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Abstract Presented to the Graduate School

of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

A NEW PRECONDITIONER FOR SOLVING LINEAR SYSTEMS

WITH SYMMETRIC Z-MATRICES

By

Jesús M. Cajigas Santiago

May 2012

Chair: YONG, Xuerong

Major Department: Mathematical Sciences

There are many preconditioners for linear systems, for example, P = I + Smax

developed by Kotakemori in [9] and its extension P̃ developed by Arenas & Yong

in [1]. These preconditioners were built to speed up the convergence of the method

when solving it. Symmetry is a useful property to preserve when applying a precon-

ditioner. Preserving symmetry is advantageous since there are known methods that

ensure convergence if the coefficient matrix is symmetric, among other things. Due

to this fact, preconditioners that improve the convergence of the method at the same

time that keeps symmetry are interesting and useful. This thesis introduces a new

preconditioner, named PSYM , that preserves symmetricity of the coeficient matrix and

improves the convergence of the Symmetric Gauss-Seidel method when applied. This

new preconditioner was based on the one proposed by Arenas & Yong in [1] using the

idea proposed by Kotakemori in [9]. This one is to turn the largest entry (in terms of

absolute value) above the main diagonal, by row, into zero when the preconditioner is
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applied.

By applying the new preconditioner, a clear reduction on the number of iterations

until convergence and the elapsed time in the Symmetric Gauss-Seidel method is ob-

served. In addition, a reduction of the condition number of the coefficient matrix is

noticed. Even though this method is not as general as the one proposed by Arenas

& Yong ([1]) or Kotakemori ([9]) when comparing them by considering the coefficient

matrix as a symmetric one, the new method shows an improvement. On the other

hand, other preconditioners, with the exception of, P̃ , are not pose as iterative, the

preconditioner proposed for this thesis, PSYM is. The preconditioner P̃ if applied itera-

tively, transforms the matrix into a lower triangular matrix; meanwhile, PSYM improves

this. By applying the preconditioner PSYM iteratively, the matrix turns into a diagonal

matrix.

iii



Resumen Presentado a Escuela Graduada

de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Maestŕıa en Ciencias

UN NUEVO PRECONDICIONADOR PARA RESOLVER SISTEMAS

LINEALES CON Z-MATRICES SIMÉTRICAS

Por

Jesús M. Cajigas Santiago

mayo 2012

Consejero: YONG, Xuerong

Departamento: Ciencias Matemáticas

Existen muchos precondicionadores para sistemas lineales, por ejemplo, P =

I +Smax desarrollado por Kotakemori en [9] y su extensión P̃ desarrollada por Arenas

& Yong en [1]. Estos precondicionadores fueron construidos para acelerar la conver-

gencia del método al resolverlo. Es útil preservar la simetŕıa cuando se aplica un

precondicionador. Preservar la simetŕıa es ventajoso ya que existen métodos que ase-

guran la convergencia si la matriz coeficiente es simétrica, entre otras cosas. Dado este

hecho, precondicionadores que mejoran la convergencia del método al mismo tiempo

que mantienen la simetŕıa son interesantes y útiles. Esta tesis introduce un nuevo pre-

condicionador, llamado PSYM , que preserva la simetŕıa de la matriz coeficiente y mejora

la convergencia del método Gauss-Seidel Simétrico. Este nuevo precondicionador fue

basado en el propuesto por Arenas & Yong in [1] utilizando la idea propuesta por Ko-

takemori en [9]. Ésta es volver la entrada más grande (en términos de valor absoluto)

sobre la diagonal principal, por fila, en cero cuando se aplica el precondicionador.
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Aplicando el nuevo precondicionador, se observa una clara reducción en el número

de iteraciones hasta la convergencia asi como del tiempo de ejecución del método

Gauss-Seidel Simétrico. En adición, se puede ver una reducción en el número de

condicionamiento de la matriz coeficiente. Aunque este método no es tan general como

los propuestos por Arenas & Yong ([1]) ó Kotakemori ([9]), cuando se comparan estos

considerando la matriz coeficiente como una simétrica, el nuevo método muestra una

mejora. Por otro lado, otros precondicionadores, con la excepción de, P̃ , no se plantean

como iterativos, el precondicionador propuesto para ésta tesis, PSYM , lo es. Si el

precondicionador P̃ es aplicado iterativamente, transforma la matriz en una triangular

inferior; PSYM mejora esto. Aplicando el precondicionador PSYM iterativamente, la

matriz se convierte en una matriz diagonal.
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CHAPTER 1

INTRODUCTION

Preconditioners are studied to improve the convergence of various systems, for

example, linear systems. Systems of the form:

Ax = b

where A is an n × n matrix and x and b are n × 1 vectors, are very popular and of

great interest for applied mathematicians and engineers. It is known that systems of

this form can be solved if A is a non-singular matrix. The solutions to these kind of

systems can be computed with a sheet of paper and a pencil if the dimensions of the

given matrix are small, however, this is not the general case.

Many popular methods like, Jacobi, Gauss-Seidel, and SSOR are used to approx-

imate the solution of linear systems. Nevertheless, when solving them one should

consider many things. For example, the time that the method takes to converge and

the accuracy of the solution are important factors when solving a system. To improve

1



CHAPTER 1. INTRODUCTION 2

the convergence of these systems preconditioners are applied. A preconditioner is a

form of modification of a linear system that conditions it into a form that is more

suitable for a numerical solution. Roughly speaking, a preconditioner can be seen as

“good” if it speeds up the convergence of the method used.

One of the most reliable methods is the Gauss-Seidel. For now, to avoid defining

the method (which will be done in Chapter 2) let’s just say that it converges for any

initial value when the norm of the largest eigenvalue of the matrix M−1N is less than

one, i.e., ρ(M−1N) < 1. So, a good preconditioner will decrease the spectral radius of

M−1N and the time that the method takes to converge. At this point, it should be

obvious what this work is aiming for, but before further discussing its main idea, lets

talk briefly about its predecessors.

For many years, people like Kotakemori ([9], [10]), Gunawardena ([5]), Niki ([16]),

Kohno ([8], [7]), Morimoto ([15]), Van Der Vorst ([12]), Ji-cheng Li ([11]), Noutsos

([17]), and, Hailong Shen ([21]) have work with preconditioners to improve the conver-

gence of different methods like, for example, the Gauss-Seidel. Among all investigations

on preconditioners of different people, this thesis is based and motivated by the work

done by Arenas & Yong in [1]. This last one is an extension of the work done by

Kotakemori in [9]. Kotakemori’s idea of vanishing the maximum entry (in terms of ab-

solute value) above the main diagonal per row of a matrix is adopted in this thesis. In

their work, Arenas & Yong extend Kotakemori’s preconditioner applying it iteratively,

and they left the following as an open problem:

“If the matrix A is symmetric, PA is not symmetric. Thus, for future work, one

could try to obtain a preconditioner derived from P that keeps the symmetry, . . . ”

Hence, following the open problem left by Arenas & Yong in [1], the main idea and

goal of this work was established. The main idea and goal of this work was to construct



CHAPTER 1. INTRODUCTION 3

a preconditioner, that would keep symmetricity of the coefficient matrix and improves

the convergence of the Symmetric Gauss-Seidel method when apply.

The goal was achieved with the construction of the preconditioner PSYM . This one

acts over a linear system, where the coefficient matrix satisfies some conditions; for

example, the matrix is assumed to be a Symmetric Z-Matrix. The preconditioner is

validated in Chapter 4 with examples that give numerical proof that in fact the number

of iterations until convergence and the running time of the Symmetric Gauss-Seidel

method improves. In addition, the condition number of the given matrix is reduced

when PSYM is applied. Since the convergence of a method can be characterized by the

condition number of the matrix, trying to get a smaller condition number will yields a

better convergence.

An extension of the preconditioner is discussed in Chapter 3 and validated in Chap-

ter 4 where numerical evidence shows that the preconditioner PSYM can be applied

iteratively. Finally, a result that describes what happens when PSYM is applied itera-

tively is given. It was proved that in a finite number of times that PSYM is applied,

the matrix can be reduced to a diagonal.



CHAPTER 2

PRELIMINARIES

This chapter introduces the concepts and definitions that will be used in further

chapters or are needed in order to understand certain ideas later on. Most of the

concepts that will be explained are basic and are taught in Linear Algebra. In addition,

books [4], [19], [13], and [6] help to understand the concepts used in the thesis.

2.1 Basic Properties of the Matrices

First, it is necessary to define and describe the type of matrices that will be used

in this thesis. Examples will be provided for a better understanding of the following

concepts.

Definition 2.1. Let A = (aij) be a real n×n matrix, A is called a Z-Matrix if, aij ≤ 0

for all i 6= j.

4



CHAPTER 2. PRELIMINARIES 5

Definition 2.2. Let A = (aij) be a real n×n matrix. A is called diagonally dominant

if,

|aii| ≥
n

∑

j=1 j 6=i

|aij|, ∀i = 1, . . . , n

It is said to be strictly diagonally dominant if

|aii| >

n
∑

j=1 j 6=i

|aij|, ∀i = 1, . . . , n

Let the following serve as an example of a strictly diagonally dominant matrix.

Example. 2.1. Let

A =



















−3 −1 0 −1

0 6 −3 −2

−2 0 4 −1

−1 −2 −4 −8



















Since for each row |ajj| >
∑n

i=1 i 6=j |aij|, A is a strictly diagonally dominant matrix.

2.1.1 Coefficient Matrix Properties

In this thesis the coefficient matrix, A, of the linear system Ax = b is assumed to

be:

• A Non-Singular Symmetric Z-Matrix.

