance

matrix Γ = Γ0 = Γ1, the detector becomes a linear processor known as Matched

Filter (MF), which is given by [13]:

y = D(x) = κ(µ1 − µ0)
TΓ−1(x− µ0) =

(µ1 − µ0)
TΓ−1(x− µ0)

(µ1 − µ0)
TΓ−1(µ1 − µ0)

H1

>

<

H0

η (2.3)
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where κ is a normalization factor that is usually chosen to produce the output y = 1

when x = µ1. The idea of the matched filter is to project the pixel vector onto

the direction that provides the best separability between the background and target

classes.

In many practical situations, the statistics of the target class are unknown or

are very difficult to estimate when the image only contain a few target pixels. In

this case, the detection can be performed using only the statistical information of

the background (µ0,Γ0) by considering as targets those pixels that differ too much

from the background distribution. This approach is known as anomaly detection

and one of the most used anomaly detectors is the RX algorithm [17] given by:

y = D(x) = (x− µ0)
TΓ−1(x− µ0)

H1

>

<

H0

η (2.4)

The RX algorithm computes the Mahalanobis distance of the pixel vector x

from the mean of the background class. If the distance is larger than the selected

threshold, the pixel vector is considered a target.

In practice, these full-pixel targets need to be adaptive because the background

statistics are usually unknown and they have to be estimated directly from the

image. One common approach is to use kernel-based detectors that use a window

centered at the test pixel that defines a surrounding region used to compute the

background statistical parameters.

2.2.2 Sub-pixel Target Detectors

Sub-pixel target detection algorithms assume that the target may occupy only a

portion of the pixel area and the remaining part is filled with one or more materials,
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which constitute the background. Therefore, the observed pixel will be a mixture

of the target and background spectra. The most common model used to describe

this mixing process is the linear mixing model [18], which states that the measured

spectrum x of every pixel is generated by a linear combination of a given number

of unique deterministic spectral signatures or endmembers, that represent pure ma-

terials within the pixel. Every endmember has a corresponding abundance, which

represents the relative fraction coverage of each endmember within the pixel area.

This model assumes that the incident radiation bounces only once when it interacts

with the surface, so the radiation reaching the sensor will be a linear combination of

the components reflected by all the materials within the field of view of the sensor.

The linear mixing model can be stated as follows [18]:

x =
M∑
i=1

aiei +w = Ea+w (2.5)

where e1, e2, . . . eM, are the M endmember spectra, a1, a2, . . . aM are their corres-

ponding abundances and w is an additive noise. The endmember are usually assu-

med linearly independent (the matrix E will have full-rank) and the abundance va-

lues, since they represent cover material fractions, must satisfied the non-negativity

and sum-to-one constraints:

ai ≥ 0 (non-negativity constraint)
M∑
i=1

ai = 1 (sum-to-one constraint)
(2.6)

When the incident radiation experiences multiple reflections, the linear mixing

model is not appropriate since, in this case, the measured spectrum at the sensor

will be a nonlinear mixture of different constituent spectra.
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Depending on whether the model used to describe the variability of the back-

ground spectrum is a statistical distribution (unstructured background) or a sub-

space (structured background), the sub-pixel target detectors can be classified into

two different classes:

Unstructured Background Models

In unstructured background models, the background spectral variability is mo-

deled using a probability distribution (usually the multivariate normal distribution)

and the target variability is represented by a linear subspace. Therefore, the two

competing hypotheses are:

H0 : x = v

H1 : x = SaS + v

where v is a random vector that represents the background variability and the noise,

S is an L× P matrix whose columns span the target subspace, L is the number of

spectral bands, P is the dimensionality of the target subspace and aS is a P × 1

abundance vector. The variability of the target increases as the number of columns

P of S increases. When P = 1, the shape of the target spectrum is known a priori

and the spectral variability is restricted to variations in the amplitude of the target

spectrum.

One of the most powerful detectors based on unstructured backgrounds is the

Adaptive Cosine/Coherent Estimator (ACE) [19, 20]. This detector models the

entire background as a zero-mean multivariate Normal distribution, yielding the

following two hypotheses:

H0 : x ∼ N(0, σ2
0Γ)

H1 : x ∼ N(SaS, σ
2
1Γ)
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Using the maximum likelihood estimates for a, σ2
0 σ2

1 and Γ, the GLR results in the

following detector:

DACE(x) =
xTΓ̂−1SâS

xTΓ̂−1x
=

xTΓ̂−1S(STΓ̂−1S)−1STΓ̂−1x

xTΓ̂−1x

H1

>

<

H0

η (2.7)

where Γ̂, âS are the maximum likelihood estimate of the background covariance

matrix and the target abundances, respectively.

Structured Background Models

In structured background models, both the background and target spectral

variability are modeled using a linear subspace of dimension M < L, where L is

the number of spectral bands. Therefore, in this model, every pixel vector x can

be represented as a linear combination of M basis vectors. The two competing

hypotheses are:

H0 : x = Bab,0 +w

H1 : x = SaS +Bab,1 +w

where B is an L × M matrix whose columns represents the basis vectors for the

background subspace and S is an L× P matrix whose columns represents the basis

vectors for the target subspace. ab,0, ab,1 represent the coefficients of the linear

combinations of the background basis vectors under each hypothesis, respectively,

and aS represents the coefficients of the linear combinations of the target basis

vectors. Therefore, in this model, the background pixels and the pixels containing

the target are represented using different linear subspaces in the spectral space. The

only source of randomness that this model introduces is the L×1 vector w, which is

a random vector that represents the noise and it is usually modeled as a zero-mean

multivariate Normal distribution with covariance matrix σ2I.



13

One example of structured background detector is the Adaptive Matched Sub-

space Detector (AMSD) described in [21]. Following the GLR approach, this de-

tector is derived by computing the maximum-likelihood estimates for ab,0, ab,1, aS,

σ2I and replacing them into the likelihood ratio:

DAMSD(x) =
xT(I−B(BTB)−1BT)x

xT(I− E(ETE)−1ET)x
=

xTP⊥
Bx

xTP⊥
Ex

H1

>

<

H0

η (2.8)

where E = [S B] is the matrix obtained by the combination of the target and

background subspaces, P⊥
B is the orthogonal projection matrix onto the background

subspace and P⊥
E is the orthogonal projection matrix onto the combined target and

background subspaces. The resulting likelihood ratio for the AMSD detector is often

transformed into the ratio:

DAMSD(x) =
xT(P⊥

B −P⊥
E)x

xTP⊥
Ex

H1

>

<

H0

η (2.9)

which produces a detection statistic based on the F-distribution [21].

The AMSD detector requires the estimation of the matrix B of background

basis vectors. The matrix B can be estimated from the HSI data cube using the

eigenvectors of the image correlation matrix as the basis vectors for the background

subspace. Other detectors estimate the subspace parameters using the physical

constraints of the linear mixing model. In this case, the background basis vectors

correspond to physical endmembers present in the scene and the coefficients of the

linear combinations correspond to abundances.
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The procedure for estimating the endmembers spectral signatures and their

corresponding abundances within each pixel of the hyperspectral image is known

as spectral unmixing [18]. In the unmixing process, the endmembers are usually

estimated first and the estimated endmembers signatures are then used to esti-

mate the abundances values for every pixel. However, other approaches, such as

the Constrained Positive Matrix Factorization (cPMF) proposed by Masalmah in

[22], estimate the endmembers and the abundances simultaneously by solving an

optimization problem. This procedure is known as unsupervised unmixing.

The estimation of the endmembers is a wide field where many different al-

gorithms have been proposed, such as Pixel Purity Index (PPI) [23], Automated

Morphological Endmember Extraction (AMEE) [24], N-FINDR [25], Optical Real-

time Adaptive Spectral Identification System (ORASIS) [26], or Maximum Distance

(MaxD) [27].

Once the endmembers are known, the estimation of the abundances can be

viewed as the problem of minimizing the distance between the observed pixel and

the predicted pixel value based on the estimated endmembers. Using the Euclidean

norm as a distance measure, the abundance estimation problem can be formulated

as a constrained linear least squares problem:

â = argmin
a

‖Ea− x‖22 (2.10)

subject to a ≥ 0,
M∑
i=1

ai = 1

where â is the estimated abundance vector, which is also the maximum likelihood

estimate if the additive noise w is white Gaussian noise (which is an acceptable

assumption for many applications).

Solving the fully-constrained least square problem for estimating the abun-

dances requires the use of iterative methods. In [28], Velez and Rosario proposed

an algorithm that solves the fully-constrained abundance estimation problem called
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Non Negative Sum to One (NNSTO). This algorithm is based on a transformation

of the original least square problem into an equivalent least distance problem which

can be solved using the Non Negative Least Square (NNLS) iterative algorithm pro-

posed by Lawson and Hanson [29]. Other approach for solving the fully-constrained

abundance estimation problem was proposed by Chang et al. in [30]. The Chang’s

approach, called the Fully Constrained Least Square (FCLS) algorithm, enforces the

sum-to-one constraint by using a penalty approach.

In [31], Broadway et al. proposed two alternative versions of the ACE and

AMSD detectors that incorporate the physical constraints of the linear mixing

model, where the abundance values are computed using the FCLS algorithm of

Chang et al. [30]. The proposed new ACE detector is called Hybrid Unstructured

Detector (HUD) and is derived by replacing the unconstrained least squares estimate

of the abundances in equation 2.7 by the fully-constrained least squares estimate of

Equation 2.10:

DHUD(x) =
xTΓ−1Sâ

xTΓ−1x

H1

>

<

H0

η (2.11)

In [31] â is computed using the FCLS algorithm. They also proposed a new AMSD

detector called Hybrid Structured Detector (HSD) and, as in the case of the HUD

detector, is derived by replacing the unconstrained least squares estimate of the

abundances in equation 2.8 by the fully-constrained least square estimate (Equation

2.10):

DHSD(x) =
(x−Bâ)T(x−Bâ)

(x− Eâ)T(x− Eâ)

H1

>

<

H0

η (2.12)
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When including the non-negative and sum-to-one constraints in the estimation of the

abundances, the orthogonal projections of the structured detectors become oblique

projections, since now the pixel value is restricted to vary on a convex hull (or convex

cone when the sum-to-one constraint is omitted).

Target detectors based in oblique projections were also proposed in [32] by Peña-

Ortega and Vélez-Reyes. These detectors are variations of the Orthogonal Subspace

Projector (OSP) proposed by Chang and Harsanyi in [33]. The approach used in

the OSP detector is to nullify the interfering background signatures by projecting

every pixel vector onto a subspace orthogonal to the background space:

DOSP (x) =
tTP⊥

Bx

tTP⊥
Bt

H1

>

<

H0

η (2.13)

where t is the desired target signature and P⊥
B is the orthogonal projection matrix

onto the column space of the endmember matrixB. In the approach proposed in [32],

the OSP detector is expressed in terms of the projection errors using the idempotent

and symmetric properties of the matrix P⊥
B as follows:

DOSP (x) =
tTP⊥

Bx

tTP⊥
Bt

=
(P⊥

Bt)
T(P⊥

Bx)

(P⊥
Bt)

T(P⊥
Bt)

=
(etOSP)

T(exOSP)

(etOSP)
T(etOSP)

(2.14)

where etOSP = t−Bat and exOSP = t−Bax are the projection errors of the target

and the observed pixel x, respectively. Two new detectors are then derived by re-

placing the unconstrained estimates of at, ax for the target and the observed pixel

abundances by the corresponding positive constrained and fully-constrained esti-

mates computed using the NNLS and NNSTO algorithms [32], respectively. These

detectors project the target and pixel spectra onto a convex cone, when only the
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positivity constraint is enforced, and onto a convex hull, when both the positivity

and sum to one constraints are enforced.

