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ABSTRACT 
 

 

Through simulation, an analysis of the run-length in Phase II reveals that the 

commonly used formula for the upper control limit (UCL) of Hotelling’s T2 control chart, 

proposed by Alt (1976), is not exact.  This study also shows that the in-control ARL 

depends on: (1) the total samples used to estimate parameters of Phase I, (2) the condition 

number of the estimated correlation matrix and (3) the desired in-control ARL. 

This research provides regression models, based on the condition number of the 

estimated correlation matrix, number of samples, number of variables and the desired in-

control ARL, for the prediction of the in-control average run length (ARLo) in Phase II of 

T2 Control Charts.  

When large samples are not available, the regressions can be used to correct the UCL 

to achieve values that are more exact. The corrections obtained are more conservative 

than the ones recently obtained using simulation by Champ et al. (2005). 
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RESUMEN  
 

 

El “run-length” es analizado a partir de los resultados de una simulación. Esta 

simulación muestra que el límite de control tradicional propuesto por Alt (1976) no es 

exacto. Este estudio también muestra que el “average run-length” en control depende de: 

(1) el número total de muestras usadas para estimar los parámetros en la fase I, (2) el 

número de condición de la matriz de correlación estimada y (3) el valor del “average run-

length” en control que se desea obtener. 

Este trabajo presenta modelos de regresión para la predicción del “average run-

length” (ARLo) en control de la fase II para las gráficas de control T2. Los modelos están 

basados en el número de condición de la matriz de correlación estimada, el número total 

de muestras usadas en la fase I, el número de variables y el valor objetivo del “average 

run-length” en control. 

Cuando no se dispone de un gran número de muestras, las regresiones que se 

proponen en este estudio, llevan una corrección en el límite de control (UCL). La 

corrección resultante es mas conservadora que la propuesta recientemente por Champ et 

al. (2005). 
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Es en ese espíritu nacional, pero el positivo, el que se abre al mundo, el que se cuestiona, el que 
tolera, el que abraza, el que integra, el que aplaude el éxito; y no el nacionalismo que se lamenta, 
que condena, el que divide, el que se encierra y protege la mediocridad, en donde finalmente los 
peruanos alcanzaremos el rostro definitivo de nuestra nación y con él, finalmente, la tan ansiada 
prosperidad. 
(Gastón Acurio en el inicio del año académico en la Universidad del Pacífico – Lima, 30 de marzo 2006) 
 
Different context, different narrative, different imagination. 
(Thomas Friedman in “The World is Flat”). 
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1 Introduction 
 
 
1.1 Motivation and General Purpose 

 

Multivariate quality control charts are statistical techniques used to monitor two or 

more quality characteristics at the same time. The most popular multivariate control chart 

is the T2 control chart used when the true population values are unknown and the 

underlying distribution is multivariate normal. This control chart is based on the 

Hotelling’s T2 statistic. The chart signals an out-of-control signal when the calculated 

statistic T2 for the process exceeds the upper control limit (UCL). These concepts are 

discussed in detail in Chapter 2.  

The run-length (RL) is the number of samples before a control chart signals an out-of-

control signal. The average run-length (ARL) refers to the expectation of the RL. For 

simple control schemes, the ARL can be computed as 

p
ARL 1

=      (1.1) 

where p is the probability of any point plots outside the control limits. When the chart 

signals a false alarm (out of control signal when process actually is in control), there is a 

Type I Error (α ) and the ARL can be calculated using Equation (1.2), and it is called in-

control ARL (ARL0). The probability of a true out of control signal can be calculated as   

1- Pr (Type II Error) (or 1- β ) and the ARL (called out-of-control ARL or ARL1) is 

calculated using Equation (1.3). 

α
1

0 =ARL      (1.2) 

β−
=

1
1

1ARL      (1.3) 

Simulations presented in the following chapters show that, for the Hotelling’s T2 

control chart, the in-control ARL, shows a large deviation from the theoretical in-control 
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ARL when the parameters are estimated from small samples confirming the problem 

stated by Champ et al. (2005). However, Champ et al. (2005) did not noted that 

deviations seem to depend on how well the covariance matrix is estimated. This not only 

affects the expected value but also the probability of getting early false alarms.  

This is an important problem to consider because in the industry large samples are not 

usually available, also early false alarms makes the control chart mistrust able.  

This thesis is focused in finding prediction models for the in-control ARL with 

parameters estimated of multivariate control charts. The idea is to find and provide a 

model that helps the industry to predict the in-control ARL especially when large samples 

are not available. 

This work has also identified that one source of this problem is the condition number 

of the estimated correlation matrix. Based in this factor, the models lead to correction in 

the upper control limit (UCL). The corrections are compared to the ones obtained by 

Champ et al. (2005) using simulation, resulting that the regression’s ones are more 

conservatives. 

 
 

1.2 Literature Review 
 

The first introduction of an extension of the x control chart was presented, as noted 

by Hauck, Runger and Montgomery (1999), by Shewhart in 1931. Assuming that there 

are p variables with a multivariate normal distribution, this chart signals if there is 

significant change in the mean or equivalently if  

UCLXXi >−∑−= − )'()( 01
1

01
2 μμχ    (1.4) 

where UCL is the control limit, 0μ and ∑ are the in-control values, which mostly are 

unknown. When these parameters are estimated by X  and S, expression (1.4) results in 

the Hotelling’s T2 statistic, which, as will be explained in Section (2.2), follows an F 

distribution.  
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The traditional control limit for the T2 control chart for subgroups was established by 

Alt in his master’s thesis in 1973 (Ryan, 2000) and then published in 1976 (Alt, 1976). 

These limits are presented in Section 2.3 (Equations 2.8 and 2.23). He also proposed two 

steps, the retrospective phase (Phase I) and the future observations phase or Phase II (see 

Section 2.3).  

The literature in multivariate control charts has been focused, in the Phase I, in 

obtaining in-control parameters after finding and eliminating out-of-control subgroups 

and in finding the cause of the out-of-control signal in Phase II.  

For example, Sullivan and Woodall (1996) focused in the estimation of the covariance 

matrix for a process with individual observations. For this case, considering that there 

can be special causes (i.e.: a shift or a trend) in the historical data, those cannot be 

detected by the common Hotelling’s T2 control chart because of the use of the pooled 

covariance matrix. The authors tested many alternatives of covariance matrix estimation 

and finally recommended an alternative analogous to the moving range in the univariate 

case (difference of successive observations). This estimator was evaluated then by Vargas 

(2003) trying to find outliers in the data for Phase I. He proposed the use of robust 

estimators for the mean and covariance matrix. He compared the results from six methods: 

the common covariance matrix, pooled covariance matrix, the minimum volume ellipsoid 

(MVE), the minimum covariance determinant (MCD), and two methods proposed by 

Sullivan and Woodall (1996), the one described previously and one outlier detection 

method based in Atkinson and Mulira (1993). His simulation study showed that the T2 

control chart using MVE is more effective in the detection of outliers but he also 

recommends Sullivan and Woodall’s method to detect shifts in the mean vector.  

For Phase II, most papers are concentrated in finding the cause of the deviation from 

the in-control state. Montgomery’s (2001) and Yai and Trewn’s (2003) books provide a 

collection of methods to find the cause of the out-of-control signals. Between the 

methods mentioned are discrimination analysis, principal components and statistic 

decomposition.   
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1.2.1 The problem of parameters estimation and ARL 
 

The ARL has been in discussion in recent years, Ryan (2000) states that the reasons 

are (1) the ARL is not a typical run-length (because its skewness) and (2) the standard 

deviation is large. This problem seems to be bigger when parameters are estimated. 

Quesenberry (1993) has discussed the problem of parameter estimation on the ARL 

for univariate control charts. If the parameters are estimated, control limits change with 

the estimation of the mean or standard deviation and this leads to disturb the run-length. 

In general, the conclusion of parameter estimation in univariate control charts is that the 

ARLs are overestimated, but, even if the parameters are estimated or not, the standard 

deviation of the run-length is always disturbing.   

Ryan (2000) noted that the problem of estimation parameters in the ARL, is also 

extended to all multivariate control charts as the variance-covariance matrix and the mean 

vector must be estimated, but the effect is not easy to describe.  He cites an unpublished 

work of Bodden and Rigdon that explain: (1) that large samples are needed for T2 control 

chart for individuals to perform as known parameters unless p (number of variables is 

small) and (2) the effect of overestimation reduces the in-control ARL more than 

underestimation increases the in-control ARL. 

Other approaches to solve the problem can be found in the correction of the UCL. The 

next section discusses some the authors that have covered the problem from the sample 

size point of view. 

 

1.2.2 Samples and UCL correction 
 

Neduraman, G, and Pignatiello Jr., J. J. (2000) discuss the problem that the 

approximation of the UCL proposed by Alt (1988) in Phase I is not exact. They develop a 

Montecarlo experiment to prove that the number of false alarms is not exactly the same 

as the one that can be achieved given a Type Error I. They propose the use of 
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Bonferroni’s adjustment in which the false alarm probability was set at m/α  where α is 

the overall false alarm probability for all m initial subgroups which results to obtain better 

results.  They found that between )1(3800 −np  and )1(3400 −np  subgroups of size n, 

the T2 with estimated parameters performs like if the parameters were known using the χ2 

control limit. 

Another similar work was done by Lowry and Montgomery (1995); they find the best 

combination of subgroups (m and n) and number of variables (p) for which the UCL 

calculated by Equation (2.23) is within 10% of the limits as if the parameters were known 

using the approximation (1-α )th percentile of the χ2 distribution with p degrees of 

freedom. This work is important because it implies that the approximation of UCL to the 

percentile of χ2 distribution for the χ2 control charts is related to the number of variables 

being monitored and the subgroup size.  

A recently published paper by Champ et al. (2005) presents the problem that is 

described in Chapter 3: Alt’s approximation does not lead to the exact in-control ARL of 

α1 . Their proposal is that the in-control run-length does not depend on the unknown 

parameters. They show that large number of samples is necessary to Alt’s UCL 

approximation to the F-distribution gets the exact in-control ARL; the total number of 

samples, mn , ranges from 900 – 550 for p from 2 to 10. Also by simulation, they present 

corrections to the UCL to achieve correctly the in-control ARL with a standard error of 

2% using combinations of few sample numbers of small size.  

 
 

1.3 Organization 
 

After this introduction, basic concepts and the notation necessary to understand the 

problem are presented in Chapter 2. The third chapter establishes the problem. Chapter 4 

presents the experiment and some additional concepts including the effect of the 

condition number on the T2. The fifth chapter has the analysis of the results and the 

models based in multiple regression. Chapter 6 presents the procedure for determining 
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the in-control ARL using the models depending on the condition number with an 

example and a comparison with the results of Champ et al (2005). The last chapter 

establishes final conclusions and guidelines for future work.  

Additional to the chapters, this work has attached 8 appendices. Appendix A one has 

information about the condition number and also presents a procedure to find matrices 

with a predefined condition number. Appendix B has the evaluation of the proposed 

design, The fractional designs used in the simulation for p = 4, 5 and 6 are shown in 

Appendix C. Appendix D shows the sample size necessary to a better estimation of the 

correlation, the fourth appendix has tables with information about the percentiles of the 

run-length distribution. Appendix E has the tables containing the percentiles of the run-

lengths obtained by simulation. The Box-Cox transformation procedure is presented in 

Appendix F, and the details of the regression models are presented in Appendix G and H, 

and the last appendix (I) has the Matlab code used in the simulation.  
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2 Basic Concepts 
 

 

This chapter discusses several concepts: It starts with an introduction to the concept 

of control chart, multivariate hypothesis testing and the T2 statistic, and concludes with 

multivariate control charts as an extension of multivariate hypothesis testing. The 

notation, necessary for the following chapters, is also covered. 

 

 
2.1  An Introduction to Control Charts  

 
A control chart is a tool used in statistical quality control (SQC) to monitor quality 

characteristics in a process. Control charts can be classified as univariate control charts or 

multivariate control charts, depending on the number of quality characteristics of interest.  

In general, control charts use fixed size samples taken at fixed intervals of time or can 

use individual observations. For both cases, a quality characteristic(s) is(are) inspected 

and, with this(these) value(s), a statistic is calculated. This statistic is used to perform a 

hypothesis test to determine whether the process appears to be “in control”.  

“In control” is defined as the expected or desired value of the variable being 

monitored with a determined variation. If, one or more variables appear to deviate from 

its desired value, or if the variation in one or more of the variables seems to have 

increased, the process is considered out of control.  Specifically, univariate control charts 

controls changes in the mean or variance of the process, and multivariate control charts 

monitors not only the mean vector but also the correlation structure of the variables. The 

detection of a change in the mean vector or correlation structure of the chart variables is 

done through control limits. Control limits are set in the attempt to satisfy: 

- A low probability that the chart signals when the statistic falls outside of the 

control limits when the process is in control or probability of a Type I error 

(α ). 
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- A high probability that the chart signals when the process is out of control or 

probability of a Type II error (β ).  

The value of α  determines the in-control average-run-length (ARL), see Equation 

(1.2), which is the expected number of samples until a signal occurs. A signal in the in-

control case is a false alarm. Therefore, it is desirable to have a large in-control ARL.  

The value of β  determines the out-of-control ARL (see Equation 1.3). A signal in the 

out-of-control case should occur quickly. Therefore, a very low out-of-control ARL is 

desirable. The in-control ARL and the out-of-control ARL are the key performance 

measures of both univariate and multivariate control charts. These are the most common 

efficiency performance measurement used to evaluate control charts.  

Multivariate control charts have the advantage that are able to monitor multiple 

quality characteristics simultaneously for both changes in the mean value and the 

correlation structure while maintaining a lower probability of Type I error.  Instead of 

using a multivariate control chart, it may seem reasonable to maintain a separate 

univariate control chart for each quality characteristic. However this is inappropriate. 

Each of the separate univariate charts will have its own characteristic value. When the 

charts are aggregated, the overall probability of a Type I error increases significantly, 

decreasing the in-control ARL. A multivariate chart uses a multivariate distribution to set 

the control limits.  

Multivariate control charts disadvantage lays in their difficulty to identify which 

subset of the quality characteristics are responsible for a signal since any single 

characteristic or combination of characteristics could have experienced a shift in mean 

value, variance, or correlation. This makes it hard to gain insight from a signal in a 

multivariate chart that would lead to the determination of the source of change in the 

process behavior. Commonly used multivariate control charts are the 2χ  chart, for a 

known covariance matrix, and Hotelling’s T2 chart, for an unknown covariance matrix. 
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2.2 Multivariate Hypothesis Tests and T2 Statistic 
 

Consider the following test of hypothesis: 

0100 :.: μμμμ ≠= HvsH  

If { }nXXX ,...,, 211  is a random sample from a normal population. The test statistic is 
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The t-statistic follows a t-student distribution with n-1 degrees of freedom (d.f.) and 

we reject H0 if | t | exceeds a critical value t for a significance level ofα . Considering that 

rejecting H0 for large values of | t | is equivalent to reject H0 for large values of t2, 

Equation (2.1) can also be expressed as 
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S is the nonnegative definite sample variance-covariance matrix and n is the sample size 

for each calculated x . 

If one assumes that ),(~ ∑μpNX is a random variable with a multivariate normal 

distribution then the covariance matrix S is proportional to XTX  which follows a Wishart 

distribution Wp(n,Σ), hence ),(~ ∑nWS p . If X and S are independent, then the probability 

distribution of T2 when 0μμ =  (simultaneously tested) is the Hotelling's T² distribution  

pnpF
pn

pnT −−
−

,
2 )1(~  

where Fp,n-p is a random variable with an F-distribution with p and n-p d.f.;  and, as in the 

univariate case, if the observed T2 statistics is “too” large the null hypothesis 

( 00 : μμ =H ) is rejected.  

 

2.3 Multivariate Control Charts 
 

Hotelling’s chart uses Hotelling’s T2 statistic to monitor several variables 

simultaneously with a specified probability of Type I error. In the multivariate case, p 

variables are desired to be controlled. Hotelling’s T2 statistic is used when the covariance 

matrix of the correlated quality characteristics variables is assumed to be unknown. When 

the covariance matrix is assumed to be known the 2χ statistic is used. As Montgomery 

(2001) points out, Hotelling’s T2 control chart is the analogous of the Shewhart x chart 

for multiple characteristics with true population values unknown. It is also assumed that 

the joint distribution of these p variables is the p-variate normal distribution. There are 

two versions of this control chart, one for individual observations and other for grouped 

data. For both models, Alt (1976) and then Alt and Smith (1988) defined two phases. 
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2.3.1 Phase I: Estimation of process parameters 
 

Phase I, also known as retrospective analysis, is used to establish control. Its 

objective is to obtain an in-control set of observations to estimate process parameters and 

to calculate the control limits for Phase II. The procedure for this Phase is shown in 

Figure 2.3-1. 

 
Figure 2.3-1. Phase I: Retrospective Analysis Procedure 

  

In this phase the important part is the estimation of the in control 

parameters 00 ,∑μ . A few recommendations for determining in-control parameters can 

be found in Alt and Smith (1988) and Duncan (1974). The former states that 0μ  and 0∑  

can be evaluated from a large amount of historic data. The latter proposes that those 

parameters can be targets selected by management. 

Phase I: Retrospective 
Analysis 

Take m samples of size 
n 

Estimate μ̂ and Σ̂  

Any 
T2>UCL? 

Process  
in-control 

Yes 

No 

Calculate the T2 for all 
samples (1…m) 

Eliminate samples with 
T2>UCL if there is an 

assignable cause 
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The control limits for Phase I are different for grouped data and for individual data. 

Equations (2.8) and (2.9) show the control limits for the subgrouped data case. Control 

limits for the individual observations case are given by Equations (2.10) and (2.11). 
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where: m is the number of samples, n is the subgroup size or sample size, p is the number 

of variables or quality characteristics and α is the type I error. 

It is clear that the control limits are the upper and lower percentile of the 

approximation of the T2 to the F distribution for sub-grouped data. The approximation of 

is given by Alt (1988).  

For the individual observations case, the Beta distribution is used. Tracy et al. (1992) 

has a complete discussion about this. In this case, both parameters are usually estimated 

with the pooled estimators of the average, see Equation (2.12) and the covariance matrix, 

Equation (2.13). 
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Using these parameters, the T2 can be calculated as 

)()'( 0
1

00
2 μμ −∑−= − xxT      (2.14) 

The procedure calls for removal of observations with T2 over UCL, calculated in 

Equations (2.8) or (2.10), to achieve an in-control set of observations. However, 

Hotelling’s T2 control chart does not detect shifts, trends or outliers efficiently and many 

authors have focused their work in the estimation of these process parameters, as it was 
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discussed in Section 1.2, Sullivan and Woodall (1996) and Vargas (2003) offers 

alternatives to solve this problem. 

For subgrouped data, following Montgomery (2001), the sample means and variances 

are calculated for a simple sample, that is:   
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where xijk is the ith observation on jth quality characteristic in the kth sample. The 

covariance between quality characteristics j and h in the kth sample is: 
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Then 2
,, jkjk Sx  and jhkS   are averaged over all m samples to obtain: 
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Finally the{ }jx are the elements of the vector x , and the sample covariance matrix S 

is formed as 
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and the T2 for subgrouped data can be calculated using the following formula 

)()'( 12 xxSxxnT −−= −     (2.22) 

 

2.3.2 Phase II: Future Observations 
 

Once, the process parameters have been estimated, the phase of future observations 

monitoring starts. The procedure is the same as in Shewhart Control Charts (see Figure 

2.3-2). 

 
Figure 2.3-2. Phase II: Future Observations Procedure 
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 For this phase the control limits for subgrouped data are shown in Equations (2.23) 

and (2.24). For individual observations the control limits are in Equations (2.25) and 

(2.26).   
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These limits are used as an analogous to the Shewhart X  control chart. Their 

interpretation, however, is not as easy as in univariate control charts. Many authors have 

studied and proposed methods for understanding out of control signals: x   charts with 

Bonferroni-type limits (Alt, 1988), decomposition of T2 to see the variable that 

contributes the most (see Runger, Alt and Montgomery, 1996 for example) and many 

more. But, regardless of the method, the basic idea is to find an unusual behavior in the 

variables being monitored.  These control limits must be regularly updated, Alt (1976) 

suggests updates after m+5, m+10, m+25, m+50 and m+100 subgroups. 
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3 Problem Description 
 
 
 

Section 1.2 has pointed out the problem of estimation in the ARL. Ryan (2000) 

proposes that ARL for Phase II with estimated parameters can only be obtained by 

simulation. Under this recommendation, a simulation was developed to show that in 

Hotelling’s T2 control charts, the in-control ARL has a deviation from the design value. 

This problem is more evident when few samples are being used to estimate the 

parameters. The experiment used to show this problem is described in detail. 

The Chapter is organized in two sections, the first one describes the procedure to 

simulate samples, estimate the parameters and calculate the in-control ARL for a 

Hotelling’s T2 control chart. The second part shows the results for a particular example to 

illustrate the problem. 

 

3.1 In‐control ARL Simulation Procedure 
 
 

The procedure followed was divided in two parts, based in the Phases proposed by 

Alt (see Chapter 2, Section 2.3).The fist part deals with the estimation of the parameters 

and the second is the computation of the in-control ARL. 

 

3.1.1 Step 1: Estimation of parameters 
 

The objective of this part is the estimation of the in-control parameters: the mean ( μ̂ ) 

and covariance matrix ( ∑̂ ): 

a. Fix in control values for the mean ( 0μ ) and covariance matrix ( 0∑ ). 
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b. Using the in-control values 0μ and 0∑ , generate m multivariate samples, 

each one of size n following a multivariate normal distribution with the 

parameters in control.  

c. For each multivariate sample of size n, estimate the mean and covariance 

matrix using Equations (2.15), (2.16) and (2.17). 

d. Estimate the process mean and covariance matrix using Equations (2.18), 

(2.19) and (2.20). 

Since all data are generated using the in-control parameters, we do not check whether 

the T2 for each sample lower than the UCL. 

 

Figure 3.1-1. Procedure for the estimation of parameters 
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For this step a standardization of the parameters has been considered. The 

procedure for standardization is the same as used by Hauck, Runger and Montgomery 

(1999): 

- The covariance matrix is “standardized” to obtain the correlation matrix 

(R). 
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The values of jjS  are obtained from Equation (2.21). 

- Sample means are standardized to  
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Where jx  is the j-component of the 0μ̂  vector. 

Since the parameters are estimated, the standardization has three effects: 
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Equation (2.14) now becomes 



 
 
 

 
 

 34

ZRZnT 12 ' −=      (3.3) 

The numerical example (Section 3.2) shows that there is no difference calculating the 

T2 so the next steps use standardized values instead of the original ones. 

 

3.1.2 Step 2: Run-length and Average run-length calculation 
 

In this step, the ARL is calculated after calculating the RL. The procedure to calculate 

a false alarm signal is shown in Figure 2.3-1. 

