
A FRAMEWORK FOR A WEB BASED TRANSACTION COORDINATOR

SWITCH

By

Juan A. Correa Colón

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER ENGINEERING

University of Puerto Rico
Mayagüez Campus

2006

Approved by:

Bienvenido Vélez Rivera, Ph.D. Date
Member, Graduate Committee

Pedro Rivera Vega, Ph.D. Date
Member, Graduate Committee

Manuel Rodŕıguez Mart́ınez, Ph.D. Date
President, Graduate Committee

Cristina Pomales Garćıa, Ph.D. Date
Representative of Graduate Studies

Isidoro Couvertier, Ph.D. Date
Chairperson of the Department

ABSTRACT

A FRAMEWORK FOR A WEB BASED TRANSACTION COORDINATOR

SWITCH

By

Juan A. Correa Colón

JSwitch was designed and developed at this thesis research. It is a Web-based transactional

coordination systems designed to accept batches of transactions and route them to the appropriate

transactional server application that must handle each individual transaction. JSwitch can be used

as a framework to implement intra-agency and inter-agency solutions that allows transactions to

be exchanged seamlessly. Moreover, JSwitch can be used by a single provider of services as a

tool to balance the load among various servers used to manage transactions. These servers might

be located at a single site, or distributed geographically, but accessible by means of a corporate

intranet. We present an initial implementation of the system, and a performance study that

discusses the tradeoff between the different load balancing policies used in the system to distribute

the processing of transactional batches. These policies are a) Round Robing Scheduling, b) Random

Scheduling, c) Least Loaded Scheduling, and d) Random Towards Least Loaded Scheduling. Our

performance study shows that this latter provides the best performance for JSwitch.

ii

RESUMEN

UN ESQUEMA PARA UN SWITCH QUE COORDINA TRANSACCIONES

BASADO EN EL INTERNET

Por

Juan A. Correa Colón

Como parte de la investagación de la tesis JSwitch fue diseñado y desarrollado. Es un

sistema basado en el Web para la coordinación de transacciones que acepta lotes de estas y los

dirreciona hacia el servidor de transaciones appropiado el cual debera manejar cada transacion

individualmente. El JSwitch puede ser utilizado como un esquema para implementar soluciones

intra-agencia y inter-agencia que permiten el intercambio de transacciones de una manera sut́ıl.

Aun mas, JSwitch puede ser usado por un solo proveedor de servicios como una heramienta para

balancear la carga entre varios servidores utilizados para manejar transacciones. Dichos servidores

podrian estar en una sola localización o distribuidos geograficamente, pero accesibles a traves de

una red corporativa. Presentamos una implementación inicial del sistema y un estudio de ejecutoria

en el cual se discuten las ventajas y desventajas entre las diferentes poĺıticas de balanceo de carga

utilizadas en el sistema para distribuir el procesamiento de los lotes de transacciones. Las poĺıticas

son a) distribución todos contra todos, b) distribución aleatoria, c) distribución menos cargado,

d) distribución aleatoria hacia el menos cargado. Nuestro estudio de ejecutoria muestra que esta

última provee la mejor ejecutoria del sistema.

iii

Copyright c© by

Juan A. Correa Colón

2006

iv

To my great family

v

ACKNOWLEDGMENTS

First and above all God. My family, my girlfriend, my thesis advisor Dr. Manuel Rodŕıguez
and Dr. Bienvenido Vélez and Dr. Pedro Rivera for their support and reviews of my work. I thank
my friends Elliot and Rene for their constant key tehcnical and emotional support along with all
the recreational time all the way from the start of the master. Finally, I would also like to thank
all other people not mentioned here who have also helped me throughout the years.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix
LIST OF FIGURES . x
LIST OF SYMBOLS AND ABBREVIATIONS . xii

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 2
1.3 Contributions . 3
1.4 Thesis Structure . 4

2 Literature Review 5
2.1 Theoretical Background . 5

2.1.1 eCommerce, eBusiness, eGoverment Technology 5
2.1.2 Relational Databases . 6
2.1.3 Web Services . 9
2.1.4 Transaction Processing . 10
2.1.5 On-line Transaction Processing . 11
2.1.6 On-line Transaction Coordination . 12
2.1.7 Implementation Techniques . 14

2.2 Related Work . 18
2.2.1 Relational Databases . 18
2.2.2 On-line Transaction Coordination and Processing 19

3 Web Switch Transaction Coordinator Framework 24
3.1 General System Architecture . 24
3.2 JSwitch Clients . 26
3.3 JSwitch Server Components . 29

3.3.1 Transaction Coordinator (TCoord) . 29
3.3.2 Transaction Collector (TColl) . 31
3.3.3 Transaction Dispatcher . 32
3.3.4 Transaction Processor . 34
3.3.5 Database Server . 35
3.3.6 JSwitch System Application Database . 35

3.4 JSwitch Resource Scheduling . 38
vii

3.4.1 Round Robin Scheduling . 39
3.4.2 Random Scheduling . 39
3.4.3 Least Loaded Scheduling . 42
3.4.4 Random Towards Least Loaded Scheduling 42

3.5 Batch Transaction Coordination Protocol . 46
3.5.1 Component Crash-Recovery . 49

3.6 Performance and Load Analysis . 53
3.7 Security Analysis . 53

4 Experimental Analysis 54
4.1 Experimental Application and Data Schema . 54
4.2 Experimental Scenarios and Methodology . 60
4.3 Performance and Load Analysis . 62

4.3.1 Coordination Protocol with Scheduling Policy 1 Analysis 63
4.3.2 Coordination Protocol with Scheduling Policy 2 Analysis 64
4.3.3 Coordination Protocol with Scheduling Policy 3 Analysis 65
4.3.4 Coordination Protocol with Scheduling Policy 4 Analysis 66
4.3.5 Scheduling Policy Throughput Comparison 68
4.3.6 Load Capacity Analysis . 73

5 Conclusions and Future Work 78
5.1 Summary of Contributions . 79
5.2 Future Work . 80

REFERENCES 81

APPENDICES 84

A Technical and Implementation Details 85

viii

LIST OF TABLES

4.1 RRS operation times for the Batch Coordination Protocol (Homogeneous Data Set) 63
4.2 RRS operation times for the Batch Coordination Protocol (Heterogeneous Data Set) 63
4.3 RS operation times for the Batch Coordination Protocol (Homogeneous Data Set) . 64
4.4 RS operation times for the Batch Coordination Protocol (Heterogeneous Data Set) . 64
4.5 LLS using 5 min refresh rate operation times for the Batch Coordination Protocol

(Homogeneous Data Set) . 65
4.6 LLS operation times for the Batch Coordination Protocol (Homogeneous Data Set) . 66
4.7 LLS operation times for the Batch Coordination Protocol (Heterogeneous Data Set) 66
4.8 RTLLS-Half operation times for the Batch Coordination Protocol (Homogeneous

Data Set) . 67
4.9 RTLLS-Half operation times for the Batch Coordination Protocol (Heterogeneous

Data Set) . 67
4.10 RTLLS-Third operation times for the Batch Coordination Protocol (Homogeneous

Data Set) . 67
4.11 RTLLS-Third operation times for the Batch Coordination Protocol (Heterogeneous

Data Set) . 68

ix

LIST OF FIGURES

2.1 Batch Processing System Interactions . 11
2.2 Singlethreaded and multi-threaded process . 14
2.3 Thread pool vs dynamic thread allocation. 15
2.4 Product Consumer Queue . 17
3.1 System Architecture . 25
3.2 TicketPR client entertainment XML batch . 28
3.3 TCoord internal organization . 30
3.4 TColl internal organization . 32
3.5 TDisp internal organization . 33
3.6 TProc internal organization . 34
3.7 JSwitch application database ER-Diagram . 36
3.8 RRS behavior when assigning batches to a pool of TColls 40
3.9 RS behavior when assigning batches to a pool of TColls 41
3.10 LLS behavior when assigning batches to a pool of TColls 43
3.11 RTLLS-Half behavior when assigning batches to a pool of TColls 45
3.12 Batch Transaction Coordination Procol Exchange Diagram 47
3.13 Crash Recovery at the events of a TColl failure Exchange Diagram 50
3.14 Crash Recovery at the events of a TProc failure Exchange Diagram 52
4.1 Traffic Ticket JSwitch solution architecture . 55
4.2 Traffic Ticket JSwitch solution application database ER-Diagram 57
4.3 Throughput comparison among implemented scheduling policies with 1 client for the

homogeneous data set . 69
4.4 Throughput comparison among implemented scheduling policies with 1 client for the

heterogeneous data set . 69
4.5 Throughput comparison among implemented scheduling policies with 4 client for the

homogeneous data set . 70
4.6 Throughput comparison among implemented scheduling policies with 4 client for the

heterogeneous data set . 70
4.7 Throughput comparison among implemented scheduling policies with 8 client for the

homogeneous data set . 71
4.8 Throughput comparison among implemented scheduling policies with 8 client for the

heterogeneous data set . 72
4.9 Throughput comparison among implemented scheduling policies with 16 client for

the homogeneous data set . 72

x

4.10 Throughput comparison among implemented scheduling policies with 16 client for
the heterogeneous data set . 73

4.11 Throughput for load capacity of 16,000 transactions for the homogeneous data set . 74
4.12 Throughput for load capacity of 16,000 transactions for the heterogeneous data set . 75
4.13 Throughput for load capacity of 32,000 transactions for the homogeneous data set . 75
4.14 Throughput for load capacity of 32,000 transactions for the heterogeneous data set . 76
4.15 Throughput for load capacity of 64,000 transactions for the homogeneous data set . 77
4.16 Throughput for load capacity of 64,000 transactions for the heterogeneous data set . 77

xi

LIST OF SYMBOLS AND ABBREVIATIONS

ADB - Application Database
BTCP - Batch Transaction Coordination Protocol
DB - Database
DBS - Database Server
DBMS - Database Management System
EDI - Electronic Data Interchange
ER - Entity-Relationship
GB - Giga-bytes
HTTP - Hyper-Text Transfer Protocol
LAN - Local Area Network
MB - Mega-bytes
Mb/s - Mega-bits per second
min - minutes
ms - milliseconds
RAM - Random Access Memory
RDBMS - Relational Database Management System
SOAP - Simple Object Access Protocol
SQL - Structured Query Language
SSL - Secure Sockets Layer
UDDI - Universal Description, Discovery, and Integration
W3C - World Wide Web Consortium
WS - Web Service(s)
WSDL - Web Services Description Language
XML - eXtended Markup Language

xii

CHAPTER 1

Introduction

1.1 Overview

Nowadays, the advent of information technology’s new generations is of great importance in

all areas, especially those of eCommerce and eBusiness. The Web is well known to evolve constantly.

It keeps improving in areas such as interoperability of technologies and availability of commonly

used functions. This trend can be seen by the emergence of various revolutions in many areas, such

as databases, as stated by Jim Gray’s article: A Call To Arms. Among the database revolutions

stated on the article are those entitled: Object Relational Arrives; Databases and Web Serives;

Queues, Transactions, Workflows; Smart Objects: Databases Everywhere; and Self Managing and

Always Up.

This constant technical evolution normally translates into the birth of mature and robust

solutions. However, this innovation also brings new unforeseen and often undesirable problems.

Examples of some of these problems include system interoperability, scalability and backwards

compatibility. These must be addressed as soon as they emerge or the developer risks deploying an

unusable software system.

In this thesis we consider the problem of building transaction coordination systems on

top of Web technologies. These systems are designed to collect various types of transactions and

forward them to the the proper transactional engine (e.g. a relational database system). For that

reason, these type of systems are often called Transactional Switches. Typically, the transactions

are submitted in batches and the user later wishes to follow up on the status of each individual

1

2

transaction. eCommerce and eBusiness applications rely on transaction coordination solutions to

manage large amounts of transactions that arrive every day. Often, the transaction coordination

solutions are built in a very ad-hoc manner, using proprietary components. As part of this thesis,

we present a Web-based framework that can be used to built transaction coordination solutions.

Our approach builds heavily on open standards (e.g. Web services) to provide a scalable, easy

to use and efficient solution. We call our approach the JSwitch Web Based Transaction

Coordination Switch Framework, and it is designed to improve the current state of technology

in the online-transaction processing area.

1.2 Problem Statement

Currently, the emergence of eCommerce and eBusiness applications presents some new chal-

lenges that must be met. Among these challenges are the increase in the variety of audiences reached

and transactions performed, the great number of eCommerce and eBusiness technologies involved,

and the integration of emerging ones. Some of the target audiences for these applications are the

government, military, health, education, industrial and the financial sector. The solutions imple-

mented range from banking, manufacturing, and health billing to retail and media transactions,

among many others.

This diversity produces a level of heterogeneity among the systems that demands special

attention. This problem, along with the scalability challenges brought on by the large utilization of

such systems, presents one of the biggest challenges to the eCommerce and eBusiness technologies in

order for them to continue to prosper. Online-transaction processing systems must take into account

the emergence of promising new information technologies, along with the challenges mentioned

above, in order to offer robust, scalable, and adaptable solutions.

In this thesis, we study the problem of building a transaction coordination systems using

Web-technologies, particularly Web Services. Our hypothesis is that such system can be built by

customizing a set of components with clear responsibilities and behaviors. The key to our approach

is to deploy various components responsible for transaction coordination as Web Services. These

services are run on servers located on the corporate LAN to ensure reliability and availability. We

study various alternative policies to schedule the assignment of transaction batches between the

3

servers in the LAN. Such batches will find their way to the proper and most efficient transactional

engine available in the enterprise. Our experiments show that a hybrid scheduling approach, which

combines randomization with informed site selections provides the best tradeoff for scheduling

transactional batches.

1.3 Contributions

The aim of this research is to define a framework that establishes the foundations of uni-

fication among eCommerce and eBusiness technologies in terms of transaction batch coordination

for the Web environment. In addition to this outcome, the system should provide a robust solution

in terms of work distribution and load balancing, along with crash recovery at a basic level.

While RDBMS and TP Monitor systems have been around for some time now, much of

their utilization has been in the private sector. These systems have been widely deployed and

used with success in centralized, population fixed environments at companies and organizations

providing reliable business essential services. In contrast to current transaction processing systems,

the JSwitch framework offers a solution specially designed to cope with the scalability presented

by a highly dynamic Web environment.

Furthermore, JSwitch offers the integration of promising cutting edge technology into the

framework, therefore bringing innovation to the information technology field. The success of this

integration is possible thanks to the efforts that the Web community has agreed upon by producing

standards for Web applications. This is a practice that one should strive for whereever possible, as

this framework does. The JSwitch framework provides an example of how to use current standards

and a motivation toward the production of more standards of efficient and effective communication

between the different systems.

The JSwitch framework defines a Batch Transaction Coordination Protocol in order to

enable the processing of batch transactions by the system. The framework also defines a commu-

nications protocol to be followed by the clients of the JSwitch. These protocol definitions strive to

enforce the practice of standard creation for Web applications, resulting in guidelines for others to

follow and improve.