• Diagonally Dominant with Positive Main Diagonal.
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2.2 Gauss-Seidel Method (G-S Method)

In numerical linear algebra, the Gauss-Seidel method (similar to the Jacobi

Method), also known as the Liebmann method or the method of successive displace-

ment, is an iterative method for solving systems of the form Ax = b. Sufficient con-

ditions to ensure the convergence of the method are to take the coefficient matrix

as either diagonally dominant, or symmetric positive definite. The following are the

definitions of the Gauss-Seidel and the Symmetric Gauss-Seidel methods.

Definition 2.3. (Gauss-Seidel) Let Ax = b and A = M − N where M is the lower

triangular part of A and N is the strictly upper part of −A, then the Gauss-Seidel

iteration is given by:

xk+1 = M−1Nxk +M−1b (2.1)

since N = M − A, replacing it in Definition 2.1 yields,

xk+1 = xk −M−1Axk +M−1b

Definition 2.4. (Symmetric Gauss-Seidel) Let Ax = b and A = M − N then, the

Symmetric Gauss-Seidel iteration is given by:

xk+1 = xk −M−1Axk +M−1b

where M = LD−1U , N = M − A and

L is the lower triangular part of A , U is the upper triangular part of A

D is the main diagonal of A

As one can recall, the Gauss-Seidel Method is convergent for any initial vector if,

and only if, ρ(M−1N) < 1 (See[19], Theorem 4.1). The previously define methods are

used in Chapter 4 to validate the new preconditioner.
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2.3 Condition Number

A well known problem when talking about the convergence of a method is the

quantity,

κp(A) = ‖A‖p
∥

∥A−1
∥

∥

p
(2.2)

this value is called the condition number of the linear system with respect to the norm

‖.‖p, p = 1, . . . ,∞. The condition number measures the sensitivity of the solution of

a problem to perturbations in the data. This quantity is obtained by the following

relation,

‖r‖p = ‖b− Ax̃‖p

‖x− x̃‖p
‖x‖p

≤ κp(A)
‖r‖p
‖b‖p

(2.3)

when the condition number of a matrix is large, this could mean that even if the norm

of the residual ‖r‖p is small, the obtained approximation x̃ of the solution is not good.

When p = 2 the condition number is given by,

κ2(A) =
σmax(A)

σmin(A)
(2.4)

where σmax(A) and σmin(A) are the maximum and minimum singular values of A.

According to Anna Pyzara, Beata Bylina, and Jaroslaw Bylina in [18] the accuracy

of iterative methods, like Jacobi and Gauss-Seidel, depends on the condition number of

the coefficient matrix describing the system. In their work they show, experimentally,

that there exists a strong relationship between between the condition numberś value

and the iterative methodś convergence. Iterative methods converge for well-conditioned

matrices and diverge for ill-conditioned matrices. In Chapter 4 the condition number

of various matrices are studied.



CHAPTER 2. PRELIMINARIES 8

2.4 Preconditioning

Iterative methods that approximate the solution of the problem Ax = b converge

under certain theoretical conditions. These conditions vary for each iterative method.

However, in practice, iterative methods suffer from slow convergence. Preconditioning

is used to improve the convergence of these methods.

In computation, preconditioning is the procedure of transforming a system into

one which has the same solution, but that is more suitable to solve with an iterative

method. In other words, a preconditioner can be seen as any form of implicit or explicit

modification of an original linear system that produces a system that is faster to solve

than the given one.

The Jacobi preconditioner is one of the simplest forms of preconditioning and is

very efficient for diagonally dominant matrices. This preconditioner requires less infor-

mation of the given matrix and is easy to calculate since P is chosen to be the diagonal

of the matrix A. Assuming aii 6= 0, ∀i , P−1 is given by:

P−1
ij =

1

aii

Another example of a preconditioner is to partition the given matrix as A = M−R,

where R is a residual matrix andM can be, for example, lower triangular. The meaning

of residual matrix in this context is that R = M − A. Instead of solving the system

Ax = b the system:

M−1Ax = M−1b

is solved in its place. To solve the last system the inverse of M is needed but instead of

computing it explicitly, is more appropriate to write the product of M−1 and a vector

as the solution of a linear system. When talking about the computational cost this
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process is less expensive.

Another way of defining a preconditioner is to perform an incomplete factorization

of the given matrix A. This implies a decomposition of the form A = LU − R, where

L is lower triangular and U is upper triangular. In practice, incomplete factorizations

cannot always be achieved and even when the incomplete factorization is known or

calculated, there is no guarantee that either the elapsed time of the method or the

condition number of the matrix will improve. To solve M−1x = z, where M is of the

form M = LU , the following steps can be used:

1. Solve Ly = x.

2. Solve Uz = y.

The previous algorithm returns the value of the vector z.

One last typical preconditioner is the Symmetric Successive Overrelaxation Method

(SSOR). This methods considers the splitting A = D−E−F , where D is the diagonal

part of A, −E is the strict lower triangular part of A, and −F is the strict upper

triangular part of A, so,

MSSOR = (D − ωE)D−1(D − ωF )

with L ≡ (D − ωE)D−1 = (I − ωED−1) and U ≡ (D − ωF ). This preconditioner

is called Symmetric Gauss-Seidel when ω = 1. These preconditioners require that all

entries of the diagonal of the matrix A are nonzero.
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2.5 Some Preconditioners for Z-Matrices

This section aims to give a background of previous preconditioners that were and are

used for Z-Matrices. It is important to say that none of the preconditioners that will be

discuss in this section were specifically built for symmetric Z-matrices, neither they were

built to preserve symmetry when applied. It is wise to preserve this property because

methods like Gauss-Seidel, Conjugate Gradient and Biconjugate Gradient are known

to converge if the given matrix is symmetric positive definite. Let A be diagonally

dominant symmetric Z-matrix:

A =

























1 −1
3

−1
6

−1
4

−1
5

−1
3

1 0 −1
2

0

−1
6

0 1 0 −1
4

−1
4

−1
2

0 1 −1
3

−1
5

0 −1
4

−1
3

1

























(2.5)

this matrix will be used in each example of this section. For comparison purposes, the

splitting of the Gauss-Seidel, A = M − N (where M is the lower triangular part of

A and N is the strictly upper tiangular part of −A) of this matrix will be calculated

as well as the spectral radius of the matrix M−1N . First, the splitting of A is the

following:

M =

























1 0 0 0 0

−1
3

1 0 0 0

−1
6

0 1 0 0

−1
4

−1
2

0 1 0

−1
5

0 −1
4

−1
3

1

























, N =

























0 1
3

1
6

1
4

1
5

0 0 0 1
2

0

0 0 0 0 1
4

0 0 0 0 1
3

0 0 0 0 0

























for this splitting ρ(M−1N) = 0.7734. Now, some preconditioners can be discussed.
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2.5.1 Preconditioner P = I + Smax

This preconditioner was developed by Hisachi Kotakemori in [9] and is used with

the Gauss-Seidel method as defined in 2.1. To be applied, the given matrix must be a

Diagonally Dominant Z-matrix with unit main diagonal. The preconditioner is of the

form:

P = I + Smax

where I is the n×n identity matrix and Smax = sij, is computed in the following way:

sij =











−aij if j > i and j = ki

0 otherwise

and

ki = min{j | |aij| = max
k>i

|aik|}

The main idea on this preconditioner is to vanish the greatest entry (in terms of

absolute value) of each row above the main diagonal of the given matrix. To illustrate

how this preconditioner works, consider the following example.

Example. 2.2. Let A be given, as in 2.5. Since it is a diagonally dominant Z-Matrix

with unit main diagonal, then the preconditioner P can be apply and is given by:

P =

























1 1
3

0 0 0

0 1 0 1
2

0

0 0 1 0 1
4

0 0 0 1 1
3

0 0 0 0 1



























CHAPTER 2. PRELIMINARIES 12

After applying the preconditioner to the matrix A, the following is obtained:

PA =

























8
9

0 −1
6

− 5
12

−1
5

−11
24

3
4

0 0 −1
6

−13
60

0 15
16

− 1
12

0

−19
60

−1
2

− 1
12

8
9

0

−1
5

0 −1
4

−1
3

1

























Now, the matrices M and N for the splitting A = M −N , as given in 2.1, are as

follows:

M =

























8
9

0 0 0 0

−11
24

3
4

0 0 0

−13
60

0 15
16

0 0

−19
60

−1
2

− 1
12

8
9

0

−1
5

0 −1
4

−1
3

1

























, N =

























0 0 1
6

5
12

1
5

0 0 0 0 1
6

0 0 0 1
12

0

0 0 0 0 0

0 0 0 0 0

























so the spectral radius of the product of M−1N is given by:

ρ(M−1N) = 0.5966

2.5.2 Preconditioner P = I + S

This preconditioner was developed by Gunawardena in [5] and it is used with the

Gauss-Seidel method as defined in 2.1. This preconditioner can be applied to the same

type of matrices as P = I + Smax and has the following structure:

PS = I + S

where I is the n× n identity matrix and S = sij is computed in the following way:

sij =











−aij if j = i+ 1

0 otherwise
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The main idea of this preconditioner is to vanish the first upper co-diagonal of

the given matrix. To illustrate how this preconditioner works, consider the following

example.

