COMPORTAMIENTO DE PUENTES TÍPICOS SUJETOS A EXPLOSIONES CAUSADAS POR ATAQUES TERRORISTAS Y DETERMINACIÓN DE SU CAPACIDAD PARA SOPORTAR CARGAS DESPUÉS DE LA EXPLOSIÓN

Por

Mauricio Antonio León Tres

Tesis sometida para cumplir con los requisitos para obtener el grado

MAESTRO EN CIENCIAS en INGENIERÍA CIVIL

UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGÜEZ Mayo, 2010

José O. Guevara, PhD Presidente del comité graduado

Luis E. Suárez, PhD Miembro del comité graduado

Ricardo R. López, PhD Miembro del comité graduado

José Arroyo, PhD Representante de Estudios Graduados

Ismael Pagán Trinidad, Director Departamento de Ingeniería Civil y Agrimensura

Fecha

Fecha

Fecha

Fecha

Fecha

RESUMEN

En esta investigación se modelaron diferentes tipos de puentes, usados típicamente en los Estados Unidos y algunos puentes representativos de Irak, utilizando modelos de puentes de tramos cortos de hormigón reforzado, hasta puentes de 120 pies de luz de hormigón presforzado y/o postensado.

Cada uno de estos se analizó bajo diferentes cantidades de explosivos a diferentes distancias, con el fin de observar el comportamiento de puentes bajo cargas dinámicas de explosivos utilizando una carga estática equivalente.

A pesar de que existen muchos estudios acerca del comportamiento de estructuras bajo cargas dinámicas debidas a explosivos y se han creado programas específicos para este tipo de carga, y los mismos están aprobados por el Gobierno de Estados Unidos (programa ATBlast distribuido por Applied Research Associates Inc.), las investigaciones hechas con puentes son escasas De los resultados obtenidos con los diferentes modelos se pudo apreciar que existe similitud en su comportamiento bajo cargas debidas a explosión, siendo el parámetro más importante la localización de la carga y la distancia del objetivo que la magnitud o cantidad de explosivo.

En cuanto a los modelos de algunos puentes de Irak que sufrieron daño durante los ataques terroristas, se pudo determinar la carga explosiva que originó los daños observados físicamente. Finalmente se propusieron diversas alternativas de rehabilitación para diferentes tipos de daño en los elementos estructurales que componen el puente, con el objetivo de poner en funcionamiento del puente, tan pronto ocurra un ataque terrorista.

Π

ABSTRACT

In this research, several bridges typically used in the U.S. and Irak were modeled, representing short span bridges using cast in place concrete beams and long span bridges with spans up to120 feet using prestress and postensioned beams.

Every bridge was analyzed using different quantities of explosives located at different distances from the objective in order to determine the bridge behavior under blast loads which are dynamic, but were modeled using an equivalent static load.

Even though a great number of studies were performed about the behavior of structures under dynamic loads due to blast loads and software were developed to properly model the blast loads, software approved by the U.S. Government (ATBlast distributed by Applied Research Associates Inc., among others), the research performed on bridges were limited.

From the results of the analysis performed on several bridges it was observed that the behavior of bridges under blast loads was similar and that the most important parameter was the location of the load and the distance to the target rather than the magnitude or quantity of the explosive.

From the results of the analysis of typical bridges used in Irak which were subjected to blast loads, the magnitude and location of the blast load were determine which agree with the observations made on the field. Finally, several alternate solutions were proposed for different level of damage of several bridge components to put the bridge back in service after an event of a terrorist attack.

III

AGRADECIMIENTOS

En primer lugar, a Dios por darme la fuerza necesaria para seguir adelante. Gracias por que nunca me has dejado solo.

Al Doctor José Guevara, por su apoyo y guía no solo en el trabajo de investigación; sino también en mis estudios de maestría. Gracias por creer en mí y darme la oportunidad de trabar con usted.

A los Doctores Luis Suárez y Ricardo López, miembros del comité, quienes con su guía y valiosos aportes ayudaron a la realización de este trabajo de investigación. Además agradezco a la Universidad de Puerto Rico, Recinto Universitario de Mayagüez y al Departamento de Ingeniería Civil por abrirme las puertas y darme la oportunidad de crecer profesionalmente.

A David Mota y Nannette Jover, su apoyo en momentos difíciles hicieron que la carga fuera menos pesada y que la meta se pudiera alcanzar.

A Mervin, Sonia, Marlenis, Carlos Adorno, Ruth D., Christiane, Esdras, Carlos Cruz, Carlos Roda, Stephanie, Francisco Padua, Francisco del Valle, Norma, Lyan, Viviana, Ángel, Andrea, Matilde, Yarimar, Wilmary, José Rullán, Raúl, Juan Carlos, Ruth R., Yacín, Jennifer y Milagros Balaguer, gracias, no solo son amigos, más bien fueron mi familia en Puerto Rico.

IV

DEDICATORIA

A mis padres, Mauricio León Corado y Rossana Tres, a mis hermanos Sergio y Sabrina, sin ustedes esto no hubiese sido posible.

A Telésfora de Jesús Corado Cortez (QEPD), Amelita Johnson (QEPD), Carlos Enrique Recinos Esquivel (QEPD), ustedes siguen aquí, si no los veo ahora es porque Dios les pidió que nos prepararan un lugar en el Cielo.

TABLA DE CONTENIDOS

Resumen	II
Abstract	III
Agradecimientos	IV
DEDICATORIA	v
TABLA DE CONTENIDOS	IV
LISTADO DE TABLAS	IX
LISTADO DE FIGURAS	XI
1 INTRODUCCIÓN	01
1.1 Μοτιναςιόν	01
1.2 REVISIÓN DE LITERATURA	02
1.3 OBJETIVOS Y PLAN DE LA INVESTIGACIÓN	06
1.3.1 Objetivo General	06
1.3.2 Objetivos Específicos	07
1.4 Metodología	10
1.5 RESUMEN DE LOS SIGUIENTES CAPÍTULOS	11
2 MARCO CONCEPTUAL	13
2.1 CARGAS DEBIDA A EXPLOSIONES	13
2.1.1 EXPLOSIONES EXTERNAS	14
2.1.2 ESTRUCTURAS SOTERRADAS	19
2.2 PUENTES	21
2.2.1 TIPOS DE PUENTES	22
2.2.2 SUPER-ESTRUCTURAS	23
2.2.3 SUB-ESTRUCTURES	23
2.2.3.1 PILASTRAS	24
2.2.3.2 ESTRIBOS	25
2.3 CARGA Y COMBINACIONES DE CARGA	26
2.3.1 CASO DE EVENTO EXTREMO I	32

2.3.2 CASO DE EVENTO EXTREMO II	32
3 MODELO ESTRUCTURAL Y ANÁLISIS	34
3. 1 DETERMINACIÓN DE CARGAS ACTUANTES	34
3.2 DETERMINACIÓN DE CARGAS DISTRIBUIDAS EN ELEMENTOS ESTRUCTURALES	37
3. 2.1 Caso de Carga 1	39
3. 2.2 Caso de Carga 2	42
3. 2.3 Caso de Carga 3	43
3. 3 MODELOS	46
3. 3.1 MODELO 1	46
3. 3.2 MODELO 2	48
3. 3.3 MODELO 3	50
3. 3.4 MODELO 4	52
3. 3.5 MODELO 5	53
3. 3.6 MODELO 6	54
3. 4 CRITERIO DE FALLA PARA LOS MODELOS 1, 2 Y 3	55
3. 4.1 CRITERIO DE FALLA DE COLUMNA	56
3. 4.2 CRITERIO DE FALLA DE LA VIGA DE CORONACIÓN	57
3. 4.3 CRITERIO DE FALLA DE LOSA	59
3. 4.4 CRITERIO DE FALLA DE VIGA	61
3. 5 CRITERIO DE FALLA PARA EL MODELO 4	61
3. 6 CRITERIO DE FALLA PARA LOS MODELOS 5 Y 6	65
4 RESULTADOS Y DISCUSIÓN	66
4.1 COMPORTAMIENTO DE LOS ELEMENTOS ESTRUCTURALES	66
4.2 MODELO 1	66
4.3 MODELO 2	81
4.4 MODELO 3	96
4.5 MODELO 4	109

4.6 MODELO 5	114
4.7 MODELO 6	124
5 PROPUESTA DE REHABILITACIÓN	139
5.1 Reparación de Daño Leve en Vigas	140
5.1.1 REHABILITACIÓN DE VIGAS DE CONCRETO REFORZADO	140
5.1.2 REHABILITACIÓN DE VIGAS DE CONCRETO PREESFORZADO	144
5.1.3 REHABILITACIÓN DE VIGA EN CASO EXTREMO	147
5.2 REPARACIÓN DE DAÑO MODERADO Y FUERTE EN VIGAS	149
5.2.1 Rehabilitación de Vigas de Concreto Reforzado	149
5.3 REPARACIÓN DE DAÑO MODERADO EN LOSAS	155
5.4 REPARACIÓN DE DAÑO LEVE EN LA VIGA DE CORONACIÓN	157
5.5 REPARACIÓN DE DAÑO MODERADO Y FUERTE EN LA VIGA DE CORONACIÓN	160
5.6 REHABILITACIÓN DE DAÑO LEVE EN COLUMNAS	167
6 CONCLUSIONES Y RECOMENDACIONES	169
6.1 CONCLUSIONES	170
6.2 RECOMENDACIONES	172
7. REFERENCIAS BIBLIOGRÁFICAS	175

LISTADO DE TABLAS

Tabla 2.1: Factores de Conversión de Explosivos	13
Tabla 3.1: Parámetros equivalentes estáticos para una explosión de 500 lb. de TNT	35
Tabla 3.2: Parámetros equivalentes estáticos para una explosión de 100 lb. de TNT	36
Tabla 3.3: Parámetros equivalentes estáticos para una explosión de 50 lb. de TNT	36
Tabla 3.4: Parámetros equivalentes estáticos para una explosión de 20 lb. de TNT	36
Tabla 3.5: Parámetros equivalentes estáticos para una explosión de 15 lb. de TNT	36
Tabla 3.6: Parámetros equivalentes estáticos para una explosión de 10 lb. de TNT	37
Tabla 3.7: Parámetros de carga equivalente estática para una explosión de 5 lb. de TNT	37
Tabla 3.8: Parámetros de carga estática equivalente para una carga de 500 lb. de TNT Explosión	40
Tabla 3.9: Parámetros de carga estática equivalente para una carga de 100 lb. de TNT Explosión	40
Tabla 3.10: Parámetros de carga estática equivalente para una carga de 50 lb. de TNT Explosión	40
Tabla 3.11: Parámetros de carga estática equivalente para una carga de ½ lb. de TNT Explosión	43
Tabla 3.12: Parámetros de carga estática equivalente para una carga de 20 lb. de TNT Explosión	44
Tabla 3.13: Parámetros de carga estática equivalente para una carga de 15 lb. de TNT Explosión	44
Tabla 3.14: Parámetros de carga estática equivalente para una carga de 10 lb. de TNT Explosión	44
Tabla 3.15: Parámetros de carga estática equivalente para una carga de 5 lb. de TNT Explosión	44
Tabla No 3.16: Capacidad de Diseño de Vigas.	61
Tabla 4.1: Resultados de Carga de 500 lb. A una distancia de 4 pies.	68
Tabla 4.2: Resultados de Carga de 500 lb. A una distancia de 6 pies.	70
Tabla 4.3: Resultados de Carga de 500 lb. A una distancia de 8 pies	71
Tabla 4.4: Resultados de Carga de 100 lb. A una distancia de 4 pies	73
Tabla 4.5: Resultados de Carga de 100 lb. A una distancia de 6 pies	74
Tabla 4.6: Resultados de Carga de 100 lb. A una distancia de 8 pies	75
Tabla 4.7: Resultados de Carga de 50 lb. A una distancia de 4 pies	76
Tabla 4.8: Resultados de Carga de 50 lb. A una distancia de 6 pies	77
Tabla 4.9: Resultados de Carga de 50 lb. A una distancia de 8 pies	78
Tabla 4.10: Resultados de Carga de 20 a 05 lb. A una distancia de 2 pies	79
Tabla 4.11: Resultados de Carga de 20 a 05 lb. A una distancia de 3 pies	80
Tabla 4.12: Resultados de Carga de 500 lb. A una distancia de 4 pies	82
Tabla 4.13: Resultados de Carga de 500 lb. A una distancia de 6 pies.	83

Tabla 4.14: Resultados de Carga de 500 lb. A una distancia de 8 pies.	84
Tabla 4.14: Resultados de Carga de 100 lb. A una distancia de 4 pies.	86
Tabla 4.15: Resultados de Carga de 100 lb. A una distancia de 6 pies.	87
Tabla 4.16: Resultados de Carga de 100 lb. A una distancia de 8 pies.	88
Tabla 4.17: Resultados de Carga de 50 lb. A una distancia de 4 pies.	91
Tabla 4.18: Resultados de Carga de 50 lb. A una distancia de 6 pies.	92
Tabla 4.19: Resultados de Carga de 50 lb. A una distancia de 8 pies.	93
Tabla 4.20: Resultados de Carga de 20 a 05 lb. A una distancia de 2 pies.	94
Tabla 4.21: Resultados de Carga de 20 a 05 lb. A una distancia de 3 pies.	95
Tabla 4.22: Resultados de Carga de 500 lb. A una distancia de 4 pies.	97
Tabla 4.23: Resultados de Carga de 500 lb. A una distancia de 6 pies.	98
Tabla 4.24: Resultados de Carga de 500 lb. A una distancia de 8 pies.	99
Tabla 4.25: Resultados de Carga de 100 lb. A una distancia de 4 pies.	101
Tabla 4.26: Resultados de Carga de 100 lb. A una distancia de 6 pies.	102
Tabla 4.27: Resultados de Carga de 100 lb. A una distancia de 8 pies.	103
Tabla 4.28: Resultados de Carga de 50 lb. A una distancia de 4 pies.	105
Tabla 4.29: Resultados de Carga de 50 lb. A una distancia de 6 pies.	106
Tabla 4.30: Resultados de Carga de 50 lb. A una distancia de 8 pies.	107
Tabla 4.31: Resultados de Carga de 20 a 05 lb. A una distancia de 2 pies	108
Tabla 4.32: Resultados de Carga de 20 a 05 lb. A una distancia de 3 pies	109
Tabla 4.33: Resultados de Carga de 500 lb. A una distancia de 4 pies	109
Tabla 4.34: Resultados de Carga de 500 lb. A una distancia de 6 pies	110
Tabla 4.35: Resultados de Carga de 500 lb. A una distancia de 8 pies	110
Tabla 4.36: Resultados de Carga de 100 lb. A una distancia de 4 pies	111
Tabla 4.37: Resultados de Carga de 100 lb. A una distancia de 6 pies	111
Tabla 4.38: Resultados de Carga de 100 lb. A una distancia de 8 pies	112
Tabla 4.39: Resultados de Carga de 50 lb. A una distancia de 4 pies	112
Tabla 4.40: Resultados de Carga de 50 lb. A una distancia de 6 pies	113
Tabla 4.41: Resultados de Carga de 50 lb. A una distancia de 8 pies	113

LISTA DE FIGURAS

Figura 2.1 Variación de la presión vs. tiempo después de la explosión(TM 5-855-1, 1986)	15
Figura 2.2 Coeficiente de presión reflejada vs. ángulo de incidencia (TM 5-855-1, 1986)	16
Figura 2.3: Parámetros de la onda de impacto para una explosión equivalente de TNT en el aire (7	TM 5-855-
1, 1986)	17
Figura 2.4: Valor pico de la presión del incidente vs. la presión dinámica pico (TM 5-855-1, 1986)	21
Figura 2.5: Combinaciones de Carga	28
Figura 2.6: Cargas Militares	31
Figura 3.1: Distribución de Presión	38
Figura 3.2: Isométrico de Sección del Puente	38
Figura 3.3: Puntos de detonación indicados en caso 1 de carga	41
Figura 3.4: Puntos de detonación indicados en casos de carga 2 y 3.	45
Figura 3.5: Modelo 1	47
Figura 3.6: Modelo 1, Carga de Explosión Aplicada, Según el Caso 1 de Carga de 500 lb.	47
Figura 3.7: Modelo 1, Esfuerzos en la Losa, debido a la Explosión del Caso 1, a 500 lb.	48
Figura 3.8: Modelo 2	49
Figura 3.9: Modelo 2, Carga de Explosión Aplicada, Según el Caso 1 de Carga de 100 lb.	49
Figura 3.10: Modelo 2, Carga de Explosión Aplicada, Según el Caso 1 de Carga de 100 lb.	50
Figura 3.11: Modelo 3	51
Figura 3.12: Modelo 3, Carga de Explosión Aplicada, Según el Caso 1 de Carga de 50 lb.	51
Figura 3.13: Modelo 3, Carga de Explosión Aplicada, Según el Caso 1 de Carga de 50 lb.	52
Figura 3.14: Modelo 4	53
Figura 3.15: Modelo 5	54
Figura 3.16: Modelo 6	55
Figura 3.17: Detalle de Armado de Columna	55
Figura 3.18: Diagrama de Momento Curvatura de la Columna	57
Figura 3.19: Detalle de Armado de la Viga de Coronación	58
Figura 3.20: Diagrama Momento Curvatura de la Viga de Coronación	59
Figura 3.21: Detalle de Armado de Losa	60
Figura 3.22: Diagrama de Momento Curvatura de la Losa.	60
Figura 3.23: Detalle de Armado de Viga de Puente No. 4	62

Figura 3.24: Diagrama de Momento Curvatura de la Viga del Puente No. 4	63
Figura 3.25: Detalle de Armado de Columna de Puente No. 4	63
Figura 3.26: Diagrama de Momento Curvatura de la Columna del Puente No. 4	64
Figura 3.27: Detalle de Armado de la Viga de Coronación de Puente No. 4	64
Figura 3.28: Diagrama de Momento Curvatura de la Viga de Coronación del Puente No. 4	65
Figura 4.1: Verificación de Columnas y Viga de Coronación	81
Figura 4.2: Verificación de Columnas y Viga de Coronación del Modelo 2	95
Figura 4.3: Estado del puente posterior a la detonación de las bombas.	115
Figura 4.4: Detalle de armado de la Viga de Coronación.	116
Figura 4.5: Diagrama de Momento, Estructura bajo carga de explosión.	117
Figura 4.6: Diagrama de Momento Curvatura de la Viga de Coronación del Puente No. 5	118
Figura 4.7: Diagrama de momento de la viga más próxima al punto de detonación.	119
Figura 4.8: Diagrama de momento de la viga más próxima al punto de detonación	121
Figura 4.9: Diagrama de momento del Lane más lejano a la explosión	122
Figura 4.10: Diagrama de del Lane mas lejano a la explosión	123
Figura 4.11: Figura de la Columna dañada del modelo 6.	125
Figura 4.12: Figura de la viga de coronación y de las vigas dañadas del modelo 6.	125
Figura 4.13: Detalle de armado de la Viga de Coronación.	126
Figura 4.14: Diagrama de Momento Curvatura de la Viga de Coronación del Puente No. 6	127
Figura 4.15: Detalle de armado de Columna.	129
Figura 4.16: Diagrama de Momento Curvatura de Columna del Puente No. 6	130
Figura 4.17: Diagrama de momento de la viga más próxima al punto de detonación	132
Figura 4.18: Diagrama de momento de la viga más próxima al punto de detonación.	134
Figura 4.19: Diagrama de momento intermedia del Lane opuesto a la explosión	136
Figura 4.20: Diagrama de momento intermedia del Lane opuesto a la explosión.	137
Figura 5.1: Sección Típica de Puente de Vigas de Concreto Reforzado	140
Figura 5.2: Propuesta 1, de Rehabilitación para daño leve.	141
Figura 5.3: Propuesta 2, de Rehabilitación para daño leve.	142
Figura 5.4: Propuesta 3, de Rehabilitación para daño leve.	143
Figura 5.5: Sección Típica de Puente de Vigas AASHTO.	144

Figura 5.6: Propuesta 1, de Rehabilitación para daño leve, en puentes de Vigas AASHTO.

145

Figura 5.7: Propuesta 2, de Rehabilitación para daño leve, en puentes de Vigas AASHTO.

147

147

Figura 5.8: Propuesta 3, de Rehabilitación para daño leve, en puentes de Vigas AASHTO.

Figura 5.9 Propuesta de Armadura.	148
Figura 5.10 Anclaje Armadura.	149
Figura 5.11 Sección Trasversal del puente de Concreto Reforzado con Daño Moderado	150
Figura 5.12: Propuesta 1, de Rehabilitación para daño Moderado	150
Figura 5.13: Propuesta 2, de Rehabilitación para daño Moderado	151
Figura 5.14: Propuesta 3, de Rehabilitación para daño Moderado	152
Figura 5.15 Sección Trasversal del puente de Concreto Reforzado con Daño Fuerte.	153
Figura 5.16 Propuesta 1, para daño fuerte	153
Figura 5.17 Propuesta 2, para daño fuerte	154
Figura 5.18 Propuesta 3, para daño fuerte	155
Figura 5.19: Propuesta 1, de Rehabilitación de Losa	155
Figura 5.20: Propuesta 2, de Rehabilitación de Losa	156
Figura 5.21: Propuesta 3, de Rehabilitación de Losa	157
Figura 5.22: Propuesta 1, de Rehabilitación de Viga de Coronación	158
Figura 5.23: Propuesta 2, de Rehabilitación de Viga de Coronación	159
Figura 5.24: Propuesta 3, de Rehabilitación de Viga de Coronación.	160
Figura 5.25: Condición de Daño Moderado en Viga de Coronación	161
Figura 5.26: Propuesta 1, Rehabilitación de Viga de Coronación Daño Moderado	162
Figura 5.27: Propuesta 2, Rehabilitación de Viga de Coronación Daño Moderado	163
Figura 5.28: Propuesta 3, Rehabilitación de Viga de Coronación Daño Moderado	164
Figura 5.29: Condición de Daño Fuerte en Viga de Coronación	164
Figura 5.30: Propuesta 1, Rehabilitación de Viga de Coronación Daño Fuerte	165

Figura 5.31: Propuesta 2, Rehabilitación de Viga de Coronación Daño Fuerte	166
Figura 5.32 Propuesta 3, Rehabilitación de Viga de Coronación Daño Fuerte	167

1. INTRODUCCIÓN

1.1 MOTIVACIÓN:

El incremento de ataques terroristas en los Estados Unidos y otros países han creado preocupación sobre la seguridad nacional y muchas veces los puentes, que son de gran importancia en la infraestructura del sistema de transportación son el blanco de estos ataques.

El daño causado a los puentes puede causar interrupción al sistema de comunicaciones y causar además interrupción en el sistema económico del gobierno y la industria privada. Por lo tanto es muy importante determinar si los puentes pueden ser usados, aunque sea de manera parcial tan pronto ocurre un ataque terrorista o si se necesita rehabilitar parte de la estructura o debe remplazarse para restaurar el servicio de transportación a la brevedad posible. Durante muchos años, muchos países han sido víctimas de ataque terroristas y en los Estados Unidos el primer ataque se produjo en las Torres Gemelas (Centro Mundial de Comercio) en febrero 26 de 1993. Posteriormente en abril 19 de 1993 se produjo una explosión con un coche bomba en el edificio Federal de la ciudad de Oklahoma el cual sufrió daños severos con colapso parcial del edificio. En septiembre 11 de 2001 se produjo el ataque terrorista más grande en la historia de los Estados Unidos con el colapso total de las Torres Gemelas y daño parcial del Edificio del Pentágono, un símbolo de la seguridad nacional. Todos estos ataques causaron un número considerable de muertes e impacto en la sociedad, y la reconstrucción costó billones de dólares.

Mientras que el colapso de un edificio puede causar miles de muertos y heridos,

el colapso de los puentes puede causar mucho daño por el impacto grande en la economía por la interrupción del tránsito vehicular y sistema de transportación.

1.2 REVISIÓN DE LITERATURA:

Islam (2005) presentó los resultados de su investigación sobre el comportamiento de puentes soportados por vigas AASHTO sometidos a cargas debidas a explosivos. Esta investigación incluyó el estudio de vigas AASHTO, pilastras y columnas sometidas a cargas típicas debido a explosivos en puentes usados típicamente en las carreteras interestatales de los Estados Unidos. Para ello utilizó un modelo de un puente de dos luces con vigas AASHTO tipo III típicamente usado en gran parte de los puentes. En su investigación presenta que para cargas de TNT de 500 libras los puentes analizados colapsan y la carga de TNT que pueden soportar asciende a 14 libras de TNT.

Son, Asteneh-Asl y Rutner (2005) presentaron en su investigación titulada "Comportamiento de losas de hormigón sujetas a cargas de explosiones". Esta investigación demostró que los daños causados por coche bombas están limitados a la vecindad de la explosión y son causados por la misma explosión y no son causadas por los escombros que surgen durante el desprendimiento de elementos de hormigón o por el colapso de elementos estructurales, por lo que el daño es mínimo y no compromete la habilidad de la estructura como un conjunto, en conclusión la estructura permanece estable y puede soportar cargas gravitarías después de una explosión, es decir que no se produce el colapso progresivo de un tramo completo del puente.

En esta investigación se evaluaron coches bomba con distintas cantidades de

explosivos y se asumió que todos los explosivos estaban localizados a 5 pies (1.5 m) encima de la parte superior de la losa de hormigón. El modelo usado consideró puentes de un tramo de cuatro carriles.

Black y Righman (2006) concentraron su investigación en el modelaje de puentes sujetos a carga explosiva y el desarrollo de un programa de cómputo AUTODYN. Para ello se usaron distintos programas desarrollados previamente para validar los resultados. Para comparar los resultados de cada uno de los programas, Black desarrolló un modelo representativo de un puente de 8 pies de largo con una losa de hormigón de ocho pulgadas de espesor, empotrado en los extremos y sujetos a una carga explosiva de 100 libras de TNT, el cual es representativo de un coche bomba localizado a una distancia de 4 pies.

Galinat (2007) en su artículo "Fibers for Blast Resistance" alertó sobre el uso de fibra en aplicaciones dinámicas dada la fragilidad de la fibra. Sin embargo existe un alto interés en identificar los beneficios de la fibra para mejorar la resistencia a las explosiones por su versatilidad y fácil colocación en la estructura. Parte de las limitaciones se deben a los requerimientos de una tecnología especializada y el número limitado de ensayos realizados y el alto costo que limita un uso mayor. Este artículo además discute algunas de las oportunidades y retos asociados con el uso de aditivos de fibra en la mezcla del hormigón para usarlo en construcción resistente a explosiones. Durante la investigación se encontró que casi todos los ensayos realizados para mejorar la resistencia a explosiones se realizan sometiendo las muestras a una carga dada de explosivo comparándola con el comportamiento de una muestra de control. El

comportamiento de las muestras se evaluó comparando el número de grietas y el área de la superficie agrietada así como el desplazamiento del material.

Alauoi y Oswald (2007) presentaron un artículo sobre un método simplificado para el diseño de componentes de hormigón pretensado y postensado resistentes a las explosiones, modelando dichos componentes como un sistema equivalente de un grado de libertad, utilizando una viga simplemente apoyada, concentrado su masa en el punto medio de la misma, al igual que su rigidez K en ese modelo se aplican las cargas debido a la explosión. El artículo incluye discusiones sobre cargas debidas a explosiones, comportamiento del material bajo cargas dinámicas y el diseño de componentes de hormigón pretensados y postensados resistentes a cargas debidas a explosiones. El objetivo fundamental de este artículo es entender el comportamiento de las cargas causadas por explosivos y el comportamiento bajo cargas dinámicas para luego diseñar estructuras de hormigón pretensado y postensado para que resistan cargas debidas a explosiones. En la investigación se estudiaron solamente cargas debido a una alta cantidad de explosivos, pero se presentaron los resultados de otras publicaciones de cargas debidas a explosiones donde se propuso el uso de un peso equivalente de TNT (Trinitrotolueno).

Krauthammer (2008) en el Capítulo 3 de su publicación "Modern Protective Structures" presentó una descripción de dos métodos para comparar el efecto del uso de diferentes tipos de explosivos y desarrolló tablas para convertir diferentes clases de explosivos a peso equivalente de TNT logrando presentar fórmulas y nomogramas para calcular distancias de penetración en el hormigón

debidas a una explosión. En el Capítulo 4, el autor presenta una metodología para determinar cargas debido a explosiones como una carga equivalente estática y nomogramas para calcular la distancia de penetración en el hormigón. Kiger and Woodson (2008) presentó el artículo "Explosion Effects and Structural Design for Blast". En esta publicación al igual que Krauthammer, presentaron los pasos a seguir para obtener cargas debidas a explosiones basadas en fórmulas empíricas y nomogramas y los efectos en el comportamiento de elementos estructurales.

En el reporte "A How- To Guide to Mitigate Potential Terrorist Attacts Against Buildings" FEMA 452 (2008) se presentaron varias consideraciones a examinarse como medidas de mitigación para reducir los efectos destructivos de ataques terroristas en edificaciones. A pesar de que los procedimientos para examinar las opciones de mitigación no remplazan un análisis técnico riguroso, estos procedimientos ayudan a los diseñadores a reducir el número de opciones y enfocar la atención en aquellas medidas que tienen mayor posibilidad de implementarse. En el caso de puentes se usan las medidas de mitigación que más se adaptan al riesgo envuelto, por lo que se evalúa la estructura a ver si tiene la capacidad suficiente para resistir las posibles cargas de explosivos o si debe incrementarse la seguridad de la estructura, teniendo presente además otro factor adicional, el impacto social y económico que el colapso de la estructura pudiera tener en las comunidades.

La Sociedad Americana de Ingenieros Civiles (ASCE) desarrolló guías tituladas "Design of Blast Resistant Buildings in Petrochemical Facilities" (ASCE 1997).

Este reporte provee guías generales para el diseño de facilidades petroquímicas resistentes a explosiones.

El Centro Nacional de Diseño para Resistir Explosiones (NCERD) del Departamento de Ingeniería Civil y Ambiental de la Universidad de Missouri-Columbia ofrece regularmente cursos sobre el Efecto de Explosiones y de Diseño Estructural para soportar explosiones. Estos seminarios enfatizan el efecto de ataques terroristas utilizando coches bomba, pero los conceptos fundamentales se aplican a otros escenarios que envuelvan explosivos. En 2003 el AASHTO Transportation Security Task Force auspició la preparación de guías para asistir a los profesionales de la transportación para identificar estructuras críticas del sistema vial para tomar acción y reducir su vulnerabilidad a explosiones.