 

Figure 3.1-2. Procedure for Run-length calculation 
 

A sample of size n following the Np(μ0,Σ0) distribution is generated, then 

standardized statistic T2 is obtained, this value is compared with the UCL using  Equation 

(2.23).  
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The RL would be the number of samples until a T2 exceeds the UCL. The ARL is the 

mean of the RLs after repeating the previous procedure a considerable number of times.  

The T2 is estimated using Equation (3.3). Note that now, in the Equation (2.23), 0μ  is 

replaced by Z and the estimated covariance matrix is replaced by the correlation matrix. 

 
 
3.2 Numerical Example 

 

A numerical example to illustrate the procedure of Section 3.1 was coded in Matlab 

7.0.1(see Appendix H).  The in-control parameters considered are 
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After using n = 5 and m = 100, in-control mean and covariance matrix were estimated as 
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Figure 3.2-1. Comparison between Phase I’s T2 for (a) non standardized 
values and (b) standardized  values using (m=100). 

 

After standardization, we have 
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Now, the estimated mean is a vector of zeros, and the T2 is evaluated using Equation 

(3.3). All 100 T2 with standardized and non-standardized were calculated and plotted in 

Figure 3.2-1. The out-of-control point is, as it was previously explained, a false alarm 

signal. 

The sample size (m) used in Phase I to estimate the parameters for this experiment 

was 100. The ARL was estimated as the average of 100 Run-lengths and the subgroup 

size, n, was fixed at 5 and the number of variables considered was 3. 
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Another possible cause of the difference between the observed ARL and Alt’s 

approximation is error in the correlation matrix. This simulation uses different correlation 

matrices. Let us assume that fr is the estimator of the true value for a correlation r, where 

f is a multiplicative constant that accounts for the estimation error. For example, if the 

true correlation is r = 0.5, but is overestimated as 0.55 (=fr), then the value of f is 1.1. If 

the correlation is underestimated, then f<1; however, if it is overestimated, then f>1. 

Obviously, in practice, the value of f is unknown, but in this simulation, the true value of 

the correlations are known, consequently the value of f can be computed as the ratio of 

the estimated correlation to the true correlation. Equation (3.4) summarizes these 

calculations for any particular element of the correlation matrix. In this equation, )(+r  

denotes the overestimated correlation and )(−r  denotes the underestimated correlation. 

Moreover, to assure that the experiment runs with both underestimated and overestimated 

values of the correlations, for each overestimated (underestimated) correlation, the 

simulation computes r/f, the corresponding underestimated (overestimated) correlation. In 

the numerical example, besides running the computational experiments with the 

overestimated correlation of 0.55, the experiments also runs with the underestimated 

correlation 0.5/1.1 = 0.4545.       

)(

2
)(

ˆ
ˆ

+−
−+ =

ij

ij
ij r

r
r       (3.4) 

For this simulation, since there are 3 correlations (r12, r13 and r23) the simulation of 

the in-control ARL was done with all combinations of their opposite correlations: 

- Correlation Matrix 2, changes all the correlations. 

- Correlation Matrix 3, changes r12 and r21. 

- Correlation Matrix 4, changes r13 and r31. 

- Correlation Matrix 5, changes r23 and r32. 

- Correlation Matrix 6, changes r12, r21, r13 and r31. 

- Correlation Matrix 7, changes r12, r21, r23 and r32. 

- Correlation Matrix 8, changes r13, r31, r23 and r32. 
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The idea is to observe the effect in the in-control ARL of all possible combinations of 

correlations in the Correlation Matrix.  

 

Table 1. Correlation Matrices (m = 100) 
 Correlations 

Correlation 

Matrix 
r11 r12 r13 r21 r22 r23 r31 r32 r33 

0: Real  

1: Estimated 

2 : Opposite 

3 

4 

5 

6 

7 

8 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-0.5 

-0.4581 

-0.54573 

-0.54573 

-0.4581 

-0.4581 

-0.54573 

-0.54573 

-0.4581 

0.5 

0.52479 

0.47638 

0.52479 

0.47638 

0.52479 

0.47638 

0.52479 

0.47638 

-0.5 

-0.4581 

-0.54573 

-0.54573 

-0.4581 

-0.4581 

-0.54573 

-0.54573 

-0.4581 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.25 

0.24432 

0.25581 

0.24432 

0.24432 

0.25581 

0.24432 

0.25581 

0.25581

0.5 

0.52479 

0.47638 

0.52479 

0.47638 

0.52479 

0.47638 

0.52479 

0.47638 

0.25 

0.24432 

0.25581 

0.24432 

0.24432 

0.25581 

0.24432 

0.25581 

0.25581

1 

1 

1 

1 

1 

1 

1 

1 

1 

 

The results of the in-control ARL estimated using correlations matrices 1 to 8 are 

shown in Table 2. In-control ARLs were estimated for α = 1/100, 1/300, 1/500,…,1/1300 

which under Alt’s  2.23 would give in-control ARLs (Theoretical ARL) of 100, 300, 

500,…, 1300.  

 

Table 2. ARL results (m = 100, n = 5 and p = 3) 
 Simulated ARL (Average of 100 run-lenghts) 

Theoretical 
ARL (Alt) 1 2 3 4 5 6 7 8 Average

100 

300 

500 

700 

900 

123.15 

338.54 

597.33 

992.64 

1326.5 

75.64 

206.22 

359.68 

503.57 

703.07 

50.77 

124.98 

209.14 

292.42 

313.46 

143.32 

422.23 

870.98 

1432 

1459.5 

118.2 

297.08 

535.83 

933.93 

1125.2 

78.05 

234.06 

371.93 

590.83 

781.2 

45.92 

109.74 

171.74 

242.07 

264.35 

138.19 

438.76 

836.79 

1349.1 

1417.1 

96.66 

271.45 

494.18 

792.07 

923.8 
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 Simulated ARL (Average of 100 run-lenghts) 

Theoretical 
ARL (Alt) 1 2 3 4 5 6 7 8 Average

1100 

1300 

1767.9 

1643.8 

1029.4 

793.22 

465.38 

473.2 

2287.5 

2204.8

1696.2 

1482.3

1104.2 

914.91

361.41 

392.25 

2154.7 

2163.4 

1358.34 

1258.49 

 

Figure 3.2-4 shows the plotted values compared with the theoretical ARL. 
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Figure 3.2-2. In-control ARL (m = 100, n = 5) 
 

It is clear that, even when the average is close to the theoretical value, the deviation of 

the in-control ARL to the theoretical value increases as α  decreases. Observing the 

average of ARLs, Alt’s approximation seems to be good for obtaining in-control ARLs 

under 300.  The following figure shows the scaled difference between the theoretical 

ARL and the simulated ARL. 
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Figure 3.2-3. Scaled difference of the in-control ARL (m = 100, n = 5) 
 

Where the scaled difference has been computed as 

ltheoretica

simulatedltheoretica

ARL
ARLARL −

     (3.5) 

The average departure, evaluated after applying the absolute value to each scaled 

difference is 45%, which is considerably significant. 

 The same experiment was performed now with m = 30 and m = 1000, also fixing p 

and n in 3 and 5 respectively. The results are shown in  Tables  4  and 6. The correlations 

are in Tables 3 and 5.  
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Table 3. Correlation matrices (m = 30) 
 Correlations 

Correlation 

Matrix 
r11 r12 r13 r21 r22 r23 r31 r32 r33 

0: Real  

1: Estimated 

2 : Opposite 

3 

4 

5 

6 

7 

8 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-0.5 

-0.52237 

-0.47859 

-0.47859 

-0.52237 

-0.52237 

-0.47859 

-0.47859 

-0.52237 

0.5 

0.49577 

0.50427 

0.49577 

0.50427 

0.49577 

0.50427 

0.49577 

0.50427 

-0.5 

-0.52237 

-0.47859 

-0.47859 

-0.52237 

-0.52237 

-0.47859 

-0.47859 

-0.52237 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.25 

0.1837 

0.34023 

0.1837 

0.1837 

0.34023 

0.1837 

0.34023 

0.34023

0.5 

0.49577 

0.50427 

0.49577 

0.50427 

0.49577 

0.50427 

0.49577 

0.50427 

0.25 

0.1837 

0.34023 

0.1837 

0.1837 

0.34023 

0.1837 

0.34023 

0.34023

1 

1 

1 

1 

1 

1 

1 

1 

1 

 
Table 4. ARL results (m = 30, n = 5 and p = 3) 

 Simulated ARL (Average of 100 run-lenghts) 

Theoretical 
ARL (Alt) 1 2 3 4 5 6 7 8 Average

100 

300 

500 

700 

900 

1100 

1300 

64.52 

216.74 

402.58 

513.87 

745.18 

782.21 

1002.4 

35.01 

102.98 

150.02 

185.32 

188.38 

252.91 

300.06 

75.16 

267.57 

498.03 

717.78 

843.43 

954.31 

1212.9

59.33 

206.09 

390.02 

499.75 

673.17 

730.21 

983.32

22.19 

54.19 

81.04 

97.95 

79.49 

135.11 

139.61

69.93 

269.52 

511.04 

634.03 

818.75 

934.56 

1215 

36.72 

114.24 

187.49 

233.43 

237.35 

299.53 

362.55 

20.42 

45.05 

62.29 

85.45 

58.73 

96.33 

123.44 

47.91 

159.55 

285.31 

370.95 

455.56 

523.15 

667.41 
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Table 5. Correlation Matrices (m = 1000) 
 Correlations 

Correlation 

Matrix 
r11 r12 r13 r21 r22 r23 r31 R32 r33 

0: Real  

1: Estimated 

2 : Opposite 

3 

4 

5 

6 

7 

8 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-0.5 

-0.49665 

-0.50337 

-0.50337 

-0.49665 

-0.49665 

-0.50337 

-0.50337 

-0.49665 

0.5 

0.49753 

0.50249 

0.49753 

0.50249 

0.49753 

0.50249 

0.49753 

0.50249 

-0.5 

-0.49665 

-0.50337 

-0.50337 

-0.49665 

-0.49665 

-0.50337 

-0.50337 

-0.49665 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.25 

0.25609 

0.24406 

0.25609 

0.25609 

0.24406 

0.25609 

0.24406 

0.24406

0.5 

0.49753 

0.50249 

0.49753 

0.50249 

0.49753 

0.50249 

0.49753 

0.50249 

0.25 

0.25609 

0.24406 

0.25609 

0.25609 

0.24406 

0.25609 

0.24406 

0.24406

1 

1 

1 

1 

1 

1 

1 

1 

1 

 

Table 6. ARL results (m = 1000, n = 5 and p = 3) 
 Simulated ARL (Average of 100 run-lenghts) 

Theoretical 
ARL (Alt) 1 2 3 4 5 6 7 8 Average

100 

300 

500 

700 

900 

1100 

1300 

113.56 

317.92 

511.74 

694.74 

918.14 

1220.6 

1369.2 

109.39 

310.31 

513.63 

679.92 

864.36 

1240.6 

1377.3 

109.31 

300.63 

486.68 

618.63 

819.73 

1144.7 

1297.6

112.19 

305.95 

504.84 

641.51 

843.12 

1156.8 

1310.5

116.59 

336.61 

519.33 

750.76 

958.46 

1292.8 

1500.3

107.05 

295 

465.1 

600.94 

779.41 

1108.6 

1256 

114.78 

320.18 

514.13 

697.84 

939.99 

1285 

1451.6 

116.05 

318.21 

526.27 

708.71 

910.52 

1293.2 

1412.2 

112.37 

313.10 

505.22 

674.13 

879.22 

1217.79 

1371.84 

 

Figure 3.2-4 and Figure 3.2-5 display the plot of those values versus the theoretical 

Alt’s in-control ARL. 
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Figure 3.2-4. In-control ARL (m=30, n = 5) 
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Figure 3.2-5. In-control ARL (m=1000, n = 5) 
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When correlations matrices are estimated from small samples the simulated in-control 

ARL is underestimated, that means that the chart will signal a false alarm sooner than 

expected. On the other hand, if correlation matrices are estimated from a large sample, 

the in-control ARL seems to produce very close results to the expected. 

Checking the scaled differences, the average scaled difference (after applying 

absolute value to the scaled differences), give us an average departure of 48.64% for the 

matrices estimated with small samples (m = 30 and n = 5) and only an average departure 

of 7% for matrices estimated with large samples (m = 1000 and n = 5). 
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Figure 3.2-6. Scaled difference of the in-control ARL (m = 30, n = 5) 
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Figure 3.2-7. Scaled difference of the in-control ARL (m = 1000, n = 5) 
 

 
3.3 Observations 
 

From this first simulation, we observe that: 

1. Alt’s recommendation (Alt, 1988) of using a large amount of historical data to 

obtain the in control parameters seems to be good (see results when m = 1000 

and n = 5). This results confirms the work by Champ et al. (2005) who, as it 

was explained in Chapter I, has recently find the combination of mn that makes 

Alt’s approximation work the better.  

2. Even when it is necessary to perform another experiment to determine exactly 

the parameters that influence in this problem, it can be inferred from the 

previous simulation, that the estimation of the Correlation Matrix (how far is 

from the real Correlation Matrix) has serious influence in the in-control ARL 

estimation. The next chapter deals with this, under the assumption that the 

condition number is a good characterization of the correlation matrix.    
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4 Experimental Methodology 
 
 
 

To determine what variables affect the previously described problem, it is necessary 

to perform an experiment that not only determines the factors but also help us to fit a 

prediction model. This Chapter discusses the experiment methodology and the additional 

theoretical background to understand the procedure employed. The first part contains an 

explanation of response surface modeling, a brief explanation of the most common 

designs in this family, and the justification of the chosen design: the Central Composite 

Design (CCD). The second part explains how to analyze a CCD. The third part shows in 

detail the design of the experiment employed in this work.  Finally, the last part explains 

the simulation developed to run the experiment.  

 

4.1 Response Surface Methodology (RSM) 
 

 

4.1.1 Definition 
 

RSM is a methodology used when, in addition to the identification of main factors, 

we want to find a model that helps us to predict. The RSM model has the following form 

εβββ

βββββ

++++++

++++++=

−−
22

1111,1

112112110

......

......

nnnnnnn

nnnn

xxxx

xxxxxxy
    (4.1) 

It is clear that this experiment is designed to fit a second order model that includes 

interaction and quadratic effects of the factors under study, which is the reason why this 

method has been selected for this work. 
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4.1.2 Common designs 
 

The two most used designs used in RSM are the central composite design and the 

Box-Behnken design. In these designs, the inputs take on three or five distinct levels, but 

not all combinations of these values appear in the design.  

 
4.1.2.1 Central Composite Design (CCD) 

 

The CCD uses a factorial or fractional factorial design with center points and adds 

points to estimate curvature. The idea is to choose points that their values maintain 

rotatability in the design. Usually this value is called the “axial distance” or “axial point”, 

denoted by ρ. The recommendation (see Montgomery & Myers, 1995) says that if the 

distance from the center point to the design space is ± 1 then | ρ | >1 and its value depends 

on the design and the number of factors: 

4/1)( runsfactorialofnumber=ρ    (4.2) 

The following figure shows the design for 2 factors 
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Figure 4.1-1.  (a) Factorial design (2 factors) with center point  (b) Central 
Composite Design ( 2 factors) 

 
 

4.1.2.2 Box-Behnken Designs 

 

These are designs that take only three levels instead of five. Each combination of the 

extreme values of two of the variables is tested, the remaining variables taking a coded 

level of zero. Figure 4.1-2 shows the design for three factors. These designs require fewer 

treatment combinations than a central composite design in cases involving 3 or 4 factors.  

Montgomery and Myers (1995) point out that the Box-Behnken design is nearly 

rotatable but it contains regions of poor prediction quality. It is usually recommendable 

only when the experimenter wants to avoid combination of factor extremes.  
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Figure 4.1-2. Box-Behnken Design (3 factors) 

 
 
 
4.2 Analysis of a Surface Design  
 

 

Linear regression and analysis of variance (ANOVA) are two of the most widely used 

statistical techniques. Regression describes the relationship between a response variable 

and one or more continuous independent variables by using least squares to determine the 

quantitative relationship. ANOVA determines whether a response variable differs among 

discrete values of the independent variable(s) which implies that ANOVA is not 

designed to be used as a prediction model only to find relevant factors. 
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4.2.1 Linear Regression 
 

The aim of this technique is to establish a relationship, between a response variable (y) 

and one or more independent variables, in the form  

εβ += Xy      (4.3) 

where X is a matrix of mxp, β is a vector of px1 of the regression coefficients and ε is the 

random error, assumed to be normal, independently distributed with constant variance.  

In linear regression, the main idea is to find a model that minimizes the sum of square 

error (SSERROR) defined by the square of the difference between the predicted value of y 

and its real value 

∑
=

−=
m

i
iiERROR yySS

1

2)( )     (4.4) 

The coefficients that minimizes this value are obtained from 

yXXX ')'(ˆ 1−=β       (4.5) 

The significance of the regression is evaluated with the Analysis of Variance that is 

explained in the next section.  But the most important measure is the coefficient of 

multiple determination R2  defined as 

TOTAL

ERROR

SS
SSR −= 12       (4.5) 

This coefficient measures the amount of variation in y explained by using the 

regressor variables included. However, the R2 always increases as we add terms in the 
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model, on the contrary many recommend the use of the adjusted R2
adj which decreases as 

we add unnecessary variables.  

 

 )1(11 22 R
pn

nR adj −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=      (4.5) 

  
4.2.2 Analysis of Variance (ANOVA) 

 

ANOVA is but a special case of regression, for example in one-way ANOVA we 

have the following model: every population mean contains μ and one effect treatment τi. 

The observations yij  follows the linear model 

ijiijy ετμ ++=        (4.6) 

ANOVA compares means by dividing the total variance in different parts. It divides 

the total sum of squares (SSTOTAL) in several components each one related to the effect or 

factor used in the model. 

effectneffectERRORTOTAL SSSSSSSS +++= ...1     (4.7) 

The same is applied to the degrees of freedom to construct the mean square (MS), 

which is the ratio between the sum of squares and its related degrees of freedom.  

The MSERROR is considered an estimation of the variance and its square root is an 

estimate of the standard deviation of the model.  

The significance of the factors is evaluated by using the F distribution, the MS of each 

factor is divided by the MSERROR to construct an statistic that follows an F distribution. If 

the statistic exceeds the critical value, then the factor is significant.  

In the case of the linear regression, the factors are grouped in one source of variation 

and the significance of the regression is obtained from the following statistic  
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ERRORREGRESSION MSMSF =0     (4.8) 

  

4.3 The effect of the condition number (k) in the 
computation of the T2 

 
 

One of the conclusions of the illustrative example in Section 3.3 is that correlation 

matrix seems to have an effect in the in-control ARL. One way to characterize the 

correlation matrix is using the condition number (see Appendix A for a more detailed 

discussion). The effect of the condition number on T2 can be illustrated using the 

following example. Consider an in-control correlation matrix S01 with a condition number 

(k) = 5.00. 

S01

1

0.571−

0.377

0.571−

1

0.059−

0.377

0.059−

1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=

 
 

Assume that we want to calculate the Hotelling’s T2 statistic for a shift in the mean 

vector from [ ]000  to [ ]210 xx −  where 1 ≤ x ≤ 1. This is a shift of one standard 

deviation from the in-control value in many directions on the plane x1x3. The following 

picture illustrates the change in the vector mean.  
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Figure 4.3-1. Shift in the x1x3 plane 

 

 

In this case, applying Equation (2.22), the statistic T2, with n = 1, ranges 

approximately from 0.82 and 2.2 for -1 ≤ x ≤ 1. Now suppose that the matrix S01 has been 

estimated by 

 

S11

1

0.542−

0.358

0.542−

1

0.056−

0.358

0.056−

1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=

 
 

This matrix has a reasonable error in the estimation (5%) of the correlations. 

Computing the T2 with this estimate correlation matrix, its values, when -1 < x < 1, are 

approximately between 0.82 and 2.00 which are practically the same results obtained 

with the original matrix. Figure 4.3-2 shows the robustness of the process.   
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Figure 4.3-2. T2 by x under shifts in the x1x3 plane (p =3, n = 1) 

 
 

Now let’s consider an in-control matrix, S02, with a large condition number , k  = 100  

 

S02

1

0.893

0.893

0.893

1

0.664

0.893

0.664

1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=

 
 

Now, using the same vector of shifts, from [ ]000  to [ ]210 xx − , and n = 1, 

the corresponding T2 values range from 1.4 and 31.4.  Now let’s see the effect of 

estimation in S02. Consider the matrix S12 which is an estimate of S02 with an estimation 

error of 5% in the correlations (as before): 

 

S12

1

0.848

0.848

0.848

1

0.631

0.848

0.631

1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=

 
 

One would expect a similar situation as in the case with a low condition number. 

However, the T2 computed using S12 now ranges from 1.4 to 11.5 (see Figure 4.3-3), 

considerably different from the values of T2 with S20.  
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Figure 4.3-3. T2 by x under shifts in the XZ plane (p =3, n = 1) 

 
 

From this example, two observations about the condition number can be noted: 

 

a. The effect of estimation is not a problem for well-conditioned matrices.  

b. The effect of estimation is a serious problem for ill- conditioned matrices.  

 

Hence, the condition number can be considered as an important factor for the design 

of the experiment presented in the following section. 

 
4.4 Design of the Experiment 
 
  

4.4.1 Objectives 
 
 

As it was mentioned at the beginning of this Chapter, the purposes of the experiment 

are 

1. To find the relevant factors that affect the expected value of the ARL 
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2. To adjust a model that can be used to predict the expected value of the ARL 

 
4.4.2 Factors  
 

The factors considered are 

1. The number of quality characteristics (variables), p. 

2. The number of samples in Phase I, m, used to estimate the mean vector and the 

correlation matrix. 

3. The sample size, n. 

4. And, finally the second condition number, k, which is a measurement of how ill-

conditioned is a matrix. The previous section has shown the effect of the 

condition number on the T2. The condition number can be used as a 

characterization of the correlation matrix. Ill-conditioned matrices are difficult to 

estimate (see Appendix A) and this affects the ARL. Appendix A has a more 

detailed definition of the condition number but, simplifying it, it can be estimated 

by   

min

max

λ
λ

       (4.9) 

where λmax and λmin are the maximal and minimal eigenvalue respectively of the 

matrix. 

The experiment also has some important remarks: the first three parameters are 

discrete, which means that these parameters can only take integer values; by the other 

hand, the condition number is a continuous variable.  

The condition number k was fixed at 5 values (5, 10, 20, 50 and 100). The values 

were chosen considering that under 100, there is no serious problem of multicollinearity 

(see Montgomery, Peck and Vinning, 2001). Appendix A explains the procedure to 

obtain matrices with a determined k that also satisfies some conditions explained in detail 
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also in this Appendix. Those values are condition number of the true matrices, the 

simulation also contains the condition number of the estimated matrices, k̂ , as another 

factor of the experiment. 

For each condition number a central composite design (CCD) of the three discrete 

factors was chosen. 

 

4.4.3 Adaptation of the CCD to discrete factors 
 

The CCD uses a factorial or fractional factorial design with center points and adds 

points to estimate curvature. In this experiment, there are 3 factors each one at two levels 

so the axial point, after applying Equation (4.2), is 

( ) 682.12 4/13 ==ρ  

The problem is that given the fact that the three factors are integer numbers, it is not 

possible to obtain the exact axial point. Hence, the axial point was rounded to ρ = 2. 