Example. 2.3. Let A be given, as in 2.5. Since it is a Diagonally Dominant Z-Matrix

with unit main diagonal, then the preconditioner PS can be apply and is given by:

PS =

























1 1
3

0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1
3

0 0 0 0 1

























After applying the preconditioner to the matrix A, the following is obtained:

PSA =

























8
9

0 −1
6

− 5
12

−1
5

−1
3

1 0 −1
2

0

−1
6

0 1 0 −1
4

−19
60

−1
2

− 1
12

8
9

0

−1
5

0 −1
4

−1
3

1

























Now, the matrices M and N for the splitting A = M −N , as given in 2.1, are as

follows:

M =

























8
9

0 0 0 0

−1
3

1 0 0 0

−1
6

0 1 0 0

−19
60

−1
2

− 1
12

8
9

0

−1
5

0 −1
4

−1
3

1

























, N =

























0 0 1
6

5
12

1
5

0 0 0 1
2

0

0 0 0 0 1
4

0 0 0 0 0

0 0 0 0 0

























so the spectral radius of the product of M−1 and N is given by:

ρ(M−1N) = 0.6805
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2.5.3 Preconditioner PC = I + C

This preconditioner was developed by Milaszewicz in [14] and it is used with the

Gauss-Seidel method as defined in 2.1. It can be applied to the same type of matrices

as P = I + Smax and has the following structure:

PC = I + C

where I is the n× n identity matrix and C = cij is computed in the following way:

cij =











0 if j 6= 1 or i = 1

−ai1 otherwise

The main idea of this preconditioner is to vanish the first column of the given

matrix except for the entry a11. To illustrate how this preconditioner works, consider

the following example.

Example. 2.4. Let A be given, as in 2.5. Since it is a Diagonally Dominant Z-Matrix

with unit main diagonal, then the preconditioner PC can be apply and is given by:

PC =

























1 0 0 0 0

1
3

1 0 0 0

1
6

0 1 0 0

1
4

0 0 1 0

1
5

0 0 0 1

























After applying the preconditioner to the matrix A, the following is obtained:

PCA =

























1 −1
3

−1
6

−1
4

−1
5

0 8
9

− 1
18

− 7
12

− 1
15

0 − 1
18

35
36

− 1
24

−17
60

0 − 7
12

− 1
24

15
16

−23
60

0 − 1
15

−17
60

−23
60

24
25
























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Now, the matrices M and N for the splitting A = M −N , as given in 2.1, are as

follows:

M =

























1 0 0 0 0

0 8
9

0 0 0

0 − 1
18

35
36

0 0

0 − 7
12

− 1
24

15
16

0

0 − 1
15

−17
60

−23
60

24
25

























, N =

























0 1
3

1
6

1
4

1
5

0 0 1
18

7
12

1
15

0 0 0 1
24

17
60

0 0 0 0 23
60

0 0 0 0 0

























so the spectral radius of the product of M−1 and N is given by:

ρ(M−1N) = 0.6971



CHAPTER 3

THE PROPOSED PRECONDITIONER

The idea for this preconditioner is born from the work done by Arenas & Yong in [1].

Their work is an extension of the work done by Hisachi Kotakemori in [9]. In fact, the

preconditioner P̃ was tried to be used in a natural way (P̃AP̃ T ) to preserve symmetry.

Applying the preconditioner in this way preserves symmetry. Unfortunately, when

preserving symmetry the idea of vanish the maximum entry (in terms of absolute

value) above the main diagonal is lost. In order to produce better results, a new

preconditioner has to be introduced. This one preserves the same idea of P̃ , but fixes

how it acts over the matrix. Before the discussion of the new preconditioner begins,

let’s give a brief explanation of why P̃ does not work.

16
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3.1 Why P̃ does not Work as Expected

In this thesis P̃ is used instead of P because the conditions to apply P̃ are the same

as those of P (see Section 2.5.1), except that it does not require A to have unitary

main diagonal. In addition, Arenas & Yong in [1] proposed to apply P iteratively, fact

that will be used in Chapter 4 were both preconditioners are applied iteratively. The

structure of the preconditioner P̃ is as follows:

P̃ =

































1 . . . −
a1,k1
ak1,k1

. . .

0 1 . . . −
a2,k2
ak2,k2

. . .

0 0 1 . . . −
a3,k3
ak3,k3

. . .

...
. . .

0 0 . . . 0 1 −
an−1,kn−1

akn−1,kn−1

0 0 . . . 0 0 1

































where the ki are computed as in 2.5.1. The problem involving P̃ was simple, P̃ is

meant to be used as a product from the left, P̃A, and to preserve symmetry, the product

P̃AP̃ T needs to be considered. Now, P̃ acts over a matrix making the maximum entry

(in terms of absolute value) of each row above the main diagonal of the original matrix

zero. This does not happen when P̃ T is multiplied from the right of A. This fact can

be illustrated by the following example.

Example. 3.1. Let A be a Diagonally Dominant Symmetric Z-Matrix, with positive

main diagonal, given by:

A =



















6 −1 −2 −1

−1 7 −3 −2

−2 −3 8 −1

−1 −2 −1 8


















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then for this A, P̃ is as follows:

P̃ =



















1 0 1
4

0

0 1 3
8

0

0 0 1 1
8

0 0 0 1



















Now, in the product B = P̃A = (bij), one can guarantee that the entries b1,3, b2,3, and

b3,4 will be zero because of the construction of the preconditioner. The product P̃A is

as follows:

P̃A =



















5.5 −1.75 0 −1.25

−1.75 5.875 0 −2.375

−2.125 −3.25 7.875 0

−1 −2 −1 8



















Until now everything is going as predicted by Arenas & Yong in [1], let’s see what

happens when P T is multiplied by the right:

P̃AP̃ T =



















5.5 −1.75 −0.1563 −1.25

−1.75 5.8750 −0.2969 −2.375

−0.1563 −0.2969 7.875 0

−1.25 −2.375 0 8



















As one can easily notice, most of the entries (P̃A)i,ki, that were zero, now are not.

This is not a real problem of the preconditioner, is just that it was tried to be used in

a way it was not meant to be. The proposed preconditioner takes P̃ as a base and fixes

it so that the entries (P̃AP̃ T )i,ki end up being zeros.



CHAPTER 3. THE PROPOSED PRECONDITIONER 19

3.2 The Proposed Preconditioner

Since the new preconditioner is taking as a base the one proposed by Arenas & Yong

in [1], it should have a similar structure, but in this case, a new formula to calculate

its entries must be derived. This new preconditioner is built to act over a matrix with

the conditions described in Section 2.1.1. The following is the construction of the new

preconditioner, PSYM , in detail.

Since P̃ has been taken as a base, the structure of the new preconditioner should

be as follows:

PSYM =

























1 p1,k1

0
. . .

...

...
. . . 1 pn−2,kn−2

...
. . . 1 pn−1,kn−1

0 . . . 0 1

























where

ki = min{j | |aij| = max
k>i

|aik|}

In other words (i, ki) indicates the position of the maximum (in terms of absolute value)

value above the main diagonal in the ith row relative to the matrix A. An important

detail is that ki is always greater than i. Now, the values pi,ki must be computed. To

do this, the product PSYMAP T
SYM must be considered. So, let A be an n × n matrix

(with all the conditions as described in Section2.1.1) given by:
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A =



















a1,1 a1,2 . . . a1,n

a2,1
. . . . . .

...

...
. . . an−1,n

an,1 . . . an,n−1 an,n



















Now, the product PSYMA is given by:

PSYMA =

























a1,1 + p1,k1ak1,1 a1,2 + p1,k1ak1,2 . . . a1,n + p1,k1ak1,n

a2,1 + p2,k2ak2,1 a2,2 + p2,k2ak2,2 . . . a2,n + p2,k2ak2,n

...
...

...

...
...

...

an,1 an,2 . . . an,n

























When P T
SYM is multiplied from the right the following is obtained:

B =

























a1,1 + p1,k1ak1,1 + p1,k1(a1, k1 + p1,k1ak1,k1) . . . . . . . . . a1,n + p1,k1 × ak1,n

a2,1 + p2,k2ak2,1 + p1,k1(a2, k1 + p2,k2ak2,k1) . . . . . . . . . a2,n + p2,k2 × ak2,n

...
...

...
...

...
...

...
...

a1,n + p1,k1 × ak1,n . . . . . . . . . an,n

























so the entries of B = PSYMAP T
SYM are given by the following formula:

bi,j = ai,j + pi,kiaki,j + pj,kj(ai,kj + pi,kiaki,kj) (3.1)

Since the preconditioner is built with the idea of vanishing the (i, ki) entry for each

row i, Bi,ki must be equal to zero for each i. Using this last fact B1,k1 = 0. So,

a1,k1 + p1,k1ak1,k1 + pk1,kk1 (a1,k1 + p1,k1ak1,k1) = 0

Unfortunately, a problem arises; to calculate pi,ki information of pk1,kk1 is needed. In

other words, the entries of PSYM should be calculated recursively. To solve this issue a
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pi,ki that can be calculated with less information must be found. Luckily pn−1,kn−1
can

be calculated by defining pn,kn = 0.

• Computation of pn−1,kn−1
.

To compute this value, it must be recalled that the preconditioner should act

over each row of the the matrix making the maximum value (in terms of absolute

value) above the main diagonal equal to zero, i.e., Bn−1,kn−1
= 0. Since in the

n − 1 row the only entry above the main diagonal is in the n-th column then

kn−1 = n. Now, pn−1,kn−1
can be computed.

Bn−1,kn−1
= 0

Bn−1,n = 0

an−1,n + pn−1,nan,n = 0

pn−1,nan,n = −an−1,n

pn−1,n = −
an−1,n

an,n

As it can be seen, setting pn,kn = 0, let us calculate pn−1,kn−1
. This choice of

pn,kn is not arbitrary, it is set to be zero because there is no entry over the main

diagonal in the n-th row. With this information one can compute pn−2,kn−2
.