Through the implementation, testing, and analysis of a JSwitch prototype we are able to

4

obtain measurements to shed light in the system performance, and its capabilities for handling load

and crash recovery. These measurements will be part of the system profile and will also contribute

in the evaluation of emerging solutions based on the technologies and standards used here or even

new generations of these.

This research provides results about the use of cutting edge technology applied to the

transactions involved in systems deployed over Web environments. Therefore, the experimental

results of this research could help in the creation of mature and robust eCommerce and eBusiness

technologies, that will offer many more benefits and will reach a larger population.

1.4 Thesis Structure

This chapter has addressed the introduction of the thesis research; the rest of the document

is organized as follows. Chapter 2 contains a general overview of available work and articles related

to this research and the necessary theoretical background to achieve a better understanding of this

work. Chapter 4 introduces the JSwitch framework and describes its functionality as a whole and

that of each of its parts. Chapter 5 presents the different experiments that were carried out in

order to test the proposed system and analyzes their results. Chapter 6 summarizes the findings

of this research and the achievements of the JSwitch framework. It also gives various ideas and

possibilities for new research projects and for expanding or improving the current system. Finally,

the Appendices give detailed information on the internal workings of the JSwitch framework, the

implementation, and the data captured from the experiments.

CHAPTER 2

Literature Review

This chapter provides a literature review of the theoretical background along with the

related works in the area of transaction coordination and areas related with the conducted research.

2.1 Theoretical Background

This section provides theoretical background about the topics necessary to understand the

research conducted and presented at this document.

2.1.1 eCommerce, eBusiness, eGoverment Technology

The information era in which we live today has been possible due to the success that

technology has in constantly making information more accesible, with richer variety and larger user

base. This has been mostly done via computer networks and Internet applications, particularly the

Web. It is important to mention the fact that the Internet is only posible thanks to the research

and success of computer networks. Today, the terms of eCommerce, eBusiness and eGoverment

stand out in this era because of their great acceptance and many benefits to organizations and

general public.

The term eCommerce is defined as the process of buying, selling, transferring, or exchanging

products, services, or information via the Internet. eBusiness is known as the term to characterize

a process in which a company performs all or most of its business functions electronically. For

instance, the automated supply chain process where products go from the manufacturer to the

wholesaler, as Walmart does with many of its partners suppliers (e.g.,, Procter and Gamble) to

keep inventory. eGoverment was born from the initiatives that some Goverment agencies have
5

6

taken of adopting succesful eBusiness practices to help their intra-business operations and inter-

organizational business, along with online goverment information and services for the citizens.

Some eGoverment initiatives already in place in the US, acording to a 2000 surveys by researchers

at Brown University’s Tauban Center for Public Policy [15], include the ability to file taxes online,

being able to order publications online, filing complaints, submitting vehicle registrations and

ordering hunting licenses. Note that the eBusiness term is recognized as the broadest definition of

eCommerce, which includes intrabusiness, interorganizational business, and eCommerce [43] along

with eGoverment. Therefore from this point on eBusiness will be use to refer to these three terms

unless otherwise specified. Also notice that sometimes eCommerce, eBusiness, and eGoverment

Technology are used as generic terms for the tools that made possible electronic transactions.

These tools range from computer hardware, including servers, to networks and the software that

provides the business logic for the application at hand.

2.1.2 Relational Databases

A relational database management system (RDBMS) is normally used to record the transac-

tions performed by eBusiness systems. The RDBMS in these applications represents the persistence

layer. RDBMs are responsible for the maintenance of the data in large structured sets [37]. The

relational model was introduced by Edgar F. Codd in 1970 [10], and today is the most widely used

model in database applications. This model is based in the fundamental assumption that all data

are represented as mathematical relations. A database is a collection of one or more relations,

where each relation is a table with rows and columns.

The relational view of data as explained by the author in [10] is as follows. The term

relation is used here in its accepted mathematical sense. Given sets S1, S1, . . . , Sn, (not necessarily

distinct), R is a relation on these n sets if it is a set of n-tuples each of which has its first element

from S1, its second element from S1, and so on. We shall refer to Sj as the jth domain of R. As

defined above, R is said to have degree n. Relations of degree 1 are often called unary, degree 2

binary, degree 3 ternary, and degree n n-ary. For the purpose of explanation, Codd used an array

for the representation of relations. An array which represents an n-ary relation R has the following

properties:

7

1. Each row represents an n-tuple of R.

2. The ordering of rows is immaterial.

3. All rows are distinct.

4. The ordering of columns is significant - it corresponds to the ordering S1, S1, , Sn of the

domains on which R is defined (see, however, remarks below on domain-ordered and domain-

unordered relations).

5. The significance of each column is partially conveyed by labeling it with the name of the

corresponding domain.

RDBMs support transactions in a way that guarantees all of the ACID properties for each trans-

action. The ACID properties of atomicity, consistency, isolation and durability (explained in a

following section) are one of the key features of a RDBMS, responsible for the integrity of the

database.

Middleware is defined as the connectivity software layer between the operating system

(OS) and the applications on each site of a distributed computing system. Middleware is the

enabling technology for Enterprise applicaiton integration. The access mechanisms to RDBMSs

used by middleware appllications are JDBC[25], ODBC[32], and other vendor-specific APIs.The

Middleware technology systems are often classified as:

• Remote Procedure Call (RPCs) - a client makes calls to procedures running on remote systems

and receives a response over the networks.

• Publish/Subscribe - monitors activity at the data sources and pushes (i.e. sends) relevant

information to subscribers interested in those data sources.

• Message Oriented Middleware (MOM) - messages sent to the client are collected and stored

until they are acted upon, meanwhile the client continues with other processing tasks.

• Object Request Broker (ORB) - makes it possible for applications to send objects and request

services to remote severs in a distributed system.

• SQL-oriented Data Access - middleware between applications and relational database servers.

8

The entity-relationship (ER) model is a high-level description of the actual data in real

world applications. Basically, the ER-Diagram describes the data as entities and the relationships

among these entities. In practice the principal use of the ER model is in the initial phase of

development of database designs. Once an ER-Daigram is conceived, it is directly mapped to a

relational schema. The conventions used for this diagram is as follows: boxes represent entities,

ovals represent their attributes, double ovals are composite attributes, and diamonds represent the

relations among entities. All entities and some of the relations are mapped direcly or almost directly

into tables in the database. The RDBMS book of Ramakrishnan and Gehrke [37], identifies the

first three steps of the database design process as:

1. Requirements Analysis - Understand what data is to be stored in the database, what ap-

plications will be built on top of it, and what operations are more frequent and subject to

performance requirements.

2. Conceptual Database Design - Developmet of a high-level description of the data to be stored

in the database, along with the constraints required to be hold over this data. This step

involves the creation of the ER Model as a semantic data model that should lead directly

to the data model supported by a commercial database. This last model is known as the

relational model.

3. Logical Database Design - Refers to the selection of a RDBMS system to implement the

database design into a database schema in the data model of the selected RDBMS. The

result of this action is called the logical schema.

A database cluster is a collection of databases that will be accessible through a single

instance of a running database server[36]. It has a predefined database storage area on disk which

is termed the database cluster, but on the other hand SQL refers to this as a catalog cluster instead.

In file system terms, a database cluster is a single directory under which all data will be stored.

This is called the data directory or data area. There are several variations and puropses for DB

clusters but the main two are a failover cluster and a load-balancing cluster [7]. The first is a

set of two or more independent computers that share resources, in this way if one of the servers

fails, another server in the cluster will take over the resources and the processing load. The system

9

behaves differently in a load-balancing cluster, since the requests for processing are distributed

among the servers. The different servers in a load-balancing cluster share processing load but do

not share resources such as a disk array or memory. If one of the servers fails, the processing load

can simply be redistributed among the surviving nodes in the cluster.

The fail-over cluster shares resources between computers. The actual implementation of

this sharing can be divided in two solutions: share nothing at any point in time; and share the

resources at some point in time. Because the shared resource is most often a disk array, most

clustering solutions are based on either the shared-nothing model or the shared-disk model.

In the shared-nothing model, each server in a cluster controls a separate set of resources,

such as a different disk partition in a shared disk array. Only one server can own and access a

particular resource or partition at a time. In the event of a failure, another surviving server in the

cluster takes over the resources of the failed server and subsequent client requests are routed to this

server. In the other option the shared-disk model, multiple servers in a cluster can simultaneously

access a shared disk. The synchronization logic required to maintain data integrity makes this

model more complex.

2.1.3 Web Services

A Web Service is defined as a software system designed to support interoperable machine

to machine interaction over a Web-based network, which can be either the Internet or an internal

intranet. This interoperability is reached through a series of protocols and standards . Basically, a

web service is a software that makes RPC between machines using the HTTP protocol to encode

the communication exchange.

The standards and protocols that enable Web services are XML, SOAP, WSDL and UDDI,

a definition of these is next. The eXtensible Markup Langueage (XML) is a general purpose markup

language that is of great use since it is capable of describing many different kinds of data. The

primary purpose of XML is to facilitate the sharing of data across different systems connected over

the Internet. The Simple Object Access Protocol (SOAP) [45] is responsible for the exchange of

XML-based messages over computer networks, therefore achieving cross-platform inter-application

communication. Another standard used is the Web Services Description Language (WSDL) [8], this

10

is an XML-based service description on how to communicate using the web service. In other words,

WSDL describes the entry points or specific operations allowed for each available service. Finally,

the Universal Description, Discovery, and Integration (UDDI) [44] protocol is used for publishing

the information about web services, and help discover these on the Internet.

2.1.4 Transaction Processing

A transaction in its more pure form is a transformation of database state, for example

a set of queries which access and possibly update the database. Such transaction has the ACID

properties of: atomicity (all or nothing), consistency (a correct transformation), isolation (execution

is serializable) and durability (effects survive failures) [23]. In the business context a transaction also

follows the ACID properties detailed next and is defined as an interaction in the real world, usually

between an enterprise and a person, where something is exchanged. This business transaction

could involve exchanging money, products, information, services among many others. Usually

bookkeeping is required to record what happened. Often this bookkeeping is done by a computer,

for better scalability, reliability, and cost[3].

The ACID properties and their respective definitions are:

• Atomicity - ability of the DBMS to guarantee that either all of the tasks of a transactions

are performed or none of them are executed if a failure occurs.

• Consistency - refers to the database being in a legal state when the transaction begins and

ends. A transaction cannot break the rules and integrity constraints of the database.

• Isolation - ability of the application to make operations in a transaction appear isolated

from all other operations. Thus, each transaction is unaware of other concurrently executing

transactions.

• Durability - guarantee that once the user has been notified of success, the transaction will

persist, and will not be undone, no matter if a system failure occurs.

Compensating transactions are closely related to the transaction processing concept. This

mechanism exists because of the fact that people make mistakes and if a transaction is commited

(which makes the transaction durable) it can no longer be aborted. When compensating transac-

tion, another transaction is run to reverse the effect of the one that was committed. Sometimes

11

perfect compensation is simply not posible since the transaction performed some irreversible act,

like selling the last appartment in a condominium to the wrong people. In this case, the compen-

sating transaction may be to record the error in a database and send an apology e-mail to the

original clients.

2.1.5 On-line Transaction Processing

Data interchange mostly in the form of on-line transactios are the core mechanisms in every

eBusiness process. On-Line transactions are defined in [3] as the execution of a program that

performs a business function by accessing a shared database, usually on behalf of an on-line user.

It is important to notice that a transaction always refers to the execution of a program that contains

the steps involved in a business operation.

The collection of transaction programs designed to automate a given business activity is

known as a transaction processing application. These are implemented in specially engineered

hardware and software environments. Transaction processing (TP) is also a style of system, this

is, there are different ways to configure software components to do the type of work required by a

TP application. There are several styles of systems for a transaction processing application but in

the context of this research, the most relevant is the Batch Processing System, which is presented

next.

Figure 2.1. Batch Processing System Interactions

12

A Batch Processing System takes of processing groups of transactions that arrive as a

group, known as a batch. This batch is often implemented as file. This batch is also defined

as a set of requests that are processed together, in general they are processed some time after the

orginal request was submitted. Figure 2.1 displays the interactions in such batch processing system.

Initially a batch is produced at some computer containing a set of transactions. After the batch

is submitted to the systems the batch is routed among the trasaction processing logics in order to

determine how it is going to be processed. Finally the batch is processed as determined by the

transaction processing logic and the reults are persisted to a data storage commonly a RDBMS.

Early data processing systems, those of 1960s and 1970s, were designed to be used primarily

for batch processing. Current systems, however, allow both batch processing and on-line processing

to occur concurrently. Often, however, the batches are executed at non-peak periods since batch

processing generally does not have time constraints. Batch Processing systems are uniprogrammed

in the sense that each batch is a sequence of transactions that is executed sequentially one trans-

action at a time. Finally batch processing system performace is measured in terms of throughput

which is defined as the amount of work done per unit of time.

Transactions that update databases at multiple systems in a distributed environment require

what is known as the two-phase commit protocol[3]. This protocol ensures that the transaction

commits at all sites or aborts at all of them. The Transaction Processing Performance Council

(TPC)has several benchmarks used as a standard suite to measure the performance of a TP system

[42]. These benchmarks compare TP systems based on their maximun transaction rate and price

per transaction for a standardized order-entry application workload.

Another critical aspect in TP systems is the system availability, is the fraction of time the

system is running and able to do work. Availabililty is determined by how frequently a TP system

fails and how quickly it can recover from failures. In summary, TP systems must ensure ACID

properties, throughtput, and availability as their key features.

2.1.6 On-line Transaction Coordination

Let us begin with the definition of coordination in its pure form which is the additional

information processing performed when multiple, connected actors pursue goals that a single actor

13

pursuing the same goals would not perform [28]. The elements of coordination are: (1) a set of (two

or more) actors, (2) who perform tasks, (3) in order to achieve the goals. For example, a football

team has a set of players and coaches (actors) that execute plays (tasks) designed to win the game

(goal). The interation between players and coaches is the coordination. Players and coaches by

themselves do not win games, but their cooperative efforts and interaction does.

The fact that these components are present does not mean that all the activites in a situation

are coordination. The goal relevant tasks are divided in two categories: coordination tasks and

production tasks. Coordination tasks are the information processing tasks that are performed

because more than one actor is involved. Production tasks are all the other tasks that are performed

in order to achieve the goals. For instance in the previous example the actual actions of the players

(e.g., passing the ball) can be seen as the production tasks, while all the practices and talks previous

and during the game are the coordination tasks.

