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Dimensionality reduction is a key step in hyperspectral image processing due

to the large amount of data. Linear and nonlinear approaches have been proposed.

The most important parameters on the majority of nonlinear dimensionality reduc-

tion algorithms (NLDR) are the number of neighbors used to construct the starting

graph, and the number of dimensions of the low dimensional space where the data is

embedded. This research work focuses on the influence of the first parameter on the

DR. Newly proposed methods for constructing the weighted graph are used: k-VC,

k-EC and k-MST which are alternatives to the classical approaches to k nearest

neighbors (k-NN) and epsilon neighborhood (e-NN). This methods have the advan-

tage that connectedness of the graph is guarantee and also update of the graph in

case new data is available is computationally inexpensive compare to recalculating

all the graph again as is needed on the classical algorithms. Also, a newly proposed

ii



neighborhood selection technique called cam-weighted neighborhood is used in com-

bination with the NLDR algorithms. Finally, a method to improve the geodesic dis-

tance estimation is explored. Experiments are carry out over hyperspectral datasets,

where classification is used as the validation criteria.
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Reducción de dimensionalidad es una etapa critica en el procesamiento de

imágenes hyperspectrales debido a la gran cantidad de datos. Métodos lineales

y nolineales han sido propuestos. El parámetro mas importante en la mayoŕıa de

los métodos nolineales de reducción de dimensionalidad (NLDR) es el número de

vecinos usados para construir el grafo inicial, y el número de dimensiones del espacio

donde la data es embebida. Este trabajo de investigación se centra en la influencia

del primer parámetro en DR. Métodos recientemente propuestos para construir el

grafo ponderado son usados: k-VC, k-EC y k-MST los cuales son alternativas a

los métodos clásicos de k vecinos mas cercanos y vecinos dentro de una vecindad.

Estos métodos tienen la ventaja de que la conectividad del grafo esta garantizada

y además en caso de necesitar actualizar el grafo debido a la presencia de nueva in-

formación, el proceso es computacionalmente menor comparado a recalcular todo el

grafo nuevamente como es requerido en los algoritmos clásicos. Además, un método

de selección de vecinos propuesto recientemente llamado vecindad “cam-weighted”
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es usado en combinación con los algoritmos de NLDR. Finalmente, un método para

mejorar la estimación de la distancia geodésica es explorado. Se hicieron experi-

mentos con datos hyperspectrales, donde la clasificación se uso como un criterio de

validación.
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to my advisor, Dr. Miguel Vélez-Reyes for his patient guidance, encouragement

and excellent advice throughout the course of study. Also, I am grateful to my

thesis committee members for their review and helpful criticism. Thanks to all the

Professors during the two years of study: Dr. Miguel Vélez-Reyes, Dr. Domingo
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Chapter 1

Introduction

1.1 Justification

Hyperspectral imaging (HSI) is a remote sensing technology with great poten-

tial for extracting more accurate information, due to the discriminative capabilities

of the high spectral resolution. HSI provides hundreds of images corresponding to

narrow and adjacent spectral bands. Extracting the most relevant information from

this large amount of data is a challenging task that requires considerable comput-

ing resources. As the number of bands -dimensions- increases, more resources are

needed. With the improvement of the sensing technology, new sensors tend to in-

clude higher number of bands. Hence more computing resources is needed to process

this data. Also, hyperspectral video technology is being developed and will be avail-

able soon. Although the collected data lies on a high dimensional space -hundreds

of bands- it is thought that the data is intrinsically low dimensional.

Non-linear dimensionality reduction methods have been successfully used to re-

duce the required computing resources of processing hyperspectral images. However,

a first step in this process, called neighborhood selection, accounts for most of the

processing time. The most representative of these methods are k-nearest neighbors

and ε threshold. These methods have the disadvantage that incremental versions for

updating the neighborhood are not available. That means, in case of a new band
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is included or a stream of hyperspectral images is used, the neighborhood selection

process needs to be repeated from scratch each time. New methods of neighborhood

selection for which incremental versions have been proposed will be tested. The

test will show how reliable are the results of NLDR algorithms, using this meth-

ods compared to the results obtained using the standard methods of neighborhood

selection.

1.2 Objectives

The main objective of this research was to:

• Study and implement recently proposed neighborhood selection methods suitable

to replace the widely used techniques of k-nearest neighborhood and ε-neighborhood

on the literature of NLDR for hyperspectral images.

Other objectives of this research were:

• Combine spatial and spectral information in hyperspectral images for the graph

construction in NLDR.

• Implement and evaluate representative NLDR algorithms and select the most suit-

able among those studied to be used with hyperspectral images.

• Study and implement the cam weighted distance algorithm to improve the nearest

neighborhood selection for nonlinear dimensionality reduction.

• Study a method to evaluate the geodesic distance estimation and their respective

repercussion on NLDR for hyperspectral imagery.

• Evaluate the performance of the different NLDR methods and neighborhood se-

lection experimentally with different hyperspectral images.
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1.3 Contribution of the Work

The main contribution of this research is the study of recently proposed method-

ologies for graph construction and their applicability on NLDR of hyperspectral im-

ages. This methodologies along with a new neighborhood selection algorithm are

used to improve the reliability of the nonlinear projection of the hyperspectral data

into a low dimensional space. Three common studied problems of hyperspectral

imagery are addressed: noise on the data that creates a not smooth distribution

of the data structure, unconnected graphs that prevent some data to be “reliable”

projected on the low dimensional space, and reducing the sensibility of the NLDR

algorithms to the parameter k of the graph construction algorithm.

1.4 Outline

The first chapter introduces the basic concept NLDR. The objectives and main

contributions of this thesis have also been discussed. Below, a brief summary of the

following chapters is presented.

Chapter 2

This chapter gives an overview of dimensionality reduction and the most repre-

sentative algorithms. Specifically, a detailed explanation of the most representative

NLDR algorithms is presented. Also, previous publications that use NLDR on hy-

perspectral data are discussed.

Chapter 3

The first step of NLDR algorithms is addressed; how to construct the graph on

the high dimensional space. Spatial information is included via the coherent distance
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measure. A newly proposed nearest neighbor selection algorithm is presented, which

takes into account the local distribution of the data on the neighborhood selection

algorithm. A method to improve geodesic distance estimation, and an adaptive

method NLE to select the number of nearest neighbor are presented. And, weighted

graph construction algorithms that warranty connectivity of the neighborhood graph

are explained.

Chapter 4

Two hyperspectral datasets are used to test the proposed idea for improving

NLDR. Classification is used as a quantitative measure of the reliability of the

dimensionality reduction. Mahalanobis distance and maximum likelihood classifiers

are used on the low dimensional space.

Chapter 5

Finally, conclusions on the obtained results are presented. This chapter also

includes suggestions for future work.



Chapter 2

Background

2.1 Hyperspectral Data

We think of a hyperspectral image as gray scale images staked D times one on

top of the other. In this case, D represents the spectral dimension. The difference

between each image is the spectrum of light from which the image is taken. For

the purpose of this research, the number of dimensions refers to the number D of

different images at different wavelength. Hyperspectral data is usually illustrated as

the data cube shown in Figure 2–1.

Figure 2–1: AVIRIS Hyperspectral Data Cube Over Moffett Field, CA.

5
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Each pixel in the hyperspectral image has a particular spectral signature. One

of the main goals of hyperspectral imaging is to classify the materials (pixels) by

their spectral signature. The goal of DR over hyperspectral data is to reduce the

number of spectral bands from D to d� D preserving the discriminative capabilities

of the spectral signature.

