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ABSTRACT 

 

The equivalent linear method is widely used in Geotechnical Earthquake Engineering to 

calculate the accelerations at the surface of soil deposits subject to earthquakes of moderate 

intensity. The method approximately takes into account the non-linear behavior of soils by using 

equivalent shear moduli and damping ratios that are function of effective shear strains. A series 

of linear analysis are performed each time using equivalent soil properties until their values at 

two consecutive steps are approximately equal. The effective strain is defined by reducing the 

peak strain retrieved from the time response. The reduction factor, usually 0.65, accounts for the 

fact that the peak strain only occurs at a single instant of time. This thesis investigates the 

application of this technique to calculate the seismic response of reinforced concrete buildings 

with moderate non-linear behavior. The method is tested using a 3-D finite element model of a 

building created in the program ANSYS. Non-linear constitutive relations in the form of stress 

vs. strain are used to calculate the full non-linear response and also to define the equivalent 

modulus of elasticity and damping ratio by means of the Masing’s rule. It was found that a key 

parameter affecting the accuracy of the results is the reduction factor. Considering a number of 

seismic records with different frequency contents an optimal reduction factor was defined that is 

a function of six parameters related to the intensity of the earthquake. The accuracy of the results 

obtained with the equivalent linear method depends on the response of interest sought 

(displacement, shear, moment, acceleration) but it proved to be quite acceptable for all the cases 

considered. The floor response spectra for the building with non-linear behavior were also 

obtained and they compare very well with those computed with the exact non-linear analysis. 
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RESUMEN 

 

El método lineal equivalente es altamente utilizado en Ingeniería Sísmica Geotécnica 

para calcular las aceleraciones en la superficie de depósitos de suelos sometidos a un sismo de 

intensidad moderada. El método toma en cuenta en forma aproximada el comportamiento no 

lineal de los suelos mediante el uso de un módulo de corte y razón de amortiguamiento 

equivalentes. Se realizan una serie de análisis lineales en el tiempo usando en cada etapa 

propiedades lineales equivalentes obtenidas de curvas que definen estas propiedades en función 

de la deformación específica. De la respuesta en el tiempo se extrae el valor máximo el cual se 

reduce por factor de 0.65 para tener en cuenta que el valor pico no se repite en el tiempo. En este 

trabajo se aplica esta técnica para calcular la respuesta sísmica de edificios de hormigón armado 

con un comportamiento no lineal moderado. La respuesta exacta del edificio se calcula usando 

un modelo con elementos finitos tridimensionales en el programa ANSYS. Usando curvas del 

módulo de elasticidad  y de razón de amortiguamiento equivalentes en función de la deformación 

unitaria se definen modelos lineales equivalentes. Un parámetro clave que afecta la precisión de 

los resultados es el factor de reducción. Considerando una serie de registros sísmicos con 

distintos contenidos de frecuencia se obtiene un factor de reducción óptimo que se define en 

función de seis parámetros relacionados a una medida de intensidad de los sismos. La precisión 

de los resultados obtenidos con el método lineal equivalente depende de la respuesta de interés 

(desplazamientos, cortantes, momentos, aceleraciones) pero los errores se mantienen dentro de 

márgenes aceptables. También se obtuvieron también los espectros de respuesta de piso para el 

edificio con comportamiento no-linear y se compararon con los calculados con el análisis no 

linear exacto lo cual dio buenos resultados. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Justification 

 

It is well known that according to the design philosophy those buildings designed with 

modern codes will undergo inelastic deformations during a strong earthquake. However, if 

properly designed and constructed, the damage will be limited and no collapse should occur. In 

any case, the seismic response of the buildings is calculated using linear analysis, with the 

earthquake loading defined by a code-issued design spectrum. On the other hand, seismic non-

linear analysis of buildings is less used in the engineering practice. Because it involves 

significantly more effort, non-linear analyses are limited to specific cases. Typical instances 

when non-linear analyses are carried out include (Deierlein et al., 2010): a) to assess and design 

seismic retrofit solutions for existing structures; b) for the design of new buildings that employ 

structural materials, protective systems or other novel devices that are not covered in current 

building codes; c) when the owner has specific performance requirements (e.g. to assess if 

immediate occupancy performance criteria are met).  

 

Most buildings and other structures that encompass nuclear power plant installations are 

usually designed to have a linear elastic behavior. However, it is conceivable that under a 

particularly severe earthquake not accounted in the design criteria used, a building may undergo 

inelastic deformations, albeit not significantly beyond the elastic limit. This is an example of a 

situation this thesis intends to address. It is proposed to adapt and calibrate a method that was 

originally developed to compute the approximate non-linear seismic response of soil deposits to 

calculate the response of buildings with moderate non-linear behavior. The procedure to be 

adapted is known as the “equivalent linear method”.  
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A most important problem in Soil Dynamics and Geotechnical Earthquake Engineering is 

the so-called “site response analysis” in which the ground acceleration at the free surface of a 

stratified soil deposit is computed using as data the earthquake-induced motion at the bedrock or 

at a rock outcrop. Soil materials undergo non-linear deformations even when subjected to 

earthquakes of moderate intensity and thus it is important to account for their non-linear 

behavior, even in an approximate way. Although the response of the soil deposit can be 

calculated via a rigorous non-linear step-by-step dynamic analysis, this is not the approach 

followed in practical applications, except in research work or for special projects. Most 

commonly the “equivalent linear method” originally proposed by Seed and Idriss (1970) and 

later implemented in the well-known program SHAKE (Schnabel et al., 1972) is used to 

calculate the seismic response of the soil deposit. Basically, the method consists in performing a 

series of linear analysis of the deposit by changing at each iteration step the material properties 

(the shear modulus G and the damping ratio ξ of each layer) so that they are consistent with the 

so-called “degradation curves”. These are graphs that depict the variation (i.e., the degradation) 

of G and ξ with the shear strain for each soil material. 

 

It is known that the equivalent linear method has some limitations but nevertheless, as it 

was previously mentioned, it is extensively accepted in practical applications. One of the 

limitations of the method is that the non-linear behavior of the soils must be moderate: it does 

not provide good results for soils undergoing strongly non-linear deformations. It is reasonable to 

conclude that the same limitation will also apply to the intended application of this work, namely 

for building structures.  

 

One of the reasons for using the equivalent linear method to calculate the seismic 

response of soil deposits is that the damping is accounted for by means of the complex modulus 

damping model. This damping model permits to assign different damping ratios to each of the 

soil layers of the deposit. In addition, it permits to model more accurately the real energy 

dissipation characteristics of soil materials. However, the complex modulus model requires an 

analysis in the frequency domain which is based on the Principle of Superposition and thus it 

cannot be applied to non-linear systems. By iteratively replacing the non-linear behaving soil 

deposit by a linear model with equivalent properties, one can apply a frequency domain analysis 
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at each iteration step. For the application of this thesis the damping model used will be that 

available in the program ANSYS (2015), namely the Rayleigh damping formulation. In addition, 

the series of sequential linear analyses required by the equivalent linear method will not be done 

in the frequency domain but rather in the time domain, to limit the focus of the study.  

 

Although this is beyond the scope of this thesis, one of the potential applications of the 

proposed methodology is to study the dynamic soil-structure interaction by using a model of the 

building which includes the soil deposit represented by a finite element model. The one-

dimensional model analyzed with the equivalent linear method and programmed in SHAKE can 

be extended to higher dimensions. For instance, the program QUAD4M (Hudson et al., 1992) 

has implemented the equivalent linear method to calculate the seismic response of soil deposits 

modeled as a 2-D in a state of plane strain. Another case where an equivalent linear analysis is 

fitting (or necessary) is to calculate the seismic response when there is a device in the structure 

that is frequency dependent (for example, a damper). 

 

1.2 Seismic response of nonstructural components 

 

There are cases where buildings were able to withstand the forces and accelerations 

caused by a strong earthquake, and yet their non-structural components failed causing an 

economic impact comparable to the failure of the structure itself. Non-structural elements are 

those systems and components attached to the floor or wall of a building that do not form part of 

the force resistant system (Villaverde, 2004). These systems are sometimes referred to as 

“secondary systems” but it does not mean that they have lesser importance, especially in 

facilities like hospitals and power plants. Following a corresponding nomenclature, the structure 

that houses the secondary systems is also known as the “primary system”. The secondary 

systems are especially relevant in nuclear power plants because of the important function of 

equipment like the radiation regulators, power generators or even the reactor itself that can suffer 

damage during an earthquake. In addition to safety issues, the economic impact of the failure of 

these components is quite significant since they represent around 60-80% of the total structure 

cost. This is why one the goals of this investigation is to calculate the seismic response of non-

structural components housed on a building that experiences inelastic excursions.  



4 
 

The most commonly used method to analyze non-structural components is the “floor 

response spectrum”, also known as the “in-structure response spectrum”. The concept is similar 

to the conventional ground response spectrum, i.e. it is the maximum response of a single degree 

of freedom oscillator as a function of its natural period, but now it is attached to a particular 

floor.  Therefore, the floor response spectra are defined for each of the floors of the building. The 

floor response spectrum can be obtained in two steps. First, a dynamic analysis of the structure is 

carried out using as input an accelerogram at the base for which the absolute acceleration at the 

floor of interest is calculated. Next, this acceleration time history is used as input to obtain the 

maximum response of oscillators with different periods (Suárez and Singh, 1989). This approach 

has a limitation: the use of only one seismic accelerogram cannot properly account for the 

random nature of the earthquake phenomena. For instance, usually a building at a given site can 

experience earthquakes originated by different seismic faults located near the area of the 

structure. Therefore, it is necessary to generate floor response spectra for several ground 

accelerations and consider an envelope of the different curves to define a spectrum that can be 

used for design. 

 

Based on the type of demand that has a predominant role in their seismic response, the 

non-structural components can be classified as acceleration-sensitive or displacement-sensitive. 

In addition, they can be divided into rigid and flexible structural systems. A non-structural 

system is considered as rigid if it is firmly anchored to the structure and in addition, the non-

structural element itself is constructed in a way that its flexibility can be neglected.  According to 

the provisions of Chapter 6 of the Standard ASCE 7-05 (ASCE, 2006), a system can be 

considered flexible if its fundamental natural frequency is less than 1 Hz, if it is attached to the 

structure with flexible supports, or if the flexibility cannot be ignored. When analyzing a rigid 

system, it is only necessary to determine the absolute maximum acceleration of the point or floor 

where the non-structural component is located. On the other hand, to calculate the response of a 

flexible system it is usually modeled as a single degree of freedom and its natural frequency and 

damping ratio need to be determined. In more complicated cases, a model with multiple degrees 

of freedom might be required.  
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For the seismic design of non-structural components, the provisions of Chapter 13 of 

ASCE 7-05 establish minimum design criteria for components that are permanently attached to 

structures and for their supports and attachments. The provisions provide formulas to determine 

the horizontal force that would be exerted at the component’s center of gravity. These equations 

are a function of the height of the floor where the component is located, and the weight of the 

component, among other parameters. However, these provisions do not consider various factors 

such as the type of building’s structural system used to resist lateral loads and they do not take 

into account the non-linearity of the primary system when subjected to a strong earthquake. 

 

One of the objectives of this thesis is to investigate the feasibility of applying the 

equivalent linear method to calculate the floor response spectra at different floors of a building 

with moderate inelastic behavior. The floor response spectra predicted by the proposed approach 

will be compared with similar curves obtained by means of full non-linear dynamic analysis 

using the structural analysis program ANSYS.  

 

1.3 Objectives 

 

The primary objective of the thesis is to study if the equivalent linear method can be 

implemented to calculate the approximate seismic response of a structure composed of 

reinforced concrete momnonent resistant frames that have moderate non-linear behavior. Special 

emphasis will be done to the seismic response of nonstructural components. 

 

  To implement the proposed methodology and to verify its accuracy, the following tasks 

will be undertaken: 

 Design a three-story reinforced concrete building with a special moment resistant 

frame as the lateral force resistant system.  

 Prepare a three-dimensional finite element model of the building with the computer 

program ANSYS.   

 Obtain the non-linear stress-strain relation for the beams and columns sections to be 

used by the finite element program. 
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 Select two acceleration time histories of historic events. One will represent a broad-

band event (i.e. a record with a rich frequency content) and another a short-band 

ground motion (i.e., typical of an event closer to the site, with less frequency content). 

 Run the model of the building considering the non-linear behavior of the reinforced 

concrete elements. This will be done by considering non-linearities in the structural 

materials using the degradation curves of the reinforced concrete sections. 

 Develop a polynomial representation of the normal stress vs strain relationship (the 

“backbone curve”) and using Masing’s rule determine the two degradation curves 

required by the equivalent linear method, i.e. E vs ε and ξ vs ε. 

 Run the finite element model of the building using now equivalent properties and 

linear dynamic analyses.   

 Once the method is calibrated and corroborated with the selected broad and short-

band accelerograms, calibrate it further and verify it using another set of acceleration 

time histories. 

 Compare the floor accelerations obtained accounting for the non-linear behavior as 

well as those computed with the equivalent linear approach. 

 Carry out a similar comparison as described in the previous step, but now with the 

floor response spectra computed at each floor. 

 Establish conclusions and set forth recommendations based on the results obtained. 

 

1.4 Methodology  

 

The methodology implemented to achieve the previously mentioned objectives is 

described in more detail in this section. The tasks in the bullets presented in the previous section 

provide a quick overview of the work done. In addition, in each chapter a more meticulous 

description is provided. 

 

The first step was the design of the three-story reinforced concrete building that was used 

to test the proposed methodology. Next, a model of the structure was generated using the 

selected finite element program. ANSYS (2015), a commercial computer program was chosen to 
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create a detailed 3-D finite element model and to carry out the non-linear and linear analyses. 

The lateral force resisting system of the building was a special moment resisting frame that was 

designed in accordance with the provisions of the standard ASCE 7-05 as well as the codes ACI 

318-11 and IBC 2015. Given that the main application of the present project is on nuclear power 

structures, the structure was designed in a way that it would have a linear elastic behavior, as it is 

commonly done in this field. Therefore it was assumed in this project that an unexpected 

earthquake with intensity above the original design scenario would strike the structure. This 

earthquake will induce a non-linear behavior in the structure but not a very severe one. This 

limited non-linear behavior is in accordance with the limitations of the equivalent linear method, 

i.e. this technique is not applicable for a structure with substantial non-linearity. To consider the 

non-linearity in the structural materials by both methods (the full non-linear analysis and the 

approximate method), a stress-strain curve was used. In the case of the full non-linear analysis, 

the curve was directly used by ANSYS to create the hysteresis cycle, and perform a step by step 

integration, etc. In the equivalent linear method, the curve was used to calculate an effective 

elastic modulus and an equivalent damping ratio as explained later. There are different methods 

to calculate the stress-strain curves. However, because the objective of this investigation is not to 

demonstrate how to obtain them, the curves used were generated with the computer program 

“SE::MC” (StructureExpress, 2015) that can model any kind of section with a specific rebar 

configuration.  

 

After generating the model in the software ANSYS, the structure was subjected to a 

specific broad-band ground acceleration time history and then the analysis was repeated with a 

short-band record. At this stage, the inelastic behavior of the structures was accounted for with 

the full non-linear dynamic analysis. The output that was retrieved from the program are the time 

series of the shear force and bending moment at a critical section of a column, the relative 

displacement at the roof and the absolute acceleration time histories at each floor. For rigid 

equipment, the peak value from the acceleration records is the parameter of interest. For flexible 

equipment, the floor accelerograms were used as input to one degree of freedom oscillators with 

increasing natural periods to compute the response spectrum (i.e. the floor response spectrum). 

These oscillators had a linear behavior, i.e. the non-linear behavior was limited to the primary 
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structure. The last process is depicted in Figure 1.1, which shows step by step the time history 

approach to obtain the floor response spectrum.  

 

 

 

Figure 1.1 Steps to calculate the floor response spectrum via time history analysis. (Jiang et al., 2015) 

 

In the second stage, the same building model was subjected to the same two records but 

the non-linear behavior was approximately accounted for by means of the equivalent linear 

method.  An actual stress-strain curve like that shown in Figure 1.2 was used to model the non-

linear behavior of the material. The figure shows a part of the so-called “backbone curve”; 

however to apply the equivalent linear method the full hysteresis cycle is required. This cycle 

was defined by means of the Masing rule. Once the full hysteresis cycle was defined, it was used 

to obtain the two degradation curves. One curve displays the secant elastic modulus for the 

stress-strain cycle as a function of a deformation parameter. The second curve depicts the 

variation of the equivalent damping ratio due to the hysteretic behavior as a function of the same 

deformation parameter. The equivalent linear method is an iterative technique: for the first 

iteration, an initial deformation was assumed and the effective elastic modulus E and damping 

ratio ξ was estimated from the corresponding degradation curve. These values were used in the 

model for the program to carry out a linear dynamic analysis. From the response obtained the 
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maximum deformation (or an effective one, defined by a reduction factor) was recovered and 

new stiffness and damping values corresponding to this deformation were calculated. They are 

compared with those from the previous step and if the difference is not small (a preselected 

tolerance is used for the comparison, which for this thesis was 1%), the process is repeated. This 

time, the updated stiffness and damping are used to define a new equivalent linear model of the 

structure. The response is calculated, maximum deformations are retrieved, they are reduced by a 

factor and new stiffness and damping are computed and compared with the previous ones until 

convergence is achieved. At the final stage, the floor accelerations are calculated and using them 

the floor response spectra are defined. 

 

Once the proposed methodology was initially calibrated with the two broad-band and 

short-band records, other eight accelerograms of historical earthquakes with different 

characteristics are used to further calibrate the method. The key factor that determines the 

accuracy of the proposed approach is the reduction factor that is used to define an effective strain 

by lowering the peak strain. In Soil Dynamics applications, this reduction factor is usually set at 

0.65 but it was demonstrated that this value is not applicable to compute the approximate 

building response. A new factor that accounts for the intensity of the earthquake records was 

proposed and it was successfully tested. 

 

 

 

Figure 1.2 Typical non-linear stress-strain constitutive relationship. 
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To assess the accuracy of the approximate method, the accelerations and floor response 

spectra generated by the full non-linear and the equivalent linear time history analyses were 

compared. The peak floor accelerations obtained with the two techniques are reasonably similar 

as long as the non-linear behavior of the structure does not become very strong.  

 

Once the proposed approach is proved to be successful, it can be used to apply the so-

called “direct methods” to calculate the floor response spectra in a building with moderate 

inelastic behavior. The direct methods (Singh, 1975) are those that permit to calculate the floor 

response spectra using as input the same ground response spectrum used for the analysis and 

design of the main building (for instance, a design spectrum specified in a code). These methods 

have the advantage that they eliminate the need to perform time history analyses using spectrum 

compatible seismic records.  

 

It should be mentioned that the floor response spectra calculated with all the 

aforementioned methodologies have one common assumption: the dynamic interaction between 

the primary and secondary structure is neglected.  This is a reasonable  assumption when the 

mass of the secondary system is small compared to the mass of the floor where it is attached to 

the structure, or when the natural frequency of the nonstructural component is not tuned to any of 

the lower natural frequencies of the building (Suarez and Singh, 1989). 

 

1.5 Literature review 

 

A summary of relevant works dealing with the non-linear response of reinforced concrete 

structures is presented here. It is followed by a description of works that studied the seismic 

response of nonstructural components on a supporting structure with inelastic behavior. 

 

The analytical stress-strain models (e.g., Mander et al., 1988) developed for confined 

concrete define the non-linear properties required to model the behavior of reinforced concrete 

element subjected to an incremental load.  Their formulations stated that if a concrete section 

contains any general type of confining steel, a single equation can be used to define the stress-

strain equation. The model presented by (Mander et al., 1988) allowed for cyclical loading and 
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included the effect of strain rate. Also, their analytical model stipulated the difference in capacity 

between the concrete inside the steel confinement (“confined concrete”) and the concrete outside 

the reinforcement (“unconfined concrete”). The difference in capacity for the model proposed 

can be seen in Figure 1.3. 

 

 

Figure 1.3 Stress-strain model proposed for monotonic loading of confined and unconfined concrete. (Mander et 

al., 1988)  

 

Following a similar idea, Pfrang et al. (1964) presented a method for developing 

relationships between axial load, moment and curvature for reinforced concrete cross-sections. 