Appendix B shows that this axial point leads to a similar orthogonality to the optimum 

axial point. This axial point is also rotatable even when its efficency is about 34% less 

than the optimum axial point. 

Another option could be the use of the Box-Behnken’s Faced Centered design (CCF), 

but this design also has two problems: The first one is that it lacks of rotatability, see 

Montogomery and Myers (1995) for a more detailed explanation. The second is that it 

uses only 3 levels. So, choosing α = 2, the loss in efficiency of rotatability of the 

modified CCD was compensated by increasing the experimental region to 5 levels which 

is better for the sake of the experiment’s objective (prediction). 

The experimental conditions with the levels that satisfies the proposed CCD are 

shown in the following table 
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Table 7. CCD design for k = 5, 10, 20, 50 and 100 
 Coded Factors Uncoded Factors 

Run p m n p m n 
1 -1 1 -1 3 765 4 
2 0 2 0 4 1030 6 
3 1 1 -1 5 765 4 
4 0 -2 0 4 30 6 
5 2 0 0 6 500 6 
6 0 0 0 4 500 6 
7 0 0 -2 4 500 2 
8 -1 -1 -1 3 265 4 
9 0 0 0 4 500 6 
10 0 0 0 4 500 6 
11 1 -1 1 5 265 8 
12 1 -1 -1 5 265 4 
13 0 0 0 4 500 6 
14 1 1 1 5 765 8 
15 0 0 2 4 500 10 
16 0 0 0 4 500 6 
17 -2 0 0 2 500 6 
18 0 0 0 4 500 6 
19 -1 1 1 3 765 8 
20 -1 -1 1 3 265 8 

 

 
4.4.4 Considerations for the experiment 
 
 

The procedure for this experiment is the same of Chapter 3’s. After selecting 

correlations matrices (see Appendix A for a detailed explanation of the procedure) with a 

defined condition number, then the correlation matrix and the mean vector are estimated.   

Phase II’s simulation creates in-control values until one value exceeds the UCL and 

this sample is stored in the run-length array. As in Chapter 3, the intention is to use not 

only the estimated matrix but also the true matrix and matrices with variations of the 

correlations. The idea is to balance the experiment with both underestimated and 

overestimated matrices. The procedure is similar to the one used in Chapter 3, but in 
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this case, Equation (3.4), was modified in order to prevent poor deviations when the 

correlation is around 0. For example, suppose that the correlation is 0.5 and that this 

correlation has been underestimated as 0.4. Applying Equation (3.4) results in an 

overestimated correlation of  0.625. Now suppose that the correlation 0.5 has poorly been 

underestimated as 0.2, now the overestimated correlation would be 1.25 which, given that 

the values are correlation, is not acceptable.  

A better approach can be found using   

))ˆtanh()tanh(*2tanh(ˆ // +−−+ −= rarar     (4.10) 

which is based in the transformation used to find the confidence interval of the 

correlation (see Montogmery, Peck and Vining, 2001). Using the previous example, if the 

correlation is 0.5 and the estimation leads to a correlation of 0.4, applying Equation (4.10) 

the resulting correlation will be 0.588, which is the upper side of the confidence interval. 

Even if 0.5 has been poorly underestimated as 0.2, the overestimation would be now 0.71 

which is a more realistic value than the obtained with Equation (3.4).   

Another problem noted using additional matrices is that the number of these matrices 

is function of the number of correlations, which is also related to the number of variables 

monitored. For example, if we have three variables being monitored, the number of 

correlations is three. The variations introduced by Equation (4.10) implies that now there 

are two levels in each correlation (one when is overestimated and the other when is 

underestimated) and there will be 23 matrices. For more complex matrices such as a 6x6 

matrix, the number of correlations is 15 and 215 matrices must be evaluated which, 

computationally, could be time consuming. Consequently, a fractional factorial design 

was used for p = 4, p = 5 and p = 6, the size of the fraction was chosen so no more than 

32 estimated matrices were evaluated not including the real correlation matrix. The 

complete experiment design is shown in the following picture. 
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Figure 4.4-1. Complete view of the design of the experiment 
 

 
 
4.5 Simulation procedure 
 
 
4.5.1 Pseudo-Code 
 

This part presents the pseudo-code for the simulation used to run the experiment. 

Practically, is the same program used to in Chapter 3 but with using Equation (4.10) 

instead of Equation (3.4) when determining the variation in the estimated matrix. 

The computer program was developed in Matlab 7.1 (see Appendix I) and can be 

summarized as follows 

1. Provide in control values 0μ , 0∑  and n and m.  
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2. Using the Matlab function mvrnd create m samples of size n following the 

multivariate normal distribution with  0μ  and 0∑ . 

3. Estimate μ̂  and ∑̂ . 

4. Standardize to work with correlation matrices. 

5. Create variations in the estimated correlations. 

6. Create an array of estimated matrices using the variations.  

a. If p ≥ 4 use the fractional factorial design provided to select matrices. 

b. Else, use all possible combinations.  

7. Create an array of the inverse of the chosen matrices. 

8. For each theoretical ARL 

a. Calculate UCL.  

b. Create in control samples of size n following the multivariate normal 

distribution with  0μ  and 0∑ . 

i. For each matrix 

ii. Compute the T2 until one falls over the UCL. 

c. Save this value in an array of Run-lengths. 

d. Repeat the procedure 50 times and evaluate ARL. 

The simulation run for 7 different values of theoretical ARLs: 200, 400, 600, 800, 

1000, 1200 and 1400. The ARL for each condition and matrix was estimated as the 

average of 50 run-lengths. Also, every condition has 10 replicates. 

Each replicate has different seeds. However, the random number generation was 

blocked using the same seed for each ARL, for instance, the same seed was used for a 

theoretical ARL = 200 in every experimental condition, this seed changes for different 



 
 
 

 
 

 62

ARLs that was used in the same experimental condition. This does not apply for the 

center point, which uses different seeds in each replicate.  
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5 Analysis and results 
 
 
 

The analysis includes an ANOVA to find relevant factors affecting the in-control 

ARL. The problem of estimation is discussed in detail and the in-control ARL with both 

the true matrix (which can be understood as a perfectly estimated or, equivalently, a 

matrix where the total observations is larger or infinite) and the estimated matrices are 

analyzed.  Following these, multiple regression has been used to fit the data to a model. 

The results of the effects using regression models are also presented.  The whole analysis 

was performed using STATA 7.0. 

 
5.1 Finding relevant factors 
 
 

An ANOVA was performed to find the factors that affect the ARL. The model 

considers the following variables:    

- Response: Logarithm of the Simulated ARL (larl_sim) 

- Factors: 

 Logarithm of the Theoretical ARL (larl_theo) 

 Matrix: This is a categorical variable that assumes the value of 1 if the 

matrix is estimated, if the matrix is the true matrix, this variable gets 

the value of 0. It is the change in the response by the effect of 

estimation. 

 Logarithm of the condition number of the matrix used in the 

simulation (logk) 

 The number of samples (m_u) 
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 Sample size (n_u) 

 The number of variables (p_u) 

 The interactions: 

• Number of samples with sample size (mn1) 

• Number of samples with number of variables (mp1) 

• Sample size with the number of variables (np1) 

 Quadratic effects: 

• The square of number of samples (m2) 

• The square of sample size (n2) 

• The square of number of variables (p2) 

 
 

Table 8 presents the ANOVA for the logarithm of the simulated in-control ARL. 

Observe that the Sum of Squares primarily depends on two factors: the desired in-control 

ARL and the condition number. Other factors that have some influence in the in-control 

ARL are the effect of the estimation (if the matrix has been estimated or not), the number 

of samples (m2) and the sample size (n). The other factor and interactions are practically 

not relevant (observe that their F statistic is too small compared with the ones from the 

relevant factors). 
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Table 8. ANOVA of the log(simulated ARL) 
 
            Number of obs =  197400     R-squared     =  0.3751 
            Root MSE      = .877524     Adj R-squared =  0.3751 
 
   Source |  Partial SS     df       MS           F     Prob > F 
----------+----------------------------------------------------- 
    Model |  91234.0823     12  7602.84019    9873.19     0.0000 
          | 
     logk |  18593.3989      1  18593.3989   24145.75     0.0000 
larl_theo |  71053.7332      1  71053.7332   92271.74     0.0000 
      m_u |  48.1028176      1  48.1028176      62.47     0.0000 
      n_u |  115.931398      1  115.931398     150.55     0.0000 
      p_u |  .002376733      1  .002376733       0.00     0.9557 
      mn1 |  43.7337661      1  43.7337661      56.79     0.0000 
      mp1 |  35.6778549      1  35.6778549      46.33     0.0000 
      np1 |  31.1762264      1  31.1762264      40.49     0.0000 
       m2 |  258.120453      1  258.120453     335.20     0.0000 
       n2 |  33.9514503      1  33.9514503      44.09     0.0000 
       p2 |   2.2919788      1   2.2919788       2.98     0.0845 
   matrix |   328.50253      1   328.50253     426.60     0.0000 
          | 
 Residual |  151997.596 197387  .770048665    
----------+----------------------------------------------------- 
    Total |  243231.678 197399  1.23218293    
 

 
 
5.2 Effect of estimation and the condition number  
 
 
5.2.1 General effect in the average run-length 
 
 

Section 4.3 presents a problem related with the estimation on the T2 statistic. This 

problem is quite serious when the condition number is large. This section shows that the 

problem of estimation also extends to the in control-ARL. Figure 5.2-1 shows the 

logarithm of the simulated in-control ARL, computed using estimated and true matrices, 

by theoretical ARL and grouped by the condition number of the true matrix. From this 

figure, it is clear that results when the true matrix has a condition number of 50 o more 

the range of values increases approximately 2 times the range with small condition 

number (20 or less).  
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Figure 5.2-1. Log(Simulated In-control ARL) by condition number of the 
true matrix. 

 

True matrices 

 

If only the simulated in-control ARL, that comes from using the true matrices only, is 

considered, there is practically a minimal influence from the condition number (see 

Figure 5.2-2). The results are similar, even when the theoretical k = 10 has many outliers, 

the ANOVA (Table 9) using only the true matrices tell us that the influence of factors 

different from the theoretical ARL are irrelevant. Observe the value of F statistic and the 

Partial Sum of Squares in Table 9. The theoretical ARL, alone, explains about the 82% of 

the total variance of the logarithm of the in-control ARL. 

 
 



 
 
 

 
 

 67

Theoretical ARL Theoretical ARL

Theoretical ARL

LO
G

 (S
im

ul
at

ed
 A

R
L)

 
LO

G
 (S

im
ul

at
ed

 A
R

L)
 

Theoretical ARL Theoretical ARL

Theoretical ARL

LO
G

 (S
im

ul
at

ed
 A

R
L)

 
LO

G
 (S

im
ul

at
ed

 A
R

L)
 

 
Figure 5.2-2. Log(Simulated In-control ARL) from true matrices only, by 
condition number of the true matrix. 

 
 
Table 9. ANOVA of the log(simulated ARL) considering true matrices only 
 
            Number of obs =    7000     R-squared     =  0.8500 
            Root MSE      = .270606     Adj R-squared =  0.8498 
 
   Source |  Partial SS    df       MS           F     Prob > F 
----------+---------------------------------------------------- 
    Model |  2899.99527    11  263.635934    3600.22     0.0000 
          | 
     logk |  .655641954     1  .655641954       8.95     0.0028 
larl_theo |  2865.32902     1  2865.32902   39128.98     0.0000 
      m_u |   .14825393     1   .14825393       2.02     0.1548 
      n_u |  .003044704     1  .003044704       0.04     0.8384 
      p_u |  4.40292769     1  4.40292769      60.13     0.0000 
      mn1 |  3.36195422     1  3.36195422      45.91     0.0000 
      mp1 |  .776550964     1  .776550964      10.60     0.0011 
      np1 |  2.96879617     1  2.96879617      40.54     0.0000 
       m2 |  4.23127689     1  4.23127689      57.78     0.0000 
       n2 |  8.65726155     1  8.65726155     118.22     0.0000 
       p2 |   .78219006     1   .78219006      10.68     0.0011 
          | 
 Residual |  511.715874  6988  .073227801    
----------+---------------------------------------------------- 
    Total |  3411.71115  6999  .487456943    
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Now, let’s get a closer look in the simulated in-control ARL. From the 175 total 

experimental conditions considered, the overestimation and underestimation are 

distributed 54% - 46 %, as expected by the design, recall that overestimation and 

underestimation has been balanced through factorial designs and Equation (4.10). The 

results of the in-control ARLs obtained from the true matrices do not show a large 

deviation from the theoretical value. The average of the absolute value of scaled 

deviation (using Equation 3.5) by all the condition numbers is around 10%, for p = 2, the 

scaled deviation is 9.2% from the target value, for p = 3, is 6%, for p = 4 is approximately 

12%, and for p = 5 and 6, its 8% and 13% respectively.  
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Figure 5.2-3. Theoretical in-control ARL vs. estimated in-control ARL 
with the true matrix (p = 2) 
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Figure 5.2-4. Theoretical in-control ARL vs. estimated in-control 
ARL with the true matrix (p = 3) 
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Figure 5.2-5. Theoretical in-control ARL vs. estimated in-control 
ARL with the true matrix (p = 4) 
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Figure 5.2-6. Theoretical in-control ARL vs. estimated in-control 
ARL with the true matrix (p = 5) 
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Figure 5.2-7. Theoretical ARL vs. Average of the estimated ARL 
with the true matrix (p = 6) 
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Estimated matrices 

 

Now, consider the estimated matrices only. The result is very similar to the ones 

obtained using all matrices: there is an increase in the range of values for the estimation 

of the true matrices starting when k = 20. With k = 50 and 100, the range of values 

doubles the values of the simulated ARLs obtained from the estimation of matrices with k 

= 5, 10 and 20 (see Figure 5.2-8). These results are consistent with the observations about 

the influence of the condition number in the T2 when the correlation matrix is estimated. 

As the T2 varies it is obvious that the in-control ARL will change. The ANOVA (see 

Table 10) shows that when estimated matrices are used, the in-control ARL is now 

affected not only by the desired ARL but also by the condition number. The influence of 

the sample size and sample number have also increased (observe their F values).  
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Figure 5.2-8. Log(Simulated In-control ARL) from estimated matrices only, 
by condition number of the true matrix. 
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Table 10. ANOVA of the log(simulated ARL) considering true matrices only 
            Number of obs =  190400     R-squared     =  0.3696 
            Root MSE      = .890265     Adj R-squared =  0.3695 
 
   Source |  Partial SS     df       MS           F     Prob > F 
----------+----------------------------------------------------- 
    Model |  88453.6678     11  8041.24252   10145.77     0.0000 
          |  
     logk |  19059.6698      1  19059.6698   24047.90     0.0000 
larl_theo |  68199.9201      1  68199.9201   86048.98     0.0000 
      m_u |  52.2228564      1  52.2228564      65.89     0.0000 
      n_u |  119.270157      1  119.270157     150.49     0.0000 
      p_u |  2.64541727      1  2.64541727       3.34     0.0677 
      mn1 |  40.2155377      1  40.2155377      50.74     0.0000 
      mp1 |  39.1316032      1  39.1316032      49.37     0.0000 
      np1 |  31.2732103      1  31.2732103      39.46     0.0000 
       m2 |  258.869281      1  258.869281     326.62     0.0000 
       n2 |  39.7294572      1  39.7294572      50.13     0.0000 
       p2 |  .090571407      1  .090571407       0.11     0.7353 
          | 
 Residual |  150896.002 190388  .792570972    
----------+----------------------------------------------------- 
    Total |   239349.67 190399   1.2570952    
 

 
 

A closer look to the estimated matrices, present us an averaged scaled deviation (after 

applying absolute values to eliminate the effect of negatives) of 23% (the details of the 

values are presented in Table 28 to Table 32).  

In this case, the number of variables is not a relevant factor for the in-control ARL by 

itself. Its influence is related with the number of variables. Looking at the behavior of the 

in-control ARL by number of variables, see Figure 5.2-9 it seems to be that the number of 

samples influences in the in-control ARL. When p = 2, the deviation from the target 

value is around 10%, this deviation increases as p increases until p = 5 but when p = 6, 

the deviation reduces up to 20% which seems to be a contradictory result. 
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Figure 5.2-9. Average of absolute scaled deviation from the target 
in-control ARL by number of variables 

 

However, this can be explained by the “error” of estimation. It is not easy to know 

whether the matrix has been more overestimated and underestimated because there are 

many correlations involved. A measurement of the “error” of estimation can be 

approximated by how deviated are the estimated matrices from the target value. This can 

be obtained by the average of the absolute values of the difference between the estimated 

matrices and the true matrix. Table 11 shows that the error on estimation, when p = 6, is 

slightly over the value of p = 3, causing the reduction of the deviation from the target 

ARL (see Figure 5.2-10).  
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Table 11. Average of the absolute values of the deviation from the target 
matrix. 
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Figure 5.2-10. Boxplot of the average of the absolute values of 
the deviation from the target matrix by number of variables 

 

The problem with the estimation can also be noted by plotting the results by condition 

number. Note that when p = 6, the departure is not so large like when p = 5 (Figure 

5.2-11). It is caused by the deviation of the estimated correlation matrix from the true 

matrix. For example, when the condition number of the true matrix is 100, the estimated 

matrices when p = 5 has a deviation of  0.0034657 versus 0.0008409 for p = 6 (see Table 

12). 
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Figure 5.2-11. Estimated ARL by theoretical condition number by number of 
variables.  
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 

 77

 
Table 12. Average of the absolute value of the difference between estimated 
and true matrices by theoretical in-control ARL, condition number (k) of the 
true matrix and number of variables (p)  
          |                           theoretical arl                            
p       k |      200       400       600       800      1000      1200      1400 
----------+--------------------------------------------------------------------- 
2         | 
        5 | .0021365  .0021365  .0021365  .0021365  .0021365  .0021365  .0021365 
       10 | .0089982  .0089982  .0089982  .0089982  .0089982  .0089982  .0089982 
       20 | .0002788  .0002788  .0002788  .0002788  .0002788  .0002788  .0002788 
       50 |  .000149   .000149   .000149   .000149   .000149   .000149   .000149 
      100 | .0000846  .0000846  .0000846  .0000846  .0000846  .0000846  .0000846 
----------+--------------------------------------------------------------------- 
3         | 
        5 | .0034641  .0034641  .0034641  .0034641  .0034641  .0034641  .0034641 
       10 | .0058838  .0058838  .0058838  .0058838  .0058838  .0058838  .0058838 
       20 | .0044095  .0044095  .0044095  .0044095  .0044095  .0044095  .0044095 
       50 | .0055497  .0055497  .0055497  .0055497  .0055497  .0055497  .0055497 
      100 | .0029514  .0029514  .0029514  .0029514  .0029514  .0029514  .0029514 
----------+--------------------------------------------------------------------- 
4         | 
        5 | .0060809  .0060809  .0060809  .0060809  .0060809  .0060809  .0060809 
       10 | .0043604  .0043604  .0043604  .0043604  .0043604  .0043604  .0043604 
       20 | .0042436  .0042436  .0042436  .0042436  .0042436  .0042436  .0042436 
       50 | .0054545  .0054545  .0054545  .0054545  .0054545  .0054545  .0054545 
      100 | .0055678  .0055678  .0055678  .0055678  .0055678  .0055678  .0055678 
----------+--------------------------------------------------------------------- 
5         | 
        5 | .0039249  .0039249  .0039249  .0039249  .0039249  .0039249  .0039249 
       10 | .0028342  .0028342  .0028342  .0028342  .0028342  .0028342  .0028342 
       20 | .0039873  .0039873  .0039873  .0039873  .0039873  .0039873  .0039873 
       50 | .0036902  .0036902  .0036902  .0036902  .0036902  .0036902  .0036902 
      100 | .0034657  .0034657  .0034657  .0034657  .0034657  .0034657  .0034657 
----------+--------------------------------------------------------------------- 
6         | 
        5 | .0030623  .0030623  .0030623  .0030623  .0030623  .0030623  .0030623 
       10 | .0027261  .0027261  .0027261  .0027261  .0027261  .0027261  .0027261 
       20 | .0029748  .0029748  .0029748  .0029748  .0029748  .0029748  .0029748 
       50 | .0021679  .0021679  .0021679  .0021679  .0021679  .0021679  .0021679 
      100 | .0008409  .0008409  .0008409  .0008409  .0008409  .0008409  .0008409 
-------------------------------------------------------------------------------- 
 

 

 

On the other hand, an increment in the number of samples of sample size reduces the 

error (see Figure 5.2-12 and Figure 5.2-13). 
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Figure 5.2-12. Average of the absolute values of the deviation 
from the target matrix by number of samples 
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Figure 5.2-13. Average of the absolute values of the deviation 
from the target matrix by number of samples 
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5.2.2 General effect in the run-length’s variance 
 
 

Estimation also produces a similar effect in the variance of the run-length. Figure 

5.2-14 shows that the variance increment starts when the value of the true matrix being 

estimated is 20. The ANOVA in Table 13 also shows that the relevant factors are the 

condition number, the desired value of in-control ARL (theoretical) and the effect of the 

matrix used.  
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Figure 5.2-14. Log(Variance of simulated in-control run-lengths), by 
condition number of the true matrix. 
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Table 13. ANOVA of the log(Variance of RL) 
 
            Number of obs =  197400     R-squared     =  0.3674 
            Root MSE      = 1.79077     Adj R-squared =  0.3674 
 
   Source |  Partial SS     df       MS           F     Prob > F 
----------+----------------------------------------------------- 
    Model |  367705.334     12  30642.1111    9555.15     0.0000 
          | 
     logk |  77098.7484      1  77098.7484   24041.74     0.0000 
larl_theo |  283808.573      1  283808.573   88500.18     0.0000 
      m_u |  175.740154      1  175.740154      54.80     0.0000 
      n_u |   504.82678      1   504.82678     157.42     0.0000 
      p_u |  .017330561      1  .017330561       0.01     0.9414 
      mn1 |  182.058237      1  182.058237      56.77     0.0000 
      mp1 |  150.061164      1  150.061164      46.79     0.0000 
      np1 |  90.2357277      1  90.2357277      28.14     0.0000 
       m2 |  911.734361      1  911.734361     284.31     0.0000 
       n2 |  242.297616      1  242.297616      75.56     0.0000 
       p2 |  18.6289143      1  18.6289143       5.81     0.0159 
   matrix |   1310.3345      1   1310.3345     408.60     0.0000 
          | 
 Residual |  632994.466 197387  3.20687009    
 ---------+----------------------------------------------------- 
    Total |  1000699.80 197399   5.0694269    
 
 
 
 

Now, analyzing separately the true matrices (Figure 5.2-15) and their estimates 

(Figure 5.2-16), the situation is similar as in the average run-length. When true matrices 

are considered alone, the variance practically depends on the desired in-control ARL (see 

Table 14). However, when their estimated are considered, the in-control ARL not only 

depends on the desired in-control ARL but also depends on the condition number (see 

Table 15). 
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Figure 5.2-15. Log(Variance of simulated in-control run-lengths) from true 
matrices only, by condition number of the true matrix. 