2.1.1 Dimensionality Reduction

For classification purposes, the low sampling of the large dimensional space

causes the well known “curse of dimensionality” problem. A way of dealing with

this is to reduce the dimension of the data to a lower dimensional space thereby

increasing the density of the sampling, hoping that the intrinsic structure of the

data is preserved. This dimensionality reduction is achieved by creating a mapping

between the high dimensional and the lower dimensional spaces.

Mathematically the problem of dimensionality reduction can be formulated as

follows. Given n data samples in Rn, xi for i = 1, 2, . . . , n the matrix XD×n is

formed. The goal of DR algorithms is to create a mapping of this data, X, to a new

dataset, Y, where Y is a d× n matrix with d� D. This mapping can be classified

in many forms, but broadly it can be classified as been of two forms: linear and

nonlinear. Nonlinear mapping is the main focus of this research work.

2.1.2 Linear Dimensionality Reduction

Traditional methods for linear dimensionality reduction are Principal Compo-

nent Analysis (PCA), Multidimensional Scaling (MDS) and Linear Discriminant

Analysis (LDA). These traditional methods tend to perform poorly on nonlinear

curved structures like the Swiss Roll. They perform well on flat euclidean struc-

tures. Different approaches have been proposed to create extensions of this to
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non-linear methods, some examples are Probabilistic Principal Component Anal-

ysis (PPCA) [2] and self-organizing maps (SOMs) [3]. Also, kernel extensions of

these algorithms have been developed, one example is kernel PCA (KPCA) [4] and

kernel LDA (KLDA). Recently some new nonlinear methods have been proposed

based on the idea of manifold as some studies in human cognition, suggests that the

brain constructs manifolds when perceiving object which varies smoothly [5].

2.1.3 Nonlinear Dimensionality Reduction

Manifold learning has been widely spread since ISOMAP [1] and LLE [6] algo-

rithms were proposed. These methods have been extensively used thanks to their

geometric intuition, computational feasibility and their low dependence on parame-

ters. Also, because they have shown to outperform their linear counterparts on non-

linear artificial datasets (Swiss Roll, Toroidal helix, Gaussian distribution, punched

sphere, etc...). Figure 2–2 shows a taxonomy for dimensionality reduction meth-

ods [7]. The main focus of this work is to study some nonlinear methods based

on manifold learning and their variations and applications to hyperspectral images.

Table 2–1 shows a time-line of the most relevant manifold based dimensionality

reduction methods that have been proposed in the literature.
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Figure 2–2: Global Framework of Dimensionality Reduction Methods.

Extensive work has been done to compare the performance of these algorithms

[14] - [15] empirically. Also, theoretical relations between methods have been stud-

ied [16]. Different approaches to create a global framework for manifold learning

methods have been studied. Relations between algorithms coming from different

geometric intuitive ideas have been build. However a global framework has not been

built due to the completely different ideas that have been the base for different al-

gorithms. Also, the increased number of NLDR algorithms that are published each
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Authors Year Algorithms Property
Tenenbaum et
al. [1]

2000 ISOMAP Geodesic distance

Roweis et al. [6] 2000 LLE Preserves linear reconstruc-
tion weights

Belkin et al. [8] 2003 Laplacian eigenmaps Locality preserving
Donoho et al. [9] 2003 HLLE or Hessian

eigenmaps
Locally isometric to an
open, connected subset

Zhang et al. [10] 2004 LTSA Minimizing the global re-
construction error

Coifman et al.
[11]

2005 Diffusion maps Preserves diffusion distance

Sha et al. [12] 2005 Conformal eigenmaps Angle preserving embed-
ding

Weinberger et
al. [13]

2006 Maximum Variance
Unfolding

Unfold the neighborhood
graph

Table 2–1: Algorithms for Nonlinear Dimensionality Reduction

year is a reason for the impossibility of building a global framework -around 40 dif-

ferent algorithms have been proposed in the literature. For example, [17] and [18]

are two new methods proposed in the last two years based on new geometric ideas.

Manifold

Mathematically a manifold 1 is a space that on a sufficiently small scale resemble

a euclidean space of a specific dimension [19]. A geometric idea can be intuitively

seen using a toy manifold. Figure 2–3 shows a Swiss roll, this is a two dimensional

manifold embedded in R3. Dimensionality reduction on this structure is to transform

the data to a two dimensional space while preserving the neighborhood structure of

the data and, thereby, the global structure of the data. In other words, while some

1 Formally, a topological manifold is a second countable Hausdorff space that is locally home-
omorphic to Euclidean space.
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information of the data may need a 3 − dimensional space to be represented, the

most significant information of the data can be expressed on a 2 dimensional space.

Figure 2–3: Swiss Roll.

On the literature of dimensionality reduction these artificial manifolds on 2 and

3 dimensional spaces are of particular interest because they are used to evaluate and

compare the performance of different NLDR algorithms. Of particular interest are

artificial manifolds like: Swiss roll, Gaussian, and toroidal helix. State-of-the-art

algorithms try to reduce the short-circuits that are created during the construction

of the starting graph from the original dataset, Figure 2–4 shows and example of

a typically unwanted short-circuit. They are unwanted “features” because the re-

construction on the original manifold -optimization over the particular cost function

of each NLDR algorithm- will be affected by the non-smooth connectivity of the

neighbors around a particular data point.
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Figure 2–4: Short-Circuit Represented on a Swiss Roll Manifold.

2.2 NLDR Algorithms

The NLDR algorithms that will be used in this work are be explained in this

section:

2.2.1 Locally Linear Embedding

This algorithm was developed in 2000 by Saul and Roweis [6]. The idea behind

this algorithm is to visualize the manifold as sufficiently smooth so that local patches

are approximately linear. Then, the idea is to identify these linear patches and find

the mapping that preserves the local geometry in the lower dimensional space. The

main assumption is; that if the local geometry is preserved well, then, the global

geometry will also be preserved. Algorithm 1 summarizes the LLE algorithm.

2.2.2 Isometric Feature Embedding

This algorithm was developed in 2000 by Tenenbaum et al. [1]. This algo-

rithm can be viewed as an extension of Multidimensional Scaling (MDS), a classical

method for embedding information in the Euclidean space. Algorithm 2 shows the
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Algorithm 1 Locally Liner Embedding

Input: Data points xi for i = 1, . . . , n in RD

Output: Data points yi for i = 1, . . . , n in Rd

1: Construct a graph where each data point xi for i = 1, . . . , n is a node of the
graph

2: Select an appropriate neighborhood and express each data point as a lin-
ear combination of its neighbors. N(i) = {xj : j ∈ {1, 2, . . . , j − 1, j +
1, . . . , n} and xj is a neighbor of xi}. The most common methods for perform-
ing this step are to select k-nearest neighbors or to select all the neighbors inside
certain threshold ε. As studied in this work the correct selection of this neigh-
borhood is crucial, since all the subsequent steps rely on this selection.

3: Minimize the cost function in Eq. (2.1) that projects each data point onto
the space spanned by its neighbors. Constraints need to be imposed such that
translations and rotations are avoided.

e(W) =
n∑

i=1

∣∣∣∣∣∣xi −
∑

j∈N(i)

w
(i)
j xN(j)

∣∣∣∣∣∣ (2.1)

4: After the weights are computed, the high dimensional data is mapped to a low-
dimensional space preserving the local structure (weights) of the manifold. This
is done by minimizing the function Eq. (2.2) with fixed weights. In this case
the optimal low-dimensional coordinates Yi ∈ Rd are found, where d is the
dimension of the new space.

e (Y) =
n∑

i=1

∣∣∣∣∣∣yi −
∑

j∈N(i)

w
(i)
j yN(j)

∣∣∣∣∣∣ (2.2)
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ISOMAP algorithm and Algorithm 3 shows the classical MDS algorithm. ISOMAP

seeks to preserve the intrinsic structure of the data as captured in the estimation

of the geodesic distance between all data points. The geodesic distance’s concept is

illustrated in Figure 2–5. This distance is estimated by adding shortest distances

between all data points. The approximation is done by using a shortest path al-

gorithm over the constructed Euclidean graph. In this work, methods to construct

this Euclidean Graph are studied.