Like in the case mentioned before, the method was developed in a way that it does not require 

extensive simplifying assumptions concerning the stress-strain relationship for the concrete and 

the reinforcement. The formulation proposed will be discussed in more detail in the next chapter. 

 

Researchers from the University of Minas Gerais, Brasil (Barbosa and Ribeiro, 1998) 

presented a paper that shows the practical application of non-linear models in the analysis of 

reinforced concrete structures. The analysis was performed using the general purpose finite 

element code ANSYS, with the goal of investigating the possibilities of performing non-linear 

finite element analysis of reinforced concrete structures. Their main objective was the prediction 

of load-deflection curves using models with non-linear behavior. For the implementation of the 
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non-linearity, they incorporated the stress-strain relationship for confined concrete as a material 

property. This allowed the beam section of the models to reach the ultimate load state and to 

determine the entire load-deflection diagram. Their results suggested that in spite of the 

simplifications assumed for the analyzed structure, satisfactory predictions of the response of 

reinforced concrete structure could be obtained. 

 

Another relevant study was presented by Fragiadakis et al. (2014) for the application of 

non-linear static procedures for the seismic assessment of regular reinforced concrete moment 

frame buildings. The research shows the degree to which non-linear static methods can 

characterize the global and local response demands determined by non-linear dynamic analysis 

for three reinforced concrete buildings in a moment resistant frame configuration. The 

parameters measured in the study were peak story displacement, story drifts, story shears and 

floor overturning moments. The results indicated that the relatively good performance of the 

single mode methods observed for low-rise buildings rapidly deteriorates as the number of 

stories increases. 

 

Researchers from Brookhaven National Laboratory (BNL) (Simos and Hofmayer, 2013) 

conducted a research project called SMART2008 (“Seismic design and best-estimate Methods 

Assessments for Reinforced concrete buildings subjected to Torsion and non-linear effects”) 

whose main purpose was to develop the best method to analyze the seismic response of a 

reinforced concrete building using a multi-phase study that part of it was the use of a shaking 

table experiment. The aim of the project was to compare different methodologies, modeling and 

numerical approaches to study and predict the non-linear behavior and damage of reinforced 

concrete structures. For the experiment, they constructed a 1/4
th

 scale model of a three story 

concrete structure using the French code for nuclear structures.  One of the observations of the 

study was that the reinforced concrete appear to undergo stiffness changes due to micro-cracking 

or adjustment in the concrete-rebar interface under seismic loads much lower than the design 

earthquake level.  

 

Similar observations were made in another study of the seismic behavior of reinforced 

concrete but with shear walls (Combescure, 2002). The common observation in the two shaking 
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table experiments were that the natural frequencies of the structure were reduced following 

seismic loads with intensities as low as 0.1g, a fact attributed to a reduction in the reinforced 

concrete stiffness. As a result, floor response spectra generated from actual in-structure 

recordings underwent a shift of their peaks towards the lower frequencies, a feature that may 

have significant implications for the design of equipment supported on floors.  

 

After processing the data and comparing it with the prediction of the numerical models, it 

was found that the latter results generally over-predict the in-structure accelerations while under-

predicting the displacements. This was primarily attributed to the lack of understanding of the 

changes in the damping of the RC structure. On the other hand, based on the comparison 

between the test data with the results from a full non-linear, 3-D analysis of the SMART 

structure tested by BNL, it was concluded that using the SRSS (“Square Root of the Sum of 

Squares”) method can quite accurately reproduce the response and the damage experienced by 

the structure even when multi-directional loads are applied on an asymmetric structure. Shown in 

Figure 1.4 is a verification of the SRSS method using the SMART structure and a bi-directional 

seismic input with a PGA of 0.2g.  

 

 

 

  Figure 1.4 Comparison of acceleration spectra between the direct and SRSS methods where the two 

orthogonal responses were computed independently. (Simos and Hofmayer, 2013) 
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Figure 1.5 Generation of design floor response spectra by enveloping procedures using US NRC   guidelines. 

(Simos and Hofmayer, 2013) 

 

They generated the design floor response spectrum shown in Figure 1.5 using the SRSS 

method, which envelops the floor spectra generated by the simultaneous action of all the two-

directional inputs. They established that the generation of design floor spectra can be developed 

in an adequate manner using as a base the existing guidelines, but for the conditions where the 

structure exhibits non-linear response. Figure 1.5 shows the “design floor response spectrum” on 

the 3rd floor of the SMART2008 structure defined using the US NRC guidelines with 

enveloping procedures and the spectra computed at various floor locations.  

 

Moehle (1992) developed guidelines using a displacement-based design for reinforced 

concrete structures subjected to earthquake events. Their research shows that rapid dynamic 

induced structural displacements are the main cause of damage in structures subjected to ground 

motions. Using simple techniques for estimating structural displacements they developed a 

design approach based exclusively on expected displacement. The displacement-based approach 

was used to establish proportions and layouts that can control drift demand, and to determine 

structural and non-structural details that will allow for proper performance from a design 

standpoint. 
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Members of the University of Nevada (Wieser, et al., 2013) conducted a research project 

whose main purpose was to determine the demand in terms of absolute accelerations on non-

structural elements inside moment resisting frame structures. For this study, they created 3-D 

models of four different buildings with the finite element program OpenSees (PEER, 2010). For 

the selection of the ground acceleration records, the methodology presented in the ATC-63 

project described in the FEMA P-695 (FEMA, 2009) report was implemented, which consisted 

of 21 earthquakes. An important effect observed was that when the structure reaches the yield 

level, there is a decrease in floor accelerations. The floor accelerations were then normalized 

with respect to the ground acceleration to define an “acceleration amplification factor”. Also, 

they proposed some empirical equations to determine the amplification of the accelerations in the 

structure for each floor, knowing or assuming the yielding point of the structure.  

 

To consider the effects of the ductility of the system, the response levels were divided 

into three categories: elastic, moderate ductility and high ductility. Figure 1.6 shows the response 

spectra of a non-structural element placed on the roof of one building under different levels of 

ductility and its comparison with the code provisions. As seen in Figure 1.7a, the IBC (2006) 

design spectrum generated with these parameters is comparable to the median ground 

acceleration spectrum causing near elastic response of the building. Therefore, it is possible to 

compare the roof acceleration spectrum for nearly elastic response with the component design 

accelerations developed using the various methods demonstrated in Figure 1.7b.  

 

Figure 1.6 Comparison of the acceleration amplification at the roof of a building for four levels of ductility. 

(Wieser, et al., 2013) 
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 Figure 1.7 (a) Ground motion spectra for the nearly elastic response of the building; (b) Comparison of 

components acceleration demand estimates. (Wieser, et al., 2013) 

 

The seismic floor response spectra (Singh, et al., 2006a; 2006b) are commonly used to 

define the seismic inputs for non-structural components housed in the main structure. The spectra 

can be generated using a time history analysis where a ground acceleration record is applied as 

input at the base of the structure, or by a direct floor response spectrum generation approach 

where the ground spectrum can be directly used as an input. In either of these approaches, it is 

assumed that the nonstructural component (represented by a single degree of freedom oscillator) 

is decoupled from the main structure. This type of analysis is referred to as a “cascade 

approach”: the response of the structure without the secondary system is first computed and it is 

later used as input to the oscillator. It is reasonable to use this assumption when the mass of the 

component is negligible since by neglecting the interaction, the computed spectral ordinates are 

usually on the conservative side. However, this may not be the case if the mass of the component 

is significant compared to the mass of the floor where it is connected (Suarez and Singh, 1989). 

 

Another relevant study about non-structural components was made at the University of 

Pennsylvania by Lepage et al. (2012). The purpose of this study was to find a formulation to 

determine the maximum floor accelerations in a multi-story building subjected to a strong 

movement. For this purpose, several scale buildings were used and placed on a vibrating table. 

The aim was to expand the equations provided in the ASCE 7-05 standard (ASCE, 2006) to 

consider whether the component is flexible or rigid in a general way. The researchers chose a 
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total of 74 ground motion records of ground acceleration measured in buildings in the state of 

California. The results showed that the variation in the maximum acceleration on the floors 

varies by type of structure and the resistance of the lateral load. In order to calculate a floor 

response spectra they first needed an acceleration response spectra that suited the ground motion 

records used, which were scaled according to the two-step procedure described in the provisions 

of FEMA (2009). The first step was to scale each record to the same peak ground velocity, and 

then use a common scale factor that makes the average of the spectral acceleration match the 

idealized design spectrum at a period T1. The resulting idealized versus average spectra for two 

cases are shown in Figure 1.8. 

 

 

Figure 1.8 Scaled acceleration response spectra (a)Case of a 6 story.(b) The case of a 12 story.(Lepage et al., 2012) 

 

Lepage et al. (2012) proposed to use equation (1.1) to estimate the acceleration demand 

on non-structural components defined in terms of the peak ground acceleration Ao. Figure 1.9 

shows that the approximation provided by the formula is generally on the safe side, except for a 

narrow period band of the floor response spectra: 

 

𝐴𝑝𝑖 = 𝐴𝑜 (1 +
3

𝑅′  
ℎ𝑖

ℎ𝑟
)  𝑎𝑝                  (1.1) 

 

where the following notation is used: 

Api = peak component acceleration at level i, 

ap = component amplification factor, 1.0 for rigid components and 2.5 for flexible 

components, 

Ao = peak ground acceleration, 
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hi/hr = ratio of elevation at floor i to the roof elevation, 

R’ = effective response modification coefficient of the structure: it may be taken as R/Ωo 

but not less than 1, where: 

R = structural response modification coefficient and 

Ωo = structural overstrength factor. 

 

 

 

Figure 1.9 Floor acceleration spectra for 5% damping of a 6 story frame with a first period T1=1.1 s. (Lepage et 

al., 2012) 

 

In summary, there is a lot of research that has been done working on the non-linear 

response of reinforced concrete structures. Most of which studied the seismic response of 

structure and non-structural components on a structure that has an inelastic behavior. It is 

important to mention that even do these theses gives emphasis on the application of nuclear 

building facilities; it is not exclusive for these types of structure. The methodology mention 

before will be explained more in details in the following chapters. 
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CHAPTER II 

 

DEVELOPMENT AND CALIBRATION 

OF THE STRUCTURAL MODEL 
 

2.1 Introduction 

 

   Traditional linear analysis methods remain adequate for the analysis and posterior 

design of common reinforced concrete structures, special structures such as those in nuclear 

facilities may require more sophisticated non-linear analysis.  The wide dissemination of 

computers and the development of the powerful finite element codes have provided the means 

for such analyses using detailed and realistic models. The main obstacle to finite element 

analysis of reinforced concrete structures is the difficulty in characterizing the material properties 

since they possess a non-linear behavior when subjected to strong earthquakes and under 

exceptional loads. Mainly due to the complexity of the nature of the material (i.e. concrete 

confined with steel rebar), the proper modeling of such structures is a challenging task and 

requires some assumptions to simplify the analysis, which will be explain in detail in this 

chapter. 

 

For that purpose, this chapter describes the development of the building model, its 

characteristics and the calibration processes.  A three-dimensional finite element model of the 

structure was created in the ANSYS (2015) version 16 software. The finite element model will 

be used in later chapters to perform the equivalent linear analyses and for these tasks it is 

sufficient to define and use the properties of the concrete. However, it is very important to have a 

sound and comprehensive model of the building that fully takes into account the non-linear 

behavior of the reinforced concrete elements because it will be used as an archetype to validate 

the proposed equivalent linear approach. This chapter explains the generation of the 3-D finite 

element model, including its geometry, material properties, finite element types, meshes, etc. The 

information required for the non-linear analysis is also discussed. 
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2.2 Development of the structural model 

 

 The building model that has been used to carry out all the linear and non-linear dynamic 

analyses is a 3D reinforced concrete frame. The model accounts for the non-linear degrading 

response of beams and columns using reinforced concrete material data specific for each 

component. Using the commercial computer program “SE::MC”, two non-linear stress-strain 

curves for the reinforced concrete elements were obtained by subjecting them to uniaxial 

compressive loading and confining them with transverse reinforcement. This was taken into 

consideration because tests have shown that the confinement of concrete by suitable arrangement 

of transverse reinforcement results in a significant increase in both strength and ductility of the 

compressed concrete (Mander, et al., 1988).  

 

2.2.1. Frame model design 

 

 The 3D reinforced concrete structure was designed as a special moment resistant frame 

following the provisions of ASCE 7-05 (ASCE, 2006), ACI 318-11 (ACI, 2011) and the IBC 

2015 (IBC, 2015) specifications. The columns and beams dimensions of the frame were based on 

a building designed as part of a French research project called SMART 2008 (“Seismic design 

and best-estimate Methods Assessment for Reinforced concrete buildings subjected to Torsion 

and non-linear effects”) (Simos and Hofmayer, 2013). The model that was designed and 

constructed following the French nuclear design codes is shown in Figure 2.1 and Figure 2.2. It 

is a simplified representation of a 3 story nuclear electrical building with strong asymmetry. A ¼ 

scaled model was extensively tested to provide the earthquake engineering community with 

recommendations and guidelines (Richard et al. 2015; Richard et al, 2016). 
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Figure 2.1 3D numerical model of the SMART 2008 structure. (Simos and Hofmayer, 2013) 

 

 

 

Figure 2.2 Geometry of the SMART 2008 structure. (Simos and Hofmayer, 2013) 
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 Contrary to the SMART 2008 project, the building designed for the present study is 

regular (i.e. the centers of mass and stiffness coincide). The asymmetric character of the building 

would introduce additional complications in the analysis whose considerations are not part of the 

objectives of the thesis. The model of three story building created in ANSYS is shown in Figure 

2.3. At each level, the building has six columns, seven beams and a uniform slab that covers the 

entire floor area. To simplify the analysis, special effects such as the soil-structure interaction 

will be neglected. In addition, the ground acceleration will be applied along the horizontal X 

axis, i.e. no acceleration will act along the vertical and transverse Z direction. 

 

 

 

Figure 2.3 3D model of the moment resistant frame in ANSYS. 

 

The overall dimensions of the building are provided in Figure 2.4. 
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Figure 2.4 Overall dimensions of the 3-D frame.  

 

The columns have a 30 x 30 inches cross section with a height of 16.5 ft at each floor 

level for a total of 49.5 ft. The concrete section has a longitudinal reinforcement steel rebar 

consisting of twelve #10 (1.27 inches diameter) evenly spaced around the column in a single 

layer configuration. A volume ratio of transverse reinforcement of 0.015 was used that consisted 

of single #4 (0.5 inches diameter) rebar hoops. A cover of 2.5 inches was added in all the four 

faces of the column. The reinforcement layout and the column geometry are shown in Figure 2.5.  

 

Figure 2.5 Column geometry and reinforcement details. 
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 Each beam has a 24 x 12 inches cross section with a total length of 20 ft; the same 

dimensions were used in all directions. The longitudinal reinforcement steel rebar consists of six 

#8 (1-inch diameter) with two rebars at the top and four at the bottom in a single layer. A volume 

ratio of transverse reinforcement of 0.013 was used that consisted of single #4 (0.5 inches 

diameter) rebar hoops. A cover of 2.5 inches was added at the top and the bottom of the beam. 

The reinforcement layout and the column geometry are displayed in Figure 2.6.  

 

 

 

Figure 2.6 Beam geometry and reinforcement details. 

 

 The slab at each floor was designed with a thickness of 9.6 inches in order to eliminate 

the need to calculate and check the deflections, in accordance with Table 9.5(a) of the code ACI 

318-11. For simplification purposes, a one-way slab was considered in the analysis since the 

measurements of stress at the slab are irrelevant for the verification of the proposed equivalent 

linear method. Nevertheless, the slabs weight and their contribution to the stiffness of the 

structure are all accounted for. 
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2.2.2. Material model 

 

 As it is commonly done for the non-linear analysis of frames, it will be assumed that the 

beams and column are the elements that can undergo inelastic deformations. The slabs are 

assumed to have a linear behavior. Because the analysis was done using 3D solid finite elements 

model (described later in Section 4.3), the usual representation of the non-linear behavior for 

one-dimensional elements, namely the Moment-Curvature curve, cannot be implemented 

directly. Rather the stress-strain relationships for the beam and column confined concrete 

sections were used as an input data. The computer software SE::MC from StructureExpress 

(2015) was used to determine the stress-strain curve for the columns and beams. SE::MC is a 

computer program that allows the user to perform moment-curvature type of analysis on 

structural member sections.  

The material properties used for  all the reinforced concrete elements are presented in Table 2.1.  

 

Table 2.1 Concrete and steel material properties. 

Material properties Value 

Concrete compressive strength, f’c 4,000 psi 

Yield stress of longitudinal reinforcement, fy 60,000 psi 

Poisson’s ratio 0.2 

Specific weight  150 lb/ ft
3
 

 

 The stress-strain constitutive relation obtained with the program SE::MC for the confined 

concrete in the columns with the 30 x 30 inches cross-section is shown in Figure 2.7. The result 

shown takes into consideration the longitudinal rebar #10, the geometry of the section and the 

confinement rebar. 

The curve shows that after the section reached a yield state (close to a strain of 0.01in/in), it 

started to lose capacity. When this feature was introduced into the finite element model in 

ANSYS it created serious convergence problems in the dynamic non-linear analysis. Therefore, 

it was necessary to make some adjustments: the stress capacity after yield was modified and it 

was assumed constant, as shown in Figure 2.7. It is important to point out that this modification 
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is not crucial for the purposes of the study, i.e. to compare the results of a non-linear dynamic 

analysis with an approximate equivalent linear one. 

 

 

Figure 2.7 Stress-strain relationship for the confined concrete in the columns from SE::MC. 

 

 The software also provided additional information that was incorporated in the 

development of the stress-strain degradation curve for the element. For example, the steel rebar 

has an entirely different material degradation curve than concrete, as shown in Figure 2.8.  The 

program also provided the moment-curvature graph displayed in Figure 2.9. Even though, as 

mentioned before, this is not the information input to ANSYS, it is shown here because this is 

the most common representation of the load-deformation behavior of a reinforced concrete 

section.  

   

 

 

Figure 2.8 Stress-strain relationships for Rebar #10 used for the columns by SE::MC. 
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Figure 2.9 Moment-curvature relationship for the column from SE::MC.  

 

 The Stress-Strain constitutive relation used for the beams with 24 x 12 inches cross 

section is shown in Figure 2.10. The results shown account for the longitudinal rebar #8, the 

geometry of the section and the confinement rebar. As it happened in the case of the columns, 

the same behavior can be seen in the σ-ε curve, i.e. the capacity of the section reduces after 

reaching the yield state (close to a strain of 0.01). Therefore the same modifications were made, 

i.e. a constant stress capacity was assumed for simplification purposes.  

 

 

 

Figure 2.10 Stress-strain relationship for the confined concrete in the beams from SE::MC. 
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 For the case of the beams the software SE::MC also provided some key additional 

information that was incorporated in the development of the stress-strain degradation curve for 

the element. For example, the stress-strain relation for the rebar has the shape displayed in Figure 

2.11.  Also, the moment-curvature curve for the beams (not used in ANSYS) can be seen in 

Figure 2.12.   

 

 

 

Figure 2.11 Stress-Strain relationships for rebar #8 used for the beams by SE::MC. 

 

 

 

 

Figure 2.12 Moment-curvature relationship for the beam from SE::MC. 
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It should be mentioned that there are theoretical methods to determine the compressive 

uniaxial stress-strain relationship for confined reinforced concrete in a practical way. One of 

these methods (Pfrang, et al.,1964) was derived by Hognestad (1951) from tests on short 

concrete columns subjected to combined axial load and bending. To simplify the derivation, in 

this method bending is assumed to occur about only one of the principal axes of the section. In 

addition, in this formulation the concrete is also assumed to have no tensile strength. The graph 

of the stress-strain relation and the equations to define it are shown in Figure 2.13.   

 

 

Figure 2.13 Assumed stress-strain relationship for reinforced concrete. (Pfrang, et al.,1964) 

 

where the following notation is used: 

 

 fc   = concrete normal stress at any strain, 

 f’c  = compressive strength of concrete determined from 28 days cylinder test, 

 f”c  = compressive strength of concrete in reinforced concrete members, 

 ε  = normal strain,  

 εo  =  compressive strain in concrete corresponding to maximum stress, 

 εc  =  compressive strain in concrete, and 

 εu  =  useful limit of compressive strain in concrete. 
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 It is important to mention that even though this method was not implemented in this 

thesis to determine the stress-strain curve that was input to the program, it is shown here because 

it can be used as an alternative approach. For example, a stress-strain curve for unidirectional 

monotonic compressive loading similar to the first zone in Figure 2.13 was used by Musmar 

(2013) to study the effect of openings in the behavior of reinforced concrete shear walls. An 

ideal elastic-perfectly plastic material model was adopted for the steel reinforcement. This author 

used the two constitutive relations in the ANSYS program along with the same element Solid65 

adopted in the present study. 