 
 
Table 14. ANOVA of the log(Variance of RL) considering true matrices only 
         
            Number of obs =    7000     R-squared     =  0.8217 
            Root MSE      =  .59918     Adj R-squared =  0.8214 
 
   Source |  Partial SS    df       MS           F     Prob > F 
----------+---------------------------------------------------- 
    Model |  11560.2844    11  1050.93495    2927.26     0.0000 
          | 
     logk |  2.54185351     1  2.54185351       7.08     0.0078 
larl_theo |  11433.9221     1  11433.9221   31847.86     0.0000 
      m_u |  .404744861     1  .404744861       1.13     0.2884 
      n_u |  .008588845     1  .008588845       0.02     0.8771 
      p_u |  16.2477169     1  16.2477169      45.26     0.0000 
      mn1 |  13.2776334     1  13.2776334      36.98     0.0000 
      mp1 |  1.91402043     1  1.91402043       5.33     0.0210 
      np1 |  9.38922279     1  9.38922279      26.15     0.0000 
       m2 |  13.3923802     1  13.3923802      37.30     0.0000 
       n2 |  27.0656714     1  27.0656714      75.39     0.0000 
       p2 |  3.94546898     1  3.94546898      10.99     0.0009 
          | 
 Residual |  2508.81049  6988  .359016956    
----------+---------------------------------------------------- 
    Total |  14069.0949  6999  2.01015787    
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Figure 5.2-16. Log(Variance of simulated in-control run-lengths) from 
estimated matrices only, by condition number of the true matrix. 

 
 
Table 15. ANOVA of the log(Variance of  RL) considering estimated matrices only 
              
             Number of obs =  190400     R-squared     =  0.3622 
             Root MSE      = 1.81625     Adj R-squared =  0.3622 
 
   Source |  Partial SS     df       MS           F     Prob > F 
----------+----------------------------------------------------- 
    Model |  356698.352     11  32427.1229    9830.10     0.0000 
          | 
     logk |  79036.6619      1  79036.6619   23959.53     0.0000 
larl_theo |   272419.94      1   272419.94   82582.61     0.0000 
      m_u |  189.323124      1  189.323124      57.39     0.0000 
      n_u |  517.003566      1  517.003566     156.73     0.0000 
      p_u |  10.4090768      1  10.4090768       3.16     0.0757 
      mn1 |  167.995406      1  167.995406      50.93     0.0000 
      mp1 |   161.19849      1   161.19849      48.87     0.0000 
      np1 |  91.2072095      1  91.2072095      27.65     0.0000 
       m2 |  917.621291      1  917.621291     278.17     0.0000 
       n2 |  270.709548      1  270.709548      82.06     0.0000 
       p2 |  .334946096      1  .334946096       0.10     0.7500 
          | 
 Residual |  628043.689 190388  3.29875669    
 ---------+----------------------------------------------------- 
    Total |  984742.041 190399  5.17199167    
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5.2.3 Probability of getting false alarms 
 

 

An important analysis is whether the control chart has a higher probability of early 

false alarms. The median and the 10th percentile give us an idea about it. For the true 

matrices only, given a combination of p and theoretical ARL, if both percentiles are 

smaller for different for condition numbers, it can be argued that there is an effect of the 

condition number in the probability of getting early false alarms.  

Table 16 shows the in-control Average Run-Length (ARL), the standard deviation of 

the Run-Length (SDRL) and the 10th (Q10), median or 50th (Q50) and 90th (Q90) 

percentiles of the run-length by the target in-control ARL and the condition number when 

the true matrix is used in the control chart. In any case, the lower percentiles are similar 

for each p and each desired in-control ARL. Hence, the probability of getting a false 

alarm is practically the same.  

Tables 28 to 32 in Appendix E show the complete percentiles of the run-length by 

theoretical ARL, condition number and number of variables. Those tables show similar 

results as those in Table 16 for many values of theoretical ARLs and number of variables 

confirming that when true matrices the condition number does not affect the probailbity 

of getting early false alarms.  
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Table 16. Summary of the run-length for a theoretical ARL = 200 
Number of
variables k Mean SDRL Q10 Q50 Q90

3 163.98 172.00 12 110 386.5
10 180.41 183.11 15 113.5 414.5

p = 2 20 213.10 232.79 19 141 490
(n = 2500) 50 211.23 231.93 19 139.5 486

100 210.63 232.07 18.5 137.5 486
Avg 195.87 212.88 16 126.5 454

5 187.28 183.80 22 133 431
10 200.45 194.22 26 144 450

p = 3 20 191.57 187.37 22 135 445
(n = 10000) 50 173.73 170.84 21 120 392

100 194.31 191.73 22 135 455
Avg 189.47 185.95 22 133 436

5 189.05 190.79 20 130 439
10 261.04 347.70 23 150 589.5

p = 4 20 199.24 205.29 20.5 132 475
(n = 25000) 50 200.12 216.80 20 131 464

100 187.26 192.30 20 127 433
Avg 207.34 239.63 21 132 481

5 192.23 187.83 22 131 435
10 194.46 192.22 22 131 450

p = 5 20 211.47 212.23 23 143.5 475
(n = 10000) 50 227.84 230.24 26 158 509.5

100 215.31 217.38 25 147 498
Avg 208.26 208.97 24 141 472

5 200.44 217.20 17 128 480
10 140.44 158.22 12 90 311.5

p = 6 20 211.00 211.94 21.5 147.5 475
(n = 2500) 50 168.22 172.49 15 109 398

100 242.67 242.83 24.5 158 565
Avg 192.55 205.79 17 127 444.5

True Matrix ( mn --> ?)  Number of
variables k Mean SDRL Q10 Q50 Q90

3 163.98 172.00 12 110 386.5
10 180.41 183.11 15 113.5 414.5

p = 2 20 213.10 232.79 19 141 490
(n = 2500) 50 211.23 231.93 19 139.5 486

100 210.63 232.07 18.5 137.5 486
Avg 195.87 212.88 16 126.5 454

5 187.28 183.80 22 133 431
10 200.45 194.22 26 144 450

p = 3 20 191.57 187.37 22 135 445
(n = 10000) 50 173.73 170.84 21 120 392

100 194.31 191.73 22 135 455
Avg 189.47 185.95 22 133 436

5 189.05 190.79 20 130 439
10 261.04 347.70 23 150 589.5

p = 4 20 199.24 205.29 20.5 132 475
(n = 25000) 50 200.12 216.80 20 131 464

100 187.26 192.30 20 127 433
Avg 207.34 239.63 21 132 481

5 192.23 187.83 22 131 435
10 194.46 192.22 22 131 450

p = 5 20 211.47 212.23 23 143.5 475
(n = 10000) 50 227.84 230.24 26 158 509.5

100 215.31 217.38 25 147 498
Avg 208.26 208.97 24 141 472

5 200.44 217.20 17 128 480
10 140.44 158.22 12 90 311.5

p = 6 20 211.00 211.94 21.5 147.5 475
(n = 2500) 50

Number of
variables k Mean SDRL Q10 Q50 Q90

3 163.98 172.00 12 110 386.5
10 180.41 183.11 15 113.5 414.5

p = 2 20 213.10 232.79 19 141 490
(n = 2500) 50 211.23 231.93 19 139.5 486

100 210.63 232.07 18.5 137.5 486
Avg 195.87 212.88 16 126.5 454

5 187.28 183.80 22 133 431
10 200.45 194.22 26 144 450

p = 3 20 191.57 187.37 22 135 445
(n = 10000) 50 173.73 170.84 21 120 392

100 194.31 191.73 22 135 455
Avg 189.47 185.95 22 133 436

5 189.05 190.79 20 130 439
10 261.04 347.70 23 150 589.5

p = 4 20 199.24 205.29 20.5 132 475
(n = 25000) 50 200.12 216.80 20 131 464

100 187.26 192.30 20 127 433
Avg 207.34 239.63 21 132 481

5 192.23 187.83 22 131 435
10 194.46 192.22 22 131 450

p = 5 20 211.47 212.23 23 143.5 475
(n = 10000) 50 227.84 230.24 26 158 509.5

100 215.31 217.38 25 147 498
Avg 208.26 208.97 24 141 472

5 200.44 217.20 17 128 480
10 140.44 158.22 12 90 311.5

p = 6 20 211.00 211.94 21.5 147.5 475
(n = 2500) 50 168.22 172.49 15 109 398

100 242.67 242.83 24.5 158 565
Avg 192.55 205.79 17 127 444.5

True Matrix ( mn --> ?)  

 
 

 

However, when percentiles of estimated matrices are compared with the percentiles 

of the true matrices, the situation is different. Table 17 contains the percentiles of the run-

length for the true matrix and the percentiles of the run-length from estimations of the 

true matrix when the number of variables, p, is 2.   
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Table 17. Summary of the run-length when p = 2 

k Mean SDRL Q10 Q50 Q90 Mean SDRL Q10 Q50 Q90
3 163.64 171.29 12 110 388 163.98 172.00 12 110 386.5
10 178.36 199.54 15 111 410.5 180.41 183.11 15 113.5 414.5
20 210.44 222.91 19 138 490 213.10 232.79 19 141 490
50 210.44 222.91 19 138 490 211.23 231.93 19 139.5 486

100 210.44 222.91 19 138 490 210.63 232.07 18.5 137.5 486
Avg 194.66 209.77 17 126 454 195.87 212.88 16 126.5 454

Estimated Matrix True Matrix (mn --> ∞)  

ARL = 200

 

 

The condition number does not affect both the percentiles nor the mean. However if 

the number of variables increases, see Table 18, the difference is significant both in the 

ARL, the percentile 10th and median when more variables are been monitored.  

This implies that there is a higher probability of getting early false alarm when one 

uses estimated matrices instead of the true matrix when the chart monitors more than 2 

variables. Tables 28 to 32 provide similar results for p = 3, 5 and 6. 

 

Table 18. Summary of the run-length when p = 4  

k Mean SDRL Q10 Q50 Q90 Mean SDRL Q10 Q50 Q90
5 184.44 191.82 17 124 433 189.05 190.79 20 130 439
10 249.87 346.51 21 146 565 261.04 347.70 23 150 589.5
20 175.27 197.15 16 113 417 199.24 205.29 20.5 132 475
50 238.34 746.58 13 113 453 200.12 216.80 20 131 464

100 258.11 995.26 9 89 423 187.26 192.30 20 127 433
Avg 221.21 591.54 15 117 460 207.34 239.63 21 132 481

ARL = 200

Estimated Matrix True Matrix (mn --> ∞)  
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5.3 Model fitting and analysis of the effects in the models 
 

This work not only focuses in finding factors but also in obtaining a prediction model 

by the use of multiple regression. The main assumption is that practitioners do not know 

if the parameters have the true values or not. Hence, even when regressions using the true 

matrices only have a large R2 (those models can be found in Appendix H), both cases are 

considered as a categorical variable (as explained in Section 5.1). 

 
 
5.3.1 A general regression model 

 

The general model considers all the variables presented in Section 5.1.  As it was 

previously explained, some variables and the response were transformed to reduce the 

size of the sum of squares.    

After eliminating not significant factors, the final model has been practically reduced 

to the desired ARL (larl_theo), the effect of the estimation, the condition number and the 

total samples used (m_u and n_u through their interactions), see Table 9. The first three 

factors are the most relevant factors. The number of variables is not relevant by itself, but 

influences through interactions.  

The multiple determination coefficient (R2) is 0.37 and the root of the Mean Square 

Error (MSE) for the logarithm of the in-control ARL is 0.87. This, as it was pointed out 

in Chapter 4, is also a measurement of the standard deviation of the model.  Considering 

that the response variable was transformed by logarithm, the real root MSE for the in-

control ARL was 2458.56. 

However, the residual analysis in this case is not as good as expected. The residuals 

are not normally distributed. Figure 5.3-1 shows the normal q-q plot. Looking at the 

histogram and kernel density estimate of the distribution of the residuals (see Figure 5.3-2) 
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it is clear the there is a larger peek in the residuals (produced by the influence of extreme 

values), but note that the residuals distribution is symmetric.  

A Box-Cox transformation was applied in order to improve the model (see Appendix 

E), but the results only led to a minimal improvement, so the original model (without 

transformation) was kept.  

 

 

Table 19. General regression model 
 
      Source |       SS       df       MS              Number of obs =  197400 
-------------+------------------------------           F(  7,197392) =16898.87 
       Model |  91142.9723     7  13020.4246           Prob > F      =  0.0000 
    Residual |  152088.706197392  .770490728           R-squared     =  0.3747 
-------------+------------------------------           Adj R-squared =  0.3747 
       Total |  243231.678197399  1.23218293           Root MSE      =  .87778 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons            .6643619   .0229689    28.92   0.000     .6193434    .7093805 
larl_theo        .9462778   .0031161   303.68   0.000     .9401703    .9523852 
logk            -.2486753   .0015999  -155.43   0.000     -.251811   -.2455396 
n_u               .095881   .0028963    33.10   0.000     .0902043    .1015576 
mn1             -.0000829   3.87e-06   -21.40   0.000    -.0000905   -.0000753 
np1             -.0096965   .0004578   -21.18   0.000    -.0105938   -.0087992 
m2               4.39e-07   2.12e-08    20.74   0.000     3.97e-07    4.80e-07 
matrix 
           1     .2207646    .010717    20.60   0.000     .1997595    .2417697 
           2    (dropped) 
------------------------------------------------------------------------------ 
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Figure 5.3-1. Normal Q-Q plot of the residuals 
 

 

Figure 5.3-2. (a) Histogram of the residuals (b) Kernel density of the 
residuals 
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Effects 
 

To evaluate the effects of the considered factors, the factor under analysis has been 

varied fixing the other ones. For example, to analyze the effect of the sample size in the 

ARL, the factors: Theoretical ARL, k, m and p has been fixed at 600, 5, 500 and 4 

respectively (see Figure 5.3-3), varying only the factor that is being analyzed, n. In this 

case, the relationship between n and the ARL is linear, and as n increases, the ARL 

increases, it tends to overestimate given the other factors fixed. This does not occur with 

the number of samples, m, which has a quadratic relationship (see Figure 5.3-4). In this 

case, the closest value to the theoretical 600 is about 650, reached when m is 

approximately 440. In both cases, the effect of the matrix makes the results get 

overestimated if estimated matrices are being used. 
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Figure 5.3-3. Effect of the sample size (Theoretical ARL = 
600, k = 5, m = 500 and p = 4) 
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Figure 5.3-4. Effect of the number of samples (Theoretical 
ARL = 600, k = 5, n = 5 and p = 4) 

 
 
 

The effect of p is similar to the one described by Champ et al. (2005), he states that as 

p increases, the ARL overestimation decreases. This is exactly what is happening in 

Figure 5.3-5. Figure 5.3-6 shows that, when the true matrix is being used, the effect of the 

target ARL is an overestimation that decreases as the theoretical ARL increases. Observe 

that the values for theoretical ARLs of 200, 400, 600, 800, 1000, 1200 and 1400 are 236, 

455, 668, 877, 1084, 1289 and 1491 and the overestimation is about 18% for theoretical 

ARL = 200 and decreases until 6.9% when ARL = 1400. But, when the matrix is replaced 

by the estimated matrix, the overestimation increases as larger theoretical ARLs are 

desired. The effect of the condition number shows an overestimation if k < 10 and a 

underestimation for higher values, as k increases the ARL decreases (see Figure 5.3-7). 

When k = 7.7, m = 500, n = 5 and p = 4 the ARL reaches the exact value of the theoretical 

ARL (600). 
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Figure 5.3-5. Effect of the number of variables (Theoretical 
ARL = 600, k = 5, m = 500 and n = 5) 
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Figure 5.3-6. Effect of the Theoretical ARL (k = 5, m = 500, n = 
5 and p = 4) 
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Figure 5.3-7. Effect of the condition number (Theoretical ARL = 600, 
m = 500, n = 5 and p = 4) 

 
The effect of the interaction mn can be understood as the total number of observations. 

Figure 5.3-8 shows the contour plot when the true matrix is used to predict the in-control 

ARL of 600 with p = 4 and k = 5. The closest value to the theoretical ARL is around 650, 

and it is obtained for combinations of m and n such as m = 200 and n = 4 or m = 600 and 

n = 6. But, for a fixed value of m or n, if the other factor increases also the ARL increases. 

The effect of the matrix, as in the main effects, increases the in-control ARL.  
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Figure 5.3-8. Effect of the interaction mn. Contour plot with true 
matrix(p = 4, k = 5 and Theoretical ARL = 600) 
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Figure 5.3-9. Effect of the interaction mn. Contour plot with 
estimated matrix (p = 4, k = 5 and Theoretical ARL = 600) 
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Fixing the values of m and k in 500 and 5, and for a theoretical ARL of 600, the effect 

of np tells us the relationship between the sample size and the number of variables. In this 

case, for a large number of variables (5 or 6) large samples sizes are better. For small 

number of variables large sample sizes only increases the overestimation (see Figure 

5.3-10 and Figure 5.3-11).   

Finally as in the other cases, estimated matrices overestimates the ARL in about 22% 

approximately. 
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Figure 5.3-10. Effect of the interaction np. Contour plot with true 
matrix (m = 500, k = 5 and Theoretical ARL = 600) 
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Figure 5.3-11. Effect of the interaction np  Contour plot  with 
estimated matrix (p = 4, k = 5 and Theoretical ARL = 600) 

 
 
 
5.3.2 Improving the model with individual regression models (by condition 

number, k) 
 
 

To improve the multiple determination coefficient (R2), regression models has been 

evaluated after dividing the observations by the observed condition number ( k̂ ). The 

criterion used was the use of percentiles of the observed k. Table 10 shows its summary 

statistics. The 25th, 50th and 75th percentiles are used as cutting points, hence there are 

now 4 models: when k̂ <10, 10≤ k̂ <20, 20≤ k̂ <60 and 60≤ k̂ . The rotatability and 

orthogonality are not affected because these cutting points are close to the initial target 

condition numbers chosen in the experimental design.   
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Table 20. Summary statistics of the observed condition number ( k̂ ) 
           condition number of estimated matrices 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%     4.217589       2.874916 
 5%      4.57041       2.874916 
10%     4.843006       2.874916       Obs              197400 
25%     9.559045       2.874916       Sum of Wgt.      197400 
 
50%     20.28739                      Mean           62.02734 
                        Largest       Std. Dev.      313.9931 
75%     61.81712       14561.97 
90%     106.1836       14561.97       Variance       98591.65 
95%     152.1191       14561.97       Skewness       36.50604 
99%     604.6937       14561.97       Kurtosis       1628.156 

 
 

The models and their R2 are summarized in Table 21. For three of the models, the R2 

has improved the result of the general model, but for 60≤ k̂ , the R2 poorly reaches about 

the 50% of the initial model. This shows the difficulty of finding a model for ill-

conditioned matrices. Practically, the prediction under this condition is impossible. The 

root MSE presented in this table is the root MSE for the ARL. It has been obtained by 

applying 
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Table 21. Summary of the regressions by model. It includes the regression 
coefficients and standard errors in parenthesis.  

Coefficients General k<10 10<=k<20 20<=k<60 k>=60
constant 0.6643619 -0.4592629 -0.4328219 -0.3269787 2.913661

(0.229689) (0.0192468) (0.0271763) (0.0343999) (0.0899396)
larl_theo 0.9462778 1.007269 0.9983577 0.9558468 0.8278754

(0.0031161) (0.0024992) (0.002944) (0.0035772) (0.0105805)
logk -0.2486753 --- 0.119801 0.0793531 -0.6466551

(0.0015999) --- (0.006834) (0.0062001) (0.0104033)
n_u 0.0958810 0.0096051 0.1066148 0.0673399 0.1547571

(0.0028963) (0.0008759) (0.0027878) (0.0033923) (0.0073366)
mn1 -0.0000829 --- -0.0001366 -0.0000337 -0.0002547

(3.87E-06) --- (3.68E-06) (4.65E-06) (1.29E-05)
np1 -0.0096965 --- -0.0107158 -0.0107668 ---

(0.0004578) --- (0.0004426) (0.0005265) ---
m2 4.39E-07 2.99E-08 5.17E-07 2.54E-07 1.25E-06

(2.12E-08) (6.24E-09) (2.00E-08) (2.43E-08) (7.30E-08)
effect 1 0.2207646 --- 0.1140992 0.1996949 0.6121385

(-0.10717) --- (0.0103353) (0.0110428) (0.0410418)
2 (dropped) (dropped) (dropped) (dropped) (dropped)

n 197400 59010 37170 50400 50820.00
SSE 1.19314E+12 5.02E+10 8089673145 19949410212 1.11909E+12
MSE 6044508 850580 217686.70 395884 22023710

root(MSE) 2458.56 922.27 466.57 629.19 4692.94
R2 0.37 0.74 0.76 0.59 0.17  

 

Effects 

Model for k̂ < 10 does not include the effect of the matrix. This confirms the 

statement of Section 4.3 about the effect of estimation in T2 statistic for matrices with 

small condition number. This model also does not include any interaction but the ARL 

depends mostly of the theoretical ARL desired and the condition number, the effects of m 

and n. The effect of the latter factors is shown in Figure 5.3-12 and Figure 5.3-13. Those 

figures show that large number of samples are better to reach the desired in-control ARL 

(600).  The sample size, on the contrary, not necessary has the same effect. Only for 

models k̂ < 10 and 20 ≤ k̂ < 60 this is true but for the model 10 ≤ k̂ < 20 only for samples 

size equal to 2 the value is close to 600, if the sample size increases, the ARL gets 

overestimated. When 60 ≤ k̂  starts underestimated and reaches optimal value 

approximately when n = 8, then it gets overestimated. 
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Figure 5.3-12. Effect of the sample size when (a) k̂ < 10, (b) 10≤ k̂ < 20, (c) 
20≤ k̂ < 60 and (d) 60≤ k̂   (Theoretical ARL = 600,  m = 50 and p = 4 
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Figure 5.3-13. Effect of the number of samples when (a) k̂ < 10, (b) 
10≤ k̂ < 20, (c) 20≤ k̂ < 60 and (d) 60≤ k̂  (Theoretical ARL = 600,  n = 5 and 
p = 4) 

 
As it was explained, only in the model k̂ < 10 there is not effect due to the matrix 

used. In the remaining models, also large m and n are better to achieve the target ARL. In 

those models, also, the effect of the matrix is to overestimate the results of the true matrix. 