Algorithm 2 ISOMAP

Input: Data points xi for i = 1, . . . , n in RD and a parameter k
Output: Data points yi for i = 1, . . . , n in Rd

1: Find k-nearest neighbors Xi = xi1, xi2, . . . , xik, of each Xi ∈ D by comparing
the Euclidean distances between all neighbor points and the query point.

2: Compute the shortest paths between all data points (geodesic distance) using
Floyd’s or Dijkstra’s algorithm and store the square of this in the matrix P .

3: Compute the classical MDS algorithm to find the low dimensional embedding.

Algorithm 3 MDS

Input: P ∈ Rn×n with Pii = 0 and Pij ≥ 0
Output: X ∈ Rn×d

1: Set B = −1
2
HPH, where H = I− 1

n
11T is the centering matrix

2: Compute the spectral decomposition of B = U ∧UT .
3: Form ∧+ by setting [∧+]ij = max(∧ij, 0)

4: Set X = U∧1/2+

5: Take [X]n×d as the low dimensional embedding.

Figure 2–5: Illustration of the Geodesic Distance Concept [1].
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2.2.3 Kernel PCA

The well known Principal Component Algorithm (PCA) algorithm for linear

dimensionality reduction can be extended into a nonlinear version using the kernel

trick. This algorithm computes the principal eigenvectors of the kernel matrix,

instead the covariance matrix as is done in the traditional PCA. The formulation of

Kernel PCA is straightforward, as in [4], a complete formulation of the method can

be found.

2.2.4 Maximum Variance Unfolding

This algorithm was developed in 2006 by Weinberger and Saul [13] and is in-

spired by a simple idea. Imagine the data-points in the high dimensional space

connected to its k nearest neighbor. The algorithm will try to pull each data-points

as far as possible while preserving the pairwise distance of each data-point with its

neighbors. This “pulling” of the data into the low dimensional space is what gives

the name “Maximum variance unfolding”.

First, the usual weighted graph is constructed. The unweighted representation

of this graph is the one where the edge δij ∈ {0, 1} denotes whether data points

~xi and ~xj are k-nearest neighbor connected. This unfolding can be formulated as a

quadratic program (QP), where the outputs ~yi are those that solves the optimization

problem.
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maximize
~yi

∑
ij

‖~yi − ~yj‖2

subject to
∑
ij

‖~yi − ~yj‖2 =
∑
ij

‖~xi − ~xj‖2 for all (i, j) with δij = 1.

∑
i

~yi = 0

(2.3)

The objective function tries to “unfold” the data point. The first restriction

tries to preserve the distance between neighbor points and the second restriction

centers the solution in the origin to avoid rotations. This optimization problem is

nonconvex, which means that local spurious solutions are present. By defining the

inner product matrix Kij = ~yi · ~yj this problem can be reformulated as a semidefinite

program (SDP) over the matrix K.

maximize
~yi

trace(K)

subject to Kii − 2Kij + Kjj =
∑
ij

‖~xi − ~xj‖2 for all (i, j) with δij = 1.

∑
ij

Kij = 0

K ≤ 0

(2.4)

The solution K of the SDP is the kernel matrix that is used as the input for

the Kernel PCA. The low dimensional embedding is obtained by performing an

eigenvector decomposition of the kernel matrix K.
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2.2.5 NLDR in Hyperspectral Data

The nonlinear nature of hyperspectral data is based in the idea of the multi-

scattering between the photons and the different materials present in the scene.

Plaza et al. [20] described sequences of morphological transformations for dimen-

sionality reduction. Harsanyi et al. [21] investigated hyperspectral dimensionality

reduction and posterior image classification by using and orthogonal subspace pro-

jection approach. Also, Bruce et al. [22] have used Wavelet transforms for hyper-

spectral dimensionality reduction.

Special attention has been paid on the three particular methods used in this

work: LLE, ISOMAP, and MVU. Chang et al. proposed in [23] the RLLE (Robust

Locally Linear Embedding) which modifies the basic LLE algorithm for the case of

a strong presence of outliers as is the case of hyperspectral data. In [24], Chen et al.

used another approach to improve the LLE algorithm by including a spacial neigh-

borhood window. Finally, in [25], the LLE algorithm is combined with the Laplacian

Eigenmaps algorithm, and the authors claim that the method better preserves the

local topology of the manifold.

Bachmann et al. [26] developed a hybrid technique to circumvent ISOMAP’s

computational cost by dividing the scene into a set of smaller tiles. Hou et al.

[27] proposed RMVU (Relaxed MVU) to try to deal with problem that causes the

short-circuits in the NLDR of hyperspectral data. Finally, in [28], Samaniego et al.

proposed a modified k-NN algorithm suitable to be used with NLDR algorithms,

which tries to suppress the known shortcomings of the classical k-NN algorithm.

Based on the literature there is a great interest of HSI related to NLDR. First,

to solve the problem of high computational requirement of NLDR algorithms, which

is not the focus of this research work. Second, to use classical NLDR algorithms
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in combination with graph construction methods, better than the classical k-NN,

to improve the results on the NLDR algorithms. Also, effectively using the spatial

information present in the hyperspectral images for NLDR is of particular interest.

2.3 Summary

Four nonlinear dimensionality reduction algorithms have been revised in this

chapter. The KPCA algorithm is presented only to give a mathematical context

to another NLDR algorithm -Maximum variance unfolding. These three methods

share in common the first step of graph construction, which classically is done by

using the k-NN algorithm. In the subsequent sections, different algorithms for graph

construction will be presented, these algorithms can be used in combination with

any of the NLDR algorithms presented here.



Chapter 3

Neighborhood Selection and Graph Con-
struction

3.1 Spatial Information HSI

Classical algorithms used in hyperespectral images like spectral unmixing and

target detection rely mainly on the spectral content of the images. However, some

approaches have been proposed to include the spatial information in the analysis.

These approaches can be divided in four basic groups based on: image segmentation

[29], stacking vector approach [30], filtering (gabor filters) [31] and Markov random

fields (MRF) [32], [33].

In hyperspectral images, each pixel is represented as a vector in RD. However

image exploitation should take full advantage of spatial information. For example,

if a particular pixel belongs to a particular class, the probability that its neighbors

belong to the same class is high. In [34], a patch (neighbors of a pixel) is proposed to

be used for neighborhood selection. Hence, each component (or band) in each vector

is replaced by it’s n×n immediate neighbors. Equation (3.1) shows how to calculate

the distance between two pixels using this concept, where ~Xi represents the pixels,

dt refers to the total distance and dP represent the distance between patches.

18
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dt( ~Xi, ~Xj) =

√∑
k

d2P ( ~Xi(k), ~Xj(k)) (3.1)

In [34], rotations of the patches were not included to consider changes in ori-

entation. In this research work, this is included. This means that a transition from

one type of material to another may occur in the opposite direction. The rotation

of the patch tries to account for this possibility. In the rest of this document, this

is the distance measure used.