 

2.2.3. Pushover calibration 

 

 The pushover analysis is a procedure to carry out a static non-linear analysis of a 

structure, usually a model of a building. The structure is subjected to a lateral load loading 

pattern, either concentrated or distributed and as the load is slowly increased, the displacement of 

a selected point is recorded. For buildings, the lateral displacement is usually measured at the 

roof.  As the load increases, the elements of the building pass from an elastic state to an 

inelastic behavior until an ultimate condition is reached. 

 

 Here a pushover analysis was performed on a single column of the building that will be 

the subject of further studies. The point load was applied at the top end in one direction and then 

in the opposite direction to complete one cycle of loading. This process was performed in order 

to understand the loading and unloading behavior of the column. The test was done to determine 

if the element would follow the strain-stress curve calculated for the column and as such it serves 

as a mean to calibrate the model. Rather than displaying the traditional force vs displacement 

curve, only the normal stress and strain at the bottom of the column are reported in Figure 2.14. 

It can be observed that the stresses and strains in the column section behaved exactly as the 

predicted non-linear constitutive relationship for the material. Also, the loading and unloading 

cycle behavior can be seen clearly as the force applied at the top changes direction.   
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Figure 2.14 Result from the pushover analysis for the column and the input constitutive relation. 

 

2.2.4. Additional Loading 

 

 Some additional static loading were added to the dynamic loads caused by the earthquake 

ground motion. These loads must be applied before the earthquake loads and then they act 

simultaneously with them because due to the non-linear behavior of the structure they cannot be 

combined afterward. The additional loads represent the weight of the internal and external non-

structural walls, ceilings, additional equipment and piping, etcetera, that can be classified as a 

distributed load. To achieve this purpose, the loads were applied throughout the entire floor and 

roof slab area; their magnitudes are provided in Table 2.2. These loads are separate from the 

weight of the concrete structural elements, which are also accounted for.   

 

Table 2.2 Additional static loading. 

 Area Section Loading 

First Floor 30 lb/ft
2
 

Second Floor 30 lb/ft
2
 

Roof 15 lb/ft
2
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2.3 Development of the finite element model 

 

 There are several ways to model a structure to carry out dynamic non-linear analysis. The 

different models differ in the way how the plasticity is distributed along the element.  Basically, 

the modeling approaches can be divided into concentrated plasticity and distributed plasticity 

models (Deierlein, et al., 2010). The simplest and most widely used models are those where the 

inelastic deformations are concentrated at the end of beams and columns either by means of a 

rigid plastic hinges or non-linear spring with hysteretic properties. At the other end of the 

spectrum are the most sophisticated models, i.e. the finite element models where the continuum 

along the complete member length is divided into small subdomains. Although the finite element 

method is nowadays a well-known and widely used technique for static and dynamic analysis, it 

is still not extensively applied for non-linear analysis of reinforced concrete structures. There are 

several reasons that impede its widespread application, namely the computational costs, the 

parameters calibration, the difficulty in interpreting the results in relation to design acceptance 

criteria that are still based on rotations (Deierlein, et al., 2010), etc. As a consequence, the finite 

element method for non-linear structural analyses is still mostly limited to research applications. 

 

Notwithstanding the cited limitations, there is a number of powerful commercial finite 

element software that can be applied for non-linear dynamic analysis of reinforced concrete 

structures. Among them are ANSYS, Abaqus, and LS-Dyna. As it was mentioned previously on 

several occasions, for the present work the ANSYS program was chosen. There are a couple of 

reasons for this choice. First, the author of this thesis became acquainted with the program when 

he spent a summer as an intern at the Brookhaven National Laboratory in Uptown, New York, as 

part of the requirements of his Nuclear Regulatory Commission (NRC) fellowship. The second, 

and perhaps the most important reason, is that ANSYS is one of the structural analysis programs 

that meets the standards of NRC. The computer programs to be used in the nuclear industry need 

to be in full compliance and meet the requirements of applicable provisions of the U.S. NRC’s 

10CFR21 and 10CFR50 Appendix B regulations (Nuclear Regulatory Commission, 2016a; 

2016b). 
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2.3.1. Element selection for the structural model 

 

 To carry out an analysis using finite element models it is necessary to select an element 

type which depends on the degrees of freedom that are desired to be considered to calculate the 

response. Another important consideration is that each type of element has unique properties that 

allow to perform specific tasks, like for example analyzing the cracking that appears in the 

concrete as the load increases.  The type of elements also depends on the element and material; 

for example, concrete beams and columns are defined better using solid elements, whereas 

standard steel sections that have small wall thickness may be better defined using shell elements. 

 

 It was decided to model all the elements of the building using a 3-D solid element since 

the cross sections of the beams and columns are almost equal in magnitude in both directions (as 

opposed to a steel W section, where shell elements could be more appropriate). The three-

dimensional finite element known as SOLID65, typically used to model 3-D solid bodies in 

ANSYS, was selected for the model of this thesis. These elements have properties that are 

specifically oriented for modeling 3D reinforced concrete sections. The SOLID65 element is 

defined by a total of eight nodes having three degrees of freedom at each of the nodes: 

translations along the x, y, and z directions, as shown in Figure 2.15.  

 

SOLID65  can be used for modeling concrete solids with or without reinforcing bars. For 

concrete applications, for example, the solid capability of the element may be used to model the 

concrete behavior while the rebar capability is available for modeling the reinforcement 

behavior. Up to three different rebar specifications may be defined. Also one of the most 

important features of this type of element is its capability for incorporating the non-linear 

material properties. It is able to model the concrete cracking (in three orthogonal directions), 

crushing, plastic deformation, and creep. However, it must be pointed out that these capabilities 

were not used for the present study. For the building model studied here, the elements are 

homogeneous (without rebars) and the non-linear behavior is accounted for the stress-strain 

constitutive relation previously presented. 
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Figure 2.15 SOLID65 3D reinforced concrete solid element from ANSYS. 

 

2.3.2. Model meshing 

 

 A mesh is the partition of an arbitrary domain into simpler geometrical objects or 

elements. Those elements are a compound of nodes, edges, faces and the relations between them. 

In other words, the mesh divides a complex geometry into non-overlapping elements that fill the 

domain. As in the elements, there are also several types of ways to carry out the meshing and in 

the case of 3D models, there are three major types: Tetrahedron, Hexahedron and Multi-Zone. In 

the MultiZone Meshing Method, ANSYS automatically generates a pure hexahedral mesh 

whenever possible and then it fills the more difficult to capture regions with an unstructured 

mesh (i.e., one that does not follow a uniform pattern). 

 

 In many cases, non-linear simulations can be challenging and the meshing quality can 

determine the accuracy of the results. Obviously, a very fine mesh can lead to more precise 

results but the time required to get the final answer also increases, and this is important when 

many analysis need to be run. To achieve the best results in the beams, columns and at the roof, 

which are the elements where the response is measured, a mesh with hexahedrons was 

implemented. The hexahedron is a cube-shaped element that has 8 vertices, 12 edges and it is 

bounded by 6 quadrilateral faces. After testing models with several mesh sizes, the best accuracy 

versus time consumption was obtained with elements with a size of 20 inches, which represents 

the maximum distance allowed between each node. For the floor slabs, a tetrahedron mesh was 

used since it gives faster results and a high precision was not necessary for these locations. A 

single tetrahedron has 4 vertices, 6 edges and is bounded by 4 triangular faces. The mesh model 

is shown in Figure 2.16 for the complete frame structure. The mesh in the roof slab looks 
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different because it was automatically generated by the program and since there were no columns 

coming out of the surface, it led to a simpler mesh compared to the floor slabs. 

 

 

Figure 2.16 Mesh of 3D frame model. 

 

2.4 Chapter summary and conclusions 

  

 The main objective of this chapter was to give a clear understanding of the model 

development process and all the parameters that were established. In the following chapter, the 

described model will be subjected to different linear and non-linear analysis and all of them will 

be using the same base structure.  The structure as mention above consists of a 3D three story 

building. The structural analysis was assumed as a special moment resistant frame that is fixed at 

the bottom of the end of each column, and free at the top with no lateral or vertical restrictions in 

movement. The entire model consists of reinforce concrete material that has been defined with 

non-linear properties that will capture a more real behavior of the structure.  
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 In order to analyze this structure and combine all the parameters (material properties and 

dimensional cross section), a finite element analysis was implemented. All results processes were 

generated using ANSYS v16 computer software. The finite element method was used because of 

the ability to handle the complex process and make 3D simulations that will allow the 

predictions of non-linear structural behavior using loads that can change in time in magnitude 

and direction. For the model, a mesh of 20 in hexahedral shape was determine, after several tests 

that optimize the analysis process giving the most accurate results in the less computational time 

necessary. Also, the SOLID65 was determined as the element type for the structure because of 

the ability to better predict the behavior of reinforced concrete in smaller cube shape elements. 
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CHAPTER III 

 

MODAL AND NON-LINEAR 

DYNAMIC ANALYSIS 
 

3.1 Introduction 

 

 This chapter presents the methodology and examples of application to calculate the non-

linear dynamic response of the three-story reinforced concrete building presented in Chapter 2. 

Non-linear static procedures are becoming more popular to evaluate structures that are subjected 

to strong earthquake loading and are the methods used for the design of new buildings with the 

performance-based design philosophy. However, non-linear dynamic analysis (Fragiadakis, et 

al., 2014) has been proven to be the most rigorous analysis method available. Nevertheless, there 

are several reasons that are normally cited to explain why they are not more widely used in 

structural engineering practice. Among them are the computational expense of the method, the 

need for detailed information about the structure and its material, the scarceness of appropriate 

and user-friendly structural analysis software, and the need for careful selection of the ground 

acceleration time histories to be used as seismic input. These drawbacks are slowly being 

overcome and it is reasonable to foresee that the non-linear analysis methods will become more 

popular in the near future. In any case, full non-linear dynamic analyses are required for this 

thesis because the response calculated with this rigorous approach will be used as a benchmark 

to evaluate the accuracy of the equivalent linear method.  

 

 To implement a non-linear time history dynamic analysis, ANSYS v16 uses an iterative 

process in order to generate results. Each iteration involves solving a linearized equilibrium 

equation where the mass and stiffness matrices must be calculated for each time step. For this 

purpose the program uses the Newton-Raphson method (Huei-Huang, 2015), using the 

difference in displacement, force or even bending moment to determine convergence in the 
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results and move on to the next time step. If the residual force is smaller than a criterion, then the 

substep converged. Otherwise, another equilibrium iteration equation takes place. The analysis is 

completed when the convergence criteria are satisfied for all the time steps as shown in Figure 

3.1. In general, this method is a root-finding algorithm that uses the first few terms of the Taylor 

series of a function f(x) in equation (3.1) in the vicinity of a suspected root. 

                                                               (3.1)  

 

 

Figure 3.1 Newton-Raphson method. (ANSYS, 2015) 

  

 This chapter also presents the results of non-linear dynamic analyses performed using a 

short-band and broad-band earthquake that were applied to the model structure defined in the 

previous chapter. The purpose of the analysis was to obtain realistic values of the shear force and 

bending moment at a first floor column base, and the relative displacement at the roof. These 

quantities are compared with the results from the equivalent linear model in the next chapter. The 

absolute acceleration of each floor was also recorded to generate floor response spectra that are 

used for the seismic design of non-structural components and equipment. In the next chapter the 

acceleration time histories will be used to calculate floor response spectra with two approaches: 

the full non-linear analyses presented here and the equivalent linear method introduced in 

Chapter 4. 
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3.2 Modal analysis  

 

 The first step in a dynamic analysis of a structure, whether it is a linear or non-linear one, 

should be to obtain its dynamic properties, namely the natural frequencies, natural periods and 

modes of vibrations. Examining the natural periods and associated modal shapes one can detect 

problems in the model. Moreover, inspecting the natural period’s one can select the proper time 

step for a posterior forced vibration analysis of the structure, and estimate which modes will have 

more influence in the response, etc. Therefore, a modal analysis was performed in ANSYS and 

the first six natural frequencies and periods are shown in Table 3.1.  Figure 3.2 displays the 

natural frequencies in a graphical form. 

 

Table 3.1 Natural frequencies and periods of the structure. 

Mode Frequency (Hz) Period (s) 

1 2.6267 0.3807 

2 2.7378 0.3653 

3 3.4304 0.2915 

4 8.5653 0.1168 

5 8.7781 0.1139 

6 11.1291 0.0899 

 

 

 

Figure 3.2 Undamped natural frequencies of the 3-D model. 
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Because the model of the building is three-dimensional, a discussion of the frequencies 

and modes is warranted.  The first mode with a period of 0.3807 s corresponds to a deformation 

in the vertical Y-Z plane. The second mode of the building has a natural period of 0.3653 s and it 

is associated with a motion in the X-Z plane. Figure 3.3 displays the second vibration mode of 

the 3D model of the building calculated with ANSYS and the resulting magnitude of 

deformation in feet of the entire structure.   

 

 

 

 

Figure 3.3 Second mode of vibration shape. 

  

It is recalled that the building is regular in the sense that the centers of mass and stiffness 

at each floor coincide and thus the first two modes are uncoupled. The third mode with the 

natural period of 0.2915 s is a torsional one (around the vertical axis). The fourth mode (with 

period 0.1167 s) displays a motion of the floor masses in the Y-Z plane: the first and second 

floor move in opposite direction to the third floor. This modal shape would be associated with 

the second mode of a 2-D model of the building. In a similar fashion, the shape of the fifth mode 

(with period 0.1139 s) is confined to the X-Z plane and has the shape of the second mode of a 2D 

building. The shape of the sixth mode has a complex form and it is a combination of torsion and 

flexural deformation in the Y-Z plane. 
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 To calculate the seismic response, the ground acceleration will be applied along the 

horizontal X axis and thus the main modes of interest are those in the X-Z plane, i.e. the second 

and fifth modes among those presented in Table 3.1. The maximum displacements of the floor 

slabs for the second and fifth modes were recovered from the ANSYS output and are plotted in 

Figure 3.4. They clearly reveal that these are the first and second modes of vibration of a plane 

model of a three-story building, as it was mentioned before. 

 

 

Figure 3.4 Vibration modes in the X-Z plane. 

   

3.2.1. Comparison with a shear building model 

 As a means to corroborate the dynamic properties of the building model created in 

ANSYS, the simple and well known shear building model was used. Because the shear building 

model used was 2-D, only the lower frequencies and modes in the X direction can be verified, in 

particular the second and fifth modes of the ANSYS model. It is recalled that in a shear building 

model the beams and slabs are assumed to be rigid in-plane and out-of-plane and they are 

represented by lumped masses; the mass of the columns is also merged with these floor masses.  

Using the properties of the columns, the following stiffness matrix of the shear building was 

obtained: 

  

4514.1 -2257.1 0

-2257.1 4514.1 -2257.1 in 

0 -2257.1 2257.1

kip
K

inches

 
 


 
  

       (3.2) 
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The lumped mass matrix is: 

 

  
2

.sec
1.2215 0 0

0 1.2215 0

0 0 0.84705

kip

inches
M in

 
 


 
  

  (3.3) 

 

Solving the associated eigenvalue problem with these two matrices, the natural periods 

displayed in Table 3.2 were obtained. They are compared in the same table with the natural 

periods of the ANSYS model. The differences are reasonable considering that the shear building 

is a very simplified model with only three degrees of freedom compared with the 3-D finite 

element model of ANSYS with thousands of degrees of freedom. 

 

Table 3.2 Comparison of natural periods of the two models. 

Mode ANSYS Periods (s) Shear Building Periods (s) Difference 

2 0.36526 0.30049 17.7% 

5 0.11392 0.10961 3.8% 

 

 

3.2.2. Damping model calibration 

 The estimation of the damping present in the structures poses a very difficult problem for 

structural dynamics. Unlike the mass and stiffness matrix of a structural system, damping does 

not relate to a unique physical property but it is rather due to a number of phenomena difficult to 

identify and quantify. 

 

When the building is vibrating due to an earthquake ground motion, there are two sources 

of damping present. One is the inherent or natural damping which is always present in the 

structure, even when it is in free vibration or oscillating with low amplitude vibrations. This 

dissipation of energy is due to several factors which are very difficult to quantify separately. 

Usually a linear viscous damping model is used to account for all the different sources in a 

simple way.  
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The other source of energy dissipation occurs when the structural elements undergo 

inelastic excursions and it is sometimes referred to as hysteretic damping. The amount of 

damping is proportional to the area of the hysteresis cycle form in the elements that deform 

inelastically. This damping is not calculated with any specific model but rather it is inherently 

being accounted for when the equations of motion are numerically integrated. 

 

The ANSYS program needs an explicit damping matrix [C] to account for the inherent 

damping. There are two common ways to define such a damping matrix. One is to use the 

classical damping assumption, i.e. to presume that the matrix [C] is diagonalizable using the 

mass normalized eigenvector matrix [Φ]. It can be shown that in this case the damping matrix 

can be calculated as: 

         2
T

j jC M M       (3.4) 

 

where [M] is the mass matrix and ξj and ωj are, respectively, the modal damping ratio and natural 

frequency of the j
th

 mode. The other approach to define a damping matrix is to use the Rayleigh 

damping model. In this method the damping matrix [C] is defined as a linear combination of the 

mass matrix [M] and stiffness matrix [K]: 

 

             C M K    (3.5) 

 

where α and β are two constants that need to be determined. This way to define the damping 

matrix is also known as the proportional damping model since the matrix [C] is proportional to 

the mass and stiffness matrices. Equation (3.5) is usually implemented for the whole structure 

but it could be applied to individual elements. To determine the constants α and β, equation (3.5) 

is pre and post multiplied by the mass normalized matrix of vibration modes [Φ].  Doing so and 

using the orthogonal properties of the modes with respect to the mass and stiffness matrices, one 

can write: 

 

 
22 ; 1, ,j j j j n       (3.6) 



44 

 

Because equation (3.6) is an overdetermined system of equations (n equations for 2 

unknowns), to solve for α and β from equation (3.5) one needs to select two modes, for example 

the m
th

 and p
th

 modes: 

 

α β
 
2  2

α β
 
2  2

m m

m

p p

p

 


 


 

 

 (3.7) 

Solving these equations it is straightforward to show that the constants can be obtained in 

terms of the modal damping ratios ξm and ξp and natural frequencies ωm or ωp of the two selected 

modes as: 

  2 2

2   
   

m p

p m m p

p m

 
    

 
 


 (3.8) 

 
2 2

2   
 

m p p m

p m m p

   


   

 
     

 (3.9) 

 

 To determine the constants α and β with equations (3.8) and (3.9), the natural frequencies 

of the second and fifth modes of the 3D model were selected as ωm and ωp. It is recalled that 

these modes are equivalent to the first and second modes of a 2D model of the building in the X-

direction. This is the direction of interest because the earthquake ground motion is applied along 

this axis. Table 3.3 displays the frequencies and damping ratios used to define the constants α 

and β and Table 3.4 shows the values of the two constants. 

 

Table 3.3 Parameters for calculation of the two constants α and β. 

Mode Frequency (Hz) Symbol Frequency (rad/s) Symbol Damping 

2 2.7378 ωm 17.2021 ξm  0.02 

5 8.7781 ωp 55.1544 ξp 0.02 
 

Table 3.4 Constants to define the damping matrix. 

Constant Value 

α 0.524498 

β 0.000552818 
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 It is important to mention that the Rayleigh damping has some limitations. Since the 

damping ratio can only be assigned to two modes of vibration, this causes that those modes 

corresponding to frequencies smaller than ωm or bigger than ωp will have larger values. At the 

same time, the modes with frequencies in between the two frequencies selected, ωm and ωp, will 

have lower damping ratios, as shown in Figure 3.5. This can be easily shown by solving for the 

damping ratio from equation (3.6) and dropping the subscripts to create a continuous function: 

 

 
1

2 2

 
 


   (3.10) 

when equation (3.10) is evaluated at ω = ωm or ω = ωp, it yields the correct damping ratios, but 

the other modes can be overdamped or underdamped. 