2.3 Graphics Processing Units

A Graphics Processing Unit (GPU) is a specialized many-core processor orig-

inally designed for 3D graphics rendering [12]. It is widely used in video cards,

motherboards, mobile phones, and games consoles. The increasingly demanding

market of computer game has driven a rapid development of the GPU technology in

the last few years. Nowadays, a modern GPUs can achieve a computational power

on the order of hundreds of giga FLOPS (FLoating point Operations Per Second)

(Figure 2–2) at a relative low cost. In addition to the increase in computational

power, recent improvements in the programmability of these devices make them

an interesting alternative to CPUs for general-purpose computing instead of dedi-

cated devices for graphics rendering. In fact, today some GPUs like the NVIDIAR©

Tesla
TM

family are designed exclusively for general-purpose computing and can reach

a computational power well above the fastest multi-core CPU.

The big gap between the GPU and the CPU performance is due to the differ-

ences in their architecture and physical design. In the design of a GPU chip, most

of the transistors are devoted to data processing (arithmetic logic units). A CPU,

in contrast, contains more transistors devoted to data caching and flow control, as

illustrated in Figure 2–3. Therefore, a CPU is optimized for executing sequential

code, whereas, a GPU is optimized for compute-intensive and highly parallel com-

putations (the nature of graphics rendering). This makes the GPU a more suitable

platform than the CPU for addressing data-parallel compute-intensive problems,

where the same program can be executed on different data elements in parallel.

Data-parallelism reduces the need of sophisticated flow control and, if the number
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Figure 2–2: Floating-Point Operations per Second: CPU vs. GPU Comparison.
From [12].

of arithmetic operations is high enough compared to the number of memory opera-

tions, the memory access latency can be hidden with computations instead of large

data caches.

ALU ALU

ALU ALU
CONTROL

CACHE

CPU GPU

Figure 2–3: Structure of a CPU and a GPU chip.

2.4 NVIDIA R© CUDA
TM

Architecture

CUDA
TM

, which stands for Compute Unified Device Architecture, is a general-

purpose parallel computing architecture introduced by NVIDIAR© in November 2006

[12]. CUDA provides an easy access to the computing resources of NVIDIAR© GPUs
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through an application programming interface (API) which is an extension of the

C programming language. Basically, these extensions allow the programmer to take

an original C program than runs on a CPU and offload some sections of the code

to the GPU and take advantage of its high computational power without the need

of using a graphics API. This reduces the learning curve and the API overhead for

non-graphics applications.

To take advantage of the parallel computing capabilities of GPUs, CUDA allows

the definition of a special type of functions called kernels that are configured to be

executed in parallel on the GPU. Kernels are defined to enclose data-parallel sections

of the original code, so the programmer can offload parallel and compute-intensive

sections by moving these computations to the GPU while still making use of the

CPU when necessary. Therefore, in the CUDA model, the GPU is viewed as a co-

processor (device) within a CPU-based computer (host) that is capable of performing

intensive computations in parallel and has its own memory space. Figure 2–4 shows

a typical CUDA program flow. First, the CUDA application allocates the necessary

GPU memory and copies the data to be processed from the system memory to the

GPU memory. Then, the data is processed in parallel on the GPU by calling one or

more kernels functions. Finally, the results are copied back from the GPU memory

to the system memory.

Allocate 

GPU memory

Copy data

to GPU memory

Call kernel 

to process data

Copy data

to CPU memory

CUDA 

Application

Figure 2–4: CUDA program flow for data parallel processing.



20

2.4.1 Programming Model

CUDA supports two programming interfaces: CUDA C and CUDA driver API

[12]. CUDA C provides a minimal set of extensions to the C language for defining

kernel functions and managing its execution. CUDA driver API is a low-level in-

terface that provides functions to manage CUDA binary and assembly code. Both

interfaces come with a runtime API that provides functions to allocate and deal-

locate GPU memory, transfer data between system and GPU memory, synchronize

parallel threads of execution, etc.

CUDA C provides an easy interface for users familiar with the standard C

language to define kernel functions. When a kernel is called, it is executed in parallel

by different CUDA threads. A thread can be defined as the smallest unit of processing

scheduled for execution. Unlike CPU threads, CUDA threads are very lightweight,

which means that these threads can be created and scheduled in only a few clock

cycles. Since all the CUDA threads execute the same kernel code, this programming

model follows the Single-Instruction Multiple-Data (SIMD) parallel programming

paradigm [34].

CUDA defines a thread hierarchy that allows CUDA applications to trans-

parently scale its parallelism to a widely range of GPUs with varying number of

processors. All threads executing the same kernel are grouped into a grid of thread

blocks (Figure 2–5). A thread block is a batch of threads that can cooperate to-

gether by sharing memory and synchronizing their execution. Threads in different

blocks cannot cooperate with each other. A block can be defined as a one, two or

three-dimensional array of threads. Therefore, threads can be identified using a one,

two or three-dimensional thread index. Similarly, a grid can be defined as a one or

two-dimensional array of thread blocks, which allows to identify the blocks using a

one or two-dimensional block index. The combination of block and thread indices
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defines a unique thread ID that allows the threads to distinguish themselves and

provides a mechanism for indexing elements in data structures like vectors, matrices

or volumes.

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Grid
Thread (0,0) Thread (1,0) Thread (2,0) Thread (3,0)

Thread (0,1) Thread (1,1) Thread (2,1) Thread (3,1)

Thread (0,2) Thread (1,2) Thread (2,2) Thread (3,2)

Block (2,0)

Figure 2–5: Structure of a 3x2 grid of 4x3 thread blocks.

The following code is a sample CUDA C code that adds two vectors A and B

of size N and stores the result into vector C :

// Kernel d e f i n i t i o n

global void VecAdd( f loat ∗ A, f loat ∗ B, f loat ∗ C) {

int i = blockDim . x ∗ blockIdx . x + threadIdx . x ;

i f ( i < N)

C[ i ] = A[ i ] + B[ i ] ;

}

int main ( ) {

. . .

// A l l o ca t e hos t memory

h A = ( f loat ∗) mal loc ( s i z e ) ;

h B = ( f loat ∗) mal loc ( s i z e ) ;

h C = ( f loat ∗) mal loc ( s i z e ) ;

// I n i t i a l i z e input v e c t o r s

. . .

// A l l o ca t e dev i ce memory

cudaMalloc ( ( void ∗)&d A , s i z e ) ;

cudaMalloc ( ( void ∗)&d B , s i z e ) ;

cudaMalloc ( ( void ∗)&d C , s i z e ) ;

// Copy data from hos t to dev i ce

cudaMemcpy(d A , h A , s i z e , cudaMemcpyHostToDevice ) ;

cudaMemcpy(d B , h B , s i z e , cudaMemcpyHostToDevice ) ;

// Kernel invoca t ion with 256 threads per b l o c k
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int blocksPerGrid = (N + 255) /256 ;

VecAdd<<<blocksPerGrid , 256>>>(d A , d B , d C) ;

// Copy back r e s u l t s from dev i ce to hos t

cudaMemcpy(h C , d C , s i z e , cudaMemcpyDeviceToHost ) ;

// Free dev i ce memory

cudaFree (d A) ; cudaFree ( d B ) ; cudaFree ( d C) ;

. . .

}

This code contains some of the keywords that belong to the language extensions

introduced by CUDA. For example, the keyword global in the definition of the

kernel function indicates that this is a function that will run on the GPU and can be

called from the host code only. The keywords blockDim , blockIdx and threadIdx

are built-in variables that contain the block dimensions, thread block and thread

indices, respectively. These variables are used for obtaining the global thread ID

that identifies the data element where the current thread is assigned to work on.

The code of the main function shows some of the basic steps involved in a CUDA

application. The GPU memory is allocated using the function cudaMalloc(),

which is defined in the CUDA runtime library. Then, the vectors A and B are copied

from the host memory to the GPU memory using the function cudaMemcpy().

The kernel that adds in parallel on the GPU the two vectors is launched using

the syntax <<<GridDimension, BlockDimension >>>, which is known as the

execution configuration. In this sample code, the kernel is configured to be launched

by a one dimensional grid of 256-thread blocks. Once the kernel finish its execution,

the resulting vector C is copied back from the GPU memory to the host memory

using the function cudaMemcpy(). Finally, the GPU memory is freed though the

function cudaFree().

CUDA defines a memory hierarchy consisting of different logical memory spaces

that threads can access during their execution:



23

• Global memory: All threads have access (read/write) to a global memory space

that resides on the device DRAM (off-chip) (Figure 2–6).

• Local memory: Each thread has access (read/write) to a local memory space

that resides on the device DRAM (off-chip) for private data storage.

• Shared memory: All threads within the same block have access (read/write)

to a fast shared memory space that resides on the GPU chip (on-chip) (Figure

2–6).

• Registers: Each thread has access (read/write) to a limited set of 32-bit registers

(on-chip) for storing automatic private variables.

• Constant memory: All threads have access to a read-only memory region that

resides on the device DRAM (off-chip) for constant data storage.

• Texture memory: All threads have access to a read-only memory region that

resides on the device DRAM (off-chip) and is optimized for access patterns with

2D spatial locality.

2.4.2 Hardware Model

From the Geforce
TM

8 series onwards, including Quadro
TM

and Tesla
TM

fami-

lies, all NVIDIA R© GPUs support CUDA [12]. The different core architectures, also

known as compute capabilites, are defined by a major revision number and a mi-

nor revision number that specifies incremental improvements to the architecture.

Fermi, the latest CUDA architecture, corresponds to the compute capability 2.x.

All previous CUDA architectures were 1.x (1.0, 1.1 and 1.3).

The CUDA architecture is built around a fully programmable processor array

(cores) organized into streaming multiprocessors (SM) (Figure 2–6). On devices

of compute capability 1.x, each multiprocessor consists of [12]:

• 8 CUDA cores or scalar processors (SP) for integer and single-precision floating-

point arithmetic operations.
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• 1 double-precision (DP) floating-point unit for double-precision arithmetic.

• 2 special function units (SFU) for transcendentals (sine, cosine, etc.).

• 1 warp scheduler for managing thread concurrent execution.

• A set of 32-bit registers (8,192 registers on devices 1.0 and 1.1, 16,384 registers

on devices 1.2 and 1.3).

• 16 KB of shared memory.

• A read-only cache for speeding up reads from constant memory.

• A read-only cache for speeding up reads from texture memory.