1.3 OBJETIVOS Y PLAN DE LA INVESTIGACIÓN:

1.3.1 Objetivo General:

Los objetivos de esta investigación son:

Desarrollar modelos representativos de puentes típicos usados en Estados
Unidos e Irak sujetos a explosiones causadas por ataques terroristas.

2.- Determinar si el puente tiene la capacidad para usarse al menos parcialmente después de la explosión.

 Comparar los daños observados en estructuras que sufrieron daños debido a explosiones con los modelos usados.

4.- Presentar los resultados obtenidos.

5.- Plantear recomendaciones.

Los modelos de puente usados, son puentes típicos que se usan actualmente en los Estados Unidos. A dichos puentes se les aplicaron cargas debido a explosiones, con el fin de determinar las condiciones del puente posterior a la explosión.

También se utilizaron modelos de puentes encontrados en Irak que sufrieron daños en su estructura debido a ataques terroristas. Para estos puentes se determinó, la cantidad de explosivo en libras de TNT que pueda causar el daño encontrado; además se determinó si estos puentes podrían ser utilizados después de una explosión en casos de emergencia.

Para esta investigación se realizó un estudio paramétrico tomando en cuenta cambios en la cantidad de carga explosiva y localización relativa a los distintos componentes del puente. Se aplicó una carga uniforme para simular las cargas debido a explosivos y luego se usó un modelo representativo utilizando elementos finitos. Este análisis se usó para determinar la capacidad remanente del puente y la posibilidad de seguir usándolo reforzándolo parcialmente o sin reforzar.

1.3.2 Objetivos Específicos:

Esta investigación se concentró en realizar los siguientes objetivos:

Objetivo 1: Estudio paramétrico de los componentes básicos del puente: Para ello se seleccionaron modelos de puentes con losas de hormigón soportadas por Vigas AASHTO tipo III, IV y V pretensadas o postensadas utilizando las longitudes máximas entre tramos recomendadas para este tipo de vigas.

En adición se modeló un puente soportado por vigas de hormigón reforzado y dos de los puentes fueron puentes típicos usados en Irak y que fueron impactados por cargas debidos a explosiones.

Debido a la naturaleza de la evaluación, se usaron cargas estáticas solamente, es decir, cargas muertas y cargas vehiculares representadas como cargas en las gomas de los vehículos o cargas distribuidas equivalentes, pues la probabilidad de que se produzca una carga explosiva a la vez que ocurra un huracán o un sismo es muy baja. A pesar de que los vehículos para el diseño de puentes usados en los Estados Unidos es el HS-20, se tomó también en cuenta también el vehículo HS-30 que se usa en Puerto Rico y en adición también se utilizó vehículos militares que son los vehículos que se activan en este tipo de eventos y los que pueden circular inmediatamente después que ocurre un evento de esta naturaleza.

Las cargas que representen explosivos fueron aplicadas al puente como una carga equivalente estática, el cual es función de la distancia, la carga del explosivo y el ángulo de propagación de la onda (entre 30º a 60º). Para representar las cargas debidas a explosivos como cargas estáticas, estas cargas primero se transforman en una carga equivalente de peso de TNT y se utilizan los nomogramas propuestos por Krauthammer (2008), Kiger y Woodson (2008). Una vez se establece la carga equivalente, está se transforma en una carga uniforme siguiendo el ángulo de propagación de la onda.

Objetivo 2: Desarrollo de un Proceso Ingenieril: Este proceso toma en cuenta la pérdida en resistencia (capacidad de momento y cortante) y determina la sección efectiva de la viga.

Este proceso debe ser capaz de distinguir entre daños menores, moderados y daños severos. Como daños menores se considera el desarrollo de grietas y pequeños desprendimientos de hormigón sin dañar el refuerzo estructural, daños moderados incluyen desprendimientos de hormigón y daño parcial del acero de refuerzo sin daño en la adherencia de los cables del pretensado o postensado y daño severo incluye el colapso parcial o total de alguno de los elementos.

Estos resultados fueron usados para determinar si el puente puede resistir aún cargas vehiculares. Se modelaron las estructuras para hacer una comparación de los daños en los puentes debido a explosivos utilizando modelos analíticos, los que se compararán con daños reales observados en algunos puentes de Irak que fueron objeto de explosiones. Estas explosiones fueron causadas durante la invasión a Irak por grupos armados en contra de las tropas norteamericanas, en su intento por detener el avance de las mismas.

Objetivo 3: Desarrollo de Alternativas de Rehabilitación: Se presentan diferentes alternativas de rehabilitación para poner el puente nuevamente en servicio. Las fallas de los componentes se categorizan como daño menor, moderado y severo dependiendo de la magnitud del daño. Grietas menores y desprendimiento en el hormigón puede repararse

fácilmente y la estructura puede seguir funcionando, pero debido a la naturaleza de la explosión, los daños pueden ser tan severos que muchas veces se requiera el remplazo total del elemento que sería el caso de las vigas. Sin embargo, en el caso de daños de la viga de coronación ó columnas, existe un riesgo grande de que el puente completo no pueda ser usado. Las soluciones presentadas incluyen métodos para poner el puente en servicio nuevamente pero no incluyen rehabilitación completa del puente. Las soluciones presentadas contemplan el uso de hormigón y acero estructural.

Objetivo 4: Presentación de un Resumen de los Hallazgos de la Investigación: Se presentó un resumen de los hallazgos enfatizando los daños causados por las explosión como una función de la carga y localización del explosivo.

Se determinó si el daño es parcial y el puente puede ser puesto en servicio rápidamente, o si existe una interrupción total de los servicios.

1.4 METODOLOGÍA:

Para cumplir con los requerimientos del proyecto se analizaron puentes típicos, los cuales se diseñaron para cumplir con las cargas típicas de diseño. Después de definir el criterio de falla, se comparó las resistencias de los componentes individuales del puente utilizando el programa SAP2000 desarrollado por la firma Computers and Structures. Para la verificación del diseño se usó el código del AASHTO "Load and Resistance Factor Design "(LRFD 2004) conjuntamente con los códigos locales.

Durante el desarrollo de la investigación se realizaron las siguientes actividades:

- Revisión de los problemas típicos encontrados en puentes que han sufrido ataques terroristas y determinar las mejores opciones de modelaje y análisis así como definir los parámetros del estudio.
- Revisión de la literatura existente sobre evaluación de daños causados por explosiones y revisión de los hallazgos encontrados en explosiones causadas sobre puentes existentes.
- Preparación de modelos de puentes típicos, aplicación de cargas, análisis y diseño de los puentes, aplicación de cargas explosivas, modelaje de estructuras después del efecto de las explosiones
- Estudio paramétrico de los componentes estructurales fundamentales del puente bajo distintas cantidades de explosivos.
- Determinación de la capacidad actual de cada uno de los componentes después de la explosión
- 6. Desarrollo de alternativas de rehabilitación.

1.5 RESUMEN DE LOS SIGUIENTES CAPÍTULOS

En el Capítulo Dos se explican los diferentes conceptos concernientes a los temas a tratar en la investigación, como lo son cargas debidas a explosivos y puentes y la descripción de los diferentes elementos que lo componen, así como también las cargas y las combinaciones de cargas a las que se encuentran sometidos regularmente los puentes.

En el Capítulo Tres se dan a conocer las técnicas utilizadas para la determinación de la magnitud de las cargas que actuarán en la estructura, los

casos de carga que se estudiaron así como también la descripción de los diferentes modelos que se analizaron para la obtención de los resultados; además es importante recalcar que en este capítulo se establecen los criterios de falla de los puentes, con el objetivo de tener una guía para la interpretación de los resultados que se obtendrán más adelante.

En base a lo establecido en el Capítulo Tres, en el Capítulo Cuatro se realiza el análisis e interpretación de los resultados obtenidos, según los parámetros establecidos en el capítulo anterior.

El Capítulo Cinco contiene varias propuestas de rehabilitación, en las cuales se da a conocer al lector las recomendaciones mínimas necesarias para poder cumplir con el objetivo de la rehabilitación de poder utilizar la estructura dañada posterior a una explosión.

2 MARCO CONCEPTUAL

2.1 CARGAS DEBIDAS A EXPLOSIONES

Las cargas debido a explosiones generan ondas de choque, que se propagan rápidamente desde el punto donde se detona el explosivo, pero la gran presión que se genera por esta onda de choque generalmente decrece a medida que se amplía la distancia entre el punto de detonación al punto donde se encuentra el objetivo.

Los explosivos convencionales generan diferentes magnitudes y tipos de presión y calor, lo cual dificulta hacer una comparación y una representación adecuada, es por eso que cualquier tipo de explosivo convencional se convierte en su equivalente en peso de TNT. Es por esta razón que en esta investigación, las cargas de impacto que se proponen se aplican usando cargas equivalentes de TNT, en la Tabla 2.1, obtenida del libro de Krauthammer (2008) se da a conocer los factores de conversión de otros explosivos para su conversión a cargas equivalentes de TNT.

Conversión de Explosivos a TNT	
Explosivo	Factor
ANFO (Nitrato de Amonio y Combustible)	0.82
Cyclotol (Combinación de RDX y TNT)	1.14
HBX-1	1.17
HBX-3	1.14
H-6	1.38
Minol II (Nitrato de Amonio y AluminioT)	1.20
Pentrita	1.27
Pentolite (Pentrita y TNT)	1.42
Tetryl	1.07
Tetrytol (Tetryl y TNT)	1.06
Tritonal	1.07

Tabla 2.1 Factores de Conversión de Explosivos

Por lo tanto en los procesos de análisis y verificación de diseño se consideraron los efectos de los distintos explosivos detonados con diferentes cantidades de explosivos, y localizados a diferentes distancias, para observar el efecto que se produciría en la estructura.

2.1.1 EXPLOSIONES EXTERNAS

La Figura 2.1 muestra la curva generada por una onda explosiva de impacto, como una función de presión de la onda explosiva vs. tiempo para una explosión que se propaga en el aire. Krauthammer (2008) describe la curva de la siguiente manera:

El impacto de la onda en la parte frontal es esencialmente vertical y refleja el incremento súbito en la presión debida a la explosión. El valor más elevado (valor pico) de la presión de incidencia, P_{SO} ocurre al final de la fase inicial (tiempo de crecimiento de la onda). La presión de incidencia es la presión sobre la superficie paralela a la dirección de la propagación. La velocidad de propagación v decrece con el tiempo y la distancia, pero es típicamente mayor que la velocidad del sonido. Las partículas de gas (moléculas) se mueven a la velocidad de las partículas u, la cual es menor que v. La velocidad de la partícula está asociada a la presión dinámica, la cual es causada por el viento generado por el impacto de la explosión en la parte frontal. Asimismo la forma de la onda de impacto depende de la energía liberada en el volumen que es definido por la localización frontal, y la propagación del impacto frontal desde el centro de la explosión decrece al igual que su duración.

Figura 2.1 Variación de la presión vs tiempo después de la explosión (TM 5-855-1, 1986) De la Figura 2.1 se puede observar lo siguiente: el impacto frontal en el objetivo, ocurre en el tiempo t_A y alcanza la presión pico del incidente P_{SO} en el tiempo t_r después de t_A . Como t_r (tiempo de crecimiento) es muy corto, se puede asumir un crecimiento instantáneo (tr=0) hasta alcanzar la presión pico. La presión pico decrece hasta alcanzar la presión del ambiente en el tiempo t_o , y esta fase se define como fase positiva del pulso de la presión. Posteriormente sigue la presión negativa de duración t_o^- caracterizado por una presión menor a la presión del ambiente y un cambio de dirección del flujo del viento. Se debe indicar que la fase negativa no es importante en el diseño y generalmente se ignora. El impulso transmitido al objetivo es el área bajo la fase positiva de la curva de presión vs tiempo y se define como i_s.

La onda de impacto se propaga de la manera que describe Krauthammer una vez no se encuentren obstáculos entre el punto de detonación y el objetivo. Sin embargo si la onda alcanza una superficie que no es paralela a la dirección en

que se propaga la onda, se genera una onda de reflejo, la cual tiene una forma similar a la carga incidental. Esta presión de reflejo dependerá tanto de la carga incidental como del ángulo de inclinación de la superficie con que se produzca el choque de la onda incidental, así como también del tamaño de la superficie ya que si el choque se produce en toda el área, sus magnitudes serán las mismas. Si por el contrario existe un área mayor a la que se puede impactar el efecto de la misma o su magnitud se reducirá y si el área es menor la magnitud de la carga puede incrementarse.

La carga de reflejo se puede obtener con la siguiente expresión:

$$P_{ra}=C_{ra}P_{SO}(2.1)$$

El cálculo del valor C_{ra} se obtiene a partir de la Figura 2.2

Con estas curvas se obtienen los diferentes parámetros expuestos anteriormente, las cuales dependen de la cantidad equivalente de TNT y la distancia que exista entre el punto de detonación y el objetivo.

donde:

- P_{SO} es el pico de la presión positiva del incidente.
- P_r es el pico de la presión normal reflejada.
- U es la velocidad de impacto frontal.
- i_s/W^{1/3} es el impulso positivo del incidente convertido a una escala unitaria.
- $t_a/W^{1/3}$ es el tiempo de llegada con un factor de escala.
- W es la cantidad de TNT en libras.
- R es la distancia desde el punto de detonación hasta el objetivo.

Si la explosión ocurre sobre el objetivo o a una distancia muy cercana, la Figura 2.3 será suficiente para calcular la carga que impactará el objetivo en estudio, y utilizando la Figura 2.2 para encontrar los parámetros de la onda de reflejo que impactará la estructura.

El problema puede complicarse si la explosión ocurre en un punto muy cercano a la explosión, debido a que la onda de reflejo y la onda incidental pueden afectar simultáneamente a la estructura, aumentando el efecto de la carga explosiva sobre el objetivo, a este efecto se conoce como un *Mach Front (Punto de encuentro)*.

Según Krauthammer para propósitos de diseño se establece que el Mach Front será una onda que producirá una presión uniforme sobre la estructura afectada y su magnitud será la misma de la presión que produce la onda incidental, además el punto donde la onda incidental, la onda de reflejo y el Mach Front se encuentran, se le conoce como Punto Triple.

Este punto indica el punto más alto del Mach Front, y el camino que toma el Punto Triple define la altura del frente de la onda. Para cálculos simplificados se asume que el objetivo será afectado por el Mach Front, de lo contrario debe hacerse análisis numéricos que simulen la interacción que existe entre la estructura y la carga. Si en algún caso el punto triple se encuentra por encima de la estructura, se asume que el elemento se encuentra cargado de manera uniforme.

2.1.2 ESTRUCTURAS SOTERRADAS

El efecto y los componentes de una explosión descritos anteriormente, así como también las suposiciones de su comportamiento para la simplificación del análisis y diseño, aplican para este tipo de estructuras que se ven afectadas por este tipo de cargas.

Por esta razón se siguen utilizando las mismas derivaciones para la obtención de las cargas. Krauthammer establece en su libro "Modern Protective Structures" el siguiente procedimiento para la obtención de las cargas debido a una explosión, el cual utiliza como referencia el documento TM5-1300 del Cuerpo de Ingenieros de los Estados Unidos:

El tiempo necesario para que la presión reflejada P_r se disipe se define como:

$$tc = \frac{3S}{U} \quad (2.2)$$

donde:

U es la velocidad de impacto frontal y S es la altura de la estructura o la mitad del ancho, (el cual sea menor), t_c representa el tiempo que toma a la onda de impacto en viajar al extremo más cercano de la pared y a la onda de atenuación para viajar de regreso al punto de interés.

Después del tiempo t_c, la presión actuante se define como:

$$P_{tc} = P_{SO} + C_D q_o (2.3)$$

donde P_{SO} es la presión del incidente, C_D es el coeficiente de arrastre, tomado como 1 para los rangos de carga normalmente usados y q_o es la presión dinámica. Para rangos de presión altos, el procedimiento descrito anteriormente conduciría a curvas de presión vs tiempo no reales, por lo que la línea punteada de la Figura 2.3 sería la que debía de usarse. Esto es basado en la presión total del impulso reflejado i_r obtenido de las gráficas de los parámetros de las ondas de choque. La duración t_r que normalmente es despreciable se deriva a partir de una presión triangular asumida, tal como se muestra en la siguiente expresión:

$$tr = \frac{2ir}{Pso} (2.4)$$

donde P_{SO} es la presión reflejada pico.

La carga en la pared se obtiene de la curva considerando el valor más pequeño del impulso. Este impulso debido a la presión reflejada incluye los efectos del incidente y las presiones dinámicas.

Para calcular la curva de presión vs tiempo en la parte frontal de la estructura a partir de una explosión externa (con rompimiento súbito de la superficie), el TM 5-855-1, 1986 recomienda el siguiente método:

- Determinar el peso de la carga equivalente en TNT y la distancia a la superficie del suelo, R_q.
- 2. Calcular la distancia a la superficie con un factor de escala $Z_{g} = R_{g}/W^{1/3}.$
- Determinar los parámetros de la onda explosiva en el aire usando los parámetros establecidos en la Figura 2.3 para condiciones esféricas o hemisféricas y la correspondiente distancia a la superficie del suelo con un factor de escala Z_g.
- 4. Calcular el tiempo de crecimiento de la onda t_c.

5. Calcular una duración de la fase positiva ficticia t_{of}:

$$tof = \frac{2is}{Pso}$$
(2.5)

- 6. Determinar la presión dinámica pico q_o usando la Figura 2.4 para un valor dado de P_{SO} .
- 7. Calcular P_{tc}.
- 8. Calcular una duración para la presión reflejada ficticia t_r.

Figura 2.4: Valor pico de la presión del incidente vrs la presión dinámica pico (TM 5-855-1, 1986)

2.2 PUENTES

Los puentes son parte importante de nuestra actividad diaria, pero pocas veces se aprecian su valor hasta tanto que el sistema vial pueda estar interrumpido. Dentro de un sistema de transportación, la pérdida de un puente puede significar la falla total del sistema, además de ser la parte más costosa por milla que se encontrará en estos sistemas. Es por esta razón que durante el proceso de planificación, diseño y construcción debe tomarse en cuenta las condiciones extremas que pudieran ocurrir durante su vida útil, es decir que soporten no solamente las cargas de uso de la estructura y la transmitan adecuadamente al suelo, sino también los fenómenos naturales que los podrían afectar, como un sismo o bien el viento.

Comúnmente las condiciones de carga toman en cuenta las cargas gravitarias, cargas móviles debidas a los vehículos y dependiendo de la región las cargas de viento y/o terremoto. Por lo tanto no se consideran otros eventos que no sean parte de los desastres naturales, mas sin embargo debido a la importancia de estas estructuras para la vida cotidiana, éstos han sido objetivo de ataques terroristas, que como se expuso anteriormente, afectarían la vida diaria de todas las personas que los utilizan, paralizando incluso el comercio completo de una determinada región de un país.

2.2.1 TIPOS DE PUENTES

Se han hecho varios intentos para determinar la clasificación de los puentes, pero una clasificación exacta para cada puente no es posible exponerla, más bien sería una combinación de las clasificaciones que se expondrán a continuación:

Los puentes pueden clasificarse dependiendo del material con que se construyen como acero, hormigón o bien puentes de madera. También se pueden clasificar según su uso, como puentes de autopistas, para trenes o bien los puentes peatonales; o según su longitud como cortos, medianos o largos, o según de la forma que tienen, como puentes hechos solamente con losas,
puentes de vigas, puentes en arco o bien puentes atirantados por cables.

En esta investigación se estará analizando puentes construidos con vigas AASHTO, para el uso en autopistas, por lo que el enfoque teórico que se dará, será el necesario para la comprensión de los diferentes tipos de puentes que cumplan con estas especificaciones, así como dar a conocer los elementos estructurales que componen este tipo de puentes.

2.2.2 SUPERESTRUCTURAS

El término de superestructura se le da a los elementos estructurales que se encuentran por encima de la fundación o de las pilastras, y está compuesta por la losa, las vigas, cables (si el puente fuese atirantado) y todo elemento principal que su propósito sea el de transmitir las cargas a las pilastras o bien directamente a los estribos.

Para nuestro caso es necesario advertir que la superestructura que utilizaremos comprende únicamente las vigas AASHTO y la losa, ya que lo que corresponde a puentes colgantes o cualquier otro tipo de estructura son parte del estudio.

En lo que se refiere a especificaciones tanto de la losa como de las vigas, se tomará en cuenta las recomendaciones establecidas para análisis y diseño en el manual de AASHTO.

2.2.3 SUBESTRUCTURAS

Las subestructuras son componentes del puente que soportan la superestructura. Estos componentes son los estribos, las pilastras, los muros de

contención, y el sistema de fundaciones.

2.2.3.1 PILASTRAS

Estos son elementos estructurales diseñados para transmitir las cargas de la superestructura hacia la fundación, el manual de AASHTO da a conocer los diferentes tipos de pilastras que existen y cuáles son sus consideraciones para su diseño:

- a. PILASTRAS COMPUESTAS POR PARED SÓLIDA: Las paredes sólidas de las pilastras se diseñan como columnas para las fuerzas axiales y momentos actuantes en el eje débil y como muro de corte para las fuerzas que actúan sobre el eje fuerte. Las pilastras pueden actuar como articuladas, empotradas o en voladizo en la parte superior y normalmente actúan como empotradas en la base. Estas paredes adolecen de falta de redundancia en la dirección transversal en casos de terremoto.
- b. PILASTRAS CON DOBLE PARED: Diseños recientes prefieren el uso de pared doble, espaciadas en la dirección del tráfico para proveer soporte continuo a superestructuras, compuestas por cajones de hormigón pretensado. Estas paredes actúan de manera integral con la superestructura por lo que se originan momentos debidos a cargas gravitarías y condiciones de carga durante la construcción.
- c. PILASTRAS TIPO PÓRTICO: Los pórticos consisten de dos o más columnas localizadas transversalmente y conectadas por una viga

de conexión y se diseñan como pórticos. Estos elementos tienen redundancia en la dirección transversal. Este tipo de estructura está usualmente empotrada en la base de la pilastra y son integrales con la superestructura.

d. PILASTRAS CON UNA SOLA COLUMNA: Las pilastras de una sola columna, se constituyen normalmente como una T ó pilastras tipo martillo y están soportadas por cimentaciones aisladas o pilotes y los mismos pueden ser integrales o proveen soporte independiente para la superestructura. La sección transversal puede tener diferentes formas: puede ser prismática o puede tener capiteles o puede estar empotrada en la superestructura. Este tipo de pilastra puede evitar las complejidades de soportes que tengan superestructuras que tengan un ángulo. Además de tener el problema de falta de redundancia.

2.2.3.2 ESTRIBOS:

Al igual que las pilastras estos elementos estructurales se utilizan para transmitir las cargas de la superestructura hacia la fundación, con la diferencia que éstas se encuentran en los costados de los puentes. Además tienen como función servir de muro de retención del material de relleno utilizado para hacer las plataformas de acercamiento de los puentes. El manual de AASHTO da a conocer los diferentes tipos de estribos que existen y cuáles son sus consideraciones para su diseño:

- a. ESTRIBOS CONTINUOS: Los estribos continuos se localizan cerca de la transición de la carretera al puente, con un muro suficientemente profundo para acomodar la profundidad de la estructura y los elementos donde se apoyan las vigas.
- b. ESTRIBOS DE PROFUNDIDAD PARCIAL: Los estribos de profundidad parcial se localizan aproximadamente a una profundidad media de la pendiente frontal de la transición de la carretera al puente. La mayor altura de la pared y los muros de protección contra la erosión pueden retener material de relleno o un relleno con pendiente que puede continuar detrás del muro.
- c. ESTRIBOS DE PROFUDIDAD TOTAL: Los estribos de profundidad total se localizan aproximadamente al pie de la transición del terraplén, restringiendo la apertura bajo la estructura.
- d. ESTRIBO INTEGRAL: Los estribos integrales están conectados rígidamente a la superestructura y están soportados por zapatas aisladas o cimentación profunda capaz de permitir el movimiento horizontal debido a cargas de terremoto.

2.3 CARGA Y COMBINACIONES DE CARGA

Para el diseño y posterior revisión de los puentes que se estarán analizando se utilizará la filosofía del LRFD, siguiendo las especificaciones de combinaciones de carga del AASHTO (2004) LRFD, como lo exponen Barker & Puckett, en su libro "Design of Highway Bridges". Estas combinaciones se exponen en la Figura 2.5 que se muestra más adelante.

Esto debido a que el uso de esta filosofía conlleva las siguientes ventajas:

- Se toma en cuenta las posibles variaciones que pueden existir entre la resistencia de los materiales y las cargas a las que puede estar expuestas.
- Logra encontrar niveles de seguridad adecuados para diferentes casos de carga y los diferentes tipos de puentes sin que sea necesario tomar en cuenta la probabilidad estadística en su análisis.
- Tiene concordancia con otras especificaciones de diseño como lo son el ACI y el AISC, los que son más conocidas en las nuevas prácticas de la ingeniería.

Combinación de Carga		LL	WA	WS	WL	FR	TU	TG	SE				
_	DC	IM					CR			Utilizar u	una de las s	iguientes	a la vez
	DW	CE					SH			EQ	IC	СТ	CV
	EH	BR											
	EL	PL											
	EV	LS											
Estado Limite	ES												
Fuerza I	үр	1.75	1	-	-	1	0.5/1.20	γTG	γSE	-	-	-	-
Fuerza II	үр	1.35	1	-	-	1	0.5/1.20	γTG	γSE	-	-	-	-
Fuerza III	үр	-	1	1.4	-	1	0.5/1.20	γTG	γSE	-	-	-	-
Fuerza IV,													
EH,EV,ES,DW	үр	-	1	-	-	1	0.5/1.20	γTG	γSE	-	-	-	-
Únicamente DC	1.5	-	-	-	-	-	-	-	-	-	-	-	-
Fuerza V	үр	1.35	1	0.4	0.4	1	0.5/1.20	γTG	γSE	-	-	-	-
Evento Extremo I	үр	γEQ	1	-	-	1	-	-	-	1	-	-	-
Evento Extremo II	үр	0.5	1	-	-	1	-	-	-	-	1	1	1
Servicio I	1	1	1	0.3	0.3	1	1.00/1.20	γTG	γSE	-	-	-	-
Servicio II	1	1.3	1	-	-	1	1.00/1.20	-	-	-	-	-	-
Servicio III	1	0.8	1	-	-	1	1.00/1.20	γTG	γSE	-	-	-	-
Servicio IV	1	-	1	0.7	-	1	1.00/1.20	-	1	-	-	-	-
Fatiga LL, IM, y		0.75											
SUIAITIEITIE CE	-	0.75	-	-	-	-	-	-	-	-	-	-	-

Tabla Obtenida de la AASHTO, Tabla 3.4.1-1, del AASHTO LRFD, Especificaciones de Diseño de Puentes

Figura 2.5: Combinaciones de Carga

donde:

- DC: carga muerta de componentes estructurales y no estructurales.
- DW: carga muerta debida a la rodadura.
- EH: Presión lateral de suelo.
- EL: Carga debida a fuerzas segundarias de postensado.
- EV: Presión vertical debida al suelo.
- EH: Sobrecargas horizontales de suelo.
- LL: Carga viva vehicular.
- IM: Carga dinámica vehicular permisible.
- CE: Fuerza centrifuga vehicular.
- BR: Fuerza de frenado del vehículo.
- PL: Carga viva debido a peatones.
- LS: Sobrecarga debida a cargas viva.
- WA: Carga producida por agua.
- WS: Carga de viento.
- FR: Fricción.
- TU: Carga producida por temperaturas uniformes.
- CR: Carga debida al reacomodo del asfalto.
- SH: Carga debida a retracción del material.
- TG: Carga debida al gradiente de temperatura.
- SE: Carga debida a asentamientos diferenciales.
- EQ: Sismo.
- IC: Carga debida al hielo.

- CT: Carga debida a colisión vehicular.
- VC: Carga debida a colisión de un navío.

	Hypothetical Vehicles for Classification of Actual Vehicles and Bridges								
1	2		4	5	6	7	8	1.0	
₽	O Wheeled Vehicles								
SS		Axle Loads and Spacing	Axle Loads and Spacing Load in Short Tons Minimum Wheel Spacing and Tire Sizes of Critical Axles Maximum Tire Load and Minimum Tire Size						
50	50 Tons +-13 ++ 26'+ +-28'-+		22	Single Aste: 24 - 00 x 29	Single Arte: 16 - x 24 277- 32*- Bogie Axie: 14 - 00 x 20	Single Arile: 16 - C0 x 24	20,000 lb on 24 - 00 x 29	50	
60	60 Tons +-14'+ +-132'+	70 Tone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22		Single Asis: 18 - 00 x 24 41'	Single Asie: 18 - 00 x 24	20,000 lb on 24 - 00 x 29	60	
70	70 Tons +-15"+ +-138"+	0 - 5 Tons 	© 25:-5 +		Single Arie: 18 - 00 x 24 41' - 00 - 132' 37' - 00 - 132' Bogie Arie: 16 - 00 x 24	Single Asia: 18 - 00 x 24	20,000 lb on 24 - 00 x 29	70	
80	80 Tons -+16'+ -+16'+ 14'-+	BE Tons	Q-2-		Single Axie: 21 - 00 x 24 45'	Single Axle: 21 - 00 x 24	20,000 lb sn 24 - 00 x 29	80	
90	80 Tons +17 + 35'++ ++ +150'-+	103-5 Tone 107-5 Tone 107-	ن *		Single Axis: 21 - 00 x 24 45" + 00 - 108" 108" Bogie Axis: 18 - 00 x 24	Single Axie: 21 - 00 x 24	20,000 lb on 24 - 00 x 29	90	
100	100 Tons 100 Tons 37'+ 1+ 	115 Tone			Single Asile: 21 - 00 x 24 49"	Single Axie: 21 - 00 x 24	0 20,000 lb on 24 - 00 x 29	100	
120		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 36 †			Bogie Axie: 24 - 00 s 29	20,000 lb on 24 - 00 x 29	120	
150	150 Tons +-24'+ 50'+ +-184'-	$ \begin{array}{c c} \hline & & & & \\ \hline \phi & & & & \\ \hline & & & & \\ \hline & & & & \\ 22 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & &$	© ↓ +			Bogie Asia: 24 - 00 x 29	0 21,000 lb on 24 - 00 x 29	150	
Sł	nort Tons NOTES: (3 (4	 Single-axle tire sizes shown in c Bogie axle tire sizes shown in c The maximum tire pressure for a The first dimension of tire size re 	olumns 5, 6, and 7 refer to the olumns 5, 6, and 7 refer to the all tires shown in column 8 sha efers to the overall width of tire	e maximum single axle loads giver maximum bogie loads shown on all be taken as 75 lb/sq in. e and the second dimension is the	n in column 4. the diagram in column 3. rim diameter of the tire.				