                           
Figure 3.5 Rayleigh damping curve 

 

3.2.3. Damping validation 

 In order to validate the correct implementation of the damping in the model created in 

ANSYS, a simple test was simulated. It is well known that for a structure to vibrate with the 

natural frequency of a selected mode, it should be initially deformed with the shaped of this 

mode and then release it in free vibration. This test was simulated in ANSYS using the 

maximum displacements of each floor corresponding to the second mode of vibration obtained 

from the modal analysis. Each floor of the building was slowly pushed from an undisturbed state 

during one second until it reached the same displacement that the structure experience in the 

second mode. It should be mentioned that the program allows the user to apply displacements 

that increase with time in a predefined way. This process was also implemented to apply the 

gravitational loading on the structure (describe on section 3.4.1). After the selected time was 

reached, the loads were suddenly removed and the structure was allowed to vibrate freely. The 
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displacement at the roof was measured and it is displayed in Figure 3.6 for the first two seconds 

of the motion. 

 

Figure 3.6 Displacement of the roof in free vibration. 

 

 The damping ratio can be determined by calculating the logarithmic decrement δ. The 

logarithmic decrement can be computed using the values of the displacements at two peaks 

(consecutive or not) with the same sign as follows: 

 1

2

log
u

u


 
  

 
 (3.11) 

The damping ratio associated to the vibration mode of the test can be obtained with the 

following expression, valid for small values of ξ: 

 
2





  (3.12) 

  

Table 3.5 displays the two instants of time and the corresponding peak displacements 

used to define the logarithmic decrement and Table 3.6 shows the value of δ and the estimated 

damping ratio of the second mode. The damping ratio obtained from the simulation of the free 

vibration test is equal to that selected to define the two constants of the Rayleigh damping model, 

which validates its implementation in the program ANSYS. 

 

  Table 3.5 Parameters for logarithmic decrement calculation. 

Point Time (s) Displacement (in) 

1 1.4 0.02889 

2 1.75 0.02163 
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Table 3.6 Damping ratio obtained from the free vibration simulation.  

Decrement (δ) Damping (ξ) 

0.12569 0.02 

 

   

3.2.4. Modal analysis results 

 After the calibration of the model and validation of the damping parameters, the final 

linear dynamic properties of the 3-D model of the building are displayed in Table 3.7. Also, it is 

shown the damping that each mode of vibration will experience. Because of the limitations of the 

Rayleigh model discussed before, only the second and fifth modes have the exact damping ratio 

of 0.02. The damped natural frequencies in ascending pattern are shown in Figure 3.7: because of 

the small value of the intrinsic damping, they are very similar to those with no damping.  

 

Table 3.7 Final dynamic properties of the lower modes of the 3D building model. 

Mode 
Damped 

frequency (Hz) 
Period (s) 

Modal damping 

ratio 

Logarithmic 

decrement 

1 2.6261 0.38079 0.0205 -0.12853 

2 2.7373 0.36532 0.0200 -0.12569 

3 3.4299 0.29155 0.0181 -0.1139 

4 8.5636 0.11677 0.0197 -0.12411 

5 8.7763 0.11394 0.0200 -0.12569 

6 11.126 0.08988 0.0231 -0.14505 

 

 

 

Figure 3.7 Natural frequencies of the structure with damping. 
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3.3 Selection of acceleration records 

 

The selection of an acceleration time history to carry out the linear or non-linear dynamic 

analysis is always an important issue. Usually a suite of accelerograms are required to represent 

the randomness of the earthquake phenomenon. They should represent the seismic hazard 

conditions at a site and thus factors such as the magnitude of the expected earthquake event, the 

distance to the causative fault, the faulting mechanism and the local site geology are used in the 

selection process. 

 

 The objective of the present study is not to obtain adequate seismic accelerograms for the 

design or verification of a building, but rather to assess if an approximate method can provide 

reasonably accurate results compared with a full non-linear dynamic analysis. In fact, the 

geographical location of the building is not an issue for this study. Therefore, the selection of the 

accelerograms was not based on parameters such as the magnitude, focal distance, etc. Even 

though, there are two options that can be used to define the acceleration time series: a) use 

accelerograms that are compatible to a design spectrum; b) employ real accelerograms from 

documented earthquakes. It is argued that the first option poses a problem for non-linear 

dynamic analysis because they have a large number of cycles of strong motion and thus an 

unrealistic high energy content (Bommer and Acevedo, 2004). Therefore, the second choice was 

adopted for this thesis. 

 

3.3.1. Ground motion database 

 Once the decision to select records of documented earthquakes was taken, the next step is 

choose the specific records. The intensity of the accelerograms was not an issue because they 

will be scaled so they generate a controlled non-linear response. Therefore, it was decided to 

select records with different frequency content: for this purpose they are divided into “broad-

band” and “short-band” records depending on whether they have a Fourier spectrum that is 

spread out through the frequency range or the dominant components are clustered in a narrow 

frequency band. The Pacific Earthquake Engineering Research Center (PEER) ground motion 

database which has a very large set of ground motions recorded worldwide of shallow crustal 
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earthquakes was used to choose and pick the accelerograms (PEER, 2016). A total of eight 

recorded acceleration time series were retrieved and they are plotted in Figure 3.8. Some of the 

parameters of these records are displayed in Table 3.8 where they are classified as short or 

broad-band events. The pseudo-acceleration response spectrum for each of the selected 

earthquake records was computed and they are shown in Figure 3.9. The original PGA (“peak 

ground acceleration”) of each accelerogram is shown in Table 3.8 and Figure 3.8. The spectral 

accelerations corresponding to the two modes that most contribute to the seismic response 

(modes 2 and 5 of the 3-D model) are listed in the third and fourth columns of Table 3.8 and also 

shown in Figure 3.9.  

 

Table 3.8 Ground motion selection database 

 

Earthquake ∆t (s) 
Acc. mode 2 

(fracc. of g) 

Acc. mode 5 

(fracc. of g) 

PGA 

(fracc. of g) 
Class 

SanSalvador-GIC1986 0.005 1.4778 1.2851 0.875 Short 

ImperialValley1940 0.01 0.68797 0.67866 0.31288 Broad 

LomaPrieta-Gilroy1-1989 0.005 1.1629 0.83802 0.41088 Short 

Northridge-Sylmar1994 0.02 2.7747 1.1886 0.84331 Short 

BorregoMountain1968 0.005 0.021578 0.015177 0.011177 Broad 

HectorMine1999 0.01 0.11528 0.048211 0.043514 Broad 

Managua1972 0.01 0.82455 0.72063 0.42127 Broad 

Parkfield1966 0.01 0.38176 0.42938 0.27264 Short 

 



50 

 

 

Figure 3.8 Acceleration time histories of the selected earthquake records. 
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Figure 3.9 Acceleration response spectra of the selected earthquake records. 
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3.3.2. Broad-band earthquake record for detailed studies 

 The first broad-band seismic record that will be used to examine in more detail the 

accuracy of the equivalent linear method is the accelerogram of the well-known El Centro 

earthquake of May 19, 1940. This event is officially known as the 1940 Imperial Valley 

earthquake and was a 6.9 in magnitude event. It was recorded by the “El Centro Array” number 

9 and is associated with station 117 in the USGS database. The acceleration time history with a 

PGA of 0.313g and the corresponding response spectrum for 5% damping are displayed in 

Figure 3.10.  

 

 

Figure 3.10 Acceleration time history and response spectrum of the 1940 Imperial Valley earthquake. 

 

The Fourier spectrum (the absolute value of the Fourier transform) of the Imperial Valley 

record is shown in Figure 3.11. There are two graphs shown: the first one (with a dotted line) 

corresponds to the original spectrum and the second one (with the dark, continuous line) was 

smoothed out by processing the original spectrum using a running average (also known as a 

rolling or moving average).  This is a numerical procedure used to smooth out irregularities (i.e., 

the numerous peaks and valleys) in a signal or in a plot to help to recognize trends, in our case 

the dominant frequencies in the spectrum. By comparing the two curves (original and softened) 

displayed in Figure 3.11, one can appreciate better the most important peaks in the spectrum and 

the frequencies associated to them. 
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Figure 3.11 Fourier spectrum of the 1940 Imperial Valley earthquake record. 

  

3.3.3. Short-band earthquake record for detailed studies 

 The short-band ground motion record selected for a detailed study of the equivalent linear 

method was produced by the earthquake that took place on October 10, 1986 in San Salvador, El 

Salvador. The 1986 San Salvador record selected has a PGA of 0.875 g, it was registered at the 

“Geotechnical Investigating Center” station 090 and was a 5.7 in magnitude event. The 

acceleration time history is shown in Figure 3.12 along with its response spectrum.  

 

 

Figure 3.12 Acceleration time history and response spectrum of the 1986 San Salvador earthquake. 
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Figure 3.13 presents the Fourier spectrum of the 1986 San Salvador seismic record. Here 

again the original spectrum is shown alongside its smoothed version. 

 

 

Figure 3.13 Fourier spectrum of the 1986 San Salvador earthquake record. 

 

3.4 Non-linear dynamic analysis  

 

 The non-linear dynamic procedure, when properly implemented, provides the most 

accurate prediction of the structural response to a strong ground motion. Since the non-linear 

dynamic analysis model incorporates inelastic member behavior under cyclic earthquake ground 

motions, the non-linear dynamic procedure explicitly accounts for the hysteretic energy 

dissipation in the non-linear range. However, the damping, additional loads and the gravity 

acceleration load need to be added as parameters in order to be considered as part of the dynamic 

analysis.  
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 Because a non-linear dynamic analysis involves fewer assumptions than a non-linear 

static procedure, it is subjected to fewer limitations and in theory at least, it represents better the 

real response of the structure. However, the accuracy of the results depends on the details of the 

computer model and how faithfully it captures the significant behavioral effects (Deierlein et al., 

2010). Acceptance criteria typically limit the maximum structural component deformations to 

values where degradation is controlled and the non-linear dynamic analysis models are reliable. 

   

3.4.1. Application of gravity loads 

 The first step to carry out a non-linear dynamic analysis is to apply the gravitational 

loads. In a linear analysis the order of the application of the gravitational and earthquake loads is 

not important because their effects can be later added up. On the contrary, in a non-linear 

analysis they must be applied simultaneously since the superposition principle does not hold. The 

specific way how this is done depends on the particular computer program being used. In the 

case of ANSYS, when a dynamic and static load act simultaneously, the second load must be 

slowly applied until it reaches its prescribed value. Moreover, in the case of gravitational loads 

they are applied as an acceleration in the vertical direction (Y-direction) that slowly increases in 

magnitude until it reaches the acceleration of gravity. For the present study the acceleration of 

gravity was linearly increased during five seconds. After that it was maintained for an extra 

second to make sure that any lingering vibratory motion vanishes. Once this time (6 seconds) 

was reached, the acceleration time-series of the selected earthquake was applied in the X-

direction.  

 

3.4.2. Results of the dynamic analysis with the broad-band record 

 The first non-linear analysis was performed using the selected earthquake ground motion 

with a broad-band frequency content, i.e. the 1940 Imperial Valley record. The accelerogram 

was not scaled; it was used as it was originally recorded with a PGA of 0.313g. The purpose was 

to assess how much this earthquake could push the structure into the non-linear range. It is 

recalled that the objective of this thesis is to evaluate an approximate method to calculate the 

seismic response of a structure with moderate non-linear behavior. This means that it seeks that 

the earthquake provokes an inelastic response of the building but limited in extent. 
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The next task is to select the types of response to be examined and the structural elements 

in which they will be calculated. The amount of output information produced by ANSYS for a 3-

D finite element model of the building can be overwhelming and thus the response quantities 

must be cut down to a manageable set: the response in one of the columns of the first floor and 

one of the beams at the first level. The selected column and beams are identified in Figure 3.14. 

 

 

 

Figure 3.14 Beams and column of the building selected to trace the response. 

 

The maximum bending stresses and normal strains in absolute value for the first floor 

beam and column are shown in Table 3.9. These values were obtained from their respective time 

histories displayed in Figure 3.15. The four graphs show the absolute values of the time 

responses during first fourteen seconds once the earthquake acceleration was applied. Note that 

during the first six seconds of the analysis the response varies slowly while the gravitational 

loads are applied, as it was explained before.      

 

Table 3.9 Peak stresses and strains due to the unscaled broad-band record. 

Type of response Maximum values 

Beam stress 

 

P  4.2627  ksi 

Beam strain 

 

0.001355 in/in 

Column stress 

 

3.405     ksi 

Column strain 

 

0.000998 in/in 
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Figure 3.15 Stresses and strains time histories due to the unscaled broad-band record. 

 

 To assess the level on non-linearity that the structure reached due to the unscaled 

earthquake, the stress and strain time histories were combined such that the time became a 

parameter and then they were plotted in an σ-ε plane. The graph was superimposed with the 

constitutive relationship σ = f(ε) calculated for the beam and column sections. The results are 

displayed in Figure 3.16. As it can be seen in the two graphs, the earthquake ground motion with 

its original intensity did not manage to push the structure into the non-linear range. In order to 

carry out the objective of the study, i.e. to compare the non-linear response calculated with the 

equivalent linear and exact methods, the record was scaled up so that the structure behaves non-

linearly.  

 

 

Figure 3.16 Stress-strain response and constitutive relation for the broad-band unscaled record. 
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 The acceleration time series of the 1940 Imperial Valley earthquake was scaled by a 

factor of 3.5, which was selected using a trial and error process to allow the beam and column 

elements to reach a moderate non-linear behavior. The magnitude of the gravitational loads and 

all other parameters remained the same in order to capture only the difference in behavior 

created by the more intense earthquake. The maximum values of the four selected response 

quantities for the first floor beam and column are shown in Table 3.10. Figure 3.17 shows the 

time history response data retrieved from ANSYS during the first 14 seconds of the earthquake 

where the peak acceleration occurs. In addition, the response during first 6 seconds when the 

gravity loads are applied is included at the beginning of the time histories.  

 

Table 3.10 Peak stresses and strains due to the 3.5x scaled broad-band record. 

Type of response Maximum values 

Beam stress 7.0684 ksi 

Beam strain 0.0084185 in/in 

Column stress 7.2121 ksi 

Column strain 0.003444 in/in 
 

 

 

Figure 3.17 Stresses and strains time histories due to the 3.5x scaled broad-band record. 
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 To measure the level of non-linear deformations sustained by the structure, the stress and 

strain time series were used to generate the σ-ε curve and it was then plotted along with the non-

linear constitutive relation for the beam and column sections. The results are displayed in Figure 

3.18. As it can be seen, now the scaled earthquake pushes the beam elements beyond their elastic 

range and thus hysteretic cycles are formed.  

 

 

Figure 3.18 Comparison of stress vs. strain curves for the broad-band 3.5x scaled record 

 

 The columns were designed so that they would undergo much smaller non-linear 

excursions. In other words, the weak-beam strong-column design approach for RC buildings 

subjected to earthquake loads was followed. Due to the way that the structure was designed, it is 

expected that a plastic hinge would form in the beam element very close to the beam-column 

connection. This explains the fact that even though the earthquake was scaled up, the columns 

almost remained in the linear regimen, as confirmed by the very small hysteresis cycles in the 

right graph of Figure 3.18. 

Under these increased deformations, it is important to ensure that the structure remains 

stable without collapsing, i.e., it should not loose vertical load carrying capacity. The ability of 

a structure to undergo large deformations without collapsing is called ductility. The term is 

loosely used in earthquake engineering to indicate the degree to which an assembled 

structure that is damaged can undergo large deformations without collapsing. The measurement 

of ductility can be defined as the ratio of maximum strain to yield strain of the material. Using 

this definition applied to the beam elements the ductility for the broad-band event resulted in a 

value of 3.422. The maximum strain value used in the calculations is shown in Table 3.10 and 

the yield strain value of 0.00246 in/in obtain from the stress-strain curve.  
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Once it has been verified that the structure underwent non-linear deformations, additional 

response quantities were retrieved from the ANSYS output. The relative displacement at a point 

located at the roof of the building, the shear force and the bending moment at the base of a 

column at the first floor are three quantities of interest. The time variation of these response 

quantities are shown in Figure 3.20. The maximum absolute values of the displacement, shear 

force and bending moment are displayed in Table 3.11. These values are important because they 

will be used in a following chapter to compare them with similar quantities but obtained with the 

equivalent linear method.  

 

Another response of interest for the goal of this investigation is the absolute acceleration 

of the building floors. These acceleration time histories are needed to calculate the floor response 

spectra for the design of nonstructural components and equipment. The acceleration time 

histories for the three floors of the building in the X direction are shown in Figure 3.19. 

 

Table 3.11 Maximum non-linear response quantities due to the broad-band 3.5x scaled record. 

 

Type of response Maximum values 
Roof displacement   5.3374 in 

Bending moment  42442 kip-in 

Shear force 407.1 kip 

 

 

Figure 3.19 Floor accelerations due to the broad-band 3.5x scaled record. 
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Figure 3.20 Time variation of selected response quantities due to the broad-band 3.5x scaled record.  

a) Roof displacement, b) Base column shear force, and c) Base column moment reaction. 
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3.4.3. Results of the dynamic analysis with the short-band record 

 In the third analysis case, the short-band earthquake record, the accelerogram of the 1986 

San Salvador event, was applied to the building model with its original intensity. Figure 3.21 

shows the time variation of the stress and strain in the critical beam and column during the first 

ten seconds of the earthquake which corresponds to the strong motion part of the accelerogram. 

As it was done in previous cases, the first six seconds of the response while the static loads are 

being applied is also shown in the time histories. The maximum absolute stresses and strains in 

the first floor beam and column retrieved from the time histories in Figure 3.21 are shown in 

Table 3.12.      

Table 3.12 Peak stresses and strains due to the unscaled short-band record. 

Type of response Maximum values 

Beam stress 6363.4 psi 

Beam strain 0.002730 in/in 

Column stress 4509.9 psi 

Column strain 0.001469 in/in 
 

 

 

Figure 3.21 Stresses and strains time histories due to the unscaled short-band record. 
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 Before proceeding to carry out further analyses, it is important to assess the level on non-

linearity that the structure underwent due to the seismic excitation. This is done by combining 

the bending stress and strain time histories at a point of the beam and columns to obtain the σ - ε 

curves. They are next plotted in the same graph with the non-linear constitutive relation for the 

reinforced concrete sections. The results are shown in Figure 3.22 for the beam and column. 

Examining these graphs it becomes evident that, as it happened with the broad-band record, the 

earthquake with the original intensity was not able to push the structure into the non-linear 

region. Therefore, the intensity of the event was scaled up to force the structure to experience a 

non-linear behavior.  Because this is a non-linear problem, it is not possible to predict 

beforehand by how much the earthquake should be scaled and thus this was done by trial and 

error. 

  

Figure 3.22 Comparison of stress vs. strain curves for the short-band unscaled record. 

 

 To increase its intensity, the accelerogram of the 1986 San Salvador earthquake was 

scaled by a factor of 2. As it was previously mentioned, this was value was chosen by trial and 

error. The first 16 seconds of the stress and strain time histories in the first floor beam and 

column are presented in Figure 3.23. They include the first 10 seconds of the earthquake were 

the maximum values of the ground acceleration occur. The peak values were collected from the 

four time series and they are shown in Table 3.13.  

 

Table 3.13 Peak stresses and strains due to the 2x scaled short-band record. 

Type of response Maximum values 

Beam stress 7.0683 ksi 

Beam strain 0.008134 in/in 

Column stress 7.1697 ksi 

Column strain 0.003394 in/in 
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Figure 3.23 Time history stress and strain data of short-band 2x analysis 

  

 To measure the level on non-linearity that the structure reached, the same process 

previously explained was implemented. The uniaxial stress-strain relationships for the confined 

concrete beam and column cross-sections described in Chapter 2 are compared with similar 

curves derived from the data collected from the numerical simulation. The two sets of curves are 

presented in Figure 3.24. The scaled earthquake ground motion was now able to push the beam 

elements to a stress level such that hysteresis loops formed when the load reversed. The results in 

the beam deviate from the constituve curve, but this might be because of the strong nature of the 

earthquake that has acceleration in both directions with different magnitudes in short periods of 

time.  
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Figure 3.24 Comparison of stress vs. strain curves for the short-band 2x scaled record. 