The effect of the number of variables is shown in Figure 5.3-14, in the k̂ < 10 model 

there is no effect of the number of variables. In the 10≤ k̂ < 20 large number of variables 

is better but when 20≤ k̂ < 60, large number of variables has a decreasing effect in the 

ARL. In the 60≤ k̂  model, the ARL with the true matrix is underestimated by 20%. 
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Figure 5.3-14. Effect of the number of variables when (a) k̂ < 10, (b) 
10≤ k̂ < 20, (c) 20≤ k̂ < 60 and (d) 60≤ k̂  (Theoretical ARL = 600, m = 50 
and n = 5) 

 
 

Figure 5.3-15 shows the effect of ARL, the values obtained shows a not serious 

underestimation (around 7 %) for the models where k̂ < 10 using the true matrix. The 

10≤ k̂ < 20 model overestimates the ARL approximately by 18%. This overestimation 

increases for the 20≤ k̂ < 60 model (28%). The 60≤ k̂  model shows underestimation that 

starts 12% under the theoretical value for a theoretical ARL of 200, this increases until an 

underestimation of 37% when the target ARL is 1400. The estimated matrices have the 

effect of increasing the overestimation, the overestimation in the 10≤ k̂ < 20 model 

increases up to 33% , for the 20≤ k̂ < 60 model, the overestimation is now about 44% and 
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finally for the 60≤ k̂  model, there is not an underestimation, instead with estimated 

matrices, there is an overestimation that decreases as the desired ARL decreases. 
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Figure 5.3-15. Effect of the Theoretical ARL (a) k̂ < 10, (b) 10≤ k̂ < 20, (c) 
20≤ k̂ < 60 and (d) 60≤ k̂  (m = 500, n = 5 and p = 4) 

 
 

Table 22. In-control ARLs with true matrix (m = 500, n = 5 
and p = 4) 

Models Theoretical 
ARL k̂ < 10 

( k̂ =5) 
10≤ k̂ < 20 

( k̂ =15) 
20≤ k̂ < 60 

( k̂ =30) 
60≤ k̂  

( k̂ =80) 
200 
400 
600 
800 

1000 
1200 
1400 

184.65 
371.17 
558.4 
746.09 
934.13 
1122.44
1310.98

236.78 
473.02 
709.05 
944.96 
1180.76 
1416.49 
1652.16 

257.28 
513.97 
770.45 
1026.78 

1283 
1539.14 
1795.21 

177.61 
315.27 
441.02 
559.62 
673.17 
782.85 
889.41 
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The effect of the interaction np it is only present in models 10≤ k̂ < 20 and 20≤ k̂ < 60. 

In the  former, it shows that small sample sizes are better and in the latter large sample 

sizes are preferred. 
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Figure 5.3-16. Effect of interaction between sample size (n) and number of 
variables (p) in model (a) 10 ≤ k̂ < 20 and (b ) 20 ≤ k̂ < 60 for a desired ARL = 
600, and m = 50 

 
The effect of the interaction mn confirms that for k̂ < 10, large samples are better. 

This is also true for the 10≤ k̂ < 20 and 20≤ k̂ < 60 models. In the remaining model, large 

samples do not improve (underestimates) the in-control ARL with the true matrix, the 

estimated matrix overestimates the ARL. 
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Figure 5.3-17. Effect of interaction between number of samples (m) 
and sample size (n) in model (a) k̂ < 10, (b) 10 ≤ k̂ < 20, (c) 20 ≤ k̂ < 60 
and (d) 60 ≤ k̂  for a desired ARL = 600, and p = 4 
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6 Procedure for predicting in‐control ARL’s 
 

 

The final part of this work proposes a procedure based in the regressions developed in 

the previous chapter. In most of the cases, practitioners do not have large samples so the 

procedure can be implemented when small samples are available. In this case, there is a 

correction in the upper control limit (UCL), which provides more exact results than the 

traditional UCL. 

  

6.1 Proposed procedure 
 

Based in the previously described regression models, a procedure for obtaining more 

realistic in-control ARL’s can be implemented as follows: 

a. Choose the target ARL for the control chart you are designing.  

b. Take m samples of size n of the p variables of your control chart.  

c. Compute the in-control Mean vector and Covariance matrix. 

d. Standardize both parameters using procedure described in Section  of Chapter 3. 

e. Compute the second condition number of the correlation matrix. 

f. Depending of the condition number, use the corresponding model to find the 

value of the theoretical ARL to achieve the target ARL. If your condition number 

is over 60 consider to check multicollinearity and eliminate highly correlated 

variables. 

g. With the new value of theoretical ARL, find the new UCL.  
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6.2 Example 
 

The following is an illustration of how the procedure can be implemented.  

Suppose you have estimated a correlation matrix of p = 4 with m = 30 and n = 5.  also 

assume that the value of the condition number is 15.  Using Mathcad, it is possible to find 

the corrected UCL to achieve a target ARL of 200: 

a. The input data for this example are the target or desired in-control ARL (target_ARL), 

the condition number of the estimated matrix (k), sample size (n) and number of 

samples (m), number of variables (p) and the variable matrix is equal to 1 because it 

is an estimated matrix. 

 
target_ARL 200:=  
k 15:=  
m 30:=  
n 5:=  
p 4:=  
matrix 1:=  
 

 

b. Given the fact that the condition number is 15, the regression to be used is  

matrixmnpmnnkarlarl ltheoretica 7
2

6543210 ln)ln()log( ββββββββ +++++++=  

where: β0 = -0.4328219, β1 = 0.9983577, β2 = 0.119801, β3 = 0.1066148, β4 = -0.0001366, 

β5 = -0.0107158, β6 = 5.17x10-7 and β7 = 0.1140992. 

 

c. The function ARL10k20 contains the evaluation of the in-control ARL given the 

input data provided in (a) or equivalently arlearlkARL log2010 == . So one can find 
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the value of the theoretical in-control ARL (true_ARL or arltheoretical) to achieve the 

target in-control ARL (target_ARL) using the function root in Mathcad solving the 

equation ARL10k20 = target_ARL. 

 
true_ARL root ARL10k20true_ARL k, m, n, p, matrix,( ) target_ARL− true_ARL,( ):=  
true_ARL 148.724=  
 

 

d. The value obtained (true_ARL) is actually the value to achieve an in-control ARL of 

200, and the UCL in Phase II (UCL) can now be estimated in the variable 

Corrected_UCL using the true_ARL   

 

UCL ARL( )
p m 1+( )⋅ n 1−( )⋅ qF 1

1
ARL

− p, m n⋅ m− p− 1+,⎛⎜
⎝

⎞⎟
⎠

⋅

m n 1−( )⋅ 1+ p−
:=  

UCL target_ARL( ) 16.644=  
Corrected_UCL UCL true_ARL( ):=  
Corrected_UCL 15.843=  
 

 

The corrected UCL to achieve the target ARL is 15.843. If the real matrix were used, 

then the case is similar as the cases presented by Champ et al (2005). Replacing matrix = 

0 in the example 

target_ARL 200:=  
k 15:=  
m 30:=  
n 5:=  
p 4:=  
matrix 0:=  
true_ARL 200:=  
true_ARL root ARL10k20true_ARL k, m, n, p, matrix,( ) target_ARL− true_ARL,( ):=  
true_ARL 166.731=  

UCL ARL( )
p m 1+( )⋅ n 1−( )⋅ qF 1

1
ARL

− p, m n⋅ m− p− 1+,⎛⎜
⎝

⎞⎟
⎠

⋅

m n 1−( )⋅ 1+ p−
:=  

UCL target_ARL( ) 16.644=  
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Corrected_UCL UCL true_ARL( ):=  
Corrected_UCL 16.152=  
 

 

In this case, the corrected limit is 16.152, which compared to Champ’s (16.0809), is 

slightly more conservative. 

The following tables shows a comparison between the values obtained by Champ et 

al (2005) for an in-control ARL of 200 and the ones obtained by the regression models 

proposed in this work.  

 
 
 
Table 23. Comparison between corrected UCLs (in-control ARL = 200) 

Regressions UCL p m n Traditional 
UCL 

Champ 
et al. 
UCL 

Model k̂  True 
matrix 

Estimated
Matrix 

10ˆ <k  9 12.179 12.179 

20ˆ10 <≤ k  15 11.88 11.594 
30 3 12.1978 10.9763 

 

60ˆ20 <≤ k  50 12.333 11.809 

10ˆ <k  9 11.243 11.243 

20ˆ10 <≤ k  15 10.68 10.429 
40 5 11.3024 10.9086 

60ˆ20 <≤ k  50 11.118 10.659 

10ˆ <k  9 11.506 11.506 

20ˆ10 <≤ k  15 11.25 10.989 
50 3 11.5233 10.8483 

 
 

60ˆ20 <≤ k  50 11.65 11.172 

10ˆ <k  9 10.937 10.937 

20ˆ10 <≤ k  15 10.436 10.195 

2 

70 5 10.9940 10.775 
 
 

60ˆ20 <≤ k  50 10.827 10.385 

10ˆ <k  9 18.092 18.092 

20ˆ10 <≤ k  15 17.92 17.563 
30 3 18.1162 16.7850 

60ˆ20 <≤ k  50 18.285 17.63 

10ˆ <k  9 16.105 16.105 

4 

40 5 16.1750 15.7660 

20ˆ10 <≤ k  15 15.72 15.424 
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Regressions UCL p m n Traditional 
UCL 

Champ 
et al. 
UCL 

Model k̂  True 
matrix 

Estimated
Matrix 

60ˆ20 <≤ k  50 15.958 15.417 

10ˆ <k  9 16.683 16.683 

20ˆ10 <≤ k  15 16.553 16.239 
50 3 16.7041 16.0291 

60ˆ20 <≤ k  50 16.856 16.282 

10ˆ <k  9 16.126 16.126 

20ˆ10 <≤ k  15 16.021 15.724 
70 3 16.1455 15.6955 

60ˆ20 <≤ k  50 16.294 15.751 

10ˆ <k  9 23.853 23.853 

20ˆ10 <≤ k  15 23.889 23.462 
30 3 23.8820 22.3445 

 

60ˆ20 <≤ k  50 24.083 23.302 

10ˆ <k  9 20.491 20.491 

20ˆ10 <≤ k  15 20.371 20.037 
40 5 20.5709 20.1584 

60ˆ20 <≤ k  50 20.326 19.715 

10ˆ <k  9 21.479 21.479 

20ˆ10 <≤ k  15 21.534 21.173 
50 3 21.5048 19.8408 

 
 

60ˆ20 <≤ k  50 21.679 21.019 

10ˆ <k  9 19.595 19.595 

20ˆ10 <≤ k  15 19.535 19.223 

6 

70 5 19.6690 19.4440 
 
 

60ˆ20 <≤ k  50 19.453 18.884 
 

It is important to note that few samples lead us to a modification in UCL. The 

corrections using the regression models are more conservative to the values proposed by 

Champ. In most of the cases, the values that the regression proposes is over Champ’s 

value so this assure us that it is not too narrow to affect the out-of-control ARL. 
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7 Conclusions and Future Research 
 

 

7.1 Conclusions  
 

This work has shown the dependence of the in-control ARL to the condition number 

and the target in-control ARL. A model for a more exact in-control ARL has been 

developed and a simple procedure has been proposed. The models have been evaluated 

using combinations of small sample sizes and samples numbers which result in values 

more conservatives than those proposed by Champ et al (2005) but do not require the use 

of tables obtained by simulation.  

As a summary of the findings, I will point out some of the conclusions observed 

previously: 

- The experiment has confirmed the problem described in Chapter 3 also noted 

by Champ et al. (2005): Alt’s UCL approximation to the F distribution is wide 

enough to accept the effect of estimation but does not produces exact results.  

- Even thought the work of Champ et al. (2005) presents that the estimation can 

be skipped, the estimation is still problem for achieving targets in-control 

ARLs. 

- The influence of the condition number in the in-control ARL is notorious 

when the correlation matrix is estimated.  Ill-conditioned matrices affect 

directly in the T2 hence the in-control ARL. This is another conclusion that 

has not been noted by Champ et al. (2005). Correlation matrices with 

condition number over 10 also influences in the probability of getting sooner 

false alarms.  
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- For estimated matrices with condition number over 10, the estimation has an 

effect in the in-control ARL. It tends to overestimate the ARL like in 

univariate charts (Quesenberry, 1993).  

- The probability of getting an early false alarm when matrices are estimated is 

practically the same as if the true matrix were estimated when the number of 

variables is small (equal or less than 3) and the condition number is less than 

10. As long as p increases, the probability of early false alarms increases no 

matter if the matrix has a small condition number.  

- Large samples can reduce the effect of estimation by reducing the error of 

estimation up to 10% of deviation form the target value.  The concept of large 

samples can be related to the values obtained by Champ et al. (2005) mn 

between 500 and 900 depending on the number of variables being monitored.  

 

7.2 Recommendations 
 

From this work some recommendations about when designing T2 control charts for 

subgroups can be stated: 

 

- Sample size and number of samples reduce the effect of error in the estimation 

of the correlation matrix. Large samples are the best option.  

- When large samples are not available, the proposed procedure is an alternative 

to the corrected UCLs obtained, by simulation, by Champ et al. (2005).  

- Finally, it is important to remark the difficulty of getting a model for large 

condition numbers (k). The recommendation is to eliminate correlated 

variables. Principal components can be an alternative to find the relationship 

between the variables than can be eliminated. 
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7.3 Future work 
 

A natural extension of this work it is to perform a similar analysis to the out-of-

control ARL. This work is important because of the modification of the UCL makes also 

a variation of the out-of-control ARL, specially, in the Type II error. 

When large samples are not available, another alternative to the one’s proposed by 

this work and by Champ can be the use of bootstrapping method to generate enough 

samples to reduce the estimation error. 

Finally, it has been widely extended the use of the ARL but there is a better measure 

than the media. Because of the skewness of the RL, the median is always smaller than the 

ARL, so the probability of getting a false alarm is high. Ryan (2000) mentioned the 

average production length method developed by Keats, Miskulin and Runger (1995) for 

X  control chart. This method computes the expected amount of production between the 

time of a parameter change and the time when the signal is received. However it has the 

disadvantage that it has a large standard deviation. Another option includes the 

development of the median run-length as a better value to design control charts.  
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Appendix A. Procedure to obtain a matrix with a 
pre‐defined condition number 
 

 

The Condition Number 

 

The concept of condition number is related with a numerical problem of computation 

called well-posed problem. This problem is related with the instability of numerical 

results and sensitivity to little changes in the data. 

 

In matrices, the condition number measures the sensitivity of the matrix to numerical 

operations. A matrix with a low condition number (the closer to one, the better) is known 

as well-conditioned on the contrary if the matrix has a high condition number would be 

an ill-conditioned matrix. Ill-conditioned matrices, hence, are not reliable. 

 

The condition number, k, of a square matrix A is defined as  

nnn AAAk 1)( −=     (A1) 

where ||.||n is the underlying norm. In strict, the condition number of a matrix measures 

some sort of inverse distance from a singular matrix to A, normalized by A . When the 

2-norm is used, orthogonal matrices are perfectly condition k2(.) = 1. This is why this the 

condition number used for linear problems such as Ax= b, and is, usually, estimated by 

min

max
2 )(

λ
λ

=Ak      (A2) 

 

For this work, when I refer to the condition number it will be assumed that I am referring 

to the second condition number. 
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Characterization of ill-conditioned matrices 

 

In this part I will show the importance of the original matrix used as 0Σ̂ . As I explained 

in the previous part, the condition number is a measure of sensitivity to numerical 

operations, that is the reason that one usually chooses very low conditioned matrices and 

there are procedures to reduce it using matrices based in eigenvalues. However, I will 

show that even when the matrix is low conditioned, a slight departure from this value will 

lead to an ill-conditioned matrix, here is another reason that supports the importance of a 

good estimation of the covariance matrix. 

 

For example, given the correlation matrix  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

125.05.0
25.01
5.01

r
r

M  

Figure A-1 shows how the condition number behaves to a variation in one correlation, in 

this example r, fixing the third correlation in 0.25 and making the second correlation to 

vary from 0.5 to 0.45 or 0.55. 
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Figure A.1. Condition number behavior varying one correlation 

 

 

Suppose that the real value of r is -0.6, in this case the 553.19)(2 =Mk but now suppose 

that the estimation lead us to an estimated correlation, 65.0ˆ −=r , in this case the 

condition number increases to 447.35)ˆ(2 =Mk . But now suppose that now two 

correlations were estimated and the estimated matrix is  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

125.055.0
25.0165.0
55.065.01

M̂  

 

For this matrix, the condition number is 577.111)ˆ(2 =Mk . See that, from a medium ill-

conditioned matrix we have moved to an ill-conditioned matrix or in some cases to a 

singular matrix. Figures A-2 and A-3 shows both the contour plot and the surface plot, a 

bad estimation of the correlations can lead to a very conditioned matrix. 
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Figure A. 2. Contour plot of condition number varying two 
correlations (3x3 matrix) 

 
Figure A. 3. Surface Plot of the condition number varying two correlations 
(3x3 matrix) 
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To prevent singular matrices in the estimation, I have developed a procedure to get 

matrices that have a previously defined condition number with not singular matrices 

closer.  This procedure is explained in the following part. 

 

Procedure 

 

The idea is to find matrices with a previously chosen condition number.  

The procedure starts selecting an initial matrix pxpM . A matrix A is positive definite if 

TMMA = . 

 

So, the idea is to find a matrix A that satisfies the following constraints:  

 

a. Assuring that A be positive definite:  

• eigenvalues of A > 0 

b. A be a correlation matrix: 

• jiij AA = , for i≠j 

• 1=iiA  

• 1−>ijA  and 1<ijA , for i≠j 

 

The problem is that not only that the matrix should have this condition number, but also 

closer matrices (Aup and Adown) should be positive semi-definite. These constraints pretend 

to prevent that estimated matrices cannot have inverse and have a minimum condition 

number: 

 

c. Upper and lower matrices can be defined as follows: 

• VAAup +=  and  



 
 
 

 
 

 120

• VAAdown −=    

where, 05.0V is a pxp matrix with 0=iiV and 05.0=ijV  for i≠j 

d. Satisfy required condition numbers: 

• min
2

1
2

>−AA  and max
2

1
2

<−AA  

• min
2

1

2
>−

upup AA  

• min
2

1
2

>−
downdown AA  

 

Results 

 

The previous procedure was implemented in Mathcad v.11. The following results show 

the matrices that the simulation used as the true matrices:  

 

For k = 5: The matrices were 

• p = 2:  R = ⎥
⎦

⎤
⎢
⎣

⎡
15.0
5.01

, k = 3 

• p = 3: R = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

1195.0642.0
195.01253.0
642.0253.01

, k = 4.9915 

• p = 4: R = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

1227.0234.0033.0
227.01452.0196.0
234.0452.01108.0
033.0196.0108.01

, k = 4.638 

• p = 5: R = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−
−−

−−
−−

1157.0513.0211.0514.0
157.01218.0027.0101.0
513.0218.01208.0535.0
211.0027.0208.012.0
514.0101.0535.02.01

, k = 4.889 
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• p = 6: R = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−−

−
−−

−−−
−−−

1078.0264.0221.0349.0184.0
078.01064.0093.0090.0206.0
264.0064.01046.0127.0254.0
221.0093.0046.01301.0222.0
349.0090.0127.0301.01061.0
184.0206.0254.0222.0061.01

,  

k = 4.9103 

            

 

For k = 10: The matrices were 

• p = 2:  R = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
1818.0

818.01
, k = 9.9890       

• p = 3: R = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

1428.0784.0
428.01308.0
748.0308.01

, k = 9.9986 

• p = 4: R = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−−
−−

1354.0117.0720.0
354.01285.0039.0
117.0285.01058.0
720.0039.0058.01

, k = 10.069 

• p = 5: R = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−−
−−

−−

1116.0495.0207.0304.0
116.01334.0246.0116.0
495.0334.01418.0386.0
207.0246.0418.01659.0
304.0116.0386.0659.01

, k = 9.7938  

• p = 6: R = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−−
−−−
−−

1404.0304.0420.0570.0217.0
404.01450.0132.0104.0234.0
304.0450.01049.0205.0546.0
420.0132.0049.01351.0204.0
570.0104.0205.0351.01476.0
217.0234.0546.0204.0476.01

,  



 
 
 

 
 

 122

k = 9.9677 

            

            

             

For k = 20: The matrices were 

• p = 2:  R = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
1905.0

905.01
, k = 20.0526      

   

• p = 3: R = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

169.01.0
69.0165.0
1.065.01

, k = 19.8664 

• p = 4: R = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−
−−

1288.0101.0741.0
288.01819.0244.0
101.0819.01367.0
741.0244.0367.01

 , k = 20.0477   

• p = 5: R = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−
−−

−

1555.0155.0143.0198.0
555.0105.0239.0685.0
155.005.01609.0242.0
143.0239.0609.01658.0
198.0685.0242.0658.01

 , k = 19.6578  

• p = 6: R = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−−
−−−
−−

1557.0319.0481.0653.0227.0
557.01638.0145.0108.0241.0
319.0638.01050.0233.0663.0
481.0145.0050.01567.0199.0
653.0108.0233.0567.01638.0
227.0241.0663.0199.0638.01

,  

k = 20.0295          

 

For k = 50: The matrices were 



 
 
 

 
 

 123

• p = 2:  R = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
1961.0

961.01
, k = 50.2821      

   

• p = 3: R = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

1690.0093.0
690.01601.0
093.0601.01

, k = 49.6628 

• p = 4: R = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1530.0212.0855.0
530.01327.0531.0
212.0327.01589.0
855.0531.0589.01

, k = 50.0897   

  

• p = 5: R = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−
−−

−

1614.0158.0144.0196.0
614.0105.0242.0766.0
158.005.01649.0244.0
144.0242.0649.01678.0
196.0766.0244.0678.01

 , k = 49.5416 

• p = 6: R = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−−
−−−
−−

1181.0169.0147.0400.0069.0
181.01180.0037.0033.0070.0
169.0180.01015.0081.0492.0
147.0037.0015.01238.0042.0
400.0033.0081.0238.01821.0
069.0070.0492.0042.0821.01

,  

k = 49.3984   

 

For k = 100: The matrices were 

• p = 2:  R = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
1980.0

980.01
, k = 99       
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• p = 3: R = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

1388.0390.0
388.01675.0
390.0675.01

, k = 97.9866  

• p = 4: R = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−
−−

−

1011.0967.0298.0
011.01158.0544.0
967.0158.01186.0
298.0544.0186.01

, k = 97.7144   

   

• p = 5: R = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−
−−

−

1637.0159.0146.0196.0
637.01051.0244.0777.0
159.0051.01705.0242.0
146.0244.0705.01715.0
196.0777.0242.0715.01

 , k = 100.7881 

• p = 6: R = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−−
−−−
−−

1599.0343.0487.0739.0231.0
599.01650.0148.0109.0243.0
343.0650.01050.0239.0779.0
487.0148.0050.01656.0195.0
739.0109.0239.0656.01718.0
231.0243.0779.0195.0718.01

,  

k = 101.3750          
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Appendix B. Evaluation of the rotatability of the 
design 
 
Rotatability 

 

A very important characteristic of second-order response surface design is rotatability 

which was developed by Box and Hunter (1957). They state that “a rotatable design is 

one in which 2)(ˆ σxyVarN  has the same value at any locations that are at the same 

distance from the design center. This will assure that the predicted values, for example, of 

two points at the same distance from the origin will be equally good by having the same 

variance.  

 

As noted by Myers and Montgomery (1995), this concept provides guidelines for the 

selection of the center points and axial distance (ρ). 