3.1.1 Classical Approach for Neighborhood Selection

Currently the most widely used neighborhood selection techniques are k-nearest

neighbors and ε-neighbor. The first approach connects each point to its k nearest

neighbors and the second approach connects each point to all points withing a

predefined Euclidean distance ε. One of the major problems of these methods is that

they do not guarantee the connectivity of the resulting neighborhood graph. This

is especially problematic when the data is not evenly sampled. Also, incremental

versions are not available.

3.1.2 Adaptive Scheme to Select Neighbors

A method called NLE [35] was proposed to try to reduce the influence on the

performance of the NLDR algorithms on the selection of the parameter k. Selection

of k is a trade-off between the redundancy present in the connections of the graph

and the isolated nodes. Thus this method tries to adaptively select k in a more

appropriate form. This algorithm is popular on the computer vision literature.

This adaptive scheme selects the neighbors according to the inherent properties

of the input data. First, define dij as the Euclidean distance from node xj to xi and
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Ni the set containing all the neighbors of xi, the neighbor finding procedure of NLE

for a given point xi can be summarized as follows, in [35], a complete formulation

of the method can be found.:

• if dij = min{dim} for all m ∈ {1, 2, ..., N} then xj is regarded as a neighbor of the

node xi, initially Si = xj

• if dik = 2edmin{dim}, for all m ∈ {1, 2, ..., N} then xk is regard as a neighbor of

node xi if djk > dik.

• when Si contains two or more elements, for all m ∈ Si, if djm > dji and djm > dmi

are satisfy, then Si = Si ∪ {xm}

3.1.3 Cam-distance for Neighborhood Selection

A first approach to improve the performance of the classical approach of k-NN

and ε-NN, is through the use of a distance measure called “cam-distance”. This dis-

tance measure has already been used as preprocessing for the LLE algorithm, and

the result has been called “Weigthed locally linear embedding” [36]. This prepro-

cessing step however can be used as the preprocessing to any of the existing NLDR

that relies on the same of idea of building a neighborhood graph as the first step of

the algorithm. In this research work, this distance measure will be combined with

NLDR such as LLE, ISOMAP, and MVU.

This is a distance measure proposed for improving nearest neighbor classifica-

tion. This new measure tries to take into account the deformation on the distribu-

tion of the data due to the attraction and repulsion that each sample point receives

from its neighbors. This measure gives deformed cam contours for equal-distance

contours. A simple transformation
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X = (a+ bY′τ/‖Y‖) (3.2)

is used to simulate the deformation of the data. Y denotes the original distri-

bution and τ is a normalized vector denoting the deformation orientation, a and b

are parameters to be estimated. The samples used to estimate the parameters a, b,

and τ are the k-nearest neighbors. Then, an inverse transformation is performed

Y = X/(a+ b cos θ) (3.3)

to eliminate the deformation. Here θ, is the angle between vectors Y and τ .

Definition 1. (Cam distribution) [37] Consider a p-dimensional random vector

Y = (Y1,Y2, ...,Yp)′ that takes a p-dimensional Gaussian distribution

f(y) =
1

(2π)p/2
e−(y

′y)/2 (3.4)

Let X be a random vector defined by

X =

(
a+ b

Y′τ

‖Y‖

)
Y or X = (a+ b cos θ)Y (3.5)

where a > b ≥ 0, τ is a normalized vector, ‖Y‖ =
√

Y′Y and θ is the included

angle of vectors Y and τ . Then, the distribution of X is called the cam distribution

with parameters a and b in the direction τ , denoted X ∼ Camp(a, b, τ).

Theorem 1. [37] If a random vector X ∼ Camp(a, b, τ), then

E(X) = c1bτ (3.6)
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and

E(‖X‖) = c2a (3.7)

where c1 and c2 are constants

c1 = 21/2Γ((p+ 1)/2)

Γ(p/2)

/
p (3.8)

c2 = 21/2Γ((p+ 1)/2)

Γ(p/2)
(3.9)

The new distance is denoted CamDist(xo, x) = ‖x−xo‖/(a+b cos θ). Figure 3–1

shows two examples of cam distributions Cam2(1, 0, [0.8, 0.6]) and Cam2(1, 0.4, [0.8, 0.6]).

In these figures, what we have is an equidistant surface modified by the density of

the distribution of the original data.

Figure 3–1: Cam Weighted Distance.

Algorithm 4 Cam-Distance

Input: Data points F = {xi} for i = 1, . . . , n, with xi ∈ RD and parameters k1 and
k2

Output: Minimum k2 nearest neighbor for each data point
1: Find k1-nearest neighbors Xi = xi1, xi2, ..., xik1 , Xi ∈ F by comparing the Eu-

clidean distance.
2: Estimate the parameters a, b and τ using the k1-nearest neighbors.
3: Find the k2-nearest neighbor for each data point using the deformed distance

CamDist(xo, x) = ‖x− xo‖/(a+ b cos θ)



23

Algorithm 4 shows the resulting algorithm. It should be noted that two nearest

neighbors have to be used namely k1 and k2. In the subsequent analysis, a parameter

called α will be used, which will represent the factor between the k1 and k2 values.

This algorithm can also be extended to define a particular value of k for each data

point, if some prior knowledge of the distribution of the data is available. For

example, which parts of the data contains more noise than others, in that case the

noisy parts should include a greater value of k2 to try to reduce the variability

of the data. It should be clear that, when k1 = 0, the cam-distance algorithm is

equivalent to a regular k-NN algorithm since the distance measure is not modified

by the distribution of the data around the data point.

3.1.4 Graph Construction for Neighborhood Selection

A neighborhood graph should be constructed so that its connectivity is guar-

anteed to assure that the true structure of the data is preserved and that all the

data points are included. Also, multiple edge connections are expected between

any partition of the graph. These connections are expected to better reflect the

geodesic structure of the data. A good choice for such a graph is a k-connected or

k-edge-connected spanning subgraph of the complete Euclidean graph. As geodesic

distances should follow smoothly the structure of the data, such a graph should

have a minimum sum of edge lengths. Unfortunately, the problem of finding such a

minimum spanning subgraph for k ≥ 2 is NP-complete [38].

Four approaches, k-MST [39], Min-k-ST [40], k-EC [41] and k-VC [42] have

been proposed to overcome the problem of disconnected neighborhood graphs. These

methods build k-edge-connected or k-connected neighborhood graphs. k-MST works

by repeatedly extracting k minimum spanning trees from the original Euclidean

graph. Min-k-ST extracts k spanning trees for which the sum of the total lengths
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is minimum. k-EC builds a k-edge connected neighborhood graph by adding each

edge, in a non-decreasing order of edge length, to a partially formed graph if end

vertexes of the edge to be added are not yet k-edge-connected in the graph. k-VC

works in a similar way as k-EC except that it adds each edge to the graph if end

vertexes of the edge to be added are not yet k-vertex-connected. As a result, k-VC

builds a k-connected neighborhood graph instead of a k-edge-connected one.

k-MST

Construct a k-edge connected neighborhood graph by repeatedly extracting the

MST of the complete euclidean graph as described in Algorithm 5.