• Computation of pn−2,kn−2
.

Like in the previous case, Bn−2,kn−2
= 0, but for this case two options of kn−2 are

possible and will be dealt in two different cases. First, let’s see what happens

when kn−2 = n − 1. This means that the maximum entry (in terms of absolute

value) above the main diagonal of the matrix A in the n− 2 row is in the n− 1
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column. Using this information one has that,

Bn−2,n−1 = 0

an−2,n−1 + pn−2,n−1an−1,n−1 + pn−1,n(an−2,n + pn−2,n−1an−1,n) = 0

pn−2,n−1(an−1,n−1 + pn−1,nan−1,n) = −(an−2,n−1 + pn−1,nan−2,n)

pn−2,n−1 = −
an−2,n−1 + pn−1,nan−2,n

an−1,n−1 + pn−1,nan−1,n

Since A is assumed to be diagonally dominant and pn−1,n < 1 then an−1,n−1 +

pn−1,nan−1,n 6= 0. The second case is when kn−2 = n. This means that the

maximum entry (in terms of absolute value) above the main diagonal of the

matrix A in the n − 2 row is in the n column. So as in the previous case, one

entry must be zero and is the following one:

Bn−2,n =0

an−2,n + pn−2,nan,n =0

pn−2,nan,n =− an−2,n

pn−2,n =−
an−2,n

an,n

considering both cases, one can say that

pn−2,kn−2
= −

an−2,kn−2
+ pkn−2,kkn−2

an−2,kkn−2

akn−2,kn−2
+ pkn−2,kkn−2

akn−2,kkn−2

where pn,kn = 0. One can continue this way until all the entries of PSYM are found,

but there is enough information to give a general formula for the preconditioner

PSYM . The same one is as follows:

PSYM = I + SSYM

where the entries of SSYM are given by:

SSYM(i, j) =











−
ai,ki+pki,kki

ai,kki
aki,ki+pki,kki

aki,kki

, j = ki

0 , j 6= ki

(3.2)
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and the ki are given by:

ki = min{j | |ai,j| = max
k>i

|ai,k|}

Recalling Example 3.1, PSYM can be put to the test. In this example p4,k4 = 0 and

the entries of the new preconditioner are calculated as follows:

p3,k3 = −
a3,k3 + pk3,kk3a3,kk3
ak3,k3 + pk3,kk3ak3,kk3

p3,4 = −
a3,4 + p4,k4a4,k4
a4,4 + p4,k4a4,k4

= −
a3,4

a4,4

=
1

8

p2,k2 = −
a2,k2 + pk2,kk2a2,kk2
ak2,k2 + pk2,kk2ak2,kk2

p2,3 = −
a2,3 + p3,4a2,4

a3,3 + p3,4a3,4

= −
−3 + 1

8
(−2)

8 + 1
8
(−1)

=
13
4
63
8

=
26

63

p1,k1 = −
a1,k1 + pk1,kk1a1,kk1
ak1,k1 + pk1,kk1ak1,kk1

p1,3 = −
a1,3 + p3,4a1,4

a3,3 + p3,4a3,4

= −
−2 + 1

8
(−1)

8 + 1
8
(−1)

=
17
8
63
8

=
17

63
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Now, the preconditioner PSYM is given by:

PSYM =



















1 0 17
63

0

0 1 26
63

0

0 0 1 1
8

0 0 0 1



















and the product PSYMAP T
SYM is as follows:

PSYMAP T
SYM =



















5.5031 −1.744 0 −1.2698

−1.744 5.8864 0 −2.4127

0 0 7.875 0

−1.2698 −2.4127 0 8



















With the re-calculation of the entries of P̃ , a new preconditioner that keeps symme-

try and follows the idea of vanishing the maximum entry (in terms of absolute value)

above the main diagonal is born. Because of the of the complexity of the preconditioner,

the following result is left as a conjecture.

Conjecture 3.1. Let An×n be a Non-Singular Diagonally Dominant Symmetric M-

Matrix and PSYM the obtained preconditioner for the given matrix. Consider the

splittings of the Symmetric Gauss-Seidel method, A = M − N and PSYMAP T
SYM =

MSYM −NSYM then,

ρ(M−1
p Np) < ρ(M−1N) < 1

Even though this result is left as a conjecture, over 500 experiment were done

to confirm it. The experiments were done using random matrices that satisfy the

conditions in 2.1.1. The following is a sample of the results.
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Matrix ρ(M−1N) ρ(M−1
p Np)

Matx#1 0.8030 0.7816

Matx#2 0.8145 0.7952

Matx#3 0.7998 0.7785

Matx#4 0.8136 0.7947

Matx#5 0.8042 0.7839

Table 3.1: Spectral Radius of M−1N without Preconditioner and Applying the Pre-

conditioner PSYM .

As can be observed the spectral radius of M−1N reduces when PSYM is applied.

Even though only five experiments were taken all the experiments concerning the spec-

tral radius show similiar results.

3.3 Special Case

A special case of this preconditioner arises when the maximum value over the main

diagonal is in the last column for each row. When this happens, the preconditioner

PSYM is equal to the preconditioner P̃ . To illustrate this, the following example can

be considered.

Example. 3.2. Let A be given by:

A =



















5 −1 −1 −2

−1 8 −2 −3

−1 −2 5 −1

−2 −3 −1 8


















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Note that A is a non-singular diagonally dominant symmetric Z-matrix with positive

main diagonal. Then, the preconditioners PSYM and P̃ are given by:

PSYM =



















1 0 0 0.25

0 1 0 0.375

0 0 1 0.125

0 0 0 1



















= P̃

3.4 Applying PSYM Iteratively

To apply the preconditioner iteratively, one must ensure that each time the pre-

conditioner is applied, the resulting matrix shares all the properties of the original

one. In other words the resulting matrix must be non-singular, symmetric Z-matrix,

diagonally dominant and with positive main diagonal. Some of these results are left as

conjectures since the structure of the resulting product, PSYMAP T
SYM , is very complex.

Nonetheless, to provide support to them, examples will be given.

Since the structure of the entries of the matrix B = PSYMAP T
SYM (see 3.1) depends

on both i and j, it makes it very complicated to prove that B is diagonally dominant

and a Z-Matrix.

Conjecture 3.2. Let A be an n× n diagonally dominant symmetric M-Matrix then,

PSYMAP T
SYM is a diagonally dominant Z-Matrix.

Over 500 experiments with random matrices that satisfy the conditions in 2.1.1 were

done to confirm this conjecture. The results of this experiments were positive since

when PSYM was applied to the test matrices the resulting matrix was a diagonally

dominant Z-Matrix.
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Lemma 3.1. If A is an n× n non-singular diagonally dominant symmetric Z-matrix

with positive main diagonal, then PSYMAP T
SYM is a non-singular symmetric matrix.

Proof. Let B = PSYMAP T
SYM then,

BT = (PSYMAP T
SYM)T

= (AP T
SYM)TP T

SYM

= PSYMATP T
SYM

but since A is symmetric, then A = AT so B is symmetric. Now B is a non singular

matrix since det(PSYMAP T
SYM) = det(PSYM)det(A)det(P T

SYM) and since neither of

these determinants is zero then det(B) 6= 0 so B is non-singular. �

Lemma 3.2. If A is a positive definite symmetric matrix, and PSYM its preconditioner

then, PSYMAP T
SYM is a positive definite matrix.

Proof. Let x be an n× 1 vector different than zero, then it must be shown that

xPSYMAP T
SYMxT > 0. Let y = Px, note that y 6= 0 since P T is non-singular and

xT 6= 0 by hyphothesis. Now,

xPSYMAP T
SYMxT = (xPSYM)A(xPSYM)T = yAyT

but yAyT > 0 since A is positive definite, so PSYMAP T
SYM is positive definite. �

Lemma 3.3. If An×n is a diagonally dominant symmetric Z-matrix with positive main

diagonal, then PSYMAP T
SYM has a positive main diagonal.

Proof. Considering the entries of B as defined in 3.1, then,

bi,i = ai,i + pi,kiaki,i + pi,ki(ai,ki + pi,kiaki,ki)
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but since A is a diagonally dominant Z-Matrix with positive main diagonal,

ai,i + pi,kiaki,i > 0 (3.3)

and using pi,ki defined as in 3.2, the following is obtained for the sum of the last two

terms:

ai,ki + pi,kiaki,ki = ai,ki −
ai,ki + pki,kkiai,kki
aki,ki + pki,kkiaki,kki

aki,ki

=
ai,ki(aki,ki + pki,kkiaki,kki )− aki,ki(ai,ki + pki,kkiai,kki )

aki,ki + pki,kkiaki,kki

=
ai,ki(pki,kkiaki,kki )− aki,ki(pki,kkiai,kki )

aki,ki + pki,kkiaki,kki

again since A is a Z-Matrix with positive main diagonal ai,j < 0, ∀i 6= j and ai,i > 0 so

ai,ki + pi,kiaki,ki > 0 (3.4)

considering 3.3 and 3.4, one concludes that bi,i > 0. So B has a positive main diagonal.

The following section is going to provide numerical proof that the preconditioner PSYM

can be applied iteratively. �

3.4.1 How Many Times PSYM should be Applied?

The preconditioner PSYM can be applied many times. Although the main idea

in this work is not to apply the preconditioner iteratively, one can guess what will

happen if one applies it enough times. The answer, “the matrix becomes diagonal”,

should pop in ones head. The proof to this is similar to that, given by Arenas in [1] so

an adaptation of this is given.