Figura 2.6: Cargas Militares

En adición a la combinación de cargas es necesario establecer las cargas militares de diseño a la que los puentes estarán expuestos una vez se establezca el daño en la estructura.

Posterior a una explosión o ataque terrorista es de esperarse que vehículos militares utilicen el puente, las magnitudes y las clasificaciones de los diferentes vehículos militares que estarán ocupando la estructura se define en la Figura 2.6 expuesta anteriormente.

Se hace necesario dar énfasis a las condiciones extremas a las que puede estar expuesto un puente. Es por esta razón que a continuación se estará definiendo de forma más clara los casos extremos expuestos en la Figura 2.5.

2.3.1 CASO DE EVENTO EXTREMO I

Esta combinación se utiliza cuando el puente estará expuesto a cargas sísmicas, el factor de magnificación para las cargas vivas se toma en cuenta y puede oscilar entre 0.00, 0.50 y 1.

2.3.2 CASO DE EVENTO EXTREMO II:

Esta combinación toma en cuenta la carga que produce el hielo sobre la carretera, colisión de embarcaciones y vehículos.

En esta investigación, para cuantificar el daño que se puede producir en la estructura debido a una explosión, se tomará en cuenta lo expuesto anteriormente. Por esta razón la carga viva vehícular que puede estar durante un evento de esta naturaleza podría disminuir y su factor de magnificación será de 0.5. Para la carga explosiva, se tomará una magnificación de 1, debido a que

la probabilidad de que este evento suceda es bajo, y construir un puente bajo estas especificaciones conlleva a construcciones de alto costo.

Para lo que son cargas muertas se utilizará un factor de magnificación de 1.25, debido a que lo que se espera es que el material del puente se desprenda, provocando una disminución de las cargas muertas existentes. Por lo expuesto anteriormente la combinación de diseño para carga de explosión se define de la siguiente manera:

donde:

DL: Carga Muerta.

LL: Carga Viva.

EV: Evento Extremo.

Para verificar el comportamiento del puente posterior a una explosión, se verificará el puente con la siguiente combinación de carga:

donde DL es la carga muerta, y LL es la carga viva militar; estas cargas se muestran en la Figura 2.6.

3 MODELO ESTRUCTURAL Y ANÁLISIS

3.1 DETERMINACIÓN DE CARGAS ACTUANTES

Utilizando el procedimiento descrito en el capítulo anterior se obtienen las cargas estáticas equivalentes utilizando los nomogramas. Sin embargo dado el posible error en precisión que se podría obtener usando los nomogramas se utilizó el programa ATBlast de dominio público, pero se corroboraron los resultados utilizando los nomogramas.

ATBlast es un programa que estima las cargas debidas a explosiones producidas por explosiones que se propagan al aire libre. Este programa permite al usuario el ingreso de la cantidad en libras de TNT y la distancia a la cual se estima estará la carga explosiva.

ATBlast calcula los siguientes valores: Distancia estimada (R, pie), Velocidad de impacto frontal (V, pies/milisegundo), Tiempo de llegada (TOA, milisegundo), Presión (P, PSI), Impulso (I, PSI-milisegundo), y duración (TD, milisegundo). Estos valores se pueden generar para cualquier distancia incremental. ATBlast es un programa desarrollado por Applied Research Associates Inc., y se permite usarlo sin costo al usuario.

En este trabajo se estará investigando los efectos de un posible ataque premeditado y no la posible explosión accidental de un vehiculo que contenga alguna carga explosiva. Es por esta razón que se evaluará solamente las cargas que se encuentren cercanas a la estructura.

Para efectos numéricos se establece una distancia mínima de 4 pies y una máxima de 10 pies. La distancia de 10 pies se establece como la distancia

máxima a la que un ataque premeditado puede hacerse, ya que se cree que durante un ataque premeditado se buscaría estar lo mas cercano del objetivo para poder afectarlo de una mayor manera. La distancia de 4 pies se toma como la distancia máxima que puede existir entre el contenedor del material explosivo al elemento estructural que se desea afectar, aunque se estima que para cargas de 5 a 20 libras pueden ser depositadas directamente sobre el elemento estructural.

Es por eso que para esta cantidad de explosivo se evaluará su efecto a una distancia mínima de 2 pies hasta 5 pies.

Las Tablas 3.1 hasta la 3.7 muestran la presión debida a una explosión para diferentes valores de TNT, la que se obtuvo usando el programa ATBlast, R en la tabla es la distancia medida en pies del punto de detonación al punto donde impacta con el elemento, V es la velocidad de la onda de choque en pies/milisegundos, TOA es el tiempo de llegada de la carga en milisegundos, P es la presión en PSI, I es el impuso en PSI/milisegundos y LD es el tiempo de duración de la carga en milisegundos.

	TNT 500 lb.									
R	TOA	V		LD	Р					
4	0.22	13.13	326.68	0.26	2511.07					
5	0.30	11.39	235.17	0.24	1884.24					
6	0.40	10.11	190.71	0.25	1479.55					
7	0.50	9.13	167.30	0.27	1198.05					
8	0.61	8.34	154.86	0.31	991.01					
9	0.73	7.69	148.82	0.35	832.45					
10	0.87	7.13	146.92	0.41	707.43					

Tabla 3.1: Parámetros equivalentes estáticos para una explosión de 500 lb. de TNT

	TNT 100 lb.									
R	TOA	V	I	LD	Р					
4	0.28	9.27	99.50	0.16	1237.2					
5	0.39	7.97	88.26	0.19	898.95					
6	0.53	6.99	85.93	0.25	679.21					
7	0.68	6.21	88.25	0.33	526.56					
8	0.85	5.56	93.53	0.44	416.14					
9	1.04	5.02	100.97	0.60	334.07					
10	1.25	4.56	110.17	0.81	271.84					

Tabla 3.2: Parámetros equivalentes estáticos para una explosión de 100 lb. de TNT

Tabla 3.3: Parámetros equivalentes estáticos para una explosión de 50 lb. de TNT

	TNT 50 lb.								
R	TOA	V		LD	Р				
4	0.32	7.92	69.88	0.15	888.46				
5	0.45	6.74	68.45	0.21	627.87				
6	0.61	5.83	72.14	0.31	460.63				
7	0.80	5.11	78.96	0.45	347.22				
8	1.01	4.52	88.08	0.65	267.58				
9	1.25	4.04	97.80	0.93	210.19				
10	1.51	3.65	94.16	1.12	167.97				

Tabla 3.4: Parámetros equivalentes estáticos para una explosión de 20 lb. de TNT

	TNT 20 lb.								
R	TOA	V	I	LD	P				
2	0.13	10.28	66.94	0.08	1531.44				
3	0.24	7.83	51.22	0.11	865.22				
4	0.38	6.33	51.25	0.18	547.69				
5	0.56	5.25	56.95	0.30	368.13				

Tabla 3.5: Parámetros equivalentes estáticos para una explosión de 15 lb. de TNT

	TNT 15 lb.								
R	TOA	V	I	LD	Р				
2	0.13	9.65	55.52	0.08	1345.1				
3	0.25	7.31	45.74	0.12	747.44				
4	0.41	5.85	48.20	0.20	464.01				
5	0.60	4.82	55.55	0.36	306.5				

	TNT 10 lb.								
R	TOA	V	-	LD	Р				
2	0.14	8.82	43.91	0.07	1114.89				
3	0.27	6.61	40.17	0.13	602.02				
4	0.45	5.22	45.44	0.25	362.71				
5	0.66	4.25	54.92	0.46	233.8				

 Tabla 3.6: Parámetros equivalentes estáticos para una explosión de 10 lb. de TNT

	Tabla 3.7: Parámetros de	carga equivalente estática p	ara una explosión de 5 lb. de TNT
--	--------------------------	------------------------------	-----------------------------------

			TNT 5 lb.		
R	TOA	V		LD	P
2	0.16	7.52	31.87	0.08	794.12
3	0.32	5.48	34.80	0.17	402.88
4	0.53	4.21	43.94	0.38	230.02
5	0.80	3.39	41.81	0.58	142.78

Se hizo una evaluación estructural de los elementos estructurales afectados por las cargas expuestas anteriormente.

En los modelos se calculó la cantidad de explosivo necesaria para producir la falla en el elemento y los resultados se tabularon y expondrán en los próximos capítulos de la tesis.

3.2 DETERMINACIÓN DE CARGAS DISTRIBUIDAS EN ELEMENTOS ESTRUCTURALES

Para la determinación de las cargas que actúan en la estructura para los diferentes casos de carga a utilizarse, se establece que la distancia máxima entre las vigas es de 6 pies, y la franja total a ser afectada es de un cuadro de 20 x 20 pies, es decir que para cada caso de carga, se establecerá una carga distribuida de 20 pies, y sus magnitudes se establecen según el volumen que afecta cada franja tributaria, tal como se presenta en la Figura 3.1 que se

muestra a continuación:

Figura 3.1: Distribución de Presión

Figura 3.2: Isométrico de Sección del Puente

Según se observa en la Figura 3.1, el 50% de la presión generada por la

explosión afectará directamente a la viga central, y el 50% restante se distribuirá equitativamente entre las vigas adyacentes.

Es decir, por ejemplo, que para el caso de que se genere una explosión de 500 libras de TNT a una distancia de 4 pies, la presión que afectara a la viga central es de 1.25 KSI, y para las vigas adyacentes será de 0.63 KSI. Estas presiones se multiplicarán por la franja tributaria de cada una de las vigas.

Por lo tanto para la viga central la carga tendrá una magnitud de 1084 Kip/pie y para las vigas adyacentes una carga de 632 Kip/pie. El ejemplo tabulado se dará a conocer en el Anexo 10. La justificación de colocar la carga sobre las vigas se observa en el Anexo 12 y la comparación entre carga viva y de explosivos en el Anexo 11.

Para esta investigación se establecieron 3 casos de carga para cada uno de los modelos y los casos de carga se describen a continuación:

3. 2.1 CASO DE CARGA 1:

El primer caso de carga considera que la carga explosiva se encuentra en medio del tramo por encima del puente, ya sea en el tramo extremo o bien en el tramo central. Adicional a esto se colocó una carga directamente encima de la pilastra, debido a que la franja afectada de carga es de 20 pies, el carril interior también se verá afectado, no así los carriles del sentido contrario del tránsito del puente. Para este caso se estimará la posibilidad de que cargas de 500, 100 y 50 libras de explosivo estarían siendo detonadas, estableciendo como distancias posibles de localización de la carga, 4, 6 y 8 pies. Ver Figura 3.3.

Para el caso de carga 1, se establecieron las magnitudes de carga mostradas en las siguientes tablas, tomando en cuenta los factores de distribución establecidos en la sección 3.2 expuesta anteriormente:

En las Tablas 3.9 a 3.10, R es la distancia del punto donde se detona el explosivo al punto donde se aplica la carga, FT es la franja tributaria, %I, es el porcentaje de carga de la viga más cercana al punto de la explosión, %A porcentaje de carga de la viga contigua, VI es la carga sobre la viga más cercana al punto de la explosión y VA es la carga sobre las vigas adyacentes. **Tabla 3.8:** Parámetros de carga estática equivalente para una carga de 500 lb de TNT Explosión

	TNT 500 lb.								
R	FT 1 pie.	FT 2 pie.	% I	% A	VI K/pie	VA K/pie			
4.00	6.00	7.00	50%	25%	1085	633			
6.00	6.00	7.00	50%	25%	639	373			
8.00	6.00	7.00	50%	25%	428	250			

Tabla 3.9: Parámetros de carga estática equivalente para una carga de 100 lb de TNT Explosión

	TNT 100 lb.									
R	FT 1 pie.	FT 2 pie.	% I	% A	VI K/pie	VA K/pie				
4.00	6.00	7.00	50%	25%	534	312				
6.00	6.00	7.00	50%	25%	293	171				
8.00	6.00	7.00	50%	25%	180	105				

Tabla 3.10: Parámetros de carga estática equivalente para una carga de 50 lb de TNT Explosión

TNT 50 lb.								
R	FT 1 pie.	FT 2 pie.	% I	% A	VI K/pie	VA K/pie		
4.00	6.00	7.00	50%	25%	384	224		
6.00	6.00	7.00	50%	25%	199	116		
8.00	6.00	7.00	50%	25%	116	67		

1: Caso 1, carga colocada en el tramo de los extremos.

- 2: Caso 1, carga colocada sobre la viga de coronación
- 3: Caso 1, carga colocada en el tramo central.

Figura 3.3: Puntos de detonación indicados en caso 1 de carga

3. 2.2 CASO DE CARGA 2:

El segundo caso de carga que afectará las estructuras es cuando la carga se encuentra sobre la viga de coronación por debajo del puente. La carga se localizó en medio del carril por donde pasaría un vehículo, por el carril interno. (Ver Figura 3.4)

Esta carga se estableció bajo el criterio de que la carga explosiva penetrará a través del hormigón, para lo cual se establece una penetración máxima de 4 pulgadas que es la observada en todos los casos reportados de puentes afectados por este tipo de carga, como se observa en las Figuras 4.3, 4.11 y 4.12 mostradas en el Capitulo 4.

Para esto la cantidad de explosivo en libras se determinará utilizando la formula experimental establecida por Luccioni y Luege (2004), quienes en su trabajo presentan la siguiente formulación:

$$\ln\frac{3.63D}{h} = 0.1838\frac{W^{1/3}}{h}$$
(3.1)

donde:

D es la penetración esperada en el hormigón.

h es la distancia a la que se coloca el explosivo.

W es la cantidad de explosivo.

Con la expresión anterior se obtiene la cantidad de TNT y posteriormente se obtendrá la presión que esta produce, para distancias de 0.20 pies y su posterior conversión a carga distribuida.

Este caso de carga trata de replicar lo observado en los puentes que sufrieron

este tipo de carga explosiva en Irak, con el fin de obtener efectos similares a las fallas que presentan este tipo de puentes posterior a la explosión. Este tipo de carga se aplico no solamente en los puentes típicos de Irak sino en todos los modelos de puente usados para esta investigación con el objeto de establecer el comportamiento de puentes típicos usados para esta investigación y observar el daño que se produce en los diferentes elementos estructurales, tales como la losa, la pilastra y las vigas (vigas de hormigón reforzado, prefabricadas con pretensado o con post-tensado)

El comportamiento de la estructura bajo estos casos de carga se describe en el Capítulo 4, y luego se discuten los resultados que se obtuvieron del análisis de los diferentes modelos.

Tabla 3.11: Parámetros de carga estática equivalente para una carga de ½ lb de TNT Explosión

TNT 0.456 lb.								
R	FT 1 pie.	% A	CI K/pie	CA K/pie				
0.20	0.70	5.00	100%	46%	545	1792		
14.20	5.00	5.00	100%	100%	2	2		
28.40	5.00	5.00	100%	100%	1	1		

3. 2.3 CASO DE CARGA 3:

El tercer caso de carga que afectará las estructuras es cuando la carga se encuentra bajo el puente, afectando directamente a las columnas. La distancia de esta carga a las vigas es de aproximadamente de 25 pies o mayor, por lo que el efecto de la explosión sobre éstas fue ignorado. Para este caso se estimó la posibilidad de que cargas de 500, 100 y 50 libras de explosivo estarían siendo detonadas, estableciendo como distancias posibles de localización de la carga, 4, 6 y 8 pies.

Tabla 3.12: Parámetros de carga estática equivalente para una carga de 20 lb de TNT Explosión

TNT 20 lb.								
R	FT 1 pie.	FT 2 pie.	% I	% A	VI K/pie	VA K/pie		
2	6.00	7.00	50%	25%	662	386		
3	6.00	7.00	50%	25%	374	218		

Tabla 3.13: Parámetros de carga estática equivalente para una carga de 15 lb de TNT Explosión

TNT 15 lb.								
R	FT 1 pie.	FT 2 pie.	% I	% A	VI K/pie	VA K/pie		
2	6.00	7.00	50%	25%	581	339		
3	6.00	7.00	50%	25%	323	188		

Tabla 3.14: Parámetros de carga estática equivalente para una carga de 10 lb de TNT Explosión

TNT 10 lb.								
R	FT 1 pie.	FT 2 pie.	% I	% A	VI K/pie	VA K/pie		
2	6.00	7.00	50%	25%	482	281		
3	6.00	7.00	50%	25%	260	152		

Tabla 3.15: Parámetros de carga estática equivalente para una carga de 5 lb de TNT Explosión

TNT 5 lb.								
R	FT 1 pie.	FT 2 pie.	% I	% A	VI K/pie	VA K/pie		
2	6.00	7.00	50%	25%	343	200		
3	6.00	7.00	50%	25%	174	102		

En las tablas anteriores se observan las diferentes magnitudes de carga, donde FT1 es la franja tributaria de la viga central, FT2 la franja tributaria de las vigas adyacentes, ambas en pies, así como también 1% es el porcentaje de carga que recibe la viga interna, y %A el porcentaje de las vigas adyacentes, como se expone en la sección 3.2 de este capitulo, así como VI, que es la Carga en Kip/Pie para la viga central y VA la que tendrán las vigas adyacentes.

- 1: Caso 2, carga colocada sobre capbeam.
- 2: Caso 3, carga colocada en columna.

3.3 MODELOS

En la investigación se estarán modelando 6 diferentes puentes, los cuales estarán siendo afectados por las cargas descritas anteriormente. Dichos modelos serán descritos a continuación:

3. 3.1 MODELO 1

El modelo 1 consiste de un puente de 4 carriles, cada carril con un ancho de 12 pies, más dos paseos de 10 pies cada uno, más dos parapetos que ocupan 1.5 pies, construidos con vigas AASHTO III, con dos luces de 80 pies, y una pilastra central compuesta por 4 columnas, con una altura de 25 pies. El modelo estará sujeto a cargas típicas de diseño, como lo son sismo, carga muerta y carga viva. Para la carga viva se estará utilizando como vehículo de diseño un HS-30. El hormigón usado para la construcción de los puentes típicos será de 4000 PSI para la losa, para las vigas AASHTO será de 6,000 PSI el acero de refuerzo para la losa de 60 KSI y el acero de las vigas pre ó post tensado de 270KSI.

Object Model

Figura 3.5: Modelo 1

Figura 3.6: Modelo 1, Carga de Explosión Aplicada, Según el Caso 1 de Carga de 500 lb.

Figura 3.7: Modelo 1, Esfuerzos en la Losa, debido a la Explosión del Caso 1, a 500 lb.

3. 3.2 MODELO 2

El modelo 2 consiste de un punte de 4 carriles, cada carril con un ancho de 12 pies, más dos paseos de 10 pies cada uno, más dos parapetos de 1.5 pies, construidos con vigas AASHTO IV, con dos luces de 120 pies, y una pilastra central compuesta por 6 columnas, con una altura de 25 pies. El modelo estará sujeto a cargas típicas de diseño, como lo son sismo, carga muerta y carga viva. Para la carga viva se estará utilizando como vehículo de diseño un HS-30.

El hormigón usado para la construcción del puente será de 4,000 PSI para las losas, y para las vigas AASHTO será de 6,000 PSI, el acero de refuerzo para la losa de 60 KSI y el acero de las vigas pre ó post tensadas es de 270KSI.

Figura 3.8: Modelo 2

Object Model

Figura 3.9: Modelo 2, Carga de Explosión Aplicada, Según el Caso 1 de Carga de 100 lb.

3. 3.3 MODELO 3

El modelo 3 consiste de un puente de 4 carriles, cada carril con un ancho de 12 pies, más dos paseos de 10 pies cada uno, más dos parapetos de 1.5 pies, construido con vigas AASHTO V, con dos luces de 140 pies, y una pilastra central compuesta por 4 columnas, con una altura de 25 pies. El modelo estará sujeto a cargas tradicionales de diseño, como lo son sismo, carga muerta y carga viva. Para la carga viva se estará utilizando como vehículo de diseño un HS-30.

El hormigón usado para la construcción del puente será de 4,000 PSI para la losa, y para las vigas AASHTO de 6000 PSI, el acero de refuerzo para la losa de 60 KSI y el acero de las vigas pre ó post tensado de 270KSI.

Object Model

Figura 3.11: Modelo 3

Figura 3.12: Modelo 3, Carga de Explosión Aplicada, según el Caso 1 de Carga de 50 lb.

Analysis Model

Figura 3.13: Modelo 3, Carga de Explosión Aplicada, Según el Caso 1 de Carga de 50 lb.

3. 3.4 MODELO 4

El modelo 4 será de dos tramos de 20 pies cada uno, y una altura de 15 pies. Este puente fue diseñado con vigas y columnas de hormigón reforzado, el hormigón usado para su construcción será de 4,000 PSI y el acero de refuerzo tendrá un esfuerzo de fluencia de 60 KSI.

Las vigas tendrán un ancho de 12 pulgadas y una altura de dos pies, así como las pilastras del puente están compuestas por columnas de 24 x 24 pulgadas y una viga de coronación de 18 pulgadas de ancho por 36 pulgadas de alto.

El modelo estará sujeto a las cargas típicas de diseño como lo son carga muerta y sismo, así como también una carga vehicular, tomando como vehiculo de diseño un camión tipo HS-30 como los modelos anteriores. Object Model

Figura 3.14: Modelo 4, Puente de Hormigón Reforzado, dos tramos de 20 pies.

3.3.5 MODELO 5

El modelo 5 es un puente típico de Irak que estuvo sujeto a cargas de explosivos. El mismo tiene 7 tramos de 35.5 metros cada uno, para una longitud total de 251.5 metros, y un ancho de 21 metros.

Consta de un diafragma rígido de 0.35 metros y las vigas son postenzadas tipo Bulb-Tee, además cada tramo es soportado por pilastras que están compuestas por columnas de 4.5 x 6.00 metros y una viga de coronación de 1.45 x 1.83 metros. Este puente sufrió daño a su estructura durante un ataque y el objetivo en esta investigación es reproducir en el programa SAP 2000 los daños producidos al puente y determinar la carga de TNT empleada durante el ataque.

Figura 3.15: Modelo 5, puente existente en Irak

3.3.6 MODELO 6

Object Model

El modelo 6 es otro puente construido en Irak. Al igual que el modelo 5 este puente sufrió daño después de una explosión y el objetivo, al igual que para el modelo anterior, es reproducir los daños sufridos en la estructura del mismo. El puente consta de 9 tramos de 60 pies cada uno y un ancho total de 50 pies, y las pilastras están soportadas por 4 columnas circulares de 9'5" de diámetro y una viga de coronación de 3 pies de altura por 5.10 pies de ancho.

Figura 3.16: Modelo 6, puente existente en Irak

3. 4 CRITERIO DE FALLA PARA LOS MODELOS 1, 2 Y 3

Object Model

A continuación se establecerán los criterios para establecer la falla o el nivel de daño que pueden sufrir los elementos estructurales que componen los diferentes puentes.

Según lo anterior la falla de los elementos dependerá de los esfuerzos a los que estén sometidos debido a las cargas explosivas expuestas en los casos anteriormente descritos. Para esta investigación se hará una suposición básica:

Una vez los esfuerzos actuantes superen los esfuerzos últimos de los elementos estructurales, el elemento será declarado como colapsado.

Además de la suposición anterior se dará a conocer los diagramas de momento curvatura y diagramas de interacción de los elementos estructurales y la capacidad de esfuerzos a los que estarán expuestos los materiales, para también establecer los niveles de daño, en caso los elementos no sean declarados como colapsados.

3. 4.1 CRITERIO DE FALLA DE COLUMNA

La columna que cumple con las condiciones de diseño para los modelos 1, 2 y 3 es una sección cuadrada de 4 pies por 4 pies, de hormigón armado con una resistencia en compresión de 4000 PSI y acero de refuerzo de 60000 PSI, como se muestra en la siguiente figura:

Figura 3.17: Detalle de Armado de Columna

Según la grafica de momento curvatura de esta sección, la columna posee la capacidad de soportar un momento último de 3082 Kip-pie, y un momento de cedencia de 2425 Kip-pie, como se muestra en la siguiente figura:

Figura 3.18: Diagrama de Momento Curvatura de la Columna

En base a lo establecido en los criterios de falla, cualquier carga, que provoque una reacción mayor al momento último en la columna, esta se declarará como colapsada. Si la reacción se encuentra entre el momento de cedencia y el momento último, se establece que la columna sufre daño y que puede ser rehabilitada.

3. 4.2 CRITERIO DE FALLA DE LA VIGA DE CORONACIÓN

La viga de coronación que cumple con las condiciones de diseño para los modelos 1, 2 y 3 es una sección rectangular de 4 pies por 5 pies, de hormigón de 4000 PSI y acero de refuerzo de 60 KSI, como se muestra en la siguiente figura:

Figura 3.19: Detalle de Armado de la Viga de Coronación

Según la gráfica de momento curvatura de esta sección, la viga de coronación posee la capacidad de soportar un momento último de 1577 Kip-pie, y un momento de cedencia de 1189 Kip-pie, como se muestra en la siguiente figura:

Figura 3.20: Diagrama Momento Curvatura de la Viga de Coronación En base a lo establecido en los criterios de falla, cualquier carga que provoque una reacción mayor al momento último la viga de coronación, la viga se declarará colapsada. Si la reacción se encuentra entre el momento de cedencia y el momento último, se establece que la viga de coronación ha sufrido daño, y la sección puede ser rehabilitada.

3. 4.3 CRITERIO DE FALLA DE LOSA

La losa que cumple con las condiciones de diseño para los modelos 1, 2 y 3 es una sección rectangular, de hormigón de 4,000 PSI y acero de refuerzo de 60,000 PSI, como se muestra en la siguiente figura:

Figura 3.21: Detalle de Armado de Losa

Según la gráfica de momento curvatura de esta sección, la losa posee la capacidad de soportar un momento último de 18.42 Kip-pie, y un momento de cedencia de 17.6 Kip-pie, como se muestra en la siguiente figura:

Figura 3.22: Diagrama de Momento Curvatura de la Losa.

En base a lo establecido en los criterios de falla, cualquier carga, que provoque una reacción mayor al momento último en la losa, esta provocará la falla del hormigón y se formará un hueco y la sección puede ser rehabilitada.

3. 4.4 CRITERIO DE FALLA DE VIGA

Se establece que las vigas que componen el puente se diseñarán para los momentos actuantes bajo condiciones normales de uso, es decir, para la viga del modelo 1 una AASHTO III, el momento a resistir asciende a 2188 Kip_pie y su capacidad en corte es de 230 Kip_pie, como se tabula a continuación:

Tabla 3.16: Capacidad de Diseño de Vigas

Modelo	Viga	Momento Kip-pie	Corte Kip
1	AASHTO III	2188	230
2	AASHTO IV	4635	203
3	AASHTO V	5728	135

parámetros falla Los de para las vigas AASHTO son iguales, independientemente de ser pre o postenzadas, la variación entre estos criterios será el modo de falla que presentarán, ya que para una viga potenzada el daño será considerable y no podrá haber una rehabilitación una vez los ductos donde se pasan los cables de postenzados sean dañados, no siendo así para las vigas pretenzadas, en las cuales dependerá básicamente de su configuración a la hora de la construcción ya que si los cables no han sido dañados, la estructura puede ser rehabilitada, según los detalles que se proponen en el Capitulo 5.

3. 5 CRITERIO DE FALLA PARA EL MODELO 4

Para el Modelo 4 se utilizara el programa SAP 2000 para su análisis y su

evaluación, para esto se utilizará la herramienta de validación de las secciones para determinar si las columnas que se diseñan bajo condiciones normales de carga son suficientes para soportar la carga de la explosión así como también se determinará si el acero de las vigas y la viga de coronación es mayor que el utilizado en el diseño, la viga se declarara como colapsada. Es decir, para este modelo no se utilizarán tablas para determinar la falla, sino que del mismo programa de diseño se obtendrán los datos directamente para determinar su comportamiento al momento de sufrir una carga explosiva.

Figura 3.23: Detalle de Armado de Viga de Modelo 4

Según la grafica de momento curvatura de esta sección, la viga del Modelo 4, posee la capacidad de soportar un momento último de 427 Kip-pie, y un momento de cedencia de 310 Kip-pie, como se muestra en la siguiente figura:

Figura 3.24: Diagrama de Momento Curvatura de la Viga del Modelo 4

Figura 3.25: Detalle de Armado de Columna de Modelo 4

Según la grafica de momento curvatura de esta sección, la columna del Modelo 4, posee la capacidad de soportar un momento último de 350 Kip-pie, y un momento de cedencia de 269 Kip-pie, como se muestra en la siguiente figura:

Figura 3.26: Diagrama de Momento Curvatura de la Columna del Puente 4

Figura 3.27: Detalle de Armado de la Viga de Coronación del Modelo 4

Según la grafica de momento curvatura de esta sección, la viga de coronación

del Modelo 4, posee la capacidad de soportar un momento último de 377 Kippie, y un momento de cedencia de 363 Kip-pie, como se muestra en la siguiente figura:

3. 6 CRITERIO DE FALLA PARA LOS MODELOS 5 Y 6

Para estos modelos, el objetivo primordial es el reproducir las condiciones en que estos puentes se mantuvieron después del ataque de explosiones que sufrieron, para esto se iterará entre varias cargas para reproducir dichos resultados.

No es objetivo de la investigación llevar estos puentes a colapsar, así que una vez se determine la cantidad en libras de TNT que se utilizó para dañar la estructura del puente, esta será tabulada.

Las cargas se localizan en los puntos indicados en las Figuras 4.3, 4.11 y 4.12 mostradas en el Capitulo 4.