Shared Memory

Constant Cache

Texture Cache

32-bit Registers

Warp Scheduler

SFU

SFU

DP

SP

SP

SP

SP SP

SP

SP

SP

SM SM SM ... SM

Device Memory (DRAM)

SM=Streaming Multiprocessor

SP=Scalar Processor

SFU=Special Function Unit

DP=Double-Precision Unit

Streaming Multiprocessor

 (compute capability 1.x)

Figure 2–6: CUDA hardware model: array of streaming multiprocessors.

On devices of compute capability 2.x, each multiprocessor consists of [12]:

• 32 CUDA cores on devices 2.0, 48 CUDA cores on devices 2.1.

• 4 SFUs on devices 2.0, 8 SFUs on devices 2.1.

• 2 warp schedulers for managing thread concurrent execution.

• A set of 32,768 32-bit registers.

• 64 KB of L1 cache memory configurable as shared memory.

• A read-only cache for speeding up reads from constant memory.

• A read-only cache for speeding up reads from texture memory.

When a kernel is launched, the thread blocks of the grid are scheduled and

distributed to the multiprocessors for execution. Each multiprocessor can manage

concurrently a maximum of 8 thread blocks. The thread blocks can be scheduled
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in any order, concurrently or sequentially, and, as thread blocks terminate their

execution, new blocks are launched on the available multiprocessors. Figure 2–7

shows the execution of a kernel consisting of a 3 × 2 grid of thread blocks on a device

with 3 multiprocessors. In this case, two blocks are assigned to each multiprocessor.

If there are enough resources (registers and shared memory), the two blocks will be

scheduled to be run concurrently on the multiprocessor. If the available resources

are not enough to run at least one block per multiprocessor, the kernel execution

will fail.

SM SM

DRAM

Block 0

Block 3

Block 1

Block 4

SM

Block 2

Block 5

Block 0 Block 1 Block 2

Block 3 Block 4 Block 5

Grid

Figure 2–7: Distribution of a 3 × 2 grid of thread blocks for execution on a device
with 2 SMs.

Thread concurrency is managed by the multiprocessors using an architecture

called Single-Instruction Multiple-Thread (SIMT) [12]. Every thread block is parti-

tioned into groups of 32 threads called warps (Figure 2–8). The warps are scheduled

and executed independently on the multiprocessor. A warp scheduler is responsible

for selecting one warp that is ready to execute and issuing the next instruction to

all the threads belonging to that warp. All threads within a warp start at the same

program address but they are free to follow different execution paths (branch diver-

gence). In that case, the different branches are executed serially until all threads

within the warp converge to the same path. Since a warp execute one common

instruction at a time, maximum performance will be achieved when all 32 threads

follow the same execution path.
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Figure 2–8: A 16x16 thread block partitioned into 8 warps.

2.5 Hyperspectral Data Processing using GPUs

Processing of hyperspectral data requires to deal with large volumes of data

in the form of an image cube made up of pixel vectors, which can make this task

very time consuming. Fortunately, many algorithms used for hyperspectral data

exploitation exhibit an inherent parallelism at multiple levels: pixel-level, spectral

level and task-level parallelism [35].

Parallel processing of hyperspectral data has been studied in the works of Plaza

et al. [7, 36, 37]. In [7], parallel implementations of several HSI algorithms for classi-

fication, automatic target detection and spectral unmixing were proposed. Spatial-

domain parallelism was used in these implementations by partitioning the image into

blocks made up of spatially adjacent pixels and assigning one or more blocks to each

processing unit. Plaza et al. have recently proposed several GPU-based implemen-

tations of different algorithms for hyperspectral data exploitation. They proposed

a GPU-based implementation of the Pixel Purity Index (PPI) and the Automated

Morphological Endmember Extraction (AMEE) algorithms in [38] and [35], respec-

tively. They also proposed GPU-based implementations of unconstrained, partially

constrained and fully constrained abundance estimation algorithms in [10]. In the

unconstrained implementation, every pixel vector is multiplied in parallel by the

projection matrix (ETE)−1ET . The partially and fully constrained implementations

were based on the Image Space Reconstruction Algorithm (ISRA) [39], an iterative
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algorithm for solving non-negative least squares problems. The proposed imple-

mentation of the fully constrained algorithm enforces the sum-to-one constrain by

scaling the abundances obtained by the ISRA algorithm. The GPU implementation

of the ISRA algorithm was also previously studied by González et al. in [9].

Plaza et al. proposed two algorithms for target detection in HSI and their

corresponding GPU implementations in [11]. The first algorithm, called ATDCA

(automatic target detection and classification algorithm), is based on the OSP ap-

proach [33] and works as follows:

1. It selects the maximum length pixel vector x0 as the initial target signature.

2. It applies an orthogonal subspace projector PU = I−U(UTU)−1UT to all image

pixels (in parallel on the GPU), where U = [x0]. The pixel with maximum

projection in the orthogonal complement space linearly spanned by x0 is selected

as the next target signature x1.

3. Another orthogonal subspace projectorPU withU = [x0 x1] is applied (in parallel

on the GPU) to the original image and the pixel with maximum projection is

selected as the next target signature.

4. The process is repeated until a set of targets {x0,x1, ...,xt} has been extracted.

The second algorithm is a GPU-based implementation of the RX algorithm (Equa-

tion 2.4). In this implementation, the inverse of the covariance matrix is computed

in parallel on the GPU using the Gauss-Jordan elimination method and is globally

estimated using the entire image. We proposed an alternative implementation of

this algorithm that computes the Cholesky decomposition of the covariance matrix

on the CPU and the resulting triangular systems are solved in parallel on the GPU.

We also investigated an adaptive GPU implementation of the RX algorithm that
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uses a moving window to locally estimate the mean and covariance matrix. A GPU-

based implementation of the RX algorithm, recently proposed by Winter et al., can

also be found in [40].

Another GPU-based implementation of a target detection algorithm for real-

time anomaly detection in HSI has recently been proposed by Tarabalka et al. [41].

The proposed anomaly detection algorithm is based on a multivariate normal mix-

ture model of the background. This model is represented by the probability density

function:

p(x) =
C∑
c=1

ωcφc(x;µc,Σc) (2.15)

where C is the number of background spectral classes, ωc is the mixing portion of

class c and φc(x;µc,Σc) is the multivariate normal density function with mean µ

and covariance Σ. The basic steps of this algorithm are:

1. Estimation of the background parameters model by fitting a multivariate normal

mixture model to a spatial subset of the image.

2. Calculation of the pixel probability map based on the estimated model.

3. Detection of anomaly pixels by thresholding low probability values.

4. Image segmentation by merging detected pixels to objects.

The most time-consuming parts of this algorithm are computed on the GPU using

a pixel-level parallelism approach. Tarabalka et al. proposed two approaches for

computing in parallel the covariance matrix of the multivariate normal model. The

first approach is called the chunking approach and consists of splitting the image

into spatial subsets (chunks) and calculating the covariance sums for all the parts

in parallel. The total covariance sum is then calculated by summing in parallel the

partial covariance sums. In the second approach, each thread computes a different

element of the whole covariance matrix. Therefore, this approach uses spectral-level

parallelism and is only interesting when the number of bands is significant.
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The results of these previous works suggest that GPUs show promise as a com-

puting device for accelerating hyperspectral data processing tasks like automatic

and anomaly target detection. In the work presented in this document, other target

detection algorithms, like adaptive RX, matched filter and sub-pixel detectors, were

studied for GPU implementation. The structure of the algorithms was analyzed

in order to design GPU implementations optimized for the CUDA architecture. In

addition, a CUDA library of target detectors was implemented as a result of this

work.



Chapter 3

GPU-based Implementation

The previous chapter described different target detection algorithms commonly

used in HSI and the architecture of GPUs as massively parallel processors. It also

presented previous works on using GPUs as processing hardware to speed up target

detectors and other algorithms for hyperspectral image exploitation. This chapter

discuses the parallel implementation of three target detection algorithms for both

full-pixel (RX algorithm, matched filter) and sub-pixel detection (AMSD), and pro-

poses GPU-based implementations of these algorithms to take advantage of the

NVIDIA R© CUDA
TM

architecture.

The detection algorithms were implemented on a NVIDIAR© Tesla
TM

C1060

graphics card. The Tesla
TM

C1060 card contains 240 processor cores and 4 GB

of DDR3 memory. The theoretical single-precision peak performance and memory

bandwidth for this GPU are 933 Gflops and 102 GB/sec, respectively. The main

specifications of the C1060 card are listed in Table 3–1.

The CUBLAS
TM

[42] and CULA
TM

[43] libraries were used to perform the GPU-

based implementations of the algorithms. CUBLAS
TM

is a CUDA implementation of

the BLAS (Basic Linear Algebra Subprograms) library and is provided by NVIDIAR©.

CULA1 is a commercial linear algebra library, developed by EM PhotonicsR©, that

1 http://www.culatools.com/

30
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provides a subset of the LAPACK2 (Linear Algebra Package) library functions

optimized for the CUDA architecture.

Table 3–1: Specifications of the Tesla C1060 graphics card.

# of Streaming Processor Cores 240
Frequency of Processor Cores 1.3 GHz
Single Precision Floating Point Peak Performance 933
Double Precision Floating Point Peak Performance 78
Total Dedicated Memory 4 GB DDR3
Memory Speed 800 MHz
Memory Interface 512 bit
Memory Bandwidth 102 GB/sec

3.1 Computation Decomposition

All the target detection algorithms described in the previous chapter have a

common general structure that shows an inherent parallelism. As shown in Figure

3–1, the detection algorithms map the spectrum xi of each pixel into a scalar value yi

that is compared to a threshold to decide if the target is present or not. The output

value yi depends on the spectrum xi of the test pixel but does not depend on the

other pixel spectra. Therefore, the output values of the detectors can be calculated

independently for each pixel of the image. If there are N pixels, the computation of

the detection output for the entire image can be decomposed into N parallel tasks

without communication between each other. This algorithm structure is known as

an embarrassingly parallel problem [34].

In a multiprocessor system, each parallel task can be assigned to a different

processor (worker), so each processor will be responsible for computing the detection

2 http://www.netlib.org/lapack/
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Target
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Detection Algorithm

y=D(x)
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Hyperspectral image cube (N pixels)
Detection output

Figure 3–1: Block diagram of a target detection algorithm showing pixel-level par-
allelism.

output of a different pixel. This is illustrated in Algorithm 1, where the construct

for all ... do represents a parallel for-loop.

Algorithm 1 Parallel implementation of a hyperspectral target detector

Input: A hyperspectral image {xi}, 1 ≤ i ≤ N
Output: Detection output {yi}, 1 ≤ i ≤ N , where yi = D(xi)
for all i = 1 to N do
compute yi = D(xi)

end for

The total amount of parallelism is equal to the number of pixels in the image,

N. In a GPU-based implementation, a kernel function is defined containing the code

to be executed in parallel by N GPU threads. The thread 0 will be responsible for

computing the output of the detector for the pixel x0, the thread 1 will be responsible

for computing the output of the detector for the pixel x1, and so on. A sample code

of a kernel is shown bellow:

// Kernel func t i on tha t implements a t a r g e t d e t e c t o r y = D( x )

global void Para l l e lDe t e c t o r ( f loat ∗ image , f loat ∗ detect output , int N, int

bands , . . . )

{

. . .

f loat p i x e l [N ] ;

i f ( threadID < N)

// read p i x e l va lue

for ( int i =0; i<bands ; i++)

p i x e l [ i ] = image [ bands∗ i+threadID ] ;

//compute output va lue and wr i t e i t to g l o b a l output matrix
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detec t output [ threadID ] = D( p i x e l ) ;

}

Each thread accesses the corresponding pixel data through a pointer (float*

image) to the image data stored in the GPU memory space and save the pixel data

into a local variable (pixel). Based on the pixel data, the thread computes the

detection output value and writes it in an output matrix stored in global memory.