Algorithm 5 k-MST

Input: Given graph G = (V,E)
Output: k-edge-connected neighborhood graph

1: for i = 1, . . . , k do
2: if i = 1 then
3: MST1 = mst (V,E)
4: else
5: MSTi = mst

(
V,E − ∪i−1

j=1MSTj
)

6: end if
7: end for

k-EC

Use a greedy algorithm to construct a k-edge-connected neighborhood graph as

shown in Algorithm 6.

k-VC

Construct a k-connected neighborhood graph by adding each edge in a non-

decreasing order of edge length, to a partially formed neighborhood graph if end

vertexes of the edge are not yet k-connected as described in Algorithm 7.
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Algorithm 6 k-EC

Input: Given graph G = (V,E)
Output: k-edge-connected neighborhood graph

1: Ek = ∅; nc = |V |; Assign each v ∈ V a unique component;
2: Sort edges in E in non-decreasing order for edge length;
3: while nc > 1 do
4: Get the next edge (u, v) ∈ E in the order;
5: if u and v belong to different components then
6: if u is not k-edge-connected to v in Gk then
7: Ek = Ek ∪ {(u, v)}
8: else
9: Union the components u and v belong to;

10: nc = nc− 1
11: end if
12: end if
13: end while

Algorithm 7 k-VC

Input: Given graph G = (V,E)
Output: k-connected neighborhood graph

1: Ek = ∅; ∀v ∈ V , Blockv = ∅
2: Sort edges in E in nondecreasing order of edge length
3: for each (a, b) ∈ E in the order do
4: if |Blocka ∩ Blockb| < k and the vertices a and b are not k-connected in Gk

then
5: Ek = Ek ∪ {(a, b)}
6: else
7: Blocka = Blocka ∪ {b}; Blockb = Blockb ∪ {a};
8: end if
9: end for
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A great advantage of these methods is the fact that an incremental version

have been created [43]. Classical methods for neighborhood selection need all the

data available to perform the analysis. When new data is available, the whole

process has to be repeated to include the new data and no incremental version is

available -although some heuristics have been proposed. In the case of the methods

introduced here, incremental versions [43] are possible with little effort to include

the new data. In the context of hyperspectral images, when on-line real-time stream

of images are acquired, these incremental versions are of fundamental importance

in the performance of NLDR algorithms.

3.1.5 Short-Circuits Comparison

As explained before three dimensional manifolds are used to test and compare

the different NLDR algorithms and also neighborhood selection algorithms. An

example using the Swiss Roll data set will be given where the presence of the short-

circuits can be compared between the classical k-NN algorithms and the proposed

neighborhood selection algorithms. Figure 3–2 to Figure 3–5 show the different

results obtained for the Swiss Roll data set with 8 neighbors.

Figure 3–2: k-NN.



27

Figure 3–3: k-MST.

Figure 3–4: k-EC.

Figure 3–5: k-VC.

For any NLDR algorithm using the k-NN algorithm for the graph construction,

the performance will be significantly deteriorated because of the presence of short-

circuits. It should be noted that after the graph is constructed, the rest of the
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NLDR process can be considered as a black box with only few tunable parameters,

depending on the selected method. However the performance of the methods rely

heavily on graph construction.

3.1.6 Improving Geodesic Distance Estimation

One of the most famous NLDR algorithms relies on the idea of geodesic dis-

tance, this method is called ISOMAP. Other methods which also relies on this idea

are Curvilinear distance analysis [44] and GeoNLM [45]. It has been claimed that

since geodesic distance reflects the underlying structure of the data, geodesic dis-

tance based methods are expected to correctly unfold highly nonlinear manifolds.

As can be deduced of the ISOMAP algorithm explained in Subsection 2.2.2, the per-

formance of this method depends heavily on two factors: the correct construction

of the neighborhood graph, and the correct calculation of the shortest path between

data points, which represent the geodesic distance. Thus accurately calculating the

geodesic distance has become an important issue in improving the computation of

the so called geodesic distance-based methods and is the direction towards which

this research goes.

In [46], a heuristic method aiming to improve the precision of the geodesic

distance estimation is presented. The main principle of this heuristic is the same

in which the ISOMAP algorithms relies, which is the local linear assumption of

the manifold. The geodesic distance estimation is improved by solving a convex

optimization problem.

The locally linear assumption can be better explained by the following definition

[46]:
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Definition 2. The locally linear patch corresponding to a data point xi is defined

as:

Ωi =

{
Ni∑
k=1

λikxik,

Ni∑
k=1

λik = 1, 0 ≤ λik ≤ 1, k = 1, ..., Ni

}
(3.10)

where xik are the neighborhood vertexes of xi, and Ni is the number of vertexes in

the neighborhood.

The locally linear assumption (LLA) assumes that any locally linear patch Ωi

approximately resides on the manifold. As can bee seen, the the geodesic distance

calculation between two adjacent patches (two common vertex) will pass throughout

one of those vortex. But a more truly geodesic distance can be taught as passing

through a point (virtual vertex) between the two common vertexes. To facilitate

the discussion, a definition is given [46]:

Definition 3. A 2-chain patch is an ordered list of 2 locally linear patches in which

adjacent patches share common vertex. The 2-chain patch set, is the collection of

all 2-chain patches.

Figure 3–6 shows an example of a 2-chain patch. The geodesic distance calcu-

lation can be improved by solving the following convex optimization problem:

Figure 3–6: 2-Chain Patch in 3D Space.
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minimize
x

f(x) = ‖xi − x‖+ ‖xj − x‖

subject to x =

Ni∑
k=1

λkxik,

Ni∑
k=1

λk = 1

x =

Ni∑
k=1

µkxjk,

Ni∑
k=1

µk = 1

1 ≥ λk ≥ 0, k = 1, ..., Ni

1 ≥ µk ≥ 0, k = 1, ..., Nj

(3.11)

This is a strictly convex programing problem which can be efficiently solved.

A unique optimal solution x∗ can be obtained. Accordingly, the path from xi to

xj trough x∗ can be added to the original neighborhood graph to more accurately

reflect the geodesic distance from xi to xj.

Based on this analysis, Algorithm 8 the proposed geodesic distance calculation

is formulated. This algorithm is called the 2-chain geodesic distance Algorithm 2.2.2

[46].

Algorithm 8 2-chain geodesic distance

Input: Data set X = {xi}li=1

Output: Estimated geodesic distance matrix D = Di,j l×l
1: Apply any neighborhood graph construction method to build a graph G =

(V,E), where V is the vertex set X and E is the neighborhood edge set.
2: for All 2-chain patches Ωi and Ωj in the 2-chain patch set Λ2 do
3: Obtain the solution x∗ by solving the optimization problem. Let E = E ∪

(xi, xj), where the edge (xi, xj) is with weight f(x∗).
4: end for
5: Compute the length of the shortest path between any data pair xi and xj in

the neighborhood graph G = (V,E) and take it as the approximate geodesic
distance Di,j between the pair.

As was pointed earlier, this algorithm can be used as the first step for any

NLDR algorithm based on geodesic distance calculation. For this research work,

the only algorithm which relies on this distance measure is the ISOMAP algorithm.
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3.2 Performance Evaluation

The evaluation of the above proposed algorithms will be carried out using clas-

sification results on the low dimensional space.

3.2.1 Mahalanobis Distance Classifier

We want to obtain a rule that assigns each pixel into one of the C classes. The

parameter C refers to the number of classes where a given pixel can be classified.

