Lugo-Velázquez, Irmydel P.
Loading...
1 results
Publication Search Results
Now showing 1 - 1 of 1
Publication Characterization of a robust flow-through microfluidic device for single-cell electroporation(2012) Lugo-Velázquez, Irmydel P.; Díaz-Rivera, Rubén E.; College of Engineering; Valentín, Ricky; Carlo, Héctor J.; Department of Mechanical Engineering; Ramírez, Juan EduardoElectroporation, or electropermeabilization, is a physical phenomenon that occurs when a biological cell is subjected to an external electric field. This technique is typically used in laboratory or medical settings when there is a need to deliver molecules that otherwise cannot cross cell’s lipid membrane. A microfluidic device with geometric constriction is proposed to enhance the electric field that the cell experiences when it flows through this section and so provide effective permeabilization in a flow through manner. Electroanalytical experiments were carried out with HeLa cells and stem cells to study the current response of the system and fluorescence experiments were carried out in order to get optical feedback of the process. Voltage pulses of constant magnitude and in the range of tens of seconds were applied with a potentiostat and electrochemical software (chronoamperometry) was used to detect the state of permeabilization of the membrane. Drops in electrical current provided a means of detecting the flow of cells through the channel in real time. It was observed that this current drop is proportional to the size of the cell. It was observed that the profile of the current drop was different when cells reached permeabilization. The release of the fluorescent Calcein from inside the cell confirmed that the membrane was permeabilized. The acquired electrical parameters may be useful data for the functional electroporation of other cell types. In addition, the device could be used for future clinical trials in cell-based medical treatments.