Lemma 3.4. Let A be a Non-Singular Diagonally Dominant n× n Symmetric-Matrix

with positive main diagonal, then there exists kA ∈ N such that AkA is a diagonal matrix

(AkA = PSYMAk
AkA−1P

T
SYMkA

and A0 = A).
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Proof. For n = 2

A =







a1,1 a1,2

a1,2 a2,2







, then

PSYM1
=







1 −a1,2
a2,2

0 1







hence

A1 =







a1,1 −
a1,2a2,1
a2,2

0

0 a2,2







Now, suppose that for any Diagonally Dominant A(n×n), Symmetric-Matrix with

positive main diagonal there exists kAn
such that, AkAn

is a Diagonal Matrix.

It will be proved that for any (n + 1) × (n + 1) Diagonally Dominant Symmetric-

Matrix with positive main diagonal, A(n+1×n+1), there exists kAn+1
such that AkAn+1

is

a Diagonal Matrix. Let

A(n+1×n+1) =

































a0,0 a0,1 a0,2 a0,3 . . . a0,k

a0,1 a1,1 a1,2 a1,3 . . . a1,n

a0,2 a2,1 a2,2 a2,3 . . . a2,n

a0,3 a3,1 a3,2 a3,3 . . . a3,n

... . . .
. . .

a0,n an,1 an,2 an,3 . . . an,n

































Note that

PSYMl
=



























1 . . . 0 ∗ 0 . . .

0

PSYMl

0

0

0


























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where PSYMl
is n×n preconditioner. By the induction hypothesis AkAn

has a diagonal

block and is as follows:

AkAn
=

































∗ ∗ ∗ ∗ . . . ∗

∗ ∗ 0 0 . . . 0

∗ 0 ∗ 0 . . . 0

∗ 0 0 ∗
. . . 0

... . . .
. . . 0

∗ 0 0 0 . . . ∗

































since AkAn
is a Symmetric-Matrix then

(

AkAn

)

0,n
= 0 or

(

AkAn

)

0,n
6= 0.

• Case 1

If
(

AkAn

)

0,n
= 0, then AkAn

will be as follows:

AkAn
=

































∗ ∗ ∗ ∗ . . . 0

∗ ∗ 0 0 . . . 0

∗ 0 ∗ 0 . . . 0

∗ 0 0 ∗
. . . 0

... . . .
. . . 0

∗ 0 0 0 . . . ∗

































now, changing the partition of AkAn
in the following way

AkAn
=

































0

0

Bn 0

...

0

0 0 0 . . . ∗
































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and using the hypothesis of induction AkAn+kBn
, is a diagonal matrix.

• Case 2

If
(

AkAn

)

0,n
6= 0, and if through k̃ iterations more with k̃ < kBn

the entry becomes

0, then

AkAn+k̃ =

































∗ ∗ ∗ ∗ . . . 0

∗ ∗ 0 0 . . . 0

∗ 0 ∗ 0 . . . 0

∗ 0 0 ∗
. . .

...

... . . .
. . . 0

∗ 0 0 0 . . . ∗

































.

Hence, by the first case, AkAn+kBn+k̃ is a diagonal matrix.

On the other hand, if
(

AkAn

)

0,n
6= 0, and if through kBn

iterations more the entry

never becomes 0, then using the hypothesis of induction,

AkAn+kBn
=

































∗ 0 0 0 . . . ∗

0 ∗ 0 0 . . . 0

0 0 ∗ 0 . . . 0

0 0 0 ∗
. . .

...

... . . .
. . . 0

0 0 0 0 . . . ∗

































so AkAn+kBn+1 is a diagonal matrix.

Hence, AkAn+1
becomes a diagonal matrix on a finite number of iterations that the

preconditioner is applied. �

The following example shows that the matrix becomes diagonal.
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Example. 3.3. Let A be given by:

A =



















0.5 −0.25 0 0

−0.25 0.5 −0.25 0

0 −0.25 0.5 −0.25

0 0 −0.25 0.5



















note that this matrix is non-singular, diagonally dominant and is a Z-Matrix with pos-

itive main diagonal. After applying the preconditioner three times, the matrix becomes

as follows:


















0.3125 0 0 0

0 0.333 0 0

0 0 0.375 0

0 0 0 0.5



















Actually, it seems reasonable to think that if the preconditioner PSYM is applied n to

an n × n diagonally dominant symmetric Z-Matrix it will become diagonal, but this

depends on whether the entries that are becoming zero are affected the next time the

preconditioner is applied or not.



CHAPTER 4

EXPERIMENTS

Theoretically, preconditioners are built to give a better running time when solving

a linear system. However, in practice things are not always as expected. For example,

some preconditioners may take more time to converge than the original method, while

others may take less.

This chapter aims to given numerical proof to show that PSYM works. The chapter

is divided in two parts: Non-Iterative Experiments on PSYM and Iterative Experiments

on PSYM . The first part shows the data collected when PSYM is applied only once to

a linear system. The second part shows the data collected when PSYM is applied

iteratively to a linear system. For both parts experiments on different matrices and a

comparison with the preconditioner P̃ is provided.

33
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4.1 Non-Iterative Experiments on PSYM

The following tables and graphs give numerical proof that PSYM works. In addition,

a comparison between solving the system without applying a preconditioner, applying

the preconditioner P̃ , and applying the preconditioner PSYM is provided. For each of

the cases and the preconditioners, the number of iterations until convergence of the

Gauss-Seidel method and the Symmetric Gauss-Seidel method are supply. The criteria

for convergence in all the experiments of this section is the residual norm

||b− Axn||2 < tol

where the matrix A and the vector b are the input of the method, tol is a predefined

tolerance, and xn is the vector that comes from it on each iteration.

Also, the condition number when the preconditioners, P̃ and PSYM , are applied,

is compared. The two preconditioners are tested using the Laplacian matrix (in one,

two, and three dimensions), Finite Volume matrices, and random matrices. These

matrices have all the requirements described in Section 2.1.1 so the preconditioner can

be applied to each one of them.

4.1.1 Test#1, Random Matrices

For this example random matrices of dimension 100×100 were used. These matrices

have real entries and were built to satisfy all the conditions as described in 2.1.1 except

that their diagonally dominance is strict. A maximum of 1, 000 iterations, a tolerance

of 10−9, and a starting value of x0 = [0, 0, . . . , 0, 0] were used on each method. Also,

a 100 × 1, non-zero, right-hand side was used for each of the experiments. As it was

described in the beginning of this section, the Gauss-Seidel method and the Symmetric
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Gauss-Seidel are the methods considered for these experiments. Over 500 experiments

were made with random matrices, in this thesis only five are included.

Iterations Until Convergence

The iterations until convergence and the elapsed time of the Symmetric Gauss-

Seidel Method using each one of the preconditioners for each random matrix is sum-

marized in the following table.

Without Elapsed Arenas & Yong Elapsed Proposed Elapsed

Matrix Precon . Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

Matx#1 127 0.49 119 0.73 113 0.42

Matx#2 136 0.57 128 0.76 122 0.43

Matx#3 125 0.51 117 0.71 111 0.42

Matx#4 135 0.53 127 0.82 121 0.44

Matx#5 128 0.49 120 0.74 115 0.41

Table 4.1: Iterations until Convergence and Elapsed Time of the Symmetric Gauss-

Seidel Method for Random Matrices.

Table 4.1 shows that, when applying any of the two preconditioners, the elapsed

time and the number of iterations until convergence of the Symmetric Gauss-Seidel

method improves. As it can be seen, using the preconditioner proposed for this work,

PSYM , the SG-S method converges in less iterations and in less time than when using

the preconditioner proposed by Arenas & Yong in [1].
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The following table shows the iterations until convergence and the elapsed time of

the method, but this time for the Gauss-Seidel. Once again, each one of the precondi-

tioners were applied to each one of the Random Matrices.

Without Elapsed Arenas& Yong Elapsed Proposed Elapsed

Matrix Precon. Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

Matx#1 182 0.42 175 0.39 161 0.34

Matx#2 199 0.41 192 0.41 177 0.39

Matx#3 183 0.37 176 0.35 161 0.34

Matx#4 196 0.41 190 0.40 174 0.37

Matx#5 188 0.37 182 0.39 167 0.36

Table 4.2: Iterations until Convergence and Elapsed Time of the Gauss-Seidel Method

for Random Matrices.

The information obtained using the Gauss-Seidel method is similar to the one gained

when the Symmetric version was used. What this means is that both preconditioners

improve the convergence when using this method too, the convergence is faster, in

terms of the elapsed time of the method, compared with the previous one. However,

in each of the cases and for each of the methods PSYM improves the convergence in

terms of elapsed time and number of iterations further that P̃ does.
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4.1.2 Test#2, One-Dimensional Laplacian Matrix

This example comes from the discretization of the equation:

−
d2u

dx2
= f(x)

using finite differences. This problem is considered with a Dirichlet boundary condition

of u = 0 in all borders. For h = 1
n
and values of n equal to 20, 40, 80, 160, 320 and

640. A maximum of 5, 000 iterations, a tolerance of 10−7, and a starting value of

x0 = [0, 0, . . . , 0, 0] are used. To avoid trivial solutions a non-zero right-hand side is

taken. For n = 10 the structure of the Laplacian matrix and of PSYM is as follows:

L =



























































2 −1 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0

0 0 0 −1 2 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 0 −1 2



























































PSYM =



























































1 9

10
0 0 0 0 0 0 0 0

0 1 8

9
0 0 0 0 0 0 0

0 0 1 7

8
0 0 0 0 0 0

0 0 0 1 6

7
0 0 0 0 0

0 0 0 0 1 5

6
0 0 0 0

0 0 0 0 0 1 4

5
0 0 0

0 0 0 0 0 0 1 3

4
0 0

0 0 0 0 0 0 0 1 2

3
0

0 0 0 0 0 0 0 0 1 1

2

0 0 0 0 0 0 0 0 0 1





























































CHAPTER 4. EXPERIMENTS 38

Iterations Until Convergence

The iterations until convergence and the elapsed time of the Symmetric Gauss-

Seidel Method using each one of the preconditioners per value, “n”, of the One-

Dimensional Laplacian Matrix is summarized in the following table.