4 RESULTADOS Y DISCUSIÓN

4.1 COMPORTAMIENTO DE LOS ELEMENTOS ESTRUCTURALES

De los diferentes modelos propuestos se obtuvieron los momentos flectores, las fuerzas axiales y las fuerzas cortantes de los diferentes elementos estructurales, bajo las condiciones de carga descritas en el capítulo anterior.

Su comportamiento se midió, comparando las resultantes de esfuerzos últimos obtenidos del análisis estructural para las combinación de carga, con su respectiva capacidad obtenida a partir de su sección y acero de refuerzo, como se mencionó anteriormente, una vez las reacciones en los miembros excedieran su capacidad, éstas serían catalogadas como "Colapsadas".

A continuación se presenta de forma tabular el esfuerzo al que están sometidos los elementos estructurales, dependiendo del modelo propuesto, para las cargas actuantes sobre el mismo, además se estableció el daño de la estructura en conjunto para determinar si esta se encuentra totalmente colapsada, o bien se necesita rehabilitación para su inmediata o posterior utilización.

4.2 MODELO 1

A continuación se presentan los resultados de forma tabulada, los esfuerzos obtenidos del análisis del modelo uno, bajo las condiciones de carga establecidas en los casos de carga uno y dos descritos en el Capitulo Tres de esta investigación.

Posterior a la tabulación de los datos obtenidos se hará un diagnóstico acerca del estado de la estructura y su comportamiento durante y posterior a sufrir la

carga explosiva, según los criterios de falla establecidos en los capítulos anteriores. En algunos casos, según la concordancia de la falla, los datos de las diferentes tablas se discutirán en conjunto.

En las Tablas siguientes se resumen los resultados obtenidos del análisis de los diferentes modelos, para los cuales se tiene la siguiente nomenclatura: "X" se asignará para establecer que el elemento estructural se encuentra colapsado, "OK" indicara que el elemento no ha cedido debido a la carga aplicada, además de VC que es la abreviatura designada en esta investigación para viga de coronación.

			500 lb. de ⁻	TNT			
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Ouric
	Viga 1	2188	-1507	229	477	Х	Х
	Viga 2	2188	2223	229	805	Х	х
	Viga 3	2188	5072	229	615	Х	Х
	Viga 4	2188	9549	229	1397	Х	х
	Viga 5	2188	16289	229	3031	Х	Х
l on	Viga 6	2188	30242	229	5651	Х	х
Tran	Viga 7	2188	61084	229	7297	Х	Х
es.	Viga 8	2188	113689	229	5552	Х	х
4 Pi	Viga 9	2188	144057	229	133	Х	ОК
	Viga 10	2188	118443	229	5347	Х	х
	Viga 11	2188	68856	229	6538	Х	Х
	Viga 12	2188	34856	229	1616	Х	х
	VC 1	1577	21116	332	13302	Х	х
	Columna 1	3082	8377	81	546	х	Х
	Viga 1	2188	1116	229	32	ОК	OK
	Viga 2	2188	1018	229	2.78	ОК	ОК
	Viga 3	2188	827	229	198	ОК	OK
	Viga 4	2188	869	229	419	ОК	Х
	Viga 5	2188	-5029	229	937	Х	Х
2 2	Viga 6	2188	-8237	229	1283	х	х
Tran	Viga 7	2188	-12703	229	1399	Х	Х
Śe	Viga 8	2188	-16702	229	1218	Х	Х
4 Pi	Viga 9	2188	-9821	229	857	Х	х
	Viga 10	2188	-9946	229	2844	Х	Х
	Viga 11	2188	-8870	229	3227	Х	Х
	Viga 12	2188	-12413	229	229	Х	ок
	VC 2	1577	9626	332	3067	Х	Х
	Columna 2	3082	5552	81	359	х	Х
	Viga 1	2188	-3651	229	90	Х	ОК
	Viga 2	2188	-3130	229	211	Х	OK
	Viga 3	2188	-4627	229	99	Х	OK
	Viga 4	2188	-2922	229	207	Х	ОК
10 3	Viga 5	2188	-2680	229	271	Х	Х
Tan	Viga 6	2188	-1737	229	210	Х	ОК
∃s, _	Viga 7	2188	-2428	229	228	Х	OK
4 Pik	Viga 8	2188	-1590	229	221	х	OK
v	Viga 9	2188	-1550	229	241	Х	Х
	Viga 10	2188	-1600	229	380	Х	Х
	Viga 11	2188	-1677	229	378	Х	Х
	Viga 12	2188	-2057	229	102	х	OK

 Tabla 4.1: Resultados de Carga de 500 lb. A una distancia de 4 pies, en el Modelo 1.

En el Modelo 1 se observa que al cargarlo bajo la condición de carga 1, con una carga de 500 libras de TNT a una distancia de 4 pies, existe una falla en la mayoría de los elementos que componen el puente, es decir, la magnitud de la carga produce momentos positivos en el tramo cargado, induciendo un levantamiento inmediato de los tramos restantes, lo que provoca que en el tramo cargado se genere esfuerzos en las vigas que excedan la capacidad de momento para el refuerzo proporcionado por el diseño, y en los dos tramos restantes se observa que el levantamiento producido por la flexión excesiva del tramo cargado.

Además, se pudo observar que la fuerza cortante de la combinación de cargas también sobrepasa los esfuerzos para las que fueron diseñadas estas vigas, por lo que su colapso es inminente. En lo que respecta a las columnas y a la viga de coronación "VC", los momentos y cortes actuantes sobrepasan por mucho los últimos. Según lo establecido en el capitulo anterior, estas se declaran como colapsadas en su totalidad, ya que ninguna se encuentra entre los rangos de Momento de Cedencia y Momento Último como para establecer en base a esfuerzos y deformaciones unitarias una posible perdida de sección debido a la explosión. Por lo anteriormente descrito y lo que se observa en los datos obtenidos del Modelo 1, la estructura se declara como totalmente colapsada, y no es posible realizar una rehabilitación a la misma.

			500 lb. de ⁻	TNT			
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	2188	520	229	285	ОК	х
	Viga 2	2188	2480	229	480	х	Х
	Viga 3	2188	5044	229	353	х	Х
	Viga 4	2188	7397	229	832	х	х
	Viga 5	2188	11363	229	1795	х	х
1 ou	Viga 6	2188	18954	229	3339	х	Х
Trar	Viga 7	2188	36480	229	4309	х	Х
es, '	Viga 8	2188	66465	229	32380	х	Х
6 Pi	Viga 9	2188	85341	229	40	х	ОК
_	Viga 10	2188	70233	229	3157	х	х
	Viga 11	2188	40827	229	3857	х	х
	Viga 12	2188	23141	229	1718	х	х
	VC 1	1577	13362	332	8045	х	х
	Columna 1	3082	4844	81	322	х	х
	Viga 1	2188	998	229	17	OK	OK
	Viga 2	2188	812	229	5	ОК	ок
	Viga 3	2188	662	229	61	ОК	ок
	Viga 4	2188	-1293	229	285	х	х
	Viga 5	2188	-2342	229	488	х	х
10 Z	Viga 6	2188	-4524	229	721	х	Х
Trar	Viga 7	2188	-7679	229	853	х	х
es' .	Viga 8	2188	-9514	229	709	х	х
6 Pi	Viga 9	2188	-10801	229	290	х	х
	Viga 10	2188	-10901	229	167	х	OK
	Viga 11	2188	-9453	229	332	х	Х
	Viga 12	2188	-7118	229	134	х	ОК
	VC 2	1577	5115	332	1686	х	Х
	Columna 2	3082	3515	81	292	х	х
	Viga 1	2188	-1708	229	61	х	OK
	Viga 2	2188	-1445	229	130	х	ОК
	Viga 3	2188	-1198	229	169	х	ОК
	Viga 4	2188	-526	229	135	х	ОК
10 3	Viga 5	2188	-228	229	158	х	ОК
Trar	Viga 6	2188	-717	229	119	х	OK
es,	Viga 7	2188	561	229	110	ОК	OK
6 Pi	Viga 8	2188	1472	229	159	ОК	OK
_	Viga 9	2188	1612	229	207	ОК	OK
	Viga 10	2188	1116	229	222	ОК	OK
	Viga 11	2188	987	229	192	ОК	OK
	Viga 12	2188	765	229	62	ОК	ОК

 Tabla 4.2: Resultados de Carga de 500 lb. A una distancia de 6 pies, en el Modelo 1.

	500 lb. de TNT						
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	2188	563	229	200	ОК	OK
	Viga 2	2188	1975	229	325	ОК	х
	Viga 3	2188	2907	229	237	Х	х
	Viga 4	2188	4104	229	521	Х	Х
	Viga 5	2188	8234	229	1211	Х	х
6	Viga 6	2188	13012	229	2245	Х	Х
Tran	Viga 7	2188	24252	229	2895	Х	х
es, '	Viga 8	2188	45541	229	2205	х	Х
8 Pi	Viga 9	2188	57507	229	399	х	Х
	Viga 10	2188	47370	229	2121	х	х
	Viga 11	2188	27724	229	2588	х	Х
	Viga 12	2188	15534	229	1152	х	Х
	VC 1	1577	9675	332	5526	х	Х
	Columna 1	3082	2091	81	216	Х	Х
	Viga 1	2188	797	229	13	ОК	OK
	Viga 2	2188	616	229	4	ОК	OK
	Viga 3	2188	348	229	66	ОК	OK
	Viga 4	2188	-790	229	193	Х	OK
	Viga 5	2188	-1835	229	351	Х	х
0 Z	Viga 6	2188	-2795	229	481	Х	Х
Tan	Viga 7	2188	-4558	229	568	Х	Х
es, T	Viga 8	2188	-6695	229	486	х	х
8 Pi	Viga 9	2188	-7698	229	183	Х	OK
	Viga 10	2188	-6994	229	120	Х	OK
	Viga 11	2188	-6240	229	228	Х	ок
	Viga 12	2188	-4641	229	96	Х	OK
	VC 2	1577	3083	332	1023	х	Х
	Columna 2	3082	2671	81	208	Х	Х
	Viga 1	2188	-488	229	35	Х	OK
	Viga 2	2188	-204	229	76	Х	OK
	Viga 3	2188	73	229	98	ОК	ОК
	Viga 4	2188	-186	229	120	Х	OK
203	Viga 5	2188	26	229	108	ОК	OK
[ran	Viga 6	2188	820	229	76	ОК	ОК
es, _	Viga 7	2188	568	229	95	OK	OK
8 Pik	Viga 8	2188	824	229	91	OK	OK
~	Viga 9	2188	951	229	142	OK	OK
	Viga 10	2188	1328	229	159	OK	OK
	Viga 11	2188	1114	229	116	OK	OK
	Viga 12	2188	733	229	92	ОК	ОК

 Tabla 4.3: Resultados de Carga de 500 lb. A una distancia de 8 pies, en el Modelo 1.

Para los casos en que la carga se aleja del objetivo a 6 y 8 pies respectivamente, los datos que se tabulan en las tablas 4.2 y 4.3, reflejan un comportamiento similar al caso donde la carga se encuentra a cuatro pies de distancia.

Sin embargo en el caso donde la carga se encuentra a 8 pies del objetivo, el momento actuante en el segundo conjunto de columnas de la estructura, presenta un momento que se encuentra entre el momento de cedencia y el momento último, lo cual indica que el hormigón que recubre estas columnas ha desaparecido o su capacidad estructural no puede tomarse en cuenta debido a que sobrepaso los límites de deformación unitaria del hormigón, pero esta puede ser reparada.

Es importante establecer que aunque las columnas de la segunda pilastra pueden ser reparadas, todo el resto de la estructura se encuentra colapsado, por lo que se establece que para este caso de carga, el posicionamiento del objetivo, y la deformación que produce, induce a un colapso total de la estructura, no importando el rango de distancia establecido en el Capítulo 3. Lo cual se corrobora con la información que se muestra en las Tablas 4.4 a 4.9, en que el posicionamiento de la carga es el mismo, y se establece que no importando la cantidad ni la distancia, siempre y cuando se mantenga entre los rangos establecidos en el Caso 1 de carga, la estructura se declarará como colapsada, con la excepción de los datos del ultimo tramo de los puentes para los casos de carga de 50 libras a una distancia de 6 y 8 pies, para lo cual más adelante se dan a conocer las opciones viables para estos casos en especifico.

			100 lb. de ⁻	TNT			
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	2188	1177	229	59	ОК	ОК
	Viga 2	2188	965	229	119	ОК	OK
	Viga 3	2188	552	229	82	ОК	ОК
	Viga 4	2188	-318	229	102	Х	ОК
	Viga 5	2188	-1554	229	322	х	Х
6	Viga 6	2188	-3216	229	540	Х	х
Tran	Viga 7	2188	-6018	229	585	х	Х
Śe	Viga 8	2188	-8162	229	417	х	Х
4 Di	Viga 9	2188	-9316	229	85	х	ок
	Viga 10	2188	-8947	229	493	х	Х
	Viga 11	2188	-7557	229	622	Х	Х
	Viga 12	2188	-5656	229	273	х	Х
	VC 1	1577	9448	332	6193	Х	Х
	Columna 1	3082	3662	81	269	Х	х
	Viga 1	2188	-1291	229	183	Х	OK
	Viga 2	2188	-650	229	421	Х	Х
	Viga 3	2188	522	229	409	ОК	х
	Viga 4	2188	1879	229	265	ОК	Х
	Viga 5	2188	5025	229	723	Х	Х
10 2	Viga 6	2188	12574	229	1308	Х	Х
ran	Viga 7	2188	28756	229	1956	Х	Х
es, T	Viga 8	2188	55696	229	1609	Х	Х
Pie	Viga 9	2188	70796	229	192	Х	ОК
1	Viga 10	2188	57203	229	1590	Х	Х
	Viga 11	2188	30428	229	1838	Х	Х
	Viga 12	2188	10957	229	758	Х	х
	VC 2	1577	9448	332	6193	х	х
	Columna 2	3082	3662	81	269	х	х
	Viga 1	2188	1256	229	59	ОК	OK
	Viga 2	2188	970	229	120	ОК	OK
	Viga 3	2188	457	229	82	ОК	ОК
	Viga 4	2188	-311	229	102	Х	OK
203	Viga 5	2188	-1539	229	298	Х	Х
Tran	Viga 6	2188	-3847	229	539	Х	х
es, 1	Viga 7	2188	-6016	229	586	х	Х
4 Pié	Viga 8	2188	-7635	229	417	х	Х
~	Viga 9	2188	-8955	229	85	Х	OK
	Viga 10	2188	-8947	229	492	х	Х
	Viga 11	2188	-7652	229	621	х	Х
	Viga 12	2188	-5470	229	272	х	х

Tabla 4.4: Resultados de Carga de 100 lb. A una distancia de 4 pies, en el Modelo 1.

	100 lb. de TNT							
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte	
Distancia	Liciliento	Capacidad	Aplicada	Capacidad	Aplicada	Womento	OULC	
	Viga 1	2188	987	229	29	ОК	ОК	
	Viga 2	2188	899	229	57	ОК	ок	
	Viga 3	2188	708	229	49	ОК	ОК	
	Viga 4	2188	351	229	61	ОК	OK	
	Viga 5	2188	399	229	181	ОК	ОК	
6	Viga 6	2188	-1307	229	300	х	х	
Tran	Viga 7	2188	-2541	229	335	х	Х	
es, '	Viga 8	2188	-4248	229	213	х	ОК	
6 Pi	Viga 9	2188	-4390	229	51	х	ОК	
_	Viga 10	2188	-4667	229	264	х	х	
	Viga 11	2188	-3607	229	344	х	Х	
	Viga 12	2188	-2509	229	150	х	ОК	
	VC 1	1577	5399	332	3396	х	Х	
	Columna 1	3082	2299	81	141	ОК	Х	
	Viga 1	2188	-599	229	126	Х	ОК	
	Viga 2	2188	-236	229	234	х	х	
	Viga 3	2188	578	229	226	ОК	OK	
	Viga 4	2188	3075	229	395	Х	Х	
	Viga 5	2188	1340	229	141	ОК	OK	
2 02	Viga 6	2188	7218	229	723	Х	х	
Iran	Viga 7	2188	16091	229	1079	х	Х	
es, T	Viga 8	2188	30861	229	887	х	Х	
6 Pi	Viga 9	2188	39861	229	112	х	OK	
•	Viga 10	2188	31660	229	878	х	х	
	Viga 11	2188	16927	229	1012	х	Х	
	Viga 12	2188	6184	229	445	х	Х	
	VC 2	1577	5399	332	3396	х	х	
	Columna 2	3082	2299	81	141	ОК	Х	
	Viga 1	2188	990	229	35	OK	OK	
	Viga 2	2188	903	229	70	ОК	OK	
	Viga 3	2188	713	229	49	ОК	ОК	
	Viga 4	2188	449	229	23	ОК	OK	
0 3	Viga 5	2188	387	229	139	ОК	ОК	
[ran	Viga 6	2188	-1355	229	724	х	х	
Śe	Viga 7	2188	-2513	229	336	х	Х	
5 Pi	Viga 8	2188	-3585	229	214	х	OK	
-	Viga 9	2188	-4201	229	51	Х	OK	
	Viga 10	2188	-4260	229	269	х	Х	
	Viga 11	2188	-3658	229	339	х	Х	
	Viga 12	2188	-2063	229	150	х	ОК	

Tabla 4.5: Resultados de Carga de 100 lb. A una distancia de 6 pies, en el Modelo 1.

100 lb. de TNT							
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Diotairoid		Capacidad	Aplicada	Capacidad	Aplicada		00110
	Viga 1	2188	863	229	16	ОК	OK
	Viga 2	2188	865	229	32	ОК	OK
	Viga 3	2188	796	229	19	ОК	OK
	Viga 4	2188	600	229	416	ОК	Х
_	Viga 5	2188	202	229	100	OK	OK
f or	Viga 6	2188	-460	229	190	Х	OK
Trar	Viga 7	2188	-1161	229	209	Х	OK
ies,	Viga 8	2188	-2414	229	147	Х	OK
8 Di	Viga 9	2188	-2795	229	35	Х	OK
	Viga 10	2188	-2252	229	157	Х	OK
	Viga 11	2188	-2233	229	203	Х	OK
	Viga 12	2188	-1400	229	93	Х	OK
	VC 1	1577	1412	332	89	OK	OK
	Columna 1	3082	3316	81	2086	Х	Х
	Viga 1	2188	-127	229	103	Х	OK
	Viga 2	2188	229	229	163	ОК	OK
	Viga 3	2188	605	229	141	ОК	ОК
	Viga 4	2188	1087	229	83	ОК	OK
	Viga 5	2188	2163	229	242	ОК	х
er of	Viga 6	2188	4710	229	450	Х	х
Trar	Viga 7	2188	10160	229	668	Х	Х
es	Viga 8	2188	19226	229	549	Х	Х
8 Pi	Viga 9	2188	24304	229	84	Х	OK
	Viga 10	2188	19695	229	545	Х	Х
	Viga 11	2188	10604	229	627	Х	х
	Viga 12	2188	3948	229	298	Х	Х
	VC 2	1577	1412	332	89	OK	OK
	Columna 2	3082	3316	81	2086	Х	Х
	Viga 1	2188	866	229	23	ОК	OK
	Viga 2	2188	872	229	45	ОК	OK
	Viga 3	2188	801	229	35	OK	ОК
~	Viga 4	2188	606	229	41	ОК	ОК
er Of	Viga 5	2188	218	229	101	OK	OK
Trar	Viga 6	2188	-435	229	190	Х	OK
ies,	Viga 7	2188	-1151	229	191	Х	OK
8 Di	Viga 8	2188	-2409	229	128	Х	ОК
	Viga 9	2188	-2314	229	35	Х	OK
	Viga 10	2188	-2255	229	177	Х	OK
	Viga 11	2188	-1931	229	203	Х	OK
	Viga 12	2188	-1589	229	86	Х	ОК

 Tabla 4.6: Resultados de Carga de 100 lb. A una distancia de 8 pies, en el modelo 1.

	50 lb. de TNT						
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	2188	208	229	193	ОК	OK
	Viga 2	2188	1356	229	325	ОК	Х
	Viga 3	2188	2703	229	258	Х	х
	Viga 4	2188	4065	229	468	Х	Х
	Viga 5	2188	6583	229	1088	Х	Х
l on	Viga 6	2188	11500	229	2016	Х	Х
es, Tran	Viga 7	2188	22327	229	2598	Х	Х
	Viga 8	2188	40835	229	1935	Х	Х
4 P	Viga 9	2188	51670	229	57	Х	ОК
	Viga 10	2188	42154	229	1904	Х	Х
	Viga 11	2188	24154	229	2322	Х	Х
	Viga 12	2188	14162	229	1034	Х	х
	VC 1	1577	6985	332	4586	Х	Х
	Columna 1	3082	2958	81	192	ОК	х
	Viga 1	2188	756	229	193	ОК	OK
	Viga 2	2188	608	229	429	ОК	Х
	Viga 3	2188	614	229	527	ОК	Х
	Viga 4	2188	-230	229	160	Х	ок
	Viga 5	2188	-1124	229	296	Х	х
no 2	Viga 6	2188	-2431	229	447	Х	Х
Trar	Viga 7	2188	-4540	229	510	Х	Х
es' .	Viga 8	2188	-6072	229	437	Х	Х
4 Pi	Viga 9	2188	-6877	229	177	Х	OK
	Viga 10	2188	-6204	229	101	Х	OK
	Viga 11	2188	-5571	229	210	Х	OK
	Viga 12	2188	-4121	229	87	Х	OK
	VC 2	1577	3700	332	1208	Х	Х
	Columna 2	3082	2322	81	175	ОК	Х
	Viga 1	2188	-368	229	30	Х	OK
	Viga 2	2188	-98	229	82	Х	OK
	Viga 3	2188	162	229	104	ОК	OK
	Viga 4	2188	372	229	90	ОК	OK
00	Viga 5	2188	580	229	78	ОК	ОК
Trar	Viga 6	2188	842	229	81	ОК	OK
es, '	Viga 7	2188	1107	229	66	ОК	OK
4 Pi	Viga 8	2188	1315	229	105	ОК	OK
-	Viga 9	2188	1384	229	130	ОК	OK
	Viga 10	2188	1285	229	124	ОК	OK
	Viga 11	2188	1067	229	103	ОК	OK
	Viga 12	2188	760	229	30	ОК	ОК

Tabla 4.7: Resultados de Carga de 50 lb. A una distancia de 4 pies, en el Modelo 1.

	50 lb. de TNT						
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	2188	610	229	84	ОК	ОК
	Viga 2	2188	1097	229	176	ОК	OK
	Viga 3	2188	2290	229	97	Х	ОК
	Viga 4	2188	3163	229	265	Х	Х
	Viga 5	2188	4150	229	575	Х	Х
0 1	Viga 6	2188	6444	229	1057	Х	Х
Tran	Viga 7	2188	12063	229	1358	Х	Х
es, T	Viga 8	2188	21532	229	1037	Х	Х
6 Pi	Viga 9	2188	27251	229	15	Х	ОК
_	Viga 10	2188	22503	229	996	Х	Х
	Viga 11	2188	13315	229	1210	Х	Х
	Viga 12	2188	7653	229	536	Х	Х
	VC 1	1577	3611	332	2375	Х	Х
	Columna 1	3082	1532	81	99	ОК	Х
	Viga 1	2188	578	229	131	OK	OK
	Viga 2	2188	574	229	226	ОК	OK
	Viga 3	2188	508	229	29	ОК	ОК
	Viga 4	2188	440	229	51	ОК	ОК
	Viga 5	2188	-240	229	168	Х	ОК
9	Viga 6	2188	-1436	229	240	х	Х
Tran	Viga 7	2188	-2258	229	276	Х	Х
es, '	Viga 8	2188	-3047	229	214	Х	ОК
6 Pi	Viga 9	2188	-1323	229	96	Х	OK
	Viga 10	2188	-3207	229	55	Х	OK
	Viga 11	2188	-2486	229	111	Х	OK
	Viga 12	2188	-2093	229	351	Х	х
	VC 2	1577	1916	332	625	Х	Х
	Columna 2	3082	1217	81	94	ОК	Х
	Viga 1	2188	148	229	20	ОК	ОК
	Viga 2	2188	358	229	31	ОК	OK
	Viga 3	2188	538	229	41	ОК	OK
	Viga 4	2188	676	229	42	ОК	OK
10 3	Viga 5	2188	795	229	35	ОК	ОК
Trar	Viga 6	2188	934	229	30	ОК	ОК
es,	Viga 7	2188	1076	229	51	ОК	OK
6 Pi	Viga 8	2188	1179	229	38	ОК	OK
_	Viga 9	2188	1198	229	74	ОК	ОК
	Viga 10	2188	1117	229	61	ОК	OK
	Viga 11	2188	967	229	67	ОК	OK
	Viga 12	2188	697	229	22	ОК	OK

Tabla 4.8: Resultados de Carga de 50 lb. A una distancia de 6 pies, en el Modelo 1.

			50 lb. de T	NT			
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Womento	Ounc
	Viga 1	2188	627	229	59	ОК	OK
	Viga 2	2188	1117	229	114	ОК	ОК
	Viga 3	2188	1658	229	161	ОК	ОК
	Viga 4	2188	2211	229	156	Х	ок
~	Viga 5	2188	2939	229	344	Х	Х
om	Viga 6	2188	4170	229	623	Х	х
Tra	Viga 7	2188	7429	229	798	х	Х
်ပ္ပ	Viga 8	2188	13011	229	611	х	Х
Pie	Viga 9	2188	16245	229	25	х	ок
œ	Viga 10	2188	13444	229	587	х	х
	Viga 11	2188	8065	229	707	х	Х
	Viga 12	2188	4524	229	312	х	Х
	VC 1	1577	2095	332	1378	х	Х
	Columna 1	3082	889	81	57	ОК	ок
	Viga 1	2188	498	229	104	OK	OK
	Viga 2	2188	559	229	164	ОК	OK
	Viga 3	2188	548	229	14	ОК	ОК
	Viga 4	2188	267	229	44	ОК	OK
N	Viga 5	2188	193	229	82	ОК	ок
оц	Viga 6	2188	-228	229	140	х	ок
Trai	Viga 7	2188	-705	229	164	х	OK
်ပ္ပံ	Viga 8	2188	-1137	229	138	х	OK
Pie	Viga 9	2188	-1905	229	45	х	ОК
œ	Viga 10	2188	-1411	229	27	х	ок
	Viga 11	2188	-1216	229	68	х	ОК
	Viga 12	2188	-967	229	27	х	ОК
	VC 2	1577	1111	332	362	ОК	Х
	Columna 2	3082	684	81	54	ОК	ОК
	Viga 1	2188	336	229	7	OK	ОК
	Viga 2	2188	546	229	14	ОК	ОК
	Viga 3	2188	706	229	18	ОК	OK
ς	Viga 4	2188	813	229	20	ОК	ок
om	Viga 5	2188	888	229	37	ОК	ок
Trai	Viga 6	2188	973	229	34	ОК	ОК
ູ່	Viga 7	2188	1064	229	35	ОК	ОК
Pie	Viga 8	2188	1118	229	19	ОК	ОК
œ	Viga 9	2188	1114	229	26	ОК	ОК
	Viga 10	2188	1041	229	56	ОК	OK
	Viga 11	2188	906	229	43	ОК	ОК
	Viga 12	2188	814	229	15	ОК	OK

Tabla 4.9: Resultados de Carga de 50 lb. A una distancia de 8 pies, en el Modelo 1.

En el caso de las cargas de 50 libras a una distancia de 6 y 8 pies del objetivo, solamente el tercer tramo de la estructura puede ser considerado para una rehabilitación, debido a los resultados obtenidos para el tercer tramo, debe hacerse ahí una evaluación de tipo financiera para tomar la decisión de rehabilitar ese tramo o bien proceder a su demolición para su reconstrucción total.

La rehabilitación propuesta en el párrafo anterior sería únicamente en puentes que contengan elementos preesforzados, los detalles para su rehabilitación se proponen en el Capítulo 5.

En el caso de que el puente esté construido con vigas de hormigón postensado se hace imposible la rehabilitación una vez los cables de acero sean cortados por el efecto de la explosión.

	Explosivo Colocado a 2 Pies de Distancia										
Distancia	Elemento	Momento	Momento Kip-pie		Corte Kip		Corte				
	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	womento	Corte				
20 lb	VC	1577	1970	332	461	Х	Х				
2010.	Columna	3082	1008	81	67	OK	OK				
15 lb	VC	1577	1959	332	455	Х	Х				
1516.	Columna	3082	976	81	65	OK	OK				
10 lb	VC	1577	1946	332	447	Х	Х				
1010.	Columna	3082	935	81	61	OK	OK				
05 lb	VC	1577	1927	332	437	Х	Х				
0510.	Columna	3082	880	81	57	OK	OK				

Tabla 4.10: Resultados de Carga de 20 a 05 lb. A una distancia de 2 pies, en el Modelo 1.

	Explosivo Colocado a 3 Pies de Distancia										
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte				
	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Corte				
20 lb	VC	1577	1931	332	439	Х	Х				
2010.	Columna	3082	892	81	58	OK	OK				
15 lb	VC	1577	1924	332	436	Х	Х				
1510.	Columna	3082	871	81	56	OK	OK				
10 lb	VC	1577	1916	332	431	Х	Х				
1010.	Columna	3082	846	81	55	OK	OK				
05 lb	VC	1577	1904	332	425	Х	Х				
0510.	Columna	3082	811	81	51	OK	OK				

Tabla 4.11: Resultados de Carga de 20 a 05 lb. A una distancia de 3 pies, en el Modelo 1.

Los resultados obtenidos para los casos de carga aplicados directamente a la columna, se observan que las columnas para estos casos no fallan por la flexión provocada en el momento de la explosión, esto se puede deber a las consideraciones sísmicas tomadas en cuenta en el momento del montaje del modelo. Ahora bien si tomamos en cuenta el comportamiento biaxial de la columna, según los resultados de verificación hechas para la combinación de Evento Extremo II, establecido en el Capítulo 2 con la carga axial respectiva.

Bajo las condiciones de Evento Extremo II, se produciría un colapso de las columnas, debido a que sus propiedades (acero de refuerzo y sección transversal) que fueron establecidas bajo los criterios de combinación de carga establecidas por AASTHO LRFD, exceden la capacidad de la sección de diseño.

