Muñoz Senmache, Juan C.
Loading...
2 results
Publication Search Results
Now showing 1 - 2 of 2
Publication Restricted Carbon–based metal organic framework composite adsorbent for the removal of contaminants of emerging concern from water(2021-11-03) Muñoz Senmache, Juan C.; Hernández Maldonado, Arturo J.; College of Engineering; Méndez Román, Rafael; Suleiman Rosado, David; Curet Arana, María C.; Department of Chemical Engineering; Colón Ramírez, SilvestreFor more than two decades, the presence of contaminants of emerging concern (CECs) in sources of water has attracted attention from the scientific community due to their inherent capability to produce biological undesirable effect in living organisms and the overall impact to the environment, even at very low doses. Effective remediation of CECs also remains a challenge, even with current improvements in capacity of water treatment (WT) operations to mitigate pathways associated to the exposition to humans, animals, and edible plants. Therefore, there are significant opportunities in diverse WT areas to enable CEC remediation technologies that would allow for the attainment of higher clean water standards and also to prevent further potential environmental impact. This work offers a promising alternative to remove very low concentrations of CECs from water using composites adsorbents (CMOFs) based on the confined space synthesis of metal organic frameworks (MOFs) inside of activated carbon (AC) pores. This arrangement could offer a synergistic effect produced by the superior hydrophobicity from AC, which is providing not just hydrophobic interactions, but also an effective barrier to diminish water competition for the adsorption active sites given by the MOFs. The resulting CMOFs composite materials were tested in the removal of a specific target of CECs from water in both single- and multi-component matrix. These CECs were chosen not only by their occurrence in the environment, but also exhibit a considerable range of molecular structure and physio-chemical properties, and these include carbamazepine (CBZ), caffeine (CFN), naproxen (NPX), clofibric acid (CA), and metabolites such as salicylic acid (SA), 10,11-epoxycarbamazepine (Ep-CBZ), paraxanthine (PXN), and o-desmethylnaproxen (o-DMN). The latter three result from partial decomposition of primary molecules CBZ, CFN, and NPX, respectively. In addition, this work also evaluated the effect of the chemical environment constitution (i.e., organic linker and metal node) of the MOF over the affinity toward CECs. The obtained results showed that the overall adsorption capacity for the tested materials increases as follow: MIL-100Fe < MIL-100Cr < MIL-101Cr < CMOF-101Cr < AC-treated with acids < CMOF-100Fe < AC < CMOF-100Cr. These results have proven that getting simultaneous hydrophobicity and available active adsorption sites has a tremendous impact in the adsorption capacity of CECs specially in those molecules who remain without ionic charge during the process (i.e., CBZ and Ep-CBZ). Finally, this work has also demonstrated a suitable regeneration via thermal treatment to ensure multi cycle adsorption processes without affecting the overall uptake capacityPublication Open Access Hierarchical three-dimensionally ordered mesoporous carbon (3DOm) zeolite composites for the adsorption of Contaminants of emerging concern(Elsevier Inc., 2021-02-12) Fernández Reyes, Bethzaely; Morales Jiménez, Stefannie; Sánchez Marrero, Gloriani; Hernández Maldonado, Arturo J.; Muñoz Senmache, Juan C.; College of Engineering; Department of Chemical EngineeringEffective removal of contaminants of emerging concern (CECs) from water via adsorption requires adsorbent materials that showcase a synergistic combination of textural properties, hydrophobicity, and specific surface interactions. In this work, we present a hierarchical composite prepared on the basis of in-situ or confined growth of a faujasite zeolite (FAU) within the voids of a 3D mesoporous ordered carbon (3DOm). This adsorbent was tested for the removal of several CECs (i.e., caffeine, carbamazepine, naproxen and metabolites clofibric acid, 10,11-epoxycarbamazepine, o-desmethyl naproxen, paraxanthine, and salicylic acid) from water at ambient conditions. Upon inclusion of copper(II) extra-framework cations, the hierarchical composite (Cu-3DOm-FAU) excelled at adsorbing ionic CECs and offered similar uptake capacity toward neutral parent compounds in both single- and multicomponent fashion and while covering a mg L^-1 - mg L^-1 concentration range. Compared to other adsorbents reported so far in the literature, the Cu-3DOm-FAU composite adsorption capacities were larger, in many cases by at least one order of magnitude. Given the substantial thermal stability of the composite, regeneration could be accomplished via thermal cycling also depending on the type of CEC involved.