On-line transaction coordination refers to the activities needed to engage in transaction

processing amongst multiple parties. When applying the previous definition of coordination to on-

line business transactions we get the following. An entity performs some busniness activity over the

Internet. The set of transaction processing applications that handle each task in the transaction are

the actors. And the resulting changes to the databases, movement of goods and money become the

goals. The coordination is the set of operations needed to make these applications (actors) interact

with each other to complete the tasks at hand (the goals). Thus, the coordination tasks are on-

line transaction coordination activities between involved parties, and the production tasks are the

on-line transaction processing activities at each site. For instance, a student might want to buy a

book from an on-line store (e.g. Amazon). But if such book in not in the Amazon inventory, this

on-line store has the ability to put a purchase order for the book at another on-line partner book

store, lets say Barnes and Noble. In this scenario Web services across on-line stores communicate

each party to complete the on-line transaction, and this exchange of data between sites would be

the on-line transaction coordination.

14

Figure 2.2. Singlethreaded and multi-threaded process

2.1.7 Implementation Techniques

An implementation technique used for improved performance and utilization of system

resources is the technique of Multithreaded Programming. In order to define Mutilthreaded Pro-

gramming lets first introduce the concept of a thread. A thread is a basic unit of CPU utilization;

it poseses a thread ID, a program counter, a register set, and a stack [40] [30]. A thread shares

with other threads belonging to the same process its code section, data section, and other operating

system resources as displayed in Figure 2.2.

The concept of a thread is a software technique used to capitalize on the advances in

performance and availability in terms of cost of CPU, Disk and other hardware. Multithreaded

programming allows multiple threads of execution on a single processor or multi-processor system.

Each thread is allow some time of execution on the CPU. Thus, if some thread become blocked

waiting for I/O then another thread might come an use the CPU. The goal is to keep the CPU or

CPUs as busy as possible. For example, instead of a single process accesing a database, multiple

threads can have access to the data resources simultaneously. The concept of a Thread Pool (see

Figure 2.3)is explained here since it is an efficient programing practice use throghout the framework.

Thread creation is a very expensive operation,and therefore, it is desirable to pre-allocate a set of

15

threads and re-use them. This can be done by using a queue to store idle threads, or remove

threads when a task must be done, as shown in Figure 2.3. If the thread pool is not used, then a

new thread must be created every time one is needed. This often causes decreased performance due

to the overhead incurred in the creation and activation of threads. Mutilthreaded programming

will be used in the JSwitch framework in order to capitalize on its streghts, which will result in

achieving better overall system efficiency and effectivenes. Finaly, multithreaded programming

is a key ingredient to achieve application scalability. This is achieved by breaking the clasical

sequential process execution by executing multiple threads to attend multiple processes at the

same time instead of waiting to execute process sequentially.

Figure 2.3. Thread pool vs dynamic thread allocation.

The other programming technique that is an essential part for the implementation of the

JSwitch framework presented here, is the Producer Consummer Queue. This technique provides

the basic properties found in a queue defined as a buffer where various entities such as data, objects,

persons, or events are stored waiting to be processed. A queue (a line) with a FIFO (first-in-first-

out) behavior is a collection where the first element added to the queue is the first one out, as

shown in Figure 2.3. In terms of scheduling, a queue is natural data structure for a system to serve

16

the incoming requests. Basically, the Producer Consummer Queue (PCQueue) displayed in Figure

2.4 is the base of this programming technique. It uses a queue called the job queue where at one

end objects that perform some operation are added to the queue by a single thread. At the other

end of the queue, a fixed number of threads, called worker threads, remove these objects one by one

and then call the methods that execute some operation implemented by the object. In this way, the

task implemented by these objects is run by the system. Once the work is completed, the worker

thread release the object, and goes back to the head of the queue to get a new object. The Producer

is the single thread that adds new objects to the queue and the Consumer or consummers are the

working threads that remove and use the objects. This technique enables the processing of different

kinds of operations without the worker threads knowing the specific business logic, they just call

the execute method on the object. This technique is used extensively in the JSwitch framework.

The Command Pattern Design is used as the mechanism to implement the object that

implement the operations. The complete definition is as follows: the Command Design Pattern

encapsulates a request as an object, thereby letting you parameterize other objects with different

requests, queue or log reuests, and supports undoable operations [17]. A basic command interface

has an execute method which provides the main mechanism of processing a request. In this manner

objects implementing the Command Interface with different kind of requests, for example logic of a

transaction, are added to the queue for their later execution. This execution is as simple as calling

the excute method of the object.

17

Figure 2.4. Product Consumer Queue

18

2.2 Related Work

This section presents some important publications and different work related to this research

and its topics.

2.2.1 Relational Databases

Gray has made some revealing statements in his publication The Next Database Revolution

[21] . These statements refer to several database revolutions and among those, the ones that most

concern this research are presented next. First, the wide spread use of object-relational systems, and

object-oriented API (i.e. Java JDBC) enable far richer data representation. This allows developers

to mix SQL with Sun Java or Microsoft C Sharp, and generate complex stored procedures. Hence,

rather complex transactions can be fed into the DBMS.

Second, is the statement that databases can be exposed as web services, which empowers

DBMSs for network and cross-platform capabilities. This can provide a solution known as TPlite,

which represents the return of the client-server model as a viable design option. Nontheless, this

TPlite solutions suffers from security issues since it exposes the databases to attacks, and it also

brings vendor specific limitations into the picture. The TPlite option offers a two-tier solution,

but the three-tier solutions, like TP-Monitors, are still the main option in use. Both of these

technologies are succesfull solutions at transaction processing. RDBMS and TP-Monitors could

also coordinate transactions but unfortunately they cannot scale as required by the web. This

results from the volume and diversity of transaction requests along with the appearance of sudden

load spikes. Basically, these are the issues that the JSwitch framework deals with.

The last statement concerning Jim Gray’s research is about queues and transactions. Queues

are an integral part of every database since they have been proven a good programming technique,

and some concepts adopted in this research come from the queue concept like the Product Con-

sumer Queue. Gray mentions that actually there is a lot of experimentation going on in this field

and specifically mentions that the ability to publish queues as Web services has been a productive

discovery. It closes the discussion of this last statement saying that there is hope for a design

pattern to emerge for this matter.

A database utility called dbSwitch [13] introduces the Database Area Network (DAN) ar-

19

chitecture. This product offers valuable features such as resource optimization, high availability

and the opportunity for consolidation and scaling on demand. This application is targeted for data

centers and provides capacity management, monitoring and reporting capabilities. It introduces a

new approach for database security called zoning, which filters database access to applications at

the network level, and thus goes beyond the basic user/password mechanisms used by the DBMS.

The authors of [13] conclude their article with the statement that is their belief that “their product

dbSwitch in addition to the DAN architecture represents important steps towards a database utility

model”.

2.2.2 On-line Transaction Coordination and Processing

The Web Services field is a fruitful research area where there are constant improvements and

discoveries. Currently, Web services are evolving towards the foundation technology for eBusiness.

This is being accomplished by providing the means for on-line trnsaction coordination and process-

ing. For instance an example of this trend can be seen in the well-known Web-based application

portals of eBay and Amazon.com. Protocols and standards are being established which are essential

to the succes of Web-service as the enabling technology for eBusiness. Several of these protocols

and standards are presented later in this section. Furthermore, there is research being conducted

currently in the area of Web services load balancing [35]. This is a business-critical aspect that

must be addresed by eBusiness since without it, even the availability of dozens or hundreds of

middleware components or the addition of new ones to scale in response to new resource demands

will not suffice to attend the web flash traffic patterns that lead to system overload. This overload

is directly related to the poor performance that such systems display during demanding seasons

or events, for example the holiday season or at special events where discounts are available. This

poor performance is well known to result in loss of potential customers and revenue. Experiments

have revealed that users can tolerate roughly 8 seconds [4] of delay before they either retry their

request or leave the site altogether.

The work of [26] is related the composition of web services and the management of web

service-based transactions on such web services. This paper mentions the Transaction Internet

Protocol (TIP) 3.0, defined in RFC2371, as a transaction protocol enabling distributed transac-

20

tion coordinators to communicate over the Internet. This protocol performs well on short lived

transactions but is lacks the ability to process long lived transaction. The latter ones are called

business transactions that consist of a large number of component transactions with largely dif-

ferent response times, which therefore block resources controlled by short lived transactions for

unacceptably long periods of time. This makes TP systems unable to process new service requests.

Web services have been found very helpful in achieving the potential of eBusiness, but to

follow this trend its shortcommings must be addressed. Some of these shortcommings are: a) the

opinion of IT profesionals in terms of finally trusting the reliability of this new network technology

[12]; b) Web Service security[12] [34], c) exception handling [34], d) Web service load balancing

[35] and e) Web services-based transactions in special business transactions [12] [34]. Our work

is related with Web Service load balancing since it is a technique used for the coordination of

transactions in the framework.

Business transactions differ from traditional transactions in the sense that eBusiness trans-

actions sometimes execute over long periods of time or even across different business boundaries,

requiring commitments to the transaction to be negotiated at runtime and isolation levels must be

relaxed [27]. Therefore as a conclusion and the statement of the article [27] traditional transactions

semantics (ACID) and protocol have proven to be inapropiate for business transactions.

Mark Little, among others in [27] and [12], present the Business Transaction Protocol (BTP)

developed by the Organization for the Advancement of Structured Information Standards (OASIS)

to address the latter shortcoming, specially for Web-based long-running collaborative business

applications. Additional to BTP, Web services coordination (WS-C) with its WS-Transaction (WS-

T) protocol sponsored by the W3C organization and Intel’s tentative-hold protocol (THP) present

near future solutions to the problem of long running transactions. These standards are essential

to unleash the full potential of eBusiness in collaborative business applications. The reason for

this was revealed by a Computer Sciences Corporation survey to senior information technology

executives where they ranked “connecting to customers, suppliers, or partners electronically” as

the top global IT management issue [34]. The description of the approaches that these protocols

take are presented next.

The Business Transaction Protocol (BTP) developed by OASIS, is designed to support inter-

21

actions that cross applications and adminstrative boundaries, thus requiring extended transaction

support beyond classical ACID. It handles long-running transactions no matter who defines them to

permit flexible outcome for the transactional activities, and to support a transaction concept that

goes beyond data-centric transactions [5]. This is important since business transaction must ensure

process consistency as well as the standard requirement for data consistency for Internet-based

applications.

The next protocol, named Web Services Coordination (WS-C), provides abstract notion

of coordination that is extended to specific coordination protocols by the addition of third party

agents. WS-C differs from BTP in the sense that BTP has been designed specifically for transaction

coordination and interactions, therefore the WS-C is more flexible. The only protocol proposed for

WS-C is the WS-T which has two transaction models, atomic transactions and business activities.

Atomic transactions follow the classical semantics of ACID which asume the locking of resources

while transaction execution. The business activities model is the novel one for the long-running

transactions which ensures that any update state in a system is made inmediatelly with the objective

of reducing the period during which the lock must be held. A shortcoming of the business activities

models presented up to this point is that they do not support two-phase commit. If a failure occurs,

compensations transaction are performed to restore the data to a consistent state.

Finally, the third protocol we discuss is Intel’s tentative-hold protocol (THP) which intro-

duces the tentative-hold phase where business exchange tentative commitments to the terms of a

contract or interaction in a nonblocking manner [38]. Clients in a business transaction can tenta-

tively obtain resources for long periods of time without requiring the resource provider to lock such

resource for the duration of the period. If a client subsequently commits a transaction and acquires

the resource, THP will inform them that the holds they have are no longer valid. The concluding

remarks of [12] is that eventually the proponents of these three approaches will reach a consensus

where a single specification that harvests the better points of each will likely prevail.

Currently, transaction standards as those mentioned above are working their way through

industry channels and into vendor products. The purpose of these standards is to combine Web

services to create higher level, cross-organizational business processes. Approaches for creating

business processes from commposite Web services are known as Web Services Orchestration and

22

Choreography. Web service orchestration refers to an executable business process that can interact

with both internal and external Web services. The interactions occur at the message level. They

include business logic and task execution order, and they can span applications and organizations

to define a long-lived, transactional, multi-step process model.

Chreography tracks the message sequences among orchestration processes between multiple

parties and sources. Typically the public message exchanges occur between Web services rather

than specific business process that a single party executes. Web service Orchestration primarily

differs from Choreography in the sense that Orchestration always represents control from one party’s

perspective. Choreography is more collaborative and allows each involved party to describe its part

in the interaction.

Both of these middleware technologies must provide several properties to overcome some

of the traditional transaction processing and Web service standards limitations already discussed;

that is ACID not being flexible enough to execute long-running transactions accros organizations

(business transactions). One of these properties is asynchronous service invocation which improves

reliability and scalability. Another property is flexibility in terms of separating the business logic

from the Web services used. This is achived with an orchestration engine. Finally, process designers

must be able to compose higher level services from existing orchestrated processes.

The article [34] presents that the intiatives of Business Process Execution Language (BPEL4WS),

Web Service Interface Choreography Interface (WSCI) and Business Process Management Language

(BPML). BPEL4WS on their own supports Orchestration and Choreography with their Executable

processes and Abstract processes respectively. WSCI describes only the observable behavior be-

tween Web Services. It does not address the definition of executable business processes as BPEL

does, it only provides Choreography. BPML is an XML based language for describing business

processes, therefore only provides Orchestration. The last two combine to offer a complete Orches-

tration and Choreography which taken together are an alternative to BPEL. The author personally

selected BPEL over these alternatives because it includes tutorials that are well suited for the de-

velopers. The author also mentions that BPEL is being embraced by the industry and that in the

long run vendor and tools support will clearly influence the software industry’s adoption rate.

The author of [34] presents the lack of direct support for security by the Orchestrantion and

23

Choreography standards as an area for future work. Another to area in which research is needed is

end-to-end management infrastructure for applications [34], systems and networks that gives them

flexible control over business processes involving Web services, including control of specific steps in

the process. A robust management infrastructure must provide funtionality to both monitor the

computing environment and adapt to changes in real time.

CHAPTER 3

Web Switch Transaction Coordinator

Framework

This chapter describes the Web Switch Transaction Coordinator (JSwitch) framework. We

present its architecture, describe its major components, and the protocols for transaction coordi-

nation. In addition, the Scheduling Policies used to load balance the system are discussed.

3.1 General System Architecture

The JSwitch framework is a Web-based middle-tier solution designed for environments

in which transactions arrive in batches, each one containing a collection of related transactions.

For example, a batch related to the traffic ticket application implemented based on the JSwitch

framework, might contain new tickets issued during the day by police officers of a given unit.

The JSwitch architecture shown in Figure 3.1 follows a three-tier model: a) Preparation Tier, b)

Persistance Tier, and c) Processing Tier. The Preparation Tier consists of components that accept

each batch and decompose them into individual transactions. The elements of this tier are the

Transaction Coordinator (TCoord) and Transaction Collector (TColl). Users submit batches to

the system using a Web-based application. This application first connects to the TCoord, using

a Web service call, to authenticate into the system and then obtain the URL of a TColl that can

handle the batch. Hence, the responsibility of the TCoord is to look into a pool of available TColls,

and find the best one to handle the batch to be uploaded. We developed load balancing metric for

the system load and workload in order to have an informed selection criteria for this purpose. Once
24

25

Figure 3.1. System Architecture

26

the client application obtains a TColl, it issues another Web service call, this time to the target

TColl, to upload the file that contains the batch of transactions. The target TColl receives the

batch, and begins to decompose, analyze, and validate the structure of the individual transactions.