 

 It is again pointed out that the columns were designed to have a much lower extent of 

non-linear behavior since by design the weak elements are the beams. The column sections have 

a higher stress capacity as it can be seen in the definition of the stress vs. strain curve in the 

material properties presented in Chapter 2. Also, for this event the ductility is calculated as a 

reference value. Like before, the same definition describe in the previous case applied to the 

beam elements the ductility now for the short-band event resulted in a value of 3.3065. The 

maximum strain value used in the calculations is shown in Table 3.13 and the yield strain value 

of 0.00246 in/in obtain from the stress-strain curve.  

 

 Once it was corroborated that the elements of the structure had moderate inelastic 

deformations, the selected response quantities that will be used in a following chapter to evaluate 

the equivalent linear method were collected.  They include the relative displacement at the center 

of the roof, the shear force at the bottom of a first floor column and the bending moment at the 

same location. Their variation with time is displayed in Figure 3.25. The maximum absolute 

values for each of these three quantities are presented in Table 3.14.  

Table 3.14 Maximum non-linear response quantities due to the short-band 2x scaled record. 

Type of response Maximum value 
Roof displacement 5.2808 in 

Bending moment  42531 kip-in 

Shear force 411.43 kip 

 

The final response quantities retrieved from the ANSYS output and stored for later use 

are the absolute acceleration of the floors in the X direction. The three time series are displayed 

in Figure 3.26.   
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Figure 3.25 Time history final results of short-band 2x non-linear analysis.  

a) Roof displacement, b) Base column shear force, and c) Base column moment reaction. 
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Figure 3.26 Floor accelerations due to the short-band 2x scaled record 

 

3.5 Chapter summary and conclusions 

  

 The main objective of this chapter was to present the full non-linear dynamic analysis of 

the three-story RC building subjected to the records of two historical earthquakes with different 

characteristics. As a first step, and in order to have a better understanding of the dynamic 

response of the structure, a modal analysis was performed. The natural frequencies and modes of 

vibration were computed and displayed. The modeling of damping in the program ANSYS, 

namely the Rayleigh damping model, was discussed. The specific implementation of the 

Rayleigh formulation for the 3-D finite element model is explained. A damping ratio equal to 

0.02 was assigned to the two modes that most contribute to the seismic excitation acting along 

the horizontal X direction. Next, it was presented a verification that the damping model was 

correctly implemented in ANSYS; this was done by numerically simulating in the program a free 

vibration test. Using the displacement time history from the free vibration response and applying 

the logarithmic decrement method, it was verified that the fundamental mode had the 0.02 

damping ratio sought. 

 

 The selection of the earthquake ground motions to be used for the non-linear and 

equivalent linear analyses was presented. First two ground motions with different frequency 

contents, referred to as a broad-band and short-band event, were selected. They are the records of 

the well-known 1940 El Centro seismic event and the 1986 San Salvador earthquake. Next six 
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additional seismic records were picked from the PEER database; they are used for the final 

calibration of the equivalent linear method in Chapter 4. 

 

 The broad-band record was used as seismic input for the 3-D model of the building and a 

step-by-step non-linear dynamic analysis was performed in ANSYS. The accelerogram was used 

with its original PGA and from the response time history obtained, the stress-strain curves where 

time is a parameter were plotted. The responses were calculated at two critical points in a beam 

and column of the first floor of the building. After comparing these curves with the σ vs. ε 

constitutive relations for the beam and column sections, it was decided to scale up the 

accelerogram to induce a moderate non-linear response. The dynamic analysis was repeated with 

the 3.5 times scaled El Centro record and the aforementioned comparison process was replicated. 

Once the level of the non-linear response was found to be satisfactory, other response time 

histories and their peak values were retrieved. They are used in the following chapter to verify 

the accuracy of the proposed equivalent linear method. 

 

  The complete process described in the previous paragraph was repeated this time using 

the short-band record, i.e. the 1986 San Salvador earthquake. Here again, in the first attempt the 

response of the structure was practically linear. Therefore the accelerogram was scaled by a 

factor of 2. Now the beam element section reached a plastic state whereas the column almost 

remained in the linear range. This behavior is consistent with the design approach followed, 

where the weak part of the structure was designed to be at the ends of the beam, close to the 

connection with the column. This is because plastic hinges are expected to form in this area 

which provides the structure with the ductility it needs to absorb the energy of the seismic event. 

  

 After it was determined that the structure reached a non-linear state with the scaled San 

Salvador earthquake, the maximum values of the displacement at the center of the roof, the shear 

force and the bending moment at the base of the critical column were retrieved. Another results 

collected for later use were the absolute accelerations at each of the floors. This is important 

information because it is later employed to calculate the floor response spectra. 
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CHAPTER IV 

 

IMPLEMENTATION OF THE 

EQUIVALENT LINER METHOD  
 

4.1 Introduction 

 

This chapter explores the application of the equivalent linear method to calculate the 

approximate non-linear seismic response of typical reinforced concrete moment resistant frames. 

The method is widely used in the practice of Geotechnical Earthquake Engineering to calculate 

the acceleration at the surface of a horizontally stratified soil deposit due to an earthquake 

acceleration applied at the bedrock or at a rock outcrop. Soil materials undergo non-linear 

deformations even under earthquakes of moderate intensity and thus it is important to account for 

their non-linear behavior, even in an approximate way. It is known that the method has some 

limitations but anyway it is accepted in practical applications. One of the limitations of the 

method is that the non-linear behavior of the soils must be moderate: it does not provide good 

results for soils undergoing strongly non-linear deformations. It is reasonable to conclude that the 

same limitation will also apply to the intended application of this thesis study, namely for 

building structures.  

One of the reasons for using the equivalent linear method to calculate the seismic 

response of soil deposits is that the damping is accounted for by means of the complex modulus 

damping model. This damping model permits to assign different damping ratios to each of the 

soil layers of the deposit. In addition, it permits to model more accurately the real energy 

dissipation characteristics of soil materials. However, the complex modulus model requires an 

analysis in the frequency domain which is based on the Principle of Superposition and thus it 

cannot be applied to non-linear systems. By iteratively replacing the non-linear behaving soil 

deposit by a linear model with equivalent properties, one can apply a frequency domain analysis 

at each iteration step. 
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In the following section a concise description of the equivalent linear method. Because 

the original method proposed by Seed and Idriss (1970) was intended for soil dynamics 

applications, it will be adapted for frames undergoing bending deformations. Another difference 

is that the series of linear analysis required by the method will not be done in the frequency 

domain but rather in the time domain. In addition, the damping model used will be that available 

in the program ANSYS, namely the Rayleigh damping formulation.  

   

4.2 The equivalent linear method   

The first step in the implementation of the equivalent linear method is to select a non-linear 

stress-strain relationship. The relationship can be in the form: 

 

 ( )f   (4.1) 

which defines the so called “Ramberg-Osgood models” (Suárez, 2008) or in the more common 

form: 

 

 ( )f   (4.2) 

 

This expression defines the “Davidenkov models”. In many cases both models are 

interchangeable, i.e. one can solve for one variable in terms of the other. There are, however, 

models which can only be defined in one of the two ways. In this thesis, the more common 

Davidenkov models will be adopted.  

 

In Soil Dynamics there are several well-known models, such as the hyperbolic, the 

exponential, the Ramberg-Osgood model, etc. In this work the stress-strain relationship will be 

defined using a curve - fitting process as it will be explained in the following section.  

 

The relationships (4.1) or (4.2) define the so called “backbone curve” in the stress vs 

strain plane. This curve describes the stress generated in an element when it is monotonically 

deformed in the same direction (positive or negative) and it may be thought as the constitutive 

equation for a non-linear elastic element. Figure 4.1 displays a typical backbone curve. 
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Figure 4.1 A typical backbone curve. (Suárez, 2008) 

 

When the load reverses direction, i.e. when the element is subjected to a cyclic loading, 

the downloading path does not follow the same path as the backbone curve and a hysteresis loop 

is formed as the process continues. Figure 4.2 displays a typical hysteresis loop. To develop the 

equivalent linear method we need an explicit expression that defines the upper and lower 

branches of the hysteresis loop. In Soil Dynamics this is done be means of the so-called “Masing 

rule” explained in the following section. 

 

 

 

Figure 4.2 Hysteresis loop and the associated backbone curve. (Suárez, 2008) 
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4.2.1. Masing’s rule formulation 

  

 

Figure 4.3 Masing’s cyclical curve model. (Suárez, 2008) 

  

To define the complete hysteresis loop by means of the Masing rule the following 

variables will be used: 

 σ  = stress at a given point, 

 σa  = maximum value of the stress (at point of cycle reverse), 

 ε  = strain at a given point,and 

 εa  = maximum value of strain (at point of cycle reverse). 

 

Starting with defining the upper branch of the hysteresis loop. In addition, the curve will 

be defined in terms of two auxiliary variables   and ̂ , as shown in Figure 4.3. The relation 

between the two set of variables is: 

 
ˆ

ˆ

a

a

  

  

 

 
  (4.3) 

 The amplitude of the upper branch in the  - ̂  plane is obtained by amplifying the 

original backbone curve by a factor of 2. To “stretch” the curve, i.e. to augment its range, the 

argument of the function f (ε) is divided by a factor of 2. 

 
ˆ

ˆ 2
2

f



 

  
 

 (4.4) 
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 In order to obtain the equation in terms of the original variables, one simply needs to 

replace them from equation (4.3): 

 2
2

a
af

 
 

 
  

 
 (4.5) 

Proceeding in a similar fashion it is straightforward to show that the lower branch of the 

hysteresis loop is defined by the following equation: 

 2
2

a
af

 
 

 
  

 
 (4.6) 

The equations that define the backbone curve and the hysteresis cycle are not used 

directly in the equivalent linear method. Rather they are the basis to determine two essential 

parameters: the equivalent modulus of elasticity and the damping ratio. 

 

 Because the idea behind the method is to specify an equivalent linear system, the physical 

parameters that define this system are needed. For a homogeneous, isotropic and elastic material 

only two parameters are needed to uniquely define its constitutive equation. Commonly they are 

the pairs formed by the modulus of elasticity (or Young’s modulus) E and the Poisson’s ratio μ, 

or E and the shear modulus G, or another pair combination of these three.  It can be is assumed 

that the Poisson’s ratio is constant regardless of whether the structural system behaves in an 

elastic or inelastic fashion.  Thus, the only parameter that needs to be defined is E or G. In Soil 

Dynamics the parameter selected is the shear modulus G of the soil because the shear 

deformation dominates the behavior of the material. For our purposes, it is more relevant to use 

the modulus of elastic and when it is needed the shear modulus can be calculated using the well-

known relationship: 

 
2(1 )

E
G





 (4.7) 

 

When the material is subjected to dynamic loads it is important to account for the energy 

dissipation, especially in the case of long duration excitations such as earthquakes. In this case, 

the typical constitutive relationship (Hooke’s law) is usually replaced by the Kelvin-Voight 

model. To define this model, in which the damping stresses are proportional to the time 

derivative of the strains, an additional parameter is required. In the Theory of Viscoelasticity the 
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loss factor η is used to define the model, but in engineering applications, the damping ratio ξ is 

more commonly used.  

 

In conclusion, we need to determine two material parameters: an equivalent modulus of 

elasticity and an equivalent damping ratio. The equivalent modulus of elasticity is the secant 

modulus Esec. This modulus is the slope from the point of origin to the maximum point on the 

backbone curve, as shown in Figure 4.4. 

 

Figure 4.4 Initial elastic modulus and secant modulus. (Suárez, 2008) 

 

The secant modulus of elasticity is defined as: 

 
sec

( )a a

a a

f
E

 

 
   (4.8) 

 

 The next parameter that needs to be defined is the equivalent damping ratio. The area 

enclosed by the hysteresis loop is a measure of the energy dissipated per cycle of motion. This 

area is identified as ΔW and is the dotted area in Figure 4.5. To make this quantity independent 

of the maximum deformation the area is normalized by the corresponding elastic energy stored 

up to the maximum deformation. This is the area identified by the vertical lines in Figure 4.5 and 

is denoted as W.  To complete the definition of ξ, the ratio between the two areas is normalized 

by 4π: 

 
1

 
4 

W

W





  (4.9) 
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Figure 4.5 Masing’s damping ratio relationship. (Suárez, 2008) 

 

 The area of the elastic energy stored W is simply the area of the triangle in Figure 4.5 and 

the energy of the hysteris loop ΔW is 8 times the area of the segment o-e-a in the same figure. It 

is straightforward to demonstrate that they can be calculated as follows:  

 
1 1

( )
2 2

a a a aW f      (4.10) 

 
0

8 ( ) 4 ( )
a

a aW f d f


       (4.11)  

 

Substituting ΔW and W in equation (4.9) the equivalent damping ratio becomes: 

 0
2 ( )2

1
( )

a

a a

f d

f



 


  

 
  
  
 


 (4.12) 

 

4.2.2. Equivalent linear parameters for the beam elements 

 

 The first step necessary to apply the equivalent linear method to the building is to define 

the backbone curve. Because the section properties are different for the columns and the beams, 

two curves ( )f   are needed. The non-linear stress-strain for the beams was described and 

shown in Chapter 2; it is again displayed here in Figure 4.6. Because we need an analytical 

expression to define the secant modulus and to calculate the damping ratio, a polynomial 

equation was fitted to the actual stress-strain curve. The resulting polynomial equation is: 
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   12 4 10 3 8 21.43894 10 5.05688 10 6.31157 10 3416520.0f              (4.13) 

 

Figure 4.6 displays the polynomial approximation superimposed on the actual curve.  

 

 

Figure 4.6 Beam stress-strain polynomial approximation 

 

 Equation (4.13) can only be used to define the positive side of the curve; another equation 

is needed for the negative quadrant. To complete the definition of the backbone curve for 

negative values of the stresses and strain, the sign of the terms with even powers of ε needs to be 

switched. Therefore, the new equation is: 

  

   12 4 10 3 8 21.43894 10 5.05688 10 6.31157 10 3416520.0f            (4.14) 

 

 Now that the information required to define the full backbone curve is available, the 

complete hysteresis loop can be drawn by combining equations (4.13) and (4.14) with those that 

define the upper and lower branches of the cycle, equations (4.5) and (4.6). The result is 

presented in Figure 4.7. Note that this was done only for illustrative purposes because neither the 

backbone curve nor the hysteresis loop is directly needed to implement the equivalent linear 

method. 
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Figure 4.7 Backbone curve and hysteresis cycle for the beam elements 

 

The secant modulus Esec is defined using equation (4.8): 

 2 8210311.43894 10 5.05688 10 6.31157 10 3416520.0secE            (4.15) 

 

To simplify the notation, the maximum strain from now on is denoted as ε instead of εa.  

Figure 4.8 displays the secant modulus for the beam elements. 

 

 

Figure 4.8 Degradation curve for the secant modulus of beams 

 

In a similar way, a closed form expression for the equivalent damping ratio can be 

obtained by substituting equation (4.13) in (4.12). The following equation was obtained with the 

symbolic manipulation computer software Mathematica v10 (Mathematica, 2014). 
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      
                       (4.16) 
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Figure 4.9 display the degradation curve for the damping ratio applicable to all the beam 

elements of the building model.  

 

 

Figure 4.9 Degradation for the Damping Ratio of Beams 

 

4.2.3. Equivalent linear parameters for the column elements  

 

 Because the non-linear stress-strain relationship is different for the columns than for the 

beam elements, the process in the previous section must be repeated. We begin by adjusting a 

polynomial function so that it best fits the σ vs. ε curve shown in Figure 4.10. Following the case 

of the beam elements, a fourth order polynomial was used. The resulting equation is: 

  

 
11 4 10 3 8 2( ) 3.6886 10 2.41744 10 4.40088 10 3124310.0f              (4.17) 

 

Figure 4.10 displays the polynomial equation (4.17) and the physical non-linear 

constitutive equation for the column elements. 

 

Figure 4.10 Column stress-strain polynomial approximation 
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 Equation (4.17) can only be used to define the backbone curve for the positive quadrant. 

To define it in the negative quadrant the sign of the coefficients of the two even powers of ε is 

swapped: 

 
11 4 10 3 8 2( ) 3.6886 10 2.41744 10 4.40088 10 3124310.0f            (4.18) 

 Using equations (4.17), (4.18), (4.5) and (4.6) the backbone curve along with the 

hysteresis cycle for the column elements can be defined. Both are displayed in Figure 4.11.  

 

 

Figure 4.11 Column stress-strain cyclical behaviors 

 

 The next step is to obtain closed form expressions for the secant modulus and the 

damping ratio. First, the modulus of elasticity is obtained with equations (4.8) and (4.17): 

 11 103 2 8

sec 3.6886 10 2.41744 10 4.40088 10 3124310.0E            (4.19) 

 

Figure 4.12 displays the secant modulus for the column elements. 

 

 

Figure 4.12 Degradation curve for the secant modulus of columns 
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Next replacing f (ε) from equation (4.17) in (4.12) and solving the integral, etc. with the 

help of the program Mathematica, the following expression is obtained for the equivalent 

damping ratio: 

 

2 8 3 9 4 10 5

2 8 103 4 11 5

2 3124310 2.934 10 12.088 10 14.754 10
1

3124310 4.401 10 2.417 10 3.689 10

   


    

      
  

      
              (4.20) 

 

The equivalent damping ratio for the columns is plotted in Figure 4.13. 

 

 

 

Figure 4.13 Degradation for the Damping Ratio of columns 

 

For more details on all formulation development and curves, please make reference to appendix B. 

 

4.3 Equivalent linear dynamic analysis  

  

The building will be subjected to two types of loading: static forces due to the structure’s 

self-weight and a dynamic excitation due to the earthquake ground acceleration. The equations of 

motion that will be solved at every iteration step are: 

 

              ( ) ( ) ( ) ( )x xt t t tM u C u K u W M r a     (4.21) 

where: 

 [K]  = stiffness matrix, 
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[C]   = damping matrix, 

[M]  = mass matrix, 

 ( )tu   = relative displacement vector, 

 ( )tu   = relative velocity vector,
 

 ( )tu   = relative acceleration vector, 

 W   = static loads due to the structures and components weight, 

 xr   = influence coefficient vector in the horizontal X direction, and 

( )x ta   = ground acceleration in the horizontal X direction. 

Because all the analysis in this chapter is linear, it is possible to calculate the response to 

the static and earthquake loadings separately and combine them afterward. However, to carry out 

the analysis in the ANSYS program it is more expedient to apply the two types of load 

simultaneously. The gravitational load was applied slowing increasing its magnitude for five 

seconds and then keeping it constant. The earthquake acceleration was applied one second after 

the gravitational load reached its final magnitude, i.e. at six seconds. This process was repeated 

for every linear analysis carried out in this chapter.  

 

4.3.1. Broad-band seismic record 

 

The first study is a comparison of the response obtained with a non-linear and a linear 

analysis of the structure. The building model created in ANSYS was subjected to a typical broad-

band event, namely the 1940 Imperial Valley record. This record is typical of a ground motion 

with a broad-band frequency content. The record was scaled by a factor of 3.5. Four response 

quantities were calculated, namely the relative displacement (with respect to the base) of a point 

at the roof, the shear force and bending moment at a column at the base of the building and the 

absolute acceleration.  The maximum response quantities were retrieved from the time histories 

and are shown in Table 4.1. It is evident that the linear analysis over predicts the true response. 
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Table 4.1 Broad-band 3.5x analysis non-linear and linear results 

  Displacement (in) 

Non-linear result Linear result %Diff 

5.3374 5.9308 11.12% 

Shear force (kip) 

Non-linear result Linear result %Diff 

407.1 484.0 18.93% 

Bending moment (kip-in) 

Non-linear result Linear result %Diff 

42442 50700 19.53% 

Acceleration (in/s^2) 

Non-linear result Linear result %Diff 

1436.8 1899.7 32.22% 
 

 

Next, the response will be calculated with the equivalent linear method. As it was 

mentioned previously the method needs an initial estimate of the secant modulus and damping 

ratio due to the non-linear behavior. An initial value of the normal strain ε equal to 0.001 is used 

to calculate the secant modulus Esec and equivalent damping ratio ξ. Equations (4.15) and (4.16) 

are used for the beam elements and equations (4.19) and (4.20) for the columns. These four 

quantities are used as input to the ANSYS program and the dynamic response to the Imperial 

Valley record is calculated. The values of Esec and ξ for the beams and columns need to be 

updated using the newly calculated response. Here the maximum absolute values of the normal 

strain time histories in a selected beam and column are used. Table 4.2 displays the intermediate 

and final results obtained during the iteration process.  