The thread ID is used to determine the correct array indices for reading and writing

from global memory.

Figure 3–2 shows the structure of thread blocks generated to execute the code

of the kernel function. For a given block size, the dimension of the grid is selected

to cover the entire hyperspectral image. If the number of samples is not evenly

divided by the x block dimension, the smallest multiple of the x block dimension

that is greater than the number of samples is selected as the x grid dimension.

The same procedure is applied for selecting the y grid dimension if the number of

lines is not evenly divided by the y block dimension. The block dimension used

in the implementations was 32 × 16 (512 threads), value that resulted in the best

performance (see Chapter 4).
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Figure 3–2: Structure of a grid of thread blocks generated to run the code of a kernel
function implementing a target detection algorithm.

The next section discusses the details related to memory access on a GPU and

analyzes different data storage schemes to maximize GPU memory throughput.
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3.2 Data Layout

When accessing GPU global memory, simultaneous memory accesses can be

coalesced into one or more memory transactions depending on the size of the data

accessed by each thread and the access pattern. The requirements for achieving

coalesced memory transaction depend on the device compute capability and are

explained in more detail in [12].

As an example, if all the threads of a warp in a device of compute capability

1.3 access consecutive 32-bit words lying in the same 128-byte memory segment,

only two 64-byte memory transaction are issued: one for the first 16 threads (half-

warp) and one for the remaining 16 threads (Figure 3–3). Additionally, the memory

segments must be aligned, i.e., the starting address must be a multiple of its size.

If the access pattern is not aligned with a memory segment, a memory transaction

is issued for every segment accessed by the half-warp (Figure 3–4), thus, reducing

the memory throughput. However, the size of the additional transactions can be

reduced if only the upper or lower half of a segment is used.

Global Memory Address

0 3115 16

Half-warp 0 Half-warp 1

Warp

Thread index

128 256

128-byte memory segment

1 transaction (64 bytes) for half-warp 0
1 transaction (64 bytes) for half-warp 1

Figure 3–3: Coalesced memory transactions for a sequential aligned access pattern.

Global Memory Address

0 3115 16

Half-warp 0 Half-warp 1

Warp

Thread index

128 256

128-byte memory segment

1 transaction (32 bytes) for half-warp 0
1 transaction (128 bytes) for half-warp 1

1 transaction (32 bytes) for half-warp 0

Figure 3–4: Misaligned sequential access patterns produce additional memory trans-
actions.
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The global memory throughput is, therefore, determined by how the threads

access the data elements and how the global data is stored in memory. There are

three storing schemes commonly used in hyperspectral images: band interleaved by

pixel (BIP), band interleaved by line (BIL) and band sequential (BSQ). In the BIP

scheme, each line of the image is stored sequentially starting from the first pixel

for all bands, followed by the second pixel for all bands, etc. Since each thread

is working on a different pixel, the BIP scheme do not lead to coalesced memory

transactions when reading a value for a single band as shown in Figure 3–5. In the

BIL scheme, each line is stored sequentially starting from the first band for all pixels

of the first line, followed by the second band for all pixels of the first line, etc. The

BIL scheme can lead to coalesced memory transactions as long as all the threads

of the same half-warp access the same line, as illustrated in Figure 3–6. Finally, in

the BSQ scheme, all the pixels of the image for the band 1 are stored first, followed

by all the pixels of the image for band 2, etc. This storage scheme allows coalesced

memory transactions as long as every line is aligned to a memory segment (Figure

3–7).

bands 

...

line 1 line 2

sample 1 sample 2 ... sample 1 sample 2 ...

bands

Thread 0 Thread 7 ...

Figure 3–5: Uncoalesced memory transactions when reading band 1 in BIP scheme.

samples 

line 1

band 1

...

half-warp

...
band 2

...

samples 

line 2

band 1

...
band 2

half-warp

Figure 3–6: Coalesced memory transactions when all threads of a warp access the
same line in BIL scheme.
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Figure 3–7: Coalesced memory transactions when reading band 1 in BSQ scheme.

In the GPU-based implementations described in this thesis, the BSQ storage

scheme was used since it reduces the pointer arithmetic for indexing data elements

and the alignment conditions for coalesced accesses can be automatically satisfied

by using the run-time CUDA function cudaMallocPitch for allocating GPU global

memory.

3.3 Implementation of RX and MF detectors

This section describes the GPU-based parallel implementation of the RX algo-

rithm (Equation 2.4) and the matched filter (Equation 2.3) using global statistics.

The pseudo-codes of these algorithms are shown bellow (Algorithms 2 and 3, respec-

tively):

Algorithm 2 RX Algorithm for Anomaly Detection

Input: Background mean µ0, background covariance matrix Γ0, hyperspectral ima-
ge X = [x1 ... xN ]

Output: Detection output YRX =
[
yRX
1 ... yRX

N

]
for i = 1 to N do
compute yRX

i = (xi − µ0)
TΓ−1

0 (xi − µ0)
end for

Algorithm 3 Matched Filter Detector

Input: Background mean µ0, target mean µ1, background covariance matrix Γ0,
hyperspectral image X = [x1 ... xN ]

Output: Detection output YMF =
[
yMF
1 ... yMF

N

]
compute κ−1 = (µ1 − µ0)

TΓ−1
0 (µ1 − µ0)

for i = 1 to N do
compute yMF

i = κ(µ1 − µ0)
TΓ−1

0 (xi − µ0)
end for
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Both algorithms take as inputs a hyperspectral image X consisting of N pixels,

the mean µ0, and the covariance matrix Γ0 of the background distribution. The

matched filter also needs the mean of the target signature µ1. These statistical

parameters are estimated previously using training samples from the data. In the

proposed implementation, this step is considered a preprocessing step performed on

the CPU.

Each iteration of the for loops in Algorithms 2 and 3 computes the output

of the detectors for a different pixel. The two algorithms have in common the

computation of the inverse of the covariance matrix Γ−1
0 . Since a covariance matrix

is symmetric and positive definite, instead of computing the inverse directly, the

proposed implementation computes the Cholesky decomposition of Γ0:

Γ0 = LLT (3.1)

Expressing the output of the RX detector for the pixel i in terms of the lower

triangular matrix L, we get:

yRX
i = (xi − µ0)

TΓ−1
0 (xi − µ0) = (xi − µ0)

T (LLT )−1(xi − µ0) =

(L−1(xi − µ0))
T (L−1(xi − µ0)) = bT

i bi

(3.2)

where bi = L−1(xi − µ0) is the solution of the triangular system Lbi = xi − µ0.

In our proposed implementation, the computation of the Cholesky decomposi-

tion is performed on the CPU using the function SPOTRF from Intel R© MKL library.

The main reason is that the dimension (bands × bands) of the covariance matrix

does not allows enough amount of parallelism to take advantage of the CUDA ar-

chitecture. The resulting upper triangular matrix L is transfered to the GPU global

memory to be shared by all GPU threads. Then, each thread computes the value

bi = L−1(xi − µ0) by solving a triangular system through forward substitutions.

The background mean µ0 is stored in the GPU constant memory space. Since this
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vector does not change its values throughout the computation, storing it in the GPU

constant memory improves the memory bandwidth by using the constant memory

cache. The matrix L cannot be stored in the constant memory because this memory

space is limited to 64 KB. In order to reduce the latency when reading the values

of L from the GPU global memory in the forward substitutions, these values are

temporarily stored in the shared memory space. Since the entire matrix L does not

fit into the GPU shared memory space (it is limited to 16 KB), only one row of the

matrix is stored in the shared memory at every iteration of the forward substitution

loop. The thread 0 of each block is responsible for transferring the corresponding

row of L to the shared memory to be shared by all the threads of the block. For

example, to compute the component j of the vector bi, the thread 0 of each block

transfers the values Lj1, Lj2, ... , Ljj from global memory to the shared memory.

Then, each thread i belonging to the same block computes its corresponding value

bij = 1
Ljj

j−1∑
k=1

Ljkbik. Since the values Lj1, Lj2, ... , Ljj are shared by all threads of

the same block, a synchronization barrier is needed to prevent a thread from reading

some value before the thread 0 has finished the transfer to the shared memory. This

is accomplished through the CUDA function syncthreads.

The pseudo-code of the GPU-based parallel implementation of the RX detector

is shown in Algorithm 4. Each iteration i of the parallel for all ... do loop is assigned

to the thread i. The steps performed by each thread to compute its corresponding

output value are:

• Remove mean from pixel: x̃i = xi − µ0

• Solve a triangular system: Lbi = x̃i

• Compute the output value: yRX
i = bT

i bi

Following a similar procedure for the MF detector, we get:

yMF
i = κ(µ1 − µ0)

TΓ−1
0 (xi − µ0) = κ(Γ−1

0 (µ1 − µ0))
T (xi − µ0) =

κcT (xi − µ0) = κcT x̃i

(3.3)
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Algorithm 4 Parallel RX Algorithm

Input: Background mean µ0, lower triangular matrix L, hyperspectral image X =
[x1 ... xN ]

Output: Detection output YRX =
[
yRX
1 ... yRX

N

]
for all i = 1 to N do
compute x̃i = xi − µ0

solve system Lbi = x̃i

compute yRX
i = bT

i bi

end for

where c = Γ−1
0 (µ1 − µ0) is the solution of the linear system Γ0c = µ1 − µ0. By

performing the Cholesky decomposition of Γ0, as in the RX implementation, the

linear system can be solved through forwards and back substitutions. Since the

vector c = Γ−1
0 (µ1 −µ0) does not depend on the pixel value xi, it can be computed

on the CPU and transferred to the constant GPU memory to be shared by all

threads.

The MF detector also needs the computation of the normalization constant κ,

which can be computed as:

κ−1 = (µ1 − µ0)
TΓ−1

0 (µ1 − µ0) = (µ1 − µ0)
Tc (3.4)

This step is also computed on the CPU since it has to be performed only once and

its computation is relatively fast.

The pseudo-code of the GPU-based parallel implementation of the MF detector

is shown in Algorithm 5, where each iteration i of the parallel for all ... do loop

is assigned to the thread i. The steps performed by each thread to compute its

corresponding output value are:

• Remove mean from pixel: x̃i = xi − µ0

• Compute the output value: yMF
i = κcT x̃i

The different processing steps involved in both the RX and MF detectors are

summarized in Figure 3–8.