Each individual transaction is persisted into a relational database from which it will be

further processed by the Persistence Tier. This tier consists of a relational Database Management

System (DBMS) and all other ancilliary services required to keep track of the location of each

individual transaction within a JSwitch instance. The reason for choosing a relational technology

is because of its maturity and availability. Nonetheless, this layer can be implemented using some

other persistance mechanism available to the users. Furthermore, this layer can be implemented

using a load-balancing DB cluster which will result in improved performance and scalability if

necessary, or a fail-over DB cluster if data replication and system availability are desired.

Once a batch of transactions has been persisted, the next step is the process of routing the

batch of transactions to the proper transaction manager. This process is handled by the components

located at the Processing Tier. This tier consists of two types of components: a Transaction

Dispatcher (TDisp) and Transaction Processors (TProc). The TDisp takes care of monitoring the

persistent store to find new transaction batches that have been validated and persisted. For each

of those batches, the TDisp will then look into a pool of available TProcs to find one to which the

batch gets assigned. This TProc is the transaction processing component with the business logic

necessary to process the operations in the transactions contained in the batch. The TProc can

be a Transaction Processing Monitor (TP Monitor), an On-Line Transaction Processing (OLTP)

engine, or some other type of server application used to process transactions.

3.2 JSwitch Clients

A JSwitch client is an entity that submits batches containing related transactions. Trans-

actions are related in terms of the application that generated them. Examples of such transactions

include medical bills, purchases for movie tickers, credit card charges, and so on. Very often, client

application submit these transaction in batches for the convenience in terms of computational re-

sources. For example, a doctor might wait until later afternoon to submit a batch with all the

insurance claims the JSwitch clients has accumulated during the day. Although, the physician

27

could use a model or broadband connection to submit the transaction in real-time, they often

prefer to wait to submit in batches to prevent any Internet-related problem to get in the way of

managing their patients data. In other instances, the user might be out of the office accumulating

the transaction on a portable device, such as a PDA or laptop computer. Only when the user

returns to the office can he/she transfer all transaction into the TP system. Notice that wireless

and broadband communication might allow users to submit transactions one by one. But in many

instances companies do not follow this approach out of concerns for the security of the data or

the cost of the communication infrastructure. Thus, we can expect then batched transactions to

continue in the foreseeable future.

The batches holding the transactions must satisfy several constrains. First, batches must

meet all the well-formedness and validity constraints given in the language used to encode them.

In our case, they must follow the constrains of eXtensible Markup Language (XML) specification

[16], since this is the format used to encode them. Second, these batches must contain metadata

about the nature of the batch and the client. These metadata will be used to identify the unit that

can process the batch. In addition, the metadata will enable the client to track the status of the

batch. In our JSwitch framework, these metadata consists of: a client Id, a batch Id, and batch

creation and sent times. Figure 3.2 displays an example of what a batch might look like, sent by a

client for an entertainment ticket purchase. As we can see from the figure, the batch begins with

some metadata used for identification purposes, and then contains a set of transactions. In this

case, each transaction represents a purchase of one or more tickets for a given event.

The JSwitch client can be a Web application or a fat client, with the ability of creating

well-formed and valid XML batches. In addition it has to be able to connect to Web services since

this is the mechanism used for the communication between the clients and a JSwitch framework

solution. The Batch Transaction Coordination Protocol specifies the complete interaction between

a JSwitch client and a solution based on our framework. This protocol is detailed in section 3.5.

It is recommended that client application performs a thorough validation of the data field

before submitting them. This helps reduce the burden on the validation efforts done by the business

logic components at the JSwitch solution. Furthermore, the need for transactions compensations

could be reduced. From the client perspective, validation has also the benefit of reducing the

28

Figure 3.2. TicketPR client entertainment XML batch

29

probability that a batch will be rejected by the JSwitch system. Often, those rejection are the

result of syntactic or semantic errors in the transactions submitted with the batch. For example,

insurance companies tend to return entire batches with medical claims if they find a few malformed

claims. Then the client must re-submit the batches and keep some reconciliation information.

Validating client applications early and often will reduce the likelihood of major problems when a

batch is submitted.

3.3 JSwitch Server Components

A JSwitch implementation is as a collection of Java [41] server objects whose functionality

is exposed via Java Web services [20]. This implementation task was done using the Apache Axis2

Soap Toolkit [1]. The JSwitch Services communicate by exchanging Soap messages based on RPC

calls, with support for Soap messages with attachments. These attachments are XML-based, and

are marshalled and unmarshalled with the use of the JAXB API. This solution is simpler and more

efficient than alternative solutions such as SAX and DOM, respectively. Each server object leverages

on the built-in thread capabilities in Java to generate derived objects and methods calls that are

run on other threads independent from the one running the server object. Thus, a JSwitch solution

can easily leverage on multi-processor or multi-core hardware for optimal performance. These

next subsections present details of the functionalities and specially on how these JSwitch Server

Components (JSC) were implemented. Additional, specific implementation details like software

versions are are available in Appendix A.

3.3.1 Transaction Coordinator (TCoord)

The Transaction Coordinator (TCoord) serves as the entry point to the system. The com-

munication and interaction among the clients and this Java server object is through the use of Web

services at all times. The TCoord responsibilities are a) client authentication into the system, b)

selection of an adequate TColl to handle the client request for batch processing, c) tracking the

load metric on the various TColl available to the system, and d) re-distribution of batch processing

tasks in case of a TColl failure. Arguably, the single most important task for the TCoord is that

of selecting a TColl to handle a batch. The selected TColl must be a capable one in terms of avail-

30

Figure 3.3. TCoord internal organization

ability and the best suited in terms of current load. The TCoord uses a selection policy to perform

this task. This policy is configurable, and currently the framework provides four principal modes

to choose: a) Round Robing assignment, b) Random assignment, c) Least Loaded assignment, and

d) Random-Least Loaded assignment. Some of these modes offer a tuning parameter that can be

set to system specific requirements. We shall discuss these policies and their tuning parameter with

more detail in the next section. The main goal of these policies is to try to keep the load of the

system balanced between the different TColls, therefore providing improved response time to the

system users and efficient utilization of system resources.

Figure 3.3 displays a layered view of the internal organization of the TCoord. We can see

that it has a Client Interface layer used to manage client connection. The Authentication module

validates the user to prevent unauthorized access to the system. The RequestTCollIP module deals

with finding the target TColl to handle a given batch. The System Utilities layer contains two

sub-systems. The first is the ConnectionPool module, in charge of managing the connection to the

DBMS used for persistence. The TCoord uses this module to access the metadata for the TColl in

the system. The Cryptography layer provides the mechanism for assisting in user authentication.

The business logic for coordination and scheduling are implemented in the TCoord Business Logic

layer. Meanwhile, all logging operations are handled by the DB Logs layer. Finally, the System

31

Interface is the layer used to send messages to the TColl via tuples stored in the DBMS.

3.3.2 Transaction Collector (TColl)

The Transaction Collector (TColl) is a multi-threaded server application whose role is to

clean and prepare the transactions. Its functionality is exposed as a Web service, and each call is

handled by a thread within the main TColl process. The TColl receives a batch of transactions from

the Web, and breaks up this batch into individual transaction elements. These batches are encoded

in XML, with the appropriate delimiters to separate each transaction. We used the functionality of

Axis2 SOAP with attachments to make the batch an attachment to the SOAP message. We argue

that this arrangement produces a more efficient solution than simply sending each transaction as

an independent Web service method call. In JSwitch, each transaction is validated, and those that

are incorrectly specified are sent into a file designated for this purpose. The rest are stored into

the relational database for further processing.

The client which submitted the batch gets a report indicating the transactions that were

accepted and those that were declined. For those transactions that were declined, the system

includes a brief description of the error. In addition, the report includes a URL for the client to

download the file with the declined transactions. Once this process is completed, the TColl writes

a special tuple to the relational database, making the batch ready for processing by the remaining

components of JSwitch. TColl acts as a ”hot plugable” component since it has the ability to

register itself with the remaining JSwitch components to make them aware of its availability for

batch processing. The TColl also provides a Web service method called Is-Alive, used by the

TCoord to periodically check if the TColl is active or not. Each TColl writes information on its

system load and current workload to the database that stores statistics. This information is used to

update statistics used to track the current load on the machine running the TColl. This information

is used by the TCoord at the moment of choosing a TColl to handle a client request.

Figure 3.4 displays a layered view of the internal organization of the TColl. The First

two layers in the TColl are used to manage the connection with the client, and to read submitted

batches. The System Utilities layer contains the following components: a) Thread Pool - module to

handle thread allocation, deallocation and dispatch to work, b) Connection Pool - module used to

32

handle connections to the DBMS, c) PCQueue - module used to handle the queue that stores work

requests with batches to be processed by worker threads, and d) XML Processor - module used

to parse and validate the format of the XML-encoded batch. The TColl Business Logic module

contains the code that decomposes the batches into the individual transactions, and stores them

into the DBMS. The IsAlive WS module is used to reply to TCoords asking if the TColl is still

alive. Meanwhile, the DB logs keeps of the all logs generated while processing a batch. Finally, the

System Interface layer contains the logic to actually access the DBMS to write the batches to disk.

Figure 3.4. TColl internal organization

3.3.3 Transaction Dispatcher

The Transaction Dispatcher (TDisp) takes care of assigning already prepared batches of

transactions to capable and proper TProc elements. The TDisp is also a multi-threaded server

application. The TDisp has one thread which continuously monitors the database, looking for

batches that are ready for processing. When one such batch is found, this thread invokes a worker

thread to handle the batch (handle in this case refers to dispatch the batch to the proper TProc).

This is done by placing the batch on a producer consumer queue (PCQueue), from which worker

threads can pick batches that are ready for processing (with dispatch status in the TDisp context).

33

This implementation follows the PCQueue application based on the Command Pattern. The worker

thread then queries the TProc catalog in order to apply a scheduling policy to determine a capable

TProc of handling the batch. It also gets the information about the load metric on each candidate

TProc. After a TProc has been determined by the scheduling policy the worker thread inserts a

tuple with the batch metadata at the JSwitch DB Server at the workDispatcher table where the

TProcs search for their assigned batches. This is referred as the dispatch action.

Figure 3.5. TDisp internal organization

Figure 3.5 displays a layered view of the internal organization of the TDisp component

responsible for accomplishing the aforementioned functionalities. We can see that it has a Client

Interface layer used to manage client connection. The System Utilities layer contains to sub-systems.

The first is the Thread Pool which is the module that handles thread allocation, deallocation and

dispatch to work. The ConnectionPool module is in charge of managing the connection to the

DBMS used for persistence. The TDisp uses this module to access the metadata for the TProc

in the system. The business logic of this component uses a specified scheduling policy at the

SelectTProcIP function to determine the target TProc that a batch will be dispatched for its

processing. Meanwhile, all logging operations are handled by the DB logs layer. Finally, the

System Interface is the layer used to communicate with the TProc via tuples stored in the DBMS.

34

3.3.4 Transaction Processor

A Transaction Processor (TProc) is a server application that contains the business logic

required to perform the different transactions that a batch requires. This component can be imple-

mented using an off-the shelf solution such as an OLTP system, a TP Monitor, or a custom-made

solution that integrates systems such as workflow engines. Additionally, the JSwitch framework

could use a taskflow engine in the Processing Tier to accomplish the business logic required by the

user requests, in combination to the already mention transaction processing applications. Basi-

cally, this off-the shelf solutions autonomously process the transactions that had gone through the

Preparation and Persistence tiers of the system.

In the JSwitch framework, the TProc component consists of two sub-systems. One of them

is the Processor Adapter, that gets the batch for processing. The Processor Adapter converts the

batch into the format in which the Transactional Engine expects its transactions to be input. The

Transactional Engine is the actual application that processes the transactions and generates a result

for each one of them. In addition to containing the business logic to execute the transactions, this

component, similar to the TColls, is hot plugable since it has the ability to register itself when

online and maintains system metrics about its own system and load. This information is used by

the TDisp when choosing which TProc will handle, and process the batch transactions prepared

for processing.

Figure 3.6. TProc internal organization

35

Figure 3.6 displays a layered view of the internal organization of the TColl component.

The First layer is the System Utilities which contains the following components: a) Thread Pool -

module to handle thread allocation, deallocation and dispatch to work, b) Connection Pool - module

used to handle connections to the DBMS, and c) PCQueue - module used to handle the queue that

stores work requests with batches to be processed by worker threads. The TProc Business Logic

module contains the code that signals the OLTP unit to perform the transaction processing. The

IsAlive WS module is used to reply to TDisp asking if the TProc is still alive. Meanwhile, the

DB logs keeps of the all logs generated while signaling a batch for processing. Finally, the System

Interface layer contains the logic to actually access the DBMS to write the signaling events to disk.

3.3.5 Database Server

The JSwitch DB Server is a relational database whose role is to store the transactional

batches submitted by the users. Each of these batches eventually reaches a particular TProc,

which will also store information about the transaction. However, the user shall not confuse the

role of the DB server, which is more of a catalog of transactions that have been received and/or

processed. For example, if the TProc is an OLTP system implemented with a relational database

(e.g. Oracle), then the TProc will store information specific to the business logic needed to process

the transaction. But the JSwitch DB Server simply stores the batch and its metadata; the DB

server does not store any information related to the processing of the transaction. In our current

implementation of the persistance layer, we use the PostgreSQL 8.1 DBMS at the DB Server.

3.3.6 JSwitch System Application Database

The JSwitch Application Database (JSwitch ADB) ER-Diagram provides a full description

about the data used at the JSwitch framework in terms of entities and relationships. The JSwitch

ADB was designed and developed with the purpose of storing all the data needed for the JSwitch

framework. Basically the JSwitch ADB contains metadata about the system components, system

clients and the batches that these submit along with metadata of the transactions included at the

batches.

The Entity-Relationship (E-R) Diagram used for describing the JSwitch ADB is displayed

in Figure 3.7. This diagram presents all the entities of the system along with the relationships

36

Figure 3.7. JSwitch application database ER-Diagram

37

between them. Basically, the boxes represent entities, double boxes represent weak entities, ovals

represent their attributes, double ovals are composite attributes, and diamonds represent the rela-

tionships between entities. Underlined attributes represent primary keys and the underlined dashed

attributes represent the foreign keys. Numbers and letters at either side of relationships represent

their mappings: 1:1 (one to one) or 1:n (one to many) for this ER-Diagram.