Without Elapsed Arenas & Yong Elapsed Proposed Elapsed

n Precon. Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

20 314 0.24 146 0.16 92 0.08

40 1091 1.73 503 0.94 301 0.51

80 3899 11.92 1796 6.66 1057 3.22

160 5000 30.52 5000 37.25 3794 23.27

320 5000 60.70 5000 81.84 5000 60.65

640 5000 123.36 5000 184.08 5000 123.39

Table 4.3: Iterations until Convergence and Elapsed Time of the Symmetric Gauss-

Seidel Method for the One-Dimensional Laplacian Matrix.

Table 4.3 shows that, when applying any of the two preconditioners, the elapsed

time and the number of iterations until convergence of the Symmetric Gauss-Seidel

method improves at least for the convergent cases. As it can be seen, using the precon-

ditioner proposed for this work, PSYM , the SG-S method converges in less iterations

and in less time than when using the preconditioner proposed by Arenas & Yong in

[1].

The following table shows the iterations until convergence and the elapsed time of

the method, but this time for the Gauss-Seidel. Once again, each one of the precondi-

tioners were applied to the One-Dimensional Laplacian Matrix using the given values
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of n.

Without Elapsed Arenas & Yong Elapsed Proposed Elapsed

n Precon. Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

20 613 0.47 210 0.16 169 0.13

40 2168 3.42 746 1.13 587 0.93

80 5000 15.59 2685 8.38 2098 6.50

160 5000 30.93 5000 31.41 5000 31.28

320 5000 63.55 5000 63.35 5000 63.30

640 5000 131.06 5000 129.71 5000 129.77

Table 4.4: Iterations until Convergence and Elapsed Time of the Gauss-Seidel Method

for the One-Dimensional Laplacian Matrix.

The information obtained using the Gauss-Seidel method is similar to the one gained

when the Symmetric version was used. What this means is that both preconditioners

improve the convergence for this method too, yet the convergence is slower, in terms

of the elapsed time of the method, compared with the previous one. However, when

PSYM was applied, the convergence of the Gauss-Seidel method was faster that when

P̃ was applied. The next section makes a comparison between the condition number

when each preconditioner was applied.

Condition Number

The condition number of the resulting matrix when each one of the preconditioners

was applied to the One-Dimensional Laplacian Matrix, of different dimensions, is shown

in the next graph.
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Figure 4.1: Condition Number for One-Dimensional Laplacian Matrix

Figure 4.1 shows clearly that both preconditioners, P̃ and PSYM , improve the con-

dition number of the given matrix when they are applied. Although there is not a

significant difference between the condition number when both preconditioners are

applied, PSYM improves the condition number more that P̃ does.
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4.1.3 Test#3, Two-Dimensional Laplacian Matrix

This example comes from the discretization of the equation:

−

(

∂2u

∂x2
1

+
∂2u

∂x2
2

)

= f(x1, x2)

using finite differences. This problem is considered with a Dirichlet boundary condition

of u = 0 in all borders. For a k × k grid and for values of k equal to 5, 15, 25, 35

and 45. A maximum of 5, 000 iterations, a tolerance of 10−7, and a starting value of

x = [0, 0, . . . , 0, 0] were used. To avoid trivial solutions a non-zero right-hand side is

taken. For k = 3 the structure of the Two-Dimensional Laplacian matrix and of PSYM

is as follows:

L =


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Iterations Until Convergence

The iterations until convergence and the elapsed time of the Symmetric Gauss-

Seidel Method using each one of the preconditioners per value,“k”, of the Two-

Dimensional Laplacian Matrix is summarized in the following table.

Without Elapsed Arenas & Yong Elapsed Proposed Elapsed

k Precon. Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

5 35 0.05 26 0.03 22 0.02

15 213 1.82 157 1.82 118 1.10

25 540 13.05 395 16.75 322 7.69

35 1010 49.35 738 79.85 300 29.08

45 1619 134.56 1184 280.13 962 79.63

Table 4.5: Iterations until Convergence and Elapsed Time of the Symmetric Gauss-

Seidel Method for the Two-Dimensional Laplacian Matrix.

Table 4.5 shows that, with the given conditions, when applying each preconditioner

the SG-S method converges faster than the system without preconditioner for all cases.

As it can be seen the SG-S method converges in almost the same number of iterations

with any of the two preconditioners, P̃ and PSYM . However, when PSYM is applied

the SG-S method converges in less time that when P̃ is applied.

The following table shows the iterations until convergence and the elapsed time

for the method, but this time for the Gauss-Seidel. Once again, each one of the

preconditioners are applied to the Two-Dimensional Laplacian Matrix using the given

values of k.
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No Elapsed Arenas & Yong Elapsed Proposed Elapsed

k Precon. Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

5 61 0.08 37 0.05 36 0.07

15 417 5.20 254 3.98 247 5.22

25 1070 38.06 651 29.25 634 40.60

35 2009 147.37 1224 114.73 1191 160.26

45 3228 419.04 1966 324.00 1913 455.85

Table 4.6: Iterations until Convergence and Elapsed Time of the Gauss-Seidel Method

for the Two-Dimensional Laplacian Matrix.

As it can be observed, the number of iterations until convergence of the Gauss-Seidel

method reduces when each one of the preconditioners is applied . Unfortunately, the

elapsed time for each one of the cases is higher when comparing it with the time elapsed

time when solving the system without preconditioner. Furthermore, the elapsed times

obtained when the Gauss-Seidel method is used are higher that those obtained by the

Symmetric Gauss-Seidel method.

Condition Number

The condition number of the resulting matrix when each one of the precondition-

ers was applied to the Two-Dimensional Laplacian Matrix, of different dimensions, is

shown in the next graph.
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Figure 4.2: Condition Number for Two-Dimensional Laplacian Matrix

Figure 4.2 shows clearly that both preconditioners, P̃ and PSYM , improve the con-

dition number of the given matrix when applied. There is not a significant difference

between the improvement of the condition number when each preconditioner was ap-

plied.
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4.1.4 Test#4,Three-Dimensional Laplacian Matrix

This example comes from the discretization of the equation:

−

(

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)

= f(x1, x2, x3)

using finite differences. This problem is considered with a Dirichlet boundary condition

of u = 0 in all borders. Using a k×k×k grid and for values of k equal to 10, 15, 20, 25,

and 30. A maximum of 5, 000 iterations, a tolerance of 10−7, and a starting value of

x = [0, 0, . . . , 0, 0] were used. To avoid trivial solutions a non-zero right-hand side is

taken. For k = 2 the structure of the Three-Dimensional Laplacian matrix and of

PSYM is as follows:

L =
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Iterations Until Convergence

The iterations until convergence and the elapsed time of the Symmetric Gauss-

Seidel Method using each one of the preconditioners per value,“k”, of the Three-

Dimensional Laplacian Matrix is summarized in the following table.

Without Elapsed Arenas & Yong Elapsed Proposed Elapsed

k Precon. Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

10 114 4.53 94 9.07 83 3.29

15 234 37.36 194 143.09 169 28.21

20 398 190.41 329 1133.91 286 136.33

25 605 718.42 499 6128.69 434 515.77

30 854 2336.54 704 24903.69 612 1685.92

Table 4.7: Iterations until Convergence and Elapsed Time of the Symmetric Gauss-

Seidel Method for the Three-Dimensional Laplacian Matrix.

Table 4.5 shows that, with the given conditions, when applying each preconditioner

the SG-S method converged in less iterations than the system without preconditioner

for all cases. However, when PSYM was applied the SG-S method converges in less

time that when P̃ was applied. When P̃ was applied the SG-S method converged in

more time than the system solved without applying a preconditioner.

The following table presents the iterations until convergence and the elapsed time

for the method, but this time for the Gauss-Seidel. Once again, each one of the

preconditioners are applied to the Three-Dimensional Laplacian Matrix using the given

values of k.
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Without Elapsed Arenas & Yong Elapsed Proposed Elapsed

k Precon. Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

10 219 16.08 158 16.11 157 21.69

15 460 149.40 332 151.89 329 199.38

20 788 789.22 568 793.64 564 1040.81

25 1201 3142 866 3194 859 4128

30 1700 10719 1226 10771 1216 13896

Table 4.8: Iterations until Convergence and Elapsed Time of the Gauss-Seidel Method

for the Three-Dimensional Laplacian Matrix.

As it can be seen, the number of iterations until convergence of the Gauss-Seidel

method reduces when each preconditioner is applied. Unfortunately, the elapsed time

when the preconditioners were applied is higher that when the system is solved without

preconditioner.