 
 
Evaluation of the design 

 

The design (ρ = 2.00) was evaluated versus the optimal design (ρ = 1.682). The first 

evaluation is the orthogonality which guarantees that the estimation of one factor or 

interactions is free from the influence of any other factor or interaction. This can be 

obtained by evaluating the XTX, where X is the matrix design. The following figure shows 

the results for both the optimal design (a) and the proposed design (b). 
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(a) ρ = 1.682 (b) ρ = 2.000  
Figure B.1.  XTX matrix for (a) Optimal design and (b) Proposed design 

 

Both designs are similar. They have the expected properties of the central composite 

design (CCD): the linear and the interactions columns are orthogonals but the quadratic 

columns not.   

 

Now, let’s evaluate the rotatability of the design used for this work. As in the previous 

part, the design (ρ = 2.00) was evaluated versus the optimal design (ρ = 1.682).  

Graphically, it can be evaluated by showing the contour plot of 

)(1)'( )'()(ˆ mm xXXxsxyVar −=  , where s is the root mean square error and x(m) is a 

vector that reflects the model.  

 

Figure B.2 shows the contour plot without considering s. The proposed design seems to 

be rotable around the design region. 
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(a) ρ = 1.682 (b) ρ = 2.000

x1 x1

(a) ρ = 1.682 (b) ρ = 2.000

x1 x1

 
Figure B.2. Contours of constant response for (a) Optimal design and (b) 
Proposed design with factor x3 = 0. 

 
 
The performance of the design will now be evaluated using the variance dispersion graph 

as proposed by Myers and Montgomery (1995): by ploting the ))(ˆmax( 2σxyVarN  on a 

radios ρ against ρ.  Figure B3 shows the variance dispersion graph for a CCD with 3 

factors (k) and 6 center points, in this case, the maximum variance is reached at the 

sphere that contains the axial points.  
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Figure B.3.  Variance dispersion graph for a CCD for k = 3 and 6 
central points. 

  
The optimal value was established using the recommendation of Myers and Montgomery 

(1995) as the number of parameters being estimated (10). Note that the variance at ρ = 

1.682 is only 10.8% of difference from the optimal value or the design is 89% efficient 

the proposed design instead has around 55%. One would argument that this is low, but  as 

it was demonstrated previously it is still rotatable and the lack of efficiency can be 

sacrificed to expand the design region.  
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Appendix C. Fractional Factorial 2k‐l designs for p ≥ 4 
 

The designs for 4, 5 and 6 variables are 

 

Table 24. Fractional Factorial 26-1 design for 
p=4 

 Correlations 
Run A B C D E F 

1 1 -1 1 -1 1 1 
2 1 1 -1 1 1 -1 
3 1 -1 -1 -1 1 -1 
4 1 1 -1 -1 -1 -1 
5 -1 1 -1 1 1 1 
6 -1 -1 -1 1 1 -1 
7 -1 -1 1 1 -1 -1 
8 -1 1 -1 -1 1 -1 
9 -1 1 1 -1 1 1 

10 1 1 1 -1 1 -1 
11 -1 1 1 -1 -1 -1 
12 -1 1 -1 -1 -1 1 
13 1 -1 -1 1 1 1 
14 1 1 -1 -1 1 1 
15 1 -1 1 1 1 -1 
16 -1 1 1 1 1 -1 
17 -1 -1 -1 -1 1 1 
18 1 -1 -1 1 -1 -1 
19 1 1 1 1 -1 -1 
20 1 -1 -1 -1 -1 1 
21 1 -1 1 1 -1 1 
22 -1 -1 -1 -1 -1 -1 
23 -1 -1 -1 1 -1 1 
24 1 1 1 -1 -1 1 
25 -1 -1 1 1 1 1 
26 -1 -1 1 -1 1 -1 
27 1 1 -1 1 -1 1 
28 1 -1 1 -1 -1 -1 
29 1 1 1 1 1 1 
30 -1 1 -1 1 -1 -1 
31 -1 1 1 1 -1 1 
32 -1 -1 1 -1 -1 1 

+1: Over estimated 
-1: Under estimated 
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Table 25. Fractional Factorial 210-4 design for p=5 
 Correlations 

Run A B C D E F G H J K 
1 1 -1 -1 1 1 1 1 -1 -1 1 
2 -1 -1 1 -1 1 -1 1 -1 1 1 
3 -1 -1 1 -1 -1 -1 -1 1 -1 -1 
4 1 -1 1 -1 1 1 -1 1 -1 1 
5 -1 1 -1 -1 1 -1 1 1 -1 1 
6 -1 1 1 1 1 -1 -1 -1 -1 1 
7 1 1 -1 -1 1 1 -1 -1 1 1 
8 1 -1 1 1 1 -1 -1 -1 1 -1 
9 -1 1 -1 1 -1 1 -1 1 -1 1 
10 -1 1 1 1 -1 -1 1 1 1 -1 
11 1 1 1 -1 -1 -1 -1 1 1 1 
12 1 1 1 1 1 1 1 1 1 1 
13 1 1 -1 1 -1 -1 1 -1 1 1 
14 -1 1 -1 -1 -1 -1 -1 -1 1 -1 
15 -1 -1 -1 1 1 -1 -1 1 1 1 
16 1 -1 -1 -1 -1 -1 -1 -1 -1 1 
17 -1 1 -1 1 1 1 1 -1 1 -1 
18 -1 -1 1 1 1 1 1 1 -1 -1 
19 1 -1 1 -1 -1 1 1 -1 1 -1 
20 1 1 -1 -1 -1 1 1 1 -1 -1 
21 1 1 1 -1 1 -1 1 -1 -1 -1 
22 -1 -1 1 1 -1 1 -1 -1 1 1 
23 1 -1 -1 -1 1 -1 1 1 1 -1 
24 -1 -1 -1 1 -1 -1 1 -1 -1 -1 
25 -1 1 1 -1 -1 1 1 -1 -1 1 
26 1 1 -1 1 1 -1 -1 1 -1 -1 
27 1 -1 1 1 -1 -1 1 1 -1 1 
28 1 -1 -1 1 -1 1 -1 1 1 -1 
29 -1 -1 -1 -1 -1 1 1 1 1 1 
30 -1 -1 -1 -1 1 1 -1 -1 -1 -1 
31 1 1 1 1 -1 1 -1 -1 -1 -1 
32 -1 1 1 -1 1 1 -1 1 1 -1 

+1: Over estimate 
-1: Under estimated 
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Table 26. Fractional Factorial 215-9 design for p=6 
 Correlations 

Run A B C D E F G H J K L M N O P
1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1
2 -1 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 1
3 1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1
4 -1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 -1
5 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1
6 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1
7 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1
8 -1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1
9 1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1
10 -1 1 1 1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 -1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1
13 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1
14 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1
15 1 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1
16 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1 1 -1
17 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1
18 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1
19 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1
20 -1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1
21 1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1
22 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1
23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
24 -1 1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 1 -1
25 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1
26 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1
27 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1
28 -1 -1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 -1
29 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1
30 -1 -1 -1 1 1 -1 1 1 1 1 -1 1 1 -1 -1
31 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1
32 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1

+1: Over estimate 
-1: Under estimated 
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Appendix D. Sample size using correlation 
confidence interval 
 
Based in the following test of hypothesis  

 

00 : ρρ =H  

 

it is possible to construct the following 100(1- α) % confidence interval  

 

)
3
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−
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This interval uses the statistic 

 
2/1

00 )3)(tanhtanh( −−= naraZ ρ     (C2) 

 

which is based in that, for large samples (n ≥ 25), the statistic  

 

)
3

1,tanh(~tanh
−

=
n

aNraZ ρ  

 

See Montgomery, Peck and Vinning (2001) for more details.  So, it is possible to find a 

sample size given determined interval, in this case Table 27 shows the results. Based on 

this results it is clear that a big amount of samples are necessary if we need that the 

correlation would not be far from its real value specially for lower correlations. 
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Table 27. Sample size to achieve a determined error using the correlation 

confidence interval 

Error = +/- 0.01 Error = +/- 0.05 
Correlation 

α =0.01 α =0.05 α =0.10 α =0.01 α =0.05 α =0.10 

0.10 98,334 49,182 49,182 3,102 1,566 1,566 

0.20 98,334 49,182 49,182 3,102 1,566 1,566 

0.30 98,334 49,182 24,606 3,102 1,566 1,566 

0.40 49,182 49,182 24,606 3,102 1,566 1,566 

0.50 49,182 24,606 24,606 3,102 1,566 798 

0.60 49,182 24,606 12,318 1,566 798 798 

0.70 24,606 12,318 12,318 798 798 414 

0.80 12,318 6,174 6,174 798 414 222 

0.90 3,102 1,566 1,566 222 126 78 
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Appendix E. Percentiles and distribution of the run‐
length 
 
 
 
Table 28. In-control Run-Length summary for  p = 2 

k #obs Mean SDRL Q10 Q50 Q90 #obs Mean SDRL Q10 Q50 Q90
3 1000 163.64 171.29 12 110 388 500 163.98 172.00 12 110 386.5

10 1000 178.36 199.54 15 111 410.5 500 180.41 183.11 15 113.5 414.5
20 1000 210.44 222.91 19 138 490 500 213.10 232.79 19 141 490
50 1000 210.44 222.91 19 138 490 500 211.23 231.93 19 139.5 486

100 1000 210.44 222.91 19 138 490 500 210.63 232.07 18.5 137.5 486
Avg 1000 194.66 209.77 17 126 454 500 195.87 212.88 16 126.5 454

3 1000 327.05 326.51 34 209 759 500 327.86 326.59 34 210 759.5
10 1000 375.45 390.47 41 234 893 500 351.45 343.14 45 222.5 832.5
20 1000 427.82 411.65 47.5 290 1001 500 427.14 410.00 47.5 290 999
50 1000 426.65 409.99 47.5 290 1001 500 422.37 406.88 46 290 977.5

100 1000 425.54 409.15 47.5 290 999 500 422.06 406.16 46 290 977.5
Avg 1000 396.50 392.79 45 258 939 500 390.18 382.28 45 257.5 924

3 1000 490.13 485.41 54 360 1127 500 491.97 489.49 53.5 360 1133
10 1000 544.01 558.02 61 378 1258.5 500 553.19 539.25 65 393 1254.5
20 1000 660.57 630.30 74 478 1452 500 660.28 632.17 72 477.5 1453
50 1000 654.68 623.89 74 475 1448 500 656.05 627.33 72 477.5 1447.5

100 1000 652.46 624.04 72 469.5 1448 500 653.41 625.34 72 475 1446
Avg 1000 600.37 590.96 68 421 1360 500 602.98 589.12 68 422 1359

3 1000 626.62 609.26 64 416 1378.5 500 621.43 603.20 63.5 415.5 1374.5
10 1000 690.10 806.18 65 432 1501 500 674.15 702.30 65.5 456 1473.5
20 1000 851.26 882.42 75.5 595 1967.5 500 848.07 878.95 75.5 595 1943.5
50 1000 846.88 875.56 75.5 594 1946 500 845.10 879.08 75.5 590 1943.5

100 1000 843.51 872.43 70.5 590 1930.5 500 843.67 876.90 75.5 590 1943.5
Avg 1000 771.67 820.94 67 503 1797 500 766.49 801.83 67 515 1780

3 1000 785.45 798.01 75 551 1727 500 781.35 779.22 79.5 550.5 1716.5
10 1000 917.52 1031.63 72 594.5 2048.5 500 895.39 945.46 71 605.5 2022
20 1000 1118.16 1176.72 105 770 2759 500 1109.39 1174.90 104 767 2686
50 1000 1110.03 1170.90 104 767 2756 500 1103.81 1173.58 104 766 2686

100 1000 1109.44 1171.17 104 766 2756 500 1103.74 1173.58 104 766 2686
Avg 1000 1008.12 1087.60 90 680.5 2390 500 998.73 1069.52 90 680.5 2347

3 1000 1026.03 1000.72 107 704 2429 500 1024.64 1012.72 103 686.5 2429
10 1000 1065.96 1159.69 97 685 2515 500 1059.69 1053.83 108 736.5 2414
20 1000 1319.51 1277.63 124 928 2961 500 1327.65 1287.78 126 929 2993
50 1000 1309.85 1267.11 124 922 2948 500 1323.42 1276.12 126 929 2993

100 1000 1308.50 1267.57 124 921 2948 500 1318.16 1269.25 126 929 2954.5
Avg 1000 1205.97 1205.93 115.5 820 2795 500 1210.71 1193.16 116.5 832 2795

3 1000 1062.04 1083.38 114 692 2612.5 500 1063.77 1100.55 113 691.5 2589.5
10 1000 1220.54 1275.22 110 864 2832 500 1158.64 1122.15 113 837.5 2615
20 1000 1455.52 1466.09 149.5 1002 3403 500 1435.98 1419.62 149.5 1007 3285
50 1000 1455.31 1466.25 149.5 1002 3403 500 1430.10 1419.71 143 1004.5 3285

100 1000 1446.88 1463.26 139 1000 3352.5 500 1427.79 1420.47 143 999.5 3285
Avg 1000 1328.06 1368.34 131 895.5 3083 500 1303.26 1314.00 131 893 3046.5

ARL = 1400

ARL = 600

ARL = 1000

ARL = 1200

ARL = 800

ARL = 200

ARL = 400

True Matrix (mn --> ∞)  Estimated Matrix
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Table 29. In-control Run-Length summary for  p = 3  

k #obs Mean SDRL Q10 Q50 Q90 #obs Mean SDRL Q10 Q50 Q90
5 16000 187.62 182.26 22 134 427 2000 187.28 183.80 22 133 431

10 16000 195.19 188.94 25 137 445 2000 200.45 194.22 26 144 450
20 16000 187.51 201.24 19 125 439 2000 191.57 187.37 22 135 445
50 16000 229.64 356.67 10 113 540 2000 173.73 170.84 21 120 392

100 16000 300.14 650.50 6 116 674 2000 194.31 191.73 22 135 455
Avg 16000 220.02 365.78 15 127 486 2000 189.47 185.95 22 133 436

5 16000 407.83 411.94 39 279.5 938 2000 410.86 418.19 40 280 935
10 16000 420.25 433.50 38 286 973 2000 433.41 440.38 39 302 1007
20 16000 397.22 437.87 29 250 947 2000 412.21 427.60 36 280 955
50 16000 471.64 765.08 14 225 1166 2000 360.82 365.22 38 240 835

100 16000 635.74 1465.19 7 231 1443 2000 386.72 386.11 43 263 872
Avg 16000 466.54 814.91 23 254 1065 2000 400.80 409.12 39 273 931

5 16000 567.39 580.35 51.5 388 1315 2000 571.26 585.36 52 389 1336
10 16000 602.98 602.74 57 426 1372.5 2000 614.92 598.35 57 439 1420
20 16000 559.88 630.77 40 353 1326 2000 560.96 558.55 54 391 1314
50 16000 683.73 1135.51 18 312 1659.5 2000 499.68 500.15 42 333 1142

100 16000 944.75 2105.50 9 328 2205 2000 542.47 544.66 54 365 1248
Avg 16000 671.75 1176.69 29 364 1523 2000 557.86 559.62 53 385 1292

5 16000 746.46 748.22 89 503 1763 2000 749.77 740.41 91 508 1769
10 16000 789.54 796.47 86 536 1881 2000 820.66 808.38 95 573 1922
20 16000 747.91 855.56 62 475 1765 2000 753.29 779.09 86 498 1717
50 16000 931.14 1607.41 24 413 2281 2000 653.63 668.35 71 427 1577

100 16000 1263.52 2756.61 10 447 2922 2000 747.89 775.63 80 505 1732
Avg 16000 895.72 1568.45 42 481 2041 2000 745.05 757.63 83 498 1750

5 16000 974.11 990.84 103 686 2156 2000 980.20 1017.39 103 691 2159
10 16000 997.73 1056.32 101 687 2243 2000 1033.44 1096.50 105 737 2344
20 16000 943.51 1095.24 74 588 2218 2000 967.79 1033.34 103 673 2146
50 16000 1178.62 2073.57 26 552 2776.5 2000 849.90 925.96 85 579 1894

100 16000 1565.56 3561.94 11 555 3591.5 2000 919.10 926.70 105 611 2147
Avg 16000 1131.91 2027.41 50 619 2543 2000 950.09 1003.84 101 652 2152

5 16000 1156.45 1174.03 115 778 2688 2000 1166.29 1186.00 115 789 2737
10 16000 1177.31 1224.91 116.5 795 2750 2000 1229.96 1254.94 130 822 2912
20 16000 1111.45 1271.28 78 691 2689 2000 1140.35 1195.36 113 756 2676
50 16000 1391.86 2406.78 26 607 3429 2000 967.91 1030.26 98 663 2305

100 16000 1928.07 4368.84 11 627 4476 2000 1115.07 1194.76 110 718 2584
Avg 16000 1353.03 2442.66 54 708 3023 2000 1123.91 1177.64 111 746 2614

5 16000 1368.95 1331.38 151 961 3164 2000 1381.62 1319.09 152 975 3228
10 16000 1410.13 1415.39 144 980 3261 2000 1476.88 1479.26 152 1027 3421
20 16000 1345.50 1517.29 100 846 3223 2000 1373.31 1377.01 151 962 3170
50 16000 1684.16 2880.51 37 740 4000 2000 1195.18 1175.06 144 816 2812

100 16000 2308.20 5231.65 13 799.5 5201.5 2000 1303.00 1254.14 158 909 2993
Avg 16000 1623.39 2912.17 69 869 3644 2000 1346.00 1328.02 152 938 3103

ARL = 1400

ARL = 600

ARL = 800

ARL = 1000

ARL = 1200

ARL = 200

ARL = 400

Estimated Matrix True Matrix (mn --> ∞)  
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Table 30. In-control Run-Length summary for  p = 4  

k #obs Mean SDRL Q10 Q50 Q90 #obs Mean SDRL Q10 Q50 Q90
5 170000 184.44 191.82 17 124 433 5000 189.05 190.79 20 130 439

10 170000 249.87 346.51 21 146 565 5000 261.04 347.70 23 150 589.5
20 170000 175.27 197.15 16 113 417 5000 199.24 205.29 20.5 132 475
50 170000 238.34 746.58 13 113 453 5000 200.12 216.80 20 131 464

100 170000 258.11 995.26 9 89 423 5000 187.26 192.30 20 127 433
Avg 170000 221.21 591.54 15 117 460 5000 207.34 239.63 21 132 481

5 170000 385.96 406.20 38 264 920 5000 403.10 413.84 42 278 943.5
10 170000 531.33 803.22 46 307 1161 5000 558.39 808.17 48 323.5 1217
20 170000 347.66 395.60 30 214 856 5000 411.07 420.83 42 273 979.5
50 170000 507.95 1777.41 24 221 940 5000 417.67 456.93 39 273 999

100 170000 542.32 2281.13 15 171 863 5000 389.50 402.65 37 265 925
Avg 170000 463.04 1368.32 27 234 947 5000 435.95 527.52 41.5 281 1006

5 170000 542.49 566.33 50 363 1289 5000 568.62 576.34 59 391 1335
10 170000 798.97 1278.36 67 448 1707 5000 852.63 1341.44 75 480 1815
20 170000 505.82 568.64 36 319 1218 5000 603.66 615.86 60 410 1423
50 170000 754.68 2891.04 33 318 1340 5000 615.08 691.72 62 397 1430

100 170000 818.98 3704.47 19 242 1203 5000 553.68 563.02 54 386.5 1288.5
Avg 170000 684.19 2211.22 35 332 1355 5000 638.73 820.43 62 409 1464

5 170000 757.38 784.99 67 499 1781 5000 796.58 796.70 81 535 1847
10 170000 1107.14 1916.18 97 597 2312 5000 1196.87 1949.13 103 637 2566
20 170000 683.33 777.82 56 425 1623 5000 814.92 834.74 87 561 1832
50 170000 1042.79 4018.50 40 424 1797 5000 833.93 906.15 81 543 1907.5

100 170000 1170.02 5429.28 23 326 1673 5000 768.28 790.62 77 519 1766.5
Avg 170000 952.13 3184.59 50 445 1832 5000 882.12 1157.75 84 559 1980

5 170000 976.68 1061.49 96 623 2349 5000 1029.50 1090.09 109 669 2415
10 170000 1479.39 2572.46 112 750 3199 5000 1580.07 2503.78 127 833 3445
20 170000 885.77 1066.72 68 500 2173 5000 1087.52 1161.36 108 697 2579
50 170000 1352.36 5591.48 56 502 2403 5000 1079.54 1223.65 107 688.5 2532.5

100 170000 1477.43 7143.46 26 388 2135 5000 999.87 1060.12 96 651 2405
Avg 170000 1234.33 4277.77 62 546 2441 5000 1155.30 1526.83 109 699 2659

5 170000 1105.38 1169.48 101 714 2663 5000 1162.88 1191.45 119 786 2755.5
10 170000 1760.27 3426.41 134 878 3677 5000 1894.91 3412.79 145 936.5 4010.5
20 170000 985.09 1140.21 79 595 2341 5000 1193.26 1236.90 128 782 2839
50 170000 1559.22 6298.73 59 595 2684 5000 1252.30 1410.91 132.5 825 2875

100 170000 1765.91 8972.59 31 444 2277 5000 1115.52 1136.84 119.5 755 2549.5
Avg 170000 1435.17 5198.67 71 643 2755 5000 1323.77 1912.82 128 806 2924.5

5 170000 1319.81 1405.03 108 858 3101 5000 1396.84 1431.39 132 939 3197.5
10 170000 2115.80 4140.71 134 1069 4343 5000 2242.44 3867.41 148.5 1172 4796
20 170000 1210.27 1451.30 75 707 2955 5000 1467.20 1592.65 124 938 3440
50 170000 1901.16 7874.53 64 717 3218 5000 1498.10 1694.50 119 960 3462

100 170000 2152.53 11002.71 35 523 2844 5000 1326.12 1389.76 116 881 3100
Avg 170000 1739.92 6404.49 71 763 3308 5000 1586.14 2231.47 128 973 3499

ARL = 200

ARL = 400

Estimated Matrix True Matrix (mn --> ∞)  
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Table 31. In-control Run-Length summary for  p = 5  

k #obs Mean SDRL Q10 Q50 Q90 #obs Mean SDRL Q10 Q50 Q90
5 68000 186.92 183.02 21 125 426 2000 192.23 187.83 22 131 435

10 68000 190.31 191.69 21 125 443 2000 194.46 192.22 22 131 450
20 68000 175.83 192.36 16 112 413 2000 211.47 212.23 23 143.5 475
50 68000 194.70 517.23 9 80 410 2000 227.84 230.24 26 158 509.5

100 68000 509.04 1289.05 4 93 1256 2000 215.31 217.38 25 147 498
Avg 68000 251.36 651.09 10 110.5 485 2000 208.26 208.97 24 141 472

5 68000 362.57 355.44 41 254 844 2000 375.95 361.39 42 267.5 856
10 68000 391.33 388.41 42 279 903 2000 401.88 391.18 42 287.5 922
20 68000 348.20 386.73 27 219 843 2000 422.66 423.24 46 293.5 991.5
50 68000 391.93 1189.22 13 140 827 2000 455.15 466.03 46 308 1092