40

Algorithm 5 Parallel Matched Filter

Input: Background mean µ0, normalization constant κ, vector c, hyperspectral
image X = [x1 ... xN ]

Output: Detection output YMF =
[
yMF
1 ... yMF

N

]
for all i = 1 to N do
compute x̃i = xi − µ0

compute yMF
i = κcT x̃i

end for

Figure 3–8: Parallel implementation of RX and MF detectors.

3.4 Implementation of an adaptive RX algorithm

This section describes the GPU-based parallel implementation of an adaptive

version of the RX algorithm that locally computes the background statistics (mean

and covariance) using a 2D sliding window approach [44]. In this approach, the

mean and covariance matrix are estimated using the samples from a region between

two windows centered at the test pixel, as shown in Figure 3–9. The size of the

guard window is selected to enclose the largest target present in the scene, and the

pixels contained in this window are excluded to avoid bias in the estimates due to

the possible presence of target pixels around the test pixel. The size of the outer

window should be small enough to cover an homogeneous background region but

large enough to ensure an accurate statistical estimation.
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test pixel

guard window

training region

Figure 3–9: Structure of the 2D spatially moving window for background parameter
estimation in the adaptive RX algorithm.

In the proposed implementation, the detector is not applied to the regions where

the moving window goes out of the image boundaries, approach that sacrifices the

detection of possible targets present near the image borders. Other approaches like

zero padding or pixel replication were evaluated but they were not finally used due

to stability problems related to the invertibility of the covariance matrix.

The general pseudo-code of this algorithm is shown in Algorithm 6, where RW,G
i

denotes the set of samples between the two windows of sizes W and G, respectively,

and centered at pixel i.

Algorithm 6 RX Algorithm using local statistics

Input: A hyperspectral image X = [x1 ... xN ], sliding window size W, guard win-
dow size G

Output: Detection output YRX =
[
yRX
1 ... yRX

N

]
for i = 1 to N do
estimate µ0i, Γ0i from RW,G

i

compute yRX
i = (xi − µ0i)

TΓ−1
0i (xi − µ0i)

end for

This algorithm takes as inputs a hyperspectral image X consisting of N pixels,

the size W of the sliding window, and the size G of the guard window. In this

algorithm, both the mean and covariance matrix have to be computed for each pixel

using the samples from the region RW,G
i . Since this region depends on the pixel

location, in this case, the mean µ0i and covariance Γ0i are different for each pixel

and cannot be shared. Once the mean and covariance are estimated, the output value
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of the detector is computed as yRX
i = (xi − µ0i)

TΓ−1
0i (xi − µ0i). This computation

is decomposed using the same procedure as in the global implementation:

1. Compute Γ0i = LiL
T
i

2. Solve system Libi = xi − µ0i

3. compute yRX
i = bT

i bi

In this implementation, the Cholesky decomposition of Γ0i is performed on the

GPU by the thread i. Since each thread has its own copy of the mean µ0i and covari-

ance Γ0i, these parameters are stored in the thread local memory space. Each thread

is responsible for computing the corresponding mean µ0i and covariance Γ0i using

the pixel values from the neighborhood RW,G
i defined by the moving window. Since

the region RW,G
i is different for each thread, the pixel values needed for computing

the mean and covariance cannot be stored in the shared memory space. Therefore,

they must be read from global memory, which reduces the memory throughput of

this algorithm. The amount of local memory per thread is limited to 16 KB in

devices of compute capability 1.x and 512 KB in devices of compute capability 2.x

(Fermi). This imposes a limitation in the number of spectral bands in the original

hyperspectral image, which determines the size of the covariance matrix. This ma-

trix can be stored on the local memory if the number of bands is less than 64 for

devices 1.x and less than 362 for devices 2.x. The limitation in devices 1.x forces

the use of a band reduction step on the input data before RX processing.

The pseudo-code of the GPU-based parallel implementation of the adaptive RX

detector is shown in Algorithm 7.

Due to the local structure of this detector, the matrix Li has to be stored in the

local memory space and cannot be shared among all the threads of the same block

as in the global RX implementation. This implementation cannot take advantage of

the shared memory cache when solving the triangular system Libi = x̃i by forward

substitution. Since the local memory has the same low bandwidth as the global
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Algorithm 7 Parallel adaptive RX Algorithm

Input: A hyperspectral image X = [x1 ... xN ], sliding window size W, guard win-
dow size G

Output: Detection output YRX =
[
yRX
1 ... yRX

N

]
for all i = 1 to N do
estimate µ0i, Γ0i from RW,G

i

compute Γ0i = LiL
T
i

compute x̃i = xi − µ0i

solve system Libi = x̃i

compute yRX
i = bT

i bi

end for

memory, the performance of this algorithm is limited by the local memory latency

as will be shown in Chapter 4, Section 4.2.3. The different processing steps involved

in the adaptive RX detector are summarized in Figure 3–10.

Figure 3–10: Parallel implementation of the adaptive RX algorithm.

3.5 GPU-based Implementation of the Adaptive Matched
Subspace Detector (AMSD)

This section describes the GPU-based parallel implementation of the adaptive

matched subspace detector (AMSD) (Equation 2.9). The pseudo-code of this algo-

rithm is shown in Algorithm 8.

This algorithm takes as inputs a hyperspectral image X consisting of N pixels,

a matrix B whose columns span the background subspace, and a matrix S whose

columns span the target subspace. The estimation of the dimensionality of both
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Algorithm 8 Adaptive Matched Subspace Detector

Input: A hyperspectral image X = [x1 ... xN ], background subspace matrix B,
target subspace matrix S

Output: Detection output YAMSD =
[
yAMSD
1 ... yAMSD

N

]
compute P⊥

B = B(BTB)−1BT

compute P⊥
E = E(ETE)−1ET , E = [S B]

for i = 1 to N do
compute yAMSD

i =
xT
i (P⊥

B−P⊥
E)xi

xT
i P⊥

Exi

end for

subspaces and the selection of the basis vectors are preprocessing steps performed

using global training samples from the data. In the implementation of this detector,

two methods for estimating the matrixB of background basis vectors were evaluated:

singular value decomposition (SVD), and Maximum Distance (MaxD) [27]. In the

SVD approach, the basis vectors are selected as first M left singular vectors of the

matrix X representing the image in bands × pixels format. In MaxD, the basis

vectors selected, which are pixels from the original image, are the set of vectors that

try to approximate a simplex defining the background subspace. The steps involved

in the MaxD method are summarized as follows:

1. The largest magnitude pixel vector (v1) and the smallest magnitude pixel vector

(v2) from the image are selected as the first two endmembers.

2. All pixel vectors are projected onto the subspace orthogonal to v1 − v2. Thus,

both v1 and v2 project to the same point v12

3. The projected pixel with maximum distance to v12 is selected as the third end-

member v3.

4. All projected points are again projected onto the subspace orthogonal to v12−v3.

5. The process is repeated until the desired number of endmembers is selected.

The process for estimating the background matrix B can be performed on the

GPU depending on the size of the input image X. A GPU-based implementation

of the two methods for estimating B has been evaluated in this work. In the SVD

approach, the left singular vectors are computed as the eigenvectors of the image
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correlation matrix, which is faster than computing directly the singular value decom-

position of X. The correlation matrix R = XXT is computed on the GPU using the

function SGEMM for matrix-matrix multiplication from the CULA
TM

library. The

computation of the eigenvectors of R is performed on the GPU using the function

SSYEV also from the CULA
TM

library.

In the MaxD method, the process of selecting the largest and the smallest

magnitude pixel vector from the image is performed on the GPU through a CUDA

kernel function that computes in parallel the magnitude of each pixel. Then, the

largest and smallest pixels are selected using the functions ISAMAX, ISAMIN from

the CUBLAS
TM

library, respectively. The projection step is performed on the GPU

using the the function SGEMM from CULA
TM

and the update of the projection

matrix at each iteration is performed through the function SGER from CUBLAS
TM

.

Once the matrix of basis vectors B has been computed, the rest of the com-

putations are based on an implementation approach of this detector, proposed by

Manolakis et al. [21], that uses the identities P⊥
E = P⊥

BP
⊥
ZP

⊥
B and P⊥

B − P⊥
E =

P⊥
BPZP

⊥
B, where Z = P⊥

BS, i.e., the part of the target subspace orthogonal to the

background subspace. With these equivalences, the output value of the AMSD can

be computed as:

yAMSD
i =

∥∥PZP
⊥
Bxi

∥∥2∥∥P⊥
ZP

⊥
Bxi

∥∥2 (3.5)

The matrices Pn = PZP
⊥
B and Pd = P⊥

ZP
⊥
B are computed on the GPU using the

function SGEMM from CULA
TM

and stored in the global memory space to be shared

by all GPU threads. The pseudo-code of the GPU-based parallel implementation of

the AMSD is shown in Algorithm 9.

In the parallel implementation, each GPU thread is responsible for computing

the numerator ni, denominator di, and the detection output yAMSD
i of the AMSD

for a given pixel xi. Since the matrices Pn, Pd are shared by all threads, we can
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Algorithm 9 Parallel Adaptive Matched Subspace Detector

Input: A hyperspectral image X = [x1 ... xN ], projection matrices Pn, Pd

Output: Detection output YAMSD =
[
yAMSD
1 ... yAMSD

N

]
for all i = 1 to N do
compute pi = Pnxi

compute ni = pT
i pi

compute qi = Pdxi

compute di = qT
i qi

compute yAMSD
i = ni/di

end for

take advantage of the shared memory space to perform the products pi = Pnxi,

qi = Pdxi . Using a similar approach as in the global full-pixel detectors, to compute

the component j of the vector pi, the thread 0 of each block transfers the row j of Pn

from global memory to the shared memory. The same approach is used to compute

the component j of the vector qi. The processing steps involved in the AMSD

implementation are summarized in Figure 3–11.

Figure 3–11: Parallel implementation of AMSD algorithm.

3.6 Summary

This chapter described the GPU-based parallel implementation of three target

detection algorithms for both full-pixel (RX algorithm, matched filter) and sub-pixel

detection (AMSD). The steps followed to design the parallel implementation of the

algorithms can be summarized as follows:
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• Computation decomposition. Identify the most time consuming parts of the

algorithms and analyze how can these computations be decomposed into parallel

tasks. The particular structure of the target detection algorithms studied sup-

ports a pixel-based parallel processing. The tasks associated to the computation

of the detection output for each pixel is assigned to a different processing element,

i.e., a GPU thread in the CUDA architecture.

• Data layout. Select data format that best meet the requirements of the parallel

hardware architecture. In the CUDA architecture, the data formats for hyper-

spectral images that yield the best performance are BSQ and BIL. These two

schemes allow coalesced memory transaction from GPU global memory.

• Mapping the computation to the memory hierarchy. Identify the mem-

ory spaces that are more suitable in terms of memory bandwidth to store the

different data elements of the algorithm. Specifically, parameters, like the mean

and covariance matrices, that remain constant during the entire computation can

take advantage of cache memories to reduce memory latencies. In the CUDA ar-

chitecture, parameters of small sizes, like the mean of the target and background,

can be stored in the constant memory space. The covariance and projection

matrices, although they remain constant, cannot be store in the constant mem-

ory space of the GPU due to their size. In this case, portions of the matrices

can be temporarily stored in the shared memory space to improve the memory

bandwidth.