Condition Number

The condition number of the resulting matrix when each one of the preconditioners

was applied to the Three-Dimensional Laplacian Matrix, of different dimensions, is

shown in the next graph.
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Figure 4.3: Condition Number for Three-Dimensional Laplacian

Once again Figure 4.3 shows that the condition number when applying PSYM is

better than when P̃ is applied.
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4.1.5 Test#5, Finite Volume Matrices

This example comes from the discretization of the equation:

−∇ (K∇u) = 0

using finite differences. Using a k × k grid and for values of k equal to 10, 20, 40, and

80. For each grid a random set of symmetric materials was created. No flow boundary

conditions are imposed at the right, top, and the bottom sides. A Dirichlet border

condition of u = 1 is imposed on the left side (see figure 4.4). A maximum of 7, 000

iterations, a tolerance of 10−6, and a starting value of x = [0, 0, . . . , 0, 0] are use on

each case.

Figure 4.4: Representative Grid with Random Materials and Boundary Conditions
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Iterations Until Convergence

The iterations until convergence and the elapsed time of the Symmetric Gauss-

Seidel Method using each one of the preconditioners and for each matrix is summarized

in the following table.

Without Elapsed Arenas & Yong Elapsed Proposed Elapsed

k Precon. Time Precon. Time Precon. Time

(seconds) P̃ (seconds) PSYM (seconds)

10 1316 5 689 3 564 2

20 2946 45 1533 38 1214 19

40 7000 452 6341 1357 5043 365

80 7000 2520 7000 35206 7000 2430

Table 4.9: Iterations until Convergence and Elapsed Time of the Symmetric Gauss-

Seidel Method for Random Finite Volume Matrices.

Table 4.9 shows that, when applying any of the two preconditioners, the number of

iterations until convergence of the Symmetric Gauss-Seidel method improves at least

for the convergent cases (where the number of iterations did not reach 7, 000). As it

can be seen, when PSYM is applied the SG-S method converges in less iterations and

in less time than when the preconditioner proposed by Arenas & Yong in [1] is apply.

The following table shows the iterations until convergence and the elapsed time of

the method, but this time for the Gauss-Seidel. Once again, each one of the precondi-

tioners were applied to each one of the Finite Volume Matrices.
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Without Elapsed Arenas & Yong Elapsed Proposed Elapsed

k Preconditioner Time Preconditioner Time Preconditioner Time

(seconds) P̃ (seconds) PSYM (seconds)

10 1908 6 804 2 746 2

20 3964 56 1695 23 1551 21

40 7000 474 5718 389 5241 354

80 7000 3625 7000 3706 7000 3838

Table 4.10: Iterations until Convergence and Elapsed Time of the Gauss-Seidel Method

for Random Finite Volume Matrices.

The information obtained using the Gauss-Seidel method is similar to the one gained

when the Symmetric version was used. However, in each of the cases and for each of

the methods PSYM improves the convergence in terms of elapsed time and number of

iterations further that P̃ does. The elapsed time of both the Symmetric Gauss-Seidel

and the Gauss-Seidel were similar.
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4.2 Iterative Experiments on PSYM

The main interest of the following examples is to compare the number of iterations

until convergence of the Symmetric Gauss-Seidel when the preconditioners, P̃ and

PSYM , are applied iteratively. The notion of convergence is the same as in the previous

section, i.e.,

||b− Axn||2 < tol

Also, a comparison between the spectral radius of the Symmetric Gauss-Seidel when

both preconditioners are applied is provided for each experiment.

4.2.1 One-Dimensional Laplacian Matrix

Consider the hypothesis given in Section 4.1.2, but this time for n = 160 only. The

next graphs show the residual error in the Symmetric Gauss-Seidel method when PSYM

and P̃ are applied iteratively, respectively.

As one can notice, when any of the two preconditioners are applied iteratively, the

number of iterations until convergence on the Symmetric Gauss-Seidel method reduces.

Comparing both preconditioners when they are applied iteratively, PSYM reduces the

number of iterations until the convergence of the method more than P̃ does. Also, for

the first two times P̃ was applied, the method does not converge, but it does converge

right after applying PSYM for the first time.
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Figure 4.5: Residual Error of the Symmetric Gauss-Seidel method applying PSYM and P̃ iteratively

to the One-Dimensional Laplacian matrix, respectively.
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The following table shows how the spectral radius of (M−1N) reduces when each

preconditioner is applied iteratively. M and N came from the partition of the Sym-

metric Gauss-Seidel method as previously defined.

Times ρ(M−1N) ρ(M−1N)

Preconditioned Applying P̃ Applying PSYM

0 0.9992 0.9992

1 0.9983 0.9970

2 0.9977 0.9882

5 0.9947 0.6014

Table 4.11: Spectral Radius of (M−1N) Applying the Preconditioners PSYM and P̃

Iteratively on the One-Dimensional Laplacian Matrix.

As it can be seen, when PSYM is applied iteratively, ρ(M−1N) decreases faster

than it does when P̃ is applied. This behaviour explains the fact that the Symmetric

Gauss-Seidel method converges in less iteration when PSYM is applied than when P̃ is.

4.2.2 Two-Dimensional Laplacian Matrix

Consider the hypothesis given in Section 4.1.3, but this time for k = 25 only. The

next graphs show the residual error of the Symmetric Gauss-Seidel method when PSYM

and P̃ are applied iteratively, respectively.

As one can see, when any of the two preconditioners are applied iteratively, the

number of iterations until convergence on the Symmetric Gauss-Seidel method reduces.

Comparing both preconditioners when they are applied iteratively, PSYM reduces the

number of iterations until the convergence of the method more than P̃ does.
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Figure 4.6: Residual Error of the Symmetric Gauss-Seidel method applying PSYM and P̃ iteratively

to the Two-Dimensional Laplacian matrix, respectively.
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The following table shows how ρ(M−1N) reduces when each preconditioner is ap-

plied iteratively. M and N came from the partition of the Symmetric Gauss-Seidel

method as previously defined.

Times ρ(M−1N) ρ(M−1N)

Preconditioned Applying P̃ Applying PSYM

0 0.9714 0.9714

1 0.9606 0.9518

2 0.9443 0.9121

5 0.9275 0.8466

10 0.8884 0.7421

Table 4.12: Spectral Radius of (M−1N) Applying the Preconditioners PSYM and P̃

Iteratively on the Two-Dimensional Laplacian Matrix.

As can be seen, when PSYM is applied iteratively, ρ(M−1N) decreases faster than

it does when P̃ is applied. Nevertheless, the spectral radius does not reduce as fast as

in the previous example (See Table 4.2.1).

4.2.3 Three-Dimensional Laplacian Matrix

Consider the hypothesis given in Section 4.1.4, but this time for k = 20 only. The

next graphs show the residual error of the Symmetric Gauss-Seidel method when PSYM

and P̃ are applied iteratively, respectively. As it can be observed, the reduction of the

number of iterations until convergence for this case is not that significant, but to begin

with, the Symmetric Gauss-Seidel method did not take many iterations to converge as

in the previous cases. Nevertheless, there is a reduction in the number of iterations.
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Figure 4.7: Residual Error of the Symmetric Gauss-Seidel method applying PSYM and P̃ iteratively

to the Three-Dimensional Laplacian matrix, respectively.
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The following table shows how the spectral radius of (M−1N) reduces when each

preconditioner is applied iteratively. M and N came from the partition of the Sym-

metric Gauss-Seidel method as previously defined.

Times ρ(M−1N) ρ(M−1N)

Preconditioned Applying P̃ Applying PSYM

0 0.9566 0.9566

1 0.9472 0.9395

2 0.9340 0.9144

5 0.9120 0.8583

10 0.8944 0.7962

Table 4.13: Spectral Radius of (M−1N) Applying the Preconditioners PSYM and P̃

Iteratively on the Three-Dimensional Laplacian Matrix.

As in the previous examples, the spectral radius reduces when the preconditioners

are applied iteratively. When PSYM is applied, a better spectral radius of M−1N is

obtained for the Symmetric Gauss-Seidel method.

4.2.4 Finite Volume Matrices (Random Materials)

Consider the problem in Section 4.1.5, but this time for k = 80 only. The next

graphs show the residual error in the Symmetric Gauss-Seidel method when PSYM and

P̃ are applied iteratively, respectively. As it can be observed, when PSYM is applied 5

times the method converges. This does not happens when P̃ is applied. Even when P̃

is applied 25 times the method does not yield convergence.
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Figure 4.8: Residual Error of the Symmetric Gauss-Seidel method applying PSYM and P̃ iteratively

to a Finite Volume Matrix.
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The following table shows how the spectral radius of (M−1N) reduces when each

preconditioner is applied iteratively. M and N came from the partition of the Sym-

metric Gauss-Seidel method as previously defined.

Times ρ(M−1N) ρ(M−1N)

Preconditioned Applying P̃ Applying PSYM

0 0.9998 0.9998

1 0.9997 0.9996

5 0.9992 0.9983

10 0.9988 0.9965

15 0.9984 0.9948

Table 4.14: Spectral Radius of (M−1N) Applying the Preconditioners PSYM and P̃

Iteratively on the Three-Dimensional Laplacian Matrix.

As in the previous examples, the spectral radius reduces when the preconditioners

are applied iteratively. When PSYM is applied, a better spectral radius of M−1N is

obtained for the Symmetric Gauss-Seidel method.
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4.2.5 Finite Volume Matrices (Sand and Shales Problem)

This is a classical benchmark porous media problem proposed by J.L. Durlofsky

in [3]. The permeability field consists of only two materials, sand and shales; and is

defined on a grid consisting of 20 × 20 cells. Figure 4.9 illustrate the distribution of

the permeability field.

Figure 4.9: Representative Grid for the Sand and Shales Problem with Boundary Conditions.

Dark cells correspond to a permeability tensor K = 10−6Id and light cells to K = Id.