100 68000 1067.16 2745.46 4 161 2817 2000 431.03 439.59 44 295.5 1012.5
Avg 68000 512.24 1397.48 18 212 997 2000 417.33 418.67 44 290 969

5 68000 564.60 562.19 60 395 1311 2000 591.47 585.69 63.5 417.5 1379
10 68000 611.15 626.97 63 420 1415 2000 647.44 640.36 67 443 1521
20 68000 529.17 607.01 39 335 1256 2000 670.28 674.32 70.5 475 1536.5
50 68000 597.55 1882.07 17 205 1249 2000 709.78 731.17 68 485 1695

100 68000 1711.49 4542.86 5 235 4440 2000 668.22 677.15 72.5 449 1556
Avg 68000 802.79 2293.18 25 329 1521 2000 657.44 664.46 67 455 1523

5 68000 750.09 769.48 73 504 1784 2000 797.02 815.56 76 543 1871
10 68000 808.63 833.18 80 552 1898 2000 850.77 875.92 83.5 578 1975
20 68000 693.96 810.79 48 411 1713 2000 887.16 934.04 86 595.5 2008
50 68000 794.08 2545.52 19 262 1599 2000 924.14 1015.48 92 592 2133

100 68000 2302.24 6194.36 6 301 5962 2000 853.10 888.53 93 560 1943.5
Avg 68000 1069.80 3120.88 29 411 1995 2000 862.43 909.15 85 572 1977

5 68000 894.48 900.52 96 618 2028 2000 948.20 953.85 102 648 2139.5
10 68000 958.35 981.49 102 661 2129 2000 995.72 1005.86 109 699 2193
20 68000 831.24 960.65 62 527 1955 2000 1036.57 1009.51 115.5 752 2388.5
50 68000 985.06 3262.48 23 314 1995 2000 1168.83 1206.59 118 806 2757

100 68000 2914.89 7736.70 6 362 7593 2000 1100.72 1134.87 102 761 2556
Avg 68000 1316.80 3909.05 35 510 2404 2000 1050.01 1068.87 108 727 2403

5 68000 1080.97 1109.02 111 712 2490 2000 1135.23 1150.40 111 752 2635
10 68000 1197.94 1211.05 124 800 2820 2000 1276.04 1275.86 131 863 3023.5
20 68000 1012.75 1156.06 73 618 2465.5 2000 1294.09 1261.35 136 873 3056.5
50 68000 1216.07 4180.18 26 402 2446 2000 1444.10 1418.43 144 1000.5 3271.5

100 68000 3610.91 9784.74 6 455 9412 2000 1348.95 1330.94 139 955.5 3059
Avg 68000 1623.73 4943.91 39 604 3033 2000 1299.68 1294.08 130 882 3023.5

5 68000 1305.40 1306.09 134 915 3006 2000 1407.29 1377.84 153.5 996 3226
10 68000 1385.32 1423.98 138 926 3230 2000 1463.75 1501.40 141 986.5 3429
20 68000 1225.23 1412.37 88 767 2923 2000 1609.35 1632.07 187.5 1121 3795
50 68000 1479.52 5242.38 28 446 2842 2000 1687.07 1697.60 191.5 1163 3918.5

100 68000 4185.28 11420.53 7 475 10875 2000 1497.18 1515.89 161.5 1047 3396.5
Avg 68000 1916.15 5832.83 47 725 3561 2000 1532.93 1551.95 163 1067 3563

ARL = 1400

ARL = 600

ARL = 800

ARL = 1000

ARL = 1200

ARL = 200

ARL = 400

Estimated Matrix True Matrix (mn --> ∞)  
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Table 32. In-control Run-Length summary for  p = 6  
k Mean SDRL Q10 Q50 Q90 Mean SDRL Q10 Q50 Q90
5 17000 189.15 200.06 15 127 432 500 200.44 217.20 17 128 480

10 17000 135.36 146.81 12 89 312 500 140.44 158.22 12 90 311.5
20 17000 171.22 189.92 14 103.5 406 500 211.00 211.94 21.5 147.5 475
50 17000 139.60 172.12 9 79 347 500 168.22 172.49 15 109 398

100 17000 200.53 216.00 16 129 476 500 242.67 242.83 24.5 158 565
Avg 17000 167.17 188.31 12 100 405 500 192.55 205.79 17 127 444.5

5 17000 364.22 352.61 49 259 820 500 390.32 383.07 54 272 855
10 17000 275.84 267.07 34 187 640 500 298.88 285.03 36 196.5 679.5
20 17000 330.48 360.39 31 214 775 500 424.83 428.01 55 291 934
50 17000 266.28 317.84 17 158 683 500 337.60 318.69 40.5 237.5 763

100 17000 409.79 443.82 40 266 968 500 490.09 510.04 56 335.5 1131.5
Avg 17000 329.32 357.22 31 209 764 500 388.35 398.48 48 267 848.5

5 17000 523.31 506.82 49 380 1169 500 570.96 542.84 55 433.5 1268
10 17000 376.42 391.66 29 245 912 500 407.30 407.11 31.5 270.5 960
20 17000 466.95 539.77 37 297 1095 500 608.05 618.12 55 434 1362.5
50 17000 373.23 457.89 21 208 940 500 480.75 453.93 47.5 363 1075.5

100 17000 572.86 632.18 40 382 1329 500 700.57 686.00 58.5 516.5 1539
Avg 17000 462.55 518.10 33 299 1092 500 553.53 560.05 49 392 1228

5 17000 720.56 725.32 74 470 1682 500 763.44 749.07 76.5 509 1820.5
10 17000 508.95 533.77 52 339 1227 500 553.03 544.47 56.5 383 1311.5
20 17000 625.98 741.62 52 380 1526 500 854.42 915.40 96.5 572.5 1984
50 17000 496.95 626.98 30 271 1294 500 636.53 649.86 73 421 1460

100 17000 772.78 856.80 73 470 1832 500 921.54 916.07 117 623 2076.5
Avg 17000 625.04 713.99 52 388 1497 500 745.79 780.31 77 477.5 1729.5

5 17000 950.42 967.94 100 649 2130 500 1023.82 999.96 107 719.5 2371.5
10 17000 679.20 700.13 71 469 1517 500 752.60 755.40 75.5 560 1643
20 17000 802.67 944.56 66 474 1959 500 1068.05 1073.95 104.5 736 2447.5
50 17000 632.95 820.53 32 343 1646 500 806.88 800.52 84.5 586 1885.5

100 17000 1011.84 1109.03 95 653 2382 500 1220.26 1154.90 134 883.5 2795.5
Avg 17000 815.42 930.71 67 517 1958.5 500 974.32 983.87 100 682 2223

5 17000 1082.38 1154.91 93 724 2448 500 1173.65 1292.78 103.5 798 2583
10 17000 742.74 788.82 59 477 1719 500 827.62 869.43 73.5 533.5 1885.5
20 17000 918.59 1063.51 62 570 2259 500 1267.45 1291.31 139 918 2855.5
50 17000 694.50 901.43 35 367 1831 500 874.41 913.40 94 606 2060.5

100 17000 1120.52 1284.33 84 698 2682 500 1384.72 1429.68 134 973.5 3102.5
Avg 17000 911.75 1067.47 60 567 2220 500 1105.57 1200.11 104 725.5 2564

5 17000 1316.86 1347.69 145 917 2895 500 1471.86 1488.28 161.5 1077 3118
10 17000 849.90 871.02 89 585 1983.5 500 973.20 1014.63 107.5 655.5 2237.5
20 17000 1127.92 1295.10 94 654 2721 500 1626.49 1580.33 201 1166 3779
50 17000 861.09 1141.84 45 440 2171 500 1152.79 1316.01 136.5 740 2480.5

100 17000 1367.86 1531.14 117 836 3222 500 1718.13 1742.35 177 1231.5 3876.5
Avg 17000 1104.73 1275.86 86 665 2594.5 500 1388.50 1476.02 154 937 3064

ARL = 1400

ARL = 600

ARL = 800

ARL = 1000

ARL = 1200

ARL = 200

ARL = 400

Estimated Matrix True Matrix (mn --> ∞)  
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Table 33. Run-length summary for condition number ( k̂  < = 5) by 
theoretical ARL and number of variables (p) 

2 3 4 5 6
ARL 163.75 188.27 193.11 189.25 202.73

SDRL 171.47 182.55 196.47 184.49 214.17
Q10 12 22 20 22 17
Q50 110 135 131 127 135
Q90 388 431 452 430 476
ARL 327.32 414.60 406.03 372.34 391.82

SDRL 326.43 418.55 417.04 364.97 376.44
Q10 34 39 42 41 52
Q50 209.5 285 280 263.5 279
Q90 759 947 950 856 892
ARL 490.75 577.11 572.00 581.04 560.59

SDRL 486.61 593.73 580.88 577.82 535.09
Q10 54 53 59 62 52
Q50 360 389 393 405 414.5
Q90 1127 1340 1337 1372.5 1247
ARL 624.89 758.95 799.48 769.06 784.95

SDRL 607.05 757.68 805.70 791.46 787.84
Q10 64 91 82 75 77
Q50 416 514 535 514 533
Q90 1376 1791 1852 1850 1835
ARL 784.08 990.08 1032.59 920.74 1028.78

SDRL 791.54 1025.55 1091.31 926.30 1034.73
Q10 77 103 108 102 106
Q50 551 691 672 638 714
Q90 1727 2160 2418 2080 2351
ARL 1025.56 1177.31 1166.61 1113.12 1189.03

SDRL 1004.40 1199.07 1198.46 1150.62 1257.75
Q10 103 115 119 111 104
Q50 696 802 786 724 842
Q90 2429 2781 2787 2578 2664
ARL 1062.62 1393.15 1396.98 1339.57 1441.02

SDRL 1088.76 1350.80 1444.72 1334.06 1452.24
Q10 114 153 128 136 164.5
Q50 692 976 937 933 1026
Q90 2612 3228 3253.5 3104 3064

Theoretical 
ARL

Number of variables (p )

200

400

600

800

1000

1200

1400
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Table 34. Run-length summary for condition number (5< k <=10) by 
theoretical ARL and number of variables (p) 

2 3 4 5 6
ARL 199.00 197.18 254.55 194.15 158.91

SDRL 210.25 191.29 387.27 193.58 170.09
Q10 18 24 19 22 13
Q50 124.5 139 137 130 100
Q90 477 448 570 446 367
ARL 409.13 422.86 546.61 387.98 313.95

SDRL 408.21 432.75 903.65 383.35 302.37
Q10 49 39 40 42 39
Q50 260.5 291.5 295 278 214
Q90 977.5 984 1168 900 717
ARL 617.05 598.92 834.27 611.44 446.27

SDRL 599.64 599.38 1477.21 622.03 446.68
Q10 70 55 57 64 39
Q50 426.5 422 417 422 312
Q90 1390.5 1364.5 1767 1414 1037
ARL 783.41 791.13 1162.92 808.21 600.40

SDRL 861.28 794.34 2226.74 827.15 609.39
Q10 77 93 77 79 59
Q50 502 542 565 555 402
Q90 1796 1868 2389 1894 1424
ARL 1050.67 1013.46 1565.17 960.51 796.62

SDRL 1126.61 1049.90 3007.63 976.37 814.18
Q10 85 105 103 102 86
Q50 752.5 714 709 664 569
Q90 2499.5 2279 3331 2139 1790
ARL 1210.19 1202.41 1889.94 1186.38 883.75

SDRL 1245.17 1236.11 4034.07 1197.52 944.46
Q10 120 124 113 125 73
Q50 812 805 838 798 580
Q90 2716 2833.5 3837 2753 2107
ARL 1363.85 1431.23 2263.04 1399.75 1049.83

SDRL 1357.72 1418.90 4907.90 1423.34 1088.95
Q10 135 152 114 144 117
Q50 965 992 1003 953 693
Q90 3223 3334 4495 3238 2329

Theoretical 
ARL

Number of variables (p )

200

400

600

800

1000
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Table 35. Run-length summary for condition number (10< k̂   <=20) by 
theoretical ARL and number of variables (p) 

2 3 4 5 6
ARL 176.56 210.63 211.18 198.60 161.31

SDRL 199.90 214.56 237.00 205.29 180.95
Q10 15 25 20 22 14
Q50 110 147 134 131 99
Q90 404 477 493 451 376
ARL 359.07 451.78 434.65 401.61 321.94

SDRL 362.88 465.52 508.97 410.26 337.50
Q10 36 40 40 42 34
Q50 228.5 309 278 279 209
Q90 857.5 1060 1022 935 723
ARL 538.86 647.89 630.20 619.00 445.77

SDRL 550.20 675.30 726.01 652.32 502.36
Q10 60.5 59 59 63 35
Q50 376.5 447 404 421 280
Q90 1269.5 1503 1491 1421 1045
ARL 674.81 858.44 865.67 829.37 603.28

SDRL 745.20 909.68 1034.15 882.93 683.23
Q10 61 93 81 79 58
Q50 451 577 554 547 383
Q90 1493 1994 1987 1949 1422
ARL 886.39 1083.76 1132.60 983.35 794.03

SDRL 978.40 1168.71 1371.54 1046.96 885.39
Q10 80 107 105 103 81
Q50 587 739 687 671 523
Q90 1995 2473 2654.5 2200 1829
ARL 1052.13 1280.62 1286.64 1217.16 886.04

SDRL 1093.47 1354.42 1645.96 1263.82 982.50
Q10 99.5 124 121 126.5 69
Q50 697 856 788 799 572
Q90 2455.5 2978 2945 2852 2166
ARL 1184.07 1551.35 1571.27 1447.94 1054.96

SDRL 1256.55 1603.67 1969.11 1531.86 1179.57
Q10 110 159 117 144 97.5
Q50 824.5 1051 962 965 658
Q90 2740.5 3547 3603 3359 2441
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Table 36. Run-length summary for condition number (20< k̂  <=50) by 
theoretical ARL and number of variables (p) 

2 3 4 5 6
ARL 211.33 201.77 184.78 184.75 170.17

SDRL 226.17 238.08 209.47 210.02 186.25
Q10 19 18 17 18 14
Q50 139.5 126.5 117 114 103
Q90 490 469 437 430 417
ARL 427.66 421.33 375.06 366.30 327.40

SDRL 410.95 508.33 442.29 429.41 348.23
Q10 47.5 31 34 31 34
Q50 290 248 232 221 213
Q90 1001 1015 913 876 761
ARL 660.47 605.44 543.25 554.80 463.20

SDRL 630.71 781.58 635.08 667.32 510.74
Q10 73 39 44 45 38
Q50 478 342 339 341 306
Q90 1452 1429 1299.5 1315 1075
ARL 850.20 815.73 740.20 722.70 624.93

SDRL 880.97 1055.03 885.31 899.62 705.54
Q10 75.5 60 63 61 58
Q50 595 462 452 426 388
Q90 1959 1980 1744 1732 1471
ARL 1115.24 1030.34 945.50 883.49 798.71

SDRL 1175.73 1350.40 1160.31 1094.87 902.76
Q10 105 70 81 73 73
Q50 768.5 590 539 532 513
Q90 2756 2491 2349 2054.5 1912.5
ARL 1322.22 1220.73 1078.14 1074.13 897.79

SDRL 1280.60 1660.96 1331.89 1306.99 1014.96
Q10 124 77 89 84 67
Q50 928 676 645 642 573
Q90 2961 2945 2577 2565 2192
ARL 1449.01 1456.84 1305.69 1279.68 1115.90

SDRL 1450.32 1891.14 1611.30 1600.84 1264.00
Q10 149.5 105 88 101 96
Q50 1004 819 759 766 676
Q90 3352.5 3503 3101 2993 2622
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Table 37. Run-length summary for condition number (50< k̂   <=100) by 
theoretical ARL and number of variables (p) 

2 3 4 5 6
ARL 209.26 240.46 209.02 208.70 175.13

SDRL 219.01 319.32 555.25 408.85 206.04
Q10 19 20 15 12 12
Q50 137.5 136 108 94 99
Q90 489 571 416 468 429
ARL 423.37 489.53 433.14 411.82 354.12

SDRL 407.40 678.30 1344.61 834.69 423.61
Q10 46 36 26 19 29
Q50 290 266 208 164.5 206
Q90 978 1185 842 950 853
ARL 647.90 727.75 633.56 622.92 493.23

SDRL 619.31 1043.34 2119.65 1324.16 608.50
Q10 72 43 35 26 33
Q50 465 385 298 238 285
Q90 1447 1742 1186 1457 1186
ARL 839.56 993.64 894.12 820.49 665.24

SDRL 868.84 1451.16 3254.54 1801.23 829.84
Q10 74 64 49 32 53
Q50 582.5 516 403 306 375
Q90 1928 2357.5 1611 1853.5 1659.5
ARL 1098.42 1233.98 1122.33 1049.11 859.81

SDRL 1164.07 1848.41 4101.94 2506.20 1075.09
Q10 103 78 61 37 63
Q50 764 657 469 370 466
Q90 2693 2879.5 2056 2345 2159
ARL 1301.22 1471.00 1316.09 1252.94 961.68

SDRL 1259.45 2190.03 5233.80 2852.13 1245.28
Q10 124 89 69 43 63
Q50 920 747 558 462 530
Q90 2942.5 3578 2232 2860 2452
ARL 1436.08 1801.40 1590.26 1466.39 1167.53

SDRL 1446.72 2631.91 6488.90 3502.44 1487.35
Q10 139 117.5 71 52 86
Q50 997 948 645 508 631
Q90 3302 4217 2782 3281 2928
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Table 38. Run-length summary for condition number  
(100< k̂  ) by theoretical ARL and number of variables (p) 

3 4 5 6
ARL 302.46 336.15 518.13 142.83

SDRL 858.56 1489.44 1424.74 175.37
Q10 2 5 2 8
Q50 29 53 43 79
Q90 749 362 1472 383
ARL 648.92 729.20 1100.35 285.60

SDRL 1944.21 3429.40 3080.04 356.05
Q10 2 7 3 14
Q50 46 95 63 158
Q90 1562.5 704 3268 733
ARL 939.34 1144.95 1774.54 392.61

SDRL 2753.87 5629.24 5074.53 495.43
Q10 3 9 3 18
Q50 59 128 85 209
Q90 2317.5 987.5 5256 1003
ARL 1234.61 1612.52 2397.55 513.91

SDRL 3633.18 7945.23 6909.10 662.43
Q10 3 10 4 23
Q50 75 164 105 272.5
Q90 2974 1364 7006 1355
ARL 1544.51 2108.77 3012.55 678.49

SDRL 4715.09 10869.88 8605.37 873.54
Q10 3 10 4 28
Q50 87 193 117 352
Q90 3796.5 1714 8797.5 1823
ARL 1915.29 2496.04 3780.26 731.64

SDRL 5717.11 12941.03 10984.93 974.59
Q10 3 11 4 30
Q50 99 215 137 370
Q90 4902.5 1852 11075 1910
ARL 2275.29 3078.19 4428.90 894.99

SDRL 6889.37 15956.64 12922.38 1179.76
Q10 3 12 4 33
Q50 115 262 148 431
Q90 5737 2210 13067.5 2306

200

400

600

800

1000

1200

1400

Theoretical 
ARL

Number od variables (p)
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Appendix F. Box‐Cox transformation procedure  
 

Trying to improve the model, a Box-Cox transformation was also tested. The Box-Cox 

procedure followed was 

a. Find a Box-Cox transformation for a single independent variable 

fixing the other ones. 

b. Find a Box-Cox transformation for the following independent variable, 

maintaining the previously transformed variable and keeping the other 

ones without transformation. 

c. Repeat the process until all independent variables have been 

transformed (not including the interactions). 

d.  Finally, with the independents transformed variables, transform the 

response variable. 

The model obtained with this procedure is like the following Equation 

n
nxxxy λλλθ +++= ...21

21     (7.1) 

where 
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The exponents for the independent transformation are 
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Table 39. Box-Cox independent lambdas for the independent variables 
Variable  Variable (before 

transformation) 
Variable (after 
transformation) 

Theta/ 
Lambda 

Log (Theoretical ARL) Larl_theo Larl_theo_bc 2.646475 
Log (k) Logk Logk_bc 1.894422    
Sample size or n N_u n_u_bc 1.318188 
Interaction number of 
samples and sample size 

mn1 mn1_bc 1.314768 

Interaction samples size 
and number of samples 

np1 np1_bc 1.314239 

Square of number of 
samples 

m2 m2_bc 1.313765 

 

The transformation for the dependent variable (larl_sim or the logarithm of the 

simulated ARL) is 1.629404.  