Figure 3–12 shows a diagram that summarizes the GPU implementations des-

cribed in this chapter. The GPU implementations of two full-pixel detectors stu-

died, the RX anomaly detector and the matched filter (MF), are both based on the

Cholesky decomposition of the covariance matrix. In the global RX implementation,

the Cholesky decomposition is performed on the CPU and the resulted matrix L

is stored in the GPU memory to be shared by all the threads during the parallel
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computations. In this implementation, each threads has to solve a triangular system

and perform a dot product in order to compute the output of the RX detector for

the pixel the thread is working on. In contrast, in the adaptive RX implementation,

each thread has to compute the Cholesky decomposition of the covariance matrix

estimated using the samples from the region defined from the moving window. Since

each thread is working on a different pixel, the resulted covariance matrix cannot

be shared during the GPU parallel computations. Therefore, each thread has to

compute a Cholesky decomposition, has to solve a triangular system, and has to

perform a dot product in order to compute the output of the adaptive RX detector.

In the MF implementation, the normalization constant κ and the vector c can be

precomputed on the CPU. In this case, each thread only has to perform a dot pro-

duct in order to compute the output of the MF detector for the corresponding pixel.

Finally, the implementation of the third algorithm studied, the adaptive matched

subspace detector (AMSD) for sub-pixel target detection, is based on orthogonal

projections onto the background subspace and the combination of the target and

background subspaces. The matrices that span the linear subspaces and the corre-

sponding orthogonal projection matrices are precomputed on the GPU. In order to

compute the output of the AMSD, each thread has to perform two matrix-vector

products, two dot products, and one scalar division.
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Full-pixel targets

RX

MF

AMSDSub-pixel targets

Global:

Adaptive:

GPU implementation: 

2 matrix-vector products, 2 dot products, and

1 scalar division per thread

Detector: 

GPU implementation: 

1 dot product and 1 triangular

system solution per thread

L precomputed on CPU

1 cholesky decomposition

1 dot product, and 1 triangular

system solution per thread

GPU implementation: 

1 dot product per thread

c precomputed on CPU

Detector: 

Detector: 

Figure 3–12: Diagram that summarizes the GPU implementations of the detection
algorithms.



Chapter 4

Experimental Results

This chapter presents the experimental results obtained using a dataset gener-

ated to evaluate the performance of the parallel implementations and the detection

accuracy of the algorithms.

4.1 Methodology

In order to evaluate the running times and detection accuracy of the imple-

mented algorithms, a phantom image simulating traces of different materials on

clothing was generated (Figure 4–1). The image was collected using a SOC-700 visi-

ble hyperspectral imager from Surface Optics CorporationR©1 . The SOC-700 imager

acquires a 640 by 640 pixel image, 120 bands deep, in the visible-near infrared region

(0.43 to 0.9 µm). This instrument takes 1 second to scan 100 lines, thus, the total

time needed to complete an image cube is 6.4 seconds.

For the experiments, a 360 × 360 pixels spatial subset of the original data

cube covering a homogeneous background was selected. Figure 4–2 shows a color

composite of the region selected using bands 53, 27 and 1 as the red, green, and

blue channels, respectively. The scene consists of a T-shirt surface containing traces

1 http://www.surfaceoptics.com

50



51

Figure 4–1: Phantom image generation for the experiments: a hyperspectral image
was collected using a SOC-700 imager.

of vegetable oil and ketchup. The ketchup was considered as the target material in

the algorithms and the remaining pixels, representing the T-shirt surface and the

oil traces, were considered as the background clutter.

For the evaluation of the running time and speedup of the implemented algo-

rithms, the image subset was duplicated in a tiled fashion in order to generated

different image sizes. Table 4–1 shows the sizes in MB of the data cubes generated

using this procedure, where the size 1 corresponds to the size of the initial image

subset.

Table 4–1: Sizes in MB of the different data cubes generated by duplicating an
original image subset.

Size 1 Size 2 Size 3 Size 4 Size 5 Size 6
59.3 MB 118.6 MB 237.2 MB 474.4 MB 948.8 MB 1897.6 MB

The GPU-based implementations of the algorithms were developed using CUDA

3.2 and tested on a NVIDIAR© Tesla
TM

C1060 graphics card. The TeslaR© C1060 card

contains 240 processor cores and 4 GB of DDR3 memory. The theoretical single-

precision peak performance and memory bandwidth for this GPU are 933 Gflops and

102 GB/sec, respectively. The Tesla
TM

C1060 is installed on a workstation equipped

with an Intel R© Xeon R© E5520 2.27 GHz CPU, 12 GB of RAM memory and running

Ubuntu
TM

10.10 64 bits as operating system.

For each detection algorithm, a CPU-based implementation was developed to

use a baseline to estimate the speedups of the GPU-based implementations. The
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Figure 4–2: Spatial subset selected for the experiments: a scene consists of a T-shirt
surface containing traces of vegetable oil and ketchup.

CPU implementation was built with GCC 4.4.5 compiler using C++. In the GPU

implementation, the CUBLAS
TM

[42] and CULA
TM

[43] R10 libraries were used for

linear algebra computations (matrix multiplications, Cholesky decomposition, and

eigenvectors computation). In the CPU-based implementations, these computa-

tions are performed using the IntelR© MKL 10.3 library2 in combination withthe

OpenMP
TM

[45] interface to exploit CPU parallelism.

4.2 Running Times and Speedups

This section presents the resulting running times of each implementation and

the speedups to analyze the performance of the GPU-based implementations with

the corresponding CPU-based implementation. The running times were averaged

over 10 benchmark executions. The resulting averaged times do not vary significantly

if more than 10 executions are used. The function gettimeofday from the GNU C

header file “sys/time.h” was used for measuring the running times of the algorithms.

2 http://software.intel.com/en-us/articles/intel-mkl/
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The speedups were estimated as the ratio between the averaged running time of the

CPU-based and the GPU-based implementations.

In the GPU-based implementations, the number of threads per block was se-

lected as the value that produced the best performance. The CUDA Software De-

velopment Kit (SDK) provides a spreadsheet that allows the programmer to choose

the number of blocks depending on the amount of shared memory and registers

required by the CUDA kernel [12]. The spreadsheet, which is called the CUDA

Occupancy Calculator, provides the resulting occupancy for a given resource speci-

fication (amount of registers and shared memory per block) and block size selected.

The occupancy is defined as the ratio of the number of resident warps per multipro-

cessor to the maximum number of active warps per multiprocessor that the device

allows. A high occupancy helps in reducing memory latencies when accessing global

memory by scheduling new warps for execution while another warp is waiting for a

memory transaction.

4.2.1 RX algorithm using global statistics

Table 4–2 shows the register, local, shared and constant memory usages re-

quired by the CUDA kernel function that implements the RX algorithm using global

statistics. Figure 4–3 shows the multiprocessor occupancy for different block sizes,

obtained from the CUDA occupancy calculator. There are six block sizes that allow

a maximum occupancy of 32 active warps (100 %). The number of threads per block

selected was 512, which is the size that produced the best performance.

Table 4–3 shows the running times of the CPU and GPU-based implementations

of the global RX algorithm for the different images generated. The last column of

this table shows the resulting speedup of the GPU over the CPU implementation.
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Table 4–2: Register, local, shared and constant memory usages required by the
CUDA kernel function that implements the RX algorithm using global statistics.

Registers Local Memory Shared Memory Constant Memory
9 480 bytes 532 bytes 512 bytes

Figure 4–3: Multiprocessor occupancy as a function of the block size (global RX
kernel function).

The running times include the computation of the Cholesky decomposition, the

memory transfers between the CPU and the GPU, and the kernel execution time.

For all the input image sizes, the GPU-based implementation performs faster than

the corresponding CPU-based implementation. The speedups achieved vary from

11.25 to 24.76. The evolution of the speedup with the input image size is shown in

Figure 4–4. The speedup increases with the image size reaching the maximum value

for the largest sized input image. It can be also noticed that for sizes above 237.2

MB the increase in the speedup becomes less significant.

4.2.2 MF algorithm

Table 4–4 shows the resource usage for the CUDA kernel function that imple-

ments the matched filter algorithm. This kernel uses more constant memory than

the global RX kernel because in the MF implementation both the background mean
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Table 4–3: Running times of the the CPU and GPU-based implementations of the
global RX algorithm for the different images generated.

Image Size (MB) CPU Time (sec) GPU Time (sec) Speedup
59.3 1.50 0.13 11.25
118.6 2.98 0.19 15.69
237.2 5.94 0.32 18.85
474.4 12.22 0.55 22.16
948.8 24.72 1.03 23.96
1897.6 49.46 1.98 24.76

Figure 4–4: Speedup of the global RX GPU-based implementation over the CPU-
based implementation for different image sizes.

and the vector c were stored in the constant memory space. On the other hand, the

amount of local memory used by this kernel is 0 KB. This is another difference with

the RX implementation, in which the computation of the solution of the triangular

system forces to use the local memory space to store the vector bi.

Table 4–4: Register, local, shared and constant memory usages required by the
CUDA kernel function that implements the MF algorithm.

Registers Local Memory Shared Memory Constant Memory
7 0 bytes 52 bytes 980 bytes

Figure 4–5 shows the multiprocessor occupancy for different block sizes, ob-

tained from the CUDA occupancy calculator. The curve is the same as in the global
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RX implementation, since the number of register and the amount of shared memory

in both implementations do not limit the maximum number of resident threads per

multiprocessor, value which is only limited by the hardware architecture, in this case.

In this implementation, a block size of 512 threads was also selected, because was

the value that produced the best performance and also guarantee a full occupancy

as shown in Figure 4–5.

Figure 4–5: Multiprocessor occupancy as a function of the block size (MF kernel
function).

Table 4–5 shows the running times of the CPU and GPU-based implementations

of the MF algorithm for the different input image sizes, and the resulting speedup

of the GPU over the CPU-based implementation. The running times include the

computation of the Cholesky decomposition, the computation of the normalization

constant κ, the memory transfers between the CPU and the GPU, and the kernel

execution time. For the first image size (59.3 MB) the CPU-based implementation

is faster (37 milliseconds) than the GPU-based (79 milliseconds). For the rest of the

input sizes, the GPU-based implementation runs faster than the CPU-based but the

differences in the running times are not significant, reaching a maximum speedup of

3.9 for the largest input size. This limitation in the speedup is due to reduced number
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of arithmetic operations performed in the kernel function. Therefore, most of the

running time of the GPU-based implementation is spent in the memory transfers

between the CPU and GPU.

Table 4–5: Running times of the the CPU and GPU-based implementations of the
MF algorithm for the different images generated.

Image Size (MB) CPU Time (sec) GPU Time (sec) Speedup
59.3 0.037 0.079 0.47
118.6 0.094 0.090 1.04
237.2 0.188 0.114 1.65
474.4 0.399 0.161 2.48
948.8 0.879 0.258 3.40
1897.6 1.743 0.448 3.90

Figure 4–6: Speedup of the MF GPU-based implementation over the CPU-based
implementation for different image sizes.