 

Table 4.2 Broad-band full strain iteration 

Equivalent linear beam /maximum strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) %Diff 

1 0.001 0.0617672 2834490 0.0054803 448.03% 

2 0.0054803 0.295136 1239520 0.0061969 13.08% 

3 0.0061969 0.330147 1104800 0.0062896 1.50% 

4 0.0062896 0.334345 1089230 0.0062759 0.22% 

Equivalent linear column /maximum strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) %Diff 

1 0.001 0.0516967 2708030 0.0030056 200.56% 

2 0.0030056 0.12697 2009950 0.0028699 4.51% 

3 0.0028699 0.121366 2051690 0.0027923 2.70% 

4 0.0027923 0.118194 2075910 0.0027648 0.98% 
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Once the convergence criterion was reached, the maximum response was retrieved at the 

same points where it as calculated in the previous analysis. Table 4.3 displays the maximum 

relative displacement and absolute acceleration, and the maximum shear force and bending 

moment at the base. As it can be seen, in this case the equivalent linear method underestimates 

the true response (i.e. that obtained with a full non-linear analysis). This means that the 

equivalent linear method produces a too stiff equivalent structural system. Actually, by 

comparing Tables 4.1 and 4.3 it is evident that the simple linear analysis yields better results than 

the equivalent linear method. The most likely reason is that the iteration process was 

implemented using the maximum normal strains from the time histories. For a nonstationary 

excitation like an earthquake acceleration this peak value only occurs at a single instant of time 

and thus it is not reasonable to use the maximum values of the strains. In the following examples, 

an effective (reduced) strain will be used.  

 

Table 4.3 Broad-band full strain non-linear and linear results 

Displacement (in)  

Non-linear result Linear result %Diff 

5.3374 3.2412 39.27% 

Shear Force (kip)   

Non-linear result Linear result %Diff 

407.1 241.43 40.70% 

Moment Reaction (kip-in) 

Non-linear result Linear result %Diff 

42442 25655 39.55% 

Acceleration (in/s^2) 

Non-linear result Linear result %Diff 

1436.8 877.22 38.95% 

 

Before continuing with the application of the equivalent linear method, it is pertinent to 

discuss how the equivalent damping ratios obtained at each iteration steps are used in the 

ANSYS building model. First, it is noticed that at each iteration step two equivalent damping 

ratios are used, one for the beams and another for the column elements. However, ANSYS (and 

most structural analysis programs) cannot assign different damping properties to specific parts of 

a structure. Rather, the damping is usually introduced as modal damping ratios, i.e. each 

vibration mode is assigned a specific value. Moreover, in ANSYS there is an additional 
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restriction: because the program uses the Rayleigh damping model, only two modes can be 

assigned a specific value.  To implement the equivalent linear method in ANSYS, the mean 

value of the two equivalent damping ratios obtained at each iteration step from the degradation 

curves was calculated. This value was assigned to two modes of the building through the 

damping matrix of the Rayleigh model. The damping ratio (along with the natural frequencies) 

were used to calculate the parameters α and β as it was explained in the previous chapter. Table 

4.4 shows how the parameters α and β change at each iteration step.  

 

Table 4.4 Broad-band full strain damping parameters 

Iteration Damping (ξ) Factor (α) Factor (β) 

1 0.05673195 1.39694 0.00167495 

2 0.211053 4.26717 0.00754021 

3 0.2257565 4.51673 0.00812654 

4 0.2262695 4.5325 0.00812956 
 

When the equivalent linear method is applied for site response analysis, i.e. to calculate 

the acceleration at the surface of a layered soil deposit, usually an effective shear strain γefec 

equal to 65% of the maximum absolute value γmax is used in the process. Therefore to asses if 

this approach is viable to compute the seismic response of the building, the previous iterative 

process was repeated using εefec = 0.65 εmax. The partial results obtained with the iteration 

process are presented in Table 4.5. Since this was only a trial, the convergence criterion was set 

equal to 2%. The parameters α y β at each iteration step used to define the damping matrix with 

the Rayleigh model are displayed in Table 4.6. 

 

Table 4.5 Broad-band 65% strain iteration 

Equivalent linear beam / 65% of strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) 0.65 Red (ε) %Diff 

1 0.001 0.0617672 2834490 0.0054803 0.003562195 256.22% 

2 0.0035622 0.190614 1744850 0.0053088 0.00345072 3.13% 

3 0.00345072 0.18451 1781600 0.005238 0.0034047 1.33% 

Equivalent linear column / 65% of strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) 0.65 Red (ε) %Diff 

1 0.001 0.0516967 2708030 0.0030056 0.00195364 95.36% 

2 0.00195364 0.0854747 2354050 0.0025624 0.00166556 14.75% 

3 0.00166556 0.0748915 2456670 0.0025094 0.00163111 2.07% 
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Table 4.6 Broad-band 65% strain damping parameters 

Iteration Damping (ξ) Factor (α) Factor (β) 

1 0.05673195 1.39694 0.00167495 

2 0.13804435 3.0618 0.00450334 

3 0.12970075 2.92063 0.00416364 

 

 Once convergence was achieved with the 0.65 εmax effective strain, the same four 

maximum response quantities previously used were obtained from the time histories. They are 

shown in Table 4.7. Although there is a slight improvement in the accuracy of the results 

compared to the previous case (i.e. using the maximum normal strain εmax), the values of the four 

response quantities calculated are not satisfactory. The equivalent linear method continues to 

underestimate the true response. It is then preliminarily concluded that the typical approach to 

define the effective strain in Soil Dynamics is not applicable for calculating the seismic response 

of buildings. 

Table 4.7 Broad-band 65% strain non-linear and linear results 

Displacement (in) 

Non-linear result Linear result %Diff 

5.3374 3.7013 30.65% 

Shear Force (kip) 

Non-linear result Linear result %Diff 

407.1 262.93 35.41% 

Moment Reaction (kip-in) 

Non-linear result Linear result %Diff 

42442 27509 35.18% 

Acceleration (in/s^2) 

Non-linear result Linear result %Diff 

1436.8 891.69 37.94% 

 

Therefore, since there are no other guidelines to select a reduction factor, it was decided 

to vary this parameter beginning with 100% (i.e., no reduction) and decreasing it to zero. The 

building response was calculated by applying the equivalent linear method using each of the 

reduction factors to define the effective normal strain. The errors in the relative displacement, 

absolute acceleration, shear force and bending moments at the same selected points as before 

were calculated and are plotted in Figure 4.14. It is evident that there are optimal reduction 

factors but their values vary depending on the type of response. 
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Figure 4.14 Broad-band Strain factors vs. %Error 

 

The optimum values for each of the four response quantities are summarized in Table 4.8. 

The reduction factor varies from 6.8% for the displacement to 12.6% for the acceleration. 

Clearly, these values are much smaller than the 65% used in the Soil Dynamics applications.  

 

Table 4.8 Broad-band optimum values to minimize error 

error Strain % 

Displacement 6.796 

Shear 10.756 

Moment 10.432 

Acceleration 12.641 

 

For practical applications, it is not convenient to select different reduction factors 

depending on the response sought. A single value would be preferred, even though the error may 

be slightly higher for some of the response quantities. In this study, it is recommended to use a 

weighted average value calculated by given more weight to the shear force and bending moment 

which are essential quantities for structural design. The final recommended reduction factor is 

presented in Table 4.9. Obviously, the optimal reduction factors in Tables 4.8 and 4.9 are for the 

specific seismic record used (Imperial Valley) amplified 3.5 times and for the particular building 

analyzed. 

Table 4.9 Broad-band final recommended value 

 

Earthquake Scale Factor Class Factor

Imperial x3.5 Broad 0.10711
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To evaluate the effectiveness of the proposed reduction factor for a broad-band ground 

motion, the building is again subjected to the acceleration record of the 1940 Imperial Valley 

earthquake. The details of the iteration process are presented in Table 4.10 and the damping ratio 

and the coefficients of the Rayleigh damping model are shown in Table 4.11. This time, the 

tolerance to check the convergence was set 1% in order to get more precise results. 

 

Table 4.10 Broad-band 10.71% strain iteration 

Equivalent linear beam / 10.71% of strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) 0.1071 Red (ε) %Diff 

1 0.001 0.0617672 2834490 0.0054803 0.000586984 41.30% 

2 0.000586984 0.0438913 3063173 0.0062432 0.000668697 13.92% 

3 0.000668697 0.0473579 3016649 0.0061259 0.000656133 1.88% 

4 0.000656133 0.0468226 3023761 0.0061465 0.000658339 0.34% 

Equivalent linear column / 10.71% of strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) 0.1071 Red (ε) %Diff 

1 0.001 0.0516967 2708030 0.0030056 0.000321924 67.81% 

2 0.000321924 0.0298058 2985128 0.0032868 0.000352043 9.36% 

3 0.000352043 0.0307422 2972360 0.0032294 0.000345895 1.75% 

4 0.000345895 0.0305508 2974963 0.003239 0.000346923 0.30% 

 

 

Table 4.11 Broad-band 10.71% strain damping parameters 

Iteration Damping (ξ) Factor (α) Factor (β) 

1 0.056732 1.39694 0.00167495 

2 0.036849 0.943299 0.00104489 

3 0.03905 0.996468 0.0011107 

4 0.038687 0.987747 0.00109976 

 

 

Table 4.12 compares the exact response with that predicted by the equivalent linear 

method once convergence was achieved. It can be seen that the results for the internal forces and 

moments are excellent; the errors for the displacement and acceleration are higher but still quite 

reasonable. The difference in the errors for these two types of quantities was because, as 

explained before, the shear force and moment were given priority over the deformations 

quantities to define the optimal reduction factor for the strains.  
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Table 4.12 Broad-band 10.71% strain non-linear and linear results 

Displacement (in) 

Non-linear result Linear result %Diff 

5.3374 4.9858 6.59% 

Shear Force (kip) 

Non-linear result Linear result %Diff 

407.1 408.96 0.46% 

Moment Reaction (kip-in) 

Non-linear result Linear result %Diff 

42442 42377 0.15% 

Acceleration (in/s^2) 

Non-linear result Linear result %Diff 

1436.8 1508.7 5.00% 
 

 

The time series from which the maximum displacement, shear force and bending 

moments were acquired are shown in Figure 4.15. The absolute acceleration is shown later in 

another figure. Note that the response begins after six seconds: it is recalled that the gravity loads 

were first slowly applied to the building during the first five seconds and an extra second was 

added before subjecting the structure to the ground acceleration.  

 

Other results that were recovered from the equivalent linear analysis are the maximum 

normal stresses and strains in a beam and column of the first floor. These peak response 

quantities will be used for comparison in the following chapter. The values of the stresses and 

strains were obtained from the time histories shown in Figure 4.16 and are displayed in Table 

4.13. The time variation of the stresses and strains are shown in absolute values and for the first 

14 seconds of the ground motion which is where the peak values take place. 

 

Table 4.13 Stress-strain results of broad-band 3.5x analysis 

Measure Maximum 

Beam Stress 19.630 ksi 

Beam Strain 0.0061465 in/in 

Column Stress 10.300 ksi 

Column Strain 0.003239 in/in 
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Figure 4.15 Time history final results of broad-band 3.5x linear analysis  

a) Roof displacement, b) Base column shear force, and c) Base column moment reaction. 
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Figure 4.16 Time history stress and strain data of broad-band 3.5x analysis 

   

The last results displayed are the absolute acceleration time histories at each of the three 

building floors in the X direction. They were calculated at the center of masses of the floor slabs 

and are shown in Figure 4.17. These accelerations will be used to calculate the floor response 

spectra in the following chapter.  

 

 

Figure 4.17 Individual floor acceleration of broad-band 3.5x linear analysis 
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4.3.2. Short-band seismic record 

 

The results reported in the previous sections were for two samples of a broad-band 

earthquake ground motion. Here the study is repeated but using an earthquake ground motion 

with a typical short-band frequency content, namely the 1986 San Salvador record registered at 

the CIG station. The first task is to calculate the linear response of the building and compare it 

with the results of a full non-linear analysis. In order to force a non-linear behavior, the 

earthquake record is scaled by a factor of 2. 

 

The differences in the maximum values of four response quantities between the non-

linear and linear analysis are shown in Table 4.14. As in the previous cases, the responses 

selected for comparison are the relative displacement and absolute acceleration at the top of the 

building and the shear force and bending moment at a column at the base of the structure. It can 

be seen that similarly to the case of the broad-band event, the linear analysis overestimates the 

four response quantities compared.  

 

Table 4.14 Short-band 2x analysis non-linear and linear results 

Displacement (in) 

Non-linear result Linear result %Diff 

5.2808 5.7681 9.23% 

Shear Force (kip) 

Non-linear result Linear result %Diff 

411.43 495.00 20.28% 

Moment Reaction (kip-in) 

Non-linear result Linear result %Diff 

42531 51600 21.40% 

Acceleration (in/s^2) 

Non-linear result Linear result %Diff 

1676.6 2202.2 31.35% 

 

The building response will now be obtained with the equivalent linear method. Following 

a similar pattern than for the broad-band case, in a first attempt the secant modulus and 

equivalent damping ratio will be obtained by entering the degradation curves with the maximum 

normal strain.  The partial results of the application of the equivalent linear method are shown in 

Table 4.15. To begin the iteration process, an initial value of the normal strain ε equal to 0.001 
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was assumed to calculate the modulus of elasticity and the damping ratio. The criterion for 

convergence is that the difference between the maximum normal strains at two consecutive 

iteration steps should be less than 1%. It can be noticed that the process converges rapidly: only 

four iterations were required to satisfy this tolerance. 

 

Table 4.15 Short-band full strain iteration 

Equivalent linear beam /maximum strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) %Diff 

1 0.001 0.0617672 2834490 0.0058474 484.74% 

2 0.0058474 0.313589 1167250 0.0066929 14.46% 

3 0.0066929 0.351517 1026070 0.006944 3.75% 

4 0.006944 0.361219 990344 0.0070118 0.98% 

Equivalent linear column /maximum strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) %Diff 

1 0.001 0.0516967 2708030 0.0031288 212.88% 

2 0.0031288 0.132121 1972720 0.0030485 2.57% 

3 0.0030485 0.128757 1996910 0.0030311 0.57% 

4 0.0030311 0.128031 2002190 0.003027 0.14% 
 

At each iteration step, the values of the damping ratios for the beam and column were 

averaged and the result was used to obtain the mass and stiffness coefficients α and β of the 

Rayleigh damping model.  They are shown in Table 4.16 for each iteration step.   

 

Table 4.16 Short-band full strain damping parameters 

Iteration Damping (ξ) Factor (α) Factor (β) 

1 0.05673195 1.39694 0.00167495 

2 0.222855 4.44432 0.00806716 

3 0.240137 4.71804 0.0087972 

4 0.244625 4.78515 0.0089937 

 

Once the iteration process has converged, the maximum values of the four selected 

response quantities are recovered to compare them with the exact results (from the non-linear 

analysis). The values of the maximum response quantities are displayed in Table 4.17 where the 

errors are also presented. Examining the table it is apparent that the equivalent linear method 

overestimates all the responses and in fact, it leads to higher differences than a simple linear 

analysis. Although this was expected because the excitation is not perfectly cyclic and thus 
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neither is the response (the peak strain only occurs at an unrepeated instant of time), it was 

considered important to verify it and assess the error in using the maximum strain.  

 

Table 4.17 Short-band full strain non-linear and linear results 

Displacement (in)  

Non-linear result Linear result %Diff 

5.2808 4.7233 10.56% 

Shear Force (kip)  

Non-linear result Linear result %Diff 

411.43 252.75 38.57% 

Moment Reaction (kip-in) 

Non-linear result Linear result %Diff 

42531 27154 36.15% 

Acceleration (in/s^2) 

Non-linear result Linear result %Diff 

1676.6 950.93 43.28% 

 

 

The equivalent linear method will now be implemented using an effective normal strain 

εefec smaller than the peak value. First εefec will be defined as the 65% of the maximum value, 

which is the practice recommended for geotechnical earthquake engineering applications.  Even 

though this approach did not work well for the broad-band earthquake record, it is desired to 

examine the differences between its predictions and the full non-linear response. The iteration 

process is reported in Table 4.18 and the information to define the damping matrix is presented 

in Table 4.19. To speed up the process and since this is only a trial, the tolerance was increased 

to 2%. 

 

Table 4.18 Short-band 65% strain iteration 

Equivalent linear beam / 65% of strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) 0.65 Red (ε) %Diff 

1 0.001 0.0617672 2834490 0.0058474 0.00380081 280.08% 

2 0.00380081 0.203754 1669130 0.0059238 0.00385047 1.31% 

3 0.00385047 0.206499 1653860 0.0058855 0.003825575 0.65% 

Equivalent linear column / 65% of strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) 0.65 Red (ε) %Diff 

1 0.001 0.0516967 2708030 0.0031288 0.00203372 103.37% 

2 0.00203372 0.0884758 2326180 0.0027572 0.00179218 11.88% 

3 0.00179218 0.0795021 2411120 0.0027029 0.001756885 1.97% 
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Table 4.19 Short-band 65% strain damping parameters 

Iteration Damping (ξ) Factor (α) Factor (β) 

1 0.05673195 1.39694 0.00167495 

2 0.1461149 3.21014 0.0048098 

3 0.14300055 3.17019 0.00465886 

 

 The results obtained by using εefec = 0.65εmax are displayed in Table 4.20. There is a 

slight improvement in the results compared to using maximum normal strains, but clearly the 

0.65 reduction factor does not work for the earthquake record with a short-band frequency 

content. 

 

Table 4.20 Short-band 65% strain non-linear and linear results 

Displacement (in)  

Non-linear result Linear result %Diff 

5.2808 4.7553 9.95% 

Shear Force (kip)  

Non-linear result Linear result %Diff 

411.43 270.69 34.21% 

Moment Reaction (kip-in) 

Non-linear result Linear result %Diff 

42531 29029 31.75% 

Acceleration (in/s^2) 

Non-linear result Linear result %Diff 

1676.6 1071.4 36.10% 

 

 

Therefore, a more appropriate reduction factor will have to be obtained by varying its 

value, calculating the responses and comparing them with the exact results. The reduction factor 

was varied from 0% to 100%: the zero value corresponds to a linear analysis and the 100% value 

is the first case considered in this section. The errors in percent for the four different response 

quantities as a function of the reduction factor are presented in Figure 4.18. It is evident from the 

figure that there is no single optimum reduction factor that is applicable to the four responses. 
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Figure 4.18 Short-band Strain factors vs. %Error 

 

The optimum values for each response quantity are summarized in Table 4.21. The range 

of optimal values goes from 6.5% for the relative displacement to 14.6% for the absolute 

acceleration. 

Table 4.21 Short-band optimum values to minimize error 

Error Strain % 

Displacement 6.494 

Shear 12.674 

Moment 13.002 

Acceleration 14.601 

 

However, like before for practical applications a single reduction factor that can be used 

for all the responses is desired. In order to obtain this, a weighted average value was calculated 

where the shear force and bending moment parameters contribute more than the deformation 

quantities. The final factor recommended is shown in Table 4.22. 

 

 Table 4.22 Short-band final recommended value 

 

 

Using this factor to calculate the effective strain, the response of the building to the 1986 

SanSalvador earthquake was calculated again with the equivalent linear method. The normal 

strains, secant moduli and damping ratios at each iteration steps are provided in Table 4.23 and 

Earthquake Scale Factor Class Factor

Salvador x2 Short 0.12785
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the damping parameters are shown in Table 4.24. Because these are final calculations, the 

convergence tolerance criterion was set equal to 1% in order to get more precise results. 