Figura 4.1: Verificación del Diseño de Columnas y Viga de Coronación

4.3 MODELO 2

Analysis Model

El Modelo 2 se cargó bajo las consideraciones de las tres condiciones de carga descritas anteriormente, los resultados obtenidos se tabulan a continuación:

			500 lb. de ⁻	TNT			
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liciliento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Ouric
	Viga 1	4635	-295	203	47	Х	OK
	Viga 2	4635	5206	203	150	Х	ОК
	Viga 3	4635	10247	203	803	Х	Х
	Viga 4	4635	18878	203	1237	Х	х
	Viga 5	4635	31666	203	1657	Х	Х
l on	Viga 6	4635	53556	203	1915	Х	х
Tran	Viga 7	4635	95508	203	1007	Х	Х
es, '	Viga 8	4635	159202	203	1400	Х	х
4 Pi	Viga 9	4635	198185	203	296	Х	Х
	Viga 10	4635	168935	203	112	Х	ок
	Viga 11	4635	110805	203	1079	Х	х
	Viga 12	4635	62281	203	510	Х	Х
	VC 1	1577	6910	332	6200	Х	х
	Columna 1	3082	7043	81	512	х	x
	Viga 1	4635	1737	203	5	ОК	OK
	Viga 2	4635	1071	203	97	ОК	OK
	Viga 3	4635	-569	203	301	Х	х
	Viga 4	4635	-3473	203	591	Х	х
	Viga 5	4635	-5587	203	905	Х	Х
5 2	Viga 6	4635	-9090	203	1091	х	Х
Fran	Viga 7	4635	-13670	203	1108	Х	Х
Ś	Viga 8	4635	-16984	203	790	Х	Х
P j	Viga 9	4635	-19450	203	338	х	х
•	Viga 10	4635	-19881	203	123	Х	OK
	Viga 11	4635	-18840	203	320	Х	Х
	Viga 12	4635	-17884	203	134	Х	ок
	VC 2	1577	5735	332	1489	Х	Х
	Columna 2	3082	7119	81	587	х	х
	Viga 1	4635	-1281	203	55	Х	ОК
	Viga 2	4635	-1028	203	92	Х	OK
	Viga 3	4635	-1067	203	115	Х	OK
	Viga 4	4635	327	203	119	ОК	ОК
10 3	Viga 5	4635	1032	203	111	ОК	OK
Tan	Viga 6	4635	1730	203	109	OK	ОК
es, T	Viga 7	4635	2350	203	120	ОК	ОК
4 Pi∉	Viga 8	4635	2927	203	145	ОК	OK
~	Viga 9	4635	2519	203	163	OK	OK
	Viga 10	4635	2833	203	184	ОК	OK
	Viga 11	4635	3097	203	120	OK	OK
	Viga 12	4635	3328	203	35	ОК	OK

Tabla 4.12: Resultados de Carga de 500 lb. A una distancia de 4 pies, en el Modelo 2.

	500 lb. de TNT						
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distantia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte
	Viga 1	4635	982	203	30	ОК	ок
	Viga 2	4635	2114	203	324	ОК	х
	Viga 3	4635	7518	203	479	Х	Х
	Viga 4	4635	11287	203	711	Х	Х
	Viga 5	4635	19635	203	983	Х	Х
l on	Viga 6	4635	32546	203	1152	Х	х
Trar	Viga 7	4635	56084	203	1157	Х	Х
es, '	Viga 8	4635	94775	203	827	Х	х
6 Pi	Viga 9	4635	110707	203	121	Х	ОК
_	Viga 10	4635	100407	203	501	Х	х
	Viga 11	4635	66130	203	641	Х	Х
	Viga 12	4635	40853	203	295	Х	Х
	VC 1	1577	5807	332	3884	Х	х
	Columna 1	3082	4334	81	313	х	х
	Viga 1	4635	1118	203	7	OK	OK
	Viga 2	4635	1163	203	47	ОК	OK
	Viga 3	4635	-360	203	181	Х	OK
	Viga 4	4635	-990	203	362	х	х
	Viga 5	4635	-3249	203	540	х	Х
9 2	Viga 6	4635	-4663	203	637	х	х
Trar	Viga 7	4635	-7731	203	660	Х	Х
es, '	Viga 8	4635	-8594	203	487	х	Х
6 Pi	Viga 9	4635	-10341	203	209	Х	х
_	Viga 10	4635	-11195	203	58	Х	ОК
	Viga 11	4635	-11099	203	185	Х	ОК
	Viga 12	4635	-10123	203	80	Х	ОК
	VC 2	1577	3728	332	908	Х	х
	Columna 2	3082	4149	81	346	Х	Х
	Viga 1	4635	-707	203	26	Х	OK
	Viga 2	4635	-350	203	50	Х	OK
	Viga 3	4635	-21	203	61	Х	OK
	Viga 4	4635	1142	203	88	ОК	ОК
10 3	Viga 5	4635	1583	203	85	ОК	OK
Fran	Viga 6	4635	1084	203	87	ОК	ок
es, '	Viga 7	4635	1462	203	95	ОК	OK
6 Pi	Viga 8	4635	1808	203	108	ОК	OK
-	Viga 9	4635	2090	203	92	ОК	OK
	Viga 10	4635	2920	203	91	ОК	OK
	Viga 11	4635	3003	203	86	ОК	OK
	Viga 12	4635	2676	203	15	ОК	ОК

 Tabla 4.13: Resultados de Carga de 500 lb. A una distancia de 6 pies, en el Modelo 2.

500 lb. de TNT							
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	4635	860	203	88	ОК	ок
	Viga 2	4635	2708	203	215	ОК	Х
	Viga 3	4635	5741	203	498	Х	Х
	Viga 4	4635	8890	203	664	Х	Х
	Viga 5	4635	14630	203	636	Х	Х
1 ou	Viga 6	4635	22844	203	777	Х	Х
Trar	Viga 7	4635	38380	203	751	Х	Х
es' .	Viga 8	4635	64296	203	530	Х	х
8 Pi	Viga 9	4635	79634	203	98	Х	OK
	Viga 10	4635	67989	203	317	Х	Х
	Viga 11	4635	44994	203	433	Х	Х
	Viga 12	4635	27810	203	197	Х	ОК
	VC 1	1577	4210	332	908	Х	Х
	Columna 1	3082	4149	81	346	Х	Х
	Viga 1	4635	1295	203	2	ОК	ОК
	Viga 2	4635	1149	203	30	ОК	ОК
	Viga 3	4635	617	203	131	ОК	ОК
	Viga 4	4635	-161	203	217	Х	Х
	Viga 5	4635	-1206	203	338	Х	х
00 2	Viga 6	4635	-2570	203	453	Х	Х
Trar	Viga 7	4635	-3626	203	416	Х	Х
es,	Viga 8	4635	-6081	203	331	Х	х
8 Pi	Viga 9	4635	-6406	203	145	Х	OK
	Viga 10	4635	-6668	203	55	Х	OK
	Viga 11	4635	-6646	203	135	Х	OK
	Viga 12	4635	-6450	203	49	Х	OK
	VC 2	1577	4210	332	2788	Х	Х
	Columna 2	3082	2439	81	214	ОК	Х
	Viga 1	4635	354	203	22	ОК	OK
	Viga 2	4635	884	203	47	ОК	OK
	Viga 3	4635	1118	203	37	ОК	ОК
	Viga 4	4635	1525	203	61	ОК	OK
Do 3	Viga 5	4635	1844	203	33	ОК	ОК
Trar	Viga 6	4635	2135	203	35	ОК	OK
es	Viga 7	4635	2388	203	68	ОК	OK
8 Pi	Viga 8	4635	2591	203	78	ОК	OK
	Viga 9	4635	1890	203	59	ОК	OK
	Viga 10	4635	2658	203	60	ОК	OK
	Viga 11	4635	2684	203	62	ОК	OK
	Viga 12	4635	2373	203	17	OK	OK

 Tabla 4.14: Resultados de Carga de 500 lb. A una distancia de 8 pies, en el Modelo 2.

Para el Modelo 2 se observa el mismo comportamiento observado para el Modelo 1, ya que la carga de 500 libras fue ubicada en la misma posición que las diferentes cargas que se colocaron en el Modelo 1.

Es necesario hacer la observación que para el caso de 500 libras a una distancia de ocho pies el efecto de la carga se va disipando con la distancia, es necesario conocer que el Modelo 2 tiene longitudes de tramo 40 pies, mayores a la longitud de los tramos del Modelo 1, esta diferencia de longitud, provoca que la deformación generada por la carga explosiva se disipe a medida que los elementos estructurales se encuentran más lejanos al punto de detonación, tomando el peso propio de la estructura una influencia mayor en la deformación de la estructura, provocando momento positivos, incluso mucho menores a los momentos de diseño.

Lo anteriormente descrito da a entender un comportamiento interesante, el cual establece que a mayor longitud del tramo, el efecto de la carga de la explosión se va degradando ya sea por la disipación de energía debido a la demolición o bien el efecto del peso propio que domina en ese punto de la estructura.

Por lo anteriormente descrito se puede establecer que la carga de 500 libras a cuatro pies de distancia, produce un colapso total de la estructura, pero su efecto disminuye a medida de que la presión disminuye, alejando la carga a 6 y 8 pies respectivamente. Para estos dos últimos casos se establece que los dos primeros tramos del puente se colapsan y el tercero presentaría daños menores, aún así en base a los resultados de los dos primeros tramos el puente se declara colapsado.

100 lb. de TNT							
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Ouric
	Viga 1	4635	1757	203	130	ОК	ОК
	Viga 2	4635	2056	203	93	ОК	ОК
	Viga 3	4635	2161	203	103	ОК	ОК
	Viga 4	4635	2394	203	65	ОК	ОК
	Viga 5	4635	2551	203	57	ОК	ОК
1 of	Viga 6	4635	2735	203	48	ОК	ОК
Trar	Viga 7	4635	2857	203	40	ОК	ОК
es, '	Viga 8	4635	2700	203	34	ОК	ОК
4 Pi	Viga 9	4635	2564	203	11	ОК	ОК
4	Viga 10	4635	2506	203	11	ОК	ОК
	Viga 11	4635	2557	203	23	ОК	ОК
	Viga 12	4635	2140	203	13	ОК	OK
	VC 1	1577	8398	332	4031	Х	Х
	Columna 1	3082	3723	81	222	х	Х
	Viga 1	4635	971	203	79	OK	OK
	Viga 2	4635	1260	203	77	ОК	OK
	Viga 3	4635	1370	203	49	ОК	ок
	Viga 4	4635	1592	203	56	ОК	OK
	Viga 5	4635	1754	203	17	ОК	OK
5 Q	Viga 6	4635	1960	203	33	ОК	ок
Tran	Viga 7	4635	2081	203	46	ОК	ОК
es,	Viga 8	4635	1937	203	30	ОК	ОК
4 D	Viga 9	4635	1770	203	50	ОК	ОК
	Viga 10	4635	1685	203	30	ОК	ОК
	Viga 11	4635	1695	203	34	ОК	ОК
	Viga 12	4635	1249	203	17	ОК	ок
	VC 2	1577	1367	332	567	ОК	Х
	Columna 2	3082	557	81	34	ОК	ОК
	Viga 1	4635	1784	203	73	ОК	ок
	Viga 2	4635	1269	203	76	ОК	ОК
	Viga 3	4635	2300	203	103	ОК	ок
	Viga 4	4635	2274	203	139	ОК	ОК
10 3	Viga 5	4635	2320	203	79	ОК	ок
Fran	Viga 6	4635	2323	203	21	ОК	OK
es,	Viga 7	4635	2301	203	21	ОК	ОК
4 Pi	Viga 8	4635	2555	203	19	ОК	ОК
	Viga 9	4635	2182	203	14	ОК	OK
	Viga 10	4635	2000	203	10	ОК	ОК
	Viga 11	4635	1924	203	6	ОК	OK
	Viga 12	4635	1657	203	3	ОК	ОК

 Tabla 4.14:
 Resultados de Carga de 100 lb. A una distancia de 4 pies, en el Modelo 2.

100 lb. de TNT							
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distantia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Oonte
	Viga 1	4635	1758	203	18	ОК	ОК
	Viga 2	4635	2050	203	31	ОК	OK
	Viga 3	4635	31	203	34	ОК	ОК
	Viga 4	4635	2150	203	21	ОК	ОК
	Viga 5	4635	2360	203	27	ОК	ОК
0 1	Viga 6	4635	2477	203	33	ОК	ОК
Tran	Viga 7	4635	2595	203	33	ОК	ОК
es, '	Viga 8	4635	2663	203	23	ОК	OK
6 Pi	Viga 9	4635	2575	203	11	ОК	ОК
	Viga 10	4635	2463	203	4	ОК	ОК
	Viga 11	4635	2338	203	11	ОК	ОК
	Viga 12	4635	1980	203	7	ОК	OK
	VC 1	1577	4802	332	2288	х	Х
	Columna 1	3082	2045	81	122	ОК	х
	Viga 1	4635	984	203	3	ОК	OK
	Viga 2	4635	1276	203	11	ОК	OK
	Viga 3	4635	1380	203	14	ОК	ОК
	Viga 4	4635	1590	203	14	ОК	ОК
	Viga 5	4635	1714	203	12	ОК	ОК
9	Viga 6	4635	1835	203	6	ОК	OK
Trar	Viga 7	4635	1901	203	4	ОК	ОК
es, .	Viga 8	4635	1808	203	6	ОК	OK
6 Pi	Viga 9	4635	1685	203	13	ОК	OK
	Viga 10	4635	1553	203	21	ОК	OK
	Viga 11	4635	1514	203	22	ОК	OK
	Viga 12	4635	1130	203	11	ОК	OK
	VC 2	1577	1367	332	564	ОК	Х
	Columna 2	3082	557	81	35	ОК	ОК
	Viga 1	4635	1747	203	2	ОК	OK
	Viga 2	4635	2828	203	6	ОК	OK
	Viga 3	4635	2111	203	9	ОК	ОК
~	Viga 4	4635	2290	203	12	ОК	OK
Do G	Viga 5	4635	2343	203	13	ОК	ОК
Trar	Viga 6	4635	2357	203	17	ОК	OK
es	Viga 7	4635	2343	203	18	ОК	ОК
6 Pi	Viga 8	4635	2308	203	19	ОК	OK
	Viga 9	4635	2238	203	15	ОК	OK
	Viga 10	4635	2055	203	12	ОК	OK
	Viga 11	4635	1975	203	9	ОК	OK
	Viga 12	4635	1700	203	5	OK	OK

 Tabla 4.15: Resultados de Carga de 100 lb. A una distancia de 6 pies, en el Modelo 2.

100 lb. de TNT							
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	4635	1758	203	6	ОК	OK
	Viga 2	4635	2048	203	11	ОК	ОК
	Viga 3	4635	2143	203	16	ОК	ОК
	Viga 4	4635	2443	203	17	ОК	ОК
	Viga 5	4635	2345	203	24	ОК	ОК
0 1	Viga 6	4635	2529	203	29	ОК	ОК
Tran	Viga 7	4635	2571	203	25	ОК	ОК
es, '	Viga 8	4635	2508	203	18	ОК	OK
8 Pi	Viga 9	4635	2416	203	10	ОК	ОК
	Viga 10	4635	2273	203	2	ОК	ОК
	Viga 11	4635	2236	203	5	ОК	ОК
	Viga 12	4635	1905	203	4	ОК	ОК
	VC 1	1577	3068	332	1480	х	Х
	Columna 1	3082	1258	81	69	ОК	OK
	Viga 1	4635	994	203	4	ОК	OK
	Viga 2	4635	1282	203	9	ОК	OK
	Viga 3	4635	1384	203	13	ОК	ОК
	Viga 4	4635	1587	203	13	ОК	ОК
	Viga 5	4635	1690	203	12	ОК	ОК
9	Viga 6	4635	1774	203	10	ОК	ОК
Trar	Viga 7	4635	1817	203	8	ОК	OK
es, .	Viga 8	4635	1750	203	9	ОК	OK
8 Pi	Viga 9	4635	1645	203	12	ОК	OK
	Viga 10	4635	1491	203	17	ОК	ОК
	Viga 11	4635	1429	203	16	ОК	OK
	Viga 12	4635	1088	203	8	ОК	OK
	VC 2	1577	1369	332	563	ОК	Х
	Columna 2	3082	559	81	34	ОК	ОК
	Viga 1	4635	1750	203	2	ОК	ОК
	Viga 2	4635	2032	203	6	ОК	OK
	Viga 3	4635	2115	203	9	ОК	OK
	Viga 4	4635	2297	203	11	ОК	OK
Do 3	Viga 5	4635	2350	203	13	ОК	ОК
Trar	Viga 6	4635	2374	203	16	ОК	OK
es	Viga 7	4635	2366	203	17	ОК	OK
8 Pi	Viga 8	4635	2333	203	18	ОК	OK
	Viga 9	4635	2266	203	15	ОК	ОК
	Viga 10	4635	2081	203	14	ОК	ОК
	Viga 11	4635	2000	203	10	ОК	ОК
	Viga 12	4635	1721	203	5	ОК	OK

Tabla 4.16: Resultados de Carga de 100 lb. A una distancia de 8 pies, en el Modelo 2.

Para los casos donde la carga aplicada es de 100 libras, aplicada directamente sobre la viga de coronación, las vigas del puente no sufren daño considerable debido a la flexión, sin embargo el cortante que se produce cercano al punto de detonación provocará fisuras y grietas características a 45, pero estas mismas pueden ser reparadas utilizando alguna fibra de carbono apropiada para este tipo de casos.

Debe observarse que se producirá un colapso en las columnas por debajo del punto de explosión y un colapso parcial de la viga de coronación. Sin embargo el puente puede utilizarse en su mitad, es decir, el puente puede seguir funcionando en los dos carriles contrarios a los carriles donde se encuentra el punto de impacto de la carga.

En este caso es necesario observar que el hecho de tener la carga sobre un punto de apoyo, no produce momentos negativos en el medio de los tramos, por lo que las vigas no presentan daño significativo en flexión.

Debe observarse que las vigas están apoyadas sobre neoprenos y funcionan como simplemente apoyadas por lo que no existen momentos en los extremos, pero se presenta un aumento en la magnitud del corte en sus extremos; pero a pesar de este tipo de falla, el puente puede seguir siendo utilizado para fines de una eventual emergencia, esto es solo sí las vigas utilizadas para construir el puente son presforzadas.

En el caso de tener vigas postensadas las vigas se declaran colapsadas, debido a que la adhesión entre el cable tensionado y el hormigón se pierde, como se expuso en párrafos anteriores, provocando su colapso.

Debe observarse que aunque el puente pueda usarse parcialmente, debe proveerse elementos de seguridad, tales como barreras para la utilización parcial del puente durante su reparación o bien la construcción de un nuevo puente.

50 lb. de TNT							
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liciliento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Ouric
	Viga 1	4635	2103	203	23	ОК	ОК
	Viga 2	4635	1982	203	35	ОК	ОК
	Viga 3	4635	1530	203	13	ОК	ОК
	Viga 4	4635	944	203	98	ОК	ОК
	Viga 5	4635	-126	203	193	Х	ОК
б 1	Viga 6	4635	-1330	203	261	Х	Х
Trar	Viga 7	4635	-2629	203	230	Х	Х
es, '	Viga 8	4635	-3653	203	120	Х	OK
4 P	Viga 9	4635	-4691	203	74	Х	ОК
	Viga 10	4635	-5020	203	230	Х	Х
	Viga 11	4635	-4930	203	263	Х	Х
	Viga 12	4635	-4540	203	114	Х	ОК
	VC 1	1577	2966	332	1930	Х	Х
	Columna 1	3082	1329	81	90	ОК	х
	Viga 1	4635	-1091	203	10	Х	OK
	Viga 2	4635	283	203	35	ОК	ОК
	Viga 3	4635	1931	203	34	ОК	ОК
	Viga 4	4635	4599	203	17	ОК	ОК
	Viga 5	4635	9072	203	43	Х	ОК
10 Z	Viga 6	4635	17187	203	101	Х	ОК
Trar	Viga 7	4635	31648	203	144	Х	OK
es' .	Viga 8	4635	55026	203	165	Х	OK
4 Pi	Viga 9	4635	68580	203	15	Х	ОК
	Viga 10	4635	57204	203	165	Х	ОК
	Viga 11	4635	35275	203	158	Х	ОК
	Viga 12	4635	19048	203	48	Х	ОК
	VC 2	1577	2966	332	1926	Х	Х
	Columna 2	3082	1329	81	90	ОК	Х
	Viga 1	4635	1674	203	33	ОК	OK
	Viga 2	4635	1976	203	18	ОК	OK
	Viga 3	4635	1520	203	38	ОК	OK
	Viga 4	4635	930	203	124	ОК	OK
10 3	Viga 5	4635	-145	203	218	Х	х
Trar	Viga 6	4635	-1355	203	288	Х	Х
es' .	Viga 7	4635	-2655	203	270	Х	Х
4 Pi	Viga 8	4635	-3836	203	145	Х	OK
-	Viga 9	4635	-4722	203	50	Х	OK
	Viga 10	4635	-5051	203	238	Х	Х
	Viga 11	4635	-4906	203	245	х	Х
	Viga 12	4635	-4571	203	107	Х	ОК

Tabla 4.17: Resultados de Carga de 50 lb. A una distancia de 4 pies, en el Modelo 2.

50 lb. de TNT							
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	4635	1937	203	15	ОК	ОК
	Viga 2	4635	2011	203	24	ОК	ОК
	Viga 3	4635	1820	203	4	ОК	ОК
	Viga 4	4635	1610	203	43	ОК	ОК
	Viga 5	4635	1132	203	91	ОК	ок
о Г	Viga 6	4635	476	203	128	ОК	OK
Fran	Viga 7	4635	-160	203	120	Х	OK
es, '	Viga 8	4635	-814	203	57	Х	OK
6 Pi	Viga 9	4635	-1302	203	43	х	ок
•	Viga 10	4635	-1510	203	122	Х	OK
	Viga 11	4635	-1555	203	141	х	ок
	Viga 12	4635	-1491	203	60	Х	OK
	VC 1	1577	1820	332	1224	х	х
	Columna 1	3082	453	81	32	ОК	ОК
	Viga 1	4635	-79	203	9	Х	OK
	Viga 2	4635	770	203	22	ОК	ОК
	Viga 3	4635	1681	203	23	ОК	OK
	Viga 4	4635	3144	203	14	ОК	ОК
	Viga 5	4635	5596	203	29	Х	OK
5 2	Viga 6	4635	9714	203	60	Х	OK
Fran	Viga 7	4635	17205	203	97	Х	OK
', Se	Viga 8	4635	29301	203	92	Х	ок
0 Pi	Viga 9	4635	36291	203	13	х	ок
_	Viga 10	4635	30303	203	91	Х	OK
	Viga 11	4635	18897	203	85	Х	OK
	Viga 12	4635	10352	203	26	Х	ок
	VC 2	1577	1818	332	1268	х	Х
	Columna 2	3082	454	81	32	ОК	ОК
	Viga 1	4635	1915	203	7	ОК	OK
	Viga 2	4635	2005	203	7	ОК	OK
	Viga 3	4635	1810	203	23	ОК	OK
	Viga 4	4635	1595	203	70	ОК	OK
10 3	Viga 5	4635	1112	203	120	ОК	OK
Fran	Viga 6	4635	468	203	153	ОК	OK
es, ⁻	Viga 7	4635	-220	203	146	Х	ОК
5 Pi	Viga 8	4635	-843	203	78	Х	OK
	Viga 9	4635	-13333	203	18	Х	OK
	Viga 10	4635	-1593	203	100	Х	OK
	Viga 11	4635	-1560	203	121	Х	OK
	Viga 12	4635	-1426	203	50	Х	OK

Tabla 4.18: Resultados de Carga de 50 lb. A una distancia de 6 pies, en el Modelo 2.

500 lb. de TNT							
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distantia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte
	Viga 1	4635	1863	203	11	ОК	ОК
	Viga 2	4635	2025	203	19	ОК	OK
	Viga 3	4635	1952	203	9	ОК	ОК
	Viga 4	4635	1909	203	18	ОК	ОК
	Viga 5	4635	1661	203	46	ОК	ОК
0 1	Viga 6	4635	1304	203	68	ОК	ОК
Tran	Viga 7	4635	906	203	64	ОК	ОК
es, '	Viga 8	4635	580	203	29	ОК	ОК
8 Pi	Viga 9	4635	279	203	29	ОК	ОК
	Viga 10	4635	28	203	15	ОК	ОК
	Viga 11	4635	-32	203	84	х	ОК
	Viga 12	4635	-115	203	35	Х	ОК
	VC 1	1577	1411	332	973	ОК	Х
	Columna 1	3082	59	81	7	ОК	OK
	Viga 1	4635	376	203	7	OK	OK
	Viga 2	4635	990	203	16	ОК	ОК
	Viga 3	4635	1560	203	17	ОК	ОК
	Viga 4	4635	2488	203	13	ОК	ОК
	Viga 5	4635	3881	203	23	ОК	ОК
9	Viga 6	4635	6339	203	41	х	ОК
Tran	Viga 7	4635	10683	203	63	Х	ОК
es, '	Viga 8	4635	17687	203	59	х	ОК
8 Pi	Viga 9	4635	21737	203	12	Х	ОК
	Viga 10	4635	18159	203	56	Х	OK
	Viga 11	4635	11500	203	52	х	ОК
	Viga 12	4635	6424	203	15	Х	ОК
	VC 2	1577	1410	332	970	ОК	Х
	Columna 2	3082	59	81	7	ОК	ОК
	Viga 1	4635	1858	203	4	ОК	ОК
	Viga 2	4635	2019	203	2	ОК	OK
	Viga 3	4635	1942	203	17	ОК	OK
	Viga 4	4635	1865	203	44	ОК	OK
10 3	Viga 5	4635	1642	203	74	ОК	ОК
Trar	Viga 6	4635	1279	203	96	ОК	ОК
ŝ	Viga 7	4635	897	203	91	ОК	OK
8 Pi	Viga 8	4635	550	203	55	ОК	OK
	Viga 9	4635	247	203	4	ОК	ОК
	Viga 10	4635	-33	203	52	х	ОК
	Viga 11	4635	-66	203	66	х	ОК
	Viga 12	4635	-146	203	28	х	OK

 Tabla 4.19: Resultados de Carga de 50 lb. A una distancia de 8 pies, en el Modelo 2.

Cuando el puente es cargado en el tramo actual, la deformación producida por la carga produce momentos positivos en el tramo medio que sobrepasan el momento de diseño de la viga, además de producir una elevación en los tramos de los extremos y en base a los datos obtenidos del análisis que la estructura se declara como colapsada y es inminente que una rehabilitación no es viable para vigas post tensadas cuando se produce este tipo de evento en esta posición.

En el caso de vigas pre-esforzadas puede hacerse una rehabilitación, para lo cual se muestran detalles típicos en el Capítulo 5.

Explosivo Colocado a 2 Pies de Distancia									
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corto		
	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte		
20 lb	VC	1577	1460	332	596	OK	Х		
2010.	Columna	3082	927	81	65	OK	OK		
15 lb	VC	1577	1450	332	592	OK	Х		
1510.	Columna	3082	882	81	61	OK	ОК		
10 lb	VC	1577	1437	332	571	OK	Х		
1010.	Columna	3082	827	81	56	OK	ОК		
05 lb	VC	1577	1418	332	580	OK	Х		
0310.	Columna	3082	750	81	50	OK	OK		

 Tabla 4.20:
 Resultados de Carga de 20 a 05 lb. A una distancia de 2 pies
Explosivo Colocado a 3 Pies de Distancia											
Distancia	Elemento	Momento Kip-pie		Corte Kip		Momento	Corte				
	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	womento	Corte				
20 lb	VC	1577	1423	332	581	OK	Х				
2010.	Columna	3082	767	81	51	OK	OK				
15 lb	VC	1577	1416	332	578	OK	Х				
1510.	Columna	3082	738	81	50	OK	OK				
10 lb	VC	1577	1407	332	566	OK	Х				
. di UT	Columna	3082	704	81	47	OK	OK				
	VC	1577	1396	332	570	OK	Х				
0510.	Columna	3082	656	81	43	OK	OK				

Tabla 4.21: Resultados de Carga de 20 a 05 lb. A una distancia de 3 pies.

Figura 4.2: Verificación de columnas y viga de coronación del Modelo 2

Al igual que el Modelo 1, las columnas soportan la flexión pura aplicada por la carga de la explosión, mas sin embargo al tomar en cuenta la verificación de capacidades usando el programa SAP 2000, bajo la condición de carga establecida en Evento Extremo II, la única carga que no provoca el colapso de la columna es la de 5 libras de TNT a una distancia de 3 pies

Bajo la combinación de carga utilizada para la verificación de la estructura, se toma en cuenta la carga muerta, compuesta por el peso propio de la estructura,

con su debido factor de magnificación, así como también la carga viva de diseño, la cual se describe en el Capitulo 1 de esta investigación.

A excepción del caso de carga de 5 libras a tres pies de distancia, los casos subsecuentes establecidos en el Capitulo 3, bajo la condición de combinación de carga establecida en el inciso 2.3.2 de esta investigación, provocan el colapso de la columna directamente impactada por la carga de la explosión.

La viga de coronación excede en un 32% el área requerida en el diseño original de la misma. Esto no se hace considerable tomando en cuenta que se provea refuerzo establecido para un diseño sísmico, el cual produce una mayor resistencia del hormigón debido al confinamiento requerido por el diseño sismoresistente.