4.2.3 Adaptive RX algorithm

Due to the local memory limitations of the C1060 graphics card, the bands of

the input image were downsampled to reduce the number from 120 to 60 in order to

fit the requirements of the adaptive RX implementation. The resources used by the

CUDA kernel that implements the adaptive RX algorithm are shown in Table 4–6. It
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is worth noting the large amount of local memory used by this kernel, value which is

close to the physical limit of 16 KB. Figure 4–7 shows the multiprocessor occupancy

for different block sizes, obtained from the spreadsheet. In this implementation, the

occupancy is limited by the maximum number of registers per multiprocessor. There

are eight block sizes that allow a maximum occupancy of 24 warps, which represents

a 75 % of occupancy since the maximum number of warps per multiprocessor is 32.

However, the best performance was achieved by using a block size of 512 threads,

which allows an occupancy of 16 warps (50 %). Since each thread uses 20 registers,

only one block can be active per multiprocessor if the block size is 512. But, for this

implementation, the maximum occupancy does not result in a better performance.

Table 4–6: Register, local, shared and constant memory usages required by the
CUDA kernel function that implements the adaptive RX algorithm.

Registers Local Memory Shared Memory Constant Memory
20 15120 bytes 42 bytes 32 bytes

Figure 4–7: Multiprocessor occupancy as a function of the block size (global RX
kernel function).

The running times of the adaptive RX implementations were measured using a

windows size of 21 × 21. The running times of both the CPU-based and GPU-based
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implementations with the corresponding speedups are shown in Table 4–7. The run-

ning times includes the memory transfers from the CPU to the GPU and the kernel

execution time. The resulting speedups vary from 10.99 for the smallest input size

to 14.05 for the largest input size. For the smallest input size, the implementation

on the CPU takes 183.58 seconds and the implementation on the GPU takes 16.69

seconds. For the largest input size, the implementation on the CPU takes 8,029.90

seconds (2.23 hours) to complete the execution, whereas the implementation on the

GPU takes 571.65 seconds (9.52 minutes). These running times show the high com-

putational complexity of this algorithm. Figure 4–8 shows the resulting speedups as

a function of the input size. The speedup does not increase considerably with the

input size, which may be due to the high local memory dependency of this algorithm

resulting in a poor memory throughput.

Table 4–7: Running times of the the CPU and GPU-based implementations of the
adaptive RX algorithm for the different images generated.

Image Size (MB) CPU Time (sec) GPU Time (sec) Speedup
59.3 183.58 16.69 10.99
118.6 385.80 35.38 10.91
237.2 795.24 72.16 11.02
474.4 1,762.27 140.36 12.56
948.8 3,709.10 285.27 13.00
1897.6 8,029.90 571.65 14.05

4.2.4 AMSD algorithm

Table 4–8 shows the resource usage for the CUDA kernel function that imple-

ments the adaptive matched subspace algorithm. It can be noticed, as in the MF

kernel, that the implementation of this detector does not use local memory. The

best performance was achieved for a block size of 512 threads, as in the other three

implementations.
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Figure 4–8: Speedup of the adaptive RX GPU-based implementation over the CPU-
based implementation for different image sizes.

Table 4–8: Register, local, shared and constant memory usages required by the
CUDA kernel function that implements the AMSD algorithm.

Registers Local Memory Shared Memory Constant Memory
12 0 bytes 540 bytes 28 bytes

Table 4–9 shows the running times of the CPU and GPU-based implementations

of the preprocessing step that estimates the background subspace basis vectors us-

ing the SVD approach and the resulting speedups. The CPU-based implementation

outperforms the GPU-based implementation for the first three image sizes: 59.3,

118.6, and 237.2 MB. For the size 474.4 MB and above, the GPU-based implemen-

tation becomes slightly faster but the speedup is very limited, reaching a maximum

value of 2.17 for the largest image size. This shows that the computation of the

autocorrelation matrix and the corresponding eigenvectors do not take advantage of

the GPU parallel architecture.

Table 4–9 shows the running times of the CPU and GPU-based implementa-

tions of the preprocessing step that estimates the background subspace basis vectors

using the MaxD algorithm and the resulting speedups. In this case, the CPU-based
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Table 4–9: Running times of the the CPU and GPU-based implementations of the
background subspace basis vector estimation step using the SVD approach.

Image Size (MB) CPU Time (sec) GPU Time (sec) Speedup
59.3 0.26 0.80 0.33
118.6 0.50 0.86 0.58
237.2 0.98 1.07 0.92
474.4 1.95 1.39 1.40
948.8 3.85 2.10 1.83
1897.6 7.71 3.56 2.17

implementation outperforms the GPU-based implementation only for the first im-

age sizes of 59.3 MB. For the other sizes, the GPU-based implementation becomes

faster, reaching speedups from 1.49 to 7.67. The MaxD algorithm achieves better

performance on the GPU than the SVD approach, although the speedup is still

limited specially for image sizes bellow 237.2 MB.

Table 4–10: Running times of the the CPU and GPU-based implementations of the
background subspace basis vector estimation step using the MaxD algorithm.

Image Size (MB) CPU Time (sec) GPU Time (sec) Speedup
59.3 0.52 0.65 0.80
118.6 1.03 0.70 1.49
237.2 2.02 0.78 2.57
474.4 4.03 0.98 4.1
948.8 8.13 1.39 5.86
1897.6 16.27 2.12 7.67

Table 4–11 shows the running times of the CPU and GPU-based implementa-

tions of the AMSD algorithm for the different input image sizes, and the resulting

speedup of the GPU over the CPU-based implementation. The running times in-

clude the memory transfers between the CPU and the GPU, and the kernel execution

time. The GPU-based implementation outperforms the corresponding CPU-based

implementation for all input image sizes. The speedups achieved vary from 18.54 to
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46.64. The evolution of the speedup with the input image size is shown in Figure

4–9. The GPU-based implementation of the AMSD algorithm is the only imple-

mentation that could achieve speedups larger than 30, reaching a maximum value

of 47.87.

Table 4–11: Running times of the the CPU and GPU-based implementations of the
AMSD algorithm for the different images generated.

Image Size (MB) CPU Time (sec) GPU Time (sec) Speedup
59.3 5.32 0.29 18.54
118.6 16.22 0.50 32.43
237.2 32.55 0.91 35.69
474.4 68.31 1.74 39.37
948.8 161.11 3.37 47.87
1897.6 322.62 6.92 46.64

Figure 4–9: Speedup of the AMSD GPU-based implementation over the CPU-based
implementation for different image sizes.

4.2.5 Processing Rate

Since the scanning rate of the SOC-700 imager is 15 megabytes per second,

we can analyze the real-time performance of the GPU-based implementations by
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comparing their processing rates to this value. The processing rate of the imple-

mentations were estimated as the ratio of the input image size in MB to the total

execution time in seconds needed to process the data.

Table 4–12 and Figure 4–10 shows the resulting processing rates of each im-

plementation as a function of the input size. All the implementations exceed the

processing rate of 15 MB/sec except for the adaptive RX algorithm, which achieves

a processing rate of around 3.3 MB/sec. Therefore, the GPU-based implementation

of the adaptive RX algorithm was the only implementation that does not achieve a

real-time processing rate for the input data sets evaluated.

Table 4–12: Resulting processing rates (MB/sec) of each implementation for the
different input image sizes.

Image Size (MB) Global RX MF Adaptive RX AMSD
59.3 442.41 744.92 3.55 206.78
118.6 622.61 1,311.58 3.35 237.10
237.2 752.85 2,083.15 3.29 260.12
474.4 859.87 2,945.36 3.38 273.42
948.8 919.75 3,670.93 3.33 281.91
1897.6 949.72 4,239.81 3.32 274.31

Figure 4–10: Resulting processing rates (MB/sec) of each implementation as a func-
tion of the input size.
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4.3 Detection Results

This section presents the detection results obtained from each detection algo-

rithm using the image subset shown in Figure 4–2. The ground truth for the target

traces is shown in Figure 4–11, where the full-pixels are represented in red, the sub-

pixels in yellow, and the guard pixels in green. The target contains 568 full-pixels,

197 sub-pixels and 255 guard-pixels.

Figure 4–11: Ground truth for the target traces showing the full-pixels (red), sub-
pixels (yellow) and guard-pixels (green).

Figures 4–12 and 4–13 show the resulting detection maps for each detector

algorithm. The threshold values used for generating the detection maps were selected

as the least value that allows the detection of all the full-pixels of the two small

traces located on the top of Figure 4–11. Table 4.3 shows the detection statistics

(detection accuracy and percentage of false alarms). The best detection accuracy

was achieved by the matched filter (98.4 % of targets detected for a false alarm rate

of 0.07 %). The detection accuracy of the adaptive RX algorithm is very limited by

the size of the 2D moving window. For a window size of 51x51, only 5 small targets

were detected (8 % of detection accuracy). The adaptive RX assumes small targets,

hence, the reason for this poor performance. The percentage of detected targets

for the AMSD algorithm, using SVD as background subspace estimation method,

and the RX algorithm, using global background statistics, were both 93.3 %, but

the percentage of false alarms in the RX algorithm was slightly higher. In addition,
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the detection accuracy of the AMSD algorithm was reduced when using MaxD as

background subspace estimation method.

(a) (b) (c)
Figure 4–12: Detection Results, (a) RX with global statistics, (b) MF detector, (c)
adaptive RX

(a) (b)
Figure 4–13: Detection Results, (a) AMSD with SVD as background subspace esti-
mation method, (b) AMSD with MaxD as background subspace estimation method.

Table 4–13: Detection accuracy of different target detection algorithms.

Target Detectors Detection Accuracy (%) False alarms (%)

RX 93.3 0.09

MF 98.4 0.07

adaptive RX 8.4 1.1

AMSD (SVD) 93.3 0.03

AMSD (MaxD) 90.2 0.01



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, the GPU-based parallel implementation of three target detection

algorithms for hyperspectral images has been analyzed. The first two algorithms

were detectors for full-pixel targets: the RX algorithm and the MF detector. Two

different implementations were studied for the RX detector. In the first implementa-

tion, the statistical parameters of the background distribution (mean and covariance

matrix) are globally estimated from training samples as a preprocessing step on the

CPU, approach also used in the MF implementation. In contrast, the other imple-

mentation estimates these parameters locally using a moving window centered at

the test pixel. The third algorithm studied was the AMSD, a detector for sub-pixel

targets based on structured modeling of the background. In the implementation of

this algorithm, two methods for estimating the set of background basis vectors were

evaluated, SVD and MaxD, both implemented on the GPU.

In the design of the GPU implementations, we have analyzed three important

aspects:

• Computation decomposition: The particular structure of the target detectors

studied allows a task decomposition in terms of a pixel-level parallelism. Since

the output value of the detectors is computed independently for each pixel of the

image, the task of computing the output value for a single pixel can be assigned to

66
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a single processing unit, i.e., a GPU thread in the CUDA architecture. Therefore,

the output of the detectors for the entire image can be computed in parallel by

N threads, being N the total number of pixels in the image. Since the GPU

architecture is optimized for data-parallel computations, this type of algorithm

structure can be efficiently implemented on the GPU.