This parameter depends on the particular characteristic of the image being stud-

ied. Mahalanobis distance is used in analyzing cases in discriminant analysis. The

Mahalanobis distance, Eq. (3.12) is the distance between the test point and the cen-

troid of each group (class). A given test point (pixel) has a given distance to each

centroid’s group, it is classified as belonging to the group for which its Mahalanobis

distance is the smallest. Thus, the smaller the Mahalanobis distance, the closer

the test point (pixel) to the group centroid, the more likely it is to be classified as

belonging to that group. If X is the vector pixel, Mi is the mean vector of the class

i,
∑
i

the covariance of the class i, and N the number of bands.

gi(x) = −(X−Mi)
T (
∑
i

)−1 (X−Mi) (3.12)

3.2.2 Maximum Likelihood Classifier

This classifier is based on statistical information. Assuming that the vector

pixel X is normally distributed with mean and covariance unknown, the likelihood

function becomes:
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gi(x) = −1

2
ln
∑
i

−(X−Mi)
T
∑
i

−1
(X−Mi) (3.13)

The vector pixel X belongs to the class that has the function with the largest

gi(x). The mean Mi and covariance matrix
∑

i are estimated from the training data

by the following estimators:

Mi =
1

ni

ni∑
k=1

Xk (3.14)

∑
i

=
1

ni − 1

ni∑
k=1

(Xk −Mi)(Xk −Mi)
T (3.15)

3.3 Summary

k-NN algorithm does not guarantee the connectivity of the graph. In this

case, there is a trade off between a small and a large value of k. A small value of

k tends to create disconnected graphs which reduces the performance of criterion

selected in this research, overall classification accuracy. The extreme case k = 0

all points are totally separated. On the other hand, a large value of k increases

the redundancy and overlapping of the connections. This also tends to lower the

classification accuracy as the data looses it discriminative capabilities. The extreme

case with k = N − 1 illustrates how the graph is transformed into a cluster where

all the points are connected.

Some graph construction algorithms will be used in the context of hyperspec-

tral data. The NLE algorithm is proposed as an alternative to the k-NN algorithm

without the need of the parameter k. The cam-distance algorithm is proposed as
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an alternative that is able to take into account the local variability in the distribu-

tion of the data, to better perform the nearest neighborhood selection. The graph

construction algorithms k-MST, k-EC and k-VC have the advantage of creating a

connected graph and have been proven to outperform the classical k-NN in artificial

datasets.

Finally, an algorithm to generate better estimates of the geodesic distance is

described. In this research, the only algorithm that relies on geodesic distance is

the ISOMAP algorithm. In the next chapter, tests will be performed using real

hyperspectral datasets.



Chapter 4

Algorithms Validation and Experimental
Results Using Hyperspectral Data

4.1 Methodology

Two different datasets were used to evaluate the performance of NLDR algo-

rithms. The process for dimensionality reduction is divided into three parts, Fig-

ure 4–1 shows a description of the process. The first part is graph construction.

For this part seven different approaches will be used: classical k-NN, k-MST, k-EC,

k-VC, cam-distance, and finally, for the ISOMAP algorithm, the 2-chain algorithm

to improve the geodesic distance estimation will be used. These approaches were

explained in Chapter 3.

34
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Figure 4–1: Process of NLDR.

The second part, is the nonlinear projection of the data into the low dimen-

sional space. This projection is performed using the NLDR algorithms explained in

Chapter 2. The algorithms used are LLE, ISOMAP and MVU, and the parameter

used is d which represents the number of lower dimensions of the space where the

data is projected. Finally, for the classification the well known Mahalanobis distance

and maximum likelihood classifiers were used. Figure 4–1 shows a sketch of all the

algorithms that are used for each part of the process of NLDR and the classifier

used to evaluate the performance.

Testing for each of the dataset will be divided in 6 parts. Each part will be

used to set some parameter of the algorithms in some of the cases, and in the other

cases will be used to evaluate the performance of a particular algorithms reducing

the number of parameters been varied. The evaluation of all possible combination of
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neighborhood selection algorithms with all the NLDR algorithms is huge, we focused

on few combinations.

First, the the NLE algorithm will be tested for hyperpectral images. This

algorithm for neighborhood selection has been extensively used in the literature of

computer vision as a successful attempt to construct the graphs independent of the

k parameter. Second, the cam-distance algorithm will be tested with different ratios

between the number of neighbors of the first and second iteration of the algorithm.

Third, the advantage of using graph construction algorithms that produce connected

graphs, will be shown by testing the k-NN algorithm with the lowest k that produces

a connected graph. Fourth, the coherent distance approach will be tested to validate

its usefulness for hyperspectral images. After performing these initials steps the best

performing algorithms for graph construction and a correct approximation for the

value of α on the cam-distance algorithm can be set.

The fifth step is to test changing different parameters, and using the above

algorithms mentioned to validate which of the algorithms outperforms the classical

k-NN. The sixth, and final step is to choose some of the graph construction methods

with the ISOMAP, the only Algorithm that depends on the geodesic distance. This

is done to evaluate how the optimization over the geodesic distance mentioned above

will perform using a real high dimensional dataset.

4.2 Experiment 1 - Fake Leaves

4.2.1 Imagery

The Fake Leaves dataset shown in Figure 4–2 is provided by Surface Optics

Corporation (SOC) as a testing data set of their SOC-700 hyperspectral camera

Figure 4–3. The classes in this image are true leaves, false leaves, wall, a jar, a
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metallic case, a flowerpot, plastic label, paper label, and lens cover of the SOC-700

hyperspectral camera that appears in the image. Only the first five classes were used

in the experiments. This dataset has 110 bands between 430 and 900 nanometers,

with a spectral resolution of 4 nanometers. A subset of 619 × 553 pixels was used.

Figure 4–4 shows the different areas of the image, white label corresponds to the

training area, and gray label corresponds to the testing area.

Figure 4–2: Fake Leaves Data Set (RGB corresponds to bands 90, 68, and 29).
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Figure 4–3: SOC-700 Hyperspectral Camera.

Figure 4–4: Testing and Training Data of the Fake Leaves Data Set.
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4.2.2 Results and Discussion

The NLE algorithm was used to construct the graph, the results are compared to

the performance using the k-NN algorithm. As the NLE algorithm does not depend

on the parameter k, the testing is this case is done by setting parameter k to 15, and

changing the number of dimensions of the lower space, where the data is projected.

The parameter k was set based on different test to evaluate the behavior of the

nonlinear projection when using the diferent algorithms. The overall classification

accuracy obtained using the LLE algorithm is shown in Figure 4–5, and using the

ISOMAP algorithm in Figure 4–6.

Figure 4–5: Overall Accuracy Using NLE for Graph Construction, LLE for DR and

Mahalanobis Distance for Classification.
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Figure 4–6: Overall Accuracy Using NLE for Graph Construction, ISOMAP for DR

and Mahalanobis Distance for Classification.

This algorithm has the drawback that it is too strict on reducing the redundancy

of the neighborhood construction, hence usually few neighbors are selected. In

the ideal case of a dense smooth sample manifold, this algorithm could perform

outstandingly well. However in this real hyperspectral data set the results were

poor. The mean value of neighbors found by this algorithm was 9.4, which shows

that the connectivity of the graph was too low. The MVU algorithm did not converge

in many cases due to the low connectivity of the graph, and for that reason those

results are not reported, only the results obtained with the LLE and ISOMAP

algorithms are reported.

Now the cam-distance algorithm with different ratios of the number of neighbors

in the first part of the algorithm with respect to the actual desirable neighbors will

be tested. For this purpose, the three NLDR algorithms will be used. Classification

will be done using the maximum likelihood classifier. The number of dimension

where the data is embedded is set to 12, and the number of neighbors is set to 15.
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The overall accuracy using the k-NN algorithm using d = 10 and k = 15 is plotted

in the subsequent figures showing the results. This accuracy is the same for all

the cases, as the only parameter being changed is the ratio of the two numbers of

neighbors needed for the cam-distance algorithm.

The results for the LLE, ISOMAP and MVU algorithms are shown in Figure 4–

7 to Figure 4–9 respectively. It should be noted that the results for the k-NN

algorithm is represented by a straight line, since the variation is over the factor α

for the cam-distance algorithm. Also, it should be noted that the actual value for

k1, the first number of neighbors in the cam-distance, was the nearest integer to the

value α× 15.