4.4 MODELO 3

El Modelo 3, se cargó bajo las consideraciones de las tres condiciones de carga descritas anteriormente, los resultados obtenidos se tabulan a continuación:

			500 lb. de ⁻	TNT			
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Womento	Ouric
	Viga 1	5728	3528	135	206	ОК	х
	Viga 2	5728	9582	135	550	Х	х
	Viga 3	5728	17243	135	903	Х	х
	Viga 4	5728	27257	135	1243	х	х
	Viga 5	5728	42815	135	1651	х	х
0 1	Viga 6	5728	69412	135	1921	х	х
Tran	Viga 7	5728	116390	135	1926	х	х
es, '	Viga 8	5728	194218	135	1393	х	Х
4 Pi	Viga 9	5728	240563	135	364	х	х
	Viga 10	5728	206487	135	708	х	х
	Viga 11	5728	139092	135	960	х	х
	Viga 12	5728	91021	135	448	х	х
	VC 1	1577	13080	332	5987	х	х
	Columna 1	3082	7020	81	598	х	x
	Viga 1	5728	2080	135	31	OK	ОК
	Viga 2	5728	509	135	150	ОК	х
	Viga 3	5728	-2103	135	361	х	х
	Viga 4	5728	-5500	135	639	х	х
	Viga 5	5728	-9976	135	930	х	х
5 2	Viga 6	5728	-15082	135	1130	х	Х
Fran	Viga 7	5728	-20511	135	1109	х	х
Ś	Viga 8	5728	-24992	135	801	х	х
4 Pi	Viga 9	5728	-27930	135	287	х	х
	Viga 10	5728	-29189	135	201	х	х
	Viga 11	5728	-28770	135	407	х	х
	Viga 12	5728	-27205	135	170	х	х
	VC 2	1577	7654	332	1744	х	х
	Columna 2	3082	8099	81	678	х	х
	Viga 1	5728	-2647	135	43	х	ок
	Viga 2	5728	-1519	135	78	х	ок
	Viga 3	5728	-522	135	86	х	ок
	Viga 4	5728	518	135	76	ОК	ок
10 3	Viga 5	5728	1649	135	60	ОК	ок
Fran	Viga 6	5728	2812	135	61	ОК	ок
es, T	Viga 7	5728	3928	135	83	ОК	ок
4 Pi	Viga 8	5728	4886	135	128	ОК	ок
	Viga 9	5728	5565	135	176	ОК	Х
	Viga 10	5728	2972	135	200	ОК	Х
	Viga 11	5728	6280	135	164	х	Х
	Viga 12	5728	5982	135	50	х	ОК

Tabla 4.22: Resultados de Carga de 500 lb. A una distancia de 4 pies, en el Modelo 3.

			500 lb. de 1	INT			
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Biotariola	Elemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte
	Viga 1	5728	3184	135	124	ОК	ок
	Viga 2	5728	6859	135	328	х	х
	Viga 3	5728	11428	135	537	Х	х
	Viga 4	5728	17372	135	731	Х	х
	Viga 5	5728	26571	135	979	Х	х
0 L	Viga 6	5728	42256	135	1137	Х	х
Trar	Viga 7	5728	69744	135	1140	Х	х
es.	Viga 8	5728	115427	135	824	Х	х
3 Pi	Viga 9	5728	142642	135	217	Х	х
-	Viga 10	5728	123288	135	434	Х	х
	Viga 11	5728	83198	135	561	Х	х
	Viga 12	5728	54755	135	271	Х	х
	VC 1	1577	8686	332	3801	Х	х
	Columna 1	3082	4144	81	353	Х	х
	Viga 1	5728	1785	135	19	ОК	ОК
	Viga 2	5728	964	135	97	ОК	ок
	Viga 3	5728	-1114	135	225	х	х
	Viga 4	5728	-3015	135	388	Х	х
	Viga 5	5728	-5911	135	553	Х	х
0 U	Viga 6	5728	-8963	135	670	Х	х
Trar	Viga 7	5728	-12073	135	658	Х	х
es.	Viga 8	5728	-14819	135	476	Х	х
6 Pi	Viga 9	5728	-16502	135	173	Х	х
-	Viga 10	5728	-16934	135	131	х	ОК
	Viga 11	5728	-16846	135	250	Х	х
	Viga 12	5728	-15858	135	104	Х	ОК
	VC 2	1577	4872	332	992	Х	х
	Columna 2	3082	4821	81	400	Х	х
	Viga 1	5728	-851	135	25	Х	ОК
	Viga 2	5728	-218	135	48	Х	ОК
	Viga 3	5728	947	135	53	ОК	ОК
	Viga 4	5728	1610	135	48	ОК	ОК
er Or	Viga 5	5728	2292	135	39	ОК	ОК
Trar	Viga 6	5728	2988	135	40	ОК	OK
6 Pies, T	Viga 7	5728	3646	135	51	ОК	OK
	Viga 8	5728	4201	135	78	ОК	OK
	Viga 9	5728	4578	135	108	ОК	OK
	Viga 10	5728	4774	135	122	ОК	OK
	Viga 11	5728	4900	135	100	ОК	OK
	Viga 12	5728	4619	135	32	ОК	ок

Tabla 4.23: Resultados de Carga de 500 lb. A una distancia de 6 pies, en el Modelo 3.

			500 lb. de ⁻	ГИТ			
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	5728	3023	135	85	ОК	ОК
	Viga 2	5728	5571	135	224	ОК	Х
	Viga 3	5728	8677	135	364	Х	х
	Viga 4	5728	12695	135	501	Х	Х
	Viga 5	5728	18887	135	661	Х	Х
1 ou	Viga 6	5728	29418	135	592	Х	Х
ss, Tram	Viga 7	5728	47860	135	768	Х	х
es' .	Viga 8	5728	78744	135	555	Х	Х
8 Pi	Viga 9	5728	96685	135	148	Х	Х
	Viga 10	5728	82817	135	296	Х	Х
	Viga 11	5728	56756	135	393	Х	Х
	Viga 12	5728	37598	135	184	Х	Х
	VC 1	1577	6606	332	2768	Х	Х
	Columna 1	3082	2783	81	230	ОК	х
	Viga 1	5728	1646	135	14	OK	OK
	Viga 2	5728	1179	135	67	ОК	OK
	Viga 3	5728	-361	135	153	Х	х
	Viga 4	5728	-1768	135	263	Х	х
	Viga 5	5728	-3486	135	374	Х	х
10 Z	Viga 6	5728	-5679	135	374	х	Х
Trar	Viga 7	5728	-6869	135	445	Х	Х
es, '	Viga 8	5728	-9386	135	310	Х	Х
8 Pi	Viga 9	5728	-10687	135	119	Х	OK
	Viga 10	5728	-10970	135	90	Х	OK
	Viga 11	5728	-10920	135	169	Х	Х
	Viga 12	5728	-10293	135	70	Х	ОК
	VC 2	1577	3747	332	778	Х	Х
	Columna 2	3082	2783	81	269	ОК	Х
	Viga 1	5728	588	135	17	ОК	ОК
	Viga 2	5728	1176	135	33	ОК	OK
	Viga 3	5728	1642	135	37	ОК	OK
	Viga 4	5728	2121	135	34	ОК	OK
10 3	Viga 5	5728	2595	135	29	ОК	ОК
Trar	Viga 6	5728	3071	135	31	ОК	ОК
es,	Viga 7	5728	3513	135	39	ОК	OK
8 Pi	Viga 8	5728	3822	135	58	ОК	OK
	Viga 9	5728	4112	135	76	ОК	ОК
	Viga 10	5728	4208	135	85	ОК	OK
	Viga 11	5728	4246	135	71	ОК	ОК
	Viga 12	5728	3975	135	23	ОК	ОК

Tabla 4.24: Resultados de Carga de 500 lb. A una distancia de 8 pies, en el Modelo 3.

Como se discutió anteriormente se observa que a medida que la carga se encuentra más lejana de los elementos analizados, esta tiende a tener menor efecto, como se demostró en el Modelo 2 las vigas del último tramo del puente se mantienen funcionando aún después de la carga de la explosión.

Lo anteriormente expuesto queda demostrado con el Modelo 3, ya que al igual que el Modelo 2 para una carga de 500 libras a una distancia de 6 y 8 pies, las estructuras muestran el mismo comportamiento de deformación debido a la combinación de carga para evento extremo que se discute en el Capitulo 2. Es necesario observar que si en algún caso el puente afectado tuviese un tramo extra el efecto de la carga de la explosión no afectaría este tramo extra, debido a que ya la carga que dominaría en este tramo serían las cargas gravitacionales como lo es la carga viva y la carga muerta. Esto se asume debido al comportamiento presentado en los modelos anteriores.

A manera de conclusión al observar los resultados de los Modelos 1 y 2 y compararlos con los resultados del Modelo 3, se determina que para una carga de 500 libras de TNT, los puentes colapsan.

100

			100 lb. de ⁻	TNT			
Distancia	Elemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liciliento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	5728	2705	135	5	ОК	ОК
	Viga 2	5728	2973	135	10	ОК	ОК
	Viga 3	5728	3125	135	14	ОК	ОК
	Viga 4	5728	3269	135	19	ОК	ОК
	Viga 5	5728	3441	135	29	ОК	ОК
no 1	Viga 6	5728	3657	135	36	ОК	ОК
Trar	Viga 7	5728	3811	135	36	ОК	ок
es' .	Viga 8	5728	3671	135	23	ОК	ОК
4 Pi	Viga 9	5728	3543	135	7	ОК	OK
-	Viga 10	5728	3526	135	10	ОК	ОК
	Viga 11	5728	3480	135	12	ОК	ОК
	Viga 12	5728	3102	135	11	ОК	ОК
	VC 1	1577	9720	332	4511	Х	Х
	Columna 1	3082	4161	81	250	Х	х
	Viga 1	5728	1325	135	4	OK	OK
	Viga 2	5728	1583	135	10	ОК	ОК
	Viga 3	5728	1748	135	12	ОК	ОК
	Viga 4	5728	1902	135	11	ОК	ОК
	Viga 5	5728	2071	135	7	ОК	ОК
9	Viga 6	5728	2282	135	1	ОК	ОК
Trar	Viga 7	5728	2402	135	4	ОК	OK
es' .	Viga 8	5728	2268	135	3	ОК	OK
4 Pi	Viga 9	5728	2127	135	13	ОК	ОК
	Viga 10	5728	2106	135	24	ОК	ОК
	Viga 11	5728	2065	135	27	ОК	ОК
	Viga 12	5728	1679	135	13	ОК	ОК
	VC 2	1577	2364	332	667	Х	Х
	Columna 2	3082	945	81	58	ОК	ОК
	Viga 1	5728	2643	135	1	ОК	ОК
	Viga 2	5728	2980	135	5	ОК	OK
	Viga 3	5728	3020	135	7	ОК	OK
	Viga 4	5728	3113	135	12	ОК	ОК
10 3	Viga 5	5728	3151	135	13	ОК	ОК
Trar	Viga 6	5728	3152	135	16	ОК	ОК
es, T	Viga 7	5728	3130	135	15	ОК	ОК
4 Pi	Viga 8	5728	3090	135	14	ОК	ОК
-	Viga 9	5728	3027	135	10	ОК	ОК
	Viga 10	5728	2924	135	8	ОК	OK
	Viga 11	5728	2796	135	5	ОК	OK
	Viga 12	5728	2559	135	3	ОК	ОК

Tabla 4.25: Resultados de Carga de 100 lb. A una distancia de 4 pies, en el Modelo 3.

			100 lb. de 1	ГИТ			
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distantia	Elemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte
	Viga 1	5728	2703	135	5	ОК	ОК
	Viga 2	5728	2965	135	10	ОК	ок
	Viga 3	5728	3110	135	14	ОК	ок
	Viga 4	5728	3237	135	16	ОК	ок
	Viga 5	5728	3369	135	22	ОК	ок
0 1	Viga 6	5728	3519	135	25	ОК	ок
es, Tram	Viga 7	5728	3627	135	25	ОК	ок
es, '	Viga 8	5728	3573	135	16	ОК	ок
6 Pi	Viga 9	5728	3472	135	7	ОК	ок
_	Viga 10	5728	3403	135	3	ОК	ок
	Viga 11	5728	3289	135	7	ОК	ок
	Viga 12	5728	2946	135	6	ОК	ок
	VC 1	1577	5511	332	2593	х	х
	Columna 1	3082	2280	81	137	ОК	х
	Viga 1	5728	1344	135	3	OK	ОК
	Viga 2	5728	1598	135	8	ОК	ОК
	Viga 3	5728	1756	135	10	ОК	ОК
	Viga 4	5728	1894	135	10	ОК	ОК
	Viga 5	5728	2017	135	8	ОК	ОК
9 2	Viga 6	5728	2155	135	4	ОК	ок
Tran	Viga 7	5728	2229	135	4	ОК	ок
es, '	Viga 8	5728	2160	135	6	ОК	ок
6 Pi	Viga 9	5728	2063	135	11	ОК	ок
_	Viga 10	5728	2000	135	17	ОК	ОК
	Viga 11	5728	1901	135	18	ОК	ок
	Viga 12	5728	1563	135	9	ОК	ОК
	VC 2	1577	2364	332	667	Х	х
	Columna 2	3082	945	81	58	ОК	ок
	Viga 1	5728	2656	135	2	OK	ОК
	Viga 2	5728	2901	135	5	ОК	ОК
	Viga 3	5728	3035	135	6	ОК	ОК
	Viga 4	5728	3134	135	10	ОК	ок
10 3	Viga 5	5728	3181	135	11	ОК	ОК
ô Pies, Tram	Viga 6	5728	3192	135	14	ОК	ОК
	Viga 7	5728	3180	135	13	ОК	ОК
	Viga 8	5728	3148	135	13	ОК	ОК
_	Viga 9	5728	3088	135	11	ОК	ОК
	Viga 10	5728	2984	135	9	ОК	ОК
	Viga 11	5728	2852	135	7	ОК	ОК
	Viga 12	5728	2607	135	6	ОК	OK

 Tabla 4.26: Resultados de Carga de 100 lb. A una distancia de 6 pies en el Modelo 3.

			100 lb. de ⁻	TNT			
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	OULC
	Viga 1	5728	2701	135	6	ОК	OK
	Viga 2	5728	2961	135	11	ОК	ОК
	Viga 3	5728	3102	135	13	ОК	OK
	Viga 4	5728	3222	135	15	ОК	ОК
	Viga 5	5728	3535	135	19	ОК	ОК
no 1	Viga 6	5728	3455	135	21	ОК	ОК
, Tran	Viga 7	5728	3553	135	21	ОК	ОК
es,	Viga 8	5728	3520	135	13	ОК	ОК
8 Pi	Viga 9	5728	3438	135	8	ОК	ОК
	Viga 10	5728	3346	135	1	ОК	ОК
	Viga 11	5728	3200	135	3	ОК	ОК
	Viga 12	5728	2872	135	3	ОК	OK
	VC 1	1577	3678	332	1728	х	Х
	Columna 1	3082	1398	81	85	ОК	Х
	Viga 1	5728	1351	135	3	ОК	OK
	Viga 2	5728	1605	135	7	ОК	ОК
	Viga 3	5728	1762	135	9	ОК	ОК
	Viga 4	5728	1890	135	10	ОК	OK
	Viga 5	5728	1992	135	9	ОК	ОК
no 2	Viga 6	5728	2095	135	7	ОК	ОК
Tran	Viga 7	5728	2154	135	6	ОК	ОК
es,	Viga 8	5728	2110	135	7	ОК	ОК
8 Pi	Viga 9	5728	2033	135	10	ОК	ОК
	Viga 10	5728	1949	135	14	ОК	ОК
	Viga 11	5728	1825	135	14	ОК	ОК
	Viga 12	5728	1508	135	6	ОК	ОК
	VC 2	1577	2367	332	667	Х	Х
	Columna 2	3082	1398	81	58	ОК	ОК
	Viga 1	5728	2655	135	1	ОК	ОК
	Viga 2	5728	2906	135	5	ОК	ОК
	Viga 3	5728	3042	135	6	ОК	ОК
-	Viga 4	5728	3144	135	9	ОК	ОК
no 3	Viga 5	5728	3195	135	10	ОК	ОК
[ram	Viga 6	5728	3211	135	13	ОК	ОК
Se	Viga 7	5728	3204	135	12	ОК	ОК
8 Pi	Viga 8	5728	3176	135	13	ОК	ОК
	Viga 9	5728	3117	135	11	ОК	ОК
	Viga 10	5728	3012	135	10	ОК	ОК
	Viga 11	5728	2878	135	8	ОК	ОК
	Viga 12	5728	2630	135	5	ОК	OK

 Tabla 4.27: Resultados de Carga de 100 lb. A una distancia de 8 pies.

Al igual que se expone en los modelos previos el hecho de tener una carga directamente sobre la viga de coronación, produciría un colapso de las columnas y de la viga de coronación. Las vigas de coronación al igual que los casos anteriores presentarían grietas características de una falla por corte.

La estructura puede seguir utilizándose en caso de emergencia ya que los carriles contrarios al punto donde se aplica la carga permanecen estructuralmente estables. El análisis indica el colapso de dos columnas, que se encuentran por debajo del punto de la explosión, así como un daño severo de la mitad de la viga de coronación.

En base a lo expuesto anteriormente se puede establecer lo siguiente:

Una vez la explosión se produce directamente sobre la viga de coronación, el puente puede seguir utilizándose, únicamente en casos de emergencia, ya que los dos carriles contrarios a los puntos donde sucede la explosión mantienen su capacidad estructural, y el puente puede ser reparado o bien una vez pase la emergencia derribado para su reconstrucción total. Para esta decisión ya debiese hacerse un análisis de costo beneficio para determinar la viabilidad de la reconstrucción o reparación del mismo.

104

			50 lb. de T	NT			
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distantia	Elemento	Capacidad	Aplicada	Capacidad	Aplicada	Womento	Ouric
	Viga 1	5728	3046	135	13	ОК	ок
	Viga 2	5728	2615	135	7	ОК	ок
	Viga 3	5728	1869	135	55	ОК	ок
o 3 4 Pies, Tramo 2 4 Pies, Tramo 1	Viga 4	5728	786	135	149	ОК	х
	Viga 5	5728	-806	135	244	х	х
0 1	Viga 6	5728	-2551	135	305	х	х
Tran	Viga 7	5728	-4363	135	276	х	х
es, '	Viga 8	5728	-5913	135	137	х	х
4 Pi	Viga 9	5728	-6963	135	82	х	ок
	Viga 10	5728	-7487	135	258	х	х
	Viga 11	5728	-7561	135	300	х	х
	Viga 12	5728	-6996	135	128	х	ОК
	VC 1	1577	4236	332	2017	х	х
	Columna 1	3082	1583	81	133	ОК	х
	Viga 1	5728	-1178	135	12	Х	ОК
	Viga 2	5728	728	135	25	ОК	ОК
	Viga 3	5728	3182	135	24	ОК	ок
	Viga 4	5728	6803	135	9	х	ок
	Viga 5	5728	12797	135	38	х	ок
9 2	Viga 6	5728	23028	135	83	х	ок
Tran	Viga 7	5728	40352	135	140	х	х
es, '	Viga 8	5728	68219	135	131	х	ок
4 Pi	Viga 9	5728	84352	135	17	х	ок
	Viga 10	5728	21492	135	141	Х	х
	Viga 11	5728	45897	135	134	х	ок
	Viga 12	5728	27258	135	40	х	ОК
	VC 2	1577	4230	332	2014	Х	х
	Columna 2	3082	1583	81	134	ОК	х
	Viga 1	5728	3011	135	7	OK	ОК
	Viga 2	5728	2575	135	13	ОК	ОК
	Viga 3	5728	1380	135	74	ОК	ОК
	Viga 4	5728	744	135	170	ОК	х
10 3	Viga 5	5728	-873	135	266	х	х
es, Tram	Viga 6	5728	-2663	135	328	х	х
	Viga 7	5728	-4544	135	287	х	Х
4 Pi	Viga 8	5728	-6128	135	157	х	Х
	Viga 9	5728	-7184	135	62	х	OK
	Viga 10	5728	-7684	135	242	х	Х
	Viga 11	5728	-7698	135	285	х	Х
	Viga 12	5728	-7085	135	122	х	OK

 Tabla 4.28: Resultados de Carga de 50 lb. A una distancia de 4 pies, en el Modelo 3.

			50 lb. de T	NT			
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distantia	Elemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Oonte
	Viga 1	5728	2878	135	10	ОК	OK
	Viga 2	5728	2778	135	9	ОК	OK
	Viga 3	5728	2459	135	22	ОК	ОК
	Viga 4	5728	1950	135	71	ОК	ОК
	Viga 5	5728	1212	135	119	ОК	ОК
0 1	Viga 6	5728	303	135	152	ОК	Х
Tran	Viga 7	5728	-611	135	137	х	Х
es, '	Viga 8	5728	-1407	135	67	х	OK
6 Pi	Viga 9	5728	-1975	135	46	х	OK
_	Viga 10	5728	-2310	135	136	х	Х
	Viga 11	5728	-2444	135	157	х	Х
	Viga 12	5728	-2296	135	67	х	OK
	VC 1	1577	2905	332	1366	х	Х
	Columna 1	3082	1061	81	97	ОК	Х
	Viga 1	5728	47	135	3	ОК	OK
	Viga 2	5728	1556	135	16	ОК	OK
	Viga 3	5728	2506	135	16	ОК	OK
	Viga 4	5728	4432	135	9	ОК	OK
	Viga 5	5728	7570	135	25	х	OK
9 2	Viga 6	5728	12893	135	48	х	OK
Tran	Viga 7	5728	21880	135	78	х	OK
es, '	Viga 8	5728	36315	135	73	х	ОК
6 Pi	Viga 9	5728	44657	135	13	х	ОК
_	Viga 10	5728	37938	135	77	Х	ОК
	Viga 11	5728	24596	135	73	х	ОК
	Viga 12	5728	14805	135	22	х	ОК
	VC 2	1577	2895	332	1363	Х	Х
	Columna 2	3082	1060	81	97	ОК	Х
	Viga 1	5728	2848	135	4	ОК	OK
	Viga 2	5728	2738	135	9	ОК	ОК
	Viga 3	5728	2416	135	41	ОК	ОК
	Viga 4	5728	1850	135	92	ОК	OK
10 3	Viga 5	5728	1145	135	142	ОК	х
es, Tram	Viga 6	5728	191	135	172	ОК	Х
	Viga 7	5728	792	135	159	ОК	х
6 Pi	Viga 8	5728	-1623	135	87	Х	ОК
_	Viga 9	5728	-2197	135	27	х	ОК
	Viga 10	5728	-2507	135	120	х	ОК
	Viga 11	5728	-2580	135	143	х	Х
	Viga 12	5728	-2385	135	61	х	OK

 Tabla 4.29:
 Resultados de Carga de 50 lb. A una distancia de 6 pies, en el Modelo 3.

			500 lb. de ⁻	TNT			
Distancia	Flemento	Momento	Kip-pie	Corte	Kip	Momento	Corte
Distantia	Elemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte
	Viga 1	5728	2794	135	8	ОК	ОК
	Viga 2	5728	2852	135	9	ОК	ок
	Viga 3	5728	2725	135	8	ОК	ОК
	Viga 4	5728	2475	135	35	ОК	ок
	Viga 5	5728	2082	135	63	ОК	ок
0 1	Viga 6	5728	1583	135	83	ОК	ок
s, Tram	Viga 7	5728	1082	135	74	ОК	ок
es, '	Viga 8	5728	682	135	36	ОК	ок
8 Pi	Viga 9	5728	339	135	28	ОК	ок
	Viga 10	5728	27	135	81	ОК	ок
	Viga 11	5728	-134	135	93	х	ок
	Viga 12	5728	-108	135	39	х	ок
	VC 1	1577	2684	332	1072	х	х
	Columna 1	3082	824	81	81	ОК	ок
	Viga 1	5728	600	135	5	OK	ОК
	Viga 2	5728	1350	135	12	ОК	ОК
	Viga 3	5728	2196	135	13	ОК	ОК
	Viga 4	5728	3361	135	9	ОК	ОК
	Viga 5	5728	5209	135	19	ОК	ОК
2 2	Viga 6	5728	8317	135	33	Х	ОК
Tran	Viga 7	5728	13540	135	50	Х	ОК
es, T	Viga 8	5728	21912	135	47	Х	ОК
B Pie	Viga 9	5728	26762	135	11	х	ОК
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Viga 10	5728	22786	135	49	Х	ОК
	Viga 11	5728	14976	135	45	Х	ОК
	Viga 12	5728	9180	135	14	х	ОК
	VC 2	1577	2674	332	1069	х	х
	Columna 2	3082	823	81	81	ОК	ок
	Viga 1	5728	2767	135	2	OK	ОК
	Viga 2	5728	2801	135	7	ОК	ОК
	Viga 3	5728	2685	135	26	ОК	ОК
	Viga 4	5728	2434	135	54	ОК	ок
10 3	Viga 5	5728	2015	135	86	OK	ОК
Tan	Viga 6	5728	1472	135	106	ОК	ОК
is, Ti	Viga 7	5728	928	135	97	ОК	OK
3 Pie	Viga 8	5728	467	135	55	OK	OK
Ĩ	Viga 9	5728	118	135	10	ОК	OK
	Viga 10	5728	-170	135	63	Х	OK
	Viga 11	5728	-270	135	80	Х	OK
	Viga 12	5728	264	135	33	ОК	OK

 Tabla 4.30:
 Resultados de Carga de 50 lb. A una distancia de 8 pies, en el Modelo 3.

Según los datos obtenidos en el Modelo 3, cuando la explosión se produce en el medio del tramo medio del puente este tiende a colapsar la estructura completa debido a los momentos negativos que se producen en los tramos adjuntos al punto de carga y el excesivo momento positivo que se produce en el tramo donde se aplica la carga.

Observando los resultados de todos los modelos, se puede inferir que una vez la cantidad de explosivo sobrepase las 50 libras de TNT y su posicionamiento sea en el medio de cualquiera de los tramos, podrá producir un colapso total de la estructura dejando inutilizable, aún en el momento de una emergencia.

Explosivo Colocado a 2 Pies de Distancia											
Distancia	Elemento	Momento Kip-pie		Corte Kip		Momento	Corte				
	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Womento	Corte				
20 lb.	VC	1577	2421	332	674	Х	Х				
	Columna	3082	1237	81	83	OK	Х				
15 lb	VC	1577	2416	332	673	Х	Х				
1516.	Columna	3082	1202	81	80	OK	OK				
10 lb	VC	1577	2408	332	671	Х	Х				
1010.	Columna	3082	1158	81	76	OK	ОК				
	VC	1577	2397	332	668	Х	Х				
0510.	Columna	3082	1097	81	71	OK	ОК				

Tabla 4.31: Resultados de Carga de 20 a 05 lb. A una distancia de 2 pies

Explosivo Colocado a 3 Pies de Distancia											
Distancia	Elemento	Momento Kip-pie		Corte Kip		Momento	Corte				
	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte				
20 lb	VC	1577	2405	332	670	Х	Х				
2010.	Columna	3082	1143	81	75	OK	OK				
15 lb	VC	1577	2396	332	668	Х	Х				
1516.	Columna	3082	1088	81	70	OK	OK				
10 lb	VC	1577	2391	332	667	Х	Х				
. di UT	Columna	3082	1060	81	68	OK	OK				
	VC	1577	2385	332	665	Х	Х				
0310.	Columna	3082	1023	81	64	OK	OK				

Tabla 4.32: Resultados de Carga de 20 a 05 lb. A una distancia de 3 pies

# 4.5 MODELO 4

Al igual que los modelos anteriores el Modelo 4 se cargó con los diferentes casos de carga para determinar su comportamiento al momento de que el puente se vea afectado por una carga de explosión. Los resultados se muestran a continuación:

Tabla 4.33: Resultados de Carga de 500 lb. A una distancia de 4 pies

500 lb. de TNT										
Distancia	Elomonto	Momento Kip-pie		Corte Kip		Momonto	Corto			
Distancia	Elemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte			
	Viga 1	427	1746	32	189	Х	Х			
	Viga 2	427	2162	32	737	Х	Х			
	Viga 3	427	8162	32	218	Х	Х			
S	Viga 4	427	19415	32	1686	Х	Х			
Pié	Viga 5	427	27800	32	505	Х	Х			
4	Viga 6	427	26744	32	1545	Х	Х			
	Columna 1	450	2185	100	413	Х	Х			
	Columna 2	450	1513	100	283	Х	Х			
	VC	377	20591	59	5190	Х	Х			

500 lb. de TNT											
Distancia	Flomento	Momento Kip-pie		Corte Kip		Momonto	Corto				
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Corte Kip         Momento         Corte           cidad         Aplicada         Momento         Corte           2         262         X         Z           2         436         X         Z           2         519         X         Z           2         3413         X         Z           2         5870         X         Z           2         3854         X         Z           00         244         X         Z           9         3071         X         Z	Conte					
	Viga 1	427	1016	32	262	Х	Х				
	Viga 2	427	1306	32	436	Х	Х				
	Viga 3	427	4847	32	519	Х	Х				
SS	Viga 4	427	11478	32	3413	Х	Х				
Pie	Viga 5	427	16410	32	5870	Х	Х				
9	Viga 6	427	15779	32	3854	Х	Х				
	Columna 1	450	1285	100	244	Х	Х				
	Columna 2	450	881	100	167	Х	Х				
	VC	377	12148	59	3071	Х	Х				

Tabla 4.34: Resultados de Carga de 500 lb. A una distancia de 6 pies

 Tabla 4.35: Resultados de Carga de 500 lb. A una distancia de 8 pies

500 lb. de TNT											
Distancia	Elomonto	Momento	Momento Kip-pie		Corte Kip		Carta				
Distancia	Elemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte				
	Viga 1	427	671	32	75	Х	Х				
	Viga 2	427	900	32	124	Х	Х				
	Viga 3	427	3279	32	384	Х	Х				
S	Viga 4	427	7723	32	674	Х	Х				
Ъ	Viga 5	427	11022	32	3942	Х	Х				
œ	Viga 6	427	10593	32	2588	Х	Х				
	Columna 1	450	871	100	164	Х	Х				
	Columna 2	450	600	100	113	Х	Х				
	VC	377	8207	59	2070	X	Х				

Según los resultados del análisis es fácil apreciar el colapso total de la estructura, bajo una carga de 500 libras de TNT.

Para esta cantidad de explosivo, la estructura debe ser construida nuevamente y no existen elementos estructurales que puedan ser utilizados nuevamente para la reconstrucción del puente.

100 lb. de TNT											
Distancia	Elomonto	Momento Kip-pie		Corte Kip		Momonto	Corto				
	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte				
	Viga 1	427	587	32	59	Х	Х				
	Viga 2	427	248	32	62	OK	Х				
	Viga 3	427	1120	32	263	Х	Х				
S	Viga 4	427	4090	32	2185	Х	Х				
Pie	Viga 5	427	8664	32	4216	Х	Х				
4	Viga 6	427	6040	32	2180	Х	Х				
	Columna 1	450	1572	100	296	Х	Х				
	Columna 2	450	1068	100	200	Х	Х				
	VC	377	14916	59	3778	Х	Х				

Tabla 4.36: Resultados de Carga de 100 lb. A una distancia de 4 pies

Para el caso en el que la carga disminuye a 100 libras, ya se comienza a observar que los elementos estructurales van soportando la carga de explosión a las que son expuestas, aún así para una distancia de 4 pies del objetivo la estructura sigue siendo declarada como colapsada.