For the JSwitch ADB, the following entities were identified, their respective attributes are

detailed at the ER-Diagram:

• jswitch client - this entity refers the clients that are registered at the system for transaction

batch submission. These are detailed at a later section but some of their more relevant

attributes are a client id assigned by the JSwitch and the subscription period.

• batch metadata - represents transaction batch instances. Basically the attributes contain the

necessary information to identify, locate and know the current status of the batch at any

given moment. A priority field is provided but for now it is only used for signaling the order

as batches arrive along with the receiving time. Finally the system also assigns an id to each

batch for tracking purposes.

• transaction metadata - represents transaction instances; basically the attributes identify the

transaction with their own business logic id along with one assigned by the system for tracking

purposes. Also, each transaction knows its parent batch, and a status attribute is provided

to know the current status of the batch at any given moment.

• jswitch component - represents the components at the JSwitch framework This entity pro-

vides a general description and identification for any given component within the JSwitch

implementation.

• tcoll catalog - this entity represents the metadata about any given TColl, it contains the

metric status, and system and batch load metrics (i.e. number of batches assigned to a given

component).

• tproc catalog - this entity represents the metadata about any given TProc, it contains the

metric status, and system and batch load metrics (i.e. number of batches assigned to a given

component).

38

• work dispatcher - basically this entity contains the information about the transaction batches

that have been already prepared and persisted, and have been assigned to a particular TProc

for its later processing.

The following relationships between the entities were also identified and are displayed in

the Figure 3.7:

• submits batch - refers to the event of a client submitting a transaction batch.

• contains transaction - refers to the nature in which transactions arrive to the system, inside

the batches.

• assigned - the relationship of assigned between the batch metadata entity and the tcoll catalog.

Refers to the transaction batches that have been asssigned to a given TColl for its proper

preparation.

• contains tcoll - represent the fact that the table tcoll catalog is a weak entity associated with

the jswitch component.

• contains batch - refers to the nature in which transaction batches are dispatched by the

systems; when a batch has been found prepared is dispatched to a TProc

• assigned - the relationship assigned between the work dispatcher entity and the tproc catalog

refers to the transaction batches that have been dispatched to a given TProc for its proper

processing

• contains tproc -represents the fact that a tproc catalog is a weak entity associated with the

jswitch component.

As detailed in the ER-Diagram theory, all entities and some of the relationships translate

into or have equivalent tables in the database. The result of this translation is the databases

Relational Schema which is presented completely in Appendix A.

3.4 JSwitch Resource Scheduling

The JSwitch architecture devotes its efforts towards an efficient coordination of transactions

in the Web environment. The system components enforce this efficiency by employing several

policies that seek to balance loads among system components. The idea is to make the assignment

39

of transactional batches as efficient as possible. There are two main components of the JSwitch

framework on which these policies are used: the TCoord and TDisp. In the other hand each TColl

and TProc component tracks several usage statistics about their resources, needed to estimate

the current system and work load (i.e. number of assigned batches) at each host in the JSwitch

deployment site.

3.4.1 Round Robin Scheduling

The Round Robin Scheduling Policy (RRS) is the simplest of the mechanisms used for

batch assignment in JSwitch. It can be used by either the TCoord or the TDisp. As batches

of transactions arrive, the TCoord assigns them to the pool of TColls in round-robin fashion.

Figure 3.8 clearly displays the RRS behavior when assigning batches to a pool of TColls. Likewise,

as batches become ready for processing, the TDisp assigns them in round-robin fashion to the

pool of TProcs. This is a starvation-free type of scheduling algorithm that does not enforce any

kind of priority and produces an uniform work distribution among system components. The main

advantage that this policy offers to the JSwitch architecture is uniform work distribution, which

translates into equal full utilization of the components whithin the TColl and TProc collections.

We should expect the best outcome of this policy when workloads are homogeneous and priority is

not required among works.

3.4.2 Random Scheduling

This Random Scheduling (RS) policy assigns batches at random to the target components

in JSwitch. It is used by both the TCoord and the TDisp. The RS policy is also starvation free

and does not enforce any kind of priority. Randomization in general is used to eliminate unknown

problems and is known to produce a normal distribution among the components in the system

[29]. The features that this policy brings to the JSwitch architecture are full utilization of the

components within the TColl and TProc collections along with low probability of hot spots in the

presence of heterogenous batches of transactions. Figure 3.9 displays a TCoord assigning batches

to a pool of TColls, the RS policy behavior when assigning these batches is appreciated here. Also

this same behavior can be seen when it is applied by a TDip to dispatch batches among TProcs.

40

Figure 3.8. RRS behavior when assigning batches to a pool of TColls

41

Figure 3.9. RS behavior when assigning batches to a pool of TColls

42

3.4.3 Least Loaded Scheduling

The Least Loaded Scheduling (LLS) Policy is a type of Proportionally Fair Algorithm that

is driven by a priority function. This priority function describes the data rate that is potentially

achievable at the present moment at a particular system component. We studied two options for

the priority function for the JSwitch architecture. The first one was the average machine load

during the past 30 seconds at the host running a particular component (either TColl or TProc).

The second option was the work load in the machine in terms of number of batches that have been

assigned to it.

Chapter 4, of experimental results has a corresponding section for the analysis of scheduling

policies, detailing the findings when applying different priority functions to a Jswitch solution.

Figure 3.10 displays a TCoord assigning batches to a pool of TColls using the LLS policy. At

first all the batches go to the least loaded component, which is at the top of the list. However, as

new batches are assigned to this component, it become more loaded. So, the next few batches are

assigned to the next component in the list which is now the least loaded component. When this

component becomes more loaded, the third component in the list begins to get batches. Clearly,

the list of components must be kept sorted by the amount of load. Components with light load will

move to the top of the list, while those components that become saturated move to the end of the

list. This approach can be easily implemented using a priority queue. The use of this policy should

produce the best component selection for the batch at hand. We argue that this policy, when fine

tuned, can bring high efficiency to a JSwitch deployment solution.

3.4.4 Random Towards Least Loaded Scheduling

Finally, the Random Towards Least Loaded Scheduling (RTLLS) policy presents a hybrid

of the last two scheduling policies (random and least loaded). It seeks improved efficiency when

performing transaction coordination at the JSwitch architecture. Basically, we merge the described

past two algorithms with the objective of building their strengths into a new scheduling policy.

The idea is to require a less precise load metric from the system. Hence, we do not incur in the

extra overhead of keeping rather precise information on the load of each JSwitch component. In

our approach we chose a subset of the components that are top X percent of the list of least

43

Figure 3.10. LLS behavior when assigning batches to a pool of TColls

44

loaded components. Here X represent a percentage value such as 40% or 50%. From the top X

least loaded elements, we chose one at random and assign the batch to it. This approach prevents

making the top component from becoming a hot spot too quickly, but at the same time assigns

batches to lightly loaded elements.

Figure 3.11 displays the RTLLS policy used by a TDisp JSC component to assign batches

to a pool of TProcs. In this case the scheduling policy is used among the top half (50%) of the

components ordered from the least loaded to the most loaded. This scheduling policy will use the

best priority function found among the options developed for a JSwitch solution.

45

Figure 3.11. RTLLS-Half behavior when assigning batches to a pool of TColls

46

3.5 Batch Transaction Coordination Protocol

The Batch Transaction Coordination Protocol was envisioned as the mechanism to describe

the interactions among the components at the JSwitch architecture which were already detailed

in the previous sections. This protocol basically defines the exchanges of data and process calls

across system components and even architecture tiers. Figure 3.12 displays these interactions in an

exchange diagram and a step by step explanation of what is happening at each step is given next.

• Step 1 - When a user decides to submit a batch of transaction to the JSwitch system, it calls

the clientAuthentication() Web service method at the TCoord JSC from its web client with

the already agreed client key.

• Step 2 - The ClientAuthentication Web service at the TCoord JSC connects to the DB Server

to look up the received client key at the designed store table, if it is valid verifies if it has not

expired or is not in any other in-valid state.

• Step 3 - The DB Server acknowledges key validity.

• Step 4 - The ClientAuthentication Web service at the TCoord JSC acknowledges the client

about its authentication.

• Step 5 - Once these initial steps have been completed, the client calls the requestTCollURL()

Web service method at the TCoord JSC.

• Step 6 - The TCoord verifies that the client key is valid for the session that was already

created at the authentication step. If the key is valid, the TCoord connects to the DB Server

to look up TColl JSC statistics from the TColl catalog (metadata).

• Step 7 - The DB Server returns the TColl catalog information to the TCoord (metadata).

• Step 8 - Based on the information acquired, provided by the TColl catalog, a scheduling

policy at the TCoord determines the URL of a capable TColl and sends it to the client in the

RequestTCollURL Web service return value.

• Step 9 - At this stage the client calls the SubmitBatch() Web service method at the TColl

URL already acquired which contains the XML batch file.

47

Figure 3.12. Batch Transaction Coordination Procol Exchange Diagram

48

• Step 10 - The SubmitBatch Web service first uploads the batch to the designed repository

at the TColl then inserts a tuple at the batch metadata table with its corresponding batch

information.

• Step 11 - The DB server acknowledges the TColl about the metadata inserted.

• Step 12 - An acknowledge about the Web service result is sent to the client which ends the

client interaction with the system.

• Step 13 - Some time T after the client receives the SubmitBatch() Web service result acknowl-

edgment the TColl starts the batch validation and persistence phases. Basically the TColl

reads the uploaded file from its designed repository, validates it, persists it into the designed

storage facility.

• Step 14 - The DB server acknowledges the TColl about the batch data inserted.

• Step 15 - Upon acknowledge recieval the TColl updates the status of the batch at the batch

metadata table as persisted.

• Step 16 - The DB Server acknowledges the TColl about the update committed.

• Step 17 - The TDisp that is monitoring the batch metadata table detects update notification

indicated that the batch was persisted to the DB.

• Step 18 - The DB Server acknowledges the TDisp about the persisted update finding.

• Step 19 - The TDisp connects to the DB Server to look up the TProc JSC statistics from the

TProc catalog.

• Step 20 - The DB Server returns the TProc catalog information to the TDisp.

• Step 21 - Based on the information acquired from the TProc catalog, the scheduler at the

TDisp determines a capable TProc to dispatch the batch work. The TDisp connects to the

DB Server to dispatch the newly discovered batch work.

• Step 22 - The DB Server acknowledges the TDisp about the committed batch work dispatch-

ment.

49

• Step 23 - At any time T the TProc that monitors for batch dispatched detects the newly

assigned job and informs the off-the shelf transaction processing component designed to attend

the batch of its existence.

• Step 24 - The DB Server acknowledges the TProc about the dispatch update finding.

• Step 25 - At this point the transaction coordination functions of the JSwitch are completed.

3.5.1 Component Crash-Recovery

The Batch Transaction Coordination Protocol developed as a key feature of the framework

also implements crash-recovery at a basic level. The scope of crash-recovery in the framework is in

case of Transaction Collector or Transaction Dispatcher failure. The framework provides a constant

crash detection of these components. In the events of a TColl failure the system will perform the

steps displayed in the exchange diagram of Figure 3.13. These crash-recovery steps are explained

next:

• Step 1 - There is a crash detection function that monitors TColls for failures at the TCoord.

When this function is executed, it connects to the database to retrieve the metadata from

the TColl catalog.

• Step 2 - The DB Server returns the TColl catalog information to the TCoord.

• Step 3 - The TCoord calls the Is-Alive() Web service method on each of the TColls registered

in the catalog.

• Step 4 - The TColls reply with an alive message, or not reply anything at all if they are not

available.

• Step 5 - If the TColls reply with an alive message, components are online and nothing is done.

In the event that one component does not reply within the designed time, the component is

set to off-line at the TColl catalog at the DB Server.

• Step 6 - The DB Server acknowledges the TCoord about the update committed at the TColl

catalog.

50

Figure 3.13. Crash Recovery at the events of a TColl failure Exchange Diagram

51

• Step 7 - At this point the TCoord knows the metadata about the failed TColl component or

components and connects to the database to collect the pending work, this is the un-processed

batches of each component.

• Step 8 - The DB Server returns the information about the work assigned and pending to the

TColl that crash.

• Step 9 - Once this information is acquired, the TCoord re-distributes the work pending from

the failed TColl components using the scheduling policy assigned for crash-recovery events.

• Step 10 - Finally the DB Server acknowledges the TCoord about the operations committed

and crash recovery is completed.

Similarly, in the events of a TProc failure the system will perform the steps displayed at

the exchange diagram in Figure 3.14. These crash-recovery steps are explained next:

• Step 1 - There is a crash detection function that monitors TProcs for failures at the TDisp.

When this function is executed, it connects to the database to retrieve the metadata from

the TProc catalog.

• Step 2 - The DB Server returns the TProc catalog information to the TDisp.

• Step 3 - The TDisp calls the Is-Alive() Web service method at each of the TProcs registered

at the catalog.

• Step 4 - The TProcs reply with an alive message, or not reply anything at all if they are not

available.

• Step 5 - If the TProcs reply with an alive message, components are online and nothing is done.

In the event that one component does not reply within the designed time, the component is

set to off-line at the TProc catalog at the DB Server.

• Step 6 - The DB Server acknowledges the TDisp about the updated committed at the TProc

catalog.

• Step 7 - At this point the TDisp knows the metadata about the failed TProc component or

components and connects to the database to collect the pending work, this is the un-processed

batches from each component.

52

Figure 3.14. Crash Recovery at the events of a TProc failure Exchange Diagram

53

• Step 8 - The DB Server returns the information about the work assigned and pending to the

TProc that crash.

• Step 9 - Once this information is acquired, the TDisp re-dispatches the work pending of the

failed TProc components using the scheduling policy assigned for crash-recovery events.

• Step 10 - Finally the DB Server acknowledges the TDisp about the operations committed

and crash recovery is completed.

3.6 Performance and Load Analysis

A Traffic Ticket Application based on the JSwitch was developed with the purpose of

simulating a real use case of the framework. The implementation experience was only for testing

purposes. In the next chapter, we present a series of tests carried out to analyze the performance

of the system. This analysis is mainly based in terms of throughput, which refers to the number of

transactions performed per second since it is the main quantitative measure of a batch processing

system. Additionally, system overall load capacity will be put to the test in order to determine how

many users can the system effectively attend without becoming unstable or unusable. The next

chapter is dedicated to these topics.

3.7 Security Analysis

The security analysis of the JSwitch framework will only be concerned with the client’s

proper authentication, authorization, and data integrity. The many areas involving security [11]

represents a topic of research on its own that can by conducted later but that it is not under

the scope of this research. Currently, there are no Web service security standards widely in use

[12] and Web service security is currently a research area with high demand [19] [31]. Based

on these facts there is no trusted option for securing Web services, therefore the security is a

weakness of the framework since its entry points are Web service based. Alternatively the JSwitch

implementation can communicate with it users through the use of the SSL protocol [18]. Finally,

there are security mechanisms mentioned [24] and [39] to enforce data privacy that could be also

apply to this framework.