 

Table 4.23 Short-band 12.78% strain iteration 

Equivalent linear beam / 12.78% of strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) 0.1278 Red (ε) %Diff 

1 0.001 0.0617672 2834490 0.0058474 0.000747561 25.24% 

2 0.000748 0.0507363 2972351 0.0063028 0.000805781 7.79% 

3 0.000806 0.0532511 2940026 0.0062604 0.000800361 0.67% 

Equivalent linear column / 12.78% of strain 

Iteration Assume (ε) Damping (ξ) Modulus (E -psi) Result (ε) 0.1278 Red (ε) %Diff 

1 0.001 0.0516967 2708030 0.0031288 0.000400001 60.00% 

2 0.0004 0.0322399 2952119 0.0033253 0.000425123 6.28% 

3 0.000425 0.0330278 2941559 0.0032936 0.00042107 0.95% 

 

Table 4.24 Short-band 12.78% strain damping parameters 

Iteration Damping (ξ) Factor (α) Factor (β) 

1 0.056732 1.39694 0.00167495 

2 0.041488 1.05458 0.00118456 

3 0.043139 1.09387 0.00123462 

 

The final maximum relative displacement, absolute acceleration, shear force and bending 

moment obtained with the equivalent linear method and εefec = 0.128εmax are shown in Table 

4.25 along with the exact responses and the relative errors. It is evident that the results are 

excellent for the internal forces and although the differences are higher for the deformation 

quantities, their accuracy is still very reasonable.  

Table 4.25 Short-band 12.78% strain non-linear and linear results 

Displacement (in)  

Non-linear result Linear result %Diff 

5.2808 4.9037 7.14% 

Shear Force (kip)  

Non-linear result Linear result %Diff 

411.43 410.61 0.20% 

Moment Reaction (kip-in) 

Non-linear result Linear result %Diff 

42531 42653 0.29% 

Acceleration (in/s^2) 

Non-linear result Linear result %Diff 

1676.6 1729.1 3.13% 
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The time variation of the relative displacement at the roof, the shear force and the 

bending moment at a column of the first floor are shown in Figure 4.19. From these graphs the 

maximum values presented in Table 4.25 were obtained. It is recalled that the dynamic responses 

start after six seconds because first the dead loads were slowly applied during this time.  

 

Figure 4.19 Time history final results of short-band 2x linear analysis  

a) Roof displacement, b) Base column shear force, and c) Base column moment reaction. 



98 

 

As it was done for the broad-band earthquake, additional peak responses were retrieved 

from the last equivalent linear analysis. They are shown in in Table 4.26 and they will be used 

for further comparison in the following chapter. Figure 4.20 shows the time variation of the 

stresses and strains at a selected beam and column of the first floor. The times series are 

displayed in absolute values and for the first fourteen seconds of the earthquake (where the 

maximum values occur).  

 

Table 4.26 Stress-strain results of short-band 2x analysis 

Measure Maximum 

Beam Stress 19.477 ksi 

Beam Strain 0.0062604 in/in 

Column Stress 10.356 ksi 

Column Strain 0.0032936 in/in 
 

 

 

Figure 4.20 Time history stress and strain data of short-band 2x analysis 

   

Because one of the objectives of the thesis is to calculate the floor response spectra with 

the equivalent linear method, the acceleration time histories obtained at each of the floors in the 

horizontal X direction were retrieved for the analysis and are shown in Figure 4.21.  



99 

 

 

 

 

Figure 4.21 Individual floor acceleration of short-band 2x linear analysis 

 

  

4.4 Chapter summary and conclusions 

  

 The main objective of this chapter was to put into practice the equivalent linear method to 

calculate the approximate response of a RC multi-story building that experiences high-intensity 

seismic events. This method can be implemented in any linear structural analysis software and 

will result in a significant reduction in computational processing time. A brief description of the 

methodology of the equivalent linear method is presented. The specific degradation curves to be 

used for the beam and column elements were presented.  

 

 To have a baseline to be used for comparison with later data, a linear analysis was carried 

out. The study is repeated for two seismic records with different frequency contents: a broad-

band event, the 1940 Imperial Valley earthquake and short-band record, the 1986 San Salvador 

earthquake. It was decided to focus the attention on four response quantities. Two of them are 

relative to the motion of the structure: the relative displacement with respect the base and the 

absolute acceleration, both calculated at the top of the building. The other two are internal forces 

and moments: the shear force and the bending moment both at a critical column at the base of the 

building. On the other hand, it can be seen that the method converged rapidly with only 3 to 4 
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iteration were needed in order to achieve the selected level of tolerance. This is an important 

factor since it reduces the time needed to obtain results using the equivalent linear method. 

 

After the linear analysis, two attempts to apply the equivalent linear method were 

undertaken. In the first case, the maximum normal strain at the most critical beam and column 

was used to calculate the secant modulus and the equivalent damping ratio. Next, the analysis 

was repeated using effective strains equal to the maximum strains reduced at 65% of their value. 

The 0.65 factor is commonly recommended when the equivalent linear method is applied to 

calculate the seismic response of soil deposits. Neither of these two cases produced acceptable 

results and thus an optimal reduction factor was obtained by varying it form 0 to 1 and 

calculating the response. There is no common reduction factor for the four selected responses 

and therefore a weighted average value was calculated emphasizing the minimization of the 

errors for the shear force and bending moment. Once this reduction factor was determined the 

seismic response of the structure was one more time analyzed with the equivalent linear method. 

The agreement with the full non-linear response was very good for the broad and short-band 

ground motions. More response quantities were calculated at this final stage, in particular the 

time series of the absolute accelerations of the three floors which will be used to compute floor 

response spectra in the following chapter.  
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CHAPTER V 

 

PROPOSED REDUCTION FACTOR 

AND FINAL VALIDATION 
 

5.1 Introduction 

 

 It was found and reported in Chapter 4 that the success of the equivalent linear method, 

when it is applied to calculate the approximate inelastic response of an RC building subjected to 

an earthquake, depends on the reduction factor. This is a factor that accounts for the fact that the 

deformation response is not perfectly cyclic, i.e. the peaks do not repeat over time. Obviously, 

this will always happen when the structure is subjected to a nonstationary load like an earthquake 

ground motion.  In this case, an effective strain is calculated by reducing the maximum strain 

through a reduction factor. When the equivalent linear method is used for its original intended 

application, namely Soil Dynamics, the reduction factor is 0.65. It was shown in Chapter 4 that 

this value is not applicable for RC buildings, and thus an optimal reduction factor was found by a 

trial and error process. Two factors were obtained: one for an earthquake ground motion with a 

broad-band frequency content and another for a record with frequencies in a short-band range. 

The four response quantities that were checked to verify the accuracy of the proposed method 

with these factors compared very well with those obtained from a fully non-linear analysis. 

However, it is not evident that the factors obtained in Chapter 4 will be applicable for other 

earthquake records or even for the same accelerograms used but with different intensities. To 

extend the study to obtain a proper reduction factor, the seismic demand imposed on the building 

by the earthquake must be taken into account.  
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5.2 Linear equivalent method validation 

 

There are many factors that affect the seismic response of a building, such as the intensity 

of the earthquake record, its duration and its frequency content. Each of these factors can be 

described by a parameter or index. A summary of these parameters is presented in a thesis by 

Miranda (2016) where the geographical distribution for the Island of Puerto Rico for three low 

intensity seismic motions. A few of these parameters that account for the main factors that affect 

the seismic demand imposed on buildings by an earthquake were selected; they are described in 

the next section. These indices will be computed for a number of historic ground motions with 

different characteristics and a reduction factor will be defined as a linear combination of them. 

The coefficients of the linear combination will be selected by a minimizing the difference 

between the exact non-linear response and the approximate response calculated with the 

equivalent linear method. 

 

5.2.1. The peak ground acceleration 

 

There are several factors associated with an earthquake record that has a marked 

influence on the response of a structure. When these factors are measured by a quantifiable 

parameter they are usually referred to as “earthquake intensity indices”. The most common 

parameter used to measure the intensity of an earthquake ground motion is the “Peak Ground 

Acceleration” (PGA). The PGA of a given seismic event is simply the maximum absolute value 

of the acceleration obtained from an accelerogram. For historical reasons and due to its 

simplicity the PGA was (and still is) widely used as an intensity index. 

 

It is intuitive to assume that an earthquake with a higher PGA will cause a higher level of 

damage than another one with a smaller PGA. However, it is well known (e.g., Park et al., 1985) 

that reinforced concrete structures are generally damaged not only by high stress excursions but 

also by a combination of repeated stress reversals. Since the PGA occurs at a specific instant of 

time, it may not be a proper measure of damage potential except for low-rise, short period 

buildings. Nevertheless, as it was mentioned the PGA is the most popular and extensively used 

intensity index and thus it is selected as the first parameter to be later applied to define the 

optimal reduction factor. 
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5.2.2. The peak ground velocity 

 

The “Peak Ground Velocity” (PGV) is another parameter commonly used to characterize 

the amplitude of a strong earthquake. The PGV is defined in a similar way as the PGA, but with 

the absolute value of the velocity. Usually, the velocity records show substantially less high 

frequencies than the acceleration. This is because the velocity is obtained by integration of the 

acceleration and this effectively results in a filtering of high frequencies. Due to the fact that the 

velocity is less sensitive to the high frequencies of strong motions, the PGV can better 

characterize the amplitude of strong motions at the intermediate frequencies. Moreover, several 

studies have found that the PGV correlates well with observed structural damage, especially in 

those structures with intermediate natural periods (Akkar and Bommer, 2007). 

 

5.2.3. The characteristic intensity 

 

The concept of “Characteristic Intensity” (Ic) emerged from the study of the seismic 

damage to reinforced concrete structures by Park et al. (1985). The rate of structural damage was 

defined as a linear combination of the damage caused by excessive deformation and the 

contribution of repeated load cycles. Their experiments consisted of analyzing two columns as a 

linear elastic structure with one degree of freedom, with one column being more ductile than 

other. With this, Park et al. (1985) determined the rate of damage for both columns, which they 

determined to approximated with equation (5.1). The authors concluded that this would be viable 

representation for the destructive potential of a seismic event. 

 

 

𝐼𝑐 = 𝐴𝑟𝑚𝑠
1.5 𝑡𝑓0.5                                                            (5.1) 

 

 

where Arms is the quadratic mean of the seismic acceleration and tf is the total duration of the 

seismic event in seconds. 
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5.2.4. The arias intensity 

 

The “Arias Intensity” (AI) is a quantitative measure of the intensity of an earthquake 

based on instrumentation, and it can be regarded as the measurement of the total seismic energy 

absorbed by the soil. It correlates well with several commonly used demand measures of 

structural performance, liquefaction, and seismic slope stability (Travasarou et al., 2003).  It is 

defined as: 
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where ( )g tx is the earthquake time history of acceleration, tf is the total duration of the seismic 

event and g is the acceleration of gravity. It can be shown (using the Parseval's theorem) that the 

AI has a close relationship with the area under the squared amplitude of the Fourier spectrum 

calculated from the time history of acceleration. 

 

5.2.5. The cumulative absolute velocity 

 

The “Cumulative Absolute Velocity” (CAV) is another parameter proposed as an index 

to quantify the potential earthquake damage to structures. One of its interesting characteristics is 

that it is proportional to load cycles causing low-cycle fatigue type damage (Katona, 2011). 

The CAV is defined as the area under the curve of the absolute value of the accelerogram. In 

mathematical terms, it is the integral of the absolute value of the acceleration time history over 

the duration of the earthquake. It is defined by equation (5.3) (EPRI, 1991): 

 

 

 
0
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t

tCAV x dt   (5.3) 

 

where ( )g tx is the time history of the acceleration and tf  is the total duration of the seismic event. 
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5.2.6. The effective design acceleration  

 

 The idea of “Effective Design Acceleration” (EDA) was proposed by Benjamin and 

Associates (1988). They argued that the high frequency components of ground motions do not 

have a significant effect on the seismic responses of structures. However their influence on the 

peak ground acceleration is important and therefore, they proposed a scaling parameter using the 

peak acceleration value. The approach consisted of only filtering out the peak accelerations that 

are above 8 - 9 Hz and using remaining values as the EDA.  

 

5.2.7. Proposed optimal reduction factor  

 

 It is proposed to define the optimal reduction factor RD as a linear combination of the six 

seismic demand indices described in the previous section, i.e. as: 

 

 1 2 3 4 5 6 7RD PGA PGV Ic AI CAV EDA              (5.4) 

 

 A linear regression was implemented to find the seven coefficients αi in equation (5.4). 

The process was the following. The seismic response of the three story RC building was 

calculated with the program ANSYS in two ways: by means of a full non-linear analysis, as 

described in Chapter 3, and with the equivalent linear method presented in Chapter 4. The errors 

in the response calculated with the latter method were computed for four response quantities: 

relative displacement and absolute acceleration at the top level and bending moment and shear 

force at a critical column in the first floor. The average weighted error was obtained next, 

assigning more weight to the internal forces. Five of the earthquake records described in Chapter 

3 were used to calculate the seismic response of the building: the 1940 Imperial Valley, the 1994 

Northridge Sylmar, the 1966 Parkfield, the 1999 Hector Mine and the 1989 Loma Prieta ground 

motions. Next, the six seismic parameters for the each of the five earthquakes were calculated. 

The five weighted average errors along with the six indices for each of the seismic records were 

input into the program Microsoft Excel. Using the internal tools of this program a linear 

regression was performed that provided the constants that multiply each seismic parameter in the 

linear combination.  
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 The final formula to calculate the optimal reduction factor RD is provided in equation 

(5.5) for the fps system and in equation (5.6) for the SI system.  

   

Using units of feet and seconds: 

 

0.0395092 0.00209 0.0001658  0.0234755  0.0048305 

0.0159971  0.0332201 

RD AI CAV EDA Ic

PGA PGV

     

 
 (5.5) 

 

Using units of meters and seconds: 

 

 
0.0395092 0.006857  0.000544  0.077019  0.0287059 

0.0524837  0.10899 

AI CAV EDA IRD c

PGA PGV

     

 
 (5.6) 

 

5.2.8. Validation of the results 

 

 In order to validate the proposed reduction factor, it was used to apply the equivalent 

linear method to calculate the response of the RC building model to eight seismic records. The 

objective was to determine the error in the non-linear seismic response calculated with the 

approximate method for different earthquakes. The earthquake database used consisted of four 

broad-band and four short-band events that were selected to represent diverse seismic loadings 

that can be expected in a real case scenario. The seismic records were scaled up so that they 

cause a non-linear behavior of the building. However, it is recalled that the equivalent linear 

method usually is not applicable to structures undergoing a highly non-linear response and thus 

the scaling has its limits. The results obtained for each of the eight seismic records is presented in 

Table 5.1. The table displays the seismic record applied, the scaling factor, the earthquake type 

in terms of frequency content, the reduction factor calculated with equation (5.5), the relative 

errors in the relative displacement of the top floor, the shear force and bending moment in a first 

floor column, the absolute acceleration of the top floor and the average error. 

 

  As it can be seen, the maximum overall average error for all of the earthquake records is 

9.7% and smaller for the other seven cases (around 3%). 
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Table 5.1 Accuracy of the response predicted by the equivalent linear method with the proposed 

reduction factor for a collection of seismic records.   

 

Earthquake Scale Factor Class Factor Error Disp Error Shear Error Mom Error Acc Average Error 

Salvador x2 Short 0.1278 7.1% 0.2% 0.3% 3.1% 2.7% 

Imperial x3.5 Broad 0.1071 6.6% 0.5% 0.2% 5.0% 3.1% 

Loma Prieta x2 Short 0.1804 12.8% 12.0% 12.3% 1.6% 9.7% 

Northridge x1 Short 0.1737 2.9% 0.1% 1.5% 1.0% 1.4% 

Borrego x80 Broad 0.0851 0.8% 4.0% 3.7% 3.4% 3.0% 

Hector x18 Broad 0.0637 4.2% 0.0% 1.9% 5.8% 3.0% 

Managua x 2 Broad 0.0461 5.8% 0.8% 0.5% 6.0% 3.3% 

Parkfield x 6 Short 0.1222 1.2% 0.6% 0.4% 3.4% 1.4% 

 

 

 

5.3 Floor Response Spectrum Results 

 

 

The nonstructural elements housed in a building consist of architectural components and 

other elements that do not contribute to the strength of the structure and mechanical and 

electrical equipment. Especially in the nuclear industry, these are called secondary systems.  

When the building is subjected to a seismic ground motion, the components rigidly attached to a 

slab will experience the same acceleration of the floor. Most seismic codes provide formulas to 

estimate the forces acting on the component which has acceptable accuracy for non-critical and 

rigid systems. When the equipment itself is flexible or is not rigidly attached, the concept of floor 

response spectra is issued to calculate the seismic forces. This tool is widely used for equipment 

located in nuclear power plants and other important industrial facilities. It is basically a seismic 

response spectrum calculated using the absolute acceleration of a floor but for linear elastic 

structures, it can also be computed with closed form equations (Suárez and Singh, 1989). 
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5.3.1. Floor spectra for the broad-band earthquake 

 

 

The time history of the absolute accelerations of the three floors was obtained for the 

exact non-linear case and for the equivalent linear system. The building was subjected to the 

typical seismic record with a broad-band frequency content, namely the 1940 Imperial Valley 

earthquake. The damping ratio to calculate the floor response spectra was selected as 5%. Figure 

5.1 display the floor response spectra for the three floors of the building obtained with the two 

approaches considered. The results show that for the second and third floor the equivalent linear 

model was able to predict almost the exact response for the full range of periods considered. In 

the case of the first floor, for periods close to 0.1 sec (the 5th linear natural period of the 

building) the equivalent linear method underestimated the peak in the spectrum, but for the rest 

of the periods, it can be considered to yield a good approximation. 

 

 

5.3.2. Floor spectra for the short-band earthquake 

 

 

The process was repeated now subjecting the building to the typical seismic event with a 

short-band frequency content. It is recalled that this is the 1986 San Salvador earthquake 

recorded at the CIG station. The acceleration of each floor obtained with the non-linear model 

and the equivalent linear method were retrieved and used to calculate the response spectra. The 

results are displayed in Figure 5.2. Examining the three graphs one can conclude that the 

equivalent linear method slightly underestimated the results. The differences are more 

pronounced at the first natural period of the building. However, in general, the equivalent linear 

method delivered a good approximation to the results of the full non-linear analysis for the short-

band event. 

 



109 

 

 

Figure 5.1 Broad-Band event floor response spectra 
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Figure 5.2 Short-Band event floor response spectra 
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5.4 Chapter Summary and Conclusions 

 

The main objective of this chapter was to show the linear validation formulation used for 

the reduction factor recommended in the implementation of the equivalent linear method. In 

order to obtain this factor, several parameters were selected and a linear regression was the 

introduced to calculate each parameter coefficient. Every parameter will change in accordance 

with the properties of the seismic event and are not dependent on the dimensions or 

characteristics of the structure. Mostly all of parameters mention above can also be obtain from 

the accelerometers that measure seismic events. 

 

  The final validation results show a maximum overall average error for all of the 

earthquake records of 9.7% and a minimum of 1.4%. This error represents the difference in 

percentage between the results obtain from a non-linear model and the linear equivalent method 

develop. 

 

Another parameter measure was the acceleration time history for each floor. Using this 

parameter the response spectrum was calculated for both methods. It can be seen that the 

equivalent linear model will result in a close approximation to the results from the non-linear 

models, with a slight under-estimate of the maximum value of acceleration at a particular point 

in time.  

 

As a final conclusion, it can be mention that the approximations obtain from the linear 

equivalent method in general yields good results. This in terms also means that is a good floor 

response spectrum approximation that can be then implemented in the design of non-structural 

components. 
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CHAPTER VI 

 

CONCLUSIONS AND 

RECOMMENDATIONS 
 

6.1 Summary 

 

 This thesis presented the development and verification of an equivalent linear method to 

calculate the seismic response of reinforced concrete structures that is able to approximate as 

close as possible the results of a full non-linear analysis. The method was implemented and 

tested in a three-story building consisting of a reinforced concrete 3-D moment resistant frame. 

A detailed finite element model was created in the computer program ANSYS. Because in this 

model the plasticity is assumed to be distributed across the cross section and along the element 

length, the non-linear constitutive equations were defined by stress-strain curves. These were 

calculated using a special-purpose computer program and then input into ANSYS.  