Dirichlet boundary conditions are imposed at x = 0 where u = 1, and at x = 1, where

u = 0. No flow boundary conditions are imposed at the top and the bottom.

This problem is considered refining the original mesh three times. To solve the

systems two methods were considered: Gauss-Seidel, and Symmetric Gauss-Seidel.

A maximum of 5, 000 iterations, a tolerance of 10−7, and a starting value of x =

[0, 0, . . . , 0, 0] were used for each method.
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Number of preconditioning steps for PSYM

cells 0 1 5 10 15 20 25

20× 20 469 285 77 44 31 25 21

40× 40 2161 1320 362 195 136 105 86

80× 80 5000 5000 1474 803 564 436 354

160× 160 5000 5000 5000 3143 2234 1750 1431

Table 4.15: Iterations until Convergence for the Symmetric Gauss-Seidel Method, applying the

Preconditioner PSYM Iteratively to the Sand and Shales Problem.

Number of preconditioning steps for P̃

cells 0 1 5 10 15 20 25

20× 20 469 340 169 112 91 78 69

40× 40 2161 1576 794 512 415 349 310

80× 80 5000 5000 3220 2099 1715 1449 1301

160× 160 5000 5000 5000 5000 5000 5000 5000

Table 4.16: Iterations until Convergence for the Symmetric Gauss-Seidel Method, applying the

Preconditioner P̃ Iteratively to the Sand and Shales Problem.

Tables 4.2.5 and 4.2.5 show how both preconditioners reduce the number of itera-

tions until convergence of the SG-S method when they are applied iteratively. However,

when PSYM is applied there is a further reduction on the number of iterations. When

PSYM is applied five times produce similiar results to that of P̃ applied twenty times.

Analizing both preconditioners in the same preconditioning step, in most of the cases,

the number of iterations until convergence when P̃ is applied is more than two times

the number of iterations that PSYM produces when applied in the same step.

The following tables show the same experiment but using the Gauss-Seidel method.
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Number of preconditioning steps for PSYM

cells 0 1 5 10 15 20 25

20× 20 759 438 119 66 46 36 29

40× 40 3338 1957 541 292 202 155 126

80× 80 5000 5000 2135 1169 818 632 512

160× 160 5000 5000 5000 4393 3118 2442 1992

Table 4.17: Iterations until Convergence for the Gauss-Seidel Method, applying the Preconditioner

PSYM Iteratively to the Sand and Shales Problem.

Number of preconditioning steps for P̃

cells 0 1 5 10 15 20 25

20× 20 759 478 198 119 95 79 69

40× 40 3338 2106 898 526 415 341 299

80× 80 5000 5000 3521 2074 1646 1359 1208

160× 160 5000 5000 5000 5000 5000 5000 4589

Table 4.18: Iterations until Convergence for the Gauss-Seidel Method, applying the Preconditioner

P̃ Iteratively to the Sand and Shales Problem.

Tables in 4.2.5 and 4.2.5 show that when PSYM is applied the number of iterations

until convergence is lower than those obtained when P̃ is applied. The top performance

of P̃ for this experiment is when it is used in with the Gauss-Seidel method. When

PSYM is applied it top performance is when it is used with the Symmetric Gauss-Seidel.

Comparing both preconditioners at their best one can see that PSYM produces better

results. When the number of preconditioned steps is 25, PSYM reduces the number of

iterations until convergence found when P̃ was applied by a factor of 3.

The next set of tables show the behaviour of the spectral radius of M−1N for both
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methods when both preconditioners are applied iteratively. Tables 4.2.5 and 4.2.5

show the behaviour of the spectral radius of M−1N for the Symmetric Gauss-Seidel

and tables 4.2.5 and 4.2.5 does it for the Gauss-Seidel. As can be seen for both methods

there is a reduction on the spectral radius of M−1N and this reduction is greater when

PSYM is applied.

Number of preconditioning steps for PSYM

cells 0 1 5 10 15 20 25

20× 20 0.9744 0.9573 0.8452 0.7387 0.6523 0.5787 0.5143

40× 40 0.9947 0.9912 0.9670 0.9382 0.9116 0.8856 0.8607

80× 80 0.9987 0.9979 0.9923 0.9855 0.9791 0.9728 0.9664

Table 4.19: (SG-S) Spectral Radius Applying PSYM to the Durlofsky Problem

Number of preconditioning steps for P̃

cells 0 1 5 10 15 20 25

20× 20 0.9744 0.9641 0.9265 0.8894 0.8651 0.8429 0.8240

40× 40 0.9947 0.9926 0.9849 0.9762 0.9705 0.9647 0.9601

80× 80 0.9987 0.9982 0.9964 0.9945 0.9932 0.9919 0.9909

Table 4.20: (SG-S) Spectral Radius Applying P̃ to the Durlofsky Problem

Number of preconditioning steps for PSYM

cells 0 1 5 10 15 20 25

20× 20 0.9865 0.9763 0.9120 0.8433 0.7819 0.7242 0.6696

40× 40 0.9972 0.9952 0.9821 0.9662 0.9510 0.9358 0.9207

80× 80 0.9993 0.9989 0.9959 0.9923 0.9889 0.9855 0.9820

Table 4.21: (G-S) Spectral Radius Applying PSYM to the Durlofsky Problem



CHAPTER 4. EXPERIMENTS 65

Number of preconditioning steps for P̃

cells 0 1 5 10 15 20 25

20× 20 0.9865 0.9782 0.9467 0.9116 0.8889 0.8675 0.8493

40× 40 0.9972 0.9955 0.9892 0.9814 0.9761 0.9708 0.9666

80× 80 0.9993 0.9989 0.9975 0.9957 0.9945 0.9933 0.9925

Table 4.22: (G-S) Spectral Radius Applying P̃ to the Durlofsky Problem

One last experiment was done with this problem. This one consist of exploring the

non-zeroes of the coefficient matrix as the preconditioners are applied.

Number of preconditioning steps for PSYM

cells 1 5 10 15 20 25

20× 20 1.81 18.65 61.83 72.74 72.78 72.73

40× 40 1.88 20.72 94.08 204.50 287.33 306.24

80× 80 1.91 20.81 109.18 289.68 547.68 834.78

160× 160 1.89 20.61 110.49 316.312 678.73 1200.67

Table 4.23: Non-zeros coefficients for the Durlofsky’s problem when PSYM is applied.

Number of preconditioning steps

cells 1 5 10 15 20 25

20× 20 1.36 6.07 17.22 27.48 31.66 33.70

40× 40 1.38 6.59 22.34 48.77 78.46 103.22

80× 80 1.39 6.94 24.39 58.01 107.75 173.87

160× 160 1.39 7.02 24.84 61.15 119.50 208.19

Table 4.24: Non-zeros coefficients for the Durlofsky’s problem when P̃ is applied.
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As one can see the non-zeroes are increasing faster when PSYM is applied. This

behavior will change eventually since it was shown that there exists a k ∈ N such that

if we apply PSYM k times to the coefficient matrix it will reduce to a diagonal. In

the first case one can see that after PSYM is applied 15 times the non-zeroes begin to

stabilize.
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4.2.6 Other Matrices

This next matrix comes from the Local Discontinuous Galerkin method studied by

Castillo and Sequeira in [2] and in [20]. This one is a sparse matrix of real entries,

with dimension (5380× 5380), Symmetric and Positive Definite. A maximum of 5, 000

iterations, a tolerance of 10−7, and a starting value of x = [0, 0, . . . , 0, 0] were used for

the Symmetric Gauss-Seidel method.

The following table shows how the spectral radius of (M−1N) reduces when each

preconditioner is applied iteratively. M and N came from the partition of the Sym-

metric Gauss-Seidel method as defined in Section 2.4.

Times ρ(M−1N) ρ(M−1N)

Preconditioned Applying P̃ Applying PSYM

0 0.9870 0.9870

1 0.9776 0.9728

2 0.9716 0.9660

5 0.9561 0.9504

10 0.9260 0.9202

Table 4.25: Spectral Radius of (M−1N) Applying the Preconditioners PSYM and P̃

Iteratively on a Matrix from the LDG Method.

As in the previous examples, the spectral radius reduce when the preconditioners

were applied iteratively. There was not a significant difference between the spectral

radius when each preconditioner was applied iteratively. The next graphs show the

residual error of the Symmetric Gauss-Seidel method when PSYM and P̃ are applied

iteratively, respectively. As it can be seen, applying any of the two preconditioners will

yield less iterations in the convergence of the Symmetric Gauss-Seidel method.
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Figure 4.10: Residual Error of the Symmetric Gauss-Seidel method applying PSYM and P̃ itera-

tively, respectively.
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CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

• A new preconditioner, named PSYM , that preserves symmetry is proposed.

• Numerical experiments show that the preconditioner improves the convergence

of the Symmetric Gauss-Seidel method.

• The preconditioner was originally designed for diagonally dominant symmetric Z-

Matrices, but experiments show a good performance on more general symmetric

positive definite matrices.

• Experiments show that the preconditioner can be applied iteratively for better

results.

69
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• Numerical results shows that the spectral radius of M−1N on the Symmetric

Gauss-Seidel and the Gauss-Seidel methods reduces after applying the precondi-

tioner.

5.2 Future Work

• A formal proof to show that actually the spectral radius, reduces needs to be

given. (Conjecture 3.1)

• A formal proof to show that when the preconditioner is applied to the given

matrix the resulting one is a Z-Matrix and diagonally dominant must be given.

(Conjecture 3.2)

• The computational cost of applying PSYM can be analyzed.

• An upper bound on how many times PSYM needs to be applied to obtain a

diagonal matrix can be investigated.
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