CHAPTER 4

Experimental Analysis

A complete JSwitch solution was implemented for the purpose of testing the JSwitch frame-

work. This JSwitch implementation is designed to handle an application for managing traffic tickets

and payments, and we provide details in this chapter. We have begun validating the performance

of the transaction coordination interaction within the framework known as the Transaction Co-

ordination Protocol, with the ticket traffic solution based on the JSwitch architecture. A set of

experiments have been designed with the purpose of acquiring insight into the nature of the sys-

tem. Two data sets were used to acquire further insights, one with batches with an homogeneous

number of transactions and another with an heterogeneous amount per batch. The main goal was

to find the system’s throughput while stress-testing it. We define throughput as the number of

transactions coordinated by the system per unit of time. Furthermore, we wanted to determine

which scheduling policy produces the best system response for transaction coordination and under

what circumstances. This chapter explains the experiments schema, methodology, presents their

results, and analyzes them.

4.1 Experimental Application and Data Schema

The Traffic Ticket solution based on the JSwitch framework is responsible for receiving and

processing traffic ticket transactions that arrive in batches. This solution was conceived with the

exclusive purpose of testing the JSwitch framework. Basically, the Traffic Ticket solution consists

of an implementation of the JSwitch Server Component (JSC) as specified by the framework.

Additionally, a custom made solution for the transaction processing layer at the TProc JSC that

54

55

contains the complete transaction processing logic for the ticket and ticket payment processing was

implemented. Also the required application database for the Traffic Ticket solution was designed

and developed. In order to be able to test the Traffic Ticket solution data to address this kind

of testing was produced, explained at a later section. Finally, Police and Department of Motor

Vehicles (e.g. DTOP) clients were developed to complete the Ticket Traffic testing schema. Detailed

explanation about the implementation and functionality of these are next along with a description

about the process of data generation to test the Ticket Traffic solution.

The JSwitch implementation for the Traffic Ticket solution consists of the following JSC:

a) fixed size of six components for the TColl and TProc JSC collections, b) one TCoord, and c)

one TDisp that knows all the components of its corresponding collection. This organization can be

seen in Figure 4.1. Additionally, a DB Server was used for persistence purposes. The PostgreSQL

8.1 relational database management system (RDBMS) was used as the data source.

Figure 4.1. Traffic Ticket JSwitch solution architecture

56

The custom made OLTP solution, named the Traffic Ticket OLTP (TT-OLTP), for the

transaction processing layer at the TProc JSC is responsible for traffic ticket and ticket payment

transaction processing. This solution has the business logic necessary to accomplish the transaction

processing that a batch of one of these types requires. Basically, once the Processor Adapter in

charge of converting the batch to the format required by the TT-OLTP solution, the first signals

the second for job initiation. After signal acquisition, the TT-OLTP solution starts executing the

business logic for each of the transactions for the batch at hand.

The data sets used for the experiments have as its primary unit, traffic ticket or traffic ticket

payments. There are two kinds of batches, those that contain only traffic ticket, and those that only

have traffic ticket payments. The batches are referred as ticket batch for the ones containing tickets

and pay batches for the ones containing ticket payments. In order to test the nature of the JSwitch

framework and the performance behavior of its Scheduling Policies the data sets are divided in

two categories: homogeneous batches and heterogeneous batches. The transaction totals are 250

transactions for homogeneous batches, and between 150 and 350 transactions for heterogeneous

batches.

The data in the traffic transaction batches followed a schema based on made up information

about traffic tickets given to motor vehicle drivers and the respective ticket payments. The drivers

have probabilities of receiving a ticket from 20 to 70 percent, depending on its driving classification

which is selected randomly from the driver population. This percentage determines the amount of

tickets each driver has within the the data sets used.

The ER-Diagram for the Traffic Ticket Solution Application Database (TTS ADB) schema

is detailed in Figure 4.2. This diagram provides a full description about the data used at the TTS

in terms of entities and relationships. The TTS ADB was designed and developed with the purpose

of storing all the data about traffic tickets and ticket payments and the results of the business

logic of processing these transactions. Basically, the TTS ADB maintains driver, vehicle, police

and precinct records of those involved in a traffic ticket issue event. The TTS ADB also stored

information about the proper ticket payment adjudication after traffic ticket payment event.

For the JSwitch ADB, the following entities were identified, and their respective attributes

are detailed in the ER-Diagram:

57

Figure 4.2. Traffic Ticket JSwitch solution application database ER-Diagram

58

• precinct - contains information about a police precinct to which police officers belong to.

• police - contains the information about the police officer that has issued traffic tickets.

• driver - this entity refers to the person that receives the traffic ticket.

• vehicle - refers to the vehicle on which a driver received a traffic ticket.

• ticket - the traffic ticket entity contains all the information about a traffic ticket, the police

that issues the ticket, the driver that recives the ticket, and the vehicle driven at that moment.

• ticket payment - a traffic ticket payment contains reference information about the ticket

that is being payed and the ticket payment date.

• ticket payment adjudication - refers to the information that results from the processing

of a ticket payment including the date on which it was processed.

The following relationships between the entities were also identified and displayed in the

Figure 4.2:

• assigned - this represents that police officers are assigned to a precinct.

• contains police - it means that a ticket instance contains a police, since this latter is the

author of the ticket, also a ticket is issued by only one police officer but many tickets can be

issued by a police officer.

• contains driver - this relationship tells us that a ticket contains a driver in the sense that

it is a receiver of the ticket. Notice that a ticket belongs to one driver but a driver might

receive several tickets.

• contains vehicle - here a vehicle is related to a ticket instance for a specific driver.

• pays ticket - this relationship describes what a ticket payment does in relation to a ticket,

there is only one ticket payment for a specific ticket.

• pay process - describes the interaction of events between the ticket issue, the ticket payment

submission and the adjudication of a payment to the corresponding ticket.

Basically, this ER-Diagram summarizes the logical events for the Traffic Ticket transaction

processing solution as follow. For each ticket, there is an associated police officer, driver and vehicle.

Also, for each ticket there is a ticket payment which results in a ticket payment adjudication. The

59

entities and relationships translate into corresponding tables in the database. The result of this

translation is the database Relational Schema which is presented completely in Appendix A.

The functionality of the Police Client is to serve as the means for electronic traffic tickets

issued, traffic ticket batch creation and batch submission to the Traffic Ticket Solution based on the

JSwitch framework. The DTOP Client offers similar functionalities as the Police client, but instead

of dealing with the traffic tickets deals with the payments of the tickets. In addition to the clients

already mentioned, a web application that offers driver profile revision without authentication was

also implemented. The purpose of this application is to provide a driver profile revision interface for

the DTOP administration as well as for any driver that desires to see his or her traffic ticket profile

from wherever he wants as long as an internet connection is available. All these clients are Web

based applications that use the Apache Jakarta-Struts as its implementation technology. These

clients are able to produce well-formed XML documents that contained the transaction batches.

The Traffic Ticket Police client is designed for ticket batch submission. This Web based

client application offers the required forms for traffic ticket issuing. On these forms police officers

enter their issued traffic tickets during their shifts. Once the first traffic ticket is entered with the

client application, an XML document is initiated with the current time and batch sequence and

client JSwitch identification key. Additional traffic tickets are added incrementally to this document

until one of three conditions are met: 1) the size threshold specified for the XML document is

reached, 2) the time threshold specified for batch submittal is due, or 3) the user simply decides to

submit the batch. At batch submission time, the Web based application calls the authentication()

web service method at the TCoord to start the Batch Transaction Processing Protocol already

detailed.

The DTOP Client is responsible for the traffic ticket payments instead of the traffic tickets

registry. Thus, it has the same logical batch creation and submission process. Additionally, the

DTOP client can be used to view any driver traffic ticket profile.

These two traffic ticket clients were developed in order to have an interface from which

to create and send complete traffic ticket batches or ticket payment batches. But in addition,

to stress-test the system we developed a complete test client infrastructure . Basically, the test

client is a Java application that contains the methods needed to call the Web service methods

60

of authentication() and requestTCollIP() on the TCoord system entry point. This enables the

test client to submit previously generated batches full with transactions to the system and collect

measurements from the resulting system behavior. Furthermore, a management application was

developed to further automate the tests. This management application is a Java application that is

responsible for managing the JSC components; it can start, reset or shutdown any JSC component.

4.2 Experimental Scenarios and Methodology

The previous experimental setup, based on the JSwitch architecture, along with the work-

load used to conduct the experiments and its stress-test client are used on a series of testing

scenarios. The coordination of transaction batches was determined as the most important task of

the framework and the one expected to be performed more frequently by a JSwitch based solution.

Therefore, the experimental analysis of the framework is focused around the performance of the

Transaction Coordination Protocol involved in transaction batch coordination. The performance

metric to be measured is throughput, in terms of transactions batches coordinated per unit of

time. The experimental scenarios are classified based on the number of concurrent clients, on the

scheduling policy in use for batch assignment, and on wether the batches have an homogeneous or

heterogeneous number of transactions.

In all the scenarios, the JSwitch DB Server and the application database (ADB) resided

on the same computer. The same is true for the Traffic Ticket JSwitch OLTP (TT-OLTP)solution

ADB. The computer used for these purposes contained dual Intel Xeon processors at 3.0GHz with

64-bit extensions, hyper-threading support, and 1MB of Level 2 cache each, 2048MB of RAM, and

3 SCSI drives in a RAID 5 array running the 64-bit edition of SuSE Linux 9.2. The clients were all

independent computers running SuSE Linux 10.0. All communications between these computers

were transmitted through 100 Mbps Ethernet connections and the computers were in the same LAN.

As mentioned in Section 3.2, all the components in our implementation of the JSwitch framework

were developed using the Java [31] programming language. For the Web services implementation,

Apache Axis2 [2] was used. The Web server and servlet container used was Apache Tomcat [3]. Both

the JSwitch ADB and the TT-OLTP ADB were implemented using PostgreSQL [22] databases. For

a more detailed description of the computer equipment and the applications used for the JSwitch

61

implementation see Appendix A.

The Experimental Methodology is detailed here, showing the steps and logic followed to

perform the test of the prototype JSwitch solution. There where two kinds of jobs submitted to

the system: ticket batches and ticket payment batches. In the homogeneous data set, each batch

contained 250 transactions, worth 290KB and 100KB of data, respectively. In the heterogeneous

data set the batches contained from 150 transactions up to 350 transactions, worth between 175KB

and 400KB and between 60 KB to 140KB respectively. The tests were conducted using 1, 4, 8

and 16 clients that uniformly submit batches for transaction totals of 16, 32 and 64 thousands that

corresponds to workloads of 12.19MB, 24.38MB and 48.75MB, respectively, over a range of 1 to 3

minute periods. This time periods depend on the number of batches and number of clients.

The first scenario is where 1 client submit batches. In this scenario all the batches reside at

the same client, which makes the batch submit period the longest. On the other hand the scenario

where 16 clients submit their batches posses the shortest batch submit period. Each scenario was

tested using each of the Scheduling Policies. The scheduling policies involving some type of load

statistic were developed and re-developed to obtain a good outcome.

In order to acquire these measures JDBC insert statements were executed at each of the

testing components. Starting with the clients, the JSC components and finally the custom made

OLTP solution. The JDBC insert statements log at the DB Server at a separate application

database for the exclusive purpose of obtaining these measures. Once the system has finished

processing a data set makes a database dump which is a backup of the ADB current state and the

experiment result generation. These results are in the form of Excel spreadsheets which significantly

aids in the readability and later report creation and graphic generation of the experiment results.

The experiment methodology is described next step by step:

1. The first step is the application database (ADB) clear and reload with the respective schemas

already described for the JSwtich ADB and TT-OLTP ADB.

2. The TCoord and TDisp JSwitch Server Components (JSC) are set with the Scheduling Police

corresponding to the test scenario.

3. All the JSC components are started.

62

4. Once the JSwitch system components are started, the client experiment scripts are then

started, which triggers the transaction batch submission to the JSwitch system. This starts

by calling the authenticate() Web service method at the TCoord JSC.

5. The tests end after the client or clients have send all their transaction batches to the JSwitch

system and this latter finishes their proper processing.

6. At this point the automated testing application detects the system has finished processing

all the batches and starts the process of ADB backup and experiment results generation.

The experiment results are generated in Excel spreadsheets from where tables and plots are

generated.

7. After these six steps an experiment iteration for a scenario is completed. There are a total of

three repetitions per scenario.

8. The experimental results at each repetition per scenario are averaged to obtain the results

for a possible real case scenario.

9. The percentage of time at each JSwitch architecture tier and JSC are also computed.

10. Finally, the average throughput (in transactions and batches per minute) is computed for

each of the testing scenarios.

4.3 Performance and Load Analysis

This section gives an in detail analysis about the series of experiments that were carried

out to analyze the performance of the system. The system is analyzed in terms of throughput and

load capacity by scheduling policy. Throughput is defined here as the division between the number

of transactions processed and the processing time for a given policy. Throughput evaluation was

performed for each of the 4 scheduling policies one with two variations, later described and the

two data sets as explained above with the experimental setup already detailed. The results of the

experiments explained above are discussed in the next sections. These next sections contain the

average results of the three repetitions performed.

63

Table 4.1. RRS operation times for the Batch Coordination Protocol (Homogeneous Data Set)

Table 4.2. RRS operation times for the Batch Coordination Protocol (Heterogeneous Data Set)

4.3.1 Coordination Protocol with Scheduling Policy 1 Analysis

Scheduling Policy 1 is Round Robin Scheduling (RRS). Basically, this policy’s primary

objective is to achieve uniform work distribution among system components since it is based on

the Round-Robin algorithm. Tables 4.1 and 4.2 show the resulting operation times for transaction

batch coordination and processing for the Ticket Traffic JSwitch solution for the the homogeneous

and heterogeneous data sets and divided by number of clients respectively.

The throughput measured in transactions per minute for the homogeneous batches increases

as the total number of transactions increases. Additionally, the throughput tends to increase as

the number of clients increases. This is also true for the heterogenous batches. This scheduling

policy threats each JSC as being equally capable of executing their work. Which is true, when only

homogeneous batches are used. In the case of heterogeneous batches each JSC is not equally capable

of executing their work since the workloads are not the same in terms of quantity of transactions

per batch. Additionally, if the batches are assigned in a Round-Robin fashion there is a probability

of some components ending up with many batches with large workloads and a few components

with the smaller workloads. Therefore, resulting in an undesired work distribution since the system

64

Table 4.3. RS operation times for the Batch Coordination Protocol (Homogeneous Data Set)

Table 4.4. RS operation times for the Batch Coordination Protocol (Heterogeneous Data Set)

resources are not used efficiently. This fact must be taken in consideration when implementing a

JSwitch solution since this scheduling policy simply provides equal utilization of system resources.