Figure 4–7: Overall Accuracy Using Cam-distance for Graph Construction, LLE for

DR and Maximum Likelihood for Classification.
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Figure 4–8: Overall Accuracy Using Cam-distance for Graph Construction,

ISOMAP for DR and Maximum Likelihood for Classification.

Figure 4–9: Overall Accuracy Using Cam-distance for Graph Construction, MVU

for DR and Maximum Likelihood for Classification.

From these figures, obtained by changing the parameter α, it should be noted

that the results using the ISOMAP algorithm are the ones that present lower vari-

ability. This can be related to how the geodesic distance is calculated, and how some
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incorrectly selected neighbors do not affect significantly how the geodesic distance

is estimated. It can be concluded that a range between 1.1 and 1.4 works correctly

for the three algorithms.

As mentioned before, the classical k-NN algorithm has the disadvantage that

a trade off is present. This trade off is between a small k which tends to create a

disconnected graph and a large k which generate redundancy in the connectivity of

the graph. For this particular dataset, the smallest value of k which generates a

connected graph, is k = 27.

NLRD Algorithm LLE ISOMAP MVU

Classification Accuracy 60% 57% 48%

The table above shows the classification accuracy obtained when the data is

projected into the lower dimensional space using the value of k and d = 8 with the

Mahalanobis distance classifier. This table shows how the performance is signifi-

cantly degraded due to the presence of redundancy in the connectivity of the graph.

From this test, it should be clear also that for any value of k below 26, the algorithm

k-NN always produces a non connected graph. This means that the mapping from

some data points to the lower space is unknown and for that reason the classifi-

cation accuracy is reduced. On the other hand, the graph construction methods

k-MST, k-VC and k-EC always generates connected graphs. Also it should notice

that the behavior in the classification accuracy when using the k-NN for graph con-

struction is expected to produce a bell shape as the number of neighbors goes from

1 to N, disjoint points and a cluster where every point is connected to each other

respectively.

Coherent distance (see Subsection 3.1), is an algorithm that includes the spatial

information present in the hyperspectral image by modifying the distance measure
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when constructing the graph. For this part of the test, the parameter d is fixed

to 8, the number of nearest neighbors is variated from 9 to 18 and the maximum

likelihood classifier is used. The cam distance algorithms is tested using a value

of α = 1.2. The overall classification accuracy tends to improve for most of the

combination of graph-construction algorithm and NLDR. To present a summary of

the results, only the two best and worst cases will be presented in full detail. It

should also be noted that as shown in [29] the classical k-NN algorithm was the one

which presented a better improvement in the performance for most cases.

On the other hand, the k-EC algorithm tends to reduce the performance when

the coherent distance is used. Figure 4–10 shows the result using the k-NN algorithm

and the ISOMAP algorithm. Figure 4–11 shows the result when using the k-VC

algorithm and the LLE algorithm. These combinations of algorithms where the

ones which presented the best improvement in the performance with and without

using the coherent distance. Finally, the Figure 4–12 shows result when using the

k-EC algorithm together with the MVU algorithm. In this case the performance is

actually reduced by a significant amount around 6% in the worst case.
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Figure 4–10: Overall Accuracy Using the k-NN Algorithm for Graph Construction,

and DR Using the ISOMAP Algorithm.

Figure 4–11: Overall Accuracy Using the k-VC Algorithm for Graph Construction,

and DR Using the LLE Algorithm.
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Figure 4–12: Overall Accuracy Using the k-EC Algorithm for Graph Construction,

and DR Using the MVU Algorithm.

At this point, we are ready to perform a comparison in the performance of the

different graph construction algorithms. The NLE algorithm will not be used as this

algorithm performs poorly on this data set. The parameter for the cam distance

algorithm will be α = 1.2, and the parameter d will be equal to 8. The coherent

distance will be used as it improves the performance for most of the algorithms.

Figure 4–13 shows the results when using all the graph construction algorithms.
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Figure 4–13: Overall Accuracy Using all the Described Graph Construction Algo-

rithms.

For the final test, the best performing graph construction algorithm when com-

bined with the ISOMAP algorithm was selected. The geodesic improvement esti-

mation algorithm described in Subsection 3.1.6 was applied to this case. The result

using the k-VC and the ISOMAP algorithm is shown in Figure 4–14. On 3% of the

cases, the optimization algorithm did not converge and then the optimization algo-

rithm was not used, instead the original geodesic estimation was used. Figure 4–14

shows the improvement in the overall accuracy.
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Figure 4–14: Overall Accuracy Improvement Using an Algorithm to Improve the

Geodesic Distance Estimation.

4.3 Experiment 2 - Indian Pines

4.3.1 Imagery

An image taken with the AVIRIS (Airbone Visible/Infrared Imaging Spectrom-

eter) sensor [47], flown by NASA/Ames on June 12, 1992, over an area 6 miles west

of West Lafayette, Indiana. This image contains 145 × 145 pixels and 220 spectral

bands in the 400-2500 nm range, for which ground truth exists and is shown in Fig-

ure 4–15. Bands 1-3, 58, 74-79, 101-112, 144-168, and 218-220 were removed from

the original image. Because of the memory requirement of the NLDR algorithms,

only a portion of the Indian Pines data set was used, this portion is shown in Fig-

ure 4–16 this portion contains four different classes. For this image, 15% of the data

in each class was used as training data.
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Figure 4–15: Right, Indian Pines (RGB composite bands 47, 24 and 14), Left,

Ground Truth.

(a) (b)
Figure 4–16: Section of the Indian Pines Image (a) RGB Image (Bands 47, 24 and

14), (b) Ground Truth.

4.3.2 Results and Discussion

The NLE algorithm was used to construct the graph, the results are compared

to the performance using the k-NN algorithm. The testing in this case is done by

setting parameter k to 12, and changing the number of dimensions of the lower space

where the data is projected. The parameter k was set based on different tests to
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evaluate the behavior of the nonlinear projection when using the NLDR algorithms.

The overall classification accuracy obtained using the LLE algorithm is shown in

Figure 4–18, and using the ISOMAP algorithm in Figure 4–17.

Figure 4–17: Overall Accuracy Using NLE for Graph Construction, LLE for Dimen-

sionality Reduction and Mahalanobis Distance for Classification.

Figure 4–18: Overall Accuracy Using NLE for Graph Construction, ISOMAP for

Dimensionality Reduction and Mahalanobis Distance for Classification.
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As mentioned before, the drawback of this algorithm is that few neighbors

are selected. In the ideal case of a dense smooth sampled manifold, this algorithm

could potentially perform outstandingly well, however in this real hyperspectral data

set the results were poor. The mean value of number of neighbors found by this

algorithm was 8.31, which shows that the connectivity of the graph was too low.

The MVU algorithm did not converge in many cases. For that reason, those results

are not reported, only the results obtained with the LLE and ISOMAP algorithms

are reported.

Now the cam-distance algorithm with different values of α will be tested. For

this purpose, the three NLDR algorithms will be used. Classification will be done

using the maximum likelihood classifier. The number of dimension where the data

is embedded is set to 10, and the number of neighbors is set to 12. The overall

accuracy using the k-NN algorithm using d = 10 and k = 12 is plotted in the

subsequent figures showing the results. This accuracy is the same for all the cases,

as the only parameter being changed is the ratio of the two numbers of neighbors

needed for the cam-distance algorithm. The result with the k-NN algorithm is

included only for comparison purposes.

Results for the LLE, ISOMAP and MVU algorithms are shown in Figure 4–19,

Figure 4–20 and Figure 4–21 respectively. It should be noted that the actual value

for k1, the first number of neighbors in the cam-distance, was the nearest integer to

the value α× 12.
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Figure 4–19: Overall Accuracy Using Cam-distance for Graph Construction, LLE

for DR and Maximum Likelihood for Classification.