Tabla 4.37: Resultados de Carga de 100 lb. A una distancia de 6 pies

100 lb. de TNT											
Distancia	Elomonto	Momento	Momento Kip-pie		Corte Kip		Corto				
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte				
	Viga 1	427	227	32	32	OK	OK				
	Viga 2	427	171	32	48	OK	Х				
	Viga 3	427	711	32	152	Х	Х				
S	Viga 4	427	2551	32	1212	Х	Х				
Pie	Viga 5	427	4772	32	2327	Х	Х				
9	Viga 6	427	3325	32	1202	Х	Х				
	Columna 1	450	865	100	162	Х	Х				
	Columna 2	450	576	100	111	Х	Х				
	VC	377	8233	59	2086	Х	Х				

Al igual como se menciona anteriormente, para el caso de 100 libras de TNT a una distancia de 6 pies la estructura sigue declarándose como colapsada.

100 lb. de TNT											
Distancia	Elomonto	Momento	Momento Kip-pie		Corte Kip		Corto				
Distancia		Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte				
	Viga 1	427	211	32	26	OK	OK				
	Viga 2	427	134	32	40	OK	Х				
	Viga 3	427	473	32	104	Х	Х				
S	Viga 4	427	1056	32	756	Х	Х				
Ρie	Viga 5	427	2947	32	1441	Х	Х				
œ	Viga 6	427	2054	32	745	Х	Х				
	Columna 1	450	533	100	100	Х	OK				
	Columna 2	450	363	100	68	OK	OK				
	VC	377	5105	59	1293	Х	Х				

Tabla 4.38: Resultados de Carga de 100 lb. A una distancia de 8 pies

En la Tabla 4.38 ya se puede observar el cambio sobre el criterio de colapso en algunos elementos estructurales, según el análisis ya a una distancia de 8 pies una carga de 100 libras, mantiene en condiciones estructurales adecuadas la Columna 2.

50 lb. de TNT											
Distancia	Flomonto	Momento Kip-pie		Corte Kip		Momonto	Corto				
Distancia	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	- Momento X X X X X X X X X X X X X	Conte				
	Viga 1	427	598	32	59	Х	Х				
	Viga 2	427	806	32	98	Х	Х				
	Viga 3	427	2940	32	360	Х	Х				
S	Viga 4	427	6927	32	2180	Х	Х				
Pie	Viga 5	427	9889	32	3472	Х	Х				
4	Viga 6	427	9500	32	2554	Х	Х				
	Columna 1	450	781	100	145	Х	Х				
	Columna 2	450	540	100	101	Х	Х				
	VC	377	7369	59	1858	Х	Х				

Tabla 4.39: Resultados de Carga de 50 lb. A una distancia de 4 pies

50 lb. de TNT											
Distancia	Elomonto	Momento	Momento Kip-pie		Corte Kip		Corto				
	Liemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte				
	Viga 1	427	295	32	22	OK	OK				
	Viga 2	427	450	32	57	Х	Х				
	Viga 3	427	1564	32	190	Х	Х				
S	Viga 4	427	3632	32	1146	Х	Х				
Pie	Viga 5	427	5159	32	1831	Х	Х				
9	Viga 6	427	4948	32	1332	Х	Х				
	Columna 1	450	408	100	77	OK	OK				
	Columna 2	450	282	100	53	OK	OK				
	VC	377	3878	59	979	Х	Х				

Tabla 4.40: Resultados de Carga de 50 lb. A una distancia de 6 pies

 Tabla 4.41: Resultados de Carga de 50 lb. A una distancia de 8 pies

50 lb. de TNT											
Distancia	Elomonto	Momento	Momento Kip-pie		Corte Kip		Corto				
	Elemento	Capacidad	Aplicada	Capacidad	Aplicada	Momento	Conte				
	Viga 1	427	159	32	16	OK	OK				
	Viga 2	427	290	32	21	OK	OK				
	Viga 3	427	941	32	115	Х	Х				
S	Viga 4	427	2145	32	674	Х	Х				
Pié	Viga 5	427	3028	32	1064	Х	Х				
ø	Viga 6	427	2862	32	778	Х	Х				
	Columna 1	450	240	100	45	OK	OK				
	Columna 2	450	165	100	31	OK	OK				
	VC	377	2297	59	580	Х	Х				

Para los casos donde la estructura esta cargada con 50 libras de TNT la estructura se declara como colapsada, aunque ya se observa que varios elementos del puente logran soportar la carga aplicada.

Más adelante se hará en base a iteraciones con los modelos en SAP 2000 análisis con el fin de identificar las cantidades de TNT máximas que puede aplicarse a una estructura sin que esta se colapse.

#### 4.6 MODELO 5

El objetivo de los modelos, tanto el modelo 5 como el modelo 6 es el reproducir las condiciones en que quedaron los puentes modelados posterior a un ataque con explosivos. Adicionalmente se establecerá si los puentes pueden ser utilizados en caso de emergencia, es decir, si al reproducir las condiciones en que quedaron los puentes, son aún capaces de poder resistir una carga militar.

Para verificar esta condición, como se estableció en el Capitulo 2 la carga para observar el comportamiento de los puentes después de la explosión será 1.3 DL + 1.2 LL, donde la carga viva, será la carga militar, expuesta también en el Capitulo 2.

Es por esta razón que a continuación se dará a conocer el estado en que se encontraron las estructuras en etapa posterior al ataque terrorista. Para iniciar se darán a conocer las condiciones en que quedo el puente número 5 con la figura que se muestran a continuación:



Figura 4.3: Estado del puente posterior a la detonación de las bombas.

En la Figura 4.3 se muestra el estado del puente posterior a la detonación de explosivos. En la figura se muestra el daño producido por la explosión sobre la viga de coronación del puente, produciendo una penetración de la viga de coronación de alrededor de 4 pulgadas.

Por los daños observados es claro suponer que la viga ha sufrido un daño típico de cortante, y la viga de coronación ha sufrido tanto daño por cortante como por flexión. Lo importante a tomar en cuenta en la falla de la viga es que el punto donde los cables de tensionados se anclan ha sido destruido y es necesario detener el uso de la estructura para evitar que la adherencia que tienen los cables en otros puntos de la viga se pierda y el puente colapse, aunque en este punto la estructura puede ser rehabilitada. La sección de la viga de coronación se muestra a continuación:



Figura No 4.4: Detalle de armado de la Viga de Coronación.

Para simular el daño mostrado anteriormente se cargó la estructura con tres cargas distintas: una de 0.5 libras de TNT que produjo un momento en flexión de 16,526 Kip-pie y un cortante de 4021 Kip.

La segunda carga es de 10 libras de TNT y una tercera de 15 libras de TNT. La segunda carga produjo un momento flector y un cortante de 20953 Kip-pie y 5014 Kips respectivamente, y la tercera un momento flector de 20750 Kip-pie y



un cortante de 5074 Kip, como se muestra en la en la Figura 4.5:

Analysis Model

Figura 4.5: Diagrama de momento, estructura bajo carga de explosión.

La viga de coronación del modelo tiene una capacidad de momento último de 17800 Kip-pie y un momento de cedencia de 13355 Kip-pie, y una capacidad en cortante de 2587 Kip, estos datos son tomados del diagrama momento curvatura que se muestra en la Figura 4.6:



Figura 4.6: Diagrama de Momento Curvatura del VC del Puente No. 5

Se puede establecer que para reproducir el daño observado en la estructura de la viga de coronación debe detonarse una cantidad de explosivo de 10 libras a una distancia no mayor de 0.4 pies, cualquier cantidad mayor a esta produce mayor daño en la estructura.

Con lo que respecta a las 0.5 libras propuestas al inicio se observa que el momento generado no sobrepasa el momento último pero si el de cedencia por lo que produciría grietas en la sección.

A continuación se muestra el diagrama de momento en la viga más próxima al punto donde se detonará la carga explosiva, con la combinación de carga militar descrita en el Capitulo 2:



Figura 4.7: Diagrama de momento de la viga más próxima al punto de detonación.

Como se observa en la Figura 4.7, esta viga tiene un momento de diseño de 5370 Kip-pie, este se comparó con el momento que se produzca posterior a la explosión, es decir se comparará contra el momento en la misma viga una vez sean removidos los elementos estructurales dañados por la explosión, lo cual podremos ver en la Figura 4.8.

Posterior a la detonación, ya cuando se eliminan los elementos estructurales que fueron dañados, se observa un momento de 5687 Kip-pie, lo que indica si la viga fue diseñada para el momento expuesto en la Figura 4.7 esta ha sufrido daño y no puede utilizarse este tramo a la hora de una emergencia.

Ahora se compara con los momentos en el tramo más lejano a la explosión y se hace la misma comparación para determinar si puede utilizarse la mitad del puente, como se observa en las figuras 4.9 y 4.10.

En la Figura 4.9 se observa que el momento de diseño de esta viga sería 5212 Kip-pie.

Posterior a la explosión la viga que se muestra en la Figura 4.10 muestra un momento de 5215 Kip-pie, que aunque es un poco mayor al valor del momento obtenido en la Figura 4.9, la viga puede seguir funcionando, es decir, en caso de emergencia el puente puede utilizarse por lo menos un carril.

120



Figura 4.8: Diagrama de momento de la viga más próxima al punto de detonación



Figura 4.9: Diagrama de momento del Lane más lejano a la explosión



Figura 4.10: Diagrama de del Lane mas lejano a la explosión

Posterior a determinar la carga que produce el daño estructural en el puente, este se analizó eliminando los elementos dañados, observando que las reacciones o las fuerzas a las que estaría sometida la estructura si se utilizara posterior a la explosión, son menores a la capacidad de los elementos restantes de la estructura.

Es decir que el puente puede ser utilizado en caso de emergencia con cargas militares en los carriles opuestos a donde ocurre la explosión.

Por lo que se puede concluir que el puente puede ser utilizado parcialmente, posterior a una explosión ya que debido a la redundancia estructural y lo masivo de sus elementos, estos son capaces de soportar las cargas vehiculares militares a las que estaría expuesto., incluso posterior al colapso total de una columna externa (lugar donde se colocó la carga explosiva).

### 4.7 MODELO 6

Como se planteó en el inciso 4.6 el objetivo de los últimos modelos es el reproducir las condiciones en que quedaron los puentes modelados posterior a un ataque con bombas, además de determinar al igual que en el inciso 4.5 el comportamiento del puente posterior a una explosión, y es por eso que a continuación se dará a conocer el estado en que se encontraron las estructuras posterior al ataque terrorista. Para iniciar se darán a conocer las condiciones en que quedó el puente número 6 con las Figuras 4.11 y 4.12 que se muestran a

124

## continuación:



Figura 4.11: Figura de la columna dañada del modelo 6.



Figura 4.12: Figura de la viga de coronación y de las vigas dañadas del modelo 6.

Debido a la falta de información acerca de los refuerzos tanto de las columnas y de la viga de coronación, se estableció el refuerzo de las vigas en base a los datos obtenidos de SAP, de estos se obtuvieron los diagramas de momento curvatura; con esta información se procedió a determinar la carga que reproduciría las condiciones encontradas en los puentes de Irak.

Las secciones de estos puentes se diseñaron con las siguientes especificaciones de materiales: Hormigón f'c de 4,000 psi y acero de refuerzo de 60,000 psi, las secciones propuestas se muestran a continuación:



Figura 4.13: Detalle de armado de la viga de coronación.



Figura 4.14: Diagrama de Momento Curvatura de la viga de coronación del Modelo 6

Al igual que el puente del Modelo 5 en el Modelo 6 se detonaron cargas de 5, 10 y 15 libras para reproducir los daños observados en el campo, con la carga de 5 libras se logra reproducir las deformaciones observadas así como también los daños que se observan en las figuras 4.11 y 4.12 pero en menor magnitud. La carga explosiva fue colocada según se expone en el Caso 2.

Adicional a las cargas explicadas anteriormente se modeló el puente bajo la condición de una carga de 5 libras, logrando obtener los daños observados en el puente y con la magnitud esperada para provocar el daño observado. Es decir que según lo establecido en el Capitulo 3, una carga mayor a 5 libras produciría el colapso del elemento estructural. Obteniendo para la carga de 5 libras las siguientes reacciones: 3123 Kip-pie, y un corte de 1993 Kip, lo cual produciría

una perdida del recubrimiento y grietas a 45 grados por el corte, pero no significa un colapso de la estructura, con la carga de 10 libras de TNT se obtienen reacciones de 4214 Kip-pie y un corte de 2614, lo cual ya indica una pérdida de la sección en el punto de la explosión, y con 15 libras se obtienen momentos de 4155 Kip-pie y cortantes de 2587, adicional a esto tenemos una deformación de 1.2 pulgadas aledañamente a la posición original de la viga del puente al momento de la explosión, y un momento de 12,434 Kip-pie, lo cual confirma el colapso de la viga adyacente, según el criterio expuesto anteriormente.

Esto se evidencia al momento de tener cargas de 10 y de 15 libras, las cuales producen el colapso de la viga de coronación y de las vigas adyacentes al punto de la explosión.

Con lo que respecta a la columna que se muestra en la Figura 4.11, también se le aplicó a dicha columna la misma cantidad de carga de TNT que la viga de coronación, para el cálculo de la capacidad de la columna y determinar el diagrama de interacción se usó las dimensiones y el refuerzo mostrado en la Figura 4.15:



Figura 4.15: Detalle de armado de Columna.

Además del detalle de refuerzo propuesto para la columna de 36" de diámetro, se calculó el diagrama de de momento curvatura usando la carga axial de la combinación que produjo el momento máximo. A partir de este diagrama se obtuvo una capacidad de momento último de 1500 Kip-pie, para una carga axial de de 1138 Kip, según la figura que se muestra a continuación:



Figura 4.16: Diagrama de Momento Curvatura de Columna del Puente No. 6

Para la columna se obtuvieron los siguientes resultados: para la carga de 5 libras un momento de 2702 Kip-pie y un cortante de 1357 Kip, para 10 libras un momento de 3691 Kip-pie y un cortante de 1865 Kip, y para 15 libras reacciones de 3636 Kip-pie en momento y un cortante 1835 Kip.

De los resultados obtenidos se puede observar que la columna colapsaría en el área impactada por la carga de explosión, pero cabe tomar en cuenta que las columnas restantes no sufren mayor cambio en los momentos y cortes para los que fuese diseñada la estructura, por lo que el colapso de esa única columna impactada no indicaría un colapso de la estructura completa y el puente puede seguir siendo utilizado en caso de emergencia, y una rehabilitación del puente
puede ser llevada a cabo.

A continuación se muestra la Figura 4.17 del diagrama de momento en la viga más próxima al punto donde se detonará la carga explosiva, con la combinación de carga militar descrita en el Capítulo 2:



Figura 4.17: Diagrama de momento de la viga más próxima al punto de detonación

Como se observa en la figura 4.16, esta viga tiene un momento de diseño de 633 Kip-pie, este se comparará con el momento que se produzca posterior a la explosión, es decir se comparará contra el momento en la misma viga una vez sean removidos los elementos estructurales dañados por la explosión, lo cual podremos ver en la Figura 4.17.

Posterior a la detonación, ya cuando se eliminan los elementos estructurales que fueron dañados, se observa un momento de 673 Kip-pie, lo que indica si la viga fue diseñada para el momento expuesto en la Figura 4.17 que esta ha sufrido daño y no puede utilizarse este tramo a la hora de una emergencia.



Figura 4.18: Diagrama de momento de la viga más próxima al punto de detonación.

Ahora si se compara con los momentos en el tramo más lejano a la explosión y haremos la misma comparación para determinar si puede utilizarse la mitad del puente, como se observa en las figuras 4.18 y 4.19.

En la figura 4.18 se observa que el momento de diseño de esta viga sería 1034 Kip-pie. Posterior a la explosión la viga que se muestra en la figura 4.19 muestra un momento de 1034 Kip-pie, por lo que el carril opuesto al lado de la explosión se mantiene adecuado para su uso en caso de emergencia.

Posterior a determinar la carga que produce el daño estructural en el puente, este se analizó eliminando los elementos dañados, observando que las reacciones o las fuerzas a las que estaría sometida la estructura si se utilizará posterior a la explosión, son menores a la capacidad de los elementos restantes de la estructura.

Es decir que el puente puede ser utilizado en caso de emergencia con cargas militares en los carriles opuestos a donde ocurre la explosión.







Figura 4.20: Diagrama de momento intermedia del Lane opuesto a la explosión.

Por lo que se puede concluir que el puente puede ser utilizado parcialmente, posterior a una explosión ya que debido a la redundancia estructural y lo masivo de sus elementos, estos son capaces de soportar las cargas vehiculares militares a las que estaría expuesto., incluso posterior al colapso total de una columna externa (lugar donde se coloco la carga explosiva).

#### **5 PROPUESTA DE REHABILITACIÓN**

En el Capitulo 4 se dan a conocer los resultados del análisis de los puentes bajo las condiciones de carga establecidas para la tesis y su interpretación para determinar el nivel de daño que sufre la estructura.

Una vez establecidos los daños que tiene la estructura, se procederá a hacer una propuesta de rehabilitación; la propuesta es para una rehabilitación temporal, para el uso de la estructura en caso de una emergencia y sería en otra investigación donde se pueden dar detalles para una rehabilitación total donde se ponga a funcionar para condiciones normales de servicio.

En adición a la rehabilitación temporal, se presentarán también detalles para daños moderados y daños severos para los cuales se plantearán alternativas de rehabilitación para poner en servicio el puente de manera temporal hasta que se rehabilite de forma total.

Para estas rehabilitaciones temporales, se propone el uso de materiales locales como es el concreto y el acero estructural, ya que debido a lo que se busca es rehabilitar en caso de una carga explosiva, se sospecha que la estructura podría sufrir algún ataque otra vez.

Es por esta razón que se deja fuera del los materiales a utilizar la fibra de carbono, ya que esta tiene poca o nula resistencia ante el fuego, y cualquier persona podría provocar que esta fibra se dañe, dejando sin efecto la rehabilitación propuesta, además de hacer la rehabilitación a un costo menor que lo que supondría una rehabilitación por fibras de carbono.

139

### 5.1 REPARACIÓN DE DAÑO LEVE EN VIGAS

Las vigas de los diferentes puentes que se estudiaron se subdividen en vigas de concreto reforzado y vigas pre ó post tensadas, por los que se darán detalles constructivos para ambos casos, el primero es para vigas de concreto reforzado, el cual se expone a continuación:

#### 5.1.1 REHABILITACIÓN DE VIGAS DE CONCRETO REFORZADO

A continuación se muestra un esquema de la sección transversal de un puente de concreto reforzado:



Figura 5.1: Sección Típica de Puente de Vigas de Concreto Reforzado.

La sección típica de este puente muestra una área de daño, con una penetración de alrededor de 3 pulgadas, es decir que se esta dejando expuesto el acero de refuerzo de la viga, y posiblemente alguna varilla de la viga pudo haber sido cortada, pero no provocó su colapso.

En el caso de encontrar este patrón de daño en las vigas que componen el puente, se hace necesario hacer una rehabilitación, para la cual se provee el siguiente detalle:



Figura 5.2: Propuesta 1, de Rehabilitación para daño leve.

Como se indica en el detalle, (Ver Anexo 1), para la rehabilitación de esta estructura para un daño leve, el primer paso consistiría en limpiar el área afectada, removiendo los pedazos de concreto que pudiesen haber quedado y limpiando las varillas de acero de refuerzo que pudiesen estar corroídas.

Posterior a la limpieza debe colocarse acero de refuerzo en la parte inferior de la viga, en todo el tramo de la misma, sostenidas por secciones "U". Este gancho (hoop) en forma de U, se anclara a la viga por medio de dos pines o dobelas los cuales deben perforar la viga dañada una distancia de por lo menos 3 pulgadas y cementados con epóxico para su adherencia a la estructura original.

Una vez hecho el armado se procede a fundir una cubierta de concreto que

141

cubra el acero antes mencionado, esta cubierta no debe ser menor a 4 pulgadas, para que las varillas de refuerzo se mantengan protegidas del ambiente.

Adicional a la cubierta reforzada de concreto que se coloca en la parte inferior de la viga dañada, sobre la losa o carpeta de rodamiento debe fundirse una placa de concreto de por lo menos 3 pulgadas, cuyo refuerzo debe anclarse a la losa existente por medio de pines o dovelas colocados con epóxico.

A continuación se muestra una segunda opción para el mismo nivel de daño, las recomendaciones de limpieza y remoción de escombros son las mismas que para el detalle anterior:



Figura 5.3: Propuesta 2, de rehabilitación para daño leve.

Consiste en colocar una placa de metal alrededor del área afectada, la cual debe anclarse a la viga existente por medio de pernos (Ver Anexo 1).

Lo que se recomienda es que la placa de metal a utilizar no debe tener un espesor menor a ¼" de pulgada, y la broca del barreno debe tener un diámetro

de 1/8" de pulgada mayor al diámetro del perno utilizado, y este debe introducirse y sellarse con un aditivo epóxico.

El siguiente detalle de rehabilitación, tiene la misma configuración del anterior y las recomendaciones de la placa y de limpieza se mantienen:



Figura 5.4: Propuesta 3, de rehabilitación para daño leve.

Este detalle tiene un tiempo de construcción menor a los dos anteriores, por lo que es recomendable utilizarlo si la situación lo amerita ya que el costo de los aditivos que se deben utilizar es mayor a los de las dos propuestas anteriores.

#### (Ver Anexo 1)

Es necesario tomar en cuenta que por la configuración de las propuestas 2 y 3, no se recomiendan en caso las varillas de refuerzo estén dañadas, esto es recomendable solamente cuando el concreto de la viga es el que esta dañado, en caso el existan varillas de refuerzo dañadas, se debe utilizar la propuesta de rehabilitación 1.

### 5.1.2 REHABILITACIÓN DE VIGAS DE CONCRETO PREESFORZADO

A continuación se muestra un esquema de la sección transversal de un puente de concreto con vigas prefabricadas:



Figura 5.5: Sección Típica de Puente de Vigas AASHTO.

La sección típica de este puente muestra una área de daño, con una penetración de alrededor de 3 pulgadas. Si el daño mostrado en el puente muestra la configuración de daño como se observa en la Figura 5.5, los detalles propuestos para su rehabilitación temporal son los siguientes:



Figura 5.6: Propuesta 1, de Rehabilitación para daño leve, en puentes de Vigas AASHTO.

Como se indica en el detalle, (Ver Anexo 2), para la rehabilitación de esta estructura para un daño leve, el primer paso consistiría en limpiar el área afectada, removiendo los pedazos de concreto que pudiesen haber quedado y limpiando las varillas de acero de refuerzo que pudiesen estar corroídas.

Posterior a la limpieza, el procedimiento y las recomendaciones para realizar este detalle son las mismas que se necesitan para la rehabilitación de las vigas de concreto reforzado.

Existe la excepción al caso de vigas de concreto reforzado, en el caso de vigas de concreto reforzado debe darse la reparación por toda la viga, en este caso por el tipo de refuerzo, la rehabilitación es local (en el punto del daño), y únicamente debe proveerse a las varillas de refuerzo las longitudes de desarrollo necesarias para que puedan trabajar en conjunto con toda la estructura.

145

Es necesario aclarar que este detalle es solo para vigas que son presforzadas, ya que si ocurriese un daño en una viga postensada, en el cual el ducto ha sido dañado, la viga no se puede rehabilitar y esa sección se considera completamente destruida, ya que el anclaje mecánico de la misma se ha perdido y es imposible volver a reproducir este comportamiento.

A continuación se muestra una segunda opción para el mismo nivel de daño, las recomendaciones de limpieza y remoción de escombros son las mismas que para el detalle anterior:



Figura 5.7: Propuesta 2, de rehabilitación para daño leve, en puentes de Vigas AASHTO.

Se deben seguir básicamente las mismas recomendaciones que para la rehabilitación de las vigas de concreto reforzado, teniendo en cuenta, si es posible tener a disposición los planos de las vigas, para no atravesar con el tornillo los cables de acero pre-esforzado que se encuentran en la viga. (Ver Anexo 2)

En caso no se tengan los planos de la viga, debe verificarse en los extremos la colocación de los mismos para hacer una interpolación de los puntos donde puede estar el cable y así no dañarlo.

A continuación se dará el detalle correspondiente a la propuesta 3 para vigas AASHTO:



DETALLE DE REHABILITACIÓN

Figura 5.8: Propuesta 3, de Rehabilitación para daño leve, en puentes de Vigas AASHTO. Se establecen las mismas consideraciones establecidas para la propuesta tres de vigas de concreto reforzado. (Ver Anexo 2)

#### 5.1.3 REHABILITACIÓN DE VIGA EN CASO EXTREMO

Tomando en cuenta el caso en que las vigas pretensadas de un puente han sido dañadas, como se establece en los incisos 4.5 y 4.6 de esta investigación, y estas no soportan la combinación de verificación expuesta en el capitulo 2, 1.3DL + 1.2 LL, esta podría sustituirse por una armadura de acero, que sea capaz de resistir las cargas anteriormente expuestas.

Para lo cual se recomienda utilizar una cercha fabricada de angulares, teniendo en cuenta las siguientes recomendaciones:

Las cuerdas superior e inferior de la misma deben tener por lo menos angulares con un espesor de 3/4" y sus dimensiones no deben ser menores a 5". En el caso de los elementos diagonales, el espesor de las mimas no debe ser menor a 3/8" y sus dimensiones no menores a 3". Como se muestra en la siguiente figura (Ver Anexo 3):



Figura 5.9 Propuesta de armadura.

El anclaje de la misma se puede observar en el siguiente detalle, al cual también

se darán las recomendaciones respectivas:



Figura 5.10 Anclaje armadura

En el detalle que se muestra en la Figura 5.10 se ve como la armadura se ancla a la viga de coronación, los pernos utilizados para este anclaje no deben ser menores a  $\frac{3}{4}$ " de diámetro y las planchas a la que se conectan no debe tener un espesor menor a  $\frac{3}{4}$ ".

#### 5.2 REPARACIÓN DE DAÑO MODERADO Y FUERTE EN VIGAS

Al igual que en la sección 5.1 las vigas de los diferentes puentes que se estudiaron se subdividen en vigas de concreto reforzado y vigas pre ó post tensadas a continuación se darán a conocer las propuestas, dependiendo de la tipología estructural establecida para cada caso:

#### 5.2.1 REHABILITACIÓN DE VIGAS DE CONCRETO REFORZADO

A continuación se muestra un esquema de la sección transversal de un puente

de concreto reforzado con daño moderado:



Figura 5.11 Sección Trasversal del puente de Concreto Reforzado con Daño Moderado

En el caso de encontrar este patrón de daño en las vigas que componen el puente, se hace necesario hacer una rehabilitación, para la cual se provee el siguiente detalle:



Figura 5.12: Propuesta 1, de Rehabilitación para daño Moderado

Al igual que para el daño leve, la estructura original debe estar libre de escombros y se en este caso ser apuntalada, el refuerzo de este detalle debe

ser calculado para la longitud de la viga rehabilitada y debe haber un anclaje del refuerzo U indicado en detalle de por lo menos 4 pulgadas, y sellar con un epóxico adecuado (Ver Anexo 4).

A continuación se dará a conocer la segunda propuesta de rehabilitación para daño moderado, la cual se discute más adelante:



Figura 5.13: Propuesta 2, de Rehabilitación para daño Moderado

En lo que consiste esta propuesta es en colocar una placa de metal alrededor del área afectada, la cual debe anclarse a la viga existente por medio de tornillos (Ver Anexo 4).

Lo que se recomienda es que la placa de metal a utilizar no debe tener un espesor menor a ¼" de pulgada

A continuación se presenta la tercera propuesta para la rehabilitación de este tipo de estructuras:



Figura 5.14: Propuesta 3, de Rehabilitación para daño Moderado

Al igual que para daño leve, este detalle tiene un tiempo de construcción menor a los dos anteriores, por lo que es recomendable utilizarlo si la situación lo amerita ya que el costo de los aditivos que se deben utilizar es mayor a los de las dos propuestas anteriores (Ver Anexo 4).

Es necesario tomar en cuenta que por la configuración de las propuestas 2 y 3, no se recomiendan en caso las varillas de refuerzo estén dañadas, esto es recomendable solamente cuando el concreto de la viga es el que esta dañado, en caso el existan varillas de refuerzo dañadas, se debe utilizar la propuesta de rehabilitación 1.

A continuación se presenta la sección trasversal de un puente de concreto reforzado, cuando ha sufrido un daño ya considerable en este caso se recomienda apuntalar la estructura para proceder a la rehabilitación.

152



Figura 5.15 Sección Trasversal del puente de Concreto Reforzado con Daño Severo

Cuando el daño que presenta el puente presenta la configuración que se presenta en la figura 5.15, el daño es considerable y para su rehabilitación se proponen tres alternativas, que son básicamente iguales a las propuestas anteriormente, en lo que se refiere a materiales, debe proporcionarse siempre el apuntalamiento necesario durante el proceso de construcción además de los días que tarda en fraguar el concreto.



Figura 5.16 Propuesta 1, para daño severo

Se debe tomar en cuenta los procedimientos de limpieza y remoción de escombros establecidos para anteriores casos o tipos de daño, además como se

observa en la figura anterior, tenemos el caso donde ya la viga completa ha sido reemplazada, para esto debemos tener cuidado de colocar el apuntalamiento necesario. (Ver Anexo 5).

Adicionalmente debe incrustarse las U sugeridas en el detalle por lo menos 4 pulgadas dentro de la losa y sujetarlas por medio del epóxico adecuado.

Para ambos casos debe calcularse el refuerzo, dependiendo de los tramos que vamos a considerar y de las cargas que estarán circulando una vez se concluya la rehabilitación del puente.

La dos otras dos opciones son básicamente seguir el patrón de detalle de daño moderado y reconstruir la viga dañada en su totalidad, los esquemas se muestran a continuación:



Figura 5.17 Propuesta 2, para daño severo

Para la segunda y tercera propuesta, deben tomarse en cuenta las recomendaciones descritas para el daño moderado, combinando esta técnica con la descrita anteriormente para la reconstrucción de la viga que se reemplaza

completamente. (Ver Anexo 5).