4.3.2 Coordination Protocol with Scheduling Policy 2 Analysis

Scheduling Policy 2 is Random Scheduling (RS). This scheduling policy offers complete

utilization of system resources along with the probability to avoid hot spots in the presence of

heterogeneous workloads here batches for example since it distributes them randomly. Tables 4.3

and 4.4 shows the resulting operation times for transaction batch coordination and processing at

the JSwitch solution for the the homogeneous and heterogeneous data sets and divided by number

of clients respectively. The probability of hot spots is a desired attribute of this scheduling policy.

Tables 4.3 clearly shows that the throughput for the homogeneous batches increases as the total

number of transactions increases. This is also true for the heterogenous batches.

It is a good match for a JSwitch solution when full utilization of system resources along

with unorder distribution is desired.

65

Table 4.5. LLS using 5 min refresh rate operation times for the Batch Coordination Protocol
(Homogeneous Data Set)

4.3.3 Coordination Protocol with Scheduling Policy 3 Analysis

Scheduling Policy 2 is Least Loaded (LLS). This scheduling policy as described earlier is

driven by a priority function that describes the data rate potentially achievable at the present

moment at a particular system component. Basically, LLS selects the best available capable com-

ponent for the task at hand. Simply, this scheduling policy will perform as well as its selective

criteria determines its. In this case the selective criteria is the priority function. The selective

criteria is in terms of describing the component load, this is workload and system load.

Initially, the LLS policy uses as its selective criteria the load average at the last 5 minutes

as given by the Linux kernel. The load average is a UNIX computing term defined by [33] as

the measure of the number of active processes at any time, a measure of CPU utilization. Also [9]

defines load average as the sum of the run queue length and the number of jobs currently running on

the CPUs. This metric was refreshed every 5 minutes and then every 30 seconds seeking improved

results since it does not produced the desired and expected results for the LLS policy. Even with

a refresh time of 30 seconds this policy does not perform as expected. Further analysis signaled

work load as an alternative selective criteria and as the results show workl load resulted to be a

far better criteria. Tables 4.5 shows the results obtianed for 1, 4, and 8 clients using the 5 minutes

refresh rate for the LLS scheduling policy.

The analysis of the selective criteria for the LLS policy concluded that the work load com-

bined with the load average is the best alternative to produce efficient system resource utilization.

This is, workload is the selective criteria primary used along with a threshlod signaling system

overload determined by a load average higher than 3.0. Once this selective criteria was developed

it was used for the complete testing of the system.

66

Table 4.6. LLS operation times for the Batch Coordination Protocol (Homogeneous Data Set)

Table 4.7. LLS operation times for the Batch Coordination Protocol (Heterogeneous Data Set)

Tables 4.6 and 4.7 show the resulting operations times for the transaction batch coordination

and processing at the Traffic Ticket JSwitch solution for the the homogeneous and heterogeneous

data sets and classified by number of clients. This scheduling policy as shown by the results provides

good performance under homogeneous or heterogeneous data sets as expected.

4.3.4 Coordination Protocol with Scheduling Policy 4 Analysis

Scheduling Policy 4 is Random Towards Least Loaded Scheduling (RTLLS). This scheduling

policy offers the benefits of the last two scheduling policies. The probability to avoid hot spots since

it distributes them randomly among those already selected by the least loaded selective criteria.

Two variations of these scheduling policy were implemented and tested. These are random selection

among half of the components (RTLLS-Half) and among the third of the components (RTLLS-

Third). In this case since there are six TColls and six TProcs random among three and two

components respectively. This variation will help understand how the system benefits the most,

with the random logic or the use of a metric. Tables 4.8 and 4.9 show the resulting operations times

for the transaction batch coordination and processing at the Traffic Ticket JSwitch solution for the

the homogeneous and heterogeneous data sets and divided by number of clients for the RTLLS-

67

Table 4.8. RTLLS-Half operation times for the Batch Coordination Protocol (Homogeneous Data
Set)

Table 4.9. RTLLS-Half operation times for the Batch Coordination Protocol (Heterogeneous Data
Set)

Half variant. Tables 4.10 and 4.11 contains the same information but for the RTLLS-Third variant.

This scheduling policy is expected to outperform the others since it was designed by taking the

advantages of ths last two policies. Throughout these four figures the RTLLS-Half scheduling policy

outperforms its counterpart. This leads to the observation that the use of more randomization in

this hybrid improves its performance.

Table 4.10. RTLLS-Third operation times for the Batch Coordination Protocol (Homogeneous
Data Set)

68

Table 4.11. RTLLS-Third operation times for the Batch Coordination Protocol (Heterogeneous
Data Set)

4.3.5 Scheduling Policy Throughput Comparison

This section analyzes the throughput results for the different scheduling policies. The figures

on this section displays the already presented experiment results in order to explain the observations

findings based of these results. The figures are classified by the experiment scenarios. Basically

the averages of the three experiment repetitions are displayed here classified by each of the four

scheduling policies and its variations.

Figures 4.3 and 4.4 display the throughput for the first experiment scenario that contained

only one client. This scenario represents complete system resources availability for the client. In

this scenario the RTLLS-Third(RLLT) scheduling policy presents the best policy throughput for

the system, specially as the transaction load increases. This policy is closely followed by RTLLS-

Half variant. This figure shows that the random-towards-least-loaded type of policies provides the

best tradeoff for throughput.

Similarly figures 4.5 and 4.6 display the throughput but in this occassion for the second

experiment scenario that contained four clients. This scenario is the first of three experiment

scenarios where system resources are distributed and even shared by clients. At this scenario, as

the figures show, the scheduling performance was very similar between both of the data sets. This

time the RTLLS-Half(RLLH) scheduling policy presented better throughput at the system, specially

as the transaction load increases. This policy changed places with its Third variant when compared

with the first scenario. Again its clear that some policies are in fact more efficient that others and

the observation that the metric based scheduling policies perform better that its non-metric based

counterparts was maintained.

69

Figure 4.3. Throughput comparison among implemented scheduling policies with 1 client for the
homogeneous data set

Figure 4.4. Throughput comparison among implemented scheduling policies with 1 client for the
heterogeneous data set

70

Figure 4.5. Throughput comparison among implemented scheduling policies with 4 client for the
homogeneous data set

Figure 4.6. Throughput comparison among implemented scheduling policies with 4 client for the
heterogeneous data set

71

Figures 4.7 and 4.8 were obtained at the third experiment scenario which was performed us-

ing eight clients. This represents evidence that for a second time the RTLLS-Half(RLLH) scheduling

policy presents better throughput at the system, specially as the transaction load increases. The

results were similar to scenario number 2. Also, scheduling policie’s performance where clearly dif-

ferent. The observation that the metric based scheduling policies perform better than its non-metric

based counterparts was also maintained here.

Figure 4.7. Throughput comparison among implemented scheduling policies with 8 client for the
homogeneous data set

Finally, the last scenario shown in figures 4.9 and 4.10 show the throughput results for

a system used by 16 clients. This scenario tests the system with the largest number of clients

which represents the biggest challenge of the scenarios in term of concurrency and system resources

availability under stress circumstance. Remember that all the clients send their batches during the

same period. The throughput comparison between policies evidences that the RTLLS-Half(RLLH)

scheduling policy presents better throughput at the system, specially as the transaction load in-

creases. Here in terms of number of clients and number of transactions also. This time the RRS

also made a statement over its no-metric based scheduling policy counterpart of RS outperforming

the latter. These observation are maintained for both data sets.

72

Figure 4.8. Throughput comparison among implemented scheduling policies with 8 client for the
heterogeneous data set

Figure 4.9. Throughput comparison among implemented scheduling policies with 16 client for the
homogeneous data set

73

Figure 4.10. Throughput comparison among implemented scheduling policies with 16 client for the
heterogeneous data set

These figures have displayed that some policies are in fact more efficient that others. Basi-

cally, the metric-oriented policies of LLS, RTLLS-Half and RTLLS-Third have an advantage over

the non-metric oriented ones of RRS and RS. The selective criteria designed for the JSwitch solution

that these metric-oriented policies use have been proven better that the results produced by the

non-metric oriented. These findings are maintained over the homogeneous and heterogeneous data

sets. Additionally, among the metric-oriented policies, the RTLLS hybrid has greater efficiency

than pure LLS. This result is due to the fact that LLS even though its selects the best possible

component at the moment it can still overload components and RTLLS helps reducing this effect.

The difference among the RTLLS-Half and RTLLS-Third policies is that in fact the randomization

used among the least loaded components improves the the quality of the selection.

4.3.6 Load Capacity Analysis

This analysis refers to the systems’ ability to deal with bigger number of transactions since

as the number of transactions increases the rate at which the system is used increases considerably.

This is directly related to the number of clients the system attends concurrently, but can also be

affected by the quantity of transactions at the batches. This is as the level of concurrency increases

74

deadlock possibility increases exponentially as stated by Jim Gray at The Transaction Concept

Virtues and Limitations [23]. Therefore, increases in the factors directly related to the number of

transactions at the system reduces the following dimensions: the ability of the system to coordinate

and process transactions, the response time and consequently throughput.

Figures 4.11 and 4.12 displays the throughput of the tests for the scheduling policies for

systems workload of 16,000 transactions for 1, 4, 8, and 16 clients. The results show that as the

number of clients increase, the system throughput is slightly increased or at least maintained. The

system throughput for the scheduling policies when attending 16,000 transactions is similar. This

behavior observed at both data sets.

Figure 4.11. Throughput for load capacity of 16,000 transactions for the homogeneous data set

The scheduling policies for a system with a workload of 32,000 transactions behave differ-

ently in terms performance. The metric based scheduling policies present better performance than

the one displayed by its non-metric based counterparts, specially as the system workload increases.

This can be seen in figures 4.13 and 4.14. This difference in performance is seen for the two data

sets.

Finally, the scheduling policy performance for the the largest load used to test the JSwitch

75

Figure 4.12. Throughput for load capacity of 16,000 transactions for the heterogeneous data set

Figure 4.13. Throughput for load capacity of 32,000 transactions for the homogeneous data set

76

Figure 4.14. Throughput for load capacity of 32,000 transactions for the heterogeneous data set

solution which corresponds to 64,000 transactions is displayed in Figures 4.15 and 4.16. Again the

non-metric based scheduling policies were outperformed by their conterparts. This is seen for both

of the data sets.

The results displayed at these figures show that as the number of transactions attended by

the system increase the system throughput also increases. These is also observed as the number of

clients seen by the system increases. These observations make us think about what is the system

saturation point at which the throughput reaches a steady state or even worst lowers. This point is

mentioned at the next section as a possible future work to further study the nature of the system.

77

Figure 4.15. Throughput for load capacity of 64,000 transactions for the homogeneous data set

Figure 4.16. Throughput for load capacity of 64,000 transactions for the heterogeneous data set

CHAPTER 5

Conclusions and Future Work

This thesis has presented a Framework for a Web-Based Transaction Coordinator Switch

called JSwitch. The JSwitch framework is a Web-based transactional coordination system designed

to accept batches of related transactions in Web-based environment and forward them to the

appropriate transactional server application. Current on-line transaction processing system can

be employed here in order to handle each individual transaction. Additionally, this framework

can cope with the scalability load problems that Web environments present by monitoring and

recording statistics of its system resources.

The JSwitch framework presents an alternative for transaction batch coordination specifi-

cally designed to cope with the Web environment challenges of heterogeneity and scalability. These

challenges are the current eCommerce barriers that must be overcomed in order to unleash the full

potential of this business technology. The external interface of a JSwitch framework solution is

completely based on Web services. Therefore, it naturally achieves the necessary communication

cross-platform capabilities to address heterogeneity issues. Furthermore, the JSwitch framework is

presented as a means to either scale current batch transaction processing systems or develop new

ones based on the framework. A JSwitch based solution will posses specially designed load balanc-

ing and monitoring mechanisms to deal with the Web traffic, and deal with unexpected spikes in

system load.

78

79

5.1 Summary of Contributions

We have discussed how the JSwitch framework can be used to implement solutions that

permit transactions to be exchanged seamlessly in intra-agency or inter-agency environments. Ba-

sically, Web services standards and the use of eXtensible Markup Language (XML) technology were

used as the means for this ease of interaction among transaction parties. We have also discussed

how JSwitch can be used by a single provider of services as a tool to balance the load among vari-

ous servers used to manage transactions. Service providers could integrate the JSwitch framework

to their systems and obtain the desired system load balancing immediately. These servers might

be located in a single site, or distributed geographically and accessible by means of a corporate

intranet.

We have presented the initial implementation of the system, along with a performance study

in terms of throughput and load capacity. Throughput in terms of the performance that offers the

different scheduling policies when used to coordinate transaction batches at the Batch Transaction

Coordination Protocol. This was developed as the communication mechanism among the JSwitch

components. We also presented a performance study which discussed the tradeoff between the

different load balancing policies used in the system to assign the processing of transactional batches.

These policies are a) Round Robing Scheduling, b) Random Scheduling, c) Least Loaded Scheduling,

and d) Random Towards Least Loaded Scheduling. Our performance study shows that the latter

(Random Towards Least Loaded Scheduling) provides the best performance for JSwitch.

The JSwitch server components offer the hot-plugable ability, making the framework flexible

in terms of administration and agile when systems resources are needed the most. This feature in

addition to the effective load balancing statistical monitoring mechanism are part the JSwitch scala-

bility features. Furthermore, component (TColl and TProc) crash-recovery and work re-distribution

and re-dispatchment are part of the framework.

The JSwitch framework provides many features that make it a unique solution for the

coordination of batches of transactions over the Web. The current JSwitch reference implementation

is the first effort towards this Web based batch transaction coordinator load balancing framework.

There is actual room for improvements that future work should address in order to become a feature

80

rich and robust coordination utility.

5.2 Future Work

This section signals future work concerning the JSwitch framework:

• Implementation of a JSwitch Report Utility to further improve its current features and offer

an administrative aid when deploying and when fully operating a JSwitch solution. In addi-

tion we will be interested in developing a report utilities function for transaction processing

systems. Having a JSwitch report utility will become essential when mass batch processing

is executed since it will be needed for organization purposes. These reports could include

metadata and statistics about the JSwitch solution.

• A JSwitch Management Utility to completely control the JSwitch components and monitor its

operations. Such a management tool could benefit adopters since it will provide the facilities

to administer the system without having to necessarily know its internal structure.

• There is currently a lot of room for improvement in terms of the security of the JSwitch. The

security measures could start by developing a security layer for the database and follow with

robust authentication mechanism into the system by clients.

REFERENCES

[1] Apache Software Foundation, Apache Axis2, www.ws.apache.org/axis2 December 2006.

[2] Apache Software Foundation, Apache Tomcat, www.tomcat.apache.org December 2006.

[3] Bernstein, P., Newcomer, E., Principles of Transaction Processing For The Systems Profes-
sional, 1st. Edition, Morgan Kaufmann, 1997.

[4] Bhatti, N., Bouch, A., Kuchinsky, A., A Integrating user-perceived quality into Web server
design Proceedings of the 9th International World Wide Web Conference (WWW9), May
2000.