Figure 4–20: Overall Accuracy Using Cam-distance for Graph Construction,

ISOMAP for DR and Maximum Likelihood for Classification.
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Figure 4–21: Overall Accuracy Using Cam-distance for Graph Construction, MVU

for DR and Maximum Likelihood for Classification.

From the figures obtained by changing the parameter α, it can be inferred that

the results using the MVU algorithm are the ones that present the greatest increment

in the performance. It can be concluded, that a range between 1.3 and 1.5 works

correctly for the three algorithms.

As mentioned before, the classical k-NN algorithm has the disadvantage that

a trade off is present. This trade off is between a small k which tends to create a

disconnected graph and a large k which generate redundancy in the connectivity of

the graph. For this particular dataset, the smallest value of k which generates a

connected graph, is k = 30.

NLRD Algorithm LLE ISOMAP MVU

Classification Accuracy 55% 63% 58%

The table above shows the classification accuracy obtained when the data is

projected into the lower dimensional space using the value of k = 30 and d = 8
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with the Mahalanobis distance classifier. This table shows how the performance

is significantly degraded due to the presence of redundancy in the connectivity of

the graph. From this test, it should be clear also that for any value of k below

30 the algorithm k-NN always produces a disconnected graph. This means, the

mapping from some data points to the lower space is unknown and for that reason

the classification accuracy is reduced. On the other hand, the graph construction

methods k-MST, k-VC and k-EC always generates connected graphs. Also, it should

noticed that the behavior in the classification accuracy, when using the k-NN for

graph construction, is expected to produce a bell shape as the number of neighbors

goes from 1 to N, disjoint points and a cluster where every point is connected to

each other respectively.

As before Coherent distance will be used. For this part of the test, the parameter

d is fixed to 10, the number of nearest neighbors is variated from 12 to 19 and the

maximum likelihood classifier is used. The cam-distance algorithms is tested using

a value of α = 1.4. The overall classification accuracy tends to improve for most of

the combination of graph-construction algorithm and NLDR. In summary, only the

two best and the worst cases are presented in full detail. It should also be noted

that, as shown in [29], the classical k-NN algorithm was the one which presented

highest improvement in performance for most cases.

On the other hand, for the k-EC algorithm, performance worsens when the

coherent distance is used. Figure 4–22 shows the result using the k-NN algorithm

and the ISOMAP algorithm. Figure 4–23 shows the result when using the k-VC

algorithm and the LLE algorithm. These combinations of algorithms where the

ones which presented the best improvement in the performance with and without
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using the coherent distance. Finally Figure 4–24 shows results when using the cam-

distance algorithm together with the MVU algorithm. In this case, the accuracy is

actually reduced by 7% in the worst case (12 neighbors).

Figure 4–22: Overall Accuracy Using the k-NN Algorithm for Graph Construction,

and DR Using the LLE Algorithm.

Figure 4–23: Overall Accuracy Using the k-VC Algorithm for Graph Construction,

and DR Using the LLE Algorithm.
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Figure 4–24: Overall Accuracy Using the k-NN Algorithm for Graph Construction,

and DR Using the MVU Algorithm.

Now a comparison in the performance of the different graph construction al-

gorithms is done. The NLE algorithm will not be used as this algorithm shows to

perform poorly on this data set as was evaluated before. The parameter for the

cam distance algorithm will be α = 1.4, and the parameter d will be equal to 10.

The coherent distance is used as this distance shows to improve the performance for

most of the algorithms combinations. Figure 4–25 shows the results when using all

the graph construction algorithms.
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Figure 4–25: Overall Accuracy Using all the Described Graph Construction Algo-

rithms.

For the final test the best performing graph construction algorithm when com-

bined with the ISOMAP algorithm was selected. The geodesic improvement esti-

mation algorithm explained in Subsection 3.1.6 was applied to this case. The result

using the k-MST and the ISOMAP algorithm is shown in Figure 4–26. On 7% of the

cases the optimization algorithm did not converge and then the optimization algo-

rithm was not used, instead the original geodesic estimation was used. Figure 4–26

shows the resulting improvement in the overall accuracy.
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Figure 4–26: Overall Accuracy Improvement Using an Algorithm to Improve the

Geodesic Distance Estimation.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this research work, six graph construction algorithms where evaluated to-

gether with three nonlinear dimensionality reduction algorithms. Also, an algorithm

to include spatial information in the DR process was included and an algorithm to

improve the geodesic distance estimation for NLDR was explored. Few combina-

tion of the mentioned algorithms where selected to get the best performance and a

fair comparison. A synthetic data test was performed where the classical k-NN ap-

proach has the disadvantage of generating short-circuits for small values of k, which

in high-dimensional data, is reflected as a misrepresentation of the global structure

of the data. The Laplacian Eigenmap algorithm was used but the performace was

comparatively lower to the NLDR algorithm reported in this report.

The performance of the algorithms was evaluated by using Mahalanobis distance

classifier and maximum likelihood classifier. Two hyperspectral datasets where used.

The results show that the NLE algorithm did a poor job compared to the other

algorithms. The k-MST, k-EC and k-VC neighborhood graph algorithms show

improvement in extracting the intrinsic structure of the hyperspectral data, this is

evidenced indirectly, by the better results obtained on the supervised classification

performed on the low dimensional space when using the different NLDR algorithms.

59
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The same result was seen when including spatial information in the construction of

the graph, which helps on capturing the intrinsic structure of the data, as evidenced

by the improvement in the overall accuracy.

Whether or not the high dimensional data really lies on a manifold is an open

problem. Theoretical work have been done [19] to try to answer this question,

however no definitive answer has been given. In this work an algorithm that improves

the geodesic distance estimation, which is build under the assumption that the data

lies in a manifold, was used and the overall accuracy was improved. This result

suggest that the data may lie on a manifold.

Disconnected graph turn out to be a problem when we want all the data to be

embedded into the new low dimensional space classification application, contrary

to what it is expected on anomaly detection applications. Strictly speaking the

classical graph construction algorithms are sensitive to spurious data, since getting

a connected graph might require a high value of k which turns out to misrepresent the

structure of the data. In the contrary, k-MST, k-EC and k-VC algorithms guarantee

connectivity of the graph which is a great advantage. Because high values of k tend

to misinterpret the structure of the data, and small values of k can be used for these

applications.

5.2 Future Work

• Study the performance of the Min-k-MST algorithm under the same experimen-

tal conditions. This is a robust algorithm to construct a connected graph. Is an

extension over the k-MST, k-EC and k-VC algorithms presented here. A compu-

tational performance comparison should also be done to evaluate the advantage of

the incremental versions proposed.
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• Test these algorithms with more NLDR algorithms like KPCA or Local Tangent

Space Alignment (LTSA). KPCA is of particular interest since this is a natural

extension of the linear PCA algorithm. However, new parameters come into play

when selecting the correct kernel function with its respective parameters. LTSA

have been successfully used in hyperspectral data, showing promising results.

• A combination of the cam-distance algorithm with any other algorithm for graph

construction can be done. In this case it was combined with the classical k nearest

neighborhood. But for example, the cam-distance can be used together with the

k-MST, k-EC and k-VC algorithms studied here. However, this will increment

the complexity of the graph construction process and more knowledge of the data

would be expected.

• Test the performance of these algorithms when noise is added to the images. Of

particular interest will be to evaluate the cam-distance algorithm which is expected

to overcome this problem up to a high level. Also, it will be expected that the

algorithm to improve the geodesic distance estimation performs good under this

conditions, since this algorithm is theoretically build under the idea to overcome

this situation.
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