Figura 5.18 Propuesta 3, para daño severo

### 5.3 REPARACIÓN DE DAÑO MODERADO EN LOSAS

A continuación se darán a conocer varias opciones para la rehabilitación de las losas de un puente, posterior a un daño debido a una carga de explosión:



Figura 5.19: Propuesta 1, de Rehabilitación de Losa

El detalle que se presenta a continuación se recomienda utilizar cuando el orificio que se produce en la losa no supera los 2 pies de apertura, ya que una distancia mayor produciría el colapso de la placa de acero. (Ver Anexo 6)

Además de la recomendación anterior deben cumplirse las siguientes indicaciones, para la construcción de este detalle debe utilizar una placa de por lo menos 1" de espesor, y los tornillos para su anclaje no deben ser de un diámetro menor de ³/₄".

Se debe de dejar una distancia mínima de 5 pulgadas entre el borde del orificio de la losa dañada y la colocación del tornillo, los bordes dañados que contengan concreto por debajo, deben rellenarse con concreto con una resistencia a la compresión a los 28 días de 4000 psi o más.

A continuación se dará a conocer la segunda propuesta, la cual puede utilizarse para orificios con diámetros de hasta 5 pies:



Figura 5.20: Propuesta 2, de Rehabilitación de Losa

Las recomendaciones generales son las mismas que las utilizadas en la propuesta uno, con respecto a los tornillos y rellenado de concreto. (Ver Anexo

6)

Con respecto a las placas, estas deben tener por lo menos un espesor de ½", y deben soldarse a todo lo largo del elemento, con una soldadura no mayor al

espesor de la placa, caso contrario se producirían problemas estructurales, y el acero puede perder sus propiedades mecánicas debido a la soldadura.

Para finalizar se dará a conocer la propuesta para un daño leve en la losa, el cual consiste únicamente en reponer las varillas dañadas de la losa existente y rellenar con concreto con una resistencia de 4000 psi ó mayor.



Figura 5.21: Propuesta 3, de Rehabilitación de Losa

Además de las indicaciones anteriores se debe limpiar la superficie dañada para quitar las partículas de polvo existentes y rociar la superficie con un epóxico que sirva para unir concreto nuevo con concreto existente. (Ver Anexo 6)

#### 5.4 REPARACIÓN DE DAÑO LEVE EN LA VIGA DE CORONACIÓN

Ahora se proporcionarán detalles y recomendaciones constructivos para la rehabilitación de la viga de coronación de un puente que ha sufrido un daño



### DETALLE DE REHABILITACIÓN

**Figura 5.22:** Propuesta 1, de Rehabilitación de la Viga de Coronación Al igual que la reparación de las vigas de los puentes, aquí se presentarán tres opciones básicamente con los mismos materiales, con los que se han rehabilitado los anteriores elementos estructurales del puente. (Ver Anexo 7). En la opción número uno se muestra una fundición de concreto la cual lleva una varilla que se incrusta en la estructura existente, ahora daremos las recomendaciones a tomar en cuenta a la hora de realizar el detalle anterior. Como primer punto debe limpiarse la superficie dañada y remover las partículas de oxido que pueda tener el acero de refuerzo que ha quedado expuesto. La varilla que sostiene las varillas longitudinales (Hoop) debe incrustarse en la viga de coronación por lo menos 6 pulgadas, y esta varilla no debe tener un diámetro menor a 5/8", para su colocación debe barrenarse la viga de coronación con una broca con diámetro de por lo menos 1/8" mayor que la varilla a colocar, y sujetarse con epóxico.

leve:

Para el concreto estructural debe utilizarse un concreto con un f'c de por lo menos 4000 psi, y la superficie dañada debe impregnarse con un epóxico capaz de unir concreto existente con concreto nuevo, las varillas longitudinales deben cumplir con los largos de desarrollo para poder trabajar en conjunto con la estructura ya existente.



### DETALLE DE REHABILITACIÓN

Figura 5.23: Propuesta 2, de Rehabilitación de la Viga de Coronación

Esta propuesta consiste en una placa de acero estructural anclada con tornillos a la estructura existente, para esta propuesta, se recomienda hacer el mismo procedimiento de limpieza que en el detalle uno. (Ver Anexo 7)

Entre las especificaciones que se recomiendan a los materiales se tienen las siguientes, la placa de acero debe tener por lo menos un espesor de 3/8", los tornillos un diámetro de por lo menos 5/8" y el concreto con que se rellena el área afectada debe tener una resistencia de por lo menos 4000 psi, y un "slump" de por lo menos 6" para que sea fácil su colocación en obra.

Además debe tenerse en cuenta la misma recomendación de barrenación y

pegado que se recomienda para la varilla de la propuesta uno, e impregnar la losa con epóxico para unir concreto existente con nuevo.



Figura 5.24: Propuesta 3, de Rehabilitación de la Viga de Coronación.

Para el detalle expuesto en la figura 5.24, se propone el uso de una placa de acero estructural, con un espesor no menor a ¼", la cual se ancla a la estructura existente por medio de epóxico. (Ver Anexo 7)

Este detalle tiene la ventaja de ser de fácil y rápida construcción, pero la superficie donde se anclará la placa debe estar completamente limpia para que las partículas de polvo u otro elemento pueden afectar el efecto de adhesión entre la placa y la estructura existente, por lo que se recomienda un lavado a presión si es posible.

# 5.5 Reparación de Daño Moderado y Severo en la Viga de Coronación

A continuación se presentarán las recomendaciones para la rehabilitación de la

viga de coronación de la pilastra del puente. En el caso del daño estructural de este elemento se considere Moderado:



# CONDICIÓN DE DAÑO

Figura 5.25: Condición de Daño Moderado en Viga de Coronación

En la figura 5.25 se observa la condición de daño moderado. Para la rehabilitación de un elemento estructural que presente estas condiciones, se darán tres propuestas, las cuales se describirán, además de dar recomendaciones básicas que deben seguirse con el fin de proporcionar la confiabilidad esperada, posterior a una rehabilitación. (Ver Anexo 8)



### DETALLE DE REHABILITACIÓN

Figura 5.26: Propuesta 1, Rehabilitación de Viga de Coronación Daño Moderado En la opción número uno se muestra una fundición de concreto la cual conlleva varillas incrustadas en la estructura existente, ahora daremos las recomendaciones a tomar en cuenta a la hora de realizar el detalle anterior. (Ver Anexo 8)

Al igual que para el daño leve, la U que se requiere debe incrustarse a la viga existente y las varillas longitudinales deben incrustarse por lo menos 4 pulgadas a la estructura original, la cual debe estar libre de residuos y las varillas originales debe limpiarse de forma que se elimine el oxido.

Una vez la estructura original se encuentre limpia se procederá a colocar el acero de refuerzo y fundir, se recomienda que para este tipo de detalles el concreto utilizado para la fundición no debe tener una resistencia a la compresión no menor a 4000 psi.

162



## DETALLE DE REHABILITACIÓN

Figura 5.27: Propuesta 2, Rehabilitación de Viga de Coronación Daño Moderado La segunda propuesta presentada en la figura 5.27, muestra una placa metálica anclada a la estructura original por medio de tornillos. Para el detalle mencionado se recomienda que esta placa de refuerzo no tenga un espesor mínimo de ¼" y que los pernos tengan por lo menos un diámetro de 3/4". (Ver Anexo 8)

Dichos pernos deben embeberse en la estructura original, por lo menos 5" y ser sellados con epóxico.

Las recomendaciones de remoción de fragmentos y limpieza deben seguirse igual que en los detalles descritos anteriormente.



Figura 5.28: Propuesta 3, Rehabilitación de Viga de Coronación Daño Moderado

La propuesta 3, cuenta con las mismas características y deben seguirse las mismas recomendaciones que en la propuesta dos, únicamente que el medio de anclaje de la placa de metal, es por medio de aditivos, en este caso epóxicos adecuados. (Ver Anexo 8).



Figura 5.29: Condición de Daño Fuerte en Viga de Coronación

En la figura 5.29 se observa la condición de daño a la cual será considerada

como daño fuerte, para la rehabilitación de un elemento estructural que presente estas condiciones, se darán tres propuestas, así como en los casos anteriores, estas propuestas de rehabilitación serán descritas a continuación.



### DETALLE DE REHABILITACIÓN



Básicamente se deben seguir las recomendaciones hechas para el daño moderado, solo que se recomienda embeber la varilla que sostiene las longitudinales una profundidad mayor en este caso de 5 a 6 pulgadas, sellándolas con epóxico para su sujeción total a la estructura original. (Ver Anexo 9).

Debe fundirse con un concreto de por lo menos 4000 psi en caso no se tengan las especificaciones de materiales originales del elemento estructural.



# DETALLE DE REHABILITACIÓN

Figura 5.31: Propuesta 2, Rehabilitación de Viga de Coronación Daño Fuerte

La segunda propuesta presentada en la figura 5.31, muestra una placa metálica anclada a la estructura original por medio de tornillos. Para el detalle mencionado se recomienda que esta placa de refuerzo no tenga un espesor mínimo de 3/8" y que los pernos tengan por lo menos un diámetro de 3/4". (Ver Anexo 9).

Dichos pernos deben embeberse en la estructura original, por lo menos 6" y ser sellados con epóxico.

Las recomendaciones de remoción de fragmentos y limpieza deben seguirse igual que en los detalles descritos anteriormente.


Figura 5.32 Propuesta 3, Rehabilitación de Viga de Coronación Daño Fuerte

Para la propuesta anterior, básicamente se recomienda seguir las recomendaciones hechas para el caso de daño moderado. (Ver Anexo 9).

El anterior detalle a pesar de su rapidez de construcción presenta el inconveniente de tener envuelta una mayor supervisión, además de un mayor control de calidad de materiales, ya que los epóxicos utilizados deben cumplir con las normas establecidas para este, y seguir al pie de la letra las recomendaciones establecidas por el fabricante para su almacenaje y utilización.

#### 5.6 REHABILITACIÓN DE DAÑO LEVE EN COLUMNAS

En lo que se refiere a la rehabilitación de columnas de concreto que han sido dañadas por una carga explosiva, se propone el encamisar la columna dañada; esta solución se dividirá en dos partes, debido a la propuesta de los materiales a utilizar.

Básicamente se propone un encamisado de concreto reforzado, o bien el encamisado con placas de acero estructural, la opción utilizada dependerá de

varios factores como lo puede ser el espacio entre columnas, rapidez de construcción o facilidad de encontrar los materiales para su construcción, no así de la capacidad estructural, debido a que en función a capacidad estructural se asume que ambos detalles regenerarán a la estructura la capacidad que tenia antes de sufrir daño.

#### **6** CONCLUSIONES Y RECOMENDACIONES

En esta investigación se analizaron diferentes tipos de puentes, desde puentes de poca luz, con vigas de hormigón reforzado, hasta puentes de 120 pies de luz con vigas de hormigón pre-esforzado o post-tensado. Cada uno de estos se diseñó para cargas típicas de diseño y se analizó bajo diferentes cantidades de explosivos, como cantidades considerables de 500, 100 y 50 libras a distancias de 4, 6 y 8 pies y cantidades pequeñas de explosivo 5, 10, 15 y 20 libras detonadas a distancias cortas comprendidas entre 2 y 5 pies.

El objetivo era observar su comportamiento bajo este tipo de cargas dinámicas, y su posible utilización en caso de emergencia, estimando su capacidad bajo la combinación de evento extremo de 1.3 DL + 1.2 LL.

Los puentes son un blanco de ataques terroristas por las grandes pérdidas que ocasionan y por la interrupción en el sistema de transportación y es necesario restablecer el tránsito vehicular a la brevedad posible. Durante la investigación se ha hecho uso de estudios previos para modelar adecuadamente las cargas dinámicas debido a explosivos y utilizar cargas equivalentes que sean fáciles de modelar y determinar su efecto en puentes, determinar si parte del puente puede usarse de manera inmediata y sino determinar la manera de ponerlos en servicio en un corto plazo. Como las recomendaciones tienen que ser generales se realizaron 16 modelos de los diferentes puentes descritos en el Capítulo 2, y los resultados son discutidos en el Capítulo 4.

A partir de los resultados obtenidos podemos concluir que dependiendo de la distancia a la cual fueron detonados los explosivos y su localización en la estructura tenían correlación y similitud en los resultados independiente del modelo utilizado. Asimismo como las cargas de explosivos controlan el comportamiento, la cantidad de explosivo no cambia el comportamiento pero si la amplificación tanto en deformaciones como en daño estructural.

#### 6.1 CONCLUSIONES

A partir de los resultados discutidos previamente podemos concluir lo siguiente:

Se encontró en los análisis realizados, que los diferentes puentes establecidos en el Capítulo 2, específicamente los casos de carga número 1, de 500 libras de TNT y de 50 libras de TNT, colapsan bajo, una vez esta se aplica en la mitad de la luz; es decir que no importa la distancia ni la cantidad del explosivo, una vez se mantenga en los rangos expuestos en los casos de carga, el puente colapsa.

Debido a que este comportamiento fue similar entre los modelos 1 al 3, lo anteriormente descrito queda validado; y es necesario tomar en cuenta que la falla en estos puentes se debió más a la posición de la carga que a su magnitud.

 Para el caso de carga 1, de 100 libras de TNT colocado sobre la viga de coronación, se observa desprendimiento de hormigón en la parte superior de este elemento y perforaciones en la losa debido a la cantidad de carga, aún así solo se produce falla parcial de alguna de las vigas pudiendo rehabilitarse y pudiendo asimismo usar la mitad del puente, en los carriles más lejanos del punto de aplicación de la carga.

 Bajo condiciones de cargas pequeñas, como las establecidas en los casos de carga 2 y 3, los puentes sufren daños leves que permiten a una rehabilitación y su uso en casos de emergencia.

Es interesante aclarar que los puentes se diseñaron tomando en cuenta las recomendaciones para zona sísmica 3, dando a los elementos de hormigón reforzado el confinamiento recomendado en códigos para esta zona sísmica. Incluso en algunos casos cumple para zona sísmica 4, lo que le da mayor capacidad de resistir este tipo de cargas que son de forma súbita.

 En lo que respecta a los puentes 5 y 6, puentes en Irak, se logró encontrar la cantidad de explosivo necesaria para recrear los resultados encontrados en campo. Dicha cantidad de explosivo asciende a 10 libras de TNT colocadas a 5 pulgadas del objetivo.

Aún después de lograr dicha recreación, se estableció que el puente es capaz de seguir en funcionamiento en caso de emergencia, siendo capaz de resistir las cargas militares (expuestas en el Capítulo 2) en los carriles más lejanos al punto de aplicación de la carga, ya que las vigas y la viga de coronación en el punto donde se aplicó la carga de TNT se removieron del modelo para poder determinar su uso posterior al evento.

• En lo que respecta a la rehabilitación de los elementos después de haber estado sujetas a una carga de explosivo, es necesario determinar siempre

la magnitud del daño y la disposición de materiales del lugar, para poder determinar el método recomendado a utilizar.

Es decir, el tipo de rehabilitación dependerá más de la disponibilidad de materiales en casos de emergencia, pues la reparación tiene que ser inmediata.

 El daño esperado, o bien el tipo de falla y los elementos estructurales dañados de un puente, puede determinarse más no cuantificarse, realizando un análisis sencillo de sensibilidad, haciendo la deformada de la estructura.

A manera de conclusión final, es importante observar que si hacemos un análisis de sensibilidad de la estructura, es decir un análisis con la deformada de la estructura, o bien sus líneas de influencia, rápidamente podemos encontrar los puntos donde el puente pudo haber sufrido daño. Este análisis de sensibilidad solo necesitaría que se proporcionaran los datos de ubicación de la carga, el número de tramos del puente, para hacer la deformada de la estructura.

En este caso no se podría determinar la magnitud del daño, sino más bien su ubicación y los posibles elementos afectados.

### **6.2** RECOMENDACIONES

Esta investigación se realizó en base a cargas estáticas equivalente, y con rangos bien definidos de distancias entre el punto de detonación y el punto de explosión. Aún así los resultados obtenidos lograron recrear situaciones reales

de explosiones en puentes. A base de las conclusiones antes realizadas, es importante hacer ciertas recomendaciones acerca de futuras investigaciones que pudiesen complementar y validar esta investigación:

- Realizar investigaciones sobre modelos más sencillos, con cargas dinámicas para determinar el comportamiento de las estructuras, ya que esto conlleva a tener resultados más confiables ya que se tomará en cuenta el rango dinámico de estas cargas.
- Es necesario realizar pruebas experimentales en modelos de puentes a escala con explosivos, pues a pesar de que los modelos analíticos indican que los elementos fallan bajo cargas menores, se sabe que toleran magnitudes mucho mayores a las reportadas en el análisis.
- Se recomienda realizar una investigación sobre la rehabilitación en si de puentes bajo estas condiciones, debido a que en esta investigación solamente se dio a conocer propuestas con recomendaciones hechas en base a criterios de códigos; es decir ninguna de las propuestas de rehabilitación se diseñó.
- Se recomienda hacer una investigación sobre los efectos de las cargas de explosión en elementos que no se encuentren reforzados para condiciones sísmicas, con el objetivo de ver su comportamiento, ya que el tomar en cuenta las consideraciones sísmicas en el procesos de diseño, hace que se tenga elementos más adecuados para resistir este tipo de cargas. La razón de esta recomendación es que en algunos países o bien

en algunas zonas especificas dentro de un país, las solicitaciones sísmicas varían y el comportamiento de estos elementos con menos refuerzo por confinamiento puede variar con respecto a los elementos diseñados para esta investigación.

- Es adecuado realizar una investigación con análisis de sensibilidad, como lo establecido en las conclusiones, y hacer una comparación con los resultados de un modelo específico, para validar la teoría de este tipo de análisis que puede ahorrar tiempo en decisiones importantes, como lo son procesos de rehabilitación y uso posterior a una explosión.
- En el caso del diseño de puentes, se recomienda la redundancia estructural, ya que a la hora del colapso de una columna o de una viga, debido a la redistribución de esfuerzos, el puente podría seguir funcionando, por lo menos en casos de emergencia.
- Es necesario la instalación de vallas de seguridad que no permitan el fácil acceso a elementos estructurales como columnas, ya que a medida de que la carga está alejada del objetivo, los efectos sobre este elemento estructural son menores.

## 7. REFERENCIAS BIBLIOGRÁFICAS

- American Association of State Highway and Transportation Officials AASHTO. (2003). *Manual for Condition Evaluation and Load and resistance factor rating (LRFR) of Highway Bridges*, 1st Ed., Washington, D.C.
- American Association of State Highway and Transportation Officials AASHTO. (1994). Manual for Condition Evaluation of Bridges, 2nd Ed., Washington, D.C.
- American Association of State Highway and Transportation Officials AASHTO. (1998). LRFD bridge design specifications, 2nd Ed., Washington, D.C.
- Alaoui S. and Oswald C. (2007) "Blast-Resistance design considerations for precast, prestressed concrete structures" Journal of Prestressed Concrete Institute
- Astaneh A., Rutner, M., Son, J. (2005), "Protection of Bridge Piers Against Blast". 6th Japanese-German Bridge, Symposium, Munich, Germany, 29.8-1.9 2005.
- Black G., Righman J. (2006) "Computer Modeling of Blast Loading", submitted to NSF-REU.
- Departments of the Army, the Navy, And The Air Force (1990). "Structures to Resist The Effects Of Accidental Explosions", available online at <a href="http://www.ddesb.pentagon.mil/tm51300.htm">http://www.ddesb.pentagon.mil/tm51300.htm</a>, 1796 p.
- Federal Emergency Management Agency (2005), "FEMA 452, Risk Assessment", available online at <u>http://www.fema.gov/library/viewRecord.do?id=1938</u>, 18 p.
- Galinat, M. (2007) "Fibers For Blast Resistance" Journal of Prestressed Concrete Institute
- Islam A. (2008) "Performance of AASHTO Girders Bridges Under Blast Loading", PhD Dissertation submitted to Department of Civil Engineering, FAMU-FSU Collage of Engineering, Florida State University (2005).
- Kiger S. and Woodson S. (2008), "Explosion Effects and Structural Design for Blast", University of Missouri, Columbia, conference presented in San Antonio Texas.

- Krauthammer T. (2008), "Modern Protective Structures", CRC Press, Boca Raton, Florida p 528.
- Luccioni B. y Luege M. (2004) "Concrete Pavement Slabs Under Blast Loads" submitted to Structures Institute, National University of Tucumán, CONICET.



₩8≓₩	MAURICIO LEON TR DEPARTAMENTO DE INGENERIA CD UNIVERSIDAD DE PUERTO RI UNIVERSITARIO DE MAYAGU
Α.	CERO CON EPOXICO DE ALTA RESISTENCI
	DEBE TENER UN ESPESOR DE POR
	TRUCTURA ORIGINAL Y REMOVER ENTE.
	DEBE TENER UN ESPESOR DE POR
	E SER 1/8" MAYOR AL DIAMETRO LAR LA PLACA DE ACERO.
	TENER UN DIAMETRO NO MENOR A S NORMAS ASTM-A325.
	TRUCTURA ORIGINAL Y REMOVER ENTE.
	ESOR NO MENOR A 4" Y CON A 4000 PSI.
	CTURA ORIGINAL POR LO MENOS
	FRUCTURA ORIGINAL Y REMOVER



 DEPARTAMENTO DE INGENIERIA CIVIL
CERO CON EPOXICO DE ALTA RESISTENCIA. "E UNA LOSA DE CONCRETO DE ) MENOR A 4000 PSI.
DEBE TENER UN ESPESOR DE POR
TRUCTURA ORIGINAL Y REMOVER
TE UNA LOSA DE CONCRETO DE ) MENOR A 4000 PSI.
CLAR LA PLACA DE ACERO. DEBE TENER UN ESPESOR DE POR
AS NORMAS ASTM-A325. BE SER 1/8" MAYOR AL DIAMETRO
TRUCTURA ORIGINAL Y REMOVER ENTE.
MENOR A 4000 PSI.
E UNA LOSA DE CONCRETO DE
A ADDO DSI
CTURA ORIGINAL POR LO MENOS
TRUCTURA ORIGINAL Y REMOVER FNTF

RECINTO UNIVERSITARIO DE MAYAGUEZ



3.-LOS ELEMENTOS DIAGONALES DEBEN TENER UN ESPESOR MINIMO DE EL DIAMETRO DE LA BROCA DEBE SER 1/8" MAYOR AL DIAMETRO SEGÚN LA RECOMENDACION 2, EL ANGULAR MINIMO A UTILIZAR EN DEBE TENER UN ESPESOR DE POR TENER UN DIAMETRO NO MENOR A NO DEBE SER MENOR A 3/4", MAURICIO LEON TRES DEPARTAMENTO DE INGENIERÍA CIVIL UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ



 DEPARTAMENTO DE INGENIERIA CIVIL
CERO CON EPOXICO DE ALTA RESISTENCIA. "E UNA LOSA DE CONCRETO DE ) MENOR A 4000 PSI.
DEBE TENER UN ESPESOR DE POR
TRUCTURA ORIGINAL Y REMOVER
TE UNA LOSA DE CONCRETO DE ) MENOR A 4000 PSI.
CLAR LA PLACA DE ACERO. DEBE TENER UN ESPESOR DE POR
AS NORMAS ASTM-A325. BE SER 1/8" MAYOR AL DIAMETRO
TRUCTURA ORIGINAL Y REMOVER ENTE.
MENOR A 4000 PSI.
E UNA LOSA DE CONCRETO DE
A ADDO DSI
CTURA ORIGINAL POR LO MENOS
TRUCTURA ORIGINAL Y REMOVER FNTF

RECINTO UNIVERSITARIO DE MAYAGUEZ



MAURICIO LEON TRES DEPARTAMENTO DE INGENIERÍA CIVIL UNIVERSIDAD DE PUERTO RICO
Y APLICAR EPOXICO EN LOS BORDES . UNIR LA VIGA NUEVA. TE UNA LOSA DE CONCRETO DE D MENOR A 4000 PSI.
STRUCTURA ORIGINAL Y REMOVER ENTE. DEBE TENER UN ESPESOR DE POR .CERO CON EPOXICO DE ALTA RESISTENCIA.
STRUCTURA ORIGINAL Y REMOVER TENER UN DIAMETRO NO MENOR A AS NORMAS ASTM-A325. BE SER 1/8" MAYOR AL DIAMETRO CLAR LA PLACA DE ACERO. DEBE TENER UN ESPESOR DE POR
STRUCTURA ORIGINAL Y REMOVER ENTE. CTURA ORIGINAL POR LO MENOS ESOR NO MENOR A 4" Y CON A 4000 PSI.

RECINTO UNIVERSITARIO DE MAYAGÜEZ





JRA ORIGINAL Y REMOVER TENER UN ESPESOR DE POR CON EPOXICO DE ALTA RESISTENCIA. CAR EPOXICO EN LOS BORDES LA VIGA NUEVA. LA VIGA NUEVA.	ORIGINAL POR LO MENOS O MENOR DE "U": 5/8". NO MENOR A 4" Y CON O PSI. UN DIAMETRO NO MENOR A RMAS ASTM-A325. 1/8" MAYOR AL DIAMETRO A PLACA DE ACERO. TENER UN ESPESOR DE POR	
--------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--



S - TENCIA. MAURICIO LEON TRES MENTO DE INGENIERIA CIVIL IVERSIDAD DE PUERTO RICO INVERSIDAD DE PUERTO RICO INVERSIDAD DE MAYAGUEZ
---------------------------------------------------------------------------------------------------------------------------------------------------



S - TENCIA. MAURICIO LEON TRES MENTO DE INGENIERIA CIVIL IVERSIDAD DE PUERTO RICO INVERSIDAD DE PUERTO RICO INVERSIDAD DE MAYAGUEZ
---------------------------------------------------------------------------------------------------------------------------------------------------

# Anexo 10

### Ejemplo de Carga

Cantidad de Explosiv	o: 500 lib	ras de TNT		
Distancia del Objetivo	): 4 pie	es.		
La presión generada esta presión se divide	debido a los anteriores fac según lo expuesto en el i	ctores asciende inciso 3.2	a 251	11 PSI
Carga en viga central	: 50%x2511 PSI	1256 PSI		
Carga en viga adyace	ente: 25%2511 PSI	628 PSI		
l lna vez obtenida la r	vresión que afecta las viga	e se procede a	conv	ortirlas
en una carga distribui	ida, dependiendo de la fra	nja tributaria.	COIIV	erinas
FT1, es la franja tribu	taria de la viga central y e	sde: 6	;	pies.
FT2, es la franja tribu	taria de la viga adyacente	y es de: 7		pies.
W viga contral:	72 pulgadas y 1256 PSI	- 003	906	Libras/pulgada
W viga adyancete:	84 pulgadas x 628 PSI =	= 903 = 527	'31	Libras/pulgada
<b>3</b> <i>y</i>				1 0
W en Kip/pie	1085 Kip/pie en	la viga central	ata	
	oss kih/hie eli	i la viga auyacel	ne.	

# ANEXO 11

En las Figuras A11-1 y A11-2 se compara la diferencia de magnitudes entre las cargas producidas por el uso de la estructura (carga viva) y la carga producida por una explosión.

Bridge Object Response Display	
Select Bridge Object         Bridge Model Type         Show Tabular Display of Current Plot         Units           B0BJ1         Image: Area Object         Show Table         Export To Excel         Kip, ft, Ft	
Select Display Component       Analysis Case/Response Combo       Multivalued Op         Show Forces For       Interior Girder 6       Case/Combo       Case/Combo         © Force       Stress       Show Selected Girder       Case/Combo       ACASE1       ©         Moment About Horizontal Axis       (M3)       Image: Case/Combo       Step       Step	tions Max/Min Max Min 1
BOBJI - Interior Girder 6 (Case ACASE1) Moment About Horizon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tal Axis (M3)
Response Quantity Just After Current Location	Done

Figura A11-1 Reacciones producidas por carga viva

En la Figura A11-1 se muestra que el momento máximo producido por la carga viva asciende a 1909 Kip_pie.

En la Figura A11-2 se muestra el diagrama de momento debido a la carga producida por una explosión:

Select Bridge Object	Show Tabular Display of Current Plot	Units
BOBJ1 Area Object	Show Table Export To Ex	xcel Kip, ft, F
Select Display Component Show Forces For Interior Girder 6	Analysis Case/Response Combo	Multivalued Options
← Force         C Stress         ☐ Show Selecte	Girder	C Envelope Max
Moment About Horizontal Axis (M3)	•	Step 1
Bridge Response Plot		
-120000.	BOBJ1 - Interior Girder 6 (Case 500	lb4ft) Moment About Horizontal Axis (M3)
		Value = 105294.09 Min Value = -78982
•	1104	Value = 100204.00 Mill Value = 10002.
Mouse Pointer Location Distance From Start of Bridge Object Response Quantity Just Before Current Location	22.5341 Snap Options	ed Response Points

Figura A11-2 Reacciones producidas por explosivos

En la Figura A11-2 se muestra que el momento máximo producido por la carga de la explosión asciende a 105294 Kip_pie.

## **ANEXO 12**

En las Figuras que se muestran a continuación tienen como objetivo comparar el comportamiento de los puentes, si las cargas de la explosión se hubiesen colocado directamente sobre la losa o si las mismas se hubiesen colocado directamente sobre la viga, proporcionando los siguientes resultados:



Figura A12-1 Distribución de esfuerzos en la estructura.

En la Figura A12-1 se observa la distribución y la deformación de la estructura, cuando la carga se coloca directamente sobre la viga.



Figura A12-2 Carga Distribuida

En la Figura A12-2 se observan las cargas distribuidas generadas por 500 libras de TNT, a una distancia de 4 pies de la superficie del puente.



Figura A12-3 Distribución de esfuerzos en la estructura.

En la Figura A12-3 se observa la distribución y la deformación de la estructura, cuando la carga se coloca sobre la losa.





En la Figura A12-4 se observan las cargas generadas por 500 libras de TNT, a una distancia de 4 pies de la superficie del puente.

En conclusión el comportamiento del puente es similar si la carga se coloca sobre la losa o bien distribuida sobre las vigas. Por lo que los resultados que se generan son los mismos.