[5] Business Transactio Protocol OASIS, December 2006; www.oasis-
open.org/committees/business-transactions

[6] Chen, P.P., The Entity-Relationship Model - Toward a Unified View of Data, ACM Trans-
actions on Database Systems (TODS), vol. 1, no. 1, pp. 9-36, March 1976.

[7] Ching, A. Building a Highly Available Database Cluster, Microsoft Press, 2000.

[8] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., Web Services Description
Language (WSDL) Version 1.1, W3C Note, March 2001; www.w3.org/TR/wsdl.html.

[9] Cockcroft, A., Sun Performance and Tuning SunSoft Press, 1995.

[10] Codd, E.F., A Relational Model of Data for Large Shared Data Banks, Communications of
the ACM, vol. 13, no. 6, pp. 377-387, June 1970.

[11] Common Criteria Implementation Board, Common Criteria for Information Security Eval-
uation, Version 2.1, 1999; ww.csrc.nist.gov/cc.

[12] Dalal, S., Little, M., Potts, M., Webber, J. Coordinating Business Transactions, IEEE Com-
puter Society, pages 30, 39, February 2003.

[13] Dar, S., Hecht, G., Schochat, E., dbSwitch - Towards a Database Utility, SIGMOD ACM,
2004.

[14] Dayal, U., Hsu, M., Ladin, R. Business Process Coordination: State of the Art, Trends, and
Open Issues, Proceedings VLDB, 2001.

[15] West, D. Global E-Government, 2005, September 2005.

[16] eXtensible Markup language (XML) specification, www.w3.org/XML/ December 2006.

[17] Freeman, E. Head First Design Patterns, OReilly, 2001.

[18] Freier, A., Karlton, P., and Kocher, P., The SSL Protocol Version 3.0, Internet-Draft,
November 1996; www.wp.netscape.com/eng/ssl3/draft302.txt.

81

82

[19] Geer, D., Taking Steps to Secure Web Services, Computer, vol. 36, no. 10, pp. 14-16, October
2003.

[20] Graham, S., Davis, D., Simeonov, S., Building Web Services with Java, 2nd. Edition, Sams
Publishing, 2005.

[21] Gray, J., The Next Database Revolution, ACM SIGMOD, pp. 1-4, June 2004.

[22] Gray, J., Reuter, A., Transaction Processing: Concepts and Techniques, Morgan Kaufmann,
1993.

[23] Gray, J. The Transaction Concept: Virtues and Limitations, Proceedings VLDB, pages 1,23,
1981.

[24] He, J., and, Wang, M., Cryptography and Relational Database Management Systems, 2001
International Symposium on Database Engineering & Applications, pp. 273-284, July 2001.

[25] JDBC Technology, www.java.sun.com/products/jdbc/ December 2006.

[26] Limthanmaphon, B., Zhang, Y., Web Service Composition Transaction Management, Pro-
ceedings of the fifteenth conference on Autralasian database, Vol. 27 CRPIT 04 pp. 171-179,
January 2004.

[27] Little, M., Transactions and Web Services, Communications of the ACM, Vol. 46, No. 10pp.
49-54, October 2003.

[28] Malone, T. What is Coordination Theory?, Natiaonal Sicence Foundation MIT, pages 1, 29,
1988.

[29] Motgomery, D., Design and Analysis of Experiements Wiley 2001.

[30] Oaks, S., Wong, H., Java Threads, 3rd. Edition, O’Reilly, 2004.

[31] Oasis Web Services Security Technical Committee, Web Services Security (WS-Sec) Protocol,
January 2004; www.oasis-open.org/committees/wss.

[32] ODCB Basics, www.datadirect.com/developer/odbc/basics/index.ssp December 2006.

[33] Peek, J., O’Reilly, T., Loukides, M., UNIX Power Tools O’Reilly & Assoc. Inc., 1997.

[34] Peltz, C., Web Services Orchestration and Choreography, IEEE Computer Society, pages 46,
52, October 2003.

[35] Porter, G. Effective Web Service Load Balancing Through Statistical Monitoring, Commu-
nications of the ACM, volume 49, pages 49, 54, March 2006.

[36] PostgreSQL, www.postgresql.com December 2006.

[37] Ramakrishnan, R., and Gehrke, J., Database Management Systems, 3rd. Edition, Interna-
tional Edition, McGraw-Hill, ch. 2, pp. 25-27, 2003.

[38] Roberts, J., Srinivasan, K. The Tentative Hold Protocol, W3C, 2001.

83

[39] Sesay, S., Yang, Z., Chen, J., and Xu, D., A Secure Database Encryption Scheme, Second
IEEE Consumer Communications and Networking Conference 2005 (CCNC 2005), pp. 49-53,
January 2005.

[40] Silberschatz, A., Cagne, G., Baer, P., Operating Systems Concepts, 7th. Edition, Wiley,
2005.

[41] Sun Microsystems, Inc., Java Technology, www.java.sun.com December 2006.

[42] Transaction Processing Council, www.tpc.org/tpcc/ December 2006.

[43] Turban, E., Dorothy, L., Ephraim, M., Wetherbe, J., Information Technology for Manage-
ment, 5th. Edition, Wiley, 2006.

[44] UDDI Spec Technical Committee, UDDI Version 3.0.2, October 2004;
www.uddi.org/pubs/uddi v3.htm.

[45] XML Protocol Working Group, Simple Object Access Protocol (SOAP) Version 1.2, W3C
Recommendation, June 2003; www.w3.org/TR/soap/.

APPENDICES

84

APPENDIX A

Technical and Implementation Details

For the completion of the experiments, the following computers were used:

DB Server:

Model Dell PowerEdge 2850

CPU 2xIntel Xeon Processor at 3.0GHz with EM64T and HT / 1MB L2

FSB 800MHz

RAM 2x1024MB = 2048MB DDR2 400MHz Dual-Channel

HD 3x146GB Ultra 320 SCSI 10000rpm in RAID 5 (292GB effective)

OS SUSE Linux 9.2 for x86 64

JSC:

Model Dell PowerEdge 2850

CPU Intel Xeon Processor at 3.0GHz with EM64T and HT / 1MB L2

FSB 800MHz

RAM 2x512MB = 1024MB DDR2 400MHz Dual-Channel

HD 146GB Ultra 320 SCSI 10000rpm

OS SUSE Linux 9.2 for x86 64

85

86

Client 1:

Model Dell Inspiron 8500

CPU Intel Pentium 4 M Processor at 2.20GHz / 512KB L2

FSB 566MHz

RAM 512MB + 1024MB = 1536MB DDR 333MHz

HD 80GB Ultra ATA/100 IDE 5400rpm

OS SuSE Linux 10.1

Client 2 - 16:

Model Dell Precision Workstation 360

CPU Intel Pentium 4 Processor at 3.2GHz / 512KB L2

FSB 800MHz

RAM 4x256MB = 1024MB DDR 333MHz

HD 80GB Ultra ATA/100 IDE 7200rpm

OS SuSE Linux 10.1

• The network at which all the computer were connected consisted basically of 100 Mb/s Eth-

ernet connections. Also the computers were in the same LAN.

• The programming language used was the Object-Oriented Sun Java version 1.5.6 at all system

components.

• The Web services implementation used was Apache Axis2 [1] version 1.0.

• The Web server and servlet container on which all of the code ran was Apache Tomcat [2]

version 5.5.9.

• The ADBs were implemented using the PostgreSQL [36] version 8.1.

The complete relational schema used along with the initial data for the ADB databases are

represented by the following SQL scripts:

87

-- PostgreSQL Script

DROP TABLE ws_component;

DROP TABLE work_dispatcher;

DROP TABLE transstati;

DROP TABLE batchstati;

DROP TABLE webswitch_client;

DROP TABLE tcoll_catalogue;

DROP TABLE tproc_catalogue;

CREATE TABLE tproc_catalogue(
description varchar(35) default null,
ip varchar(15) not null,
metric_status varchar(10) not null,
load_avg numeric not null,
batch_count integer not null,
PRIMARY KEY (ip)

);

CREATE TABLE tcoll_catalogue(
description varchar(35) default null,
ip varchar(15) not null,
metric_status varchar(10) not null,
load_avg numeric not null,
batch_count integer not null,
PRIMARY KEY (ip)

);

CREATE TABLE webswitch_client(
client_id varchar(15) not null,
description varchar(30) not null,
since bigint not null,
until bigint not null,
PRIMARY KEY(client_id)

);

INSERT INTO webswitch_client VALUES(’client1’, ’client1’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client2’, ’client2’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client3’, ’client3’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client4’, ’client4’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client5’, ’client5’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client6’, ’client6’, 100101010, 12000000);

88

INSERT INTO webswitch_client VALUES(’client7’, ’client7’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client8’, ’client8’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client9’, ’client9’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client10’, ’client10’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client11’, ’client11’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client12’, ’client12’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client13’, ’client13’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client14’, ’client14’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client15’, ’client15’, 100101010, 12000000);
INSERT INTO webswitch_client VALUES(’client16’, ’client16’, 100101010, 12000000);

CREATE TABLE batchstati(
name varchar(30) not null,
status varchar(15) not null,
batch_id varchar(20) not null,
dir_name varchar(100) not null,
tcoll_ip varchar(15) not null,
receiving_time bigint not null,
priority bigint not null,
client_id varchar(15) not null,
tracking_num BIGSERIAL UNIQUE,
FOREIGN KEY(tcoll_ip) REFERENCES tcoll_catalogue(ip),
FOREIGN KEY(client_id) REFERENCES webswitch_client(client_id),
PRIMARY KEY(batch_id)

);

CREATE TABLE transstati(
status varchar(10) not null,
batch_id varchar(20) not null,
trans_id varchar(10) not null,
FOREIGN KEY(batch_id) REFERENCES batchstati(batch_id),
PRIMARY KEY(trans_id)

);

CREATE TABLE work_dispatcher(
batch_id varchar(20) not null,
tproc_ip varchar(15) not null,
status varchar(15) not null,
receiving_time bigint not null,
priority BIGSERIAL,
PRIMARY KEY(batch_id),
FOREIGN KEY(batch_id) REFERENCES batchstati(batch_id),
FOREIGN KEY(tproc_ip) REFERENCES tproc_catalogue(ip)

);

CREATE TABLE ws_component(
ip varchar(15) not null,
description varchar(60) default null,

89

PRIMARY KEY(ip)
);

INSERT INTO ws_component VALUES(’136.145.116.92’, ’Transaction Coordinator’);
INSERT INTO ws_component VALUES(’136.145.116.77’, ’Transaction Collector’);
INSERT INTO ws_component VALUES(’136.145.116.84’, ’Transaction Collector’);
INSERT INTO ws_component VALUES(’136.145.116.90’, ’Transaction Collector’);
INSERT INTO ws_component VALUES(’136.145.116.91’, ’Transaction Collector’);
INSERT INTO ws_component VALUES(’136.145.116.97’, ’Transaction Collector’);
INSERT INTO ws_component VALUES(’136.145.116.121’, ’Transaction Collector’);
INSERT INTO ws_component VALUES(’136.145.116.28’, ’Transaction Dispatcher’);
INSERT INTO ws_component VALUES(’136.145.116.29’, ’Transaction Processor’);
INSERT INTO ws_component VALUES(’136.145.116.30’, ’Transaction Processor’);
INSERT INTO ws_component VALUES(’136.145.116.31’, ’Transaction Processor’);
INSERT INTO ws_component VALUES(’136.145.116.32’, ’Transaction Processor’);
INSERT INTO ws_component VALUES(’136.145.116.69’, ’Transaction Processor’);
INSERT INTO ws_component VALUES(’136.145.116.111’, ’Transaction Processor’);

The Traffic Ticket Solution ADB relational schema is represented by the following SQL

script:

-- PostgreSQL Script

DROP TABLE ticket_payment_adjudication;

DROP TABLE ticket_payment;

DROP TABLE ticket;

DROP TABLE police;

DROP TABLE precinct;

DROP TABLE driver;

DROP TABLE vehicle;

CREATE TABLE vehicle(
lic_plate varchar(6) not null,
vin varchar(10) not null,
deed_title varchar(10) not null,
make varchar(10) not null,
year integer default null,
sys_id BIGSERIAL UNIQUE,
PRIMARY KEY(vin, sys_id)

90

);

CREATE TABLE driver(
fname varchar(10) not null,
mname varchar(10) default null,
lname varchar(10) not null,
ssn integer not null,
lic_num integer not null,
sys_id BIGSERIAL UNIQUE,
PRIMARY KEY(lic_num, sys_id)

);

CREATE TABLE precinct(
name varchar(20) not null,
address varchar(50) not null,
pre_id integer not null,
PRIMARY KEY(pre_id)

);

CREATE TABLE police(
fname varchar(10) not null,
mname varchar(10) not null,
lname varchar(10) not null,
ssn integer not null,
badge_num integer not null,
pre_id integer not null,
sys_id BIGSERIAL UNIQUE,
FOREIGN KEY(pre_id) REFERENCES precinct(pre_id),
PRIMARY KEY(badge_num)

);

CREATE TABLE ticket(
ticket_id integer not null,
timestamp bigint not null,
place varchar(20) not null,
description varchar(50) default null,
lic_num integer default null,
lic_plate varchar(6) default null,
amount integer not null,
badge_num integer not null,
trans_id varchar(10) not null,
FOREIGN KEY(badge_num) REFERENCES police(badge_num),
FOREIGN KEY(trans_id) REFERENCES transstati(trans_id),
PRIMARY KEY(ticket_id)

);

CREATE TABLE ticket_payment(
ticket_payment_id BIGSERIAL,

91

amount integer not null,
submit_time bigint not null,
ttrans_id varchar(10) not null,
ticket_id integer not null,
trans_id varchar(10) not null,
FOREIGN KEY(ticket_id) REFERENCES ticket(ticket_id),
FOREIGN KEY(trans_id) REFERENCES transstati(trans_id),
PRIMARY KEY(ticket_payment_id)

);

CREATE TABLE ticket_payment_adjudication(
tpa_id BIGSERIAL,
t_id integer not null,
t_payment_id integer not null,
system_adjudication_time bigint not null,
FOREIGN KEY(t_id) REFERENCES ticket(ticket_id),
FOREIGN KEY(t_payment_id) REFERENCES ticket_payment(ticket_payment_id),
PRIMARY KEY(tpa_id)

);

The relational schema used to log the experimental results is represented by the following

SQL script:

-- PostgreSQL Script

DROP TABLE batch_protocol_measures;

CREATE TABLE batch_protocol_measures(
ip varchar(15) not null,
batch_id varchar(20) not null,
time bigint not null,
cilent_id varchar(20) default null,
status varchar(15) not null,
description varchar(60) default null,
FOREIGN KEY(ip) REFERENCES ws_component(ip),
PRIMARY KEY(batch_id, time, ip)

);