• Data layout: How the input image is stored in the GPU memory is an impor-

tant aspect when designing a GPU-based implementation of the detectors, since

it can affect the performance considerably. Accessing the GPU global memory

generates latencies of hundreds of clock cycles, but the memory throughput can

be increased by coalesced memory transactions if the access pattern to global

memory satisfied specific requirements that depend on the core architecture of

the GPU device. In the GPU-based implementations described in this document,

the BSQ storage scheme was used since it leads to coalesced memory transactions

because consecutive memory positions correspond to consecutive pixels for the

same band. Therefore, threads with consecutive ID numbers will access contigu-

ous memory positions when reading or writing a single band, thus, satisfying the

requirements for the core architecture of the GPU graphics card employed in this

work.

• Mapping the computation to the memory hierarchy: In the design of

the GPU-based parallel implementations, different memory spaces were used for

storing the data elements of the algorithms in order to exploit the GPU architec-

ture. Parameters that do not change their values throughout the computation,

like the background mean µ0, are stored in the GPU constant memory space to

improve the memory throughput. Other parameters, like the covariance matrix

of the full-pixels detectors and the projection matrices of the AMSD algorithm,

although they remain constant, they cannot be stored in the constant memory

space due to their size. In this case, the rows of the matrices are temporarily



68

stored in the shared memory space in order to increase the memory throughput

since all the threads of the same block can share the values and read them from

the shared memory cache.

In the GPU implementations, linear algebra computations like matrix-matrix

multiplications or eigenvectors computations were performed using routines from

the CUBLAS
TM

and CULA
TM

libraries, since they provide implementations of the

BLAS and LAPACK routines optimized for the CUDA architecture. In addition, a

CPU-based implementation of each target detector was developed to be used as a

baseline to estimate the speedups of the GPU-based implementations. The CPU-

based implementations were developed in C++ using the IntelR© MKL
TM

library.

The computational performance of the implementations and the detection ac-

curacy of the algorithms were evaluated using a set of phantom images of a scene

simulating traces of different materials on clothing and collected using a SOC-700

hyperspectral imager. The images were spatially duplicated in a tiled fashion in

order to evaluate the running times of the implementations for different input data

sizes.

The most important results can be summarized as follows:

• The maximum speedup was achieved for the largest data size in all the imple-

mentations. Processing larger data sets keeps the multiprocessors more occupied,

which helps in reducing the memory latencies.

• The GPU-based implementations of the global RX and AMSD algorithms showed

best performance improvement achieving maximum speedups of 24.76 and 46.64,

respectively.

• The performance of the MF algorithm was limited by the slow number of arith-

metic operations performed by this detector, achieving speedups bellow 5. The
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parallel portion of this algorithm only consists of a dot product, which is rela-

tively fast. Therefore, most of the total running time is spent in transferring data

from the CPU to the GPU and vice versa.

• The performance of the adaptive RX algorithm was also limited, but in this case,

due to high dependency on local data which limits the memory throughput. In

this implementation, each thread has to compute the mean and covariance matrix

using the samples from the neighborhood defined by the moving window. Since

this neighborhood is different for each pixel, both the mean and covariance matrix

has to be stored in the local memory space and calculated by reading from global

memory. The low bandwidth of this memory space is the many factor that limits

the performance of the adaptive RX implementation.

• Experimental results also showed that the method evaluated for estimating the

background subspace, SVD and MaxD, are only accelerated on the GPU for large

data sizes.

• In terms of detection accuracy, the MF showed the best detection results for the

dataset evaluated.

From the previous results, we can identify some important aspects that should

be present in the structure of an algorithm for hyperspectral image exploitation in

order to take advantage of the CUDA architecture:

• The algorithm allow a data-parallel decomposition of the computations.

• The portion of the computations performed on the GPU is computationally in-

tensive.

• The structure of the algorithm allows the use of fast GPU memory caches like

the shared memory or constant memory spaces.



70

5.2 Future Work

• Study the incorporation of techniques for the automatic estimation of the back-

ground statistical parameters as part of the GPU-based implementations of the

full-pixel detectors.

• Study other approaches to implement on the GPU the adaptive RX algorithm

in order to take more advantage of the CUDA architecture and study the imple-

mentation of other approaches for handling the image borders.

• Study the implementation on the GPU of other algorithms for estimating the

background basis vectors for the AMSD.

• Analyze further optimizations of the implementations to take advantage of the

new Fermi architecture of NVIDIA R© GPUs. Fermi provides new features like

configurable memory caches, more amount of local memory per thread, more

amount of shared memory, concurrent kernel executions, etc. These new features

open new possibilities in the optimization of the algorithms, specially, in the

adaptive RX algorithm which is limited by the local memory throughput.

• Evaluate the use of other GPU libraries, like MAGMA 1 or LibJacket 2 , as

alternatives to the CULA library for linear algebra computations.

1 http://icl.cs.utk.edu/magma/

2 http://www.accelereyes.com/products/libjacket/
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Appendix A

Library of Target Detection Algorithms

This appendix documents the functions provided by the compiled library that

includes the GPU-based implementations of the target detection algorithms de-

scribed in this work.

A.1 List of Functions

The library implements the following set of functions:

• RXdetector

• MFdetector

• RXdetector adaptive

• getSubspace

• AMSD

A.2 Function Description

Since all functions perform the computations using single-precision, they only

accept pointers to float data types. The functions return an integer value that can

be used for error handling. The possible returned values are:

• = 0: Success exit. No errors occurred.

• < 0: A returned value of −i means that the i -th argument had an illegal value.
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The first argument of all functions is a pointer to the hyperspectral image data.

The image must be stored in the CPU memory as a linear array in BSQ format, in

order to be read successfully by these functions.

A.2.1 RXdetector

Description:

This function computes the output values of the RX detection algorithm for all

the pixels of a hyperspectral image. The mean and covariance matrix that charac-

terize the background statistical distribution are input parameters and, therefore,

they have to be estimate previously.

Function prototype:

int RXdetector(float* image, int lines, int samples, int bands, float* mean,

float* covar, float* RXoutput)

Arguments:

• image: a pointer to the input image data.

• lines: number of lines of the hyperspectral image.

• samples: number of samples of the hyperspectral image.

• bands: number of bands of the hyperspectral image.

• mean: pointer to the background mean vector.

• covar: pointer to the background covariance matrix.

• RXoutput: pointer to the RX output values.

A.2.2 MFdetector

Description:

This function computes the output values of the MF detection algorithm for all

the pixels of a hyperspectral image. The target, background mean and background

covariance matrix are input parameters and, therefore, they have to be estimate

previously.
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Function prototype:

int MFdetector(float* image, int lines, int samples, int bands, float* mean,

float* covar, float* target, float* MFoutput)

Arguments:

• image: a pointer to the input image data.

• lines: number of lines of the hyperspectral image.

• samples: number of samples of the hyperspectral image.

• bands: number of bands of the hyperspectral image.

• mean: pointer to the background mean vector.

• covar: pointer to the background covariance matrix.

• target: pointer to the target mean vector.

• MFoutput: pointer to the MF output values.

A.2.3 RXdetector adaptive

Description:

This function computes the output values of the RX detection algorithm for all

the pixels of a hyperspectral image. The mean and covariance matrix that charac-

terize the background statistical distribution are locally estimated by this function

using a double moving window centered at the test pixel. The user has to specify

the parameters that define the sizes of the moving windows.

Function prototype:

int RXdetector adaptive(float* image, int lines, int samples, int bands, int W,

int G, float* RXoutput)

Arguments:

• image: a pointer to the input image data.

• lines: number of lines of the hyperspectral image.

• samples: number of samples of the hyperspectral image.

• bands: number of bands of the hyperspectral image.
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• W: parameter that defines the size of the outer window as (2W +1)× (2W +1).

• G: parameter that defines the size of the inner guard window as (2G+1)×(2G+1).

• RXoutput: pointer to the RX output values.

A.2.4 getSubspace

Description:

This function estimates a set of basis vectors to characterize a background sub-

space model. The user has to specify the estimation method and the desired number

of background basis vectors. Two method are implemented in this function: SVD

and MaxD. In the SVD method, the basis vectors are estimated as the eigenvectors

of the image correlation matrix.

Function prototype:

int getSubspace(float* image, int lines, int samples, int bands, const char*

method, int M, float* B)

Arguments:

• image: a pointer to the input image data.

• lines: number of lines of the hyperspectral image.

• samples: number of samples of the hyperspectral image.

• bands: number of bands of the hyperspectral image.

• method: character string defining the method used for estimating the back-

ground subspace. Two values are allowed: ‘SVD’ and ‘MaxD’.

• M: desired number of basis vectors.

• B: resulting matrix of background basis vectors.

A.2.5 AMSD

Description:

This function computes the output values of the AMSD detection algorithm for

all the pixels of a hyperspectral image. The user has to specify the dimensionality of
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the background subspace, the matrix of background basis vectors, the dimensionality

of the target subspace, and the matrix of target basis vectors.

Function prototype:

int AMSD(float* image, int lines, int samples, int bands, int M, float* B, int

P, float* S, float* AMSDoutput)

Arguments:

• image: a pointer to the input image data.

• lines: number of lines of the hyperspectral image.

• samples: number of samples of the hyperspectral image.

• bands: number of bands of the hyperspectral image.

• M: dimensionality of background subspace.

• B: pointer to the matrix of background basis vectors.

• P: dimensionality of target subspace.

• S: pointer to the matrix of target basis vectors.

• AMSDoutput: pointer to the AMSD output values.



Appendix B

List of LAPACK functions

This appendix presents the description of the LAPACK functions used in this

work as part of the CUBLAS, CULA, and MKL libraries.

ISAMAX Finds the smallest index of the maximum magnitude element of a vector.

That is, given an input vector x = [x1 x2 · · ·xn], this function finds the first i that

maximizes |x1+i·incx|, where incx is the storage spacing between the elements of

x and i is an integer between 0 and n-1.

ISAMIN Finds the smallest index of the minimum magnitude element of a vector.

That is, given an input vector x = [x1 x2 · · ·xn], this function finds the first i

that minimizes |x1+i·incx|, where incx is the storage spacing between the elements

of x and i is an integer between 0 and n-1.

SGEMM It performs the following matrix-matrix operation:

C = α op(A) · op(B) + βC

where · denotes matrix multiplication and op(X) = X or op(X) = XT . α and β

are scalar constants. A, B, and C are matrices stored in column-major format,

with op(A) an m× k matrix, op(B) an k × n matrix, and C an m× n matrix.

SGER It performs the symmetric rank 1 operation:

A = α x · yT +A
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where · denotes vector multiplication, α is a scalar constant, x is an m-element

vector, y is an n-element vector, andA is anm×nmatrix stored in column-major

format.

SPOTRF It computes the Cholesky factorization of a real symmetric positive def-

inite matrix A. The factorization has the form A = UT · U or A = L · LT ,

depending on the option selected by the user, where U is an upper triangular

matrix and L is lower triangular.

SSYEV It computes all eigenvalues and, optionally, eigenvectors of a real symmet-

ric matrix A.