 

The two non-linear stress-strain curves for the beams and columns were approximated 

with polynomials using a non-linear regression. The resulting analytical expressions were used to 

calculate an effective (secant) modulus of elasticity. In addition, as required by the equivalent 

linear method, an equivalent damping ratio was calculated in closed form by applying the 

Masing’s rule to form the complete hysteresis cycle. These two parameters were used to define a 

linear model of the structure and the seismic response was calculated. Form the response time 

history the peak normal strains were retrieved and reduced by a factor. New equivalent elastic 

moduli and damping ratios were calculated for the beams and columns and the process was 

repeated until the difference in the new and old E and ξ were within a preselected tolerance. It 

was found that the key parameter that governed the accuracy of the proposed methodology is the 

reduction factor used to define an effective strain from the peak strain. 
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 To investigate whether the proposed method was a viable one, two earthquake ground 

accelerations were selected. They represent events with different frequency content: one was 

identified as the broad-band event and the other as the short-band event. They were used to 

conduct a preliminary evaluation of the equivalent linear method. Once it was verified that the 

proposed methodology yielded reasonable results, the method was further refined by using six 

additional earthquake records. After an equivalent linear model of the building was obtained, the 

accelerations at the floors were used to calculate the floor response spectra. The spectra were 

compared with those obtained employing the acceleration time histories resulting from the full 

non-linear dynamic analysis.  

 

6.2 Limitations of the equivalent linear method and the study 

 

The equivalent linear method has an inherent limitation, namely that the level of non-

linear deformations of the structure or soil system under study cannot be very significant. 

Evidently, the method is not able to predict the response of a structure near collapse and this is a 

shortcoming that cannot be overcome. There are, however, some limitations of the present study 

that can be resolved. The project focused on the seismic response of a single structure, the three-

story reinforced concrete building. The method should be tested in buildings with higher and 

lower number of floors which have, respectively, lower and higher natural periods. In addition, 

the lateral force resisting system chosen for the building was a special moment resistant frame. It 

is not clear how the method will perform in a structure with structural walls or with bracings. 

The performance with steel structures is also an issue that needs to be addressed.  

 

It could be argued that the non-linear dynamic analysis carried out with ANSYS was not 

independently verified with another source, e.g. by comparing it with results of actual 

experimental tests. However, this is not deemed to be a major shortcoming for the purposes of 

the present study. In general, the independent verification of the results is an important issue if 

the objective of a project is the study of the seismic non-linear response of a structure per se. 

However, here the results of the equivalent linear method were compared with the non-linear 
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analysis using the same program and methodology, and just allowing the structure to behave in a 

linear fashion. In this sense there is an inner consistency that should justify the results. 

 

6.3 Conclusions  

 

Based on the work presented in the preceding chapters, it can be concluded that the 

equivalent linear method, originally proposed for Geotechnical Earthquake Engineering 

applications, is a viable and practical approach to calculate the moderate non-linear response of 

reinforced concrete buildings. Of course, as pointed out in the previous section, further 

validations are needed but the proof-of-concept work undertaken in this thesis confirms that is 

worthwhile to carry out further studies.  

 

As reported earlier, it was found that the critical parameter that governs the accuracy of 

the results obtained with the equivalent linear method is the reduction factor used to define an 

effective strain from its peak value. The definition of an effective strain is required because when 

the equivalent linear properties (E and ξ) are calculated, it is assumed that the response is 

cyclical but with the same maximum values on each cycle. Obviously, the true seismic response 

does not follow that pattern because the earthquake ground motions are nonstationary in nature. 

Therefore, it is not reasonable to use the maximum strain to define the equivalent Young’s 

modulus and damping ratio. In Soil Dynamics application it is recommended to use a reduction 

factor equal to 0.65 but for the present application this value did not yield good results at all. 

Therefore, a particularly important contribution of this thesis is a procedure to define an optional 

reduction factor for each earthquake using several intensity parameters (such as the PGA, PGV, 

Arias Intensity, etc.) 

 

The four response quantities used to evaluate the accuracy of the equivalent linear 

method were the relative displacements at the top of the building, the shear force and the bending 

moment at a critical column of the first floor and absolute accelerations at each of the floors. The 

resulting average error between the approximate and exact response was always less than 10% 

for the most unfavorable case.    
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The comparison between the floor response spectra obtained with the equivalent linear 

model and the full non-linear analysis was also very successful. There was a slight 

underestimation of the maximum accelerations at some range of periods, but it is not deemed 

important, given the inherent uncertainties in the seismic input. In practice, the seismic input is 

defined by a code prescribed design spectrum, and a number of spectrum compatible 

accelerograms are generated and input to the structure model.  However, there is always an 

uncertainty involved in the design spectrum and in the compatible acceleration time history.    

 

6.4 Recommendations for future work 

 

Some of the limitations of the present study reported in a previous section can be 

removed by extending the study to other models and widen the number and type of seismic 

inputs. Therefore, several areas for further research are presented next. 

 

The first suggested task is to consider building models with different numbers of floors. 

They could be studied using a similar finite element model, but this could be a problem for tall 

buildings due to the larger number of degrees of freedom. In this case it may be convenient to 

employ simpler frame models, as recommended below.  

 

Another topic for further investigations is to select structures with other lateral force 

resisting systems to test the method. They can include structures with shear walls, with lateral 

bracings, or dual systems. In addition, the study can be expanded to include steel structures with 

different configurations.  

 

It is also interesting to evaluate the proposed methodology in structures with irregular 

configurations, either in plant or in elevation. They can include structures with torsional behavior 

(where the stiffness and mass centers do not coincide), or buildings with setbacks, etc.  

 

Another recommendation for further studies is to expand the number and type of seismic 

ground motions used to test the method. In this thesis eight accelerograms with different 
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characteristics were used. Another possibility, instead of selecting unmodified records of historic 

earthquakes, is to employ accelerograms that are compatible with a prescribed design spectrum.  

 

The model of the building developed in ANSYS to validate the equivalent linear method 

was a very detailed finite element model in which 3-D solid elements were used for the beams, 

columns and floor slabs. In the structural engineering practice, less sophisticated models are used 

in which the beams and columns are modeled with frame elements.  For instance, this is the 

usual approach followed when a program like SAP2000 or ETABS are used. In this case the 

non-linear behavior of the elements is accounted for by means of local plasticity models; usually 

a moment-rotation or moment curvature is used to define the behavior of localized inelastic 

springs or plastic hinges at the ends of the elements. It is recommended to implement and 

corroborate the equivalent linear method in these types of models and programs. 

 

The fact that an equivalent linear model of the structure is available once the method has 

converged, means that the so called “direct methods” can be applied to calculate the floor 

response spectra. These methods are attractive because they used as input the design spectrum 

prescribed for the main structure, as well as its dynamic properties (modes and frequencies). The 

floor spectra are generated using relatively simple closed form equations. However, they can 

only be applied in structural systems with linear elastic behavior. This topic was not pursued in 

this thesis, but it is a useful application of the methodology herein presented. 



 

117 

 

REFERENCES  

 
ACI (2011) “Building code requirements for structural concrete”, ACI 318-11, American 

Concrete Institute, Farmington Hills, MI. 

 

Akkar, S. and Bommer, J. (2007) “Empirical prediction equations for peak ground velocity 

derived from strong-motion records from Europe and the Middle East”, Bulletin of the 

Seismological Society of America, Vol. 97, No. 2, pp. 511-530. 

 

ANSYS (2015) ANSYS, Inc. Version 16.0, Computer software, Canonsburg, PA. 

 

ASCE (2006) “Minimum design loads for buildings and other structures: ASCE 7-05”, American 

Society of Civil Engineers, Reston, VA. 

 

Barbosa, A. and Ribeiro, G. (1998) “Analysis of reinforced concrete structures using Ansys 

nonlinear concrete model”, Computational Mechanics. pp. 1-7. 

Benjamin, J. & Associates (1988) “A criterion for determining exceedance of the operating basis 

earthquake”, EPRI Report NP 5930, Electric Power Research Institute, Palo Alto, CA. 

 

Bommer, J. and Acevedo, A. (2004) “The use of real earthquake accelerograms as input to 

dynamic analysis”, Journal of Earthquake Engineering, Vol. 8, No. 1, pp. 43-91. 

 

Combescure, D. (2002) “CAMUS 2000 Benchmark - Experimental results and specifications to 

the participants”, SEMT/EMS/RT/02-067/A. 

 

Deierlein, G., Reinhorn, A. and Willford, M. (2010) “Nonlinear structural analysis for seismic 

design”, NEHRP Seismic Design Technical Brief No. 4, National Institute of Standards and 

Technology (NIST), Washington, DC. 

 

EPRI (1991) “Standardization of the cumulative absolute velocity”, Electrical Power Research 

Institute, Report EPRI TR-100082-T2, Palo Alto, CA. 

 

FEMA (2009) “FEMA P695 - Quantification of building seismic performance factors”, Federal 

Emergency Management Agency, Washington, DC. 

 



 

118 

 

Fragiadakis, M., Vamvatsikos, D. and Aschheim, M. (2014) “Application of nonlinear static 

procedures for the seismic assessment of regular RC moment frame building”, Earthquake 

Spectra. Vol. 30, No. 2, pp. 767-794. 

 

Hognested, E. (1951) “A study of combined bending and axial load in reinforced concrete 

members”. In: Bulletin No.399, University of Illinois Engineering Experiment Station, Urbana, 

IL. 

 

Hudson, M., Idriss, I. and Beijae, M. (1992) “User’s Manual for QUAD4M - A computer 

program to evaluate the seismic response of soil structures using finite element procedures 

incorporating a compliant base”. In: Technical Report (rev. 2003), Department of Civil & 

Environmental Engineering, University of California, Davis, CA. 

 

Huei-Huang, L. (2015) “Basics of nonlinear simulation”. In: Finite Element Simulations with 

Ansys Workbench 16, Chapter 13.1, pp. 466-477, SDC Publications, KS. 

 

IBC (2006) “International Building Code”, International Code Council, Falls Church, VA. 

 

IBC (2015) “International Building Code”, International Code Council, Falls Church, VA. 

 

Jiang, W., Li, B., Xie, W. and Pandey, M. (2015) “Generate floor response spectra: Part 1. Direct 

spectra-to-spectra method”. In: Nuclear Engineering and Design, Vol. 293, pp. 525-546. 

 

Katona, T. (2011) “Interpretation of the physical meaning of cumulative absolute velocity”. In: 

Pollack Periodica: An International Journal for Engineering and Information Science, Vol. 6, 

No. 1, pp. 1-8. 

 

Lepage, A., Shoemaker, J. and Memari, A. (2012) “Accelerations of nonstructural components 

during nonlinear seismic response of multistory structures, Journal of Architectural Engineering. 

Vol. 18, No. 4, pp. 285-297. 

 

Mander, J., Priestly, M. and Park, R. (1988) “Theoretical Stress-Strain model for confined 

concrete”. In: Journal of Structural Engineering. Vol. 114, No. 9, pp. 1804-1826. 

 

Mathematica (2014). Wolfram Research, Inc. Version 10.0, computer software, Champaign, IL. 

 

Miranda, V. (2016) “Seismic parameters of earthquakes measured records in Puerto Rico and its 

distribution” (in Spanish), Master of Science Thesis,University of Puerto Rico, Mayagüez, PR. 

 



 

119 

 

Moehle, J. (1992) “Displacement-based design of RC structures subjected to earthquakes”, 

Earthquake Spectra. Vol 8, No. 3, pp. 403-425. 

 

Musmar, M. (2013) “Analysis of shear walls with openings using solid 65 elements”, Jordan 

Journal of Civil Engineering. Vol. 7, No. 2, pp. 164-173. 

 

Nuclear Regulatory Commission (2016a). “10CFR21: NRC Regulations Title 10, PART 21 - 

Reporting of Defects and Noncompliance”, Washington, DC. 

  

Nuclear Regulatory Commission (2016b). “10CFR50 Appendix B - Quality Assurance Criteria 

for Nuclear Power Plants and Fuel Reprocessing Plants”, Washington, DC. 

 

Park, Y., Ang, A., and Wen, Y. (1985) “Seismic damage analysis of reinforced concrete 

buildings”, Journal of Structural Engineering. Vol. 111, No. 4, pp. 740-757. 

 

PEER (2010) OpenSees, Version 2.4.6, computer software, Berkeley, CA. 

 

PEER (2016) “Ground Motion Database”, Pacific Earthquake Engineering Research Center, 

University of California at Berkeley, website: http://ngawest2.berkeley.edu/. 

 

Pfrang, E., Siess, C. and Sozen, M. (1964) “Load moment curvature characteristics of reinforced 

concrete cross sections”, ACI Journal, Vol 61, No. 7, pp. 763-778. 

 

Richard, B., Martinelli, P., Voldoire, F., Corus, M., Chaudat, T., Abouri, S. and Bonfils, N. 

(2015) “SMART 2008: Shaking table test on an asymmetrical reinforced concrete structure and 

seismic margins assessment”, Engineering Structures, Vol. 105, pp. 48-61. 

 

Richard, B., Cherubini, S., Voldoire, F., Charbonnel, P., Chaudat, T., Abouri, S. and Bonfils, N. 

(2016) “SMART 2013: Experimental and numerical assessment of dynamic behavior by shaking 

table test of an asymmetrical reinforced concrete structure subjected to high intensity ground 

motions”, Engineering Structures, Vol. 109, pp. 99-116. 

 

Schnabel, P., Lysmer, J. and Seed H. (1972) “SHAKE: A computer program for earthquake 

response analysis of horizontal layered sites”, Earthquake Engineering Research Center, Report 

No. UCB/EERC-72/12, University of California, Berkeley, CA. 

 

Seed, H. and Idriss, I. (1970) “Soil moduli and damping factors for dynamic response analysis”, 

Earthquake Engineering Research Center, Report EERC 70-10, University of California, 

Berkeley, CA. 

 



 

120 

 

Simos, N. and Hofmayer, C. (2013) “Experimental studies of reinforced concrete structures 

under multi-directional earthquakes and design implications”, U.S. Nuclear Regulatory 

Commision, NUREG/CR-7119, Washington, DC. 

 

Singh, M. (1975) “Generation of seismic floor spectra”, Journal of the Engineering Mechanics 

Division, ASCE, Vol. 101, No. EM5, pp-593-607. 

 

Singh, M., Moreschi, L., Suárez, L. and Matheu, E. (2006a) "Seismic design forces: I - Rigid 

nonstructural components”, Journal of Structural Engineering, Vol. 132, No. 10, pp. 1524-1532. 

 

Singh, M., Moreschi, L., Suárez, L. and Matheu, E. (2006b) "Seismic design forces: II - Flexible 

nonstructural components”, Journal of Structural Engineering, Vol. 132, No. 10, pp. 1533-1542. 

 

Structure Express (2015) SE::MC - Moment Curvature Analysis, computer software, Kirkland, 

WA. 

 

Suárez, L. and Singh, M. (1989) “Floor spectra with equipment-structure equipment interaction 

effects”, Journal of Engineering Mechanics, Vol. 115, No. 2, pp. 247-264. 

 

Suárez, L. (2008) “Non-linear dynamic analysis of soils”, Dynamics of Soils and Foundations, 

Chapter 7, pp. 1-8, University of Puerto Rico, Mayaguez, PR. 

 

Travasarou, T., Bray, J. and Abrahamson, N. (2003). “Empirical attenuation relationship for 

Arias Intensity”, Earthquake Engineering and Structural Dynamics, Vol. 32, pp. 1133–1155. 

 

Villaverde, R. (2004). “Seismic analysis and design of nonstructural elements”, Chapter 19, pp. 

19.1-19.42, in Earthquake Engineering: from Engineering Seismology to Performance-Based 

Engineering, Bozorgnia, Y. and Bertero, V., Editors, CRC Press, Boca Raton, FL. 

 

Wieser, J., Pekcan, G., Zaghi, A., Itani, A. and Maragakis, J. (2013). “Floor accelerations in 

yielding special moment resisting frame structures”, Earthquake Spectra, Vol. 9, No. 3, pp. 987-

1002. 

 

 



 

121 
 

APPENDIX   A 

 

MATLAB PARAMETERS SOURCE 

CODE ALGORITHM 

 

This appendix shows the source code that was used in order to generate each parameter 

of the proposed optimal reduction factor. The algorithm code is written in the computer base 

language compatible with the software “Matlab”. The code was developed and explained in 

detail in Miranda (2016), Masters in science thesis, from the University of Puerto Rico at 

Mayagüez campus. Some modifications were done to the algorithm in order to implement it for 

this thesis objectives. 

 

A.1  Main Matlab source code algorithm 

 

 The algorithm is using as an example the seismic event of “Parkfield 1966”. The only 

parameters needed to be adjusted are the “Input Data” section of the code in order to analyze 

other cases. 

 

Code: 

 

clc; clear all; close all; format short g 

 

% ----------------------- Input Data ------------------------------ 

  

g    = 32.185 ;          % acceleration 

nom  = 'Parkfield1966';  % name on file txt 

dt   = 0.01;             % time step [seg] 

PRA  = 0;                % pic rock accel. fracc. of g 

npt  = 1;                % fraction (0-1) of points to be ploted 

Dt   = 6;                % offset of the initial displacement [seg] 

X    = 6;                % scale factor  
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% ------- Reading and scaling of original accelerogram ------------- 

  

terr = load ([nom,'.txt']);     % reading of the seismic record 

[nr,nc]  = size(terr);          % rows and columns of the file 

nt       = nr*nc;               % number of points in the accelerogram 

xg(1:nt) = terr'*X;             % vector with data from the file 

Xm  = max( abs(xg) );           % original maximum from accelerogram 

if PRA ~= 0 

   xg  = PRA/Xm * xg;        % scale the accelerogram to the given PRA 

   PRA = Xm;                    % only if PARA is zero 

end 

tf  = (nt-1) * dt;              % final time of the record 

t   = 0: dt: tf;                % vector of times 

ng  = round(npt*nt);            % number of points to plot 

  

% ---------------- Calculation of accel and vel --------------------- 

  

%Acceleration 

xg1=xg'*g; 

 

%Velocity 

vel1=cumtrapz(t, xg1); 

 

% ------------------ Parameters Calculation ------------------------- 

  

[PGA1,pPGA1]=max(abs(xg1));     % PGA 

 

[PGV1,pPGV1]=max(abs(vel1));    % PGV 

 

Arms1=sqrt((1/t(end))*trapz(xg1.^2)*dt); 

Ic1=(Arms1).^(3/2)*sqrt(t(end));    % IC 

 

AI1=(pi/(2*g)).*(cumtrapz(t,(xg1).^2));  % AI 

AI1=AI1(end);        

 

CAV1=cumtrapz(t,abs(xg1));     % CAV 

CAV1=CAV1(end);        

 

[EDA1B]=fEDA_vma(dt,xg1);      % EDA 

  

%------------------------ Display the values ---------------------- 

 

disp(' **************** Each Parameter *************');  

disp(' ') 

disp(['=> PGA: ',num2str(PGA1)]);  

disp(['=> PGV: ',num2str(PGV1)]);  

disp(['=> Ic: ',num2str(Ic1)]); 

disp(['=> AI: ',num2str(AI1)]);  

disp(['=> CAV: ',num2str(CAV1)]);  

disp(['=> EDA: ',num2str(EDA1B)]);  
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A.2  EDA Matlab separate function 

 

This function must be defined separately in order to calculate parameter “EDA”. This step 

must be performed before or simultaneously with the main code in order to function correctly. 

 

Code: 

 

function [EDA]=fEDA_vma(dt,xg) 

xg = reshape(xg,[],1);        

np=length(xg); 

fs=1/dt; 

Fn=fft(xg); 

fres=fs/np;   

m=0:ceil(np/2); 

freqs = m*fres;  

  

%Signal filtration ( Low Pass frequency = 9 Hz ) 

fcorte1=0; 

fcorte2=9; 

j=find(freqs>=fcorte1 & freqs<=fcorte2 )'; 

%Fn(1:j(1))=0; 

%Fn(end-j(1)+1:end)=0; 

Fn(j(end):end-(j(end)-1))=0; 

  

  

% Signal Gathering 

sn = ifft(Fn); 

EDA=max(abs(sn)); 
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APPENDIX   B 

 

EQUIVALENT LINEAR METHOD 

FORMULATION 

 

This appendix shows the source code that was developed to calculate the secant modulus 

of elasticity (E) and damping ratio (ξ) used in the equivalent linear method. The algorithm code 

is written in language compatible with the software “Mathematica”. Below is shown in detail the 

step by step process of the formulation that produced the final results. The results of each step 

are also plotted in order to have a better understanding and to help to verify the formulation of 

the method. 

 

B.1  Mathematica beam equation formulation 
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B.2  Mathematica column equation formulation 
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