The regression was evaluated with the effect without being transformed. The results 

show an slightly improvement in the multiple determination coefficient but the root of the 

MSE  deteriorates up to 3.34. The residuals show practically the same pattern of the 

initial model (see Figures E-1 and E-2) so the initial model can be used instead of the 

Box-Cox model. 
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Table 40.  Regression model using Box-Cox transformations 
 
      Source |       SS       df       MS              Number of obs =  197400 
-------------+------------------------------           F(  7,197392) =17057.37 
       Model |  830938.012     7   118705.43           Prob > F      =  0.0000 
    Residual |  1373687.53197392  6.95918542           R-squared     =  0.3769 
-------------+------------------------------           Adj R-squared =  0.3769 
       Total |  2204625.54197399  11.1683724           Root MSE      =   2.638 
 
------------------------------------------------------------------------------ 
 larl_sim_bc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons            4.586773   .0320252   143.22   0.000     4.524005    4.649542 
larl_theo~c      .1429793   .0004514   316.74   0.000     .1420946    .1438641 
logk_bc         -.2041017   .0015615  -130.71   0.000    -.2071621   -.2010412 
n_u_bc           .1672123   .0046623    35.86   0.000     .1580742    .1763504 
mn1_bc          -.0000258   8.32e-07   -30.98   0.000    -.0000274   -.0000241 
np1_bc          -.0088093   .0004763   -18.49   0.000    -.0097428   -.0078757 
m2_bc            2.60e-08   9.62e-10    27.00   0.000     2.41e-08    2.79e-08 
effect 
           1     .5902392   .0321951    18.33   0.000     .5271376    .6533408 
           2    (dropped) 
--------------------------------------------------------------------- 

 

Figure F.1. Normal Q-Q plot for the residuals after Box-Cox 
transformation 
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Figure F. 2. (a) Histogram (b) Kernel density for residuals in the Box-Cox 
model 
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Appendix G. Regression models 
 
Table 41. Regression model when  k̂  < 10 
 
      Source |       SS       df       MS              Number of obs =   59010 
-------------+------------------------------           F(  4, 59005) =41014.75 
       Model |  24306.0699     4  6076.51748           Prob > F      =  0.0000 
    Residual |  8741.85204 59005  .148154428           R-squared     =  0.7355 
-------------+------------------------------           Adj R-squared =  0.7355 
       Total |   33047.922 59009  .560048839           Root MSE      =  .38491 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons           -.4592629   .0192468   -23.86   0.000    -.4969867   -.4215391 
larl_theo        1.007269   .0024992   403.04   0.000     1.002371    1.012168 
logk             .1819327   .0047722    38.12   0.000     .1725793    .1912862 
n_u              .0096051   .0008759    10.97   0.000     .0078884    .0113218 
m2               2.99e-08   6.24e-09     4.79   0.000     1.77e-08    4.21e-08 
------------------------------------------------------------------------------ 
 

 
 
Table 42. Regression model when 10 ≤ k̂ < 20 
 
      Source |       SS       df       MS              Number of obs =   37170 
-------------+------------------------------           F(  7, 37162) =16871.62 
       Model |   15294.102     7  2184.87171           Prob > F      =  0.0000 
    Residual |  4812.47278 37162  .129499833           R-squared     =  0.7607 
-------------+------------------------------           Adj R-squared =  0.7606 
       Total |  20106.5748 37169  .540950114           Root MSE      =  .35986 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons           -.4328219   .0271763   -15.93   0.000    -.4860882   -.3795556 
larl_theo        .9983577    .002944   339.12   0.000     .9925874    1.004128 
logk              .119801    .006834    17.53   0.000     .1064063    .1331957 
n_u              .1066148   .0027878    38.24   0.000     .1011507    .1120789 
mn1             -.0001366   3.68e-06   -37.07   0.000    -.0001438   -.0001294 
np1             -.0107158   .0004426   -24.21   0.000    -.0115834   -.0098483 
m2               5.17e-07   2.00e-08    25.78   0.000     4.77e-07    5.56e-07 
effect 
           1     .1140992   .0103353    11.04   0.000     .0938418    .1343566 
           2    (dropped) 
------------------------------------------------------------------------------ 
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Table 43. Regression model when 20 ≤ k̂  < 60 
 
      Source |       SS       df       MS              Number of obs =   50400 
-------------+------------------------------           F(  7, 50392) =10375.69 
       Model |  18829.3112     7  2689.90161           Prob > F      =  0.0000 
    Residual |  13064.1395 50392  .259250268           R-squared     =  0.5904 
-------------+------------------------------           Adj R-squared =  0.5903 
       Total |  31893.4508 50399  .632819119           Root MSE      =  .50917 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons           -.3269787   .0343999    -9.51   0.000    -.3944029   -.2595544 
larl_theo        .9558468   .0035772   267.21   0.000     .9488355    .9628582 
logk             .0793531   .0062001    12.80   0.000     .0672009    .0915054 
n_u              .0673399   .0033923    19.85   0.000      .060691    .0739888 
mn1             -.0000337   4.65e-06    -7.24   0.000    -.0000428   -.0000246 
np1             -.0107668   .0005265   -20.45   0.000    -.0117988   -.0097349 
m2               2.54e-07   2.43e-08    10.42   0.000     2.06e-07    3.01e-07 
effect 
           1     .1996949   .0110428    18.08   0.000     .1780509    .2213388 
           2    (dropped) 
------------------------------------------------------------------------------ 

 
Table 44. Regression model when 60 ≤ k̂  
 
      Source |       SS       df       MS              Number of obs =   50820 
-------------+------------------------------           F(  6, 50813) = 1761.03 
       Model |   24164.146     6  4027.35767           Prob > F      =  0.0000 
    Residual |  116205.927 50813  2.28693301           R-squared     =  0.1721 
-------------+------------------------------           Adj R-squared =  0.1720 
       Total |  140370.073 50819  2.76215733           Root MSE      =  1.5123 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons            2.913661   .0899396    32.40   0.000     2.737378    3.089944 
larl_theo        .8278754   .0105805    78.25   0.000     .8071374    .8486134 
logk            -.6466551   .0104033   -62.16   0.000    -.6670457   -.6262645 
n_u              .1547571   .0073366    21.09   0.000     .1403774    .1691368 
mn1             -.0002547   .0000129   -19.78   0.000      -.00028   -.0002295 
m2               1.25e-06   7.30e-08    17.08   0.000     1.10e-06    1.39e-06 
effect 
           1     .6121385   .0410418    14.91   0.000     .5316961    .6925809 
           2    (dropped) 
------------------------------------------------------------------------------ 
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Appendix H. Regression models with true matrices 
only 
 
Table 45. Regression model when  k̂  < 10 with true matrices only 
      
      Source |       SS       df       MS              Number of obs =    2100 
-------------+------------------------------           F(  8,  2091) = 3653.66 
       Model |  878.329207     8  109.791151           Prob > F      =  0.0000 
    Residual |  62.8338262  2091  .030049654           R-squared     =  0.9332 
-------------+------------------------------           Adj R-squared =  0.9330 
       Total |  941.163034  2099  .448386391           Root MSE      =  .17335 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons           -1.097045    .085641   -12.81   0.000    -1.264995   -.9290943 
larl_theo        1.012063   .0059664   169.63   0.000     1.000363    1.023764 
logk              .077417   .0106969     7.24   0.000     .0564393    .0983947 
m_u              .0004837   .0001082     4.47   0.000     .0002715    .0006959 
p_u              .3705704   .0283494    13.07   0.000     .3149744    .4261664 
mp1              .0000939   .0000207     4.53   0.000     .0000533    .0001344 
m2              -7.80e-07   6.45e-08   -12.10   0.000    -9.06e-07   -6.53e-07 
n2               .0014918   .0001737     8.59   0.000     .0011512    .0018324 
p2              -.0527516   .0032686   -16.14   0.000    -.0591617   -.0463415 
------------------------------------------------------------------------------ 
 

 
Table 46. Regression model when 10 ≤ k̂ < 20 with true matrices only 
 
      Source |       SS       df       MS              Number of obs =    1260 
-------------+------------------------------           F(  7,  1252) = 1643.41 
       Model |  685.764531     7  97.9663616           Prob > F      =  0.0000 
    Residual |  74.6337542  1252  .059611625           R-squared     =  0.9018 
-------------+------------------------------           Adj R-squared =  0.9013 
       Total |  760.398286  1259  .603970044           Root MSE      =  .24415 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons            1.290768    .108404    11.91   0.000     1.078094    1.503441 
larl_theo        1.025502   .0108487    94.53   0.000     1.004218    1.046786 
logk            -.3563605   .0204785   -17.40   0.000    -.3965366   -.3161845 
m_u             -.0046875   .0001037   -45.21   0.000    -.0048909   -.0044841 
p_u              .3372907   .0229407    14.70   0.000     .2922842    .3822972 
np1             -.0463295   .0034163   -13.56   0.000    -.0530318   -.0396272 
m2               3.67e-06   9.42e-08    39.02   0.000     3.49e-06    3.86e-06 
n2               .0145395   .0011331    12.83   0.000     .0123166    .0167624 
p2              (dropped) 
------------------------------------------------------------------------------ 
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Table 47. Regression model when 20 ≤ k̂  < 60 with true matrices only 
      
      Source |       SS       df       MS              Number of obs =    2240 
-------------+------------------------------           F(  8,  2231) = 2214.89 
       Model |  946.808786     8  118.351098           Prob > F      =  0.0000 
    Residual |  119.211724  2231  .053434211           R-squared     =  0.8882 
-------------+------------------------------           Adj R-squared =  0.8878 
       Total |  1066.02051  2239  .476114565           Root MSE      =  .23116 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons           -2.367233   .1669656   -14.18   0.000    -2.694657   -2.039809 
larl_theo        1.006397   .0077034   130.64   0.000     .9912904    1.021504 
m_u              .0019492   .0001964     9.92   0.000      .001564    .0023344 
p_u              .6217728   .0357629    17.39   0.000     .5516408    .6919048 
n_u              .2199887   .0247782     8.88   0.000      .171398    .2685794 
mn1             -.0001148   .0000195    -5.88   0.000     -.000153   -.0000765 
mp1             -.0003408    .000039    -8.73   0.000    -.0004173   -.0002643 
np1             -.0701145   .0048841   -14.36   0.000    -.0796924   -.0605367 
n2               .0062013     .00094     6.60   0.000      .004358    .0080446 
------------------------------------------------------------------------------ 
 
 
Table 48. Regression model when 60 ≤ k̂  with true matrices only 
 
      Source |       SS       df       MS              Number of obs =    1400 
-------------+------------------------------           F(  9,  1390) = 2232.96 
       Model |  583.161644     9  64.7957382           Prob > F      =  0.0000 
    Residual |  40.3348048  1390  .029017845           R-squared     =  0.9353 
-------------+------------------------------           Adj R-squared =  0.9349 
       Total |  623.496449  1399  .445672944           Root MSE      =  .17035 
 
------------------------------------------------------------------------------ 
    larl_sim        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
_cons            .8641143   .1377138     6.27   0.000     .5939649    1.134264 
larl_theo        .9942502   .0071807   138.46   0.000      .980164    1.008336 
m_u              .0019694   .0001123    17.54   0.000     .0017492    .0021896 
p_u             -.5156502   .0393393   -13.11   0.000    -.5928211   -.4384793 
n_u             -.1816115   .0203823    -8.91   0.000     -.221595   -.1416281 
mn1             -.0001848   .0000144   -12.85   0.000     -.000213   -.0001566 
np1              .0263233   .0035992     7.31   0.000     .0192628    .0333838 
m2              -6.56e-07   6.51e-08   -10.07   0.000    -7.83e-07   -5.28e-07 
n2                 .01461   .0010152    14.39   0.000     .0126186    .0166015 
p2               .0510166   .0040607    12.56   0.000     .0430508    .0589823 
------------------------------------------------------------------------------ 
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Appendix I. Programs 
 
 
Appendix I1. Main Program 
 
clear  
clc    
%---------------------------------------------------------------------- 
% The input data comes from the file: info_p2.txt 
% For this example, the first three columns are p, m and n, the fourth 
% column is the %theoretical k of the correlation matrix used 
% Mu0 = columns 5-6 
% Sigma0 = columns 7-10 
load info_p2.txt 
final =[]; 
for i=1:size(info_p2,1) %goes thruogh all exp conditions to assign 
parameters 
    k_theo = info_p2(i,5); 
    p = info_p2(i,6); 
    m = info_p2(i,7); 
    n = info_p2(i,8); 
    Mu0 = info_p2(i,9:10)'; 
    Sigma0 = reshape(info_p2(i,11:size(info_p2,2)),p,p); 
     
    indicadores =info_p2(i,1:8); 
     
    con=[]; nor=[];    
    ISigma0 = inv(Sigma0); %inverse of the current Sigma0 
    [p k1] = size(Mu0); 
 
    cov_size = size(Sigma0); 
%Both, MuHat and SigmaHat are non standarized values     
 
%Creating n samples of random data with parameters defined above (p=3) 
[MuHat,SigmaHat,sample,vec_medias]=multiv_parameter(Mu0,Sigma0,m,n); 
    MuHat_NS = MuHat; 
    SigmaHat_NS = SigmaHat;  
    ISigmaHat_NS = inv(SigmaHat_NS);  
 
%Standardization 
    [MuHat_St,Z,standard] = Mu_stand(MuHat,SigmaHat,m,vec_medias); 
    [SigmaHat_St] = Sigma_stand(SigmaHat); 
    MuHat_St; 
    SigmaHat_St; 
    ISigmaHat_St = inv(SigmaHat_St); 
  
%Deviation from true correlation matrix 
    [cambios] = variaciones(SigmaHat_St,Sigma0); 
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    St_8=reshape(cambios,cov_size(1),cov_size(1)); 
    IS_St_8=inv(St_8); 
    S = reshape(SigmaHat_St,1,cov_size(1)*cov_size(2)); 
 
%Correlation matrices estimation 
    [combinaciones] = CovMatr_combs(SigmaHat_St,cambios,S); 
%Full factorial for p<=3, if p>=4 the function CovMatr_combs is 
%replaced by the orthogonal function 
 
    mat = [S;cambios;combinaciones]; %mat = all considered matrices  
 
%god = true correlation matrix  

god= reshape(Sigma0,1,cov_size(1)*cov_size(2));    
mat_cov=[mat;god]; %first row is the estimated mat/last true mat  
 

%estimating condition number and determinant of all estimated matrices 
    [matrices,condicion] = condition_determinantes(mat_cov,Sigma0); 
    matrices; %this variable contains all non singular matrices 
    condicion; %includes all matrices with condition number/determinant  
     
%estimated the norm of the matrices and the deviation from the true 
%matrix 
    diff_norm = normas(condicion,p); 
    [pa1 pa2] = size(condicion); 
    [ca1 ca2] = size(matrices); 
  
%the following loop calulates matrices' inverses and save it in 
%matrices2 
    matrices2=[]; 
    for i=1:ca1 
        tempo2 = inv(reshape(matrices(i,:),p,p)); 
        tempo3 = reshape(tempo2,1,p*p); 
        matrices2 = [matrices2;tempo3]; 
    end 
   
  
%Phase II of T2 Control Charts and ARL estimation 
%This procedure evaluates the ARL for tmax replicates 
    tmax = 50;  
    [f1 c1] = size(mat_cov);       
%The ARL will be evaluated using standarized values 
%ARL varying SigmaHat  
    state1 = 0;  
    V1=0; 
    results2 =[]; 
    for j=1:10 %10 replicates 
        ARL= []; Run1 =[]; Runs=[]; Runs2=[];  
        state1 = state1 + V1; 
        state=0+state1; V =0; results=[]; 
        for d=200:200:1400 



 
 
 

 
 

 155

            state =state+V; 
            rand('state', state);  
            randn('state', state); 
            UCL2 = (p*(m+1)*(n-1))* finv(1-(1/d),p,m*n-m-p+1)/(m*n-m-
p+1); 
            Run1=[];  
            RunL=1:f1; flags=1:f1; 
            for t =1:tmax    
                flag = 0; 
                RunL=zeros(1,f1); 
                flags = zeros (1,f1); 
                while flag ==0   
                    sample1 = mvnrnd(Mu0,Sigma0,n); 
                    promedio1 = mean(sample1);                     
                    Z1 = (promedio1 - MuHat_NS)./standard;   
                    for i = 1:f1 
                        if flags(i) ==0   
                            RunL(i) = RunL(i) + 1; 
                            T = n*Z1*reshape(matrices2(i,:),p,p)*Z1'; 
                            if T > UCL2 
                                flags(i) = 1;  
                            end    
                        else 
                        RunL(i) = RunL(i); 
                        end 
                    end 
                    if (flags==1)  
                        flag = 1; 
                    end 
                end 
                Run1 = [Run1;RunL]; 
            end  
            Runs2 = [Runs2;Run1']; 
            Runs=[Runs,Run1']; 
            ARLsim= sum(Run1)/tmax; 
            ARL=[ARL;ARLsim]; 
            V=5; 
            for y=1:size(ARLsim,1) 
                results = [results;(zeros(1,size(ARL,2))+d)' ARLsim']; 
            end  
        V1=3; 
        end 
        results = [results Runs2];   
        results2 = [results2; results]; 
         
        for zz=1:size(results2,1) 
            con = [con; condicion]; 
            nor = [nor; diff_norm]; 
        end 
         
    end % this is the end of the first for 
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    for z=1:size(results2,1) 
        final = [final ; indicadores con(z,pa2-1) nor(z,:) 
results2(z,:)] ; 
    end 
    state1 = 2; 
  
end 
 

Appendix I2. Parameters and Random number generation 
function 
 
function 
[MuHat,SigmaHat,sample,vec_medias]=multiv_parameter(Mu0,Sigma0,m,n) 
sampl = []; vec_med=[]; covarianzas =[]; 
cov_size=size(Sigma0); 
%Multivarate Random Sample Generation 
%Sample contains the values of the n multivariate random number 
generated 
%every 3 columns 
for i=1:m 
    B=mvnrnd(Mu0,Sigma0,n); 
    sampl = [sampl;B]; 
    vec_med = [vec_med;mean(B)]; 
    paso=cov(B); 
    covarianzas=[covarianzas;paso(1:1:end)]; 
end 
MuHat=mean(vec_med); 
SigmaHat_vec=mean(covarianzas); 
SigmaHat=reshape(SigmaHat_vec,cov_size(1),cov_size(1)); 
sample = sampl; 
vec_medias= vec_med; 
 

Appendix I3. Standardization function 
 
function 
[MuHat_St,SigmaHat_St,Z]=standarization(MuHat,SigmaHat,m,vec_medias) 
temp_Mu = [];  
for i =1:m 
    temp_Mu = [temp_Mu; MuHat];  
end  
temp_St = []; 
for i =1:m 
    temp_St = [temp_St; sqrt(diag(SigmaHat)')];  
end 
Zi = (vec_medias - temp_Mu)./temp_St; 
%Zs the standarized values of sample in the same column order. 
%The parameters estimated are 
Mu = mean(Zi); 
[row col] = size(SigmaHat); 
S = []; S1 =[] 
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for i = 1:row 
    for j = 1:col 
        s = SigmaHat(i,j)/sqrt(SigmaHat(i,i)*SigmaHat(j,j)); 
        S =[S s]; 
    end 
    S = [S S1];  
end 
Sigma = reshape(S,row,row); 
MuHat_St = Mu; 
SigmaHat_St = Sigma; 
Z =Zi; 
 
 

Appendix I4. Deviations computation from true correlations 
function 
 
function [cambios] = variaciones(SigmaHat,Sigma0) 
[rows cols] = size (SigmaHat); 
[row col] = size(SigmaHat); 
S = []; S1 =[] 
for i = 1:row 
    for j = 1:col 
        if ~(i==j) 
            s = tanh(2*atanh(Sigma0(i,j))-atanh(SigmaHat(i,j))); 
            S =[S s]; 
        else 
            S = [S SigmaHat(i,j)]; 
        end 
    end 
    S = [S S1];  
end 
cambios = S; 
 
 

Appendix I5. Correlation matrices function 
 
function [combinaciones] = Cov_Matrices_comb(SigmaHat_St,cambios,S) 
[r w] = size(SigmaHat_St); 
sigma = reshape(SigmaHat_St,1,r*w); 
vars = reshape(triu(SigmaHat_St,1),1,r*w); 
a = find(~(vars==0)); 
[row col] = size(a); 
[r1 w1] = size(vars);  
V=[]; 
for i = 1:(col-1)  
    c = combntns(a,i); 
    [r2 w2] = size(c); 
    for j = 1:r2 
        temp = 0; 
        temp = reshape(eye(r),1,r*w); 
        for k=1:w2 
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            temp(c(j,k)) = cambios(c(j,k)); 
        end 
        d = reshape(temp,r,w); 
        e = d + d'-eye(r);         
        temp1 = reshape(e,1,r*w); 
        V = [V; temp1]; 
    end 
end 
[r3 w3] = size(V); 
temp2 = []; 
for i=1:r3 
    temp2 = [temp2;sigma]; 
end 
posit = find(V==0); 
v = V; 
v(posit) = temp2(posit); 
combinaciones = v; 
 
 
 

Appendix I6. Orthogonal designs function 
 
 
function [combinaciones] = Ortogonal(SigmaHat,Sigma0,cambios,p) 
  
[k1 l1] = size(Sigma0); 
if p==5 
    load disen_frac_p5.txt; 
    datos = disen_frac_p5; 
end 
if p==6 
    load disen_frac_p6.txt; 
    datos = disen_frac_p6; 
end 
         
[k2 l2] = size(datos); 
original = reshape(Sigma0,1,k1*l1); 
estimado = reshape(SigmaHat,1,k1*l1); 
  
m_dis = ones(k1,l1) - eye(k1,l1); 
m_dis = reshape(triu(m_dis),1,l1*k1); 
  
posiciones = find(~(m_dis==0)); 
m_diseno=[]; 
for i = 1:k2 
    m_dis(posiciones) = datos(i,:); 
    m_diseno =[m_diseno;m_dis]; 
end 
  
matri=[]; 
for i = 1:k2 
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    tempo = reshape(m_diseno(i,:),k1,l1); 
    tempo2 = tempo + tempo';  
    matri = [matri; reshape(tempo2,1,k1*l1)]; 
end 
  
pos_up = find((estimado>original)); 
pos_lo = find((estimado<original)); 
  
hola=matri; 
for i = 1:k2  
    for j=1:size(pos_up,2) 
        if hola(i,pos_up(j))==1 
            hola(i,pos_up(j)) = estimado(1,pos_up(j)); 
        else 
            hola(i,pos_up(j)) = cambios(1,pos_up(j)); 
        end 
    end 
    for k=1:size(pos_lo,2) 
        if hola(i,pos_lo(k))==1 
            hola(i,pos_lo(k)) = cambios(1,pos_lo(k)); 
        else 
            hola(i,pos_lo(k)) = estimado(1,pos_lo(k)); 
        end 
    end 
  
end 
  
diseno =[]; 
for i = 1:k2 
    temp = reshape(hola(i,:),k1,l1); 
    temp2 = temp + diag(ones(1,k1)); 
    diseno = [diseno; reshape(temp2,1,k1*l1)]; 
end 
combinaciones = diseno; 
         

Appendix I7. Determinant and condition number function 
 
 
%mat_cov are all the combinations of matrices 
%This function uses mat_cov to evaluate the condition number and the 
%determinant.  
%matrices = The answer of this function is a mtrix that contains only 
the 
%nonsingular combinations 
%condition has the matrices in one line and the condition number and 
the 
%determinant of this matrix 
function [matrices,condition] = condition_determinantes(mat_cov,Sigma0) 
[fil col] = size(Sigma0); 
[filas columnas] = size(mat_cov); 
matrices =[];  
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condition =[]; 
for i=1:filas 
    A = reshape (mat_cov(i,:),fil,col); 
    k = cond(A,2); %k = condition number 
    t = det(A);    %t = determinant 
    if ~(t==0) %only matrices with det<>0 --> matrices 
        matrices = [matrices ;mat_cov(i,:)]; 
    end 
   condition = [condition ;mat_cov(i,:) k t]; %information of all 
matrices 
end 
 

Appendix I8. Deviation from true matrix and norm function 
 
% Calculates the difference between estimated matrix and the 
% real matrix (god's matrix). In this case only considers the upper 
%diag matrix 
function [diffnorms] = normas(condicion,p) 
diffnorms=[]; 
dios = reshape(condicion(size(condicion,1),1:size(condicion,2)-2),p,p); 
for i=1:size(condicion,1)-1 
    mattemp = reshape(condicion(i,1:size(condicion,2)-2),p,p); 
    %norma 2 is the second norm of the difference matrix 
    norma2 = norm(mattemp - dios); 
    triansup = triu(mattemp)- triu(dios); 
    %sumaup is the absolute value of the sum of the correlation in the 
    %upper triag 
    sumaup = abs(sum(sum(triansup))); 
    %sumatot is the absolute value of the sum of all differences 
between 
    %correlations 
    sumatot = abs(sum(sum(mattemp-dios))); 
    %proup is the average of the absolute value over the correlation 
used in 
    %the difference 
    proup = sumaup/(size(find(triansup),1)); 
    %protot is the averaga of the absolute value over the total 
    %correlations 
    protot = sumatot/(p*p); 
    diffnorms = [diffnorms; sumaup sumatot proup protot norma2]; 
end 
  
diffnorms = [diffnorms;zeros(1,size(diffnorms,2))